

## Appendix 4:

Mary River Project 2011 Potential Quarry and Borrow Investigations





# Mary River

# 2011 Potential Quarry and Borrow Investigations

|            |      |                                | £1/4./.l.l     | -famblely  | Clela       | 0           |
|------------|------|--------------------------------|----------------|------------|-------------|-------------|
| 2011-11-21 | В    | Approved for Use               | E. Neufeld     | R. Halim   | J. Cleland  |             |
| 2011-10-04 | А    | Draft – For Internal<br>Review | E. Neufeld     | R. Halim   | J. Cleland  |             |
| DATE       | REV. | STATUS                         | PREPARED BY    | CHECKED BY | APPROVED BY | APPROVED BY |
|            |      |                                | <b>№ HATCH</b> |            |             | CLIENT      |







#### **Table of Contents**

| 1. | Intro                           | oduction                                                                                                                                                                                                                                              | 1           |
|----|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 2. | Back                            | ground                                                                                                                                                                                                                                                | 1           |
| 3. | Revi                            | ew of Previous Investigations and Laboratory Testing                                                                                                                                                                                                  | 2           |
|    | 3.1<br>3.2<br>3.3<br>3.4<br>3.5 | "Additional Quarry Sites" Report  "Summary of Aggregate Resource Evaluation Testing Program" Report  "Quarry Sites' Screening" Report  "Interim ML/ARD Assessment of Railway Quarry Rock Samples" Report  Draft Environmental Impact Statement Report | 2<br>3      |
| 4. | 2011                            | I Investigation Program                                                                                                                                                                                                                               | 4           |
|    | 4.1<br>4.2<br>4.3<br>4.4<br>4.5 | Overview                                                                                                                                                                                                                                              | 5<br>6<br>6 |
| 5. | Labo                            | pratory Testing                                                                                                                                                                                                                                       | 7           |
| 6. |                                 | minary Recommendations                                                                                                                                                                                                                                |             |
| 7. | Refe                            | rences                                                                                                                                                                                                                                                | 8           |

#### **Tables**

Table 1: Quarry Summary Table 2: Borehole Statistics

## **Figures**

Figure 1: Quarry Sites Figure 2: Quarry Sites

Figure 3: Bedrock Properties

#### **Appendices**

#### **Appendix A: Sketches**

Sketch 1: Quarry and Borrow Areas at Mary River Mine Site (Sourced from Figure 3-2.3 from DEIS)

Sketch 2: Quarry Areas at Steensby Inlet Port Site (Sourced from Figure 3-2.9 from DEIS)

**Appendix B: Borehole Logs** 

**Appendix C: Point Load Test Data** 







#### 1. Introduction

Baffinland Iron Mines Corporation (Baffinland) is planning to develop the Mary River iron ore deposits on North Baffin Island in the Qikiqtani Region of Nunavut. This project will require a large volume of rockfill and borrow material for the development of the site infrastructure at the Mary River mine site and Steensby Inlet port site, as well as for the construction of an approximately 140 km railway between the mine site and the port site.

Site investigations have been conducted by Thurber Engineering Ltd (Thurber), under the direction of Hatch Ltd. (Hatch) at the guarries and borrow areas in the summer of 2011.

This report reviews previous studies and investigations for the potential borrow and quarry areas, summarizes the 2011 site investigations and presents recommendations for further development of these quarry and borrow areas.

### 2. Background

The following supporting documents have been identified that refer to borrow and quarry areas for the Mary River project:

- Canarail Consultants Inc. (Canarail), "Additional Quarry Sites", TDM No. 159952-5000-121-032 [Ref 1].
- AMEC Americas Limited (AMEC), "Summary of Aggregate Resource Evaluation Testing Program, Baffinland Iron Mine Mary River Project" [Ref 2].
- Knight Piésold Consulting (KP), "Mary River Project Quarry Sites' Screening" [Ref 3].
- AMEC, "Interim ML/ARD Assessment of Railway Quarry Rock Samples, Baffinland Mary River Project – Issued for DEIS" [Ref 4].

These documents were used in the preparation of the Draft Environmental Impact Statement (DEIS), issued in December 2010 [Ref. 5].

Very limited drilling investigations were undertaken at these sites, but the investigation programs from 2006 to 2008 included some drilling to collect samples for preliminary laboratory testing to assess the suitability of the material for granular fill and ballast uses. Preliminary testing was also completed to assess the material's potential for Acid Rock Drainage (ARD). No specific testing was done to assess the material's suitability for use as concrete aggregate, except for a limited number of physical tests on rock samples for use as potential ballast material. In particular, it does not appear that any testing for alkali-aggregate reactivity has been conducted to determine the suitability of the rocks from the quarry and borrow area at the Mary River site and potential quarries at Steensby Inlet, where concrete will be used during construction of the project. Identified quarry and borrow areas at Mary River (QMR2 and Borrow Area #3) and at Steensby Inlet (QS-1, QS-2, QS-3 and QS-3A) are shown in Appendix A on figures from the DEIS [Ref 5]. A







potential borrow area around Station 128+000 was identified in 2011 and may be the closest potential source for fine aggregates for Steensby Inlet. The location of this borrow area is not shown on these figures.

#### 3. Review of Previous Investigations and Laboratory Testing

#### 3.1 "Additional Quarry Sites" Report

Canarail's "Additional Quarry Sites" report [Ref 1] identifies 43 quarry sites to be added to the quarry sites previously identified by KP. The report also states that twelve of KP's quarry sites were removed based on access difficulties, haul lengths, long upgrade haul distances, construction methodologies, quarry sizes and potential capacities. It was not expected that all of the 69 quarry sites would be developed, but it was felt that it would be better to identify too many rather than too few quarry sites. The report provided estimated volumes for all the sites and stated that Q133+500, also known as BAL-1, in the southern portion of the line will be used as ballast material. This report uses data from existing reports and field reconnaissance.

3.2 "Summary of Aggregate Resource Evaluation Testing Program" Report AMEC's "Summary of Aggregate Resource Evaluation Testing Program" report [Ref 2] summarizes laboratory testing done on potential sources of ballast, sub-ballast and rockfill material.

The test results on the ballast sources BAL-1 (Q133  $\pm$  500), BAL-2 (Q138  $\pm$  100), BAL-3 (Q139  $\pm$  600) and BAL-4 (Q139  $\pm$  600) are summarized as follows:

- All samples met the ballast specification requirements for degraded aggregate cement value (CV), bulk specific gravity, magnesium sulphate soundness and absorption.
- None of the samples met the shape factor requirements.
- All samples except one sample from BAL-1 (Q133 + 500) had losses that exceeded that maximum allowable limit in the Los Angeles abrasion test.
- All samples for BAL-2 (Q138+100), BAL-3 (Q139+600) and BAL-4 (Q139+600) met the
  requirements for the mill abrasion (MA) test, but only one sample from BAL-1 (Q133+500)
  met the test requirements.
- All the samples are below the maximum Petrographic Number (PN) requirement specified in Ontario provincial standards for high quality coarse aggregate used in highway road construction [Ref 6].

These results indicate that none of the BAL sources meet all the specification requirements for ballast stone. However, some of the poor test results may have been affected by the limitations of the method of sample preparation. All the samples show good resistance to freezing and thawing conditions.







Limited testing on sub-ballast and rockfill sources was undertaken at Q50+000, Q56+750, Q64+400, Q67+200, Q77+200 and Q82+700. The test results showed that the fines are non-plastic. Micro-deval abrasion testing on the coarse and fine aggregate fractions showed that the mass loss was below maximum losses specified in Ontario provincial standards [Ref 7]. These results indicate that the material could potentially be suitable for railway construction, although it will require additional testing.

The report recommended that additional testing be carried out on the ballast and sub-ballast sources to confirm these test results. In particular, the report recommends that testing be done at the quarry areas at Steensby Inlet, QS1, QS2, QS3 and QS3A, to assess their potential as concrete aggregate, ballast, sub-ballast, rockfill or other construction aggregate material. Also, it recommends that the fine aggregate source at Mary River be tested to assess its suitability for concrete fine aggregate uses.

The report did not identify or discuss any potential ballast materials at the northern end of the railway line. It is not known why the ballast materials were only planned to be sourced from the south end of the railway line. It was understood, however, that the southern end of the railway line passes through a number of rock cuts consisting of granitic rock, which might have been assumed to be hard and durable rock sources suitable for ballast material.

#### 3.3 "Quarry Sites' Screening" Report

KP's "Mary River Project Quarry Sites' Screening" report [Ref 3] shows preliminary bounds and volumes for road and railway construction for 68 of the 69 quarry sites recommended by Canarail's "Additional Quarry Sites" report [Ref 1]. Outer boundaries are shown for each quarry for land tenure purposes and to provide flexibility to the contractor during quarry development. The report shows the areas of excavation that would be required for 1.5 times the volume excavation, assuming one10 m lift is used, as well as proposed permit areas, areas of potential access to quarries and substitute quarry locations in environmentally sensitive areas.

The report did not discuss Q40+600 or QS3, and did not provide volumes for QS1, QS2 or QS3A, because these sources were not anticipated to be used at the time. The report also does not provide volumes of material for material which could potentially be obtained from construction of the tunnels or the ore loading dock.

#### 3.4 "Interim ML/ARD Assessment of Railway Quarry Rock Samples" Report

AMEC's "Interim ML/ARD Assessment of Railway Quarry Rock Samples" Report [Ref 4] assesses the metal leaching and acid rock drainage (ML/ARD) characteristics of rock samples collected by KP in 2008 along the rail alignment. Surface saw-cut sampling was used for ballast material suitability testing, chip sampling and core sampling for geochemical testing and surface grab sampling for durability testing. AMEC only used core samples for the ML/ARD testing, but the remainder of the samples are still stored at the SGS lab in Lakefield, Ontario.

The report provides a geological survey along the rail alignment, stating that the most northern approximately 29 km portion of the rail alignment crosses Paleozoic sedimentary rock and Precambrian rock. The southern 120 km portion of the rail alignment crosses only Precambrian







rock. The Paleozoic sedimentary rock includes sandstones, and the Precambrian rock includes gneisses.

Thirty-eight core samples from 26 boreholes were tested by SGS, taken every 3 to 7 km along the rail alignment. These included 7 sandstone, 6 granite and 25 granitoid gneiss samples.

The testing included acid-base accounting (ABA), Net Acid Generation (NAG), total metals by aqua regia digestion with ICP-MS finish, leachable metals, and mineralogy.

The report concluded that:

- The three types of materials tested are all suitable for quarry source material with a low potential for ML/ARD;
- Two gneiss samples had neutralization potential ratio (NPR) results that were unacceptably low, but the remainder of the samples did not show low NPR results. These samples were located at Station 64+400 and Station 95+200. However, samples between these stations had acceptable NPR results, indicating that a continuous area of low NPR likely does not exist between Station 64+400 and Station 95+200. This area should be investigated further;
- The sandstone and intrusive granite rocks are more homogeneous and may require less
  characterization prior to detailed development, but the less homogeneous gneissic rocks
  should be characterized in more detail, especially around Cockburn Lake, to ensure that the
  rock does not have potential for ML/ARD;
- ML/ARD conditions may be caused by low sulphide content in the rock, and that sulphide
  contents should be identified in future sampling; and
- The regional geological information should be better characterized to identify potential ML/ARD areas.

#### 3.5 Draft Environmental Impact Statement Report

Table A1 of Appendix 10D-6 in the DEIS provides volumes for most of the quarries. The DEIS adds Q40+600 and provides volumes for QS2 to the list given by KP in the "Quarry Sites' Screening" report [Ref 3], but still does not include QS1, QS3A or QS3. The volumes are unchanged from the KP report. The DEIS also does not provide volumes of material for material which could potentially be obtained from construction of the tunnels or the ore loading dock.

Appendix 3D of the DEIS also contains drawings of possible access roads to the quarry sites prepared by Dillon Consulting.

## 4. 2011 Investigation Program

#### 4.1 Overview

The DEIS identifies 69 potential quarry locations, outlined in Table 1 below. It was not possible to drill at each of the 69 quarry locations due to time limitations. It should be noted that some of the potential quarry sites were located in areas where water sources for drilling were not







available nearby. Where water sources for drilling were not available nearby, helicopters were used to transport and supply drilling water, affecting the utilization of the helicopter time for the other drilling programs, and hence jeopardizing the completion of the remaining 2011 drilling investigations. In the interests of completing as many boreholes as possible, many of the potential quarry areas without nearby water sources were not drilled. Visual observation of these sites indicated that there are abundant sources of rock materials.

During the 2011 investigation program, boreholes were drilled at 35 quarry locations which had not previously been exploited or tested, at four additional locations along the proposed tunnels and at five locations at the ore loading dock at Steensby Inlet. Drilling was carried out under field supervision from Thurber. As drilling had never occurred at most of the sites, the purpose of the 2011 drilling program at the quarry sites was to confirm the availability of bedrock at the site, to confirm the rock depth and collect samples for physical and ARD tests. At Mary River and Steensby Inlet, samples were also collected for alkali-aggregate reactivity (AAR) tests to assess the material's potential for use as concrete aggregates.

Quarry QS3 is not discussed in the DEIS, but was mentioned in a 2008 KP investigation report [Ref 8]. This site is located on a bedrock knob adjacent to QS3A and it could be developed for sources of rock material at Steensby Inlet. It has been included in Table 1 for completeness.

Rock excavated during the construction of two tunnels in the southern portion of the rail alignment and at the ore loading dock at Steensby Inlet has also been identified as a potential source of rockfill materials. The four boreholes drilled along the tunnel locations and the five boreholes at the ore loading dock are included in Tables 1 and 2.

Table 1 also includes the approximate stations and coordinates of the potential quarry and borrow areas, the volumes of material anticipated to be sourced from the quarry and borrow areas, and whether a borehole was drilled at the quarry or borrow area in 2011. Table 2 summarizes the boreholes drilled in 2011, along with the quarry and borrow samples sent for lab testing. Borehole logs from the 2011 drilling program at the potential quarry and borrow sites are found in Appendix B [Ref 9].

Concrete will be required for construction of the Mary River and Steensby Inlet infrastructure. Material from potential quarries at the Mary River and Steensby Inlet sites will be tested to assess their suitability for concrete coarse aggregate in addition to their suitability as ballast and rockfill material. Additional samples were collected from Borrow Area #3 and from a potential borrow area in the vicinity of Station 128 + 000 for testing to meet suitability requirements for concrete fine aggregates.

#### 4.2 Rock Samples

In general, the 16 quarry boreholes that were selected for sampling were chosen based on the distance from rail line and depth to bedrock. Boreholes closer to the railway and with bedrock at shallower depth were preferred over boreholes farther from the railway and with greater amounts of overburden.







The depth of samples for physical characteristic testing from the 16 boreholes was selected randomly. A section of core was selected that was representative of the average bedrock conditions.

The depth of samples for ARD testing was based on rock mineralogy. Sections of rock were selected that appeared to contain sulfide minerals such as pyrite. Where no evidence of sulfide minerals was found, the sample depth was selected randomly.

#### 4.3 Bedrock Depth and Type

Table 2 and Figure 3 show the depth to bedrock in each borehole.

Bedrock was encountered in 42 of the 44 boreholes. At boreholes Q28+400 and Q31+500, bedrock was not encountered at end of drilling depths of 24.2 m and 13.2 m, respectively.

Sandstone bedrock was found at boreholes Q4+100, Q7+500 and Q18+100, and granitic gneiss bedrock was encountered at the remaining 39 boreholes. This confirms the geologic characterization of the railway line found in AMEC's "Interim ML/ARD Assessment of Railway Quarry Rock Samples" Report [Ref 4], as discussed in Section 3.4 of this report.

The depth to bedrock encountered in the boreholes varied along the rail alignment. Thirty-one boreholes had depths to bedrock of 5 m or less, six boreholes had depths to bedrock between 5 m and 10 m, and seven boreholes had depths to bedrock greater than 10 m. The maximum depth to bedrock recorded was 35 m. The boreholes with a depth to bedrock greater than 10 m are all found in the northernmost 40 km along the rail alignment. South of this point, the average depth is much lower at 2.5 m, indicating that the area has more prominent bedrock outcrops along the railway line.

#### 4.4 ROD

The bedrock may be used for rail embankment material or ballast material if it has the required physical characteristics and does not show potential for ML/ARD. For ballast material, it is important that the rock be of good quality.

The Rock Quality Designation (RQD) gives an indication of rock soundness and quality. Rock with RQD values between 75% and 100% is classified as good to excellent, while rock with RQD values between 0% to 75% is classified as very poor, poor and fair. Table 2 summarizes the total thickness and percent in each borehole of very poor to fair rock. There is no discernible correlation between depth of rock and rock strength. Figure 3 summarizes the % of very poor to fair rock in each borehole.

Of the potential ballast sites which were previously investigated, only site BAL-1 (Q133 + 500) was not investigated in 2011. The borehole advanced in the vicinity of BAL-2 (Q138 + 100) consisted of 41% poor to fair rock, with RQD values ranging from 47% to 73%. The borehole advanced in the vicinity of BAL-3 (Q139 + 600) and BAL-4 (Q139 + 600), had no very poor to fair rock, confirming that it could be a very suitable source for ballast material.







#### 4.5 Point Load Testing

Point load tests were conducted on the rock, with results provided in Appendix C. In general, the most weak rock is found between Q7+500 and Q22+500, with a few weak areas between Q42+000 and Q53+700, and at Q88+800, QTR-12 (Station 101+100) and NTUN-DH03 (Station 102+930). Between these weaker areas, and from Station 114+600 to the end of the rail alignment, the rock is almost exclusively very strong to extremely strong (100 MPa to 330 MPa).

#### 5. Laboratory Testing

Laboratory testing programs have been previously carried out by AMEC and SGS Group (SGS) using samples collected by KP. It was determined that testing of the 2011 investigation material should be carried out by AMEC and SGS to provide continuity with previous programs. The samples that were collected are summarized in Table 2. Sand samples were also collected from Borrow Area #3 and from a potential borrow area in the vicinity of Station 128+000 for testing to meet suitability requirements for concrete fine aggregates.

The tests to be conducted will be the same as those done in previous programs [Ref 2 and Ref 4], as the 2011 investigation program for potential rock quarry sites was intended to provide additional information on the previously identified potential quarries. Physical and geochemical testing results are not available at this time and will be reported separately by AMEC.

## 6. Preliminary Recommendations

The 2011 drilling program has increased the knowledge about the potential quarry and borrow areas by better characterizing the subsurface conditions at the potential sites and by taking samples for testing.

As the next step after the 2011 drilling program and prior to the final design, the following activities are recommended. It should be noted that these recommendations are only based on limited field test results from drilling; laboratory test results are not yet available and may change the recommendations indicated below:

- Additional investigations should be conducted to complete drilling at the potential quarries
  outlined in Table 1 which were not drilled in 2011. It is not necessary to investigate the
  quarries used exclusively for construction of the access road;
- Alternative quarry sites should be identified to replace sites where the 2011 drilling program showed deep bedrock or no bedrock. Prior to this, it should be determined whether the borehole results were anomalies, and the sites should be checked for the presence of bedrock outcrops. If so, additional drilling should be conducted at these sites;
- When physical and geochemical testing is completed and reported by AMEC, the potential
  quarries will need to be re-evaluated on the basis of the test results. The quarries should be
  revisited, alternative quarries may be added if necessary and volumes of the quarries should







be adjusted based on the information from the current investigation program. The volume of material that can be extracted from rock cut areas and tunnels will be provided by Canarail/EBA Engineering;

- Additional investigations should be conducted at a number of quarry sites to confirm the thickness of overburden, particularly for quarries which will potentially supply large volumes of materials;
- When the laboratory test results are completed and reported, potential ballast sources should be assessed at QMR2, around Station 22 + 500 and 50 + 000, and at QS1, QS2 and QS3A;
- Borrow areas containing large boulders which could be crushed into rock aggregates should be considered, particularly in the most northern 35 km portion of the railway line; and
- Additional rock samples from the 2011 investigation program may need to be tested for ARD and physical characteristics, such as samples from boreholes drilled at other potential rock cut areas which could be used as rockfill material.

#### 7. References

- 1. Canarail Consultants Inc, "Additional Quarry Sites", TDM No. 159952-5000-121-032 Rev. C, December 5, 2008.
- 2. AMEC Americas Limited, "Summary of Aggregate Resource Evaluation Testing Program, Baffinland Iron Mine Mary River Project", File No. TC83911 Phase 2000, January 13, 2009.
- 3. Knight Piésold Consulting, "Mary River Project Quarry Sites' Screening", File No., NB102-181/25-A.01, Cont. No. NB10-00321, June 25, 2010.
- 4. AMEC Americas Limited, "Interim ML/ARD Assessment of Railway Quarry Rock Samples, Baffinland Mary River Project Issued for DEIS", File No. TC 101507, December 14, 2010.
- 5. Knight Piésold Consulting, "Mary River Project, Draft Environmental Impact Statement", December 2010.
- 6. Ontario Provincial Standard Specification, "Material Specification for Aggregates Hot Mix Asphalt", OPSS 1003, November 2006.
- 7. Ontario Provincial Standard Specification, "Material Specification for Aggregates Base, Subbase, Select Subgrade, and Backfill Material", OPSS 1010, November 2003.
- 8. Knight Piésold Consulting, "Baffinland Iron Mines Corporation, Mary River Project, Rail Alignment, Steensby Port Site Infrastructure & Borrow Sources, 2008 Site Investigations Summary Report", Ref. No. NB102-181/24-2, December 31, 2010.
- 9. Thurber Engineering Limited, "2011 Geotechnical Investigation Factual Report", under preparation.

E. Neufeld EN:ehs







# **Tables**







**Table 1: Quarry Summary** 

| 0           | Approximate          | Northing          | Easting     | Volume v        | vith Conting   | ency (m³)² | Drilled |
|-------------|----------------------|-------------------|-------------|-----------------|----------------|------------|---------|
| Quarry Name | Station <sup>1</sup> | Coordinates       | Coordinates | Railway         | Road           | Total      | in 2011 |
| QMR2        | Mary River           | 7,914,203         | 560,128     | 491,079         | 47,052         | 538,130    | Yes     |
| Q-0+500     | - 0 + 500            | 7,911,899         | 563,668     | 826,508         | 196,174        | 1,022,683  | Yes     |
| Q4+100      | 4+100                | 7,909,418         | 566,698     | 570,968         | 199,833        | 770,801    | Yes     |
| Q7 + 500    | 7+500                | 7,907,667         | 569,432     | 619,585         | 174,374        | 793,959    | Yes     |
| Q10+250     | 10+250               | 7,905,378         | 572,883     | 1,007,536       | 206,620        | 1,214,157  | Yes     |
| Q14+500     | 14 + 200             | 7,904,382         | 575,868     | 1,232,091       | 240,446        | 1,472,537  | Yes     |
| Q18 + 100   | 18 + 100             | 7,902,853         | 578,804     | 1,463,455       | 263,943        | 1,727,398  | Yes     |
| Q22 + 500   | 22 + 500             | 7,901,663         | 583,415     | 1,484,696       | 230,582        | 1,715,278  | Yes     |
| Q25 + 500   | 25 + 500             | 7,900,221         | 586,954     | <i>7</i> 55,019 | 124,801        | 879,820    | Yes     |
| Q28 + 400   | 28 + 400N            | 7,898,617         | 588,240     | 158,886         | 104,426        | 263,312    | Yes     |
| Q31 + 500   | 31 + 500N            | 7,897,863         | 590,944     | 53,356          | 128,885        | 182,242    | Yes     |
| Q35 + 000   | 35 + 000N            | 7,896,866         | 594,445     | <i>77,</i> 971  |                | 77,971     |         |
| Q35 + 500   | 35 + 500N            | 7,896,244         | 595,477     | 248,555         | 118,172        | 366,726    | Yes     |
| Q38 + 700   | 38 + 700N            | 7,893,140         | 596,368     | 342,908         | 116,780        | 459,687    | Yes     |
| Q40+600     | 40 + 600N            | 7,889,375         | 596,009     | 812,884         | 153,489        | 966,373    |         |
| Q42 + 000   | 42 + 000N            | 7,890,881         | 598,151     | 305,177         | 96,131         | 401,308    | Yes     |
| Q44 + 300   | 44 + 300N            | 7,888,054         | 598,208     | 302,919         | 62,185         | 365,104    | Yes     |
| Q44 + 000   | 44 + 000             | 7,885,927         | 596,138     | 178,149         | 38,931         | 217,080    | Yes     |
| Q45 + 000   | 45 + 000             | 7,884,724         | 596,201     | 54,862          | 29,020         | 83,882     | Yes     |
| Q45 + 800   | 45 + 800             | 7,884,147         | 596,990     | 34,368          | 42,430         | 76,798     |         |
| Q48 + 000   | 48 + 000             | 7,882,597         | 598,495     | 28,241          | 58,397         | 86,637     |         |
| Q50 + 000   | 50 + 000             | 7,881,100         | 597,357     | 134,915         | 70,757         | 205,672    | Yes     |
| Q53 + 700   | 53 + 700             | 7,877,567         | 597,616     | 339,267         | <i>7</i> 8,350 | 417,616    | Yes     |
| Q56 + 750   | 56 + 750             | 7,875,280         | 598,852     | 426,916         | 87,668         | 514,583    | Yes     |
| Q60 + 000   | 60 + 000             | 7,871,954         | 599,087     | 327,131         | 102,084        | 429,214    |         |
| Q64+400     | 64 + 400             | 7,868,565         | 600,221     | 203,898         | 94,957         | 298,854    |         |
| Q67 + 200   | 67 + 200             | 7,865,619         | 600,161     | 156,728         | 79,560         | 236,288    |         |
| Q71+000     | 71 + 000             | 7,863,169         | 602,398     | 161,614         | 71,915         | 233,530    |         |
| Q74 + 200   | 74 + 200             | 7,860,226         | 603,469     | 109,863         | 63,161         | 173,024    |         |
| Q77 + 200   | 77 + 200             | 7,857,588         | 604,840     | 86,660          | 65,983         | 152,642    |         |
| Q79 + 600   | 79 + 600             | <i>7,</i> 855,411 | 605,366     | 145,051         | 77,616         | 222,666    |         |
| Q82 + 700   | 82 + 700             | 7,852,449         | 605,710     | 166,692         | 90,198         | 256,890    | Yes     |
| Q85 + 200   | 85 + 200             | 7,850,087         | 606,073     | 227,871         | 89,196         | 317,067    | Yes     |
| Q88+800     | 88 + 800             | 7,846,674         | 605,956     | 238,151         | 63,999         | 302,150    | Yes     |
| QTR21       | 90 + 400             | 7,845,379         | 605,707     |                 | 51,239         | 51,239     |         |
| Q92+000     | 92+000               | 7,843,535         | 605,816     | 98,287          |                | 98,287     |         |
| QTR22       | 92+000               | 7,843,330         | 605,243     |                 | 47,682         | 47,682     |         |
| QTR23       | 93 + 600             | 7,841,721         | 606,018     |                 | 33,456         | 33,456     |         |
| Q95 + 400   | 95 + 150             | 7,840,905         | 607,500     | 16,898          | 56,143         | 73,041     |         |
| Q96 + 100   | 96 + 100             | 7,840,533         | 608,580     | 17,031          | 149,531        | 166,562    |         |
| Q96 + 700   | 96 + 700             | 7,839,908         | 608,976     | 6,493           |                | 6,493      |         |
| QTR10       | 97 + 300             | 7,839,328         | 611,431     |                 | 203,081        | 203,081    |         |
| QTR11       | 98 + 700             | 7,838,013         | 611,995     |                 | 134,433        | 134,433    |         |
| QTR6        | 98 + 900             | 7,836,409         | 611,377     |                 | 101,012        | 101,012    |         |
| QTR13       | 100 + 700            | 7,833,967         | 609,448     |                 | 165,509        | 165,509    | Yes     |







| ON                 | Approximate          | Northing    | Easting     | Volume  | with Conting | ency (m³)² | Drilled |
|--------------------|----------------------|-------------|-------------|---------|--------------|------------|---------|
| <b>Quarry Name</b> | Station <sup>1</sup> | Coordinates | Coordinates | Railway | Road         | Total      | in 2011 |
| QTR12              | 101 + 100            | 7,836,190   | 610,857     |         | 162,040      | 162,040    | Yes     |
| NTUN-DH01          | 102 + 540            | 7,835,656   | 605,976     |         |              |            | Yes     |
| NTUN-DH03          | 102+930              | 7,835,382   | 605,698     |         |              |            | Yes     |
| NTUN-DH05          | 103 + 140            | 7,835,245   | 605,535     |         |              |            | Yes     |
| STUN-DH03          | 108 + 180            | 7,832,812   | 601,490     |         |              |            | Yes     |
| QTR7               | 108 + 300            | 7,832,685   | 608,302     |         | 132,606      | 132,606    |         |
| QTR17              | 105 + 700            | 7,832,984   | 603,944     |         | 948,392      | 948,392    |         |
| QTR14              | 104+300              | 7,831,608   | 607,681     |         | 171,297      | 171,297    |         |
| QTR15              | 105 + 200            | 7,830,326   | 606,224     |         | 227,039      | 227,039    |         |
| QTR16              | 106 + 200            | 7,830,731   | 603,228     |         | 905,620      | 905,620    |         |
| Q110+200           | 110 + 200            | 7,831,193   | 600,359     | 253,809 |              | 253,809    |         |
| QTR8               | 112+000              | 7,830,182   | 602,012     |         | 603,136      | 603,136    |         |
| Q114+600           | 114+600              | 7,827,828   | 597,850     | 382,501 |              | 382,501    | Yes     |
| QTR9               | 116 + 500            | 7,826,260   | 600,261     |         | 361,991      | 361,991    | Yes     |
| Q116+800           | 116+800              | 7,826,194   | 597,422     | 764,455 |              | 764,455    | Yes     |
| QTR18              | 120+600              | 7,822,808   | 599,870     |         | 536,571      | 536,571    |         |
| QTR4A              | 123+000              | 7,820,410   | 598,555     | 958,066 | 636,598      | 1,594,664  | Yes     |
| QTR19              | 126+900              | 7,816,806   | 597,863     |         | 451,609      | 451,609    |         |
| Q127+800           | 127+800              | 7,815,755   | 598,770     | 545,218 |              | 545,218    |         |
| Q128+000           | 128+000              | 7,813,922   | 598,828     |         | 222,278      | 222,278    |         |
| Q131+100           | 131 + 100            | 7,813,509   | 600,177     | 112,666 | 191,240      | 303,906    | Yes     |
| Q133+500           | 133 + 500            | 7,811,052   | 601,482     |         |              |            |         |
| QTR20              | 134+100              | 7,810,467   | 598,087     |         | 169,565      | 169,565    |         |
| Q138+100           | 138 + 100            | 7,807,612   | 598,865     |         | 104,996      | 104,996    | Yes     |
| Q139+600           | 139+600              | 7,806,105   | 598,727     |         | 119,999      | 119,999    | Yes     |
| QS3A               | Steensby             | 7,800,000   | 595,698     |         |              |            | Yes     |
| QS3                | Steensby             | 7,799,349   | 597,500     |         |              |            |         |
| QS2                | Steensby             | 7,801,066   | 595,200     |         | 300,000      | 300,000    | Yes     |
| QS1                | Steensby             | 7,803,054   | 593,500     |         |              |            | Yes     |
| SI-OLD-004         | Steensby             | 7,798,314   | 592,879     |         |              |            | Yes     |
| SI-OLD-005         | Steensby             | 7,798,331   | 592,860     |         |              |            | Yes     |
| SI-OLD-006         | Steensby             | 7,798,409   | 592,876     |         |              |            | Yes     |
| SI-OLD-007         | Steensby             | 7,798,424   | 592,840     |         |              |            | Yes     |
| SI-OLD-008         | Steensby             | 7,798,489   | 592,891     |         |              |            | Yes     |

#### Notes:



<sup>&</sup>lt;sup>1</sup> Two sets of stationing are used along the rail alignment. Following the Ravn River realignment, which extends from approximately station 26+100 to station 46+582.93, the stationing resets to 43+830 to be consistent with the stationing used prior to the Ravn River realignment. To avoid confusion, stationing along the Ravn River realignment has an "N" suffix.

<sup>&</sup>lt;sup>2</sup> Volumes obtained from the DEIS [Ref 5].





**Table 2: Borehole Statistics** 

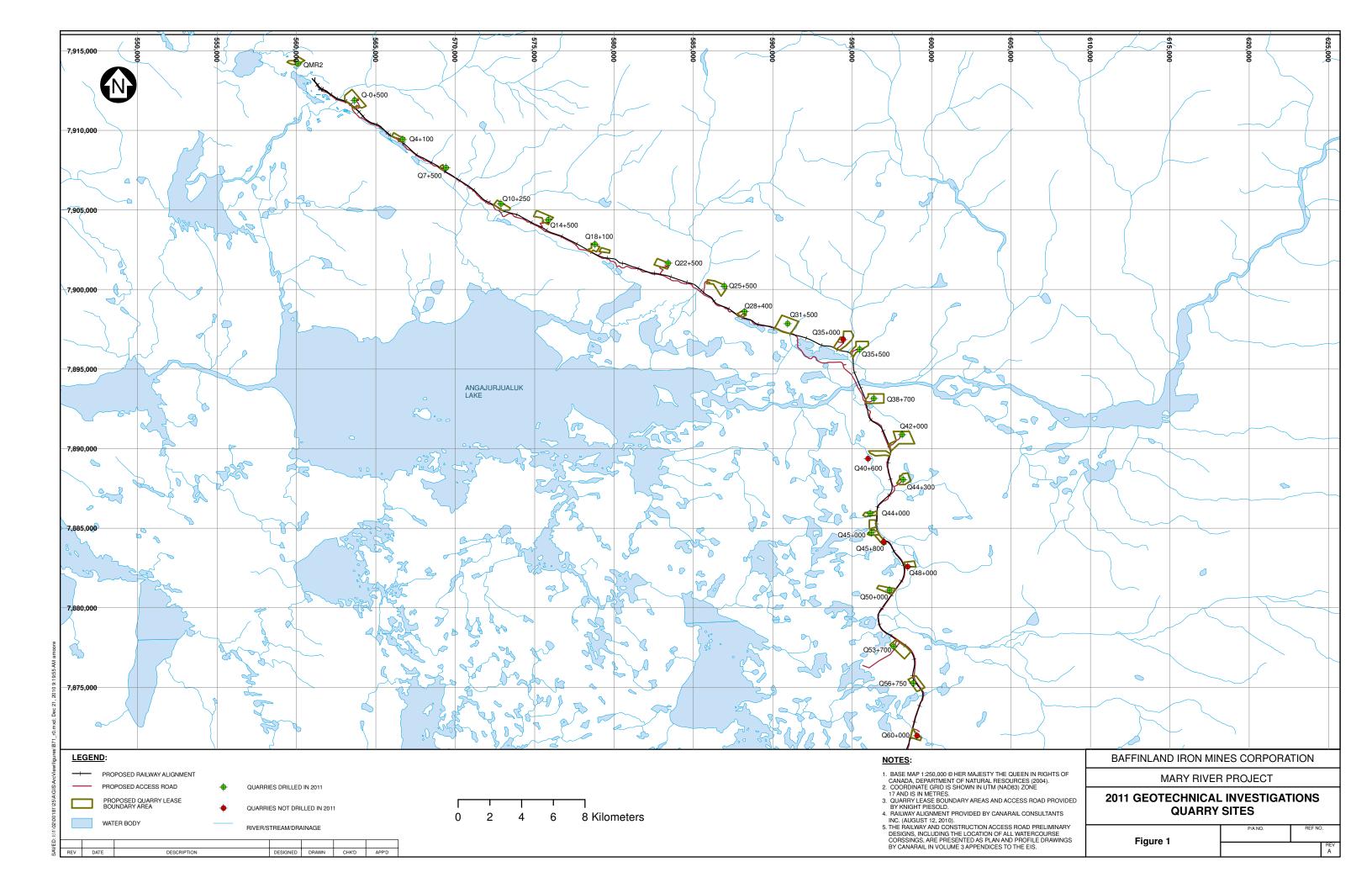
| Borehole<br>Name | Date<br>Started    | Date<br>Completed  | Borehole<br>Depth<br>(m) | Bedrock<br>Depth<br>(m) | Very Poor to Fair<br>Rock Thickness<br>(m) | % Very<br>Poor to<br>Fair Rock | Rock Type        | Physical<br>Testing | Depth of<br>Physical Sample<br>(m) | Depth of ARD<br>Sample (m) |
|------------------|--------------------|--------------------|--------------------------|-------------------------|--------------------------------------------|--------------------------------|------------------|---------------------|------------------------------------|----------------------------|
| QMR2             | 7-Aug-11           | 7-Aug-11           | 26.0                     | 0.90                    | 1.1                                        | 4%                             | Granitic Gneiss  | yes                 | 2.0 to 7.0                         | 11.25 to 11.35             |
| Q0 + 500         | 30-Jul-11          | 31-Jul-11          | 30.0                     | 16.15                   | 13.85                                      | 100%                           | Granitic Gneiss  |                     |                                    | 26.7 to 26.8               |
| Q4+100           | 29-Jul-11          | 30-Jul-11          | 62.0                     | 35.00                   | 27                                         | 100%                           | Sandstone        |                     |                                    | 53.43 to 53.5              |
| Q7+500           | 28-Jul-11          | 29-Jul-11          | 50.0                     | 21.80                   | 19.2                                       | 68%                            | Sandstone        |                     |                                    | 40.9 to 41                 |
| Q10+250          | 25-Jul-11          | 26-Jul-11          | 41.0                     | 8.00                    | 33                                         | 100%                           | Granitic Gneiss  |                     |                                    | 22.9 to 23                 |
| Q14+500          | 24-Jul-11          | 24-Jul-11          | 47.2                     | 11.20                   | 33                                         | 92%                            | Granitic Gneiss  |                     |                                    | 25.1 to 25.2               |
| Q18 + 100        | 23-Jul-11          | 23-Jul-11          | 38.0                     | 5.00                    | No data                                    | No data                        | Sandstone        |                     |                                    | 17.6 to 17.7               |
| Q22 + 500        | 22-Jul-11          | 22-Jul-11          | 62.0                     | 2.00                    | 3                                          | 5%                             | Granitic Gneiss  |                     |                                    | 20.4 to 20.5               |
| Q25 + 500        | 22-Jul-11          | 22-Jul-11          | 32.3                     | 5.34                    | 2.9                                        | 11%                            | Granitic Gneiss  | yes                 | 8.34 to 13.3                       | 6.7 to 6.8                 |
| Q28 + 400        | 18-Jul-11          | 18-Jul-11          | 24.2                     | > 24.2                  | -                                          | -                              | No bedrock found |                     |                                    |                            |
| Q31 + 500        | 19-Jul-11          | 19-Jul-11          | 13.2                     | > 13.2                  | -                                          | -                              | No bedrock found |                     |                                    |                            |
| Q35 + 500        | 1 <i>7-</i> Jul-11 | 1 <i>7</i> -Jul-11 | 26.2                     | 2.45                    | 11.75                                      | 49%                            | Granitic Gneiss  |                     |                                    | 19.53 to 19.65             |
| Q38 + 700        | 16-Jul-11          | 16-Jul-11          | 50.4                     | 31.20                   | 7.2                                        | 38%                            | Granitic Gneiss  |                     |                                    | 38.15 to 38.24             |
| Q42+000          | 16-Jul-11          | 16-Jul-11          | 23.4                     | 5.67                    | 8.73                                       | 49%                            | Granitic Gneiss  | yes                 | 12.75 to 18.0                      | 21.57 to 21.67             |
| Q44+300          | 15-Jul-11          | 15-Jul-11          | 14.4                     | 1.90                    | -                                          | 0%                             | Granitic Gneiss  |                     |                                    | 5.24 to 5.33               |
| Q44+000          | 15-Jul-11          | 15-Jul-11          | 23.0                     | 5.00                    | 18                                         | 100%                           | Granitic Gneiss  | yes                 | 8.0 to 12.9                        | 18.8 to 18.9               |
| Q45+000          | 14-Jul-11          | 14-Jul-11          | 14.3                     | 2.20                    | -                                          | 0%                             | Granitic Gneiss  |                     |                                    | 7.45 to 7.56               |
| Q50+000          | 14-Jul-11          | 14-Jul-11          | 16.9                     | 0.44                    | -                                          | 0%                             | Granitic Gneiss  | yes                 | 7.79 to 13.1                       | 14.8 to 14.9               |
| Q53 + 700        | 13-Jul-11          | 13-Jul-11          | 29.2                     | 7.70                    | -                                          | 0%                             | Granitic Gneiss  | yes                 | 14.2 to 19.4                       | 23.2 to 23.3               |
| Q56+750          | 11-Jul-11          | 11-Jul-11          | 11.2                     | 4.41                    | -                                          | 0%                             | Granitic Gneiss  | yes                 | 4.7 to 9.7                         | 10.8 to 10.9               |
| Q82 + 700        | 22-Jul-11          | 22-Jul-11          | 16.0                     | 1.65                    | 9.35                                       | 65%                            | Granitic Gneiss  | yes                 | 4.55 to 9.5                        | 4.2 to 4.3                 |
| Q85 + 200        | 20-Jul-11          | 21-Jul-11          | 25.9                     | 2.58                    | 8.52                                       | 37%                            | Granitic Gneiss  |                     |                                    |                            |
| Q88+800          | 1 <i>7-</i> Jul-11 | 18-Jul-11          | 15.0                     | 0.10                    | 4.4                                        | 30%                            | Granitic Gneiss  |                     |                                    | 7.89 to 7.98               |

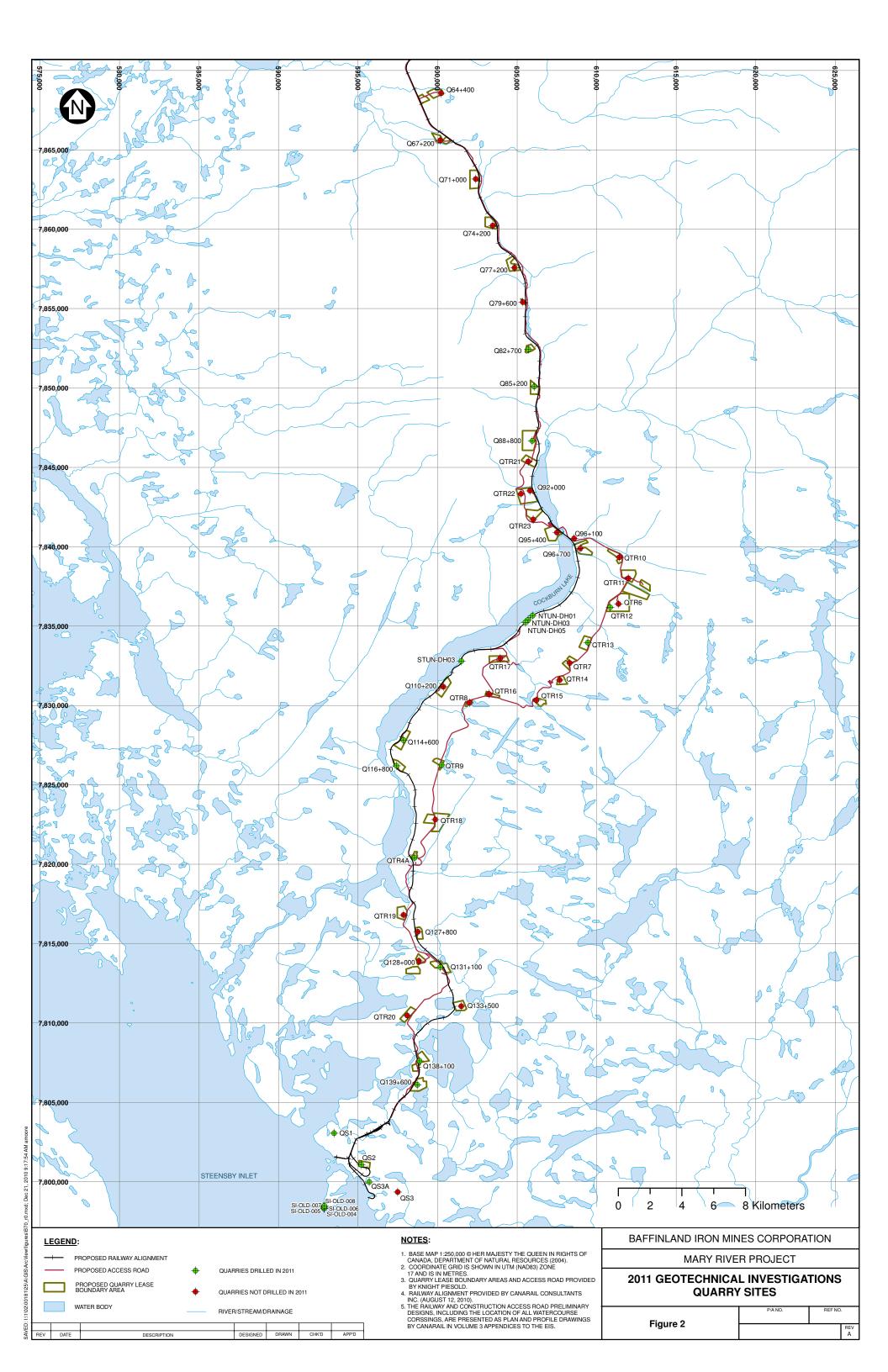


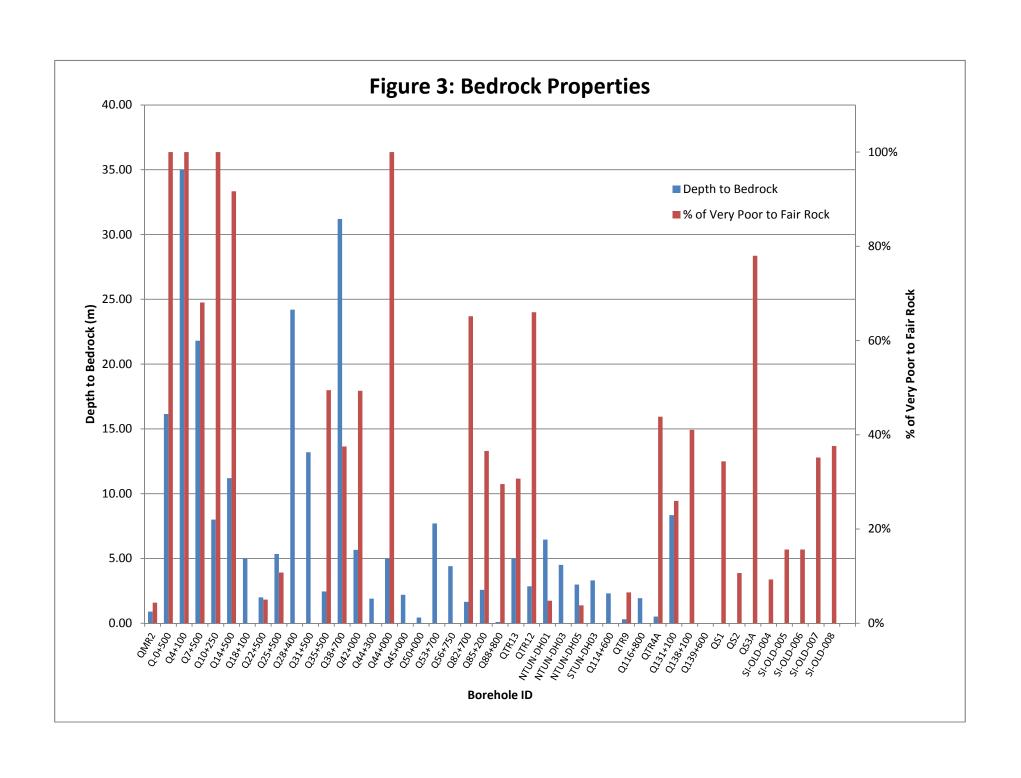




| Borehole<br>Name | Date<br>Started | Date<br>Completed  | Borehole<br>Depth<br>(m) | Bedrock<br>Depth<br>(m) | Very Poor to Fair<br>Rock Thickness<br>(m) | % Very<br>Poor to<br>Fair Rock | Rock Type       | Physical<br>Testing | Depth of<br>Physical Sample<br>(m) | Depth of ARD<br>Sample (m) |
|------------------|-----------------|--------------------|--------------------------|-------------------------|--------------------------------------------|--------------------------------|-----------------|---------------------|------------------------------------|----------------------------|
| QTR13            | 14-Jul-11       | 14-Jul-11          | 15.1                     | 5.00                    | 3.1                                        | 31%                            | Granitic Gneiss | yes                 | 5.2 to 10.2                        | 11.3 to 11.45              |
| QTR12            | 15-Jul-11       | 15-Jul-11          | 20.5                     | 2.85                    | 11.65                                      | 66%                            | Granitic Gneiss |                     |                                    | 8.8 to 8.92                |
| NTUN-DH01        | 3-Aug-11        | 3-Aug-11           | 34.8                     | 6.45                    | 1.35                                       | 5%                             | Granitic Gneiss |                     |                                    | 13.0 to 13.4               |
| NTUN-DH03        | 1-Aug-11        | 13-Aug-11          | 121.6                    | 4.50                    | 0.00                                       | 0%                             | Granitic Gneiss |                     |                                    | 109.2 to 109.6             |
| NTUN-DH05        | 30-Jul-11       | 30-Jul-11          | 82.3                     | 2.99                    | 3.00                                       | 4%                             | Granitic Gneiss |                     |                                    |                            |
| STUN-DH03        | 29-Jul-11       | 31-Jul-11          | 87.45                    | 3.30                    | 0.00                                       | 0%                             | Granitic Gneiss |                     |                                    | 63.0 to 63.4               |
| Q114+600         | 25-Jul-11       | 25-Jul-11          | 33.6                     | 2.30                    | -                                          | 0%                             | Granitic Gneiss | yes                 | 9.4 to 14.52                       | 16.95 to 17.05             |
| QTR9             | 25-Jul-11       | 26-Jul-11          | 32.4                     | 0.30                    | 2.1                                        | 7%                             | Granitic Gneiss |                     |                                    | 29.75 to 29.86             |
| Q116+800         | 26-Jul-11       | 26-Jul-11          | 32.4                     | 1.93                    | -                                          | 0%                             | Granitic Gneiss | yes                 | 12.75 to 17.39                     | 9.1 to 9.2                 |
| QTR4A            | 4-Aug-11        | 4-Aug-11           | 32.45                    | 0.51                    | 14                                         | 44%                            | Granitic Gneiss | yes                 | 19.9 to 24.9                       | 15.5 to 15.6               |
| Q131 + 100       | 5-Aug-11        | 5-Aug-11           | 20.48                    | 8.35                    | 3.15                                       | 26%                            | Granitic Gneiss | yes                 | 11.48 to 16.1                      | 17.6 to 17.7               |
| Q138 + 100       | 16-Jul-11       | 1 <i>7</i> -Jul-11 | 30.93                    | 0.00                    | 12.7                                       | 41%                            | Granitic Gneiss | yes                 | 17.29 to 22.18                     | 6.1 to 6.2                 |
| Q139+600         | 19-Jul-11       | 19-Jul-11          | 13.9                     | 0.00                    | -                                          | 0%                             | Granitic Gneiss |                     |                                    |                            |
| QS1              | 6-Aug-11        | 6-Aug-11           | 17.52                    | 0.00                    | 6.02                                       | 34%                            | Granitic Gneiss | yes                 | 9.6 to 14.52                       | 15.6 to 15.75              |
| QS2              | 24-Jul-11       | 25-Jul-11          | 30.0                     | 0.00                    | 3.2                                        | 11%                            | Granitic Gneiss |                     |                                    | 5.9 to 6.04                |
| QS3A             | 23-Jul-11       | 23-Jul-11          | 15.1                     | 0.00                    | 11.8                                       | 78%                            | Granitic Gneiss | yes                 | 4.97 to 10.0                       | 15.6 to 15.75              |
| SI-OLD-004       | 8-Aug-11        | 8-Aug-11           | 32.23                    | 0.00                    | 3                                          | 9%                             | Granitic Gneiss |                     |                                    |                            |
| SI-OLD-005       | 9-Aug-11        | 10-Aug-11          | 31.96                    | 0.00                    | 5                                          | 16%                            | Granitic Gneiss |                     |                                    | 7.5 to 7.9                 |
| SI-OLD-006       | 10-Aug-11       | 11-Aug-11          | 38.38                    | 0.00                    | 6                                          | 16%                            | Granitic Gneiss |                     |                                    |                            |
| SI-OLD-007       | 11-Aug-11       | 11-Aug-11          | 32.4                     | 0.00                    | 11.4                                       | 35%                            | Granitic Gneiss |                     |                                    | 8.1 to 8.5                 |
| SI-OLD-008       | 12-Aug-11       | 12-Aug-11          | 35.61                    | 0.00                    | 13.4                                       | 38%                            | Granitic Gneiss |                     |                                    |                            |



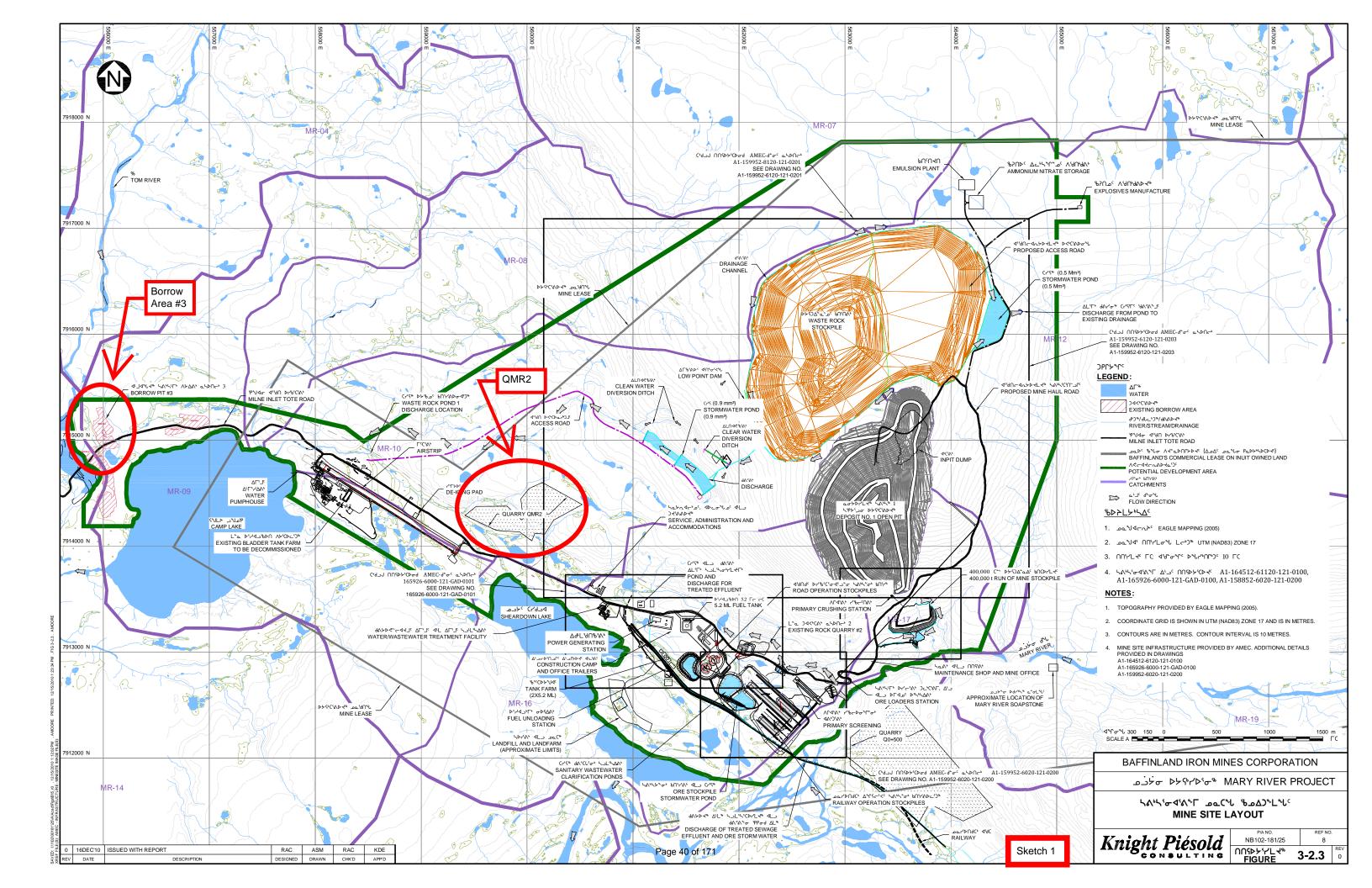




# **Figures**














# **Appendix A: Sketches**









# **Appendix B: Borehole Logs**



# RECORD OF BOREHOLE QMR-2

Mary River Project **PROJECT** 

Mary River - Quarry

Project No. 19-1605-126

LOCATION STARTED COMPLETED :

August 7, 2011

August 7, 2011

DRILLER: BOART LONGYEAR, LM-55 N 7 914 203 E 560 128

SHEET 1 OF 2 DATUM: CGVD28

|                         |               | ETED : August 7, 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |           | Τ.       | CAA4     |            |            | 14 203 E 560 128                         | EXCES    | SICE  | CONTE | NT, PE  |          | Г                          | GVD28<br>THERMIST     |
|-------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------|----------|----------|------------|------------|------------------------------------------|----------|-------|-------|---------|----------|----------------------------|-----------------------|
| DEPTH SCALE<br>(metres) | BORING METHOD | SOIL PROFILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <br> -                    |           | H        | SAM<br>T |            | _          |                                          |          |       | oice  | е       |          | NG F                       | THERMISTI<br>GROUND C |
| L SC,                   | M             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | STRATA PLOT               | (m)       | 띪        | וט       | BLOWS/0.3m | RECOVERY % | COMMENTS                                 | 10<br>   | 2<br> |       |         | 40<br>   | ADDITIONAL<br>LAB. TESTING | FROZEN                |
| me l                    | ING           | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \TA                       | ELEV. (m) | NUMBER   | TYPE     | WS/(       | OVE        | DYNAMIC CONE PENETRATION RESISTANCE PLOT |          | ER CC | NTEN  | T, PERC |          | B. Ti                      | UNFROZEN              |
| 4                       | BOR           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | STR/                      | Ē         | z        |          | BLO        | 3EC(       | 50 100 150 200 250                       | wp<br>10 | 2     | 0 W   | 30      | wl<br>40 | ₹≤                         | UNCERTAI              |
| $\dashv$                | $\top$        | GROUND SURFACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | П                         | 0.00      | $\vdash$ |          |            | _          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1    |          |       |       |         |          |                            |                       |
| 1                       |               | COBBLES (< 100mm) granitic fines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00                        | 5.50      |          |          |            |            |                                          |          |       |       |         |          |                            |                       |
|                         |               | washed out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54                        | 0.90      |          |          |            |            |                                          |          |       |       |         |          | FI                         | 0.9                   |
| 1                       |               | GRANITIC GNEISS, slightly weathered to fresh, very strong, quartz-rich, grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ĭ                         | 0.00      | 1        | RUN      | ı          |            | TCR=70% SCR=70% RQD=70%                  |          |       |       |         |          | 1 1                        | 0.5                   |
|                         |               | rresh, very strong, quartz-rich, grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\gg$                     |           |          |          |            |            |                                          |          |       |       |         |          | 1                          |                       |
| 2                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | X                         |           |          |          |            |            |                                          |          |       |       |         |          | 1                          |                       |
|                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |           |          |          |            |            |                                          |          |       |       |         |          |                            |                       |
| 3                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | W                         |           |          |          |            |            |                                          |          |       |       |         |          | 1                          |                       |
| ۱ '                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |           |          |          |            |            |                                          |          |       |       |         |          | ١.                         |                       |
|                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\gg$                     |           | 2        | RUN      | 1          |            | TCR=100% SCR=100% RQD=95%                |          |       |       |         |          | 1 1                        |                       |
| 1                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\mathbb{K}$              |           |          |          |            |            |                                          |          |       |       |         |          | 1                          |                       |
|                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\gg$                     |           |          |          |            |            |                                          |          |       |       |         |          | 1 1                        |                       |
| 5                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | X                         |           |          |          |            |            |                                          |          |       |       |         |          | 1                          |                       |
|                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |           |          |          |            |            |                                          |          |       |       |         |          |                            |                       |
| 3                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | W                         |           |          |          |            |            |                                          |          |       |       |         |          | 1                          |                       |
| ´                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\mathbb{K}/\mathbb{A}$   |           | _        | L        |            |            | TOD-1000/ COD-1000/ COD 1000/            |          |       |       |         |          |                            |                       |
|                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S                         |           | 3        | RUN      |            |            | TCR=100% SCR=100% RQD=100%               |          |       |       |         |          | 1                          |                       |
| 7                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |           |          |          |            |            |                                          |          |       |       |         |          |                            |                       |
|                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\gg$                     |           |          |          |            |            |                                          |          |       |       |         |          |                            |                       |
| 3                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | W                         |           | -        |          |            |            |                                          |          |       |       |         |          | 2                          |                       |
|                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\langle \rangle \rangle$ |           |          |          |            |            |                                          |          |       |       |         |          | 3<br>1                     |                       |
| ,                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | W                         |           |          |          |            |            |                                          |          |       |       |         |          | 1                          |                       |
|                         | ≣             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |           | ,        | RUN      |            |            | TCR=100% SCR=100% RQD=90%                |          |       |       |         |          |                            |                       |
| ,                       | puo           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\gg$                     |           |          | IXOIX    |            |            | 10K-100% 3CK-100% KQD-30%                |          |       |       |         |          | 1                          |                       |
| 10                      | Diamond       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\mathbb{K}$              |           |          |          |            |            |                                          |          |       |       |         |          | 1                          |                       |
|                         | g             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\gg$                     |           |          |          |            |            |                                          |          |       |       |         |          |                            |                       |
| 11                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | W                         |           |          |          |            |            |                                          |          |       |       |         |          | 1                          |                       |
|                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |           |          |          |            |            |                                          |          |       |       |         |          | '                          |                       |
| 12                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | W                         |           |          |          |            |            |                                          |          |       |       |         |          |                            |                       |
|                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |           | 5        | RUN      | ı          |            | TCR=100% SCR=100% RQD=99%                |          |       |       |         |          |                            |                       |
| 13                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\gg$                     |           |          |          |            |            |                                          |          |       |       |         |          | ١.                         |                       |
| '                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |           |          |          |            |            |                                          |          |       |       |         |          | 1 1                        |                       |
|                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \rangle\rangle$         |           |          |          |            |            |                                          |          |       |       |         |          |                            |                       |
| 14                      |               | some quartz veins (100mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M                         |           | T        |          |            |            |                                          |          |       |       |         |          | 1                          |                       |
|                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |           |          |          |            |            |                                          |          |       |       |         |          | 1                          |                       |
| 15                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M                         |           |          |          |            |            |                                          |          |       |       |         |          | 1                          |                       |
|                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\mathbb{K}$              |           | 6        | RUN      |            |            | TCR=100% SCR=100% RQD=94%                |          |       |       |         |          | <u> </u>                   |                       |
| 16                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |           |          |          |            |            |                                          |          |       |       |         |          |                            |                       |
| Ĭ                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\mathbb{M}$              |           |          |          |            |            |                                          |          |       |       |         |          | 2                          |                       |
| , ,                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |           |          |          |            |            |                                          |          |       |       |         |          | 2                          |                       |
| 17                      |               | large plagioclase crystal at 17.0m to 17.69m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M                         |           |          |          |            |            |                                          |          |       |       |         |          | _                          |                       |
|                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |           |          |          |            |            |                                          |          |       |       |         |          | 2                          |                       |
| 18                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M                         |           |          |          |            |            |                                          |          |       |       |         |          | 2                          |                       |
|                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |           | 7        | RUN      |            |            | TCR=97% SCR=97% RQD=93%                  |          |       |       |         |          | 2                          |                       |
| 19                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | W                         |           |          |          |            |            |                                          |          |       |       |         |          |                            |                       |
| -                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |           |          |          |            |            |                                          |          |       |       |         |          |                            |                       |
|                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \rangle\rangle$         |           |          |          |            |            |                                          |          |       |       |         |          |                            |                       |
|                         |               | GROUNDWATER ELEV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ۷Á٦                       | TIONS     | 3        |          |            |            |                                          |          |       |       |         | •        | •                          |                       |
|                         |               | $\overline{egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} arra$ |                           |           |          | _        | <u> </u>   | )FE        | P/DUAL INSTALLATION                      |          |       |       | D       | -(011    |                            |                       |
|                         |               | WATER LEVEL (date)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LLM                       | TION      |          |          |            |            | LEVEL (date)                             |          | GGED  |       | Bouche  | r/Clarke |                            |                       |
|                         |               | million (date)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |           |          |          | / \ \      |            | (Gato)                                   | CF       | HECKE | : ט   | KS      |          |                            | THU                   |



## **RECORD OF BOREHOLE QMR-2**

Mary River Project **PROJECT** 

> Mary River - Quarry DRILLER: BOART LONGYEAR, LM-55

Project No. 19-1605-126

August 7, 2011 STARTED August 7, 2011 COMPLETED :

LOCATION

N 7 914 203 E 560 128

SHEET 2 OF 2 DATUM: CGVD28

|                         |               | ETED : August 7, 2011         |             |           | _       |      |            |            | 14 203 E 560 128                         | EVE      | -00 105           | CONTE  | NT DEC        |                | IVI: C                     | GVD28                      |
|-------------------------|---------------|-------------------------------|-------------|-----------|---------|------|------------|------------|------------------------------------------|----------|-------------------|--------|---------------|----------------|----------------------------|----------------------------|
| H LE                    | BORING METHOD | SOIL PROFILE                  | 1,          |           | '       | SAM  | _          |            |                                          | EXC      | ESS ICE           | ice    |               | CENI           | NG A                       | THERMISTER/<br>GROUND COND |
| DEPTH SCALE<br>(metres) | MET           |                               | STRATA PLOT | (m)       | 띪       | ш    | BLOWS/0.3m | RECOVERY % | COMMENTS                                 |          |                   |        |               | 10<br>         | ADDITIONAL<br>LAB. TESTING | FROZEN                     |
| EPTF<br>(me             | RING          | DESCRIPTION                   | RATA        | ELEV. (m) | NUMBER  | TYPE | /SMC       | SOVE       | DYNAMIC CONE PENETRATION RESISTANCE PLOT | 1        | ATER Co<br>rp ├── | ONTENT | , PERCE       |                | ADDI<br>AB. T              | UNFROZEN                   |
|                         | 8             |                               | STF         | Ш         | _       |      | B          | REC        | 50 100 150 200 250                       |          |                   |        |               | 10             | ۲,                         | UNCERTAIN                  |
| _                       |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
|                         |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
| - 21                    |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
|                         |               |                               |             |           | 8       | RUN  | 1          |            | TCR=100% SCR=100% RQD=100%               |          |                   |        |               |                |                            |                            |
| -22                     | _             |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
|                         | nd Drill      |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                | 1                          |                            |
| 23                      | NQ Diamond    |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
|                         | Š             |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                | 6                          |                            |
| -24                     |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
|                         |               |                               |             |           | 9       | RUN  | 1          |            | TCR=100% SCR=100% RQD=94%                |          |                   |        |               |                |                            |                            |
| 25                      |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
| -26                     |               |                               |             | 26.00     |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
| -26                     |               | END OF BOREHOLE AT 26.00m.    |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            | ·                          |
| - 27                    |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
|                         |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
| -28                     |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
|                         |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
| - 29                    |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
|                         |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
| -30                     |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
|                         |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
| - 31                    |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
|                         |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
| -32                     |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
|                         |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
| - 33                    |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
| 0.4                     |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
| -34                     |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
| - 35                    |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
| 55                      |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
| -36                     |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
| - •                     |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
| - 37                    |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
|                         |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
| -38                     |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
|                         |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
| - 39                    |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
|                         |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            |                            |
|                         |               | I GROUNDWATER ELE             | LLI<br>VA7  | L         | <u></u> |      |            |            | <u> </u>                                 | <u> </u> |                   |        |               |                |                            |                            |
|                         |               | $\nabla$ SHALLOW/SINGLE INSTA |             |           | -       | _    | <u>_</u> _ | )FF        | P/DUAL INSTALLATION                      |          | 0005              |        | Double -      | /Clark-        |                            |                            |
|                         |               | WATER LEVEL (date)            | ,/\         | . IOIN    |         |      |            |            | LEVEL (date)                             |          | LOGGEI<br>CHECKE  |        | Boucher<br>KS | <i>г</i> ыагке |                            | THURBER                    |
|                         |               |                               |             |           |         |      |            |            |                                          |          |                   |        |               |                |                            | IHUKBEI                    |



**PROJECT** Mary River Project

Project No. 19-1605-126

LOCATION

STARTED

-0+500 - Quarry July 30, 2011

DRILLER: BOART LONGYEAR N 7 911 899 F 563 668

SHEET 1 OF 2

| <u> </u> | HOD           | SOIL PROFILE                                                                                                                            | 1. 1                                  |           | Ľ       | SAMI  |            |            |                                                                      | oic                   | ENT, PERCENT<br>e                         | 무일                         | THERMIST<br>GROUND C     |
|----------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------|---------|-------|------------|------------|----------------------------------------------------------------------|-----------------------|-------------------------------------------|----------------------------|--------------------------|
| (metres) | BORING METHOD | DESCRIPTION                                                                                                                             | STRATA PLOT                           | ELEV. (m) | NUMBER  | TYPE  | BLOWS/0.3m | RECOVERY % | COMMENTS DYNAMIC CONE PENETRATION RESISTANCE PLOT 50 100 150 200 250 | 10 20 WATER CONTEN wp | 30 40<br>I I<br>T, PERCENT<br>WI<br>30 40 | ADDITIONAL<br>LAB. TESTING | FROZEN UNFROZEN UNCERTAI |
|          |               | GROUND SURFACE                                                                                                                          | П                                     | 0.00      |         |       |            |            |                                                                      |                       |                                           |                            |                          |
| 1        |               | no recovery                                                                                                                             |                                       |           | 1       | RUN   |            | 0          |                                                                      |                       |                                           |                            |                          |
| 3        |               | GRAVEL, granitic, fines washed out                                                                                                      |                                       | 2.15      |         |       |            |            |                                                                      |                       |                                           |                            |                          |
| 1        |               |                                                                                                                                         |                                       |           | 2       | RUN   |            | 13         |                                                                      |                       |                                           |                            |                          |
| 5        |               | SAND and GRAVEL, trace to some silt, grey to brown                                                                                      |                                       | 5.15      |         |       |            |            |                                                                      |                       |                                           |                            |                          |
| 7        |               | layer of grey sand (120mm) ICE and SAND inclusions (Vs) at 6.50m to 7.00m                                                               |                                       |           | 3       | RUN   |            | 70         |                                                                      |                       | 800                                       |                            | 6.10                     |
| 3        |               | some zones of frozen soil (Nbn) at 7.20m to 8.15m (Vr)                                                                                  |                                       |           |         |       |            |            |                                                                      | •                     |                                           |                            | 8.1                      |
|          | nd Drill      |                                                                                                                                         |                                       |           | 4       | RUN   |            | 90         |                                                                      | 0                     |                                           |                            |                          |
| 10       | NQ Diamond    | some cobbles                                                                                                                            |                                       |           |         |       |            |            |                                                                      |                       |                                           |                            |                          |
| 12       |               |                                                                                                                                         |                                       |           | _       | Diski |            | E7         |                                                                      |                       |                                           |                            |                          |
| 13       |               |                                                                                                                                         |                                       | 44        |         | RUN   |            | 57         | Grain Size Analysis:<br>Gr 43%/ Sa 42%/ Si & Cl 15%                  | 0                     |                                           |                            |                          |
| 14       |               | GRAVEL, sandy, trace to some silt and clay, some fractures with clay infilling, with completely weathered shale fragments, brown to red | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 14.15     |         | RUN   |            | 80         |                                                                      |                       |                                           |                            |                          |
| 16       |               | GRANITIC GNEISS, moderately<br>weathered, some fibrous minerals, some<br>clay gouges, red, grey                                         |                                       | 16.15     |         | RUN   |            |            | TCR=92% SCR=75% RQD=13%                                              |                       |                                           |                            | 16.19                    |
| 17<br>18 |               | clay gouges, red, grey clay at 17.12m (30mm) highly weathered, massive, highly broken, medium strong, reddish brown                     |                                       |           |         |       |            |            |                                                                      |                       |                                           |                            |                          |
| 19       |               |                                                                                                                                         |                                       |           | 7       | RUN   |            |            | TCR=53% SCR=15% RQD=7%                                               |                       |                                           |                            |                          |
|          |               | GROUNDWATER ELE $\overline{\lor}$ SHALLOW/SINGLE INSTA                                                                                  |                                       |           | <u></u> |       |            |            | P/DUAL INSTALLATION                                                  |                       |                                           |                            | _                        |

Mary River Project **PROJECT** 

Project No. 19-1605-126

LOCATION

-0+500 - Quarry

DRILLER: BOART LONGYEAR

SHEET 2 OF 2

July 30, 2011 STARTED COMPLETED :

July 31, 2011

N 7 911 899 E 563 668

DATUM: CGVD28

| П                       |                  | SOIL PROFILE                                                                      |             |           |        | SAM  | PLE        | S          |                                                                      | EXCESS ICE CONTENT, PERCENT           | THERMISTER/<br>GROUND CON |
|-------------------------|------------------|-----------------------------------------------------------------------------------|-------------|-----------|--------|------|------------|------------|----------------------------------------------------------------------|---------------------------------------|---------------------------|
| DEPTH SCALE<br>(metres) | BORING METHOD    | DESCRIPTION                                                                       | STRATA PLOT | ELEV. (m) | NUMBER | TYPE | BLOWS/0.3m | RECOVERY % | COMMENTS DYNAMIC CONE PENETRATION RESISTANCE PLOT 50 100 150 200 250 | 10                                    | FROZEN UNFROZEN UNCERTAIN |
| 21                      |                  | residual to completely weathered, extremely to very weak, very dark reddish brown |             |           | 8      | RUN  | l          |            | TCR=50% SCR=10% RQD=0%                                               |                                       |                           |
| 23                      |                  | silty sand, trace clay (300mm) residual to highly weathered, very weak to weak    |             |           |        |      |            |            |                                                                      |                                       |                           |
| 24<br>25                | NQ Diamond Drill |                                                                                   |             |           | 9      | RUN  | l          |            | TCR=50% SCR=12% RQD=0%                                               |                                       |                           |
| 26<br>27                | _                |                                                                                   |             |           |        |      |            |            |                                                                      | FI 2 2 2 2 2 2 2                      |                           |
| 28                      |                  | becoming slightly weathered, massive, medium strong, pinkish grey                 |             |           | 10     | RUN  | l          |            | TCR=67% SCR=29% RQD=22%                                              | 5<br>5<br>2<br>5<br>6                 |                           |
| 29<br>30                |                  | END OF BOREHOLE AT 30.00m.                                                        |             | 30.00     | ı      | RUN  |            |            | TCR=100% SCR=29%                                                     | 4 6                                   |                           |
| 31<br>32                |                  |                                                                                   |             |           |        |      |            |            |                                                                      |                                       |                           |
| 33                      |                  |                                                                                   |             |           |        |      |            |            |                                                                      |                                       |                           |
| 34<br>35                |                  |                                                                                   |             |           |        |      |            |            |                                                                      |                                       |                           |
| 36<br>37                |                  |                                                                                   |             |           |        |      |            |            |                                                                      |                                       |                           |
| 38                      |                  |                                                                                   |             |           |        |      |            |            |                                                                      |                                       |                           |
| 39                      |                  |                                                                                   |             |           |        |      |            |            |                                                                      |                                       |                           |
|                         |                  | GROUNDWATER ELE                                                                   |             |           | 8      |      |            |            | P/DUAL INSTALLATION<br>LEVEL (date)                                  | LOGGED : Clarke/Ametrano CHECKED : KS | THURB                     |



PROJECT: Mary River Project

Project No. 19-1605-126

LOCATION

STARTED

COMPLETED

4+100 - Quarry July 29, 2011

July 30, 2011

DRILLER: BOART LONGYEAR N 7 909 418 E 566 698 SHEET 1 OF 4 DATUM: CGVD28

EXCESS ICE CONTENT, PERCENT THERMISTER/ GROUND COND SOIL PROFILE SAMPLES ADDITIONAL LAB. TESTING oice DEPTH SCAL 20 STRATA PLOT BLOWS/0.3m FROZEN ELEV. (m) NUMBER RECOVERY **COMMENTS** TYPE BORING WATER CONTENT, PERCENT DYNAMIC CONE PENETRATION RESISTANCE PLOT UNFROZEN DESCRIPTION  $-0^{W}$ UNCERTAIN 30 100 150 200 250 10 20 40 GROUND SURFACE **GRAVEL** and **COBBLES** (<160mm), granitic, angular to subrounded, fines washed out 25 RUN no recovery fines washed away 3 0 5 5.11 **SAND**, medium to coarse grained, some gravel (< 45mm), pink to grey Grain Size Analysis: RUN 32 Gr 16%/Sa 84%/ Si & Cl 0% -8 gravelly 29 9.00 9.23 RUN 9 90 ICE with soil inclusions at 9.00m to 9.23m 9.61 **GRAVEL**, with some zones of silty fine sand, some cobbles (180mm), some fines washed out RUN 100 6 RUN boulders (270mm to 300mm) with some cobbles, medium to coarse sand cobbles (<170mm) RUN 63 14.00 SAND and GRAVEL (<40mm), grey, some 15 RUN 33 17.00 GRAVEL and COBBLES, granitic, grey, 18 25 19

GROUNDWATER ELEVATIONS

11/9/1

5126.GPJ

SHALLOW/SINGLE INSTALLATION
WATER LEVEL (date)

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Clarke/Ametrano
CHECKED : KS

THURBER

Mary River Project **PROJECT** 

Project No. 19-1605-126

LOCATION

4+100 - Quarry July 29, 2011

DRILLER: BOART LONGYEAR

SHEET 2 OF 4

STARTED COMPLETED

July 30, 2011 N 7 909 418 E 566 698 DATUM: CGVD28

| ц                        | dob              | SOIL PROFILE                                                               |                                         |           | ,      | SAM   | PLE        | S          |                                                   | EXC    | SS ICE   | CONTE  | NT, PERCENT     | ٥٦                                              | THERMISTER<br>GROUND COI |
|--------------------------|------------------|----------------------------------------------------------------------------|-----------------------------------------|-----------|--------|-------|------------|------------|---------------------------------------------------|--------|----------|--------|-----------------|-------------------------------------------------|--------------------------|
| DEP IN SCALE<br>(metres) | BORING METHOD    |                                                                            | LOT                                     | (E        | E.     |       | .3m        | ۶۲ %       | COMMENTS                                          | 1      | 0 2<br>I |        | 30 40           | ADDITIONAL<br>LAB. TESTING                      | FROZEN                   |
| met T                    | ING.             | DESCRIPTION                                                                | TAF                                     | ELEV. (m) | NUMBER | TYPE  | BLOWS/0.3m | OVEF       | COMMENTS DYNAMIC CONE PENETRATION RESISTANCE PLOT |        |          | ONTENT | , PERCENT       | コピュー<br>100円 110円 110円 110円 110円 110円 110円 110円 | UNFROZEN                 |
| 5                        | BOR              |                                                                            | STRATA PLOT                             |           | ≥      | -     | BLO        | RECOVERY % | 50 100 150 200 250                                | 1<br>1 | p        | 0 3    |                 | ¥ 5                                             | UNCERTAIN                |
|                          |                  |                                                                            |                                         |           |        |       |            |            |                                                   |        |          |        |                 |                                                 |                          |
|                          |                  | no recovery                                                                |                                         | 20.20.    | l      |       |            |            |                                                   |        |          |        |                 |                                                 |                          |
| 21                       |                  |                                                                            |                                         |           |        |       |            |            |                                                   |        |          |        |                 |                                                 |                          |
| ۱ ۲                      |                  |                                                                            |                                         |           | 10     | RUN   |            | 0          |                                                   |        |          |        |                 |                                                 |                          |
| 22                       |                  |                                                                            |                                         |           | 10     | KUN   |            | 0          |                                                   |        |          |        |                 |                                                 |                          |
| 22                       |                  |                                                                            |                                         |           |        |       |            |            |                                                   |        |          |        |                 |                                                 |                          |
| 23                       |                  |                                                                            |                                         |           |        |       |            |            |                                                   |        |          |        |                 |                                                 |                          |
| 23                       |                  |                                                                            |                                         |           |        |       |            |            |                                                   |        |          |        |                 |                                                 |                          |
| _                        |                  |                                                                            |                                         |           |        |       |            |            |                                                   |        |          |        |                 |                                                 |                          |
| 24                       |                  |                                                                            |                                         |           | l      | L     |            |            |                                                   |        |          |        |                 |                                                 |                          |
|                          |                  |                                                                            |                                         |           | 11     | RUN   |            | 0          |                                                   |        |          |        |                 |                                                 |                          |
| 25                       |                  |                                                                            |                                         |           |        |       |            |            |                                                   |        |          |        |                 |                                                 |                          |
|                          |                  |                                                                            |                                         |           |        |       |            |            |                                                   |        |          |        |                 |                                                 |                          |
| 26                       |                  |                                                                            |                                         |           |        |       |            |            |                                                   |        |          |        |                 |                                                 |                          |
| _                        |                  |                                                                            |                                         |           |        |       |            |            |                                                   |        |          |        |                 |                                                 |                          |
| 27                       |                  |                                                                            |                                         |           | 40     | DUA   |            | _          |                                                   |        |          |        |                 |                                                 |                          |
| _                        |                  |                                                                            |                                         |           | 12     | RUN   |            | 0          |                                                   |        |          |        |                 |                                                 |                          |
| 28                       |                  |                                                                            |                                         |           |        |       |            |            |                                                   |        |          |        |                 |                                                 |                          |
| _                        |                  |                                                                            |                                         |           |        |       |            |            |                                                   |        |          |        |                 |                                                 |                          |
| 29                       | ≣                |                                                                            |                                         |           |        |       |            |            |                                                   |        |          |        |                 |                                                 |                          |
| _                        | NQ Diamond Drill |                                                                            |                                         |           |        |       |            |            |                                                   |        |          |        |                 |                                                 |                          |
| 30                       | Diam             |                                                                            |                                         |           |        |       |            | 40         |                                                   |        |          |        |                 |                                                 |                          |
|                          | g                | SILT, clayey, trace gravel, wet, brown                                     | Ш                                       | 30.80     | 13     | RUN   |            | 43         |                                                   |        |          |        |                 |                                                 |                          |
| 31                       |                  | GLT, Sidyoy, Rudo gravos, Wot, Stown                                       | ľИ                                      |           |        |       |            |            |                                                   |        |          |        |                 |                                                 |                          |
| 32                       |                  |                                                                            |                                         | 32.00     |        |       |            |            |                                                   |        |          | 0      |                 |                                                 |                          |
| 32                       |                  | SAND and GRAVEL, occasional boulders (< 300mm), with silty clay interbeds  | * * * * * * * * * * * * * * * * * * * * |           |        |       |            |            |                                                   |        |          |        |                 |                                                 |                          |
| 33                       |                  |                                                                            |                                         |           |        |       |            |            |                                                   |        |          |        |                 |                                                 |                          |
| 33                       |                  |                                                                            |                                         |           | 14     | RUN   |            | 67         |                                                   |        |          |        |                 |                                                 |                          |
| 34                       |                  |                                                                            |                                         |           | '*     | INOIN | !          | 01         |                                                   |        |          |        |                 |                                                 |                          |
| 34                       |                  |                                                                            |                                         |           |        |       |            |            |                                                   |        |          |        |                 |                                                 |                          |
| 35                       |                  |                                                                            | ***                                     | 35.00     |        |       |            |            |                                                   |        |          |        |                 |                                                 | 35.00                    |
| 33                       |                  | SANDSTONE, residual to completely weathered, extremely to very weak, brown |                                         |           |        |       |            |            |                                                   |        |          |        |                 |                                                 |                          |
| 36                       |                  |                                                                            |                                         |           |        |       |            |            |                                                   |        |          |        |                 | FI<br>8                                         |                          |
| 50                       |                  | completely to moderately weathered, massive, medium strong, light greyish  |                                         |           | 15     | RUN   |            |            | TCR=33% SCR=33% RQD=4%                            |        |          |        |                 | 8 9                                             |                          |
| 37                       |                  | brown                                                                      |                                         |           | 13     | NON   |            |            | 1011-00/0 0011-00/0 RQD-4/0                       |        |          |        |                 | 6                                               |                          |
| ~'                       |                  |                                                                            |                                         |           |        |       |            |            |                                                   |        |          |        |                 | >25                                             |                          |
| 38                       |                  |                                                                            |                                         |           |        |       |            |            |                                                   |        |          |        |                 |                                                 |                          |
| 00                       |                  |                                                                            |                                         |           |        |       |            |            |                                                   |        |          |        |                 |                                                 |                          |
| 39                       |                  |                                                                            |                                         |           |        |       |            |            |                                                   |        |          |        |                 |                                                 |                          |
| 55                       |                  | residual to highly weathered, medium strong                                |                                         |           | 16     | RUN   |            |            | TCR=13% SCR=6% RQD=0%                             |        |          |        |                 |                                                 |                          |
|                          |                  |                                                                            | $\mathbb{M}$                            |           |        |       |            |            |                                                   |        |          |        |                 |                                                 |                          |
|                          | _                | GROUNDWATER ELE                                                            |                                         |           | 3      | _     |            |            |                                                   |        |          |        |                 |                                                 |                          |
|                          |                  | $\overline{igspace}$ shallow/single insta                                  | LLA                                     | TION      |        |       |            |            | P/DUAL INSTALLATION                               |        | _OGGE[   | ) :    | Clarke/Ametrane | )                                               |                          |
|                          |                  | WATER LEVEL (date)                                                         |                                         |           |        | ,     | WA٦        | ER         | LEVEL (date)                                      |        | CHECKE   | D :    | KS              |                                                 | THURE                    |

Mary River Project **PROJECT** 

Project No. 19-1605-126

LOCATION 4+100 - Quarry

STARTED

July 29, 2011

DRILLER: BOART LONGYEAR

SHEET 3 OF 4

| CC                      | MPLE             | TED : July 30, 2011                                    |             |           |        |      | N          | 7 90       | 09 418 E 566 698                                            |             |        |            | DATUM:     |                    |
|-------------------------|------------------|--------------------------------------------------------|-------------|-----------|--------|------|------------|------------|-------------------------------------------------------------|-------------|--------|------------|------------|--------------------|
|                         | BORING METHOD    | SOIL PROFILE                                           | L           |           |        | SAMI |            | -          |                                                             | EXCESS IC   | oice   | e          | .NI   IN:  | THERMIST<br>GROUND |
| DEPTH SCALE<br>(metres) | MET              |                                                        | STRATA PLOT | (i)       | H      | ļ,,  | BLOWS/0.3m | RECOVERY % | COMMENTS                                                    |             |        | 30 40      | ADDITIONAL | FROZEN             |
| F B                     | ≅ING             | DESCRIPTION                                            | ATA I       | ELEV. (m) | NUMBER | TYPE | )/S/(      | OVE        | DYNAMIC CONE PENETRATION                                    | WATER (     | CONTEN | T, PERCEN  |            | UNFROZE            |
| i                       | BOF              |                                                        | STR/        | ᆸ         | ĭ      |      | BLO        | REC        | DYNAMIC CONE PENETRATION RESISTANCE PLOT 50 100 150 200 250 | wp ⊢—<br>10 | 20     |            | 4 5        | UNCERTA            |
|                         |                  |                                                        | V//.        |           |        |      |            |            |                                                             |             |        |            |            |                    |
|                         |                  |                                                        |             |           |        |      |            |            |                                                             |             |        |            |            |                    |
| 41                      |                  |                                                        |             |           |        |      |            |            |                                                             |             |        |            |            |                    |
|                         |                  | highly broken                                          |             |           |        |      |            |            |                                                             |             |        |            |            |                    |
| ·42                     |                  | Ingriy broken                                          |             |           |        |      |            |            |                                                             |             |        |            |            |                    |
|                         |                  |                                                        |             |           | 17     | RUN  |            |            | TCR=5% SCR=18% RQD=6%                                       |             |        |            |            |                    |
| 43                      |                  |                                                        |             |           |        |      |            |            |                                                             |             |        |            |            |                    |
|                         |                  |                                                        |             |           |        |      |            |            |                                                             |             |        |            |            |                    |
| .44                     |                  | highly to moderately weethered massive                 |             |           | _      |      |            |            |                                                             |             |        |            |            |                    |
|                         |                  | highly to moderately weathered, massive, medium strong |             |           |        |      |            |            |                                                             |             |        |            |            |                    |
| 45                      |                  |                                                        |             |           |        |      |            |            |                                                             |             |        |            |            |                    |
|                         |                  |                                                        |             |           | 18     | RUN  |            |            | TCR=67% SCR=44% RQD=25%                                     |             |        |            |            |                    |
| 46                      |                  |                                                        |             |           |        |      |            |            |                                                             |             |        |            |            |                    |
|                         |                  |                                                        |             |           |        |      |            |            |                                                             |             |        |            |            |                    |
| 47                      |                  |                                                        |             |           |        |      |            |            |                                                             |             |        |            | 4          |                    |
| ·                       |                  | mademately use the second                              |             |           |        |      |            |            |                                                             |             |        |            | 1 3        |                    |
| 48                      |                  | moderately weathered                                   |             |           |        |      |            |            |                                                             |             |        |            | 4          |                    |
|                         |                  |                                                        |             |           | 19     | RUN  |            |            | TCR=81% SCR=58% RQD=21%                                     |             |        |            | 3          |                    |
| 49                      |                  |                                                        |             |           |        |      |            |            |                                                             |             |        |            | >25        |                    |
|                         | ≣<br>□           |                                                        |             |           |        |      |            |            |                                                             |             |        |            | 3          |                    |
| -50                     | NQ Diamond Drill |                                                        |             |           |        |      |            |            |                                                             |             |        |            | 5<br>20    |                    |
|                         | Diar             |                                                        |             |           |        |      |            |            |                                                             |             |        |            | 20         |                    |
| 51                      | ž                |                                                        |             |           |        |      |            |            |                                                             |             |        |            | 3          |                    |
|                         |                  |                                                        |             |           | 20     | RUN  |            |            | TCR=77% SCR=43% RQD=15%                                     |             |        |            | 6          |                    |
| -52                     |                  |                                                        |             |           |        |      |            |            |                                                             |             |        |            | 4          |                    |
|                         |                  |                                                        |             |           |        |      |            |            |                                                             |             |        |            | 2          |                    |
| 53                      |                  |                                                        |             |           |        |      |            |            |                                                             |             |        |            | 6          |                    |
|                         |                  |                                                        |             |           |        |      |            |            |                                                             |             |        |            | 5          |                    |
| .54                     |                  |                                                        |             |           |        |      |            |            |                                                             |             |        |            | 8          |                    |
| -                       |                  |                                                        |             |           | 21     | RUN  |            |            | TCR=87% SCR=61% RQD=24%                                     |             |        |            | 7 2        |                    |
| 55                      |                  |                                                        |             |           |        |      |            |            |                                                             |             |        |            | 4          |                    |
|                         |                  |                                                        |             |           |        |      |            |            |                                                             |             |        |            | 5 2        |                    |
| 56                      |                  |                                                        |             |           |        |      |            |            |                                                             |             |        |            | 2<br>10    |                    |
|                         |                  |                                                        |             |           |        |      |            |            |                                                             |             |        |            | 4 5        |                    |
| 57                      |                  |                                                        |             |           |        |      |            |            |                                                             |             |        |            | 9          |                    |
|                         |                  |                                                        |             |           | 22     | RUN  |            |            | TCR=100% SCR=6% RQD=30%                                     |             |        |            | >25        |                    |
| 58                      |                  |                                                        |             |           |        |      |            |            |                                                             |             |        |            | 4          |                    |
|                         |                  |                                                        |             |           |        |      |            |            |                                                             |             |        |            | 2          |                    |
| 59                      |                  | allahdhuusadharad allamad                              |             |           |        |      |            |            |                                                             |             |        |            | 3 9        |                    |
|                         |                  | slightly weathered, alternating brown and grey         |             |           |        |      |            |            |                                                             |             |        |            | 2          |                    |
|                         |                  |                                                        |             |           |        |      |            |            |                                                             |             |        |            | 3<br>>25   |                    |
|                         |                  | GROUNDWATER ELE                                        |             |           | 3      | _    | ,          |            |                                                             |             |        |            |            |                    |
|                         |                  | ☐ SHALLOW/SINGLE INST                                  | ALLA        | TION      |        |      |            |            | P/DUAL INSTALLATION                                         | LOGGE       |        | Clarke/Ame | etrano     |                    |
|                         |                  | WATER LEVEL (date)                                     |             |           |        | ١    | WAT        | ER         | LEVEL (date)                                                | CHECK       | ED :   | KS         |            | THU                |



PROJECT : Mary River Project

Project No. 19-1605-126

LOCATION : 4+100 - Quarry

DRILLER: BOART LONGYEAR

SHEET 4 OF 4

STARTED : July 29, 2011 COMPLETED : July 30, 2011

N 7 909 418 E 566 698

DATUM: CGVD28

| $\vdash$                |               | 1                          |                         |           | _        |      |            |            |                                                             | EYCE     | SS ICE   | CONTE     | IT DED | CENT   | $\overline{}$ |                             |
|-------------------------|---------------|----------------------------|-------------------------|-----------|----------|------|------------|------------|-------------------------------------------------------------|----------|----------|-----------|--------|--------|---------------|-----------------------------|
| ш                       | BORING METHOD | SOIL PROFILE               |                         |           | 5        | SAM  | PLE:       | S          |                                                             | EVC      | 33 ICE   | ice       |        | CEINI  | . (2)         | THERMISTER/<br>GROUND COND. |
| DEPTH SCALE<br>(metres) | Ĭ             |                            | <u> </u>                |           |          |      | _          | %          |                                                             |          |          |           |        | 10     | < ∠           |                             |
| SC                      | ME            |                            | STRATA PLOT             | ELEV. (m) | 兴        | l    | BLOWS/0.3m | RECOVERY % | COMMENTS                                                    | 1        | 0 2<br>I | 20 3<br>I | 10 4   | 10<br> | Q IS          | FROZEN                      |
| ⊒ ∃                     | 19            | DESCRIPTION                | A                       | ~<br>~    | 胃        | 띮    | 0/S        | μ          | COMINENTS                                                   | W        | ATER CO  | ONTENT    | PERCE  | NT     |               | UNFROZEN 💹                  |
| EP.                     | 8             | DESCRIPTION                | \                       | É         | NUMBER   | TYPE | 8          | ő          | RESISTANCE PLOT —                                           |          |          | OW W      | ——— v  |        | AB AB         |                             |
| □                       | 301           |                            | 1 1 1 1                 | Ш         | z        |      | 3          | <u>ы</u>   | DYNAMIC CONE PENETRATION RESISTANCE PLOT 50 100 150 200 250 | 1        | p        | 20 3      | 0 4    | 10     | ~             | UNCERTAIN                   |
| _                       | _             |                            | 100                     |           | $\vdash$ |      | _          | IL.        | 30 100 130 230 230                                          | <u> </u> |          |           |        |        | ├──           |                             |
|                         |               |                            | $\downarrow$            |           |          |      |            |            |                                                             |          |          |           |        |        |               | _                           |
| <b>!</b>                |               |                            | M                       |           |          |      |            |            |                                                             |          |          |           |        |        | 3             | -                           |
| 1                       |               |                            |                         |           | 23       | RUN  |            |            | TCR=75% SCR=62% RQD=14%                                     |          |          |           |        |        |               | ]                           |
| F                       |               |                            | $\mathbb{K}/\mathbb{A}$ |           |          |      |            |            |                                                             |          |          |           |        |        |               | -                           |
| - 61                    |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | ]                           |
| ŀ                       |               |                            | $\bowtie$               |           |          |      |            |            |                                                             |          |          |           |        |        |               | -                           |
| ŀ                       |               |                            | $\mathbb{K}/\mathbb{A}$ |           |          |      |            |            |                                                             |          |          |           |        |        |               | -                           |
| -62                     |               |                            | $\mathbb{Z}$            | 62.00     |          |      |            |            |                                                             |          |          |           |        |        |               |                             |
| - 02                    |               | END OF BOREHOLE AT 62.00m. |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | -                           |
| t l                     |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | 1                           |
| 1                       |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | -                           |
| - 63                    |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | -                           |
| [                       |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | ]                           |
| ŀ                       |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | -                           |
| -64                     |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               |                             |
| -04                     |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | -                           |
| ŀ                       |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | -                           |
| 1                       |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | 1                           |
| - 65                    |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | -                           |
| t                       |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               |                             |
| [ ]                     |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | ]                           |
| F                       |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | -                           |
| -66                     |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | -                           |
| ŀ                       |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | -                           |
| t l                     |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | 1                           |
| - 67                    |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | ]                           |
| F "                     |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | -                           |
| 1                       |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | 1                           |
| ŀ                       |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | -                           |
| -68                     |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | 1                           |
| [                       |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | ]                           |
| -                       |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | -                           |
| - 69                    |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | ]                           |
| - 03                    |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | -                           |
| t                       |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | 1                           |
| Į.                      |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               |                             |
| <b>-</b> 70             |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | -                           |
| 1                       |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | ]                           |
| ŀ                       |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | -                           |
| 71                      |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | ]                           |
| F''                     |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               |                             |
| ŀ                       |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | -                           |
| [ ]                     |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               |                             |
| <b>-</b> 72             |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | -                           |
| 1                       |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | ]                           |
| ŀ                       |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | -                           |
| 73                      |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               |                             |
| 1,2                     |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | -                           |
| l l                     |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | -                           |
| [                       |               | 1                          |                         |           |          |      |            |            |                                                             | 1        |          |           |        |        |               |                             |
| -74                     |               |                            |                         |           | l        |      |            |            |                                                             | 1        |          |           |        |        | 1             | -                           |
| ţ                       |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | 1                           |
| F                       |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               |                             |
| - 75                    |               | 1                          | 1 1                     |           |          |      |            |            |                                                             | 1        |          |           |        |        |               | ]                           |
| F' '                    |               | 1                          |                         |           |          |      |            |            |                                                             | 1        |          |           |        |        |               | ]                           |
| t I                     |               |                            |                         |           | l        |      |            |            |                                                             | 1        |          |           |        |        | 1             | 1                           |
| [ ]                     |               |                            |                         |           | l        |      |            |            |                                                             | 1        |          |           |        |        | 1             | 1                           |
| <b>-</b> 76             |               |                            |                         |           | l        |      |            |            |                                                             | 1        |          |           |        |        | 1             | -                           |
| 1                       |               | 1                          | 1 1                     |           |          |      |            |            |                                                             | 1        |          |           |        |        |               |                             |
| F                       |               |                            |                         |           | l        |      |            |            |                                                             | 1        |          |           |        |        | 1             |                             |
| - 77                    |               |                            |                         |           | l        |      |            |            |                                                             | 1        |          |           |        |        | 1             | ]                           |
| F''                     |               | 1                          | 1 1                     |           | I        |      |            |            |                                                             | 1        |          |           |        |        | 1             | 1 - 7                       |
| ŀ ∣                     |               | 1                          | 1 1                     |           |          |      |            |            |                                                             | 1        |          |           |        |        |               |                             |
| Į l                     |               |                            |                         |           | l        |      |            |            |                                                             | 1        |          |           |        |        | 1             |                             |
| <b>-</b> 78             |               |                            |                         |           | l        |      |            |            |                                                             | 1        |          |           |        |        | 1             | -                           |
| <u> </u>                |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | 1                           |
| , l                     |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | -                           |
| L 70                    |               | 1                          |                         |           |          |      |            |            |                                                             | 1        |          |           |        |        |               |                             |
| - 79                    |               |                            |                         |           | l        |      |            |            |                                                             | 1        |          |           |        |        | 1             | ] ]                         |
| <b>:</b>                |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | -                           |
| 1                       |               |                            |                         |           |          |      |            |            |                                                             |          |          |           |        |        |               | ] ]                         |
| <b>├</b> ─              | $\Box$        | 0.001.0.000                |                         |           | ╙        |      |            |            |                                                             |          |          | <u> </u>  |        |        | Щ             | <u> </u>                    |
| -                       |               | GROUNDWATER ELE            | .VAT                    | IONS      | j .      |      |            |            |                                                             |          |          |           |        |        |               |                             |

☐ SHALLOW/SINGLE INSTALLATION
WATER LEVEL (date)

THURBER2S(5126) 5126.GPJ 11/9/11

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Clarke/Ametrano CHECKED : KS



PROJECT : Mary River Project

Project No. 19-1605-126

LOCATION :

STARTED

7+500 - Quarry July 28, 2011

DRILLER: BOART LONGYEAR, LM-55

SHEET 1 OF 3

| SOIL PROFILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Sand   Cobbles (-75mm)   Sand   Cobbles (-75   | ER/ |
| GROUND SURFACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| GROUND SURFACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| COBBLES (<100mm), grantic, fines washed out, very poor recovery  1 RUN 8  SAND, trace silt, trace gravel, trace cobbles, brown  2 RUN 33  Cobbles (-75mm)  3 RUN 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N   |
| 1 RUN 8 SAND. trace silt, trace gravel, trace cobbles, brown 3 RUN 50 Cobbles (~75mm) 3 RUN 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| 3.00 SAND, trace silt, trace gravel, trace cobbles, brown  SAND, trace silt, trace gravel, trace cobbles (-75mm)  3.00 2 RUN 33  RUN 50  7  8  9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| 3.00 SAND, trace silt, trace gravel, trace cobbles, brown  SAND, trace silt, trace gravel, trace cobbles (-75mm)  3.00 2 RUN 33  RUN 50  7  8  9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| 3.00 SAND, trace silt, trace gravel, trace cobbles, brown  2 RUN 33  Cobbles (~75mm)  3 RUN 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| 3.00 SAND, trace silt, trace gravel, trace cobbles, brown  2 RUN 33  Cobbles (~75mm)  3 RUN 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -   |
| SAND, trace silt, trace gravel, trace cobbles, brown  2 RUN 33  7 Cobbles (~75mm)  3 RUN 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| -4 cobbles, brown 2 Run 33  -6 cobbles (~75mm) 3 Run 50  -7 -8 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| - 5   cobbles (~75mm)   3 RUN   50   - 7   - 8   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   - 9   |     |
| -6   cobbles (~75mm)   3 RUN   50   -7   -8   -9   -9   -7   -7   -7   -7   -7   -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -   |
| -6   cobbles (~75mm)   3 RUN   50   -7   -8   -9   -9   -7   -7   -7   -7   -7   -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| - 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| - 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| -7<br>-8<br>-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| To purple the composition of the |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| F-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -   |
| 5 RUN 50 cobbles (<140mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| [ 13       Source ( ***********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| <u>  15                                   </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -   |
| [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| [-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -   |
| 16.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| 17 BOULDER, sandstone, completely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -   |
| [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |

GROUNDWATER ELEVATIONS

☐ SHALLOW/SINGLE INSTALLATION WATER LEVEL (date)

THURBER2S(5126) 5126.GPJ 11/9/11

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Ametrano CHECKED : KS

THURBER

PROJECT : Mary River Project Project Project Project Project Project No. 19-1605-126

LOCATION : 7+500 - Quarry

 STARTED
 :
 July 28, 2011
 DRILLER:
 BOART LONGYEAR, LM-55
 SHEET 2 OF 3

 COMPLETED
 :
 July 29, 2011
 N 7 907 667 E 569 432
 DATUM: CGVD28

| ш                                  | 8          | SOIL PROFILE                                                                             |              |           | S      | AMI    | PLES       | S          |                                          | EXC             | ESS IC | E CONTE |         | RCENT | . (2)                                            | THERMISTER/<br>GROUND COND. |
|------------------------------------|------------|------------------------------------------------------------------------------------------|--------------|-----------|--------|--------|------------|------------|------------------------------------------|-----------------|--------|---------|---------|-------|--------------------------------------------------|-----------------------------|
| CAL<br>(S)                         | ᇤ          |                                                                                          | ТО           | _         |        |        | E          | %          |                                          |                 | 10     |         | 30      | 40    | ADDITIONAL<br>LAB. TESTING                       | FROZEN                      |
| DEPTH SCALE (metres) BORING METHOD |            |                                                                                          | ] J          | ELEV. (m) | NUMBER | щ      | BLOWS/0.3m | RECOVERY % | COMMENTS                                 | 10 20 30 40<br> |        |         |         |       |                                                  |                             |
| EPT<br>(m                          | Į ž        | DESCRIPTION                                                                              | AT           | EV.       | UME    | TYPE   | SMC        | 8          | DYNAMIC CONE PENETRATION RESISTANCE PLOT |                 | vp —   | ONTEN   | I, PERC | l wl  |                                                  | UNFROZEN 💹                  |
|                                    | BO         |                                                                                          | STRATA PLOT  | ӹ         | z      |        | BLC        | REC        | 50 100 150 200 250                       |                 | 10     | 20      | 30      | 40    | ^ _                                              | UNCERTAIN                   |
|                                    |            |                                                                                          | +"+          |           |        |        |            | _          |                                          | 1               |        |         |         |       | <del>                                     </del> |                             |
| -                                  |            | SILT, clayey, trace sand, firm, grey, moist                                              | TMT          |           |        |        |            |            |                                          |                 |        |         |         |       |                                                  | -                           |
| •                                  |            |                                                                                          |              |           |        |        |            |            |                                          |                 |        |         |         |       |                                                  | :                           |
| - 21                               |            |                                                                                          |              |           |        |        |            |            |                                          |                 |        |         |         |       |                                                  |                             |
| ļ - ·                              |            |                                                                                          |              |           |        | D      |            | 400        |                                          |                 | "      |         |         |       |                                                  | :                           |
| <u> </u>                           |            |                                                                                          | ĽЩ           | 21.80     | 8      | RUN    |            | 100        |                                          |                 |        |         |         |       |                                                  | 21.80                       |
| -22                                |            | SANDSTONE, moderately to faintly weathered, medium strong to strong, light greyish brown |              |           |        |        |            |            |                                          |                 |        |         |         |       |                                                  | -                           |
| ŀ                                  |            | greyish brown                                                                            |              |           |        |        |            |            |                                          |                 |        |         |         |       |                                                  | ]                           |
| -<br>- 23                          |            |                                                                                          | $\mathbb{N}$ |           |        |        |            |            |                                          |                 |        |         |         |       | 3                                                | <u> </u>                    |
| 23                                 |            |                                                                                          |              |           |        |        |            |            |                                          |                 |        |         |         |       | 3                                                | -                           |
| ŀ                                  |            |                                                                                          |              |           |        |        |            |            |                                          |                 |        |         |         |       | 2                                                | -                           |
| -24                                |            |                                                                                          |              |           |        |        |            |            |                                          |                 |        |         |         |       | 1                                                | -                           |
| F                                  |            |                                                                                          |              |           | 9      | RUN    |            |            | TCR=100% SCR=95% RQD=57%                 |                 |        |         |         |       | 2 2                                              | ]                           |
| f                                  |            | faintly weathered, strong                                                                |              |           |        |        |            |            |                                          |                 |        |         |         |       | 2                                                | ]                           |
| - 25                               |            |                                                                                          |              |           |        |        |            |            |                                          |                 |        |         |         |       | 0                                                | ]                           |
| ļ                                  |            |                                                                                          |              |           |        |        |            |            |                                          |                 |        |         |         |       | >25<br>3                                         | ]                           |
| -26                                |            |                                                                                          |              |           |        |        |            |            |                                          |                 |        |         |         |       | 2                                                |                             |
| •                                  |            |                                                                                          |              |           |        |        |            |            |                                          |                 |        |         |         |       | 4                                                | ]                           |
| ļ.                                 |            |                                                                                          |              |           |        |        |            |            |                                          |                 |        |         |         |       | 2                                                | ]                           |
| 27                                 |            | vertical joints from 27.7m to 27.9m                                                      |              |           |        |        |            |            |                                          |                 |        |         |         |       | 4                                                | -                           |
| ļ.                                 |            |                                                                                          |              |           | 10     | RUN    |            |            | TCR=100% SCR=93% RQD=81%                 |                 |        |         |         |       | 1                                                | ] :                         |
| -28                                |            |                                                                                          |              |           |        |        |            |            |                                          |                 |        |         |         |       | 5                                                |                             |
| 1 20                               |            |                                                                                          |              |           |        |        |            |            |                                          |                 |        |         |         |       | 3                                                | ]                           |
| ŀ                                  |            |                                                                                          |              |           |        |        |            |            |                                          |                 |        |         |         |       | 2                                                | ]                           |
| - 29                               | _          |                                                                                          |              |           |        |        |            |            |                                          |                 |        |         |         |       | 1                                                | -                           |
| ·                                  | ۵          |                                                                                          |              |           |        |        |            |            |                                          |                 |        |         |         |       | 6<br>7                                           | -                           |
| -30                                | puo        | vertical joints from 29.7m to 30.0m, 31.4m                                               |              |           |        |        |            |            |                                          |                 |        |         |         |       | 3                                                |                             |
| F                                  | NQ Diamond | to 31.6m                                                                                 |              |           |        |        |            |            |                                          |                 |        |         |         |       | 5                                                | 7                           |
| F                                  | ğ          |                                                                                          |              |           | 11     | RUN    |            |            | TCR=100% SCR=65% RQD=57%                 |                 |        |         |         |       | 2                                                | ]                           |
| - 31                               | -          |                                                                                          |              |           |        |        |            |            |                                          |                 |        |         |         |       | 1 3                                              | -                           |
| -                                  |            |                                                                                          |              |           |        |        |            |            |                                          |                 |        |         |         |       | 5                                                | ]                           |
| ļ                                  |            |                                                                                          |              |           |        |        |            |            |                                          |                 |        |         |         |       | 1                                                | ]                           |
| -32                                |            |                                                                                          |              |           |        |        |            |            |                                          |                 |        |         |         |       | 1 2                                              | -                           |
| •                                  |            |                                                                                          |              |           |        |        |            |            |                                          |                 |        |         |         |       | 2                                                |                             |
| - 33                               |            | faintly weathered to fresh                                                               |              |           |        |        |            |            |                                          |                 |        |         |         |       | 4                                                | -                           |
| •                                  |            | lainily weathered to fresh                                                               |              |           | 12     | RUN    |            |            | TCR=100% SCR=97% RQD=92%                 |                 |        |         |         |       | 1 1                                              | ]                           |
| <b>!</b>                           |            |                                                                                          |              |           | '-     | . VOIN |            |            | 131 100/0 0011-31/0 1\QD=32/0            |                 |        |         |         |       | 2                                                | :                           |
| -34                                |            |                                                                                          | $\mathbb{K}$ |           |        |        |            |            |                                          |                 |        |         |         |       | 0                                                | -                           |
| ļ                                  |            |                                                                                          |              |           |        |        |            |            |                                          |                 |        |         |         |       | 2 2                                              | :                           |
| - 35                               |            | fatathum ather to the second                                                             | $\mathbb{M}$ |           |        |        |            |            |                                          |                 |        |         |         |       | 1                                                | -                           |
| 1                                  |            | faintly weathered, closely to moderately spaced, medium strong                           |              |           |        |        |            |            |                                          |                 |        |         |         |       | 2                                                | ] :                         |
| ļ                                  |            |                                                                                          | $\mathbb{M}$ |           |        |        |            |            |                                          |                 |        |         |         |       | 2                                                | :                           |
| -36                                |            |                                                                                          |              |           |        |        |            |            |                                          |                 |        |         |         |       | 2 2                                              | -                           |
| ļ                                  |            |                                                                                          | $\mathbb{M}$ |           | 13     | RUN    |            |            | TCR=100% SCR=59% RQD=49%                 |                 |        |         |         |       | 8                                                | :                           |
| -<br>- 37                          |            |                                                                                          |              |           |        |        |            |            |                                          |                 |        |         |         |       | >25                                              |                             |
| <b>!</b> "                         |            |                                                                                          | $\mathbb{M}$ |           |        |        |            |            |                                          |                 |        |         |         |       | >25<br>>25                                       | ] :                         |
| <u> </u>                           |            |                                                                                          |              |           |        |        |            |            |                                          |                 |        |         |         |       | 5                                                | ]                           |
| -38                                |            |                                                                                          |              |           |        |        |            |            |                                          |                 |        |         |         |       | 4                                                | -                           |
| 1                                  |            |                                                                                          |              |           |        |        |            |            |                                          |                 |        |         |         |       | 3                                                | ]                           |
| 2 20                               |            |                                                                                          | $\mathbb{M}$ |           |        |        |            |            |                                          |                 |        |         |         |       | 2                                                | ]                           |
| - 39                               |            |                                                                                          |              |           |        |        |            |            |                                          |                 |        |         |         |       | 0                                                | ]                           |
| <u>'</u> [                         |            |                                                                                          |              |           | 14     | RUN    |            |            | TCR=87% SCR=72% RQD=34%                  |                 |        |         |         |       | 5<br>4                                           | ]                           |
| <b>-</b>                           | $\Box$     | GROUNDWATER ELE                                                                          | DY/1         |           | Ļ      |        |            |            |                                          |                 | 1      |         |         |       | L 4                                              | <u> </u>                    |

**GROUNDWATER ELEVATIONS** 

SHALLOW/SINGLE INSTALLATION
WATER LEVEL (date)

THURBER2S(5126) 5126.GPJ 11/9/11

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Ametrano
CHECKED : KS



Mary River Project **PROJECT** 

Project No. 19-1605-126

LOCATION 7+500 - Quarry

July 28, 2011 DRILLER: BOART LONGYEAR, LM-55 STARTED SHEET 3 OF 3 N 7 907 667 E 569 432 July 29, 2011 COMPLETED DATUM: CGVD28

| SOIL PROFILE  SAMPLES  SOIL PROFILE  SAMPLES  COMMENTS  DYNAMIC CONE PERSTANCE PLOT  WATER CONTENT, PERCENT  WATER CONTENT, PE | THERMISTER/<br>GROUND COND |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| -41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FROZEN                     |
| -41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UNFROZEN                   |
| -42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UNCERTAIN _                |
| -41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |
| -42 -43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                          |
| -42   Figure   TCR=100% SCR=46% RQD=30%   TCR=100% SCR=46% RQD=30%   TCR=100% SCR=94% RQD=78%   TCR=10 |                            |
| 15 RUN TCR=100% SCR=46% RQD=30%  16 RUN TCR=100% SCR=94% RQD=78%  16 RUN TCR=100% SCR=94% RQD=78%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |
| - 43   TOR=100% SCR=94% RQD=78%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| -44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                          |
| 45   16 RUN   TCR=100% SCR=94% RQD=78%   147   16 RUN   1 |                            |
| 45   16 RUN   TCR=100% SCR=94% RQD=78%   47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 45   16 RUN   TCR=100% SCR=94% RQD=78%   47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 16 RUN TCR=100% SCR=94% RQD=78%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| -46 -47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |
| 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| [-48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                          |
| TORENO SCR=95% RQD=74%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |
| [-49]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| -50 END OF BOREHOLE AT 50.00m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| [-56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |
| _[:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| 변 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION WATER LEVEL (date)  GROUNDWATER ELEVATIONS  WATER LEVEL (date)  LOGGED : Ametrano CHECKED : KS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |
| SHALLOW/SINGLE INSTALLATION ▼ DEEP/DUAL INSTALLATION LOGGED : Ametrano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |
| WATER LEVEL (date) WATER LEVEL (date) CHECKED: KS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | THURBER                    |



Mary River Project **PROJECT** 

Project No. 19-1605-126

LOCATION 10+250 - Quarry

STARTED

COMPLETED :

July 25, 2011 July 26, 2011

DRILLER: BOART LONGYEAR, LM-55 N 7 905 378 E 572 883

SHEET 1 OF 3 DATUM: CGVD28

|                          | 2             | SOIL PROFILE                                                                                                                                                     |              |           | Τ                         | SAM    | PLE:       | S          |                                          | EXCES   | SS ICE |          | NT, PEF       | RCENT     |                            | THERMISTE<br>GROUND C |
|--------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|---------------------------|--------|------------|------------|------------------------------------------|---------|--------|----------|---------------|-----------|----------------------------|-----------------------|
| DEP IN SCALE<br>(metres) | BORING METHOD |                                                                                                                                                                  | <u> </u>     |           | +                         |        |            |            |                                          | 10      | 9      | o ice    |               | 40        | ADDITIONAL<br>LAB. TESTING |                       |
| (metres)                 | 3 ME          |                                                                                                                                                                  | STRATA PLOT  | ELEV. (m) | NUMBER                    | М      | BLOWS/0.3m | RECOVERY % | COMMENTS                                 |         |        |          | J<br>Γ, PERCI |           | TEST                       | FROZEN                |
| ٤                        | RING          | DESCRIPTION                                                                                                                                                      | ATA          | LEV.      | M                         | TYPE   | SWC        | SOVE       | DYNAMIC CONE PENETRATION RESISTANCE PLOT |         | IER CC | ONTENT   | I, PERCI      | wl        | ADDI<br>AB.                | UNFROZEN              |
| [                        | BO            |                                                                                                                                                                  | STR          |           | $\int_{-\infty}^{\infty}$ |        | BLC        | REC        | 50 100 150 200 250                       | 10<br>1 | 2      | 0        | 30<br>        | 40<br>    | _ ` _ ]                    | UNCERTAIN             |
| 7                        |               | GROUND SURFACE                                                                                                                                                   | 7-1-1-       | 0.0       |                           |        |            |            |                                          |         |        |          |               |           |                            |                       |
|                          |               | SILT, sandy, trace gravel (inferred), occasional boulders (<400mm) and cobbles, coarse to medium grained, subrounded, grey to light brown and pink, fines washed |              |           |                           |        |            |            |                                          |         |        |          |               |           |                            |                       |
|                          |               | grey to light brown and pink, fines washed                                                                                                                       |              |           | Ι,                        |        |            | 40         |                                          |         |        |          |               |           |                            |                       |
|                          |               | out                                                                                                                                                              |              | :         | 1                         | RUN    | 1          | 49         |                                          |         |        |          |               |           |                            |                       |
|                          |               |                                                                                                                                                                  |              |           |                           |        |            |            |                                          |         |        |          |               |           |                            |                       |
| 2                        |               |                                                                                                                                                                  |              |           |                           |        |            |            |                                          |         |        |          |               |           |                            |                       |
|                          |               |                                                                                                                                                                  |              | ]         |                           |        |            |            |                                          |         |        |          |               |           |                            |                       |
| 3                        |               | cobbles (100mm to 200mm)                                                                                                                                         |              |           |                           |        |            |            |                                          |         |        |          |               |           |                            |                       |
|                          |               |                                                                                                                                                                  |              |           | 2                         | RUN    | 1          | 47         |                                          |         |        |          |               |           |                            |                       |
| .                        |               |                                                                                                                                                                  |              |           |                           |        |            |            |                                          |         |        |          |               |           |                            |                       |
|                          |               |                                                                                                                                                                  |              | :         |                           |        |            |            |                                          |         |        |          |               |           |                            |                       |
| 5                        |               | conducilt trace arrival from 5 0 - 1 - 5 5                                                                                                                       |              | :         | _                         |        |            |            |                                          |         |        |          |               |           |                            |                       |
|                          |               | sandy silt, trace gravel from 5.0m to 5.5m                                                                                                                       |              |           |                           |        |            |            |                                          |         |        |          |               |           |                            |                       |
| ,                        |               |                                                                                                                                                                  |              |           |                           |        |            |            |                                          |         |        |          |               |           |                            |                       |
| ´                        |               |                                                                                                                                                                  |              | :         | ,                         | RUN    |            | 48         |                                          |         |        |          |               |           |                            |                       |
| ,                        |               |                                                                                                                                                                  |              |           | "                         | 1,(01) |            | +0         |                                          |         |        |          |               |           |                            |                       |
|                          |               |                                                                                                                                                                  |              |           |                           |        |            |            |                                          |         |        |          |               |           |                            |                       |
|                          |               |                                                                                                                                                                  |              | 8.0       |                           |        |            |            |                                          |         |        |          |               |           |                            | 8.00                  |
| ١ ا                      |               | GRANITIC GNEISS, moderately                                                                                                                                      |              | 3.0       | T                         |        |            |            |                                          |         |        |          |               |           |                            | 6.00                  |
|                          |               | weathered, medium to coarse grained, highly to moderately fractured, grey to pink                                                                                |              |           |                           |        |            |            |                                          |         |        |          |               |           |                            |                       |
| 1                        | _             |                                                                                                                                                                  |              | 1         |                           |        |            |            |                                          |         |        |          |               |           |                            |                       |
|                          | D Drill       |                                                                                                                                                                  |              | 1         | 4                         | RUN    | ı          |            | TCR=100% SCR=100% RQD=63%                |         |        |          |               |           |                            |                       |
| 0                        | Diamond       |                                                                                                                                                                  |              |           |                           |        |            |            |                                          |         |        |          |               |           |                            |                       |
|                          | NO Dis        |                                                                                                                                                                  |              | 1         |                           |        |            |            |                                          |         |        |          |               |           |                            |                       |
| 1                        | z             |                                                                                                                                                                  |              |           |                           |        |            |            |                                          |         |        |          |               |           |                            |                       |
|                          |               |                                                                                                                                                                  |              | 1         |                           |        |            |            |                                          |         |        |          |               |           |                            |                       |
| 12                       |               |                                                                                                                                                                  |              | 1         |                           |        |            |            |                                          |         |        |          |               |           |                            |                       |
| ا -`                     |               |                                                                                                                                                                  |              | 1         | 5                         | RUN    |            |            | TCR=100% SCR=100% RQD=73%                |         |        |          |               |           |                            |                       |
| 13                       |               |                                                                                                                                                                  |              | 1         |                           | 101    |            |            | 1311 100/0 0011-100/0 11QD-13/0          |         |        |          |               |           |                            |                       |
| ١٥                       |               |                                                                                                                                                                  |              |           |                           |        |            |            |                                          |         |        |          |               |           |                            |                       |
|                          |               |                                                                                                                                                                  |              | 1         |                           |        |            |            |                                          |         |        |          |               |           |                            |                       |
| 4                        |               |                                                                                                                                                                  |              | ]         |                           |        |            |            |                                          |         |        |          |               |           |                            |                       |
|                          |               |                                                                                                                                                                  |              |           |                           |        |            |            |                                          |         |        |          |               |           |                            |                       |
| 15                       |               |                                                                                                                                                                  | $\mathbb{W}$ | 1         |                           |        |            |            |                                          |         |        |          |               |           |                            |                       |
|                          |               |                                                                                                                                                                  |              |           | 6                         | RUN    | 1          |            | TCR=100% SCR=100% RQD=47%                |         |        |          |               |           |                            |                       |
| 6                        |               |                                                                                                                                                                  |              |           |                           |        |            |            |                                          |         |        |          |               |           |                            |                       |
|                          |               |                                                                                                                                                                  |              | 1         |                           |        |            |            |                                          |         |        |          |               |           |                            |                       |
| 7                        |               |                                                                                                                                                                  |              |           | $\vdash$                  | -      |            |            |                                          |         |        |          |               |           |                            |                       |
|                          |               |                                                                                                                                                                  | $\mathbb{X}$ | 1         |                           |        |            |            |                                          |         |        |          |               |           |                            |                       |
| 8                        |               |                                                                                                                                                                  |              |           |                           |        |            |            |                                          |         |        |          |               |           |                            |                       |
| _                        |               |                                                                                                                                                                  |              | 1         | 7                         | RUN    | J          |            | TCR=100% SCR=100% RQD=37%                |         |        |          |               |           |                            |                       |
| 9                        |               |                                                                                                                                                                  |              | 1         | ′                         |        |            |            | 100/0 OON-100/0 NQD-01/0                 |         |        |          |               |           |                            |                       |
| 9                        |               |                                                                                                                                                                  |              |           |                           |        |            |            |                                          |         |        |          |               |           |                            |                       |
|                          |               |                                                                                                                                                                  | $\mathbb{W}$ | 1         |                           |        |            |            |                                          |         |        |          |               |           |                            |                       |
| _                        |               | GROUNDWATER ELE                                                                                                                                                  | VA           | TION      | s<br>S                    |        |            |            |                                          |         |        | <u> </u> | 1             | 1         |                            |                       |
|                          |               | ¥ SHALLOW/SINGLE INSTA                                                                                                                                           |              |           | -                         | _      | Z          | EE         | P/DUAL INSTALLATION                      |         |        |          | 121           |           |                            |                       |
|                          |               | WATER LEVEL (date)                                                                                                                                               | ALLA         | TION      |                           |        |            |            | LEVEL (date)                             |         | DGGED  |          |               | znia/Amet | rano                       |                       |
|                          |               | ······································                                                                                                                           |              |           |                           |        |            |            |                                          | C       | HECKE  | : ע.     | KS            |           |                            | THUR                  |

Mary River Project **PROJECT** 

July 26, 2011

Project No. 19-1605-126

LOCATION 10+250 - Quarry July 25, 2011 STARTED

COMPLETED :

DRILLER: BOART LONGYEAR, LM-55 N 7 905 378 E 572 883

SHEET 2 OF 3 DATUM: CGVD28

| щ                       | 4OD           | SOIL PROFILE                                                                             |             |           | _ ;    | SAM  | PLE        | _          |                                                                        | EXCESS ICE CONTENT, PERCENT               | L<br>1G                    | THERMISTER/<br>GROUND CON |
|-------------------------|---------------|------------------------------------------------------------------------------------------|-------------|-----------|--------|------|------------|------------|------------------------------------------------------------------------|-------------------------------------------|----------------------------|---------------------------|
| DEPTH SCALE<br>(metres) | BORING METHOD | DESCRIPTION                                                                              | STRATA PLOT | ELEV. (m) | NUMBER | TYPE | BLOWS/0.3m | RECOVERY % | COMMENTS  DYNAMIC CONE PENETRATION RESISTANCE PLOT  50 100 150 200 250 | 10 20 30 40  WATER CONTENT, PERCENT  wp I | ADDITIONAL<br>LAB. TESTING | FROZEN UNFROZEN UNCERTAIN |
|                         |               |                                                                                          |             |           |        |      |            |            |                                                                        |                                           |                            |                           |
| 21                      |               |                                                                                          |             |           | 8      | RUN  | I          |            | TCR=100% SCR=100% RQD=60%                                              |                                           |                            |                           |
| 23                      |               |                                                                                          |             |           |        |      |            |            |                                                                        |                                           |                            |                           |
| 25                      |               |                                                                                          |             |           | 9      | RUN  | ı          |            | TCR=100% SCR=100% RQD=64%                                              |                                           |                            |                           |
| 26                      |               | moderately to slightly weathered, closely to moderately spaced, very to extremely strong |             |           |        |      |            |            |                                                                        |                                           | FI<br>1<br>2<br>6<br>4     |                           |
| 28                      |               |                                                                                          |             |           | 10     | RUN  |            |            | TCR=100% SCR=50% RQD=19%                                               |                                           | 7<br>5<br>4<br>3<br>>25    |                           |
| 29                      | d Drill       | moderately weathered                                                                     |             |           |        |      |            |            |                                                                        |                                           | >25<br>2<br>2<br>2         |                           |
| 30                      | NQ Diamond    |                                                                                          |             |           | 11     | RUN  | I          |            | TCR=100% SCR=60% RQD=41%                                               |                                           | 3<br>4<br>5<br>2<br>5<br>2 |                           |
| 32                      |               |                                                                                          |             |           |        |      |            |            |                                                                        |                                           | 3<br>3<br>4                |                           |
| 33                      |               |                                                                                          |             |           | 12     | RUN  | ı          |            | TCR=100% SCR=50% RQD=38%                                               |                                           | 6<br>3<br>6<br>7<br>7      |                           |
| 35                      |               |                                                                                          |             |           |        |      |            |            |                                                                        |                                           | >25<br>3<br>1<br>2         |                           |
| 36                      |               |                                                                                          |             |           | 13     | RUN  |            |            | TCR=100% SCR=50% RQD=42%                                               |                                           | >25<br>5<br>10<br>5<br>>25 |                           |
| 37<br>38                |               |                                                                                          |             |           |        |      |            |            |                                                                        |                                           | 25<br>1<br>1<br>2<br>3     |                           |
| 39                      |               |                                                                                          |             |           | 14     | RUN  |            |            | TCR=100% SCR=49% RQD=35%                                               |                                           | 1<br>2<br>4<br>3<br>8      |                           |
|                         |               | 000111000000000000000000000000000000000                                                  |             |           |        |      |            |            |                                                                        |                                           | 15                         |                           |
|                         |               | GROUNDWATER ELE  SHALLOW/SINGLE INSTA WATER LEVEL (date)                                 |             |           | >      |      |            |            | P/DUAL INSTALLATION<br>LEVEL (date)                                    | LOGGED : Khabbaznia/Amet                  | rano                       | THUR                      |



Mary River Project **PROJECT** 

Project No. 19-1605-126

10+250 - Quarry LOCATION

STARTED

July 25, 2011

DRILLER: BOART LONGYEAR, LM-55

SHEET 3 OF 3

| COMMENTS    | 1PLETE | ED : July 26, 2011 |       |       |        |      | Ν     | 7 90 | 05 378 E 572 883                         |     |                   |           |           |           | M: C     | GVD28                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------|-------|-------|--------|------|-------|------|------------------------------------------|-----|-------------------|-----------|-----------|-----------|----------|----------------------------|
| 41 END OF BOREHOLE AT 41.00m.  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  | 무      | SOIL PROFILE       |       |       | 5      | SAM  | PLE   |      |                                          | EXC | ESS ICE           |           |           | CENT      | IL<br>IG | THERMISTER/<br>GROUND COND |
| 41 END OF BOREHOLE AT 41.00m.  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  | MET    |                    | PLOT  | (E)   | H<br>H | l    | 0.3m  | RY % | COMMENTS                                 |     |                   | 20 3<br>L | 80 4<br>I |           | ION/     | _                          |
| 41 END OF BOREHOLE AT 41.00m.  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  41.00  | SING   | DESCRIPTION        | ATA F | EV. ( | UMBE   | TYPE | )/SMC | OVE  | DYNAMIC CONE PENETRATION RESISTANCE PLOT |     |                   | ONTENT    | , PERCE   |           | AB. TI   | UNFROZEN                   |
| END OF BOREHOLE AT 41.00m.  42  43  -44  -45  -46  -47  -48  -50  -51  -52  -53  -54  -55  -56  -57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BOF    |                    | STR,  | 13    | ž      |      | BLC   | REC  | 50 100 150 200 250                       |     | ир I<br>10 2<br>I | 20 3<br>I | 30 4      |           | ₹ 5      | UNCERTAIN _                |
| ### END OF BOREHOLE AT 41.00m.  #################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           | 2        |                            |
| SOIL PROFILE  DESCRIPTION  DESC |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| -42   43   -44   -45   -46   -47   -48   -49   -50   -51   -52   -53   -54   -55   -56   -57   -58   -59   GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E      |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| -44 -45 -46 -47 -48 -49 -50 -51 -52 -53 -54 -55 -56 -57 -58 -59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | DESCRIPTION        |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| -44   -45   -46   -47   -48   -49   -50   -51   -52   -53   -54   -55   -56   -57   -58   -59   GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | DESCRIPTION    1   |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| -44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| -45   -46   -47   -48   -49   -50   -51   -52   -53   -54   -55   -56   -57   -58   -59   GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| -45   -46   -47   -48   -49   -50   -51   -52   -53   -54   -55   -56   -57   -58   -59   GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| -46   -47   -48   -49   -50   -51   -52   -53   -54   -55   -56   -57   -58   -59   GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| -46   -47   -48   -49   -50   -51   -52   -53   -54   -55   -56   -57   -58   -59   GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| GROUNDWATER ELEVATIONS   PRODUCT SOME ACTUAL TODA  GROUNDWATER ELEVATIONS   PRODUCT SOME ACTUAL TODA  GROUNDWATER ELEVATIONS  PRODUCT SOME ACTUAL TODA  AT 100  AT 100 |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| END OF ECREHOLE AT 41.00m.  41.00  GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| -48   -49   -50   -51   -52   -53   -54   -55   -56   -57   -58   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59   -59    |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| -50   -50   -51   -52   -53   -54   -55   -56   -57   -58   -59   -59   -59   -59   -59   -59   -59   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50    |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| -50   -50   -51   -52   -53   -54   -55   -56   -57   -58   -59   -59   -59   -59   -59   -59   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50    |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| -50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| -50   -51   -52   -53   -54   -55   -56   -57   -58   -59   -59   -59   -59   -59   -59   -59   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50   -50    |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| -51<br>-52<br>-53<br>-54<br>-55<br>-56<br>-57<br>-58<br>-59<br>-59<br>-GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| -51<br>-52<br>-53<br>-54<br>-55<br>-56<br>-57<br>-58<br>-59<br>-59<br>-GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| -52   -53   -54   -55   -56   -57   -58   -59   GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| -52   -53   -54   -55   -56   -57   -58   -59   GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| -54<br>-55<br>-56<br>-57<br>-58<br>-59<br>GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| -54<br>-55<br>-56<br>-57<br>-58<br>-59<br>GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| -54   -55   -56   -57   -58   -59   GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| -54<br>-55<br>-56<br>-57<br>-58<br>-59<br>GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| -55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| -55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| -56   -57   -58   -59   GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
| GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | GROUNDWATER ELE    | VAT   | IONS  | 5      |      |       |      |                                          |     |                   | 1         |           | <u> </u>  |          |                            |
| S LECOMOTION DELITION DELITION LOGGED : Knabbaznia/Amer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                    |       |       |        | Ţ    | Z D   | EEI  | P/DUAL INSTALLATION                      |     | LOGGED            | ) :       | Khabbaz   | nia/Ametr | ano      |                            |
| WATER LEVEL (date) WATER LEVEL (date) CHECKED: KS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                    |       |       |        |      |       |      |                                          |     |                   |           |           |           |          | THURBE                     |



**PROJECT** Mary River Project

Project No. 19-1605-126

14+500 - Quarry LOCATION

-8

9

12

15

16

18 11/9/1

19

July 24, 2011 DRILLER: BOART LONGYEAR, LM-55 STARTED SHEET 1 OF 3 COMPLETED July 24, 2011 N 7 904 382 E 575 868 DATUM: CGVD28 EXCESS ICE CONTENT, PERCENT THERMISTER/ GROUND COND SAMPLES SOIL PROFILE BORING METHOD ADDITIONAL LAB. TESTING oice DEPTH SCAL 20 STRATA PLOT BLOWS/0.3m 10 FROZEN ELEV. (m) NUMBER RECOVERY **COMMENTS** TYPE WATER CONTENT, PERCENT UNFROZEN DYNAMIC CONE PENETRATION RESISTANCE PLOT DESCRIPTION  $-0^{W}$ UNCERTAIN 20 30 100 150 200 250 10 40 GROUND SURFACE **BOULDERS** and **COBBLES**, grey to pink, fines washed out 47 3 RUN 100 5 5.20 **BOULDERS**, granitic, dark brown to red, highly weathered, highly fractured RUN 100

RUN

5 RUN

6 RUN

RUN

11.20

100

5126.GPJ **GROUNDWATER ELEVATIONS** 

clayey silt, some gravel, brown, moist from  $9.50 \mathrm{m}$  to  $9.70 \mathrm{m}$ 

GRANITIC GNEISS, medium to coarse grained, highly weathered, highly fractured, brownish red to pink

moderately weathered, moderately spaced

abla shallow/single installation WATER LEVEL (date)

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

TCR=100% SCR=43% RQD=43%

TCR=100% SCR=100% RQD=37%

TCR=100% SCR=100% RQD=53%

LOGGED : Khabbaznia/Ametrano CHECKED : KS



11.20

Mary River Project **PROJECT** 

Project No. 19-1605-126

14+500 - Quarry LOCATION

July 24, 2011 DRILLER: BOART LONGYEAR, LM-55 STARTED SHEET 2 OF 3 July 24, 2011 N 7 904 382 E 575 868 DATUM: CGVD28 COMPLETED

| DESCRIPTION                    | STRATA PLOT     | ELEV. (m)          | 9                      | Z Z TYPE                                                                         |                                                                                                    | RECOVERY %             | COMMENTS DYNAMIC CONE PENETRATION RESISTANCE PLOT  50 100 150 200 250  TCR=100% SCR=100% RQD=70%  TCR=100% SCR=100% RQD=47% |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATER CO                                                                                                                                                    | DNTENT                                                                                                                             | 30<br>                                                                                                    | 40<br>L<br>ENT<br>wl<br>40                                                                                                               | ADDITIONAL<br>LAB. TESTING                                                                                                                 | THERMISTER/GROUND CON<br>FROZEN UNFROZEN UNCERTAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------|-----------------|--------------------|------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                |                 |                    | 9                      |                                                                                  |                                                                                                    |                        |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                            |                                                                                                                                    |                                                                                                           |                                                                                                                                          |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                |                 |                    |                        | RUN                                                                              |                                                                                                    |                        | TCR=100% SCR=100% RQD=47%                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                            |                                                                                                                                    |                                                                                                           |                                                                                                                                          |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                |                 |                    | 10                     |                                                                                  |                                                                                                    |                        |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                            |                                                                                                                                    |                                                                                                           |                                                                                                                                          |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ghtly to moderately weathered  |                 |                    |                        | RUN                                                                              |                                                                                                    |                        | TCR=100% SCR=100% RQD=77%                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                            |                                                                                                                                    |                                                                                                           |                                                                                                                                          |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| grilly to moderately weathered |                 |                    | 11                     | RUN                                                                              |                                                                                                    |                        | TCR=100% SCR=100% RQD=45%                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                            |                                                                                                                                    |                                                                                                           |                                                                                                                                          |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                |                 |                    | 12                     | RUN                                                                              |                                                                                                    |                        | TCR=100%                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                            |                                                                                                                                    |                                                                                                           |                                                                                                                                          |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                |                 |                    | 13                     | RUN                                                                              |                                                                                                    |                        | TCR=100%                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                            |                                                                                                                                    |                                                                                                           |                                                                                                                                          |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| rong to very strong, massive   |                 |                    |                        | RUN                                                                              |                                                                                                    |                        | TCR=100% SCR=49% RQD=40%                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                            |                                                                                                                                    |                                                                                                           |                                                                                                                                          | FI<br>15<br>5<br>3<br>2<br>10<br>2                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                | GROUNDWATER ELI | GROUNDWATER ELEVAT | GROUNDWATER ELEVATIONS | ang to very strong, massive  GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION | ong to very strong, massive  13 RUN  14 RUN  GROUNDWATER ELEVATIONS  ✓ SHALLOW/SINGLE INSTALLATION | GROUNDWATER ELEVATIONS | ang to very strong, massive  13 RUN  14 RUN  GROUNDWATER ELEVATIONS  ✓ SHALLOW/SINGLE INSTALLATION  ✓ DEER                  | In the second of the second o | I3 RUN TCR=100%  Ong to very strong, massive  I4 RUN TCR=100% SCR=49% RQD=40%  GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  DEEP/DUAL INSTALLATION | ong to very strong, massive  14 RUN  TCR=100%  GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  DEEP/DUAL INSTALLATION  LOGGED | TCR=100%  TCR=100%  GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  DEEP/DUAL INSTALLATION  LOGGED : | GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  TCR=100%  TCR=100%  TCR=100%  TCR=100%  TCR=100%  SCR=49%  RQD=40%  LOGGED : Khabba | TCR=100%  I3 RUN  TCR=100%  TCR=100%  GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  DEEP/DUAL INSTALLATION  LOGGED : Khabbaznia/Ame | TCR=100%  13 RUN  TCR=100%  TCR=100 |



Mary River Project **PROJECT** 

Project No. 19-1605-126

LOCATION 14+500 - Quarry July 24, 2011 STARTED

DRILLER: BOART LONGYEAR, LM-55 N 7 904 382 E 575 868

SHEET 3 OF 3 DATUM: CGVD28

| СО                      |               | D : July 24, 2011<br>TED : July 24, 2011 |             |           |        |      | N          | 7 90       | OART LONGYEAR, LM-55<br>04 382 E 575 868                               | EXCESS ICE CONTEN |                                | M: CGV                  |                                                       |
|-------------------------|---------------|------------------------------------------|-------------|-----------|--------|------|------------|------------|------------------------------------------------------------------------|-------------------|--------------------------------|-------------------------|-------------------------------------------------------|
| DEPTH SCALE<br>(metres) | BORING METHOD | SOIL PROFILE  DESCRIPTION                | STRATA PLOT | ELEV. (m) | NUMBER | TYPE | BLOWS/0.3m | RECOVERY % | COMMENTS  DYNAMIC CONE PENETRATION RESISTANCE PLOT  50 100 150 200 250 | 10   20   3(<br>  | 9 40<br>L<br>PERCENT<br>——I WI | BDITIONA<br>B. TESTIN   | HERMISTEF<br>ROUND CO<br>ROZEN<br>NFROZEN<br>NCERTAIN |
| 41                      |               |                                          |             |           |        |      |            |            |                                                                        |                   |                                | 5<br>4<br>25<br>9       |                                                       |
| 42<br>43                | Diamond Drill | slightly weathered                       |             |           | 15     | RUN  | ı          |            | TCR=100% SCR=77% RQD=62%                                               |                   |                                | 3<br>1<br>8<br>2<br>5   |                                                       |
| 44                      |               |                                          |             |           |        |      |            |            |                                                                        |                   |                                | 1<br>3<br>2<br>2<br>10  |                                                       |
| 45<br>46                |               |                                          |             |           | 16     | RUN  | ı          |            | TCR=100% SCR=66% RQD=41%                                               |                   |                                | 4<br>5<br>10<br>2<br>10 |                                                       |
| 47<br>48                |               | END OF BOREHOLE AT 47.20m.               |             | 47.20     |        |      |            |            |                                                                        |                   |                                | 3<br>2<br>2             |                                                       |
| 19                      |               |                                          |             |           |        |      |            |            |                                                                        |                   |                                |                         |                                                       |
| 50<br>51                |               |                                          |             |           |        |      |            |            |                                                                        |                   |                                |                         |                                                       |
| 52                      |               |                                          |             |           |        |      |            |            |                                                                        |                   |                                |                         |                                                       |
| 53<br>54                |               |                                          |             |           |        |      |            |            |                                                                        |                   |                                |                         |                                                       |
| 55                      |               |                                          |             |           |        |      |            |            |                                                                        |                   |                                |                         |                                                       |
| 56<br>57                |               |                                          |             |           |        |      |            |            |                                                                        |                   |                                |                         |                                                       |
| 58                      |               |                                          |             |           |        |      |            |            |                                                                        |                   |                                |                         |                                                       |
| 59                      |               |                                          |             |           |        |      |            |            |                                                                        |                   |                                |                         |                                                       |
|                         |               | GROUNDWATER ELE                          |             |           | 3      |      |            |            | P/DUAL INSTALLATION<br>LEVEL (date)                                    |                   | habbaznia/Ameti<br>S           | ano                     | THUR                                                  |



Mary River Project **PROJECT** 

Project No. 19-1605-126

LOCATION July 23, 2011 STARTED

COMPLETED :

18+100 - Quarry

July 23, 2011

DRILLER: BOART LONGYEAR, LM-55 N 7 902 853 E 578 804

SHEET 1 OF 3 DATUM: CGVD28

| CC                      | MPLE             | ETED : July 23, 2011                                                              |              |           |        |       | N          | 7 90       | 02 853 E 578 804                         |          |         |                  |         | DATU    | M: C0           | GVD28                       |
|-------------------------|------------------|-----------------------------------------------------------------------------------|--------------|-----------|--------|-------|------------|------------|------------------------------------------|----------|---------|------------------|---------|---------|-----------------|-----------------------------|
| щ                       | dol              | SOIL PROFILE                                                                      |              |           | ,      | SAM   | PLES       | S          |                                          | EXC      | ESS ICI | CONTEI           | NT, PER | CENT    |                 | THERMISTER/<br>GROUND COND. |
| DEPTH SCALE<br>(metres) | BORING METHOD    |                                                                                   | LOT          | (۱        | ~      |       | .3m        | Υ%         |                                          |          | 10      |                  |         | 0       | I≤∠I            | FROZEN                      |
| TH 8                    | 9                | DESCRIPTION                                                                       | STRATA PLOT  | ELEV. (m) | NUMBER | TYPE  | BLOWS/0.3m | RECOVERY % | COMMENTS DYNAMIC CONF PENETRATION        | V        | /ATER C | ONTENT           |         | NT      | E E             | UNFROZEN 📉                  |
| DEF                     | ORII             |                                                                                   | [RA]         | EE        | Ž      | ←     | LOV        | ECO        | DYNAMIC CONE PENETRATION RESISTANCE PLOT |          | vp      | <del>0</del> 0 3 |         | vl<br>O | PB              | UNCERTAIN                   |
| <u> </u>                | В                | GROUND SURFACE                                                                    | S            |           |        |       | Ф          | ₹          | 50 100 150 200 250                       |          | +       | 20 3             | 1       |         | $\vdash \vdash$ |                             |
| <u> </u>                |                  | GRAVEL, some cobbles, granitic, grey, fines washed out                            | ***          | 0.00      |        |       |            |            |                                          |          |         |                  |         |         |                 |                             |
| •                       |                  | fines washed out                                                                  |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 | 1                           |
| -1                      |                  |                                                                                   |              |           | 1      | RUN   |            | 50         |                                          |          |         |                  |         |         |                 | 4                           |
| E                       |                  |                                                                                   |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 | 1                           |
| -2                      |                  |                                                                                   |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 | <u> </u>                    |
| , _                     |                  | cobbles (<110mm)                                                                  |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 | 1                           |
| •                       |                  |                                                                                   |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 | 1                           |
| - 3                     |                  |                                                                                   |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 |                             |
| [                       |                  |                                                                                   |              |           | 2      | RUN   |            | 50         |                                          |          |         |                  |         |         |                 | ]                           |
| -4                      |                  |                                                                                   |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 | -                           |
|                         |                  |                                                                                   |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 | 1                           |
| -<br>- 5                |                  | CANDSTONE slightly to mand anotaly                                                |              | 5.00      |        |       |            |            |                                          |          |         |                  |         |         |                 | 5.00                        |
| ŀ                       |                  | SANDSTONE, slightly to moderately weathered, weak to medium strong, bedded, brown |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 | 1                           |
| -6                      |                  | bedded, brown                                                                     |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 | ]                           |
| F                       |                  |                                                                                   |              |           |        | L     |            |            |                                          |          |         |                  |         |         |                 | :                           |
| ţ                       |                  |                                                                                   | M            |           | 3      | RUN   |            |            | TCR=100%                                 |          |         |                  |         |         |                 | 1                           |
| 7                       |                  |                                                                                   |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 | 1                           |
| ŀ                       |                  |                                                                                   |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 | 1                           |
| -8                      |                  |                                                                                   |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 | -                           |
| •                       |                  |                                                                                   |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 | ]                           |
| - 9                     |                  |                                                                                   |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 | 1                           |
| ľ                       | ≣<br>□           |                                                                                   |              |           | 1      | RUN   |            |            | TCR=100%                                 |          |         |                  |         |         |                 | 1                           |
| 1,                      | NQ Diamond Drill | becoming reddish brown                                                            | $\mathbb{M}$ |           | ¯      | l Con |            |            | 1611-16076                               |          |         |                  |         |         |                 | 1                           |
| 10                      | Diam             |                                                                                   |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 | ]                           |
| ŀ                       | ğ                |                                                                                   |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 | ]                           |
| 11                      |                  |                                                                                   |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 | -                           |
| ŀ                       |                  |                                                                                   |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 | 1                           |
| -12                     |                  |                                                                                   |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 | 4                           |
| E .                     |                  |                                                                                   |              |           | 5      | RUN   |            |            | TCR=100%                                 |          |         |                  |         |         |                 | ]                           |
| 13                      |                  |                                                                                   |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 | ]                           |
| "                       |                  |                                                                                   |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 |                             |
| ļ.,                     |                  |                                                                                   |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 | 1                           |
| -14                     |                  |                                                                                   |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 |                             |
| E                       |                  |                                                                                   |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 | ]                           |
| - 15                    |                  |                                                                                   |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 |                             |
| ļ.                      |                  |                                                                                   |              |           | 6      | RUN   |            |            | TCR=100%                                 |          |         |                  |         |         |                 | 1                           |
| -<br>16                 |                  |                                                                                   |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 | 4                           |
| ŀ                       |                  |                                                                                   |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 | 1                           |
| - 17                    |                  |                                                                                   |              |           | L      |       |            |            |                                          |          |         |                  |         |         |                 | ]                           |
| <u></u> ''              |                  |                                                                                   |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 | ]                           |
|                         |                  |                                                                                   |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 | :                           |
| -18                     |                  |                                                                                   |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 | -                           |
| ; <b>[</b>              |                  |                                                                                   |              |           | 7      | RUN   |            |            | TCR=100%                                 |          |         |                  |         |         |                 | 1                           |
| 19                      |                  | uncemented sand interbeds from 19.2m to                                           |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 |                             |
| <u> </u>                |                  | 19.3m and 19.8m to 19.9m                                                          |              |           |        |       |            |            |                                          |          |         |                  |         |         |                 | ]                           |
| <u> </u>                |                  |                                                                                   | <u>K</u>     |           | Ļ      |       |            |            |                                          | <u> </u> |         |                  |         |         |                 |                             |
| ÷                       |                  | GROUNDWATER ELE                                                                   | VAT          | TIONS     | 3      |       |            |            |                                          |          |         |                  |         |         |                 |                             |

 $\overline{Y}$  SHALLOW/SINGLE INSTALLATION WATER LEVEL (date)

THURBER2S(5126) 5126.GPJ 11/9/11

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Ametrano CHECKED : MB



Mary River Project **PROJECT** 

> 18+100 - Quarry DRILLER: BOART LONGYEAR, LM-55

Project No. 19-1605-126

STARTED COMPLETED :

LOCATION

July 23, 2011 July 23, 2011

N 7 902 853 E 578 804

SHEET 2 OF 3 DATUM: CGVD28

| ر                        | НОР              | SOIL PROFILE                                            | <del>                                     </del> |           |         | SAMI |            |            |                                                                       | EXC      | ESS ICE                | oic         |                     | CENT | 를 들는 다음 이 기계를 받는다.         | THERMISTER<br>GROUND COI  |
|--------------------------|------------------|---------------------------------------------------------|--------------------------------------------------|-----------|---------|------|------------|------------|-----------------------------------------------------------------------|----------|------------------------|-------------|---------------------|------|----------------------------|---------------------------|
| DEP IN SCALE<br>(metres) | BORING METHOD    | DESCRIPTION                                             | STRATA PLOT                                      | ELEV. (m) | NUMBER  | TYPE | BLOWS/0.3m | RECOVERY % | COMMENTS DYNAMIC CONE PENETRATION RESISTANCE PLOT  50 100 150 200 250 | V        | ⊥<br>'ATER C<br>vp ├── | 20<br>ONTEN | 30<br>I<br>F, PERCE |      | ADDITIONAL<br>LAB. TESTING | FROZEN UNFROZEN UNCERTAIN |
|                          |                  |                                                         | (0)                                              |           |         |      |            | ι¢         | 1 1 1 1                                                               |          |                        |             |                     |      |                            |                           |
| 21                       |                  |                                                         |                                                  |           | 8       | RUN  |            |            | TCR=100%                                                              |          |                        |             |                     |      |                            |                           |
| 23<br>24                 |                  |                                                         |                                                  |           |         |      |            |            |                                                                       |          |                        |             |                     |      |                            |                           |
| 25                       |                  |                                                         |                                                  |           | 9       | RUN  |            |            | TCR=100%                                                              |          |                        |             |                     |      |                            |                           |
| 26<br>27                 |                  |                                                         |                                                  |           |         |      |            |            |                                                                       |          |                        |             |                     |      |                            |                           |
| 28                       |                  |                                                         |                                                  |           | 10      | RUN  |            |            | TCR=100%                                                              |          |                        |             |                     |      |                            |                           |
| 29                       | ond Drill        |                                                         |                                                  |           |         |      |            |            |                                                                       |          |                        |             |                     |      |                            |                           |
| 30   31                  | NQ Diamond Drill |                                                         |                                                  |           | 11      | RUN  |            |            | TCR=100%                                                              |          |                        |             |                     |      |                            |                           |
| 32                       |                  | uncemented sand interbeds from 32.26m to 33.30m         |                                                  |           |         |      |            |            |                                                                       |          |                        |             |                     |      |                            |                           |
| 33<br>34                 |                  |                                                         |                                                  |           | 12      | RUN  |            |            | TCR=100%                                                              |          |                        |             |                     |      |                            |                           |
| 35                       |                  | sandy gravel layer from 35.0m and 35.4m, 35.7m to 35.8m |                                                  |           |         |      |            |            |                                                                       |          |                        |             |                     |      |                            |                           |
| 36<br>37                 |                  |                                                         |                                                  |           | 13      | RUN  |            |            | TCR=100%                                                              |          |                        |             |                     |      |                            |                           |
| 38                       |                  |                                                         |                                                  |           |         |      |            |            |                                                                       |          |                        |             |                     |      |                            |                           |
| 39                       |                  |                                                         |                                                  |           | 14      | RUN  |            |            | TCR=100%                                                              |          |                        |             |                     |      |                            |                           |
|                          |                  | I GROUNDWATER ELE                                       | <u>IX∕∕</u> I<br>VAT                             | TIONS     | <u></u> |      |            |            |                                                                       | <u> </u> | <u> </u>               |             |                     |      | 1                          |                           |
|                          |                  | SHALLOW/SINGLE INSTA                                    |                                                  |           |         |      |            |            | P/DUAL INSTALLATION<br>LEVEL (date)                                   |          | LOGGE<br>CHECK         |             | Ametran<br>MB       | 0    |                            | THURE                     |



Mary River Project **PROJECT** 

Project No. 19-1605-126

LOCATION 18+100 - Quarry STARTED

COMPLETED :

July 23, 2011 July 23, 2011

DRILLER: BOART LONGYEAR, LM-55 N 7 902 853 E 578 804

SHEET 3 OF 3 DATUM: CGVD28

| DESCRIPTION  DESCR |               | IVIPLE   | T                          | SOIL PROFILE  SAMPLES  COMMENTS  DYNAMIC CONF PENETRATION RESISTANCE PLOT  SOIL PROFILE  SAMPLES  COMMENTS  DYNAMIC CONF PENETRATION RESISTANCE PLOT  SOIL PROFILE  EXCESS ICE CONTENT, PERCENT  ON  WATER CONTENT, PERCENT  WP  UNIFROZEN  UNIFROZEN  UNIFROZEN  UNIFROZEN  UNIFROZEN  UNIFROZEN  UNIFROZEN  UNIFROZEN  WATER CONTENT, PERCENT  WP  WATER CONTENT, PERCENT  WP  WATER CONTENT, PERCENT  WP  WATER CONTENT, PERCENT  WP  UNIFROZEN  UNIFROZEN  UNIFROZEN  UNIFROZEN  UNIFROZEN  UNIFROZEN  WATER CONTENT, PERCENT  WP  WATER CONTENT, PERCENT  WP  WATER CONTENT, PERCENT  WP  WATER CONTENT, PERCENT  WP  UNIFROZEN  UNIFROZEN  UNIFROZEN  UNIFROZEN  UNIFROZEN  UNIFROZEN  WATER CONTENT, PERCENT  WP  WATER CONTENT, PERCENT  WP  WATER CONTENT, PERCENT  WP  UNIFROZEN  UNIF |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------------------------------------------|-----|---------|-------|---------|------|----------------|----------------------------|
| 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Щ             | HOD      |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      | SAM  | PLE  | _    |                                          | EXC | ESS ICE |       |         | CENT | Z G            | THERMISTER/<br>GROUND COND |
| 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SCA<br>stres) | MET      |                            | PLOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (m)  | 띪    | l ш  | 0.3m | RY % | COMMENTS                                 |     |         |       |         |      | FSTI           | _                          |
| 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPTH<br>(me   | RING     | DESCRIPTION                | ATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LEV. | IUMB | TYPI | /SMC | OVE  | DYNAMIC CONE PENETRATION RESISTANCE PLOT |     |         |       |         |      | ADDIT<br>AB. T |                            |
| ## PROOF HORSENCIE AT 44 00m.   |               | <u>B</u> |                            | STR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ш    | z    |      | BL(  | REC  | 50 100 150 200 250                       | 7   | 10 2    |       |         |      | , J            | UNCERTAIN _                |
| ## PROOF HORSENCIE AT 44 00m.   |               |          |                            | TION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| ## PROOF HORSENCIE AT 44 00m.   |               |          |                            | COMMENTS    O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| 43 44 45 46 47 48 49 50 51 52 53 54 55 56 67 58 59  GROUNDWATER ELEVATIONS  ▼ SHALLOW/SINGLE INSTALLATION  ▼ DEEP/DUAL INSTALLATION  LOGGED: Americano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41            |          | END OF BOREHOLE AT 41.00m. | ## COMMENTS   PRIOR   10   10   10   10   10   10   10   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| 43 44 45 46 47 48 49 50 51 52 53 54 55 56 67 58 59  GROUNDWATER ELEVATIONS  ▼ SHALLOW/SINGLE INSTALLATION  ▼ DEEP/DUAL INSTALLATION  LOGGED: Americano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| 44 44 45 46 46 47 48 48 49 50 51 51 52 53 54 55 56 66 57 58 59 59 GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -42           |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| 44 44 45 46 46 47 48 48 49 50 51 51 52 53 54 55 56 66 57 58 59 59 GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| 45   46   47   48   49   50   51   52   53   54   55   56   57   58   59    GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43            |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| 45   46   47   48   49   50   51   52   53   54   55   56   57   58   59    GROUNDWATER ELEVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| GROUNDWATER ELEVATIONS  GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  DEEPIDUAL INSTALLATION  LOGGED: Amediano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -44           |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| GROUNDWATER ELEVATIONS  GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  DEEPIDUAL INSTALLATION  LOGGED: Amediano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  DEEP/DUAL INSTALLATION  LOGGED: Ametriano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 45            |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  DEEP/DUAL INSTALLATION  LOGGED: Ametriano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  MITCHIEF CHARACTER AMERICAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -46           |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  MITCHIEF CHARACTER AMERICAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| GROUNDWATER ELEVATIONS  SHALLOWSINGLE INSTALLATION  DEEP/DUAL INSTALLATION  LOGGED: Ametrano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 47            |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| GROUNDWATER ELEVATIONS  SHALLOWSINGLE INSTALLATION  DEEP/DUAL INSTALLATION  LOGGED: Ametrano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  DEEP/DUAL INSTALLATION  LOGGED: Ametrano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -48           |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  DEEP/DUAL INSTALLATION  LOGGED: Ametrano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  DEEP/DUAL INSTALLATION  LOGGED: Ametrano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 49            |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  DEEP/DUAL INSTALLATION  LOGGED: Ametrano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  DEEP/DUAL INSTALLATION  LOGGED: Ametrano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -50           |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  DEEP/DUAL INSTALLATION  LOGGED: Ametrano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  DEEP/DUAL INSTALLATION  LOGGED: Ametrano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 51            |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  DEEP/DUAL INSTALLATION  LOGGED: Ametrano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| GROUNDWATER ELEVATIONS  Syshallow/single installation  GROUNDWATER ELEVATIONS  DEEP/DUAL INSTALLATION  LOGGED: Ametrano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -52           |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| GROUNDWATER ELEVATIONS  Syshallow/single installation  GROUNDWATER ELEVATIONS  DEEP/DUAL INSTALLATION  LOGGED: Ametrano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F2            |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  DEEP/DUAL INSTALLATION  LOGGED: Ametrano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53            |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  DEEP/DUAL INSTALLATION  LOGGED: Ametrano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  DEEP/DUAL INSTALLATION  LOGGED: Ametrano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54            |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  DEEP/DUAL INSTALLATION  LOGGED: Ametrano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 55          |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  DEEP/DUAL INSTALLATION  LOGGED: Ametrano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55            |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  DEEP/DUAL INSTALLATION  LOGGED: Ametrano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -56           |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  DEEP/DUAL INSTALLATION  LOGGED: Ametrano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -30           |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  DEEP/DUAL INSTALLATION  LOGGED: Ametrano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 57          |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  DEEP/DUAL INSTALLATION  LOGGED: Ametrano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ٠, ا          |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  DEEP/DUAL INSTALLATION  LOGGED: Ametrano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -58           |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  DEEP/DUAL INSTALLATION  LOGGED: Ametrano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55            |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION  DEEP/DUAL INSTALLATION  LOGGED: Ametrano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 59          |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| SHALLOW/SINGLE INSTALLATION  DEEP/DUAL INSTALLATION  LOGGED : Ametrano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55            |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| SHALLOW/SINGLE INSTALLATION  DEEP/DUAL INSTALLATION  LOGGED : Ametrano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |      |                                          |     |         |       |         |      |                |                            |
| \\\ATED   \( \frac{1}{2} \) \\\\ATED   \( \frac{1}{2} \) \\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 3    | _    | _    |      |                                          |     |         |       |         |      |                |                            |
| WATER LEVEL (date) WATER LEVEL (date) CHECKED: MB THURB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |          |                            | _LA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TION |      |      |      |      |                                          |     | LOGGE   | ) : . | Ametran | D    |                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          | WATER LEVEL (date)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      | WA   | ΓER  | LEVEL (date)                             |     | CHECKE  | D :   | MB      |      |                | THURBE                     |



PROJECT : Mary River Project

Project No. 19-1605-126

LOCATION : 22+500 - Quarry

COMPLETED :

STARTED: July 22, 2011

July 22, 2011

DRILLER: BOART LONGYEAR, LM-55 N 7 901 663 E 583 415 SHEET 1 OF 4 DATUM: CGVD28

| CC                      | MPL              | ETED : July 22, 2011                                                                 |             |           |        |      | N          | 7 90       | D1 663 E 583 415                                  |                  | DATU  | M: C                       | GVD28                       |
|-------------------------|------------------|--------------------------------------------------------------------------------------|-------------|-----------|--------|------|------------|------------|---------------------------------------------------|------------------|-------|----------------------------|-----------------------------|
| щ                       | ОĢ               | SOIL PROFILE                                                                         |             |           | 5      | SAM  | PLES       | S          |                                                   | EXCESS ICE CONTE |       | ٥٦                         | THERMISTER/<br>GROUND COND. |
| DEPTH SCALE<br>(metres) | BORING METHOD    |                                                                                      | LOT         | (н        | Я      |      | .3m        | ۲۲ %       | OOMMENTO                                          |                  | 30 40 | ADDITIONAL<br>LAB. TESTING | FROZEN                      |
| PTH (metr               | NG               | DESCRIPTION                                                                          | TAP         | ELEV. (m) | NUMBER | TYPE | NS/0       | VER        | COMMENTS DYNAMIC CONE PENETRATION RESISTANCE PLOT | WATER CONTENT    |       | 3. E                       | UNFROZEN                    |
| ä                       | BORI             |                                                                                      | STRATA PLOT | ELE       | N      | -    | BLOWS/0.3m | RECOVERY % | RESISTANCE PLOT                                   | wp               |       | 4 3                        | UNCERTAIN                   |
|                         | П                | GROUND SURFACE                                                                       | 1 07        | 0.00      |        |      |            |            | 1 1 1 1                                           |                  | +     |                            |                             |
| [                       |                  | BOULDERS, granitic, moderately weathered, moderately spaced, grey to pink            | 00          |           |        |      |            |            |                                                   |                  |       |                            |                             |
| 1                       |                  |                                                                                      | $\Gamma$    |           | ١.     |      |            |            |                                                   |                  |       |                            | :                           |
| <b>l</b> 1              |                  |                                                                                      | 200         |           | 1      | RUN  |            | 75         |                                                   |                  |       |                            | ]                           |
| •                       |                  |                                                                                      | 54          | 0.00      |        |      |            |            |                                                   |                  |       |                            |                             |
| -2                      |                  | GRANITIC GNEISS, fresh, moderately fractured, medium to coarse grained, grey to pink |             | 2.00      |        |      |            |            |                                                   |                  |       |                            | 2.00                        |
| ŀ                       |                  | to pink                                                                              |             |           |        |      |            |            |                                                   |                  |       |                            |                             |
| - 3                     |                  |                                                                                      |             |           |        |      |            |            |                                                   |                  |       |                            | ]                           |
| ŀ                       |                  |                                                                                      |             |           | 2      | RUN  |            |            | TCR=100% SCR=100% RQD=80%                         |                  |       |                            | ;                           |
| -4                      |                  |                                                                                      |             |           |        |      |            |            |                                                   |                  |       |                            | -                           |
| •                       |                  |                                                                                      |             |           |        |      |            |            |                                                   |                  |       |                            | :                           |
| -<br>- 5                |                  |                                                                                      |             |           |        |      |            |            |                                                   |                  |       |                            |                             |
| Ė                       |                  |                                                                                      |             |           |        |      |            |            |                                                   |                  |       |                            | ]                           |
| -6                      |                  |                                                                                      |             |           |        |      |            |            |                                                   |                  |       |                            |                             |
| •                       |                  |                                                                                      |             |           | 3      | RUN  |            |            | TCR=100% SCR=100% RQD=100%                        |                  |       |                            |                             |
| 7                       |                  |                                                                                      | M           |           |        |      |            |            | TOTAL TOOM CONTINUE TOOM                          |                  |       |                            | ]                           |
| ļ '                     |                  |                                                                                      |             |           |        |      |            |            |                                                   |                  |       |                            | :                           |
| ļ.,                     |                  |                                                                                      |             |           |        |      |            |            |                                                   |                  |       |                            | 1                           |
| <del>-</del> 8          |                  |                                                                                      |             |           |        |      |            |            |                                                   |                  |       |                            | ]                           |
| ļ.,                     |                  |                                                                                      |             |           |        |      |            |            |                                                   |                  |       |                            | :                           |
| 9                       | ≣                |                                                                                      |             |           |        |      |            |            |                                                   |                  |       |                            | ]                           |
|                         | NQ Diamond Drill |                                                                                      |             |           | 4      | RUN  |            |            | TCR=100% SCR=100% RQD=98%                         |                  |       |                            | ]                           |
| -10                     | jamo             |                                                                                      |             |           |        |      |            |            |                                                   |                  |       |                            | -                           |
| Ė                       | N<br>N           |                                                                                      |             |           |        |      |            |            |                                                   |                  |       |                            | ]                           |
| - 11                    |                  | moderately weathered                                                                 |             |           |        |      |            |            |                                                   |                  |       |                            | -                           |
| ŀ                       |                  |                                                                                      |             |           |        |      |            |            |                                                   |                  |       |                            | ;                           |
| 12                      |                  |                                                                                      |             |           |        |      |            |            |                                                   |                  |       |                            | -                           |
| ŀ                       |                  |                                                                                      |             |           | 5      | RUN  |            |            | TCR=100% SCR=100% RQD=73%                         |                  |       |                            | :                           |
| 13                      |                  |                                                                                      |             |           |        |      |            |            |                                                   |                  |       |                            | -                           |
| ŀ                       |                  |                                                                                      |             |           |        |      |            |            |                                                   |                  |       |                            | ]                           |
| 14                      |                  | Color the constant                                                                   |             |           |        |      |            |            |                                                   |                  |       |                            |                             |
| ŀ                       |                  | faintly weathered                                                                    | M           |           |        |      |            |            |                                                   |                  |       |                            | :                           |
| - 15                    |                  |                                                                                      |             |           |        |      |            |            |                                                   |                  |       |                            | ]                           |
| "                       |                  |                                                                                      |             |           | ۵      | RUN  |            |            | TCR=100% SCR=100% RQD=98%                         |                  |       |                            | :                           |
| 1,                      |                  |                                                                                      |             |           | ľ      | IXON |            |            | 1011-100% 3CI1-100% 11QD-30%                      |                  |       |                            | :                           |
| -16                     |                  |                                                                                      |             |           |        |      |            |            |                                                   |                  |       |                            | ]                           |
| <b>!</b>                |                  |                                                                                      |             |           |        |      |            |            |                                                   |                  |       |                            |                             |
| 17                      |                  | fresh                                                                                |             |           |        |      |            |            |                                                   |                  |       |                            | 1                           |
|                         |                  |                                                                                      |             |           |        |      |            |            |                                                   |                  |       |                            |                             |
| -18                     |                  |                                                                                      |             |           |        |      |            |            |                                                   |                  |       |                            |                             |
| <u>.</u>                |                  |                                                                                      |             |           | 7      | RUN  |            |            | TCR=100% SCR=100% RQD=97%                         |                  |       |                            |                             |
| 19                      |                  |                                                                                      |             |           |        |      |            |            |                                                   |                  |       |                            |                             |
| <u> </u>                |                  |                                                                                      |             |           |        |      |            |            |                                                   |                  |       |                            |                             |
| <u> </u>                | Ш                | GROUNDWATER ELE                                                                      | <u> </u>    | IONIC     | Ļ      |      |            |            |                                                   |                  |       |                            |                             |
| 1                       |                  | GROONDWATER ELE                                                                      | ٧AI         | TONS      | •      |      |            |            |                                                   |                  |       |                            |                             |

GROUNDWATER ELEVATIONS

THURBER2S(5126) 5126.GPJ 11/9/11

☐ SHALLOW/SINGLE INSTALLATION
WATER LEVEL (date)

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Khabbaznia
CHECKED : KS



PROJECT : Mary River Project

Project No. 19-1605-126

LOCATION : 22+500 - Quarry

STARTED : July 22, 2011
COMPLETED : July 22, 2011

DRILLER: BOART LONGYEAR, LM-55 N 7 901 663 F 583 415 SHEET 2 OF 4

| CC                   | MPLE          | ETED : July 22, 2011 |             |           |        |      | Ν          | 7 90       | 01 663 E 583 415                         |                    | DATU      | M: C  | GVD28                       |
|----------------------|---------------|----------------------|-------------|-----------|--------|------|------------|------------|------------------------------------------|--------------------|-----------|-------|-----------------------------|
| ш                    | ОО            | SOIL PROFILE         |             |           | 5      | SAM  | PLE        | s          |                                          | EXCESS ICE CONTENT | , PERCENT | . (1) | THERMISTER/<br>GROUND COND. |
| DEPTH SCALE (metres) | BORING METHOD |                      | P.          |           | ~      |      | 33         | % /        |                                          | 10 20 30           | 40        | ⋖∠    | FROZEN                      |
| TH S                 | <u>©</u>      | DESCRIPTION          | A PL        | r) .      | 1BEF   | TYPE | 3/0.3      | ER.        | COMMENTS                                 | WATER CONTENT, P   | ERCENT    | E     | UNFROZEN                    |
| DEP                  | ORIN          | BESON HOW            | STRATA PLOT | ELEV. (m) | NUMBER | }    | BLOWS/0.3m | RECOVERY % | DYNAMIC CONE PENETRATION RESISTANCE PLOT | wp                 | —l wl     | ADI   | UNCERTAIN                   |
|                      | ă             |                      | ST          |           | _      |      | B          | 22         | 50 100 150 200 250                       | 10 20 30           | 40        |       |                             |
| -                    |               |                      | W           |           |        |      |            |            |                                          |                    |           |       |                             |
| ļ                    |               |                      |             |           |        |      |            |            |                                          |                    |           |       | :                           |
| 21                   |               |                      |             |           |        |      |            |            |                                          |                    |           |       | -                           |
| •                    |               |                      |             |           | 8      | RUN  | ı          |            | TCR=100% SCR=100% RQD=80%                |                    |           |       |                             |
| -22                  |               |                      |             |           |        |      |            |            |                                          |                    |           |       | _                           |
| ŀ                    |               |                      |             |           |        |      |            |            |                                          |                    |           |       | -                           |
| 23                   |               |                      |             |           |        |      |            |            |                                          |                    |           |       | ]                           |
| 120                  |               | slightly fractured   |             |           |        |      |            |            |                                          |                    |           |       | -                           |
| ļ.,                  |               |                      |             |           |        |      |            |            |                                          |                    |           |       | -                           |
| -24                  |               |                      |             |           |        | L    |            |            |                                          |                    |           |       |                             |
| ŀ                    |               |                      |             |           | 9      | RUN  | 1          |            | TCR=100% SCR=100% RQD=95%                |                    |           |       | -                           |
| - 25                 |               |                      |             |           |        |      |            |            |                                          |                    |           |       | -                           |
| -                    |               |                      |             |           |        |      |            |            |                                          |                    |           |       | ]                           |
| -26                  |               |                      |             |           |        |      |            |            |                                          |                    |           |       | -                           |
| ŀ                    |               |                      |             |           |        |      |            |            |                                          |                    |           |       | -                           |
| - 27                 |               |                      |             |           |        |      |            |            |                                          |                    |           |       | -                           |
| ŀ                    |               |                      |             |           | 10     | RUN  | 1          |            | TCR=100% SCR=100% RQD=92%                |                    |           |       | -                           |
| -28                  |               |                      |             |           |        |      |            |            |                                          |                    |           |       |                             |
| -                    |               |                      |             |           |        |      |            |            |                                          |                    |           |       |                             |
| - 29                 |               |                      |             |           |        |      |            |            |                                          |                    |           |       | -                           |
| ŀ                    | □             |                      |             |           |        |      |            |            |                                          |                    |           |       | -                           |
| -30                  | Diamond Drill |                      |             |           |        |      |            |            |                                          |                    |           |       |                             |
| "                    | Diar          |                      |             |           | 11     | RUN  |            |            | TCR=100% SCR=100% RQD=89%                |                    |           |       | -                           |
| 31                   | ğ             |                      |             |           |        |      |            |            | 101 100 / CON 100 / NQD 00 /             |                    |           |       | 3                           |
| F 31                 |               |                      |             |           |        |      |            |            |                                          |                    |           |       |                             |
| ļ                    |               |                      |             |           |        |      |            |            |                                          |                    |           |       | -                           |
| -32<br>[             |               |                      |             |           |        |      |            |            |                                          |                    |           |       |                             |
| •                    |               |                      |             |           |        |      |            |            |                                          |                    |           |       |                             |
| - 33                 |               |                      |             |           |        |      |            |            |                                          |                    |           |       | -                           |
| Ė                    |               |                      |             |           | 12     | RUN  | 1          |            | TCR=100% SCR=100% RQD=92%                |                    |           |       |                             |
| -34                  |               |                      |             |           |        |      |            |            |                                          |                    |           |       | -                           |
| ŀ                    |               |                      |             |           |        |      |            |            |                                          |                    |           |       | -                           |
| 35                   |               |                      |             |           |        |      |            |            |                                          |                    |           |       | -                           |
| ŀ                    |               |                      |             |           |        |      |            |            |                                          |                    |           |       |                             |
| -36                  |               |                      |             |           |        |      |            |            |                                          |                    |           |       | -                           |
| -                    |               |                      |             |           | 13     | RUN  | ı          |            | TCR=100% SCR=100% RQD=90%                |                    |           |       |                             |
| - 37                 |               |                      |             |           |        |      |            |            |                                          |                    |           |       |                             |
| -                    |               |                      |             |           |        |      |            |            |                                          |                    |           |       |                             |
| -38                  |               |                      |             |           |        |      |            |            |                                          |                    |           |       | ]                           |
| "                    |               |                      |             |           |        |      |            |            |                                          |                    |           |       |                             |
| £                    |               |                      |             |           |        |      |            |            |                                          |                    |           |       |                             |
| - 39                 |               |                      |             |           |        | L    |            |            |                                          |                    |           |       | ]                           |
| <u>}</u>             |               |                      |             |           | 14     | RUN  | 1          |            | TCR=100% SCR=100% RQD=93%                |                    |           |       |                             |
|                      |               | GROUNDWATER ELE      | VAT         | IONS      | ╮      | _    |            |            |                                          | 1 1                |           |       |                             |

☐ SHALLOW/SINGLE INSTALLATION
WATER LEVEL (date)

THURBER2S(5126) 5126.GPJ 11/9/11

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Khabbaznia
CHECKED : KS



Mary River Project **PROJECT** 

LOCATION 22+500 - Quarry

July 22, 2011 DRILLER: BOART LONGYEAR, LM-55 STARTED N 7 901 663 E 583 415 July 22, 2011 COMPLETED :

SHEET 3 OF 4 DATUM: CGVD28

Project No. 19-1605-126

| 4        | Q<br>P        | SOIL PROFILE                            |             |           | 5      | SAM  | PLE        |            |                                                    | EXCESS IC | E CONTE    | NT, PERCENT                  | i e                        | THERMISTER GROUND CON     |
|----------|---------------|-----------------------------------------|-------------|-----------|--------|------|------------|------------|----------------------------------------------------|-----------|------------|------------------------------|----------------------------|---------------------------|
| (metres) | BORING METHOD | DESCRIPTION                             | STRATA PLOT | ELEV. (m) | NUMBER | TYPE | BLOWS/0.3m | RECOVERY % | COMMENTS  DYNAMIC CONE PENETRATION RESISTANCE PLOT | wp I—     | 20 CONTENT | 30 40<br>     <br>T, PERCENT | ADDITIONAL<br>LAB. TESTING | FROZEN UNFROZEN UNCERTAIN |
| ,        |               |                                         | STF         | ш         | _      |      | B          | REC        | 50 100 150 200 250                                 | 10        |            | 30 40                        |                            | UNCERTAIN                 |
|          |               |                                         | W           |           |        |      |            |            |                                                    |           |            |                              |                            |                           |
| 41       |               |                                         |             |           |        |      |            |            |                                                    |           |            |                              |                            |                           |
| 7'       |               |                                         |             |           |        |      |            |            |                                                    |           |            |                              |                            |                           |
| 42       |               |                                         |             |           |        |      |            |            |                                                    |           |            |                              |                            |                           |
|          |               |                                         |             |           | 15     | RUN  |            |            | TCR=100% SCR=100% RQD=92%                          |           |            |                              |                            |                           |
| 43       |               |                                         |             |           |        |      |            |            |                                                    |           |            |                              |                            |                           |
| 44       |               |                                         |             |           |        |      |            |            |                                                    |           |            |                              |                            |                           |
| ''       |               |                                         |             |           |        |      |            |            |                                                    |           |            |                              |                            |                           |
| 45       |               |                                         |             |           |        |      |            |            |                                                    |           |            |                              |                            |                           |
|          |               |                                         |             |           | 16     | RUN  |            |            | TCR=100% SCR=100% RQD=90%                          |           |            |                              |                            |                           |
| 46       |               |                                         |             |           |        |      |            |            |                                                    |           |            |                              |                            |                           |
| 47       |               |                                         |             |           |        |      |            |            |                                                    |           |            |                              |                            |                           |
|          |               |                                         |             |           |        |      |            |            |                                                    |           |            |                              |                            |                           |
| 48       |               |                                         |             |           |        |      |            |            |                                                    |           |            |                              |                            |                           |
| 49       |               |                                         |             |           | 17     | RUN  |            |            | TCR=100% SCR=100% RQD=92%                          |           |            |                              |                            |                           |
|          | Drill         |                                         |             |           |        |      |            |            |                                                    |           |            |                              |                            |                           |
| 50       | NQ Diamond    |                                         |             |           |        |      |            |            |                                                    |           |            |                              |                            |                           |
|          | M<br>M<br>M   |                                         |             |           |        |      |            |            |                                                    |           |            |                              |                            |                           |
| 51       |               |                                         |             |           | 10     | RUN  |            |            | TCR=100% SCR=100% RQD=95%                          |           |            |                              |                            |                           |
| 52       |               |                                         |             |           | 10     | KUN  |            |            | TCR-100% SCR-100% RQD-95%                          |           |            |                              |                            |                           |
|          |               |                                         |             |           |        |      |            |            |                                                    |           |            |                              |                            |                           |
| 53       |               |                                         |             |           |        |      |            |            |                                                    |           |            |                              |                            |                           |
| _        |               |                                         |             |           |        |      |            |            |                                                    |           |            |                              |                            |                           |
| 54       |               |                                         |             |           | 19     | RUN  |            |            | TCR=100% SCR=100% RQD=97%                          |           |            |                              |                            |                           |
| 55       |               |                                         |             |           |        |      |            |            |                                                    |           |            |                              |                            |                           |
|          |               |                                         |             |           |        |      |            |            |                                                    |           |            |                              |                            |                           |
| 56       |               |                                         |             |           |        |      |            |            |                                                    |           |            |                              |                            |                           |
| 57       |               |                                         |             |           |        |      |            |            |                                                    |           |            |                              |                            |                           |
| ·        |               |                                         |             |           | 20     | RUN  |            |            | TCR=100% SCR=100% RQD=100%                         |           |            |                              |                            |                           |
| 58       |               |                                         |             |           |        |      |            |            |                                                    |           |            |                              |                            |                           |
| _        |               |                                         |             |           |        |      |            |            |                                                    |           |            |                              |                            |                           |
| 59       |               |                                         |             |           |        |      |            |            |                                                    |           |            |                              |                            |                           |
|          |               | ODOLINGWATER TO                         |             |           | Ļ      |      |            |            |                                                    |           |            |                              |                            | <u> </u>                  |
|          |               | GROUNDWATER ELE                         |             |           | j .    | •    | 7 -        |            | P/DUAL INSTALLATION                                |           |            |                              |                            |                           |
|          |               | SHALLOW/SINGLE INST. WATER LEVEL (date) | ALLA        | HON       |        |      |            |            | P/DUAL INSTALLATION<br>LEVEL (date)                | LOGG      |            | Khabbaznia<br>KS             |                            | THURE                     |



PROJECT : Mary River Project

Project No. 19-1605-126

LOCATION : 22+500 - Quarry

STARTED

July 22, 2011

DRILLER: BOART LONGYEAR, LM-55 N 7 901 663 E 583 415 SHEET 4 OF 4

| 1                       | ARTE<br>MPLE  | D : July 22, 2011<br>TED : July 22, 2011 |             |           | DR      | ILLI |            |            | OART LONGYEAR, LM-55<br>01 663 E 583 415          |     |          |        |         |   | T 4 OF         | F 4<br>GVD28                |
|-------------------------|---------------|------------------------------------------|-------------|-----------|---------|------|------------|------------|---------------------------------------------------|-----|----------|--------|---------|---|----------------|-----------------------------|
|                         |               | SOIL PROFILE                             |             |           |         | SAM  | PLE        |            |                                                   | EXC | ESS ICE  |        | NT, PER |   |                | THERMISTER/<br>GROUND COND. |
| DEPTH SCALE<br>(metres) | BORING METHOD |                                          | LOT         | <u></u>   | r       |      | 3m         | %<br>>     |                                                   | 1   | 0 2      | o ice  | 30 4    | 0 | I≤∠            | FROZEN                      |
| PTH (                   | NG N          | DESCRIPTION                              | TA PI       | ELEV. (m) | NUMBER  | TYPE | BLOWS/0.3m | RECOVERY % | COMMENTS DYNAMIC CONE PENETRATION RESISTANCE PLOT |     | ATER CO  | ONTENT | , PERCE |   | DDITI<br>B. TE | UNFROZEN 💹                  |
| DE                      | BOR           |                                          | STRATA PLOT | ELE       | Ž       | -    | BLO        | RECC       | 50 100 150 200 250                                |     | rp       | 20 3   | I w     |   | \ <u>\</u>     | UNCERTAIN                   |
|                         |               |                                          | \/\         |           |         |      |            |            |                                                   |     |          |        |         |   |                | _                           |
| -                       |               |                                          |             |           | 21      | RUN  | 1          |            | TCR=100% SCR=100% RQD=97%                         |     |          |        |         |   |                |                             |
| -<br>- 61               |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                | -                           |
|                         |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                | -                           |
| -62                     |               | END OF BOREHOLE AT 62.00m.               | <b>X</b>    | 62.00     |         |      |            |            |                                                   |     |          |        |         |   |                | =                           |
| :                       |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                | -                           |
| 63                      |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                | -<br>-                      |
| Ė                       |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                | -                           |
| -64<br>-                |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                | -                           |
|                         |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                |                             |
| - 65                    |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                | -                           |
|                         |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                | -                           |
| −66<br>:                |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                | -                           |
| :<br>- 67               |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                | -                           |
| . "                     |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                | -                           |
| :<br>-68                |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                | ]                           |
|                         |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                | -                           |
| -<br>69                 |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                | -                           |
|                         |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                |                             |
| 70                      |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                | -                           |
| -                       |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                | -<br>-                      |
| 71                      |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                |                             |
|                         |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                |                             |
| -72                     |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                | =                           |
|                         |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                |                             |
| <del>-</del> 73         |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                | -                           |
| ,                       |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                |                             |
| -74<br>:                |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                | -                           |
| :<br>- 75               |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                | -                           |
| F /3                    |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                | ]                           |
| :<br>-76                |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                |                             |
| , ,                     |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                | -                           |
| - 77                    |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                | <u> </u>                    |
| •                       |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                | ]                           |
| -<br>-78                |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                | -                           |
| -                       |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                | ]                           |
| -<br>- 79               |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                | <u> </u>                    |
|                         |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                | ]                           |
| $\vdash$                |               | I GROUNDWATER ELE                        | VA٦         | ION:      | <u></u> |      | <u> </u>   |            |                                                   |     | <u> </u> |        |         |   |                |                             |
| 1                       |               |                                          |             |           |         |      |            |            |                                                   |     |          |        |         |   |                |                             |

THURBER2S(5126) 5126.GPJ 11/9/11

WATER LEVEL (date)

ION

DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Khabbaznia
CHECKED : KS

Mary River Project **PROJECT** 

Project No. 19-1605-126

LOCATION 25+500 - Quarry

STARTED

July 22, 2011

DRILLER: BOART LONGYEAR, LM-55

SHEET 1 OF 2 DATUM: CGVD28

| <b>ا</b> لٍا   | НОР             | SOIL PROFILE                                                                                                                      | 1. 1        |           | :             | SAMI     |            |            |                                                                        | EXCESS ICE CON              | ITENT, PERCENT | ج ا<br>ا                   | THERMISTI<br>GROUND C           |
|----------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|---------------|----------|------------|------------|------------------------------------------------------------------------|-----------------------------|----------------|----------------------------|---------------------------------|
| (metres)       | BORING METHOD   | DESCRIPTION                                                                                                                       | STRATA PLOT | ELEV. (m) | NUMBER        | TYPE     | BLOWS/0.3m | RECOVERY % | COMMENTS  DYNAMIC CONE PENETRATION RESISTANCE PLOT  50 100 150 200 250 | 10 20<br>L L<br>WATER CONTI | 30 40<br>      | ADDITIONAL<br>LAB. TESTING | FROZEN<br>UNFROZEN<br>UNCERTAII |
| $\dashv$       | +               | GROUND SURFACE  BOULDERS, granitic, medium to coarse                                                                              |             | 0.00      | $\vdash$      |          |            |            |                                                                        |                             |                | +                          |                                 |
| 1 2            |                 | <b>BOULDERS</b> , granitic, medium to coarse grained, trace cobbles, subrounded, dark grey to grey and pink, moderately fractured |             |           | 1             | RUN      |            | 76         |                                                                        |                             |                |                            |                                 |
| 3              |                 |                                                                                                                                   |             |           | 2             | RUN      |            |            | TCR=100% SCR=100% RQD=95%                                              |                             |                |                            |                                 |
| 5              |                 | GRANITIC GNEISS, slightly weathered,                                                                                              |             | 5.34      |               |          |            |            |                                                                        |                             |                |                            | 5.34                            |
| 6<br>7<br>8    |                 | medium to coarse grained, slightly fractured, grey to pink                                                                        |             |           | 3             | RUN      |            |            | TCR=100% SCR=100% RQD=95%                                              |                             |                |                            |                                 |
| 10             | Q Diamond Drill | fresh                                                                                                                             |             |           | 4             | RUN      |            |            | TCR=100% SCR=100% RQD=93%                                              |                             |                |                            |                                 |
| 11<br>12       | ON              |                                                                                                                                   |             |           | 5             | RUN      |            |            | TCR=100% SCR=100% RQD=97%                                              |                             |                |                            |                                 |
| 14<br>15<br>16 |                 |                                                                                                                                   |             |           | 6             | RUN      |            |            | TCR=100% SCR=100% RQD=100%                                             |                             |                |                            |                                 |
| 17<br>18<br>19 |                 | very thickly foliated, very to extremely strong horizontal break at 18.2m and 19.9m                                               |             |           | 7             | RUN      |            |            | TCR=100% SCR=85% RQD=79%                                               |                             |                | FI 1 1 2 2 3 1 0 0         |                                 |
|                |                 | GROUNDWATER ELE $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                           |             |           | <u> </u><br>3 | <u> </u> | <b>7</b> D | EE         | P/DUAL INSTALLATION                                                    | LOGGED :                    | Khabbaznia/Ame | 1<br>etrano                |                                 |

**PROJECT** Mary River Project

Project No. 19-1605-126

25+500 - Quarry LOCATION

dark greyish to black foliations from 26.68m to  $26.89 \mathrm{m}$ 

medium to extremly strong, slightly

highly broken from 30.5m to 3.9m

vertical breaks from 30.0m to 31.5m

END OF BOREHOLE AT 32.34m.

weathered to fresh

27

28

29

30

31

32

33

34

36

37

38 11/9/1

5126.GPJ 39

JRBER2S(5126)

DRILLER: BOART LONGYEAR, LM-55

SHEET 2 OF 2

2 0

0 1

0

0 0

0

0 0 2

3 >25

>25

2 0

July 22, 2011 STARTED N 7 900 221 E 586 954 COMPLETED July 22, 2011 DATUM: CGVD28 EXCESS ICE CONTENT, PERCENT THERMISTER/ GROUND COND SAMPLES SOIL PROFILE BORING METHOD ADDITIONAL LAB. TESTING oice DEPTH SCALE (metres) 10 20 STRATA PLOT BLOWS/0.3m FROZEN NUMBER ELEV. (m) RECOVERY **COMMENTS** TYPE WATER CONTENT, PERCENT UNFROZEN DYNAMIC CONE PENETRATION RESISTANCE PLOT DESCRIPTION UNCERTAIN 30 100 150 200 250 10 20 40 0 0 21 RUN TCR=100% SCR=97% RQD=95% 2 1 1 0 23 3 dark greyish to black foliations from 23.34m to 23.54m and 23.86m to 24.13m 0 1 1 24 2 RUN TCR=100% SCR=93% RQD=87% 0 25 0 2 2 2 sub-vertical breaks from 26.3m to 26.7m

TCR=100% SCR=92% RQD=92%

TCR=100% SCR=47% RQD=47%

10 RUN

11 RUN

32.34

35

**GROUNDWATER ELEVATIONS** 

abla shallow/single installation WATER LEVEL (date)

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Khabbaznia/Ametrano CHECKED : KS

**THURBER** 

Mary River Project **PROJECT** 

Project No. 19-1605-126

LOCATION

28+400 - Quarry

| STA                     | ARTE<br>MPLE  | • •                                                                                                               |                                         |           | DR     | ILLE |            |            | OART LONGYEAR, LM-55<br>98 617 E 588 240                             |                                                                            | DATU                                      | T 1 OF                     | = 2<br>GVD28                    |
|-------------------------|---------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------|--------|------|------------|------------|----------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------|----------------------------|---------------------------------|
| щ                       | 9             | SOIL PROFILE                                                                                                      |                                         |           |        | SAM  | PLES       | S          |                                                                      | EXCESS ICE (                                                               | CONTENT, PERCENT                          | י ט                        | THERMISTE<br>GROUND CO          |
| DEPTH SCALE<br>(metres) | BORING METHOD | DESCRIPTION                                                                                                       | STRATA PLOT                             | ELEV. (m) | NUMBER | TYPE | BLOWS/0.3m | RECOVERY % | COMMENTS DYNAMIC CONE PENETRATION RESISTANCE PLOT 50 100 150 200 250 | 10 20<br>     <br>  WATER CO<br>  wp   — — — — — — — — — — — — — — — — — — | 0 30 40<br>     <br>NTENT, PERCENT<br>  W | ADDITIONAL<br>LAB. TESTING | FROZEN<br>UNFROZEN<br>UNCERTAIN |
| 1 -2                    |               | GROUND SURFACE  GRAVEL, occasional cobbles and boulders, grey to pink, subangular to subrounded, fines washed out |                                         | 0.00      |        | RUN  |            | 15         |                                                                      |                                                                            |                                           |                            |                                 |
| 3                       |               | no recovery                                                                                                       | - ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° | 2.40      |        |      |            |            |                                                                      |                                                                            |                                           |                            |                                 |
| 4                       |               |                                                                                                                   |                                         |           | 2      | RUN  |            | 0          |                                                                      |                                                                            |                                           |                            |                                 |
| 5                       |               |                                                                                                                   |                                         | 5.40      |        |      |            |            |                                                                      |                                                                            |                                           |                            |                                 |
| 6                       |               | GRAVEL, some cobbles, occasional boulders (<480mm), granitic, angular to subangular, grey to pink                 |                                         |           | 3      | RUN  |            | 25         |                                                                      |                                                                            |                                           |                            |                                 |
| 8                       |               | OAND                                                                                                              |                                         | 8.40      |        |      |            |            |                                                                      |                                                                            |                                           |                            | 8.40                            |
| 9                       | Diamond Drill | SAND, some silt, some gravel, brown, frozen (Nbn)                                                                 |                                         |           | 4      | RUN  |            | 57         |                                                                      |                                                                            |                                           |                            |                                 |
| 11                      | Ø<br>N        | SAND and GRAVEL (INFERRED), with                                                                                  | 9 4 6                                   | 11.40     |        |      |            |            |                                                                      |                                                                            |                                           |                            | 11.40                           |
| 12                      |               | cobbles and boulders (350mm), grey to pink, angular to subangular                                                 |                                         |           | 5      | RUN  |            | 41         |                                                                      |                                                                            |                                           |                            |                                 |
| 14<br>15                |               | coarse sand, some gravel, some cobbles, trace silt, frozen (Nf)                                                   |                                         |           |        |      |            |            |                                                                      |                                                                            |                                           |                            | 14.40                           |
| 16                      |               |                                                                                                                   |                                         |           | 6      | RUN  |            | 73         |                                                                      |                                                                            |                                           |                            |                                 |
| 17                      |               |                                                                                                                   |                                         | 18.00     |        |      |            |            |                                                                      |                                                                            |                                           |                            | 17.40                           |
| 18<br>19                |               | COBBLES and BOULDERS, granitic, trace to some coarse sand, grey to pink                                           |                                         |           |        | RUN  |            | 100        |                                                                      |                                                                            |                                           |                            |                                 |
|                         |               | GROUNDWATER ELE                                                                                                   |                                         | IONI      | Ļ      |      |            |            |                                                                      |                                                                            |                                           |                            |                                 |
|                         |               | GROUNDWATER ELE                                                                                                   |                                         |           | •      |      |            |            | P/DUAL INSTALLATION<br>LEVEL (date)                                  | LOGGED<br>CHECKEI                                                          |                                           |                            | THUR                            |



PROJECT : Mary River Project Project Project Project Project Project No. 19-1605-126

LOCATION : 28+400 - Quarry

 STARTED
 :
 July 18, 2011
 DRILLER:
 BOART LONGYEAR, LM-55
 SHEET 2 OF 2

 COMPLETED
 :
 July 18, 2011
 N 7 898 617 E 588 240
 DATUM: CGVD28

|                         |               |                            |             |           |         |      |            |            | 30 017 L 300 240                                  |          |        |             |         |          |     |                                        |
|-------------------------|---------------|----------------------------|-------------|-----------|---------|------|------------|------------|---------------------------------------------------|----------|--------|-------------|---------|----------|-----|----------------------------------------|
| Щ                       | ДQ            | SOIL PROFILE               |             |           | 5       | SAM  | PLE        | S          |                                                   | EXCE     | SS ICE | CONTE       |         | CENT     | ٥٦  | THERMISTER/<br>GROUND COND.            |
| DEPTH SCALE<br>(metres) | BORING METHOD |                            | STRATA PLOT | Ê         | e.      |      | .3m        | RECOVERY % | COMMENTS                                          | 10       | ) 2    | 20 3        | 30 4    | 10<br>   | ONA | GROUND COND. FROZEN UNFROZEN UNCERTAIN |
| PTH<br>(met             | ING.          | DESCRIPTION                | TAF         | ELEV. (m) | NUMBER  | TYPE | MS/0       | OVEF       | COMMENTS DYNAMIC CONE PENETRATION RESISTANCE PLOT |          |        | ONTENT      | , PERCE |          |     | UNFROZEN 🏻                             |
| 핌                       | BOR           |                            | STRA        | EF        | N       | -    | BLOWS/0.3m | RECC       | 50 100 150 200 250                                | wp<br>10 | ) — 2  | <u></u> 0 3 |         | wl<br>10 | ₹ ₹ | UNCERTAIN                              |
|                         |               |                            |             |           |         |      |            | Ī          | 7 7 7 7                                           |          |        |             |         |          |     |                                        |
| F                       |               |                            | <u> </u>    |           |         |      |            |            |                                                   |          |        |             |         |          |     |                                        |
| 1                       |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     |                                        |
| - 21                    |               |                            | 00          |           |         |      |            |            |                                                   |          |        |             |         |          |     |                                        |
| ļ                       |               |                            | 000         |           | Ω       | RUN  |            | 71         |                                                   |          |        |             |         |          |     |                                        |
| -22                     |               |                            | 00          |           | ľ       |      |            | , ,        |                                                   |          |        |             |         |          |     | -                                      |
| Ē.                      |               |                            | 00          |           |         |      |            |            |                                                   |          |        |             |         |          |     |                                        |
| - 23                    |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     | -                                      |
| ŀ                       |               |                            | 60          |           |         | RUN  |            | 100        |                                                   |          |        |             |         |          |     |                                        |
| -24                     |               |                            | 200         | 24.20     |         | KUN  |            | 100        |                                                   |          |        |             |         |          |     | 24.20                                  |
| ļ.                      |               | END OF BOREHOLE AT 24.20m. |             |           |         |      |            |            |                                                   |          |        |             |         |          |     |                                        |
| 25                      |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     | -                                      |
| ŀ                       |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     |                                        |
| -26                     |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     |                                        |
| ŀ                       |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     | :                                      |
| - 27                    |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     | -                                      |
| Ē.                      |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     |                                        |
| -28                     |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     |                                        |
| Ē                       |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     | -                                      |
| -<br>29                 |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     | -                                      |
| Ė                       |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     |                                        |
| -30                     |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     | _                                      |
| "                       |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     |                                        |
| - 31                    |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     | -                                      |
| "                       |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     |                                        |
| -32                     |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     | _                                      |
| F <sup>32</sup>         |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     | -                                      |
| 1,,                     |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     | :                                      |
| - 33                    |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     |                                        |
| ļ _,                    |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     | -                                      |
| -34                     |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     | -                                      |
| ļ                       |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     | :                                      |
| - 35                    |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     | -                                      |
| Į.                      |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     |                                        |
| -36                     |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     | -                                      |
| F                       |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     |                                        |
| - 37                    |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     | -                                      |
| E                       |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     |                                        |
| -38                     |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     | -                                      |
| ŧ                       |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     | ]                                      |
| - 39                    |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     | _                                      |
| <u> </u>                |               |                            |             |           |         |      |            |            |                                                   |          |        |             |         |          |     | :                                      |
| F-                      | Ш             | GROUNDWATER ELE            | \/\¬        | LIONIC    | <u></u> |      |            |            |                                                   |          |        |             |         |          | Ц   |                                        |

**GROUNDWATER ELEVATIONS** 

THURBER2S(5126) 5126.GPJ 11/9/11

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Schneider CHECKED : KS



Mary River Project **PROJECT** 

Project No. 19-1605-126

LOCATION 31+500 - Quarry

STARTED

COMPLETED :

July 19, 2011 July 19, 2011

DRILLER: BOART LONGYEAR, LM-55

N 7 897 863 E 590 944

SHEET 1 OF 1 DATUM: CGVD28

|              | 2                | SOIL PROFILE                                                                     |                                              |           |              | SAM   | PLE:       | s          |                                          | EXC | ESS ICE     |                | NT, PER  | CENT     | (D                         | THERMISTER<br>GROUND CO |
|--------------|------------------|----------------------------------------------------------------------------------|----------------------------------------------|-----------|--------------|-------|------------|------------|------------------------------------------|-----|-------------|----------------|----------|----------|----------------------------|-------------------------|
| (metres)     | BORING METHOD    |                                                                                  | Ъ                                            |           | 1            |       | π̃         | % /        |                                          | 1   | 10          | 20 ice         |          | 40       | ADDITIONAL<br>LAB. TESTING | FROZEN                  |
| netre        | ∑<br>©           | DESCRIPTION                                                                      | A PL                                         | E) .      | BER          | TYPE  | 8/0.3      | ERY        | COMMENTS                                 | W   | L<br>ATER C | ONTENT         | T, PERCE | L<br>ENT | 15E                        | UNFROZEN                |
| ا ت          | N N              | DESCRIPTION                                                                      | STRATA PLOT                                  | ELEV. (m) | NUMBER       | ≱     | BLOWS/0.3m | RECOVERY % | DYNAMIC CONE PENETRATION RESISTANCE PLOT | W   | /p          | o <sup>w</sup> |          |          | AB.                        | UNCERTAIN               |
|              | B                |                                                                                  | STF                                          |           | Ĺ            |       | BL         | RF         | 50 100 150 200 250                       | 1   | 10          | 20             | 30       | 40       | ┸                          | SNOLKIAIN               |
|              |                  | GROUND SURFACE  BOULDERS and COBBLES, some gravel,                               | 60                                           | 0.00      |              |       |            |            |                                          |     |             |                |          |          |                            |                         |
|              |                  | pink to dark grey, angular to sub-angular,<br>fines washed out                   | 0                                            |           |              |       |            |            |                                          |     |             |                |          |          |                            |                         |
| <sub>1</sub> |                  |                                                                                  |                                              |           | L            | L     |            |            |                                          |     |             |                |          |          |                            |                         |
| .            |                  |                                                                                  | 0                                            |           | 1            | RUN   |            | 54         |                                          |     |             |                |          |          |                            |                         |
| ,            |                  |                                                                                  | 200                                          |           |              |       |            |            |                                          |     |             |                |          |          |                            |                         |
| 2            |                  | no recovery                                                                      | h <sup>O</sup>                               | 2.20      | ⊬            |       |            |            |                                          |     |             |                |          |          |                            |                         |
|              |                  |                                                                                  |                                              |           |              |       |            |            |                                          |     |             |                |          |          |                            |                         |
| 3            |                  |                                                                                  |                                              |           |              |       |            |            |                                          |     |             |                |          |          |                            |                         |
|              |                  |                                                                                  |                                              |           | 2            | RUN   |            | 0          |                                          |     |             |                |          |          |                            |                         |
| 4            |                  |                                                                                  |                                              |           |              |       |            |            |                                          |     |             |                |          |          |                            |                         |
|              |                  |                                                                                  |                                              |           |              |       |            |            |                                          |     |             |                |          |          |                            |                         |
| 5            |                  |                                                                                  | <u>                                     </u> | 5.20      | $oxed{oxed}$ |       |            |            |                                          |     |             |                |          |          |                            |                         |
|              | _                | GRAVEL and COBBLES, some boulders, trace sand, pink to light grey and dark grey, | 00                                           | 1         |              |       |            |            |                                          |     |             |                |          |          |                            |                         |
| 6            | d<br>Dri         | fines washed out                                                                 |                                              | 1         |              |       |            |            |                                          |     |             |                |          |          |                            |                         |
|              | amon             |                                                                                  | 00                                           | 1         | ,            | DI IN |            | 60         |                                          |     |             |                |          |          |                            |                         |
| 7            | NQ Diamond Drill |                                                                                  |                                              | 1         | ٥            | RUN   |            | 66         |                                          |     |             |                |          |          |                            |                         |
|              | 2                |                                                                                  | 00                                           |           |              |       |            |            |                                          |     |             |                |          |          |                            |                         |
| 3            |                  |                                                                                  |                                              | ]         |              |       |            |            |                                          |     |             |                |          |          |                            |                         |
|              |                  |                                                                                  | 000                                          |           |              |       |            | H          |                                          |     |             |                |          |          |                            |                         |
| 9            |                  |                                                                                  | 0()                                          |           |              |       |            |            |                                          |     |             |                |          |          |                            |                         |
|              |                  |                                                                                  |                                              |           |              |       |            |            |                                          |     |             |                |          |          |                            |                         |
| ,,           |                  |                                                                                  | 60                                           |           | 4            | RUN   |            | 76         |                                          |     |             |                |          |          |                            |                         |
| 10           |                  |                                                                                  | 000                                          |           |              |       |            |            |                                          |     |             |                |          |          |                            |                         |
| ,            |                  |                                                                                  | 10                                           | 1         |              |       |            |            |                                          |     |             |                |          |          |                            |                         |
| 11           |                  |                                                                                  |                                              | 1         |              |       |            | $\vdash$   |                                          |     |             |                |          |          |                            |                         |
|              |                  |                                                                                  | 0                                            | 1         |              |       |            |            |                                          |     |             |                |          |          |                            |                         |
| 12           |                  |                                                                                  |                                              |           | 5            | RUN   |            | 66         |                                          |     |             |                |          |          |                            |                         |
|              |                  |                                                                                  |                                              | 1         |              |       |            |            |                                          |     |             |                |          |          |                            |                         |
| 13           | +                | END OF BOREHOLE AT 13.20m.                                                       | Po                                           | 13.20     | $\vdash$     |       |            |            |                                          |     |             |                |          |          |                            | 13.20                   |
|              |                  | LIND OF BOINLHOLE AT 13.20III.                                                   |                                              |           |              |       |            |            |                                          |     |             |                |          |          |                            |                         |
| 14           |                  |                                                                                  |                                              |           |              |       |            |            |                                          |     |             |                |          |          |                            |                         |
|              |                  |                                                                                  |                                              |           |              |       |            |            |                                          |     |             |                |          |          |                            |                         |
| 15           |                  |                                                                                  |                                              |           |              |       |            |            |                                          |     |             |                |          |          |                            |                         |
|              |                  |                                                                                  |                                              |           |              |       |            |            |                                          |     |             |                |          |          |                            |                         |
| 16           |                  |                                                                                  |                                              |           |              |       |            |            |                                          |     |             |                |          |          |                            |                         |
|              |                  |                                                                                  |                                              |           |              |       |            |            |                                          |     |             |                |          |          |                            |                         |
| 17           |                  |                                                                                  |                                              |           |              |       |            |            |                                          |     |             |                |          |          |                            |                         |
|              |                  |                                                                                  |                                              |           |              |       |            |            |                                          |     |             |                |          |          |                            |                         |
| 18           |                  |                                                                                  |                                              |           |              |       |            |            |                                          |     |             |                |          |          |                            |                         |
|              |                  |                                                                                  |                                              |           |              |       |            |            |                                          |     |             |                |          |          |                            |                         |
| 19           |                  |                                                                                  |                                              |           |              |       |            |            |                                          |     |             |                |          |          |                            |                         |
|              |                  |                                                                                  |                                              |           |              |       |            |            |                                          |     |             |                |          |          |                            |                         |
|              |                  |                                                                                  |                                              |           | L            |       |            |            |                                          |     |             |                |          |          |                            |                         |
|              |                  | GROUNDWATER ELE                                                                  | VA                                           | TIONS     | 3            |       |            |            |                                          |     |             |                |          |          |                            |                         |
|              |                  | $\overline{igspace}$ shallow/single insta                                        | ALLA                                         | TION      |              | Ţ     | Z D        | EEF        | P/DUAL INSTALLATION                      |     | LOGGE       | D :            | Schneid  | er       |                            |                         |
|              |                  | WATER LEVEL (date)                                                               |                                              |           |              |       |            |            | _EVEL (date)                             |     | CHECK       |                | KS       |          |                            | THURE                   |



PROJECT: Mary River Project

Project No. 19-1605-126

LOCATION : 35+500 - Quarry

STARTED

July 17, 2011 DRILLER: BOART LONGYEAR, LM-55

SHEET 1 OF 2

July 17, 2011 N 7 896 244 E 595 477 COMPLETED DATUM: CGVD28 EXCESS ICE CONTENT, PERCENT THERMISTER/ GROUND COND SAMPLES SOIL PROFILE BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE oice BLOWS/0.3m 10 20 STRATA PLOT FROZEN RECOVERY ELEV. (m) NUMBER **COMMENTS** TYPE WATER CONTENT, PERCENT UNFROZEN DYNAMIC CONE PENETRATION RESISTANCE PLOT DESCRIPTION  $-0^{W}$ UNCERTAIN 20 30 100 150 200 250 10 40 GROUND SURFACE 0.00 COBBLES, organics, subangular to 0.30 BOULDERS, trace cobbles, slightly weathered, fines washed out 1 RUN 70 2.45 2.45 **GRANITIC GNEISS**, medium to coarse grained, slightly weathered, highly to moderately jointed, dark grey to pink 3 2 RUN TCR=83% SCR=83% RQD=47% 5 6 RUN TCR=100% SCR=100% RQD=53% -8 9 RUN TCR=100% SCR=100% RQD=45% 12 TCR=100% SCR=100% RQD=88% RUN 15 6 RUN TCR=100% SCR=100% RQD=77% 16 becoming fresh, slightly jointed 18 RUN TCR=100% SCR=100% RQD=78% 19

GROUNDWATER ELEVATIONS

11/9/1

5126.GPJ

SHALLOW/SINGLE INSTALLATION WATER LEVEL (date)

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Khabbaznia/Schneider CHECKED : KS



Mary River Project **PROJECT** Project No. 19-1605-126

LOCATION 35+500 - Quarry

July 17, 2011 DRILLER: BOART LONGYEAR, LM-55 STARTED SHEET 2 OF 2 N 7 896 244 E 595 477 July 17, 2011 COMPLETED : DATUM: CGVD28

|                         | _             | 0011 550511 5                       |                         |           |        |      |            | _          |                                          | EXCESS ICE CON | NTENT, PERCENT                 | Т                          | THEDMISTED/                 |
|-------------------------|---------------|-------------------------------------|-------------------------|-----------|--------|------|------------|------------|------------------------------------------|----------------|--------------------------------|----------------------------|-----------------------------|
| DEPTH SCALE<br>(metres) | BORING METHOD | SOIL PROFILE                        |                         |           |        | SAM  | PLE        | S          |                                          |                | ice                            | ق ر ا                      | THERMISTER/<br>GROUND COND. |
| S) CAL                  | Ė             |                                     | 5                       | _         |        |      | Ε          | %          |                                          | 10 20          | 30 40                          | ΑĔΕ                        | FROZEN                      |
| 1 S                     | Σ             |                                     | <u>ا</u> کا             | ELEV. (m) | NUMBER | ш    | /0.3       | 盗          | COMMENTS                                 |                |                                | ADDITIONAL<br>LAB. TESTING | FROZEN                      |
| E E                     | N N           | DESCRIPTION                         | ≰                       | EV.       | ]ME    | TYPE | WS         | 3          | DYNAMIC CONE PENETRATION                 | WATER CONTI    | ENT, PERCENT<br>Э <sup>W</sup> | G   G                      | UNFROZEN 💹                  |
| 8                       | SOR.          |                                     | STRATA PLOT             | 급         | ž      | l    | BLOWS/0.3m | RECOVERY % | DYNAMIC CONE PENETRATION RESISTANCE PLOT | wp             | <del>) W</del>   Wl<br>30 40   | ∢                          | UNCERTAIN                   |
| $\vdash$                | Ш             |                                     | ίς.                     |           | _      |      | ш          | ď          | 50 100 150 200 250                       | 10 20          | +0                             | ₩                          |                             |
| -                       |               |                                     |                         |           |        |      |            |            |                                          |                |                                | ┼                          | _                           |
|                         |               |                                     | $\bowtie$               |           |        |      |            |            |                                          |                |                                |                            | ]                           |
| ļ                       |               |                                     | $\mathbb{Z}/\mathbb{Z}$ |           |        |      |            |            |                                          |                |                                |                            | :                           |
| - 21                    |               |                                     | N/A                     |           |        |      |            |            |                                          |                |                                |                            | -                           |
| F                       |               |                                     |                         |           |        |      |            |            |                                          |                |                                |                            | ]                           |
| ļ                       |               |                                     | $\mathbb{N}$            |           |        |      |            |            |                                          |                |                                |                            | ] :                         |
| -22                     |               |                                     |                         |           | 8      | RUN  | ١          |            | TCR=100% SCR=100% RQD=78%                |                |                                |                            | -                           |
| -                       |               |                                     | K/A                     |           |        |      |            |            |                                          |                |                                |                            | -                           |
| 1 1                     |               |                                     | NX/                     |           |        |      |            |            |                                          |                |                                |                            |                             |
| - 23                    |               |                                     | $\mathbb{K}/\mathbb{A}$ |           |        |      |            |            |                                          |                |                                |                            | -                           |
| <b>!</b>                |               |                                     | M                       |           |        |      |            |            |                                          |                |                                |                            | -                           |
| 1                       |               | slightly weathered, closely jointed |                         |           |        |      |            |            |                                          |                |                                |                            |                             |
| -24                     |               |                                     | M                       |           |        |      |            |            |                                          |                |                                |                            | -                           |
| 1                       |               |                                     |                         |           |        |      |            |            |                                          |                |                                |                            | ]                           |
| 1                       |               |                                     | $\mathbb{K}$            |           | 9      | RUN  | 1          |            | TCR=100% SCR=91% RQD=60%                 |                |                                |                            | ]                           |
| - 25                    |               |                                     |                         |           | آ      |      |            |            |                                          |                |                                |                            | -                           |
| }                       |               |                                     | K                       |           | l      |      |            |            |                                          |                |                                |                            | ]                           |
| [ ]                     |               |                                     | <b>K</b>                |           | l      |      |            |            |                                          |                |                                |                            |                             |
| -26                     |               |                                     | $\mathbb{Z}/2$          | 26.20     |        |      |            |            |                                          |                |                                |                            | -                           |
| <b>!</b>                |               | END OF BOREHOLE AT 26.20m.          |                         |           |        |      |            |            |                                          |                |                                |                            | -                           |
| F                       |               |                                     |                         |           |        |      |            |            |                                          |                |                                |                            | ]                           |
| - 27                    |               |                                     |                         |           |        |      |            |            |                                          |                |                                |                            | 1                           |
| ł l                     |               |                                     |                         |           |        |      |            |            |                                          |                |                                |                            | ]                           |
| F                       |               |                                     |                         |           |        |      |            |            |                                          |                |                                |                            |                             |
| -28                     |               |                                     |                         |           |        |      |            |            |                                          |                |                                |                            | 7                           |
| t l                     |               |                                     |                         |           |        |      |            |            |                                          |                |                                |                            | ]                           |
| F                       |               |                                     |                         |           |        |      |            |            |                                          |                |                                |                            | -                           |
| - 29                    |               |                                     |                         |           |        |      |            |            |                                          |                |                                |                            | ]                           |
| t l                     |               |                                     |                         |           |        |      |            |            |                                          |                |                                |                            | ]                           |
| 1 00                    |               |                                     |                         |           |        |      |            |            |                                          |                |                                |                            | -                           |
| -30                     |               |                                     |                         |           |        |      |            |            |                                          |                |                                |                            | 1 7                         |
| t                       |               |                                     |                         |           |        |      |            |            |                                          |                |                                |                            | ]                           |
| -<br>- 31               |               |                                     |                         |           |        |      |            |            |                                          |                |                                |                            | -                           |
| F 31                    |               |                                     |                         |           |        |      |            |            |                                          |                |                                |                            | ]                           |
| ļ                       |               |                                     |                         |           |        |      |            |            |                                          |                |                                |                            | 1                           |
| -32                     |               |                                     |                         |           |        |      |            |            |                                          |                |                                |                            | ]                           |
| F 32                    |               |                                     |                         |           |        |      |            |            |                                          |                |                                |                            | -                           |
| 1                       |               |                                     |                         |           |        |      |            |            |                                          |                |                                |                            |                             |
| - 33                    |               |                                     |                         |           |        |      |            |            |                                          |                |                                |                            |                             |
| F "                     |               |                                     |                         |           | l      |      |            |            |                                          |                |                                |                            | -                           |
| [                       |               |                                     |                         |           |        |      |            |            |                                          |                |                                |                            | ]                           |
| -34                     |               |                                     |                         |           | l      |      |            |            |                                          |                |                                |                            | 4                           |
| `                       |               |                                     |                         |           |        |      |            |            |                                          |                |                                |                            | ]                           |
| <u> </u>                |               |                                     |                         |           |        |      |            |            |                                          |                |                                |                            | ]                           |
| - 35                    |               |                                     |                         |           | l      |      |            |            |                                          |                |                                |                            |                             |
| <b>†</b>                |               |                                     |                         |           | l      |      |            |            |                                          |                |                                |                            | :                           |
| <u> </u>                |               |                                     | 1                       |           | l      |      |            |            |                                          |                |                                |                            | ]                           |
| -36                     |               |                                     |                         |           |        |      |            |            |                                          |                |                                |                            | -                           |
| F                       |               |                                     |                         |           |        |      |            |            |                                          |                |                                |                            |                             |
| t                       |               |                                     |                         |           | l      |      |            |            |                                          |                |                                |                            | :                           |
| - 37                    |               |                                     |                         |           |        |      |            |            |                                          |                |                                |                            | -                           |
| }                       |               |                                     | 1                       |           | l      |      |            |            |                                          |                |                                |                            | ]                           |
|                         |               |                                     |                         |           | l      |      |            |            |                                          |                |                                |                            | :                           |
| -38                     |               |                                     |                         |           |        |      |            |            |                                          |                |                                |                            | -                           |
| <u> </u>                |               |                                     |                         |           | l      |      |            |            |                                          |                |                                |                            | -                           |
| [ ]                     |               |                                     |                         |           |        |      |            |            |                                          |                |                                |                            | ]                           |
| - 39                    |               |                                     |                         |           |        |      |            |            |                                          |                |                                |                            |                             |
| <u> </u>                |               |                                     |                         |           | l      |      |            |            |                                          |                |                                |                            | ] :                         |
| iL                      |               |                                     | <u></u> ∐ l             |           | L      | L    | L          | L          |                                          |                |                                | <u>L</u>                   | <u> </u>                    |
| [                       |               | GROUNDWATER ELE                     | VAT                     | IONS      | 5      |      |            |            |                                          |                |                                |                            |                             |

 $\overline{Y}$  SHALLOW/SINGLE INSTALLATION WATER LEVEL (date)

THURBER2S(5126) 5126.GPJ 11/9/11

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Khabbaznia/Schneider CHECKED : KS



Mary River Project **PROJECT** 

Project No. 19-1605-126

LOCATION

STARTED

38+700 - Quarry

July 16, 2011

DRILLER: BOART LONGYEAR, LM-55 N 7 893 140 E 596 368

SHEET 1 OF 3 DATUM: CGVD28

| ر        | ДQ            | SOIL PROFILE                                                                          |             |           | _ :     | SAM  | PLE        | _          |                                                                        |                                | ONTENT, PERCENT                                          | 2 بـ                       | THERMIST<br>GROUND (           |
|----------|---------------|---------------------------------------------------------------------------------------|-------------|-----------|---------|------|------------|------------|------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------|----------------------------|--------------------------------|
| (metres) | BORING METHOD | DESCRIPTION                                                                           | STRATA PLOT | ELEV. (m) | NUMBER  | TYPE | BLOWS/0.3m | RECOVERY % | COMMENTS  DYNAMIC CONE PENETRATION RESISTANCE PLOT  50 100 150 200 250 | 10 20<br>     <br>  WATER CONT | 30 40<br>     <br>TENT, PERCENT<br>OW          <br>30 40 | ADDITIONAL<br>LAB. TESTING | FROZEN<br>UNFROZEN<br>UNCERTAI |
| 耳        |               | GROUND SURFACE                                                                        |             | 0.00      |         |      |            |            |                                                                        |                                |                                                          |                            |                                |
| 1        |               | GRAVEL, COBBLES and BOULDERS, granitic, angular to subangular, grey, fines washed out |             | 2.40      |         | RUN  | l          | 28         |                                                                        |                                |                                                          |                            |                                |
| 3        |               | no recovery, all material washed out                                                  |             |           |         |      |            |            |                                                                        |                                |                                                          |                            |                                |
| 1        |               |                                                                                       |             |           | 2       | RUN  |            | 0          |                                                                        |                                |                                                          |                            |                                |
| 5        |               |                                                                                       |             | 5.40      |         |      |            |            |                                                                        |                                |                                                          |                            |                                |
| 6        |               | GRAVEL, trace sand, grey, very poor recovery, most material washed                    |             |           |         |      |            |            |                                                                        |                                |                                                          |                            |                                |
| 7        |               |                                                                                       |             |           | 3       | RUN  | l          | 4          |                                                                        |                                |                                                          |                            |                                |
| }        |               |                                                                                       |             |           |         |      |            |            |                                                                        |                                |                                                          |                            |                                |
|          |               |                                                                                       |             |           |         |      |            |            |                                                                        |                                |                                                          |                            |                                |
| 0        | NQ Diamond    |                                                                                       |             |           | 4       | RUN  |            | 8          |                                                                        |                                |                                                          |                            |                                |
| 1        |               | no recovery                                                                           | ***         | 11.40     |         |      |            |            |                                                                        |                                |                                                          |                            |                                |
| 2        |               |                                                                                       |             |           |         |      |            |            |                                                                        |                                |                                                          |                            |                                |
| 13       |               |                                                                                       |             |           | 5       | RUN  |            | 0          |                                                                        |                                |                                                          |                            |                                |
| 4        |               |                                                                                       |             |           |         |      |            |            |                                                                        |                                |                                                          |                            |                                |
| 5        |               |                                                                                       |             |           | 6       | RUN  |            | 0          |                                                                        |                                |                                                          |                            |                                |
| 6        |               |                                                                                       |             |           |         |      |            |            |                                                                        |                                |                                                          |                            |                                |
| 7 8      |               | GRAVEL, some cobbles (<105mm), granitic, subangular, grey, fines washed out           |             | 17.40     |         |      |            |            |                                                                        |                                |                                                          |                            |                                |
| 19       |               |                                                                                       |             |           | 7       | RUN  | l          | 14         |                                                                        |                                |                                                          |                            |                                |
|          |               | GROUNDWATER ELE $\overline{\Psi}$ shallow/single inst.                                |             |           | <u></u> | _    |            |            | P/DUAL INSTALLATION                                                    |                                |                                                          |                            |                                |



Mary River Project **PROJECT** 

Project No. 19-1605-126

LOCATION

STARTED

38+700 - Quarry

July 16, 2011

DRILLER: BOART LONGYEAR, LM-55 N 7 893 140 E 596 368

SHEET 2 OF 3 DATUM: CGVD28

| <u>,</u> T              | ᄋ                | SOIL PROFILE                                                                                            | <u>,</u>    |           |        | SAM   | PLE        |            |                                                                        | EXCES                             | SS ICE | CONTE             | NT, PEF            | RCENT                      | Ę Ļ                        | THERMISTER<br>GROUND CO         |
|-------------------------|------------------|---------------------------------------------------------------------------------------------------------|-------------|-----------|--------|-------|------------|------------|------------------------------------------------------------------------|-----------------------------------|--------|-------------------|--------------------|----------------------------|----------------------------|---------------------------------|
| DEFIN SCALE<br>(metres) | BORING METHOD    | DESCRIPTION                                                                                             | STRATA PLOT | ELEV. (m) | NUMBER | TYPE  | BLOWS/0.3m | RECOVERY % | COMMENTS  DYNAMIC CONE PENETRATION RESISTANCE PLOT  50 100 150 200 250 | 10<br>WA <sup>-</sup><br>wp<br>10 | TER C  | 20<br>L<br>ONTENT | 30<br>L<br>, PERCI | 40<br>L<br>ENT<br>wl<br>40 | ADDITIONAL<br>LAB. TESTING | FROZEN<br>UNFROZEN<br>UNCERTAIN |
| 21                      |                  | no recovery                                                                                             | ***         | 20.40     |        |       |            |            |                                                                        |                                   |        |                   |                    |                            |                            |                                 |
| 22                      |                  | artesian condition encountered (2m above ground surface) at 22.0m                                       |             |           | 8      | RUN   | I          | 0          |                                                                        |                                   |        |                   |                    |                            |                            |                                 |
| 23                      |                  | GRAVEL, some cobbles (<70mm), granitic, subrounded to subangular, fines                                 | ***         | 23.40     |        |       |            |            |                                                                        |                                   |        |                   |                    |                            |                            |                                 |
| 24                      |                  | granitic, subrounded to subangular, fines washed out                                                    |             |           |        |       |            |            |                                                                        |                                   |        |                   |                    |                            |                            |                                 |
| 25                      |                  |                                                                                                         |             |           | 9      | RUN   | I          | 4          |                                                                        |                                   |        |                   |                    |                            |                            |                                 |
| 26                      |                  |                                                                                                         |             |           |        |       |            |            |                                                                        |                                   |        |                   |                    |                            |                            |                                 |
| 27                      |                  |                                                                                                         |             |           |        |       |            |            |                                                                        |                                   |        |                   |                    |                            |                            |                                 |
| 28                      |                  |                                                                                                         |             |           | 10     | RUN   | I          | 10         |                                                                        |                                   |        |                   |                    |                            |                            |                                 |
| 29                      | d Drill          | SAND, some gravel, some silt, some                                                                      |             | 29.40     |        |       |            |            |                                                                        |                                   |        |                   |                    |                            |                            |                                 |
| 30                      | NQ Diamond Drill | cobbles, brown                                                                                          |             |           |        |       |            |            |                                                                        | 0                                 |        |                   |                    |                            |                            |                                 |
| 31                      | 2                | GRANITIC GNEISS, slightly to faintly weathered, medium to coarse grained, closely jointed, pink to grey |             | 31.20     |        | RUN   |            | 84         |                                                                        |                                   |        |                   |                    |                            |                            | 31.20                           |
| 32                      |                  | closely jointed, pilik to grey                                                                          |             |           |        |       |            |            |                                                                        |                                   |        |                   |                    |                            |                            |                                 |
| 33                      |                  |                                                                                                         |             |           | 12     | RUN   |            |            | TCR=100% SCR=100% RQD=64%                                              |                                   |        |                   |                    |                            |                            |                                 |
| 34                      |                  |                                                                                                         |             |           | 12     |       |            |            | 16K 166% CGK 166% NGE 64%                                              |                                   |        |                   |                    |                            |                            |                                 |
| 35                      |                  |                                                                                                         |             |           |        |       |            |            |                                                                        |                                   |        |                   |                    |                            |                            |                                 |
| 36                      |                  |                                                                                                         |             |           | 10     | RUN   |            |            | TCR=100% SCR=93% RQD=57%                                               |                                   |        |                   |                    |                            |                            |                                 |
| 37                      |                  |                                                                                                         |             |           | 13     | IVOIN |            |            | 101-100/0 001-33/0 NQD-31/0                                            |                                   |        |                   |                    |                            |                            |                                 |
| 38                      |                  | becoming fresh, moderately to widely jointed                                                            |             |           |        |       |            |            |                                                                        |                                   |        |                   |                    |                            |                            |                                 |
| 39                      |                  |                                                                                                         |             |           | 11     | RUN   |            |            | TCR=100% SCR=100% RQD=78%                                              |                                   |        |                   |                    |                            |                            |                                 |
| !                       |                  | GROUNDWATER ELE                                                                                         |             |           |        |       |            |            | P/DUAL INSTALLATION                                                    |                                   |        | •                 |                    | •                          | •                          |                                 |

Mary River Project **PROJECT** 

Project No. 19-1605-126

LOCATION 38+700 - Quarry

STARTED

COMPLETED :

July 16, 2011 DRILLER: BOART LONGYEAR, LM-55 N 7 893 140 E 596 368 July 16, 2011

SHEET 3 OF 3 DATUM: CGVD28

|                         |                  | 1ED : July 10, 2011                      |             |           | Γ.     | 244      |            |            | 93 140 E 596 368                         | EXCESS I       | CE CONT | ENT. PEF  | CENT       |                            |                            |
|-------------------------|------------------|------------------------------------------|-------------|-----------|--------|----------|------------|------------|------------------------------------------|----------------|---------|-----------|------------|----------------------------|----------------------------|
| DEPTH SCALE<br>(metres) | BORING METHOD    | SOIL PROFILE                             | h           |           | -      | SAM<br>T | PLE        | _          |                                          |                | • i     | ce        |            | ING<br>ING                 | THERMISTER/<br>GROUND COND |
| H SC/<br>etres)         | ME               |                                          | STRATA PLOT | (m)       | H      | ш        | BLOWS/0.3m | RECOVERY % | COMMENTS                                 | 10             | 20      |           | 40<br>     | ADDITIONAL<br>LAB. TESTING | FROZEN                     |
| EPTH<br>(me             | RING             | DESCRIPTION                              | ATA         | ELEV. (m) | NUMBER | TYPE     | )WS        | Š          | DYNAMIC CONE PENETRATION RESISTANCE PLOT | WATER<br>wp I— | CONTEN  | NT, PERCI |            | AB. T                      | UNFROZEN                   |
| ٥                       | BO               |                                          | STR         |           | z      |          | BLC        | REC        | 50 100 150 200 250                       | 10             | 20      | 30        | 40<br>     | ```                        | UNCERTAIN                  |
|                         |                  |                                          | \//         |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
|                         |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
| 41                      |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
|                         |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
| -42                     |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
|                         |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
| 43                      |                  |                                          |             |           | 15     | RUN      | 1          |            | TCR=100% SCR=100% RQD=87%                |                |         |           |            |                            |                            |
|                         | Drill            |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
| - 11                    | NQ Diamond Drill |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
| -44                     | Diam             |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
|                         | ğ                |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
| 45                      |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
|                         |                  |                                          |             |           | 16     | RUN      | J          |            | TCR=100% SCR=99% RQD=91%                 |                |         |           |            |                            |                            |
| <b>-</b> 46             |                  |                                          |             |           | 10     | 1,01     |            |            | 100/0 0011-00/0 RQD-81/0                 |                |         |           |            |                            |                            |
|                         |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
| - 47                    |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
|                         |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
| -48                     |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
|                         |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
| 49                      |                  |                                          |             |           | 17     | RUN      | 1          |            | TCR=100% SCR=97% RQD=80%                 |                |         |           |            |                            |                            |
|                         |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
| -50                     |                  |                                          |             | 50.40     |        |          |            |            |                                          |                |         |           |            |                            |                            |
|                         |                  | END OF BOREHOLE AT 50.40m.               | 1/2/        | 50.40     |        |          |            |            |                                          |                |         |           |            |                            |                            |
| - 51                    |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
|                         |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
| -52                     |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
|                         |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
| - 53                    |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
|                         |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
| -54                     |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
|                         |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
| - 55                    |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
|                         |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
| -56                     |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
|                         |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
| - 57                    |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
| 01                      |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
| -58                     |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
| Jo                      |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
| E0                      |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
| 59                      |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
|                         |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            |                            |
|                         |                  | GROUNDWATER ELE                          | VA          | IONS      | 5      | _        | _          | 1          |                                          | 1              |         |           | 1          |                            |                            |
| -58                     |                  | $\overline{igspace}$ shallow/single inst |             |           |        | Ţ        | Z n        | )EFI       | P/DUAL INSTALLATION                      | LOGO           | SED :   | Schneid   | er         |                            |                            |
|                         |                  | WATER LEVEL (date)                       | / \         |           |        |          |            |            | LEVEL (date)                             |                | KED :   | KS        | <b>6</b> 1 |                            | THURBE                     |
|                         |                  |                                          |             |           |        |          |            |            |                                          |                |         |           |            |                            | THURBE                     |



PROJECT : Mary River Project Project Project Project Project Project No. 19-1605-126

LOCATION : 42+000 - Quarry

 STARTED
 :
 July 16, 2011
 DRILLER:
 BOART LONGYEAR, LM-55
 SHEET 1 OF 2

 COMPLETED
 :
 July 16, 2011
 N 7 890 881 E 598 151
 DATUM: CGVD28

|                         |                  |                                                                                                  |                     |           |          |       |            |            | 50 001 E 030 131                         | EXCESS ICE | CONTE | NT PFR          |         | ·····     | THEDMOTED!                                         |
|-------------------------|------------------|--------------------------------------------------------------------------------------------------|---------------------|-----------|----------|-------|------------|------------|------------------------------------------|------------|-------|-----------------|---------|-----------|----------------------------------------------------|
| DEPTH SCALE<br>(metres) | BORING METHOD    | SOIL PROFILE                                                                                     |                     |           |          | SAM   | PLE        |            |                                          | LXOLOG IOL | ice   |                 | OLIVI   | ٩ ا       | THERMISTER/ GROUND COND. FROZEN UNFROZEN UNCERTAIN |
| SCA<br>res)             | MET              |                                                                                                  | STRATA PLOT         | Ê         | <u>~</u> |       | BLOWS/0.3m | RECOVERY % | COMMENTS                                 | 10 2       |       |                 | 10<br>I | NO<br>STI | FROZEN                                             |
| TH:                     | Q V              | DESCRIPTION                                                                                      | ΑP                  | . (r      | /BE      | TYPE  | 0/S/       | VER        | COMMENTS DYNAMIC CONF PENETRATION        | WATER CC   | NTENT | , PERCE         | NT      | 1등뿐       | UNFROZEN                                           |
| DEF<br>(                | ORII             |                                                                                                  | I.RAI               | ELEV. (m) | NUMBER   | -     | ρ          | Ö          | DYNAMIC CONE PENETRATION RESISTANCE PLOT | wp I       | - OW  | —— \            |         | P B B     | UNCERTAIN                                          |
|                         | BK               |                                                                                                  | ST                  |           |          |       | 面          | 22         | 50 100 150 200 250                       | 10 2       | 0 3   | 30 <sup>2</sup> | 10      |           |                                                    |
| _                       |                  | GROUND SURFACE                                                                                   |                     | 0.00      |          |       |            |            |                                          |            |       |                 |         | <u> </u>  | <u> </u>                                           |
|                         |                  | GRAVEL, COBBLES and BOULDERS, granitic, subrounded to subangular, grey to pink, fines washed out | 60                  |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
|                         |                  | pink, fines washed out                                                                           | 000                 |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
| - 1                     |                  |                                                                                                  | ρŎ                  |           | 1        | RUN   | 1          | 11         |                                          |            |       |                 |         |           |                                                    |
|                         |                  |                                                                                                  | 60                  |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
| -2                      |                  |                                                                                                  | 000                 |           |          |       |            |            |                                          |            |       |                 |         |           | .                                                  |
| ļ <sup>-</sup>          |                  |                                                                                                  | 0                   |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
| ļ.                      |                  |                                                                                                  |                     |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
| - 3                     |                  |                                                                                                  | 00                  |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
| ļ.                      |                  |                                                                                                  | 60                  |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
| -4                      |                  |                                                                                                  | 00                  |           | 2        | RUN   | 1          | 5          |                                          |            |       |                 |         |           | .                                                  |
|                         |                  |                                                                                                  | 00                  |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
|                         |                  |                                                                                                  | $h \hookrightarrow$ |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
| - 5                     |                  |                                                                                                  | 00                  |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
|                         |                  |                                                                                                  | $[\circ \bigcirc$   | 5.67      |          |       |            |            |                                          |            |       |                 |         |           | 5.67                                               |
| -6                      |                  | GRANITIC GNEISS, fresh, medium to coarse grained, moderately spaced joints,                      |                     |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
| Ľ                       |                  | grey to pink                                                                                     |                     |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
| ļ.                      |                  |                                                                                                  |                     |           | 3        | RUN   |            |            | TCR=100% SCR=82% RQD=65%                 |            |       |                 |         |           |                                                    |
| - 7                     |                  |                                                                                                  |                     |           | ٦        | INOIN | 1          |            | 1CK-100% 3CK-02% KQD-03%                 |            |       |                 |         |           |                                                    |
|                         |                  |                                                                                                  | $\mathbb{W}$        |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
| -8                      |                  |                                                                                                  |                     |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
| Ľ                       |                  |                                                                                                  |                     |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
|                         |                  |                                                                                                  |                     |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
| - 9                     | _                | moderately to widely spaced                                                                      | $\bowtie$           |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
|                         | Ρ                |                                                                                                  |                     |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
| -<br>-10                | NQ Diamond Drill |                                                                                                  |                     |           | 4        | RUN   | 1          |            | TCR=80% SCR=71% RQD=59%                  |            |       |                 |         |           |                                                    |
|                         | Diar             |                                                                                                  |                     |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
|                         | ğ                |                                                                                                  |                     |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
| - 11                    |                  |                                                                                                  |                     |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
|                         |                  |                                                                                                  |                     |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
| -<br>12                 |                  | widely spaced                                                                                    |                     |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
| . `~                    |                  |                                                                                                  | $\otimes$           |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
|                         |                  |                                                                                                  | $\mathbb{N}$        |           | _        | RUN   |            |            | TCR=100% SCR=100% RQD=74%                |            |       |                 |         |           |                                                    |
| - 13                    |                  |                                                                                                  |                     |           | ١        | INOIN | 1          |            | 1CK-100% 3CK-100% KQD-14%                |            |       |                 |         |           |                                                    |
| ļ.                      |                  |                                                                                                  | $\mathbb{M}$        |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
| -<br>14                 |                  |                                                                                                  |                     |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
|                         |                  |                                                                                                  |                     |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
| ļ l                     |                  |                                                                                                  |                     |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
| - 15                    |                  |                                                                                                  |                     |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
|                         |                  |                                                                                                  |                     |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
| -<br>-16                |                  |                                                                                                  |                     |           | 6        | RUN   | 1          |            | TCR=100% SCR=100% RQD=82%                |            |       |                 |         |           |                                                    |
|                         |                  |                                                                                                  |                     |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
|                         |                  |                                                                                                  |                     |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
| - 17                    |                  |                                                                                                  |                     |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
|                         |                  |                                                                                                  |                     |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
| -<br>-18                |                  |                                                                                                  |                     |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
| •                       |                  |                                                                                                  |                     |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
|                         |                  |                                                                                                  |                     |           | 7        | RUN   |            |            | TCR=100% SCR=100% RQD=87%                |            |       |                 |         |           |                                                    |
| - 19                    |                  |                                                                                                  |                     |           | l        | 1,01  |            |            | 1011-100/0 3011-100/0 RQD-0/%            |            |       |                 |         |           |                                                    |
|                         |                  |                                                                                                  |                     |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
|                         |                  |                                                                                                  | $\otimes$           |           |          |       |            |            |                                          |            |       |                 |         |           |                                                    |
|                         |                  | GROUNDWATER ELE                                                                                  | ١/٨٦                |           | 2        |       |            |            |                                          |            |       |                 |         |           |                                                    |

**GROUNDWATER ELEVATIONS** 

☐ SHALLOW/SINGLE INSTALLATION
WATER LEVEL (date)

THURBER2S(5126) 5126.GPJ 11/9/11

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Khabbaznia
CHECKED : KS



Mary River Project **PROJECT** Project No. 19-1605-126

LOCATION 42+000 - Quarry July 16, 2011 STARTED

DRILLER: BOART LONGYEAR, LM-55 N 7 890 881 E 598 151

SHEET 2 OF 2 DATUM: CGVD28

| СО                      |               | TED : July 16, 2011                    |             |           | _      |      |            |            | 90 881 E 598 151                                                       | EXCESS IC | E CONTE         | NT DED             |                | M: C                       | GVD28                                                      |
|-------------------------|---------------|----------------------------------------|-------------|-----------|--------|------|------------|------------|------------------------------------------------------------------------|-----------|-----------------|--------------------|----------------|----------------------------|------------------------------------------------------------|
| DEPTH SCALE<br>(metres) | BORING METHOD | SOIL PROFILE  DESCRIPTION              | STRATA PLOT | ELEV. (m) | NUMBER | TYPE | BLOWS/0.3m | RECOVERY % | COMMENTS  DYNAMIC CONE PENETRATION RESISTANCE PLOT  50 100 150 200 250 | 10<br>    | 20 :<br>CONTENT | 9<br>30 4<br>1<br> | IO<br>L<br>ENT | ADDITIONAL<br>LAB. TESTING | THERMISTEI<br>GROUND CO<br>FROZEN<br>UNFROZEN<br>UNCERTAIN |
|                         |               |                                        |             |           |        |      |            |            |                                                                        |           |                 |                    |                |                            |                                                            |
| 21                      |               |                                        |             |           |        |      |            |            |                                                                        |           |                 |                    |                |                            |                                                            |
| 22                      |               |                                        |             |           | 8      | RUN  |            |            | TCR=100% SCR=100% RQD=78%                                              |           |                 |                    |                |                            |                                                            |
| 23                      |               | END OF BOREHOLE AT 23.37m.             |             | 23.37     |        |      |            |            |                                                                        |           |                 |                    |                |                            |                                                            |
| 24                      |               |                                        |             |           |        |      |            |            |                                                                        |           |                 |                    |                |                            |                                                            |
| 25                      |               |                                        |             |           |        |      |            |            |                                                                        |           |                 |                    |                |                            |                                                            |
| 26                      |               |                                        |             |           |        |      |            |            |                                                                        |           |                 |                    |                |                            |                                                            |
| 27                      |               |                                        |             |           |        |      |            |            |                                                                        |           |                 |                    |                |                            |                                                            |
| 28                      |               |                                        |             |           |        |      |            |            |                                                                        |           |                 |                    |                |                            |                                                            |
| 29                      |               |                                        |             |           |        |      |            |            |                                                                        |           |                 |                    |                |                            |                                                            |
| 30                      |               |                                        |             |           |        |      |            |            |                                                                        |           |                 |                    |                |                            |                                                            |
| 31                      |               |                                        |             |           |        |      |            |            |                                                                        |           |                 |                    |                |                            |                                                            |
| 32                      |               |                                        |             |           |        |      |            |            |                                                                        |           |                 |                    |                |                            |                                                            |
| 33                      |               |                                        |             |           |        |      |            |            |                                                                        |           |                 |                    |                |                            |                                                            |
| 34                      |               |                                        |             |           |        |      |            |            |                                                                        |           |                 |                    |                |                            |                                                            |
| 35                      |               |                                        |             |           |        |      |            |            |                                                                        |           |                 |                    |                |                            |                                                            |
| 36                      |               |                                        |             |           |        |      |            |            |                                                                        |           |                 |                    |                |                            |                                                            |
| 37                      |               |                                        |             |           |        |      |            |            |                                                                        |           |                 |                    |                |                            |                                                            |
| 38                      |               |                                        |             |           |        |      |            |            |                                                                        |           |                 |                    |                |                            |                                                            |
| 39                      |               |                                        |             |           |        |      |            |            |                                                                        |           |                 |                    |                |                            |                                                            |
|                         |               | GROUNDWATER ELE                        |             |           | 5      |      |            |            |                                                                        | <u> </u>  |                 | 1                  | ı              |                            |                                                            |
|                         |               | SHALLOW/SINGLE INST WATER LEVEL (date) | 'ALLA       | TION      |        |      |            |            | P/DUAL INSTALLATION<br>LEVEL (date)                                    | LOGGI     |                 | Khabbaz<br>KS      | nia            |                            | THUE                                                       |



Mary River Project **PROJECT** 

Project No. 19-1605-126

LOCATION 44+300 - Quarry

COMPLETED :

July 15, 2011 STARTED

July 15, 2011

DRILLER: BOART LONGYEAR, LM-55

N 7 888 054 E 598 208

SHEET 1 OF 1 DATUM: CGVD28

| $\neg$   | Ō                | SOIL PROFILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |             | ,                                   | SAM  | PI F       | s          |                                          | EXC      | ESS ICE | CONTE        | NT, PEF    | RCENT    |                            | THERMISTER               |
|----------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|-------------------------------------|------|------------|------------|------------------------------------------|----------|---------|--------------|------------|----------|----------------------------|--------------------------|
| (metres) | BORING METHOD    | SOLITIONEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F                 |             | H                                   |      | _          | _          |                                          |          | 40      | oice         |            | 40       | ADDITIONAL<br>LAB. TESTING | THERMISTER<br>GROUND COI |
| tres     | ME               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | STRATA PLOT       | ELEV. (m)   | 监                                   | l    | BLOWS/0.3m | RECOVERY % | COMMENTS                                 |          |         |              |            | 40<br>   | FST                        | FROZEN                   |
| <u> </u> | NG               | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IAI               | <u>&gt;</u> | NUMBER                              | TYPE | NS/        | )VE        | DYNAMIC CONE PENETRATION RESISTANCE PLOT | V        | /ATER C | ONTENT       | , PERC     |          | B. T. B                    | UNFROZEN                 |
| Ī        | SORI             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TRA               | E           | ₽                                   | -    | LO S       | E E        | RESISTANCE PLOT                          | '        | wp      | <del> </del> | ———I<br>30 | wl<br>40 | \( \brace{3}{5}            | UNCERTAIN                |
| $\dashv$ |                  | GROUND SURFACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ω.                |             | ┝                                   |      | ш          | ~          | 50 100 150 200 250                       |          | 1       | -            | 1          | +        | -                          |                          |
|          |                  | GRAVEL and COBBLES, some sand,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | įΨ                | 0.00        |                                     |      |            |            |                                          |          |         |              |            |          |                            |                          |
|          |                  | trace silt, brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60                |             |                                     |      |            |            |                                          |          |         |              |            |          |                            |                          |
|          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.                |             |                                     |      |            |            |                                          |          |         |              |            |          |                            |                          |
| '        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,7               |             | 1                                   | RUN  | 1          | 65         |                                          |          |         |              |            |          |                            |                          |
|          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5,4               | 1.90        |                                     |      |            |            |                                          |          |         |              |            |          |                            | 1.90                     |
| 2        |                  | GRANITIC GNEISS, slightly weathered,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K                 |             | 1                                   |      |            |            |                                          |          |         |              |            |          |                            |                          |
|          |                  | medium to coarse grained, closely jointed, grey to pink                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |                                     |      |            |            |                                          |          |         |              |            |          |                            |                          |
| 3        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\mathbb{N}$      |             |                                     |      |            |            |                                          |          |         |              |            |          |                            |                          |
|          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     |      |            |            |                                          |          |         |              |            |          |                            |                          |
|          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     |      |            |            | TOD 4000/ OOD 4000/ DOD 000/             |          |         |              |            |          |                            |                          |
| 1        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             | 2                                   | RUN  | 1          |            | TCR=100% SCR=100% RQD=80%                | l        |         |              |            |          |                            |                          |
|          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     |      |            |            |                                          |          |         |              |            |          |                            |                          |
| 5        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     |      |            |            |                                          | l        |         |              |            |          |                            |                          |
|          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     |      |            |            |                                          | l        |         |              |            |          |                            |                          |
|          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     |      |            |            |                                          |          |         |              |            |          |                            |                          |
| 3        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     |      |            |            |                                          | l        |         |              |            |          |                            |                          |
| - [:     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     |      |            |            |                                          | l        |         |              |            |          |                            |                          |
| .        | ond              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             | 3                                   | RUN  | 1          |            | TCR=100% SCR=99% RQD=81%                 |          |         |              |            |          |                            |                          |
|          | NQ Diamond Drill |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     |      |            |            |                                          | l        |         |              |            |          |                            |                          |
| [ ]      | g                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     |      |            |            |                                          | l        |         |              |            |          |                            |                          |
| ·   2    | ا                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     |      |            |            |                                          |          |         |              |            |          |                            |                          |
|          |                  | hacoming faintly worthorod, moderately to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |             |                                     |      |            |            |                                          |          |         |              |            |          |                            |                          |
| )        |                  | becoming faintly weathered, moderately to widely jointed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\mathbb{M}$      |             |                                     |      |            |            |                                          | l        |         |              |            |          |                            |                          |
|          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     |      |            |            |                                          | l        |         |              |            |          |                            |                          |
| ٦        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             | 4                                   | RUN  | 1          |            | TCR=99% SCR=99% RQD=81%                  | l        |         |              |            |          |                            |                          |
| 0        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     | [,   |            |            |                                          | l        |         |              |            |          |                            |                          |
|          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     |      |            |            |                                          | l        |         |              |            |          |                            |                          |
| 1        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     |      |            |            |                                          | l        |         |              |            |          |                            |                          |
|          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             | -                                   |      |            |            |                                          |          |         |              |            |          |                            |                          |
| ر ا      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     |      |            |            |                                          |          |         |              |            |          |                            |                          |
| 2        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     |      |            |            |                                          |          |         |              |            |          |                            |                          |
|          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     | L    |            |            |                                          | l        |         |              |            |          |                            |                          |
| 3        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             | 5                                   | RUN  | 1          |            | TCR=100% SCR=98% RQD=84%                 |          |         |              |            |          |                            |                          |
|          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     |      |            |            |                                          | l        |         |              |            |          |                            |                          |
| 4        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     |      |            |            |                                          | l        |         |              |            |          |                            |                          |
|          | $\perp$          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M                 | 14.40       | $ldsymbol{ldsymbol{ldsymbol{eta}}}$ |      |            |            |                                          | l        |         |              |            |          |                            |                          |
|          |                  | END OF BOREHOLE AT 14.40m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |             |                                     |      |            |            |                                          | l        |         |              |            |          |                            |                          |
| 5        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     |      |            |            |                                          | l        |         |              |            |          |                            |                          |
|          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     |      |            |            |                                          |          |         |              |            |          |                            |                          |
| 6        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     |      |            |            |                                          |          |         |              |            |          |                            |                          |
|          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     |      |            |            |                                          |          |         |              |            |          |                            |                          |
| _        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     |      |            |            |                                          |          |         |              |            |          |                            |                          |
| 7        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     |      |            |            |                                          |          |         |              |            |          |                            |                          |
|          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     |      |            |            |                                          |          |         |              |            |          |                            |                          |
| 8        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     |      |            |            |                                          |          |         |              |            |          |                            |                          |
|          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     |      |            |            |                                          |          |         |              |            |          |                            |                          |
| _        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     |      |            |            |                                          |          |         |              |            |          |                            |                          |
| 19       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     |      |            |            |                                          | l        |         |              |            |          |                            |                          |
|          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             |                                     |      |            |            |                                          | l        |         |              |            |          |                            |                          |
| $\perp$  |                  | 0001111014147775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | 1011        | Ļ                                   |      |            |            |                                          | <u> </u> |         |              |            |          | <u> </u>                   |                          |
|          |                  | GROUNDWATER ELE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |             | ó                                   | _    | _          |            |                                          |          |         |              |            |          |                            |                          |
|          |                  | $\overline{egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} arra$ | ALLA <sup>.</sup> | TION        |                                     | Ż    |            | EEI        | P/DUAL INSTALLATION                      |          | LOGGE   | <b>D</b> :   | Schneid    | ler      |                            |                          |
|          |                  | WATER LEVEL (date)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |             |                                     |      |            |            | LEVEL (date)                             |          |         |              | KS         |          |                            |                          |



PROJECT : Mary River Project

Project No. 19-1605-126

LOCATION : 44+000 - Quarry

STARTED

July 15, 2011

DRILLER: BOART LONGYEAR, LM-55

SHEET 1 OF 2

|                         | ARTE<br>MPLE     | :D : July 15, 2011<br>ETED : July 15, 2011                                       |             |           | DR     | ILLE  |            |            | OART LONGYEAR, LM-55<br>85 927 E 596 138 |            |                |                 | ET 1 OF<br>JM: C           |                             |
|-------------------------|------------------|----------------------------------------------------------------------------------|-------------|-----------|--------|-------|------------|------------|------------------------------------------|------------|----------------|-----------------|----------------------------|-----------------------------|
|                         |                  | SOIL PROFILE                                                                     |             |           | 5      | SAME  |            |            |                                          | EXCESS IC  |                | ENT, PERCENT    | Г                          | THERMISTER/<br>GROUND COND. |
| DEPTH SCALE<br>(metres) | BORING METHOD    |                                                                                  | Ь           | _         |        |       | _          |            |                                          | 10         | 20 eic         | e<br>30 40      | ADDITIONAL<br>LAB. TESTING | GROUND COND. FROZEN         |
| TH S                    | NG M             | DESCRIPTION                                                                      | STRATA PLOT | ELEV. (m) | NUMBER | TYPE  | BLOWS/0.3m | RECOVERY % | COMMENTS DYNAMIC CONE PENETRATION        |            |                | T, PERCENT      | - ES                       | UNFROZEN                    |
|                         | BORII            |                                                                                  | STRA        | EE        | Ñ      | í     | BLOV       | RECO       | DYNAMIC CONE PENETRATION RESISTANCE PLOT | wp —<br>10 | ⊖ <sup>W</sup> | y   wl<br>30 40 | AB L                       | UNCERTAIN                   |
|                         |                  | GROUND SURFACE                                                                   | П           | 0.00      |        |       |            |            | 7 7 7 7                                  |            |                |                 |                            |                             |
| ļ.                      |                  | GRAVEL and COBBLES, granitic, subrounded to subangular, grey, fines              | 70          |           |        |       |            |            |                                          |            |                |                 |                            |                             |
| 1                       |                  | washed out                                                                       |             |           | 1      | RUN   |            | 9          |                                          |            |                |                 |                            |                             |
|                         |                  |                                                                                  | $^{\circ}$  |           |        |       |            |            |                                          |            |                |                 |                            |                             |
| -<br>-2                 |                  |                                                                                  |             |           |        |       |            |            |                                          |            |                |                 |                            | -                           |
| -                       |                  |                                                                                  | ς O         |           |        |       |            |            |                                          |            |                |                 |                            |                             |
| - 3                     |                  |                                                                                  | 0           |           |        |       |            |            |                                          |            |                |                 |                            |                             |
|                         |                  |                                                                                  | 60          |           | 2      | RUN   |            | 26         |                                          |            |                |                 |                            |                             |
| -4                      |                  |                                                                                  | °O          |           |        |       |            |            |                                          |            |                |                 |                            | -                           |
|                         |                  |                                                                                  |             | 5.00      |        |       |            |            |                                          |            |                |                 |                            | 5.00                        |
| - 5<br>[                |                  | GRANITIC GNEISS, slightly weathered, medium grained, closely spaced joints, grey | M           | 5.00      |        |       |            |            |                                          |            |                |                 |                            | 5.00                        |
|                         |                  | to pink                                                                          |             |           |        |       |            |            |                                          |            |                |                 |                            | -                           |
| -6<br>-                 |                  |                                                                                  |             |           | 3      | RUN   |            |            | TCR=93% SCR=50% RQD=50%                  |            |                |                 |                            | -                           |
| - 7                     |                  |                                                                                  |             |           | ]      | IXOIN |            |            | 10N-33/6 30N-30/6 NQD-30/6               |            |                |                 |                            | ]                           |
|                         |                  |                                                                                  |             |           |        |       |            |            |                                          |            |                |                 |                            | ]                           |
| -8                      |                  | becoming fresh, moderately spaced                                                |             |           |        |       |            |            |                                          |            |                |                 |                            | ] -                         |
| ŀ                       |                  | becoming fresh, moderately spaced                                                |             |           |        |       |            |            |                                          |            |                |                 |                            | ]                           |
| 9                       |                  |                                                                                  |             |           |        |       |            |            |                                          |            |                |                 |                            | -                           |
|                         |                  |                                                                                  |             |           | 4      | RUN   |            |            | TCR=97% SCR=97% RQD=55%                  |            |                |                 |                            | -                           |
| -10                     |                  |                                                                                  |             |           |        |       |            |            |                                          |            |                |                 |                            |                             |
|                         | <b>=</b>         |                                                                                  |             |           |        |       |            |            |                                          |            |                |                 |                            |                             |
| - 11                    | NQ Diamond Drill |                                                                                  |             |           |        |       |            |            |                                          |            |                |                 |                            | -                           |
|                         | Diamo            |                                                                                  |             |           |        |       |            |            |                                          |            |                |                 |                            | ]                           |
| <b>-</b> 12             | NO               |                                                                                  |             |           | _      |       |            |            | TOD 000/ 00D 000/ DOD 570/               |            |                |                 |                            | -                           |
| -<br>13                 |                  |                                                                                  |             |           | 5      | RUN   |            |            | TCR=98% SCR=98% RQD=57%                  |            |                |                 |                            |                             |
| F 13                    |                  |                                                                                  |             |           |        |       |            |            |                                          |            |                |                 |                            | ]                           |
| -14                     |                  |                                                                                  |             |           |        |       |            |            |                                          |            |                |                 |                            | -                           |
|                         |                  |                                                                                  |             |           |        |       |            |            |                                          |            |                |                 |                            |                             |
| -<br>- 15               |                  |                                                                                  |             |           |        |       |            |            |                                          |            |                |                 |                            | -                           |
| [                       |                  |                                                                                  |             |           | 6      | RUN   |            |            | TCR=100% SCR=25% RQD=7%                  |            |                |                 |                            | ]                           |
| 16                      |                  |                                                                                  |             |           |        |       |            |            |                                          |            |                |                 |                            | -                           |
| ŧ                       |                  |                                                                                  |             |           |        |       |            |            |                                          |            |                |                 |                            | ]                           |
| - 17                    |                  |                                                                                  |             |           |        |       |            |            |                                          |            |                |                 |                            | -                           |
| ŀ                       |                  |                                                                                  |             |           |        |       |            |            |                                          |            |                |                 |                            |                             |
| -18<br>[                |                  |                                                                                  |             |           |        |       |            |            |                                          |            |                |                 |                            | -                           |
| ļ ,,                    |                  |                                                                                  |             |           | 7      | RUN   |            |            | TCR=100% SCR=92% RQD=59%                 |            |                |                 |                            |                             |
| - 19<br>-               |                  |                                                                                  |             |           |        |       |            |            |                                          |            |                |                 |                            |                             |
| <u> </u>                |                  |                                                                                  |             |           |        |       |            |            |                                          |            |                |                 |                            |                             |
|                         |                  | GROUNDWATER ELE                                                                  | VAT         | IONS      | 3      |       |            |            | <del></del>                              |            |                |                 |                            |                             |

GROUNDWATER ELEVATIONS

SHALLOW/SINGLE INSTALLATION
 WATER LEVEL (date)

THURBER2S(5126) 5126.GPJ 11/9/11

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Khabbaznia
CHECKED : KS



Mary River Project **PROJECT** 

44+000 - Quarry

Project No. 19-1605-126

STARTED COMPLETED :

LOCATION

July 15, 2011 July 15, 2011

DRILLER: BOART LONGYEAR, LM-55 N 7 885 927 E 596 138

SHEET 2 OF 2 DATUM: CGVD28

|                         |               |                               |             |           | Γ.      | 24.5  |            |            | 35 927 E 596 138                         | EXC | ESS ICE          | CONTF    | NT, PER       | CENT   |                            |                            |
|-------------------------|---------------|-------------------------------|-------------|-----------|---------|-------|------------|------------|------------------------------------------|-----|------------------|----------|---------------|--------|----------------------------|----------------------------|
| DEPTH SCALE<br>(metres) | BORING METHOD | SOIL PROFILE                  | <b>1</b> ⊢1 |           | Ľ       | SAM   | _          | _          |                                          |     |                  | oice     |               |        | ADDITIONAL<br>LAB. TESTING | THERMISTER/<br>GROUND COND |
| stres)                  | MET           |                               | STRATA PLOT | (E)       | H       | l ш   | BLOWS/0.3m | RECOVERY % | COMMENTS                                 |     |                  |          |               | 10<br> | TION                       | FROZEN                     |
| # # E                   | RING          | DESCRIPTION                   | ATA         | ELEV. (m) | NUMBER  | TYPE  | /SMC       | OVE        | DYNAMIC CONE PENETRATION RESISTANCE PLOT |     | ATER CO          | TNETNC   |               |        | TOO!                       | UNFROZEN                   |
|                         | BOR           |                               | STR         | H         | Ž       |       | BLC        | REC        | 50 100 150 200 250                       |     |                  |          |               | 40<br> | 4 1                        | UNCERTAIN                  |
|                         |               | mandagatah da widah canasad   | \//         |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
|                         |               | moderately to widely spaced   |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
| 21                      |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
| -                       |               |                               |             |           | R       | RUN   |            |            | TCR=100% SCR=95% RQD=64%                 |     |                  |          |               |        |                            |                            |
| -22                     |               |                               |             |           | "       | IXOIX |            |            | 1011-100% 3C11-35% 11QD-04%              |     |                  |          |               |        |                            |                            |
|                         |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
|                         |               |                               |             | 23.00     |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
| 23                      |               | END OF BOREHOLE AT 23.00m.    |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
| _                       |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
| -24                     |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
|                         |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
| 25                      |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
|                         |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
| -26                     |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
|                         |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
| 27                      |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
|                         |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
| -28                     |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
|                         |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
| 29                      |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
|                         |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
| -30                     |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
|                         |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
| 31                      |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
|                         |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
| -32                     |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
|                         |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
| 33                      |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
|                         |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
| -34                     |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
|                         |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
| 35                      |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
|                         |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
| -36                     |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
| "                       |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
| 37                      |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
| 31                      |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
| 20                      |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
| -38<br>                 |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
|                         |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
| 39                      |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
|                         |               |                               |             |           |         |       |            |            |                                          |     |                  |          |               |        |                            |                            |
|                         |               | GROUNDWATER ELE               | VA1         | IONS      | <u></u> |       | <u> </u>   | <u> </u>   |                                          |     |                  | <u> </u> |               |        |                            |                            |
|                         |               | $\nabla$ SHALLOW/SINGLE INSTA |             |           |         | _     |            | \          | P/DUAL INSTALLATION                      |     |                  | _        |               |        |                            |                            |
| 39                      |               | WATER LEVEL (date)            | ALLA        | IION      |         |       |            |            | LEVEL (date)                             |     | LOGGEI<br>CHECKE |          | Khabbaz<br>KS | rnia   |                            |                            |
|                         |               | (,                            |             |           |         |       |            |            | (/                                       |     |                  | . ·      |               |        |                            | THURBE                     |



Mary River Project **PROJECT** 

Project No. 19-1605-126

LOCATION 45+000 - Quarry STARTED

COMPLETED :

July 14, 2011 July 14, 2011

DRILLER: BOART LONGYEAR, LM-55

N 7 884 724 E 596 201

SHEET 1 OF 1 DATUM: CGVD28

|                         |               | SOIL PROFILE                                                                                                  |              |                     | Ţ :    | SAM      |            |            | 54 724 E 590 201                         | EXCES | SS ICE   |                  | NT, PEF |         |                            | THERMISTER/<br>GROUND CONI |
|-------------------------|---------------|---------------------------------------------------------------------------------------------------------------|--------------|---------------------|--------|----------|------------|------------|------------------------------------------|-------|----------|------------------|---------|---------|----------------------------|----------------------------|
| DEPTH SCALE<br>(metres) | BORING METHOD |                                                                                                               | PO.          |                     | _      |          | 33         | %/         |                                          | 10    | ) 2      | o <sup>ice</sup> |         | 40      | ADDITIONAL<br>LAB. TESTING | FROZEN                     |
| TH S                    | <u>R</u>      | DESCRIPTION                                                                                                   | STRATA PLOT  | ELEV. (m)           | NUMBER | TYPE     | BLOWS/0.3m | RECOVERY % | COMMENTS                                 | WA.   | TER CO   | L<br>ONTEN       | , PERC  | <br>ENT | E                          | UNFROZEN                   |
| - 등                     | RIN           | DESCRIPTION                                                                                                   | ZAT,         | :LE                 | Į₽     | ≿        | Š.         | COV        | DYNAMIC CONE PENETRATION RESISTANCE PLOT | wp    | <b>—</b> | o <u>w</u>       |         |         | AB.                        | UNCERTAIN                  |
|                         | B             |                                                                                                               | STF          | Ш                   | Ĺ      |          | В          | R          | 50 100 150 200 250                       | 10    | ) 2      | 20               | 30      | 40      |                            | ONOLINIAIN                 |
|                         |               | GROUND SURFACE  GRAVEL, light grey to pink, sub-angular to                                                    | <br> <br>    | 0.00<br><b>0.11</b> |        |          |            |            |                                          |       |          |                  |         |         |                            | 1                          |
|                         |               | sub-rounded                                                                                                   | 60           | 0.11                |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
|                         |               | COBBLES and BOULDERS, some gravel, granitic, angular, grey                                                    | 1) —         |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
| 1                       |               |                                                                                                               | 00           |                     | 1      | RUN      | ı          | 79         |                                          |       |          |                  |         |         |                            |                            |
|                         |               |                                                                                                               | 60           |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
| -2                      |               |                                                                                                               | 0            | 2.20                |        |          |            |            |                                          |       |          |                  |         |         |                            | 2.20                       |
|                         |               | GRANITIC GNEISS, faintly weathered, fine to medium grained, moderately to widely jointed, black to light grey | $\mathbb{W}$ |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
| 3                       |               | widely jointed, black to light grey                                                                           |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
| Ŭ                       |               |                                                                                                               |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
|                         |               |                                                                                                               |              |                     | 2      | RUN      |            |            | TCR=99% SCR=98% RQD=89%                  |       |          |                  |         |         |                            |                            |
| -4                      |               |                                                                                                               |              |                     | -      |          |            |            |                                          |       |          |                  |         |         |                            |                            |
|                         |               |                                                                                                               |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
| - 5                     |               |                                                                                                               |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
|                         |               |                                                                                                               |              |                     | -      | <u> </u> |            |            |                                          |       |          |                  |         |         |                            |                            |
|                         |               |                                                                                                               |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
| 6                       | _             |                                                                                                               |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
|                         | [             |                                                                                                               |              |                     | ,      | RUN      |            |            | TCR=100% SCR=100% RQD=85%                |       |          |                  |         |         |                            |                            |
| 7                       | Diamond Drill |                                                                                                               |              |                     | 3      | INON     | 1          |            | 1011-100/0 30N-100/0 KQD-00%             |       |          |                  |         |         |                            |                            |
|                         | Dian          |                                                                                                               |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
| -8                      | ջ             |                                                                                                               |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
| ١                       |               |                                                                                                               |              |                     |        | _        |            |            |                                          |       |          |                  |         |         |                            |                            |
|                         |               |                                                                                                               |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
| 9                       |               |                                                                                                               |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
|                         |               |                                                                                                               |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
| -10                     |               |                                                                                                               |              |                     | 4      | RUN      | 1          |            | TCR=100% SCR=100% RQD=89%                |       |          |                  |         |         |                            |                            |
|                         |               |                                                                                                               | $\otimes$    |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
|                         |               |                                                                                                               |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
| 11                      |               |                                                                                                               |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
|                         |               |                                                                                                               |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
| 12                      |               |                                                                                                               |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
|                         |               |                                                                                                               |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
| 13                      |               |                                                                                                               |              |                     | 5      | RUN      | ı          |            | TCR=100% SCR=97% RQD=88%                 |       |          |                  |         |         |                            |                            |
|                         |               |                                                                                                               |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
|                         |               |                                                                                                               |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
| -14                     | $\perp$       |                                                                                                               | $\bigotimes$ | 14.30               | L      | L        | L          |            |                                          |       |          |                  |         |         |                            |                            |
| ſ                       |               | END OF BOREHOEL AT 14.30m.                                                                                    |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
| 15                      |               |                                                                                                               |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
|                         |               |                                                                                                               |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
| .,,                     |               |                                                                                                               |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
| -16                     |               |                                                                                                               |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
|                         |               |                                                                                                               |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
| 17                      |               |                                                                                                               |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
|                         |               |                                                                                                               |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
| -18                     |               |                                                                                                               |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
| 10                      |               |                                                                                                               |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
|                         |               |                                                                                                               |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
| 19                      |               |                                                                                                               |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
|                         |               |                                                                                                               |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            |                            |
|                         |               |                                                                                                               | Ш            |                     | L      |          |            |            |                                          |       |          |                  |         |         |                            |                            |
|                         |               | GROUNDWATER ELE                                                                                               |              |                     | 3      |          |            |            |                                          |       |          |                  |         |         |                            |                            |
|                         |               | abla shallow/single insta                                                                                     | ALLA         | TION                |        | 7        | Z D        | EEI        | P/DUAL INSTALLATION                      | 10    | OGGED    | ) :              | Schneid | ler     |                            |                            |
|                         |               | WATER LEVEL (date)                                                                                            | •            |                     |        |          |            |            | LEVEL (date)                             |       | HECKE    |                  | KS      |         |                            | THURST                     |
|                         |               | . ,                                                                                                           |              |                     |        |          |            |            |                                          |       |          |                  |         |         |                            | THURB                      |



PROJECT : Mary River Project Project Project Project Project Project No. 19-1605-126

LOCATION : 50+000 - Quarry

 STARTED : July 14, 2011
 DRILLER: BOART LONGYEAR, LM-55
 SHEET 1 OF 1

 COMPLETED : July 14, 2011
 N 7 881 100 E 597 357
 DATUM: CGVD28

|                         |                  | - July 14, 2011                                                               |                      |           |          |       |            |          | 31 100 E 331 331                         |     |          |       |               |         |          |                                                  | 5VD20                                            |
|-------------------------|------------------|-------------------------------------------------------------------------------|----------------------|-----------|----------|-------|------------|----------|------------------------------------------|-----|----------|-------|---------------|---------|----------|--------------------------------------------------|--------------------------------------------------|
| ш                       | ОО               | SOIL PROFILE                                                                  |                      |           |          | SAMI  | PLES       | S        |                                          | EXC | ESS IC   |       | ice           | IT, PER | CENT     | . (2)                                            | THERMISTER/<br>GROUND COND.                      |
| DEPTH SCALE<br>(metres) | BORING METHOD    |                                                                               | 5                    |           |          |       | E          | %        |                                          |     | 10       | 20    | 3             | 0 4     | 10       | ŽŽ                                               | GROUND COND. FROZEN UNFROZEN UNCERTAIN           |
| ⊣ S(<br>etre            | W.               |                                                                               | STRATA PLOT          | ELEV. (m) | NUMBER   | ш     | BLOWS/0.3m | RECOVERY | COMMENTS                                 |     |          |       |               |         | l        |                                                  | FROZEN                                           |
| H. ii                   | ING              | DESCRIPTION                                                                   | \4<br>¥T             | EV.       | JME      | TYPE  | WS         | OVE      | DYNAMIC CONE PENETRATION RESISTANCE PLOT | W   | AIER     | CONTE | =NI,<br>、W    | PERCE   |          | G   G                                            | UNFROZEN                                         |
| ᆸ                       | 30R              |                                                                               | TR/                  | ᆸ         | ž        |       | зго        | Ë        | 50 100 150 200 250                       | '   | vp<br>10 | 20    | 3(            | —— I v  | мі<br>10 | ⋖                                                | UNCERTAIN                                        |
|                         |                  | GROUND SURFACE                                                                | 0                    |           | ⊢        |       | _          | Ľ        | 30 100 130 200 230                       | +   | 1        | +     | $\overline{}$ |         |          | $\vdash$                                         |                                                  |
|                         |                  | GRAVEL and BOULDER                                                            | $+$ $\cup$           | 0.00      |          |       |            |          |                                          | 1   | -        |       |               |         |          | <del>                                     </del> | <del>                                     </del> |
| -                       |                  |                                                                               | 1. 0                 | 0.44      | ł        |       |            |          |                                          |     |          |       |               |         |          | 1                                                | 0.44                                             |
| . 1                     |                  | GRANITIC GNEISS, slightly weathered, medium to coarse grained, strong, black, |                      |           | ١,       | RUN   |            | 87       |                                          |     |          |       |               |         |          | 1                                                |                                                  |
| -1                      |                  | grey, red                                                                     |                      |           | l '      | IXOIN |            | 01       |                                          |     |          |       |               |         |          | 1                                                | -                                                |
| t l                     |                  |                                                                               |                      |           |          |       |            |          |                                          |     |          |       |               |         |          | 1                                                |                                                  |
| ا را                    |                  |                                                                               |                      |           |          |       |            |          |                                          |     |          |       |               |         |          | 1                                                |                                                  |
| -2                      |                  |                                                                               | M                    |           |          |       |            |          |                                          |     |          |       |               |         |          | 1                                                | _                                                |
| .                       |                  |                                                                               |                      |           |          |       |            |          |                                          |     |          |       |               |         |          | 1                                                |                                                  |
| 3                       |                  |                                                                               | $\mathbb{M}$         |           |          |       |            |          |                                          |     |          |       |               |         |          | 1                                                |                                                  |
| :                       |                  |                                                                               |                      |           | 2        | RUN   |            |          | TCR=100% SCR=91% RQD=84%                 |     |          |       |               |         |          | 1                                                |                                                  |
| ŀ I                     |                  |                                                                               | $\mathbb{M}$         |           |          |       |            |          |                                          |     |          |       |               |         |          | 1                                                |                                                  |
| -4                      |                  |                                                                               |                      |           |          |       |            |          |                                          |     |          |       |               |         |          | 1                                                | -                                                |
| - 1                     |                  |                                                                               | $\mathbb{M}$         |           |          |       |            |          |                                          |     |          |       |               |         |          | 1                                                |                                                  |
| - 1                     |                  |                                                                               |                      |           |          |       |            |          |                                          |     |          |       |               |         |          | 1                                                |                                                  |
| - 5                     |                  |                                                                               | $\mathbb{K}$         |           |          |       |            |          |                                          |     |          |       |               |         |          | 1                                                | -                                                |
|                         |                  |                                                                               |                      |           |          |       |            |          |                                          |     |          |       |               |         |          | 1                                                |                                                  |
| -6                      |                  |                                                                               | $\mathbb{K}/\!\!\!/$ |           |          |       |            |          |                                          |     |          |       |               |         |          | 1                                                | _                                                |
| t I                     |                  |                                                                               |                      |           | 3        | RUN   |            |          | TCR=100% SCR=85% RQD=93%                 |     |          |       |               |         |          | 1                                                |                                                  |
| - 1                     |                  |                                                                               | K//                  |           |          |       |            |          |                                          |     |          |       |               |         |          | 1                                                |                                                  |
| 7                       |                  |                                                                               |                      |           |          |       |            |          |                                          |     |          |       |               |         |          | 1                                                |                                                  |
| .                       |                  |                                                                               | K/A                  |           |          |       |            |          |                                          |     |          |       |               |         |          | 1                                                |                                                  |
|                         | ≣                |                                                                               |                      |           |          |       |            |          |                                          |     |          |       |               |         |          | 1                                                |                                                  |
| -8                      | NQ Diamond Drill | becoming fresh, moderately jointed                                            |                      |           |          |       |            |          |                                          |     |          |       |               |         |          | 1                                                | -                                                |
|                         | amo              |                                                                               |                      |           |          |       |            |          |                                          |     |          |       |               |         |          | 1                                                |                                                  |
| -<br>- 9                | ۵                |                                                                               |                      |           |          |       |            |          |                                          |     |          |       |               |         |          | 1                                                |                                                  |
| . 9                     | ۶                |                                                                               |                      |           | 4        | RUN   |            |          | TCR=97% SCR=97% RQD=78%                  |     |          |       |               |         |          | 1                                                |                                                  |
| - 1                     |                  |                                                                               |                      |           |          | INOIN |            |          | 101(-31/0 001(-31/0 1(QD-10/0            |     |          |       |               |         |          | 1                                                |                                                  |
| 10                      |                  |                                                                               |                      |           |          |       |            |          |                                          |     |          |       |               |         |          | 1                                                | -                                                |
|                         |                  |                                                                               |                      |           |          |       |            |          |                                          |     |          |       |               |         |          | 1                                                |                                                  |
|                         |                  |                                                                               |                      |           |          |       |            |          |                                          |     |          |       |               |         |          | 1                                                |                                                  |
| - 11                    |                  | closely jointed                                                               | <b>X</b> //          |           |          |       |            |          |                                          |     |          |       |               |         |          | 1                                                | -                                                |
| :                       |                  |                                                                               |                      |           |          |       |            |          |                                          |     |          |       |               |         |          | 1                                                |                                                  |
| -12                     |                  |                                                                               |                      |           |          |       |            |          |                                          |     |          |       |               |         |          | 1                                                | _                                                |
| F 12                    |                  |                                                                               |                      |           | _        | DLIN  |            |          | TCD-009/ CCD-009/ DOD-909/               |     |          |       |               |         |          | 1                                                | _                                                |
| .                       |                  |                                                                               |                      |           | 5        | RUN   |            |          | TCR=99% SCR=99% RQD=89%                  |     |          |       |               |         |          | 1                                                |                                                  |
| 13                      |                  |                                                                               |                      |           |          |       |            |          |                                          |     |          |       |               |         |          | 1                                                |                                                  |
|                         |                  |                                                                               |                      |           |          |       |            |          |                                          |     |          |       |               |         |          | 1                                                |                                                  |
|                         |                  |                                                                               |                      |           | L        |       |            |          |                                          | 1   |          |       |               |         |          |                                                  |                                                  |
| -14                     |                  | faintly weathered, closely to moderately                                      |                      |           |          |       |            |          |                                          | 1   |          |       |               |         |          |                                                  | -                                                |
| <u> </u>                |                  | jointed                                                                       |                      |           | l        |       |            |          |                                          |     |          |       |               |         |          |                                                  |                                                  |
| -<br>- 15               |                  |                                                                               |                      |           |          |       |            |          |                                          | 1   |          |       |               |         |          |                                                  | ] .                                              |
| ا '' إ                  |                  |                                                                               |                      |           | 6        | RUN   |            |          | TCR=100% SCR=99% RQD=84%                 |     |          |       |               |         |          |                                                  |                                                  |
| -                       |                  |                                                                               |                      |           | ۱        | IVOIN |            |          | 1011-100/0 3011-88% RQD-04%              |     |          |       |               |         |          |                                                  |                                                  |
| -16                     |                  |                                                                               |                      |           | l        |       |            |          |                                          |     |          |       |               |         |          |                                                  | -                                                |
|                         |                  |                                                                               |                      |           | l        |       |            |          |                                          |     |          |       |               |         |          |                                                  |                                                  |
|                         |                  |                                                                               |                      | 16.90     | L        |       |            |          |                                          |     |          |       |               |         |          |                                                  |                                                  |
| - 17                    |                  | END OF BOREHOLE AT 16.90m.                                                    |                      |           |          |       |            |          |                                          |     |          |       |               |         |          |                                                  |                                                  |
| <u> </u>                |                  |                                                                               |                      |           | l        |       |            |          |                                          |     |          |       |               |         |          |                                                  |                                                  |
| -18                     |                  |                                                                               |                      |           |          |       |            |          |                                          |     |          |       |               |         |          |                                                  | _                                                |
| - 10                    |                  |                                                                               |                      |           |          |       |            |          |                                          | 1   |          |       |               |         |          |                                                  | ]                                                |
| [                       |                  |                                                                               |                      |           |          |       |            |          |                                          | 1   |          |       |               |         |          |                                                  |                                                  |
| 19                      |                  |                                                                               |                      |           |          |       |            |          |                                          | 1   |          |       |               |         |          |                                                  |                                                  |
|                         |                  |                                                                               |                      |           |          |       |            |          |                                          | 1   |          |       |               |         |          |                                                  |                                                  |
|                         |                  |                                                                               |                      |           | l        |       |            |          |                                          |     |          |       |               |         |          |                                                  |                                                  |
|                         |                  | GROUNDWATER ELE                                                               | -\/^+                | IONIC     | <u> </u> |       |            |          |                                          | -   |          |       |               |         |          |                                                  |                                                  |

**GROUNDWATER ELEVATIONS** 

SHALLOW/SINGLE INSTALLATION
 WATER LEVEL (date)

THURBER2S(5126) 5126.GPJ 11/9/11

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Van Luver/Schneider CHECKED : KS



Mary River Project **PROJECT** 

Project No. 19-1605-126

LOCATION 53+700 - Quarry

July 13, 2011 STARTED

DRILLER: BOART LONGYEAR, LM-55

July 13, 2011 COMPLETED

N 7 877 567 E 597 616

SHEET 1 OF 2 DATUM: CGVD28

| ш                       | 8             | SOIL PROFILE                                                                                            |                |           |          | SAM      | PLE        | S        |                                          | EXCE | SS ICE | CONTE                    |       | RCENT    | . (1)                      | THERMISTE<br>GROUND CO |
|-------------------------|---------------|---------------------------------------------------------------------------------------------------------|----------------|-----------|----------|----------|------------|----------|------------------------------------------|------|--------|--------------------------|-------|----------|----------------------------|------------------------|
| DEPTH SCALE<br>(metres) | BORING METHOD |                                                                                                         | TO.            |           | \_       |          | 3m         | ۲%       |                                          | 1    | 0 2    | o <sup>ice</sup><br>20 3 |       | 40       | ADDITIONAL<br>LAB. TESTING | FROZEN                 |
| netre                   | ∑<br>S        | DECODIDATION                                                                                            | STRATA PLOT    | ELEV. (m) | NUMBER   | TYPE     | BLOWS/0.3m | RECOVERY | COMMENTS                                 | WA   | ATER C | L<br>ONTENT              | PERCE | -NT      |                            | UNFROZEN               |
| 5                       | ž             | DESCRIPTION                                                                                             | AT/            | LEV       | I≅       | \( \( \) | NC O       | SOV      | DYNAMIC CONE PENETRATION RESISTANCE PLOT |      |        | OW OW                    |       | wl       | AB.                        | l                      |
| ا د                     | BO            |                                                                                                         | STR            | Ш         | Z        |          | BL         | REC      | 50 100 150 200 250                       | 1    |        |                          |       | 40<br>   |                            | UNCERTAIN              |
|                         |               | GROUND SURFACE                                                                                          |                | 0.00      |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
|                         |               | COBBLES and BOULDERS, some gravel, granitic, angular to subangular, grey                                | 7.0            |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
|                         |               |                                                                                                         |                |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
| 1                       |               |                                                                                                         | 00             |           | 1        | RUN      | ı          | 43       |                                          |      |        |                          |       |          |                            |                        |
|                         |               |                                                                                                         | 60             |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
| 2                       |               |                                                                                                         | 0              | 2.20      |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
|                         |               | SAND and GRAVEL, some cobbles, some                                                                     |                | 2.20      | ┢        |          |            |          |                                          |      |        |                          |       |          |                            |                        |
|                         |               | silt, wet, brown, some fines washed out                                                                 |                |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
| 3                       |               |                                                                                                         |                |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
|                         |               |                                                                                                         |                |           | ١,       | RUN      |            | 57       |                                          |      |        |                          |       |          |                            |                        |
| ιl                      |               |                                                                                                         |                |           | _        | KUN      | 1          | 31       |                                          |      |        |                          |       |          |                            |                        |
|                         |               |                                                                                                         |                |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
|                         |               | BOULDERS and COBBLES, angular to                                                                        |                | 4.70      | ┨        |          |            |          |                                          |      |        |                          |       |          |                            |                        |
| 5                       |               | subangular, some gravel, pink and dark grey, some fines washed out                                      | 60             |           | <u> </u> |          |            |          |                                          |      |        |                          |       |          |                            |                        |
|                         |               | 5 - y, mass nation out                                                                                  | 6              |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
| 3                       |               |                                                                                                         | 7,9            |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
|                         |               |                                                                                                         | 54             |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
| ,                       |               |                                                                                                         | O <sub>o</sub> |           | 3        | RUN      | 1          | 76       |                                          |      |        |                          |       |          |                            |                        |
|                         |               |                                                                                                         | 60             |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
|                         |               | CDANITIC CNEISS fainthrusathard to                                                                      |                | 7.70      | -        |          |            |          |                                          |      |        |                          |       |          |                            | 7.70                   |
| 3                       |               | GRANITIC GNEISS, faintly weathered to fresh, medium to coarse grained, moderately jointed, grey to pink |                |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
|                         |               | moderately jointed, grey to pink                                                                        |                |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
|                         |               |                                                                                                         |                |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
|                         | Ē             |                                                                                                         |                |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
|                         | puc           |                                                                                                         |                |           | 4        | RUN      | ı          |          | TCR=100% SCR=100% RQD=100%               |      |        |                          |       |          |                            |                        |
| 10                      | Diamond       |                                                                                                         |                |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
|                         | Δ<br>D        |                                                                                                         |                |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
| 11                      | -             |                                                                                                         |                |           | L        |          | L          |          |                                          |      |        |                          |       |          |                            |                        |
|                         |               |                                                                                                         |                |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
| 12                      |               |                                                                                                         |                |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
| '-                      |               |                                                                                                         |                |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
|                         |               |                                                                                                         |                |           | 5        | RUN      |            |          | TCR=98% SCR=98% RQD=86%                  |      |        |                          |       |          |                            |                        |
| 13                      |               |                                                                                                         |                |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
|                         |               |                                                                                                         |                |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
| 14                      |               |                                                                                                         |                |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
|                         |               |                                                                                                         |                |           | T        |          |            |          |                                          |      |        |                          |       |          |                            |                        |
| ی                       |               |                                                                                                         | $\mathbb{M}$   |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
| 15                      |               |                                                                                                         |                |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
|                         |               |                                                                                                         |                |           | 6        | RUN      |            |          | TCR=99% SCR=99% RQD=96%                  |      |        |                          |       |          |                            |                        |
| 6                       |               |                                                                                                         |                |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
|                         |               |                                                                                                         |                |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
| 17                      |               |                                                                                                         |                |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
| <u> </u>                |               |                                                                                                         |                |           | $\vdash$ |          |            |          |                                          |      |        |                          |       |          |                            |                        |
|                         |               |                                                                                                         |                |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
| 8                       |               |                                                                                                         |                |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
|                         |               |                                                                                                         |                |           | -        | RUN      |            |          | TCR=100% SCR=100% RQD=98%                |      |        |                          |       |          |                            |                        |
| 19                      |               |                                                                                                         |                |           | [ _      | INUN     |            |          | 1011-100/0 3011-100/0 KQD=90%            |      |        |                          |       |          |                            |                        |
|                         |               |                                                                                                         |                |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
|                         |               |                                                                                                         |                |           |          |          |            |          |                                          |      |        |                          |       |          |                            |                        |
|                         |               | GROUNDWATER ELE                                                                                         | EVAT           | TIONS     | 5        |          | -          |          |                                          |      |        |                          |       | 1        |                            |                        |
|                         |               | $\overline{Y}$ SHALLOW/SINGLE INST.                                                                     |                |           |          | 1        | Z -        |          | P/DUAL INSTALLATION                      |      |        |                          |       |          |                            |                        |
|                         |               | WATER LEVEL (date)                                                                                      | ALLA           | HON       |          |          |            |          | LEVEL (date)                             |      | OGGE   |                          |       | er/Schne | ider                       |                        |
|                         |               | VVATER LEVEL (date)                                                                                     |                |           |          |          | v v A I    |          | LEVEL (uale)                             |      | CHECKE | : ע                      | KS    |          |                            | THUR                   |

Mary River Project **PROJECT** 

LOCATION 53+700 - Quarry

July 13, 2011

Project No. 19-1605-126

July 13, 2011 STARTED

COMPLETED :

DRILLER: BOART LONGYEAR, LM-55 N 7 877 567 E 597 616

SHEET 2 OF 2 DATUM: CGVD28

|                         |                  | TED : July 13, 2011           |             |           |         |      |            |            | 77 567 E 597 616                         | EVOC      | 0 10-  | CONTE          | NT DEC  |           | M: C                       |                             |
|-------------------------|------------------|-------------------------------|-------------|-----------|---------|------|------------|------------|------------------------------------------|-----------|--------|----------------|---------|-----------|----------------------------|-----------------------------|
| IJ,                     | НОР              | SOIL PROFILE                  |             |           |         | SAM  | IPLE       | _          |                                          | EXCES     | SS ICE | CONTE          | NT, PER | CENI      | Z G                        | THERMISTER/<br>GROUND COND. |
| DEPTH SCALE<br>(metres) | BORING METHOD    |                               | STRATA PLOT | (m)       | 띪       | <br> | BLOWS/0.3m | RECOVERY % | COMMENTS                                 | 10<br>    |        |                |         | 10<br>    | ADDITIONAL<br>LAB. TESTING | FROZEN                      |
| EPT)                    | RING             | DESCRIPTION                   | RATA        | ELEV. (m) | NUMBER  | TYPE | OWS,       | COVE       | DYNAMIC CONE PENETRATION RESISTANCE PLOT | WA1<br>wp |        | ONTENT<br>→ OW | , PERCE |           | ADDI<br>AB. T              | UNFROZEN W                  |
|                         | BO               |                               | STF         | ш         | Ĺ       |      | В          | RE         | 50 100 150 200 250                       | 10        | 2      | 0 3            | 30 4    | 10        | _                          | ONCENTAIN                   |
| _                       |                  |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            |                             |
|                         |                  |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            |                             |
| 21                      |                  |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            |                             |
| 20                      |                  |                               |             |           | 8       | RUN  | ١          |            | TCR=100% SCR=100% RQD=90%                |           |        |                |         |           |                            |                             |
| -22                     |                  |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            |                             |
| - 23                    |                  |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            |                             |
|                         | II Dri           |                               | M           |           |         |      |            |            |                                          |           |        |                |         |           |                            |                             |
| -24                     | NQ Diamond Drill |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            |                             |
|                         | M<br>D<br>M      |                               |             |           | 9       | RUN  | 1          |            | TCR=98% SCR=98% RQD=88%                  |           |        |                |         |           |                            |                             |
| 25                      |                  |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            |                             |
|                         |                  |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            |                             |
| -26                     |                  |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            | •                           |
| - 27                    |                  |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            |                             |
|                         |                  |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            |                             |
| -28                     |                  |                               |             |           | 10      | RUN  | ١          |            | TCR=100% SCR=100% RQD=99%                |           |        |                |         |           |                            |                             |
|                         |                  |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            |                             |
| - 29                    |                  |                               |             | 29.20     |         |      |            |            |                                          |           |        |                |         |           |                            |                             |
|                         |                  | END OF BOREHOLE AT 29.20m.    |             |           |         |      |            |            |                                          |           |        |                |         |           |                            |                             |
| -30                     |                  |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            | •                           |
| 0.4                     |                  |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            |                             |
| 31                      |                  |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            |                             |
| -32                     |                  |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            |                             |
|                         |                  |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            |                             |
| - 33                    |                  |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            |                             |
|                         |                  |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            |                             |
| <b>-</b> 34             |                  |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            |                             |
|                         |                  |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            |                             |
| - 35                    |                  |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            |                             |
| 20                      |                  |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            |                             |
| -36                     |                  |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            | •                           |
| - 37                    |                  |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            |                             |
| •                       |                  |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            |                             |
| -38                     |                  |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            |                             |
|                         |                  |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            |                             |
| - 39                    |                  |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            |                             |
|                         |                  |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            |                             |
|                         |                  | GROUNDWATER ELE               | Ш<br>VAT    | IONS      | <u></u> |      |            | <u> </u>   |                                          |           |        |                |         |           |                            |                             |
|                         |                  | $^{ ot}$ shallow/single insta |             |           |         | Ţ    |            | EEI        | P/DUAL INSTALLATION                      | LC        | OGGED  | · :            | Van Luv | er/Schnei | der                        |                             |
|                         |                  | WATER LEVEL (date)            |             |           |         |      |            |            | LEVEL (date)                             |           | HECKE  |                | KS      |           |                            | THURBER                     |
|                         |                  |                               |             |           |         |      |            |            |                                          |           |        |                |         |           |                            |                             |

Mary River Project **PROJECT** 

Project No. 19-1605-126

LOCATION 56+750 - Quarry

STARTED

COMPLETED :

July 11, 2011 July 11, 2011

DRILLER: BOART LONGYEAR

N 7 875 280 E 598 852

SHEET 1 OF 1 DATUM: CGVD28

|                         |                  | SOIL PROFILE                                                                      |             |           | Γ.     | SAM   |            |            | 75 280 E 598 852                         | EXC | ESS ICE | CONTE          | NT, PEF |          | лм: Со<br>Т                |                          |
|-------------------------|------------------|-----------------------------------------------------------------------------------|-------------|-----------|--------|-------|------------|------------|------------------------------------------|-----|---------|----------------|---------|----------|----------------------------|--------------------------|
| DEPTH SCALE<br>(metres) | BORING METHOD    | SOIL PROFILE                                                                      | Τ⊢          | 1         | Ľ      | SAIVI | _          |            |                                          |     |         | oic            | Э       |          | ADDITIONAL<br>LAB. TESTING | THERMISTER<br>GROUND COI |
| SC,                     | ME               |                                                                                   | PLO.        | Œ         | 띪      | l     | BLOWS/0.3m | RY %       | COMMENTS                                 |     |         |                | 1       | 40<br>   | FST                        | FROZEN                   |
| E E                     | ING              | DESCRIPTION                                                                       | \TA         | ELEV. (m) | NUMBER | TYPE  | /S/        | OVE        | DYNAMIC CONE PENETRATION RESISTANCE PLOT |     |         | ONTEN          | Γ, PERC |          | DDII                       | UNFROZEN                 |
|                         | BOR              |                                                                                   | STRATA PLOT | _ =       | ž      | ľ     | BLO        | RECOVERY % | 50 100 150 200 250                       |     | vp      | <del></del> 20 |         | wi<br>40 |                            | UNCERTAIN                |
|                         |                  | GROUND SURFACE                                                                    |             | 0.00      |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
|                         |                  | COBBLES and BOULDERS, some gravel, angular to subangular, pink to dark grey       | 00          | ]         |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
|                         |                  |                                                                                   | $\Gamma$    | 1         |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
| 1                       |                  |                                                                                   | 000         |           | 1      | RUN   | ı          | 78         |                                          |     |         |                |         |          |                            |                          |
|                         |                  |                                                                                   | 0           | 1         |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
| 2                       |                  |                                                                                   | 00          |           |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
|                         |                  |                                                                                   | 60          |           |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
| 3                       |                  |                                                                                   | 00          | 1         |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
|                         |                  |                                                                                   | 60          | ,         |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
| 4                       |                  |                                                                                   | 000         |           | 2      | RUN   | 1          | 100        |                                          |     |         |                |         |          |                            |                          |
|                         |                  | CDANITIC CNEISS fainth weathered                                                  | F ~         | 4.41      |        |       |            |            |                                          |     |         |                |         |          |                            | 4.41                     |
| 5                       | ≣                | GRANITIC GNEISS, faintly weathered, closely jointed, medium grained, pink to grey |             |           |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
| ,                       | J Dud L          | fresh, moderately jointed, medium to very coarse grained, pink to dark grey       |             | ]         |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
| <u> </u>                | NQ Diamond Drill | coarse grained, pink to dark grey                                                 |             |           |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
| 6                       | a<br>D           |                                                                                   |             |           |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
|                         | _                | highly mafic from 6.40 to 6.80m                                                   |             |           | 3      | RUN   |            |            | TCR=100% SCR=100% RQD=76%                |     |         |                |         |          |                            |                          |
| 7                       |                  |                                                                                   |             |           |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
|                         |                  |                                                                                   |             | 1         |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
| 3                       |                  |                                                                                   |             |           |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
|                         |                  |                                                                                   |             |           |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
| 9                       |                  |                                                                                   |             |           |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
|                         |                  |                                                                                   |             |           |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
| 10                      |                  |                                                                                   |             |           | 4      | RUN   | l          |            | TCR=100% SCR=100% RQD=87%                |     |         |                |         |          |                            |                          |
|                         |                  |                                                                                   |             |           |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
| 11                      |                  |                                                                                   |             | 1         |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
| '' ⊦                    |                  | END OF BOREHOLE AT 11.20m.                                                        | - Y//       | 11.20     |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
|                         |                  |                                                                                   |             |           |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
| 12                      |                  |                                                                                   |             |           |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
|                         |                  |                                                                                   |             |           |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
| 13                      |                  |                                                                                   |             |           |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
|                         |                  |                                                                                   |             |           |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
| 14                      |                  |                                                                                   |             |           |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
|                         |                  |                                                                                   |             |           |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
| 15                      |                  |                                                                                   |             |           |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
|                         |                  |                                                                                   |             |           |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
| 16                      |                  |                                                                                   |             |           |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
| '                       |                  |                                                                                   |             |           |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
| ,                       |                  |                                                                                   |             |           |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
| 17                      |                  |                                                                                   |             |           |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
|                         |                  |                                                                                   |             |           |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
| 18                      |                  |                                                                                   |             |           |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
|                         |                  |                                                                                   |             |           |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
| 19                      |                  |                                                                                   |             |           |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
|                         |                  |                                                                                   |             |           |        |       |            |            |                                          |     |         |                |         |          |                            |                          |
|                         |                  | ODOLINDA/ATED EL E                                                                |             |           | Ļ      |       |            |            |                                          |     |         |                |         |          |                            |                          |
|                         |                  | GROUNDWATER ELE                                                                   |             |           | Ś      | _     | _          |            |                                          |     |         |                |         |          |                            |                          |
|                         |                  | $\overline{igspace}$ shallow/single inst                                          | ALLA        | TION      |        |       |            |            | P/DUAL INSTALLATION                      |     | LOGGE   | D :            | Schneid | ler      |                            |                          |
|                         |                  | WATER LEVEL (date)                                                                |             |           |        | ,     | WA٦        | ΓER        | LEVEL (date)                             |     | CHECK   | ED :           | KS      |          |                            | THUR                     |



Mary River Project **PROJECT** 

LOCATION 82+700 - Quarry

July 22, 2011 DRILLER: WALKER DRILLING, D-50 STARTED July 22, 2011 N 7 852 449 E 605 710 COMPLETED

SHEET 1 OF 1 DATUM: CGVD28

Project No. 19-1605-126

|                         | 2             | SOIL PROFILE                                                                                 |             |           | :      | SAM  | PLE        | S          |                                                     | EXC | ESS ICE | CONTE               |            | CENT   | . (0                       | THERMISTER/                  |
|-------------------------|---------------|----------------------------------------------------------------------------------------------|-------------|-----------|--------|------|------------|------------|-----------------------------------------------------|-----|---------|---------------------|------------|--------|----------------------------|------------------------------|
| DEPTH SCALE<br>(metres) | BORING METHOD | DESCRIPTION                                                                                  | STRATA PLOT | ELEV. (m) | NUMBER | TYPE | BLOWS/0.3m | RECOVERY % | COMMENTS DYNAMIC CONE PENETRATION RESISTANCE PLOT   | W   |         | 20 3<br>L<br>ONTENT | 80 4<br>I  |        | ADDITIONAL<br>LAB. TESTING | GROUND COND. FROZEN UNFROZEN |
| □                       | BO            |                                                                                              | STR         | ӹ         | z      |      | BLC        | REC        | 50 100 150 200 250                                  |     |         |                     |            | 10<br> | ٠, ٦                       | UNCERTAIN                    |
| _                       |               | GROUND SURFACE  GRAVEL, subrounded to subangular,                                            | •,•,•       | 0.00      |        |      |            |            |                                                     |     |         |                     |            |        |                            |                              |
| - 1<br>- 1              |               | pinkish grey  GRANITIC GNEISS, slightly weathered fine grained, highly fractured, grey to pi | nk          | 1.65      | 1      | RUN  | 1          | 62         |                                                     |     |         |                     |            |        |                            | 1.65                         |
| -<br>- 3                |               |                                                                                              |             |           | 2      | RUN  | Į.         |            | TCR=100% SCR=58% RQD=0%                             |     |         |                     |            |        |                            |                              |
| - 5<br>- 6              |               |                                                                                              |             |           | 3      | RUN  | Į          |            | TCR=100% SCR=92% RQD=42%                            |     |         |                     |            |        | FI 6 2 1 3 3 3             |                              |
| - 7                     | d Drill       | occasional quartz seams                                                                      |             |           | 4      | RUN  | ı          |            | TCR=100% SCR=100% RQD=67%                           |     |         |                     |            |        | 3<br>1<br>1<br>5<br>0      |                              |
| -8<br>-8<br>-<br>-9     | NQ Diamond    |                                                                                              |             |           | 5      | RUN  | ı          |            | TCR=97% SCR=97% RQD=82%                             |     |         |                     |            |        | 1<br>1<br>1<br>1<br>2      |                              |
| -10<br>-110<br>-11      |               |                                                                                              |             |           | 6      | RUN  | ı          |            | TCR=100% SCR=100% RQD=52%                           |     |         |                     |            |        | 2<br>1<br>1<br>0<br>1      |                              |
| -<br>12                 |               | highly weathered, highly fractured                                                           |             |           | 7      | RUN  | 1          |            | TCR=100% SCR=100% RQD=52%                           |     |         |                     |            |        | 2<br>2<br>2<br>8<br>8<br>5 |                              |
| - 13<br>14              |               | inginy wedatered, inginy nactured                                                            |             |           |        | RUN  |            |            | TCR=97% SCR=29% RQD=29%                             |     |         |                     |            |        | 5<br>5<br>8<br>3<br>2      |                              |
| -<br>15                 |               |                                                                                              |             |           |        | RUN  |            |            | TCR=99% SCR=72% RQD=52%  TCR=100% SCR=100% RQD=100% |     |         |                     |            |        | 3                          |                              |
| -16<br>-17              |               | END OF BOREHOLE AT 16.00m.                                                                   |             | 16.00     |        |      |            |            |                                                     |     |         |                     |            |        |                            |                              |
| - 17<br>-<br>-<br>-18   |               |                                                                                              |             |           |        |      |            |            |                                                     |     |         |                     |            |        |                            |                              |
| 19                      |               |                                                                                              |             |           |        |      |            |            |                                                     |     |         |                     |            |        |                            |                              |
|                         |               | GROUNDWATER E                                                                                |             |           | 5      |      |            |            | P/DUAL INSTALLATION<br>LEVEL (date)                 |     | LOGGE   |                     | Hill<br>KS |        | <u> </u>                   | THURBER                      |



Mary River Project **PROJECT** 

85+200 - Quarry

Project No. 19-1605-126

STARTED COMPLETED

LOCATION

July 20, 2011 July 21, 2011

DRILLER: WALKER DRILLING, D-50 N 7 850 087 E 606 073

SHEET 1 OF 2 DATUM: CGVD28

|          | 0             | SOIL PROFILE                                                   |                             |           | ٦,       | SAM      |            | ٥          |                                          | EXCE | SS ICE | CONTE  | NT, PERCENT      |                            | THERMISTE |
|----------|---------------|----------------------------------------------------------------|-----------------------------|-----------|----------|----------|------------|------------|------------------------------------------|------|--------|--------|------------------|----------------------------|-----------|
| (metres) | BORING METHOD | 30IL FROITEL                                                   |                             |           | Ľ        |          |            | _          |                                          |      |        | oice   | )                | ADDITIONAL<br>LAB. TESTING | GROUND CC |
| es)      | ᇦ             |                                                                | [7]                         | <u> </u>  | l ~      |          | 3m         | ٧.         |                                          | 1    | 0 :    | 20 3   | 30 40            |                            | FROZEN    |
| (metres) | _დ            |                                                                | <u> </u>                    | <u>п</u>  | 開        | Щ        | 0,0        | ER         | COMMENTS                                 | ١٨// | TED C  |        | , PERCENT        |                            |           |
| 틸        | ĭ             | DESCRIPTION                                                    | Į.                          | ELEV. (m) | NUMBER   | TYPE     | ×          | S          | DYNAMIC CONE PENETRATION RESISTANCE PLOT |      |        | ONTENT | , PERCENT        | G 6                        | UNFROZEN  |
| ;        | Ö             |                                                                | STRATA PLOT                 | 핍         | ź        | Ι΄.      | BLOWS/0.3m | RECOVERY % | RESISTANCE PLUT                          | W    | p      |        | ———I wl<br>30 40 | ∢ ⊴                        | UNCERTAIN |
| _        |               |                                                                | S.                          |           |          |          | Ш          | 2          | 50 100 150 200 250                       |      |        | 1      | 1 40             |                            |           |
| _        |               | GROUND SURFACE                                                 | -                           | 0.00      |          |          |            |            |                                          |      |        |        |                  |                            |           |
|          |               | GRAVEL and COBBLES, granitic, red/black/grey, fines washed out | 0,0                         |           |          |          |            |            |                                          |      |        |        |                  | 1                          |           |
|          |               |                                                                | $h \hookrightarrow$         |           |          |          |            |            |                                          |      |        |        |                  |                            |           |
| 1 I      |               |                                                                | 00                          |           | 1        | RUN      |            | 45         |                                          |      |        |        |                  |                            |           |
| .        |               |                                                                | 6                           |           |          |          |            |            |                                          |      |        |        |                  |                            |           |
|          |               |                                                                | 60                          |           |          |          |            |            |                                          |      |        |        |                  |                            |           |
| ا ۱      |               |                                                                | 00                          |           | 2        | RUN      |            | 0          |                                          |      |        |        |                  |                            |           |
| 2        |               |                                                                | 6 O                         |           |          | <u> </u> |            |            |                                          |      |        |        |                  |                            |           |
|          |               |                                                                | 0                           | 2.58      | 3a       | RUN      |            | 33         |                                          |      |        |        |                  | 1                          | 2.58      |
|          |               | GRANITE, highly weathered, highly fractured, red/black         |                             |           | 3h       | RUN      |            |            | TCR=100% SCR=0% RQD=0%                   |      |        |        |                  |                            |           |
| 3        |               | tractured, red/black                                           |                             |           | 55       | IXOIV    |            |            | 1011-100% GOI1-0% 11QD-0%                |      |        |        |                  | FI<br>3                    |           |
|          |               |                                                                | K//                         |           |          |          |            |            |                                          |      |        |        |                  | 4                          |           |
|          |               | vertical joint                                                 |                             |           |          |          |            |            |                                          |      |        |        |                  | 3                          |           |
| 1        |               |                                                                | 8//                         |           | 4        | RUN      |            |            | TCR=95% SCR=22% RQD=12%                  |      |        |        |                  | 4                          |           |
|          |               |                                                                |                             |           |          |          |            |            |                                          |      |        |        |                  | 3                          |           |
|          |               |                                                                |                             |           |          |          |            |            |                                          |      |        |        |                  | 2                          |           |
| 5        |               |                                                                | K//                         |           |          |          |            |            |                                          |      |        |        |                  | 3                          |           |
|          |               |                                                                |                             | 5.40      | 5        | RUN      |            |            | TCR=46% SCR=0% RQD=0%                    |      |        |        |                  | 2                          |           |
|          |               | GRANITIC GNEISS, slightly weathered,                           |                             |           | $\vdash$ | _        |            |            |                                          |      |        |        |                  | 1                          |           |
| 3        |               | moderately fractured, grey, black, red                         | K                           |           | 6        | RUN      |            |            | TCR=86% SCR=82% RQD=56%                  |      |        |        |                  | 1                          |           |
| '        |               |                                                                |                             |           | -        |          |            |            |                                          |      |        |        |                  | 1                          |           |
|          |               |                                                                |                             |           | 7        | RUN      |            |            | TCR=100% SCR=96% RQD=96%                 |      |        |        |                  | 1                          |           |
| .        |               |                                                                |                             |           |          | RUN      |            |            | TCR=100% SCR=100% RQD=100%               |      |        |        |                  | 6                          |           |
| 7        |               |                                                                |                             |           | 9        | RUN      |            |            | TCR=100% SCR=100% RQD=100%               |      |        |        |                  | 1                          |           |
|          |               |                                                                |                             |           | 10       | RUN      |            |            | TCR=100% SCR=98% RQD=98%                 |      |        |        |                  | 1                          |           |
|          |               |                                                                | K//                         |           | <u> </u> |          |            |            |                                          |      |        |        |                  | 3                          |           |
| 3        |               |                                                                |                             |           |          |          |            |            |                                          |      |        |        |                  | 3                          |           |
|          |               |                                                                | 8//                         |           | 11       | RUN      |            |            | TCR=100% SCR=45% RQD=36%                 |      |        |        |                  | 3                          |           |
|          |               |                                                                |                             |           |          |          |            |            |                                          |      |        |        |                  | 3                          |           |
| 9        |               |                                                                |                             |           |          | _        |            |            |                                          |      |        |        |                  | 2                          |           |
|          | Ē             |                                                                |                             |           |          |          |            |            |                                          |      |        |        |                  | 2                          |           |
|          | 틸             |                                                                |                             |           | 12       | RUN      |            |            | TCR=99% SCR=99% RQD=92%                  |      |        |        |                  | 1 1                        |           |
| 10       | Diamond       |                                                                | \ <i>\</i> //               |           | 12       | RUN      |            |            | 1CR-99% SCR-99% RQD-92%                  |      |        |        |                  | 1                          |           |
| .        | Jai           |                                                                |                             |           |          |          |            |            |                                          |      |        |        |                  | 1                          |           |
|          | ğ             | moderately weathered, medium strong,                           | $\langle \rangle / \rangle$ |           |          |          |            |            |                                          |      |        |        |                  | 1                          |           |
| 11 l     | _             | grey/white and black, medium to coarse                         | $\mathbb{N}$                |           |          |          |            |            |                                          |      |        |        |                  | 2                          |           |
| ''       |               | grained                                                        |                             |           | 13       | RUN      |            |            | TCR=100% SCR=87% RQD=75%                 |      |        |        |                  | 0                          |           |
|          |               |                                                                | K//                         |           |          |          |            |            |                                          |      |        |        |                  | 1                          |           |
| 12       |               |                                                                |                             |           |          |          |            |            |                                          |      |        |        |                  | 3 2                        |           |
|          |               |                                                                | 8//                         |           |          |          |            |            |                                          |      |        |        |                  | 2                          |           |
|          |               |                                                                |                             |           |          |          |            |            |                                          |      |        |        |                  | 1 1                        |           |
| ا ۱      |               |                                                                |                             |           | 14       | RUN      |            |            | TCR=100% SCR=78% RQD=78%                 |      |        |        |                  | 2                          |           |
| 13       |               |                                                                | K//                         |           |          |          |            |            |                                          |      |        |        |                  | 2                          |           |
|          |               |                                                                |                             |           | <u> </u> |          |            |            |                                          |      |        |        |                  | 2                          |           |
| ا ر      |               | alightly weathers d                                            | K//                         |           | 1        |          |            |            |                                          |      |        |        |                  | 0                          |           |
| 14       |               | slightly weathered                                             |                             |           | 4.5      | L        |            |            | TCD=4000/ CCD=770/ DCD=770/              |      |        |        |                  | 1                          |           |
|          |               |                                                                | \/\                         |           | 15       | RUN      |            |            | TCR=100% SCR=77% RQD=77%                 |      |        |        |                  | 2                          |           |
|          |               |                                                                | $\mathbb{K}$                |           | 1        |          |            |            |                                          |      |        |        |                  | 2                          |           |
| 15       |               |                                                                |                             |           | $\vdash$ |          |            |            |                                          |      |        |        |                  | 3                          |           |
|          |               |                                                                | K//                         |           |          |          |            |            |                                          |      |        |        |                  | 3                          |           |
|          |               |                                                                | $\sim$                      |           | 16       | RUN      |            |            | TCR=100% SCR=95% RQD=68%                 |      |        |        |                  | 5                          |           |
| 16       |               |                                                                | 8//                         |           | '`       |          |            |            | 1611 16070 COIT 6070 TRQD 6070           |      |        |        |                  | 2                          |           |
|          |               |                                                                |                             |           |          |          |            |            |                                          |      |        |        |                  | 1                          |           |
|          |               | strong                                                         |                             |           |          |          |            |            |                                          |      |        |        |                  | 1                          |           |
| 17       |               | strong                                                         |                             |           |          |          |            |            |                                          |      |        |        |                  | 1 0                        |           |
|          |               |                                                                | NXI                         |           | 17       | RUN      |            |            | TCR=100% SCR=93% RQD=92%                 |      |        |        |                  | 0                          |           |
|          |               |                                                                | K//                         |           | 1        |          |            |            |                                          |      |        |        |                  | 3                          |           |
| 8        |               |                                                                |                             |           | L        |          |            |            |                                          |      |        |        |                  | 3                          |           |
| ٦        |               |                                                                | $\langle \rangle / \rangle$ |           | _        |          |            |            |                                          |      |        |        |                  | 0                          |           |
|          |               |                                                                | $\mathbb{K}$                |           | 1        |          |            |            |                                          |      |        |        |                  | ő                          |           |
| ا ما     |               |                                                                |                             |           | 18       | RUN      |            |            | TCR=100% SCR=97% RQD=93%                 |      |        |        |                  | 1                          |           |
| 19       |               |                                                                | K//                         |           | 1        |          |            |            |                                          |      |        |        |                  | 0                          |           |
|          |               |                                                                |                             |           | $\vdash$ |          |            |            |                                          |      |        |        |                  | 1                          |           |
|          |               |                                                                | 8//                         |           |          |          |            |            |                                          |      |        |        |                  | 1                          |           |
| —        |               | GROUNDWATER EL                                                 | ┸<br>═\/∧٦                  | LIUNIC    | ᠸ        |          |            | ı          |                                          |      |        |        |                  |                            |           |
|          |               |                                                                |                             |           | ,        | _        | _          |            |                                          |      |        |        |                  |                            |           |
|          |               | $\overline{\lor}$ SHALLOW/SINGLE INS                           | ΓΑΙΙΑ΄                      | TION      |          | Ţ        | <u>_</u> n | EFF        | P/DUAL INSTALLATION                      |      | OGGE   | D :    | Letts            |                            |           |
|          |               |                                                                | \                           |           |          |          |            |            |                                          |      |        |        |                  |                            |           |
|          |               | WATER LEVEL (date)                                             |                             |           |          | '        | ٧٧Al       | ΙEΚ        | _EVEL (date)                             | (    | CHECKI | ED :   | KS               |                            | THUR      |



Mary River Project **PROJECT** 

LOCATION 85+200 - Quarry July 20, 2011 STARTED

COMPLETED :

July 21, 2011

DRILLER: WALKER DRILLING, D-50 N 7 850 087 E 606 073

SHEET 2 OF 2 DATUM: CGVD28

Project No. 19-1605-126

|                          |               | TED : July 21, 2011            |             |           | Γ.      |      |            |            | 50 087 E 606 073                         | EXC | SS ICE   | CONTE  | NT, PEF |          | ) Ni C                     | GVD28                   |
|--------------------------|---------------|--------------------------------|-------------|-----------|---------|------|------------|------------|------------------------------------------|-----|----------|--------|---------|----------|----------------------------|-------------------------|
| DEP IN SCALE<br>(metres) | BORING METHOD | SOIL PROFILE                   |             |           | Ľ       | SAM  |            | _          |                                          |     |          | oic    | е       |          | ₽ B                        | THERMISTER<br>GROUND CO |
| sc,<br>tres)             | MET           |                                | 701         | (E)       | 监       | l    | BLOWS/0.3m | RY<br>%    | COMMENTS                                 | 1   | 0 :<br>L | 20<br> | 30<br>  | 40<br>   | ADDITIONAL<br>LAB. TESTING | FROZEN                  |
| E e                      | ING           | DESCRIPTION                    | TA F        | ELEV. (m) | NUMBER  | TYPE | MS/(       | OVE!       | DYNAMIC CONE PENETRATION RESISTANCE PLOT |     |          | ONTEN  | Γ, PERC |          | B. TI                      | UNFROZEN                |
| 4                        | BOR           |                                | STRATA PLOT |           | ž       | [    | BLO        | RECOVERY % | 50 100 150 200 250                       |     | rp       |        |         | wl<br>40 | ₹≤                         | UNCERTAIN               |
|                          |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
|                          |               |                                |             |           | 19      | RUN  |            |            | TCR=84% SCR=73% RQD=63%                  |     |          |        |         |          |                            |                         |
| .                        |               |                                |             |           | "       |      |            |            | 101.01% 001.10% 1142 00%                 |     |          |        |         |          | 1                          |                         |
| 21                       |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          | 1                          |                         |
|                          |               |                                |             |           | 20      | RUN  |            |            | TCR=100% SCR=100% RQD=100%               |     |          |        |         |          | 1                          |                         |
| 22                       |               |                                |             |           | 21      | RUN  |            |            | TCR=99% SCR=96% RQD=80%                  |     |          |        |         |          | 1 1                        |                         |
|                          |               |                                |             |           | -       |      |            |            | reit 55% Cert 55% Reg 55%                |     |          |        |         |          | 1                          |                         |
| 23                       |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
|                          |               |                                |             |           | 22      | RUN  |            |            | TCR=100% SCR=95% RQD=95%                 |     |          |        |         |          |                            |                         |
| 24                       |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
|                          |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          | 1                          |                         |
| 25                       |               |                                |             |           |         | L    |            |            |                                          |     |          |        |         |          | 2 2                        |                         |
| _                        |               |                                |             |           | 23      | RUN  |            |            | TCR=99% SCR=86% RQD=86%                  |     |          |        |         |          | 2                          |                         |
| 26                       | _             | END OF BOREHOLE AT 25.89m.     | _           | 25.89     | -       |      |            |            |                                          |     |          |        |         |          |                            |                         |
| _                        |               | LID OF BOILE IOLE AT 20.09III. |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
| 27                       |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
|                          |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
| _                        |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
| 28                       |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
|                          |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
| 29                       |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
|                          |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
| 30                       |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
|                          |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
| 31                       |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
|                          |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
| 32                       |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
|                          |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
| 33                       |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
|                          |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
| 34                       |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
|                          |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
| 35                       |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
| ~                        |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
| 36                       |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
| ا ت                      |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
| 37                       |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
| ۱ ۲                      |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
| _                        |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
| 38                       |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
|                          |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
| 39                       |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
|                          |               |                                |             |           |         |      |            |            |                                          |     |          |        |         |          |                            |                         |
|                          |               | I GROUNDWATER ELI              | <br>F\/∆7   |           | <u></u> |      |            |            |                                          |     |          |        |         |          |                            |                         |
|                          |               |                                |             |           | ,       | •    | 7 -        |            | D/DITAL INIOTAL CONTROL                  |     |          |        |         |          |                            |                         |
|                          |               | SHALLOW/SINGLE INST            | ALLA        | HON       |         |      |            |            | P/DUAL INSTALLATION                      |     | LOGGE    |        | Letts   |          |                            |                         |
|                          |               | WATER LEVEL (date)             |             |           |         |      | v v / \    | · L/\      | LEVEL (date)                             |     | CHECK    | : ט    | KS      |          |                            | THUR                    |



Mary River Project **PROJECT** 

88+800 - Quarry

Project No. 19-1605-126

LOCATION STARTED

COMPLETED

July 17, 2011 July 18, 2011

DRILLER: WALKER DRILLING, D-50

N 7 846 674 E 605 956

SHEET 1 OF 1 DATUM: CGVD28

| ш                       | 8               | SOIL PROFILE                                                                                          |              |           | :      | SAM   | PLE              | s        |                                                     | EXC | ESS ICE              |            |           | CENT   | . (2)                      | THERMISTER/<br>GROUND COND |
|-------------------------|-----------------|-------------------------------------------------------------------------------------------------------|--------------|-----------|--------|-------|------------------|----------|-----------------------------------------------------|-----|----------------------|------------|-----------|--------|----------------------------|----------------------------|
| DEPTH SCALE<br>(metres) | BORING METHOD   |                                                                                                       | , PLOT       | . (m)     | 3ER    | Ä     | 3/0.3m           | ERY %    | COMMENTS                                            |     | 10 2<br>L<br>ATER CO |            | 80 4<br>L | 40<br> | ADDITIONAL<br>LAB. TESTING | FROZEN                     |
| DEPT<br>(m              | BORING          | DESCRIPTION                                                                                           | STRATA PLOT  | ELEV. (m) | NUMBER | TYPE  | BLOWS/0.3m       | RECOVERY | DYNAMIC CONE PENETRATION RESISTANCE PLOT            | v   | /p                   | o <u>w</u> |           |        | ADD<br>LAB.                | UNFROZEN W                 |
|                         |                 | GROUND SURFACE                                                                                        |              | 0.00      |        |       |                  |          |                                                     |     |                      |            |           |        |                            |                            |
|                         |                 | ORGANICS: (100mm)  GRANITIC GNEISS, slightly weathered, medium grained, medium strong, black/pink/red | -            | 0.10      |        |       |                  |          |                                                     |     |                      |            |           |        | FI<br>2<br>2               | 0.10                       |
| 1                       |                 | black/pink/red                                                                                        |              |           | 1      | RUN   | •                |          | TCR=89% SCR=86% RQD=76%                             |     |                      |            |           |        | 4                          |                            |
|                         |                 |                                                                                                       |              |           |        |       |                  |          |                                                     |     |                      |            |           |        | 3                          |                            |
| -2                      |                 |                                                                                                       |              |           |        | L     |                  |          |                                                     |     |                      |            |           |        | 2                          |                            |
| 3                       |                 |                                                                                                       |              |           | 2      | RUN   |                  |          | TCR=97% SCR=97% RQD=82%                             |     |                      |            |           |        | 1                          |                            |
| ٥                       |                 | strong to very strong                                                                                 |              |           | 3      | RUN   |                  |          |                                                     |     |                      |            |           |        | 2                          |                            |
| 4                       |                 |                                                                                                       |              |           | 4      | RUN   | ı                |          | TCR=73% SCR=69% RQD=60%                             |     |                      |            |           |        | 4                          |                            |
|                         |                 |                                                                                                       |              |           | 5      | RUN   | ı                |          | TCR=88% SCR=67% RQD=26%                             |     |                      |            |           |        | 3                          |                            |
| 5                       |                 |                                                                                                       |              |           |        | RUN   |                  |          | TCR=100% SCR=100% RQD=92%                           |     |                      |            |           |        | 3                          |                            |
|                         |                 |                                                                                                       |              |           |        | RUN   |                  |          | TCR=100% SCR=83% RQD=48% TCR=100% SCR=100% RQD=100% |     |                      |            |           |        | 4<br>>5                    |                            |
| 6                       |                 |                                                                                                       |              |           |        |       |                  |          |                                                     |     |                      |            |           |        | 1                          |                            |
| 7                       | Drill           |                                                                                                       |              |           | 9      | RUN   | ı                |          | TCR=96% SCR=92% RQD=81%                             |     |                      |            |           |        | 2                          |                            |
|                         | puour           |                                                                                                       |              |           |        | L     |                  |          |                                                     |     |                      |            |           |        | 2                          |                            |
| 8                       | NQ Diamond Dril |                                                                                                       |              |           | 10     | RUN   |                  |          | TCR=58% SCR=33% RQD=0%                              |     |                      |            |           |        | 2                          |                            |
|                         |                 |                                                                                                       |              |           | 11     | RUN   | I                |          | TCR=100% SCR=88% RQD=70%                            |     |                      |            |           |        | 2                          |                            |
| 9                       |                 |                                                                                                       |              |           | 12     | RUN   |                  |          | TCR=100% SCR=100% RQD=68%                           |     |                      |            |           |        | 2                          |                            |
| 10                      |                 |                                                                                                       |              |           |        |       |                  |          |                                                     |     |                      |            |           |        | 3                          |                            |
| 10                      |                 |                                                                                                       |              |           | 13     | RUN   | 1                |          | TCR=94% SCR=94% RQD=91%                             |     |                      |            |           |        | 2                          |                            |
| 11                      |                 |                                                                                                       |              |           | 14     | RUN   |                  |          | TCR=100% SCR=100% RQD=78%                           |     |                      |            |           |        | 3<br>0                     |                            |
|                         |                 |                                                                                                       |              |           | 15     | RUN   |                  |          | TCR=79% SCR=79% RQD=74%                             |     |                      |            |           |        | 1                          |                            |
| 12                      |                 |                                                                                                       |              |           | 13     | IXOIX |                  |          | 101-19% 3011-19% 11QD-14%                           |     |                      |            |           |        | 1 2                        |                            |
| 40                      |                 |                                                                                                       |              |           | 16     | RUN   | ı                |          | TCR=100% SCR=98% RQD=96%                            |     |                      |            |           |        | 2 2                        |                            |
| 13                      |                 |                                                                                                       |              |           |        |       |                  |          |                                                     |     |                      |            |           |        | 1 1                        |                            |
| 14                      |                 |                                                                                                       |              |           | 17     | RUN   |                  |          | TCR=85% SCR=80% RQD=80%                             |     |                      |            |           |        | 1 1                        |                            |
|                         |                 |                                                                                                       |              |           | _      | RUN   | -                |          | TCR=100% SCR=100% RQD=100%                          |     |                      |            |           |        | 1 0                        |                            |
| 15                      |                 | END OF BOREHOLE AT 15.00m.                                                                            | <b>-</b>   X | 15.00     | 19     | RUN   |                  |          | TCR=100% SCR=100% RQD=100%                          |     |                      |            |           |        |                            |                            |
|                         |                 |                                                                                                       |              |           |        |       |                  |          |                                                     |     |                      |            |           |        |                            |                            |
| 16                      |                 |                                                                                                       |              |           |        |       |                  |          |                                                     |     |                      |            |           |        |                            |                            |
| 17                      |                 |                                                                                                       |              |           |        |       |                  |          |                                                     |     |                      |            |           |        |                            |                            |
|                         |                 |                                                                                                       |              |           |        |       |                  |          |                                                     |     |                      |            |           |        |                            |                            |
| 18                      |                 |                                                                                                       |              |           |        |       |                  |          |                                                     |     |                      |            |           |        |                            |                            |
|                         |                 |                                                                                                       |              |           |        |       |                  |          |                                                     |     |                      |            |           |        |                            |                            |
| 19                      |                 |                                                                                                       |              |           |        |       |                  |          |                                                     |     |                      |            |           |        |                            |                            |
|                         |                 |                                                                                                       |              |           | L      |       |                  |          | _                                                   |     |                      |            |           |        |                            |                            |
|                         |                 | GROUNDWATER ELE                                                                                       |              |           | 3      | _     | _                |          |                                                     |     |                      |            |           |        |                            |                            |
|                         |                 | ☐ SHALLOW/SINGLE INST                                                                                 | ALLA         | TION      |        |       |                  |          | P/DUAL INSTALLATION                                 |     | LOGGE                |            | Selman/   | Letts  |                            |                            |
|                         |                 | WATER LEVEL (date)                                                                                    |              |           |        |       | vvA <sup>-</sup> | ıER      | LEVEL (date)                                        |     | CHECKE               | D :        | KS        |        |                            | THURBE                     |

Mary River Project **PROJECT** 

100+700 - Quarry

DRILLER: BOART LONGYEAR, LM-55

STARTED COMPLETED :

LOCATION

July 14, 2011 July 14, 2011

N 7 833 967 E 609 448

SHEET 1 OF 1

Project No. 19-1605-126

DATUM: CGVD28

| ц                                     | ᄋ                | SOIL PROFILE                                                                        |             |           | S       | SAMI | PLES       |            |                                                                        | EXCE | SS ICE | CONTE             | NT, PER               | CENT | ٥٦                         | THERMISTER GROUND COI     |
|---------------------------------------|------------------|-------------------------------------------------------------------------------------|-------------|-----------|---------|------|------------|------------|------------------------------------------------------------------------|------|--------|-------------------|-----------------------|------|----------------------------|---------------------------|
| (metres)                              | BORING METHOD    | DESCRIPTION                                                                         | STRATA PLOT | ELEV. (m) | NUMBER  | TYPE | BLOWS/0.3m | RECOVERY % | COMMENTS  DYNAMIC CONE PENETRATION RESISTANCE PLOT  50 100 150 200 250 |      | TER C  | 20<br>L<br>DNTENT | 30 4<br>L<br>T, PERCE |      | ADDITIONAL<br>LAB. TESTING | FROZEN UNFROZEN UNCERTAIN |
| $\dashv$                              | Т                | GROUND SURFACE                                                                      | +"          | 0.00      |         |      |            | ш.         | 99 190 190 290 290                                                     |      |        |                   |                       |      | +                          |                           |
| 1 2                                   |                  | GRAVEL and COBBLES (< 100mm), red/dark grey, angular to sub-angular                 |             | 2.20      | 1       | RUN  |            | 64         |                                                                        |      |        |                   |                       |      |                            |                           |
| 3                                     |                  | COBBLES, BOULDERS (< 320mm) and GRAVEL, red/dark grey, angular to subangular        |             | 2.20      | 2       | RUN  |            | 97         |                                                                        |      |        |                   |                       |      |                            |                           |
| 5<br>6<br>7                           | ond Drill        | GRANITIC GNEISS, faintly weathered, medium to coarse grained, strong, red/dark grey |             | 5.00      |         | RUN  |            |            | TCR=100% SCR=100% RQD=82%                                              |      |        |                   |                       |      |                            | 5.00                      |
| 8   3   3   3   3   3   3   3   3   3 | NQ Diamond Drill | slightly to moderately weathered, medium strong                                     |             |           | 4       | RUN  |            |            | TCR=100% SCR=81% RQD=45%                                               |      |        |                   |                       |      |                            |                           |
| 11<br>12<br>13                        |                  |                                                                                     |             |           | 5       | RUN  |            |            | TCR=98% SCR=98% RQD=97%                                                |      |        |                   |                       |      |                            |                           |
| 14                                    |                  | strong to very strong                                                               |             |           |         | RUN  |            |            | TCR=100% SCR=100% RQD=94%                                              |      |        |                   |                       |      |                            |                           |
| 15 <u> </u>                           |                  | END OF BOREHOLE AT 15.10m.                                                          |             | 15.10     |         |      |            |            |                                                                        |      |        |                   |                       |      |                            |                           |
| 17                                    |                  |                                                                                     |             |           |         |      |            |            |                                                                        |      |        |                   |                       |      |                            |                           |
| 18<br>19                              |                  |                                                                                     |             |           |         |      |            |            |                                                                        |      |        |                   |                       |      |                            |                           |
|                                       |                  | GROUNDWATER ELE $\ ^{ abla}$ shallow/single inst/                                   |             |           | <u></u> |      | <u></u>    | EEF        | P/DUAL INSTALLATION                                                    | L    | OGGEI  | ) :               | Young                 |      |                            |                           |



Mary River Project **PROJECT** 

101+100 - Quarry

Project No. 19-1605-126

LOCATION

July 15, 2011 DRILLER: BOART LONGYEAR, LM-55 STARTED SHEET 1 OF 2 July 15, 2011 N 7 836 190 E 610 857 DATUM: CGVD28 COMPLETED :

| ч                                      | ОР               | SOIL PROFILE                                                                                                         |             |           | _ ;           | SAM  | PLE        |            |                                                                        | EXCESS ICE CONTENT, PERCENT                                                 | ا ∟ ق                                     | THERMISTER GROUND COI           |
|----------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------|-------------|-----------|---------------|------|------------|------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------|---------------------------------|
| (metres)                               | BORING METHOD    | DESCRIPTION                                                                                                          | STRATA PLOT | ELEV. (m) | NUMBER        | TYPE | BLOWS/0.3m | RECOVERY % | COMMENTS  DYNAMIC CONE PENETRATION RESISTANCE PLOT  50 100 150 200 250 | 10 20 30 40 WATER CONTENT, PERCENT wp   ——————————————————————————————————— | ADDITIONAL<br>LAB. TESTING                | FROZEN<br>UNFROZEN<br>UNCERTAIN |
|                                        |                  | GROUND SURFACE                                                                                                       |             | 0.00      |               |      |            |            |                                                                        |                                                                             |                                           |                                 |
| 1 2                                    |                  | COBBLES, GRAVEL and BOULDERS (<450mm), dark grey, pink/white, subangular to subrounded                               |             |           | 1             | RUN  |            | 95         |                                                                        |                                                                             |                                           |                                 |
| 3                                      |                  | GRANITIC GNEISS, faintly to slightly weathered, medium strong to strong, medium to coarse grained, dark grey, white, | 00          | 2.85      |               |      |            |            | TOD 400Y 00D 07V D0D 40Y                                               |                                                                             | FI<br>10                                  | 2.85                            |
| 4<br>5                                 |                  | pink                                                                                                                 |             |           | 2             | RUN  |            |            | TCR=100% SCR=97% RQD=43%                                               |                                                                             |                                           |                                 |
| 6                                      |                  |                                                                                                                      |             |           | 3             | RUN  |            |            | TCR=100% SCR=100% RQD=92%                                              |                                                                             | 5                                         |                                 |
| 10                                     | NQ Diamond Drill |                                                                                                                      |             |           | 4             | RUN  |            |            | TCR=100% SCR=93% RQD=60%                                               |                                                                             | 10                                        |                                 |
| 11 11 11 11 11 11 11 11 11 11 11 11 11 | Z                | slightly to moderately weathered                                                                                     |             |           | 5             | RUN  |            |            | TCR=100% SCR=74% RQD=74%                                               |                                                                             | 1<br>1<br>2<br>2<br>1<br>2<br>1<br>2<br>2 |                                 |
| 15                                     |                  |                                                                                                                      |             |           | 6             | RUN  |            |            | TCR=103% SCR=84% RQD=81%                                               |                                                                             | 1<br>0<br>2<br>2<br>3<br>1<br>2           |                                 |
| 17                                     |                  |                                                                                                                      |             |           |               |      |            |            |                                                                        |                                                                             | 1 1 1 0 0                                 |                                 |
| 18                                     |                  |                                                                                                                      |             |           | 7             | RUN  |            |            | TCR=97% SCR=65% RQD=65%                                                |                                                                             | 1<br>2<br>1<br>1<br>1                     |                                 |
|                                        |                  | GROUNDWATER ELE                                                                                                      |             |           | <u>L</u><br>3 |      |            |            | P/DUAL INSTALLATION<br>LEVEL (date)                                    | LOGGED : Young CHECKED : KS                                                 | 0                                         | THUR                            |



PROJECT : Mary River Project

101+100 - Quarry

Project No. 19-1605-126

LOCATION : STARTED :

July 15, 2011

DRILLER: BOART LONGYEAR, LM-55 N 7 836 190 F 610 857 SHEET 2 OF 2

|                         | ARTE<br>MPLE  | D : July 15, 2011<br>ETED : July 15, 2011 |             |           | DK           | ILLI |            |            | OART LONGYEAR, LM-55<br>36 190 E 610 857 |     |         |       |         |        | ET 2 OI<br>JM: C                                 | - 2<br>GVD28               |
|-------------------------|---------------|-------------------------------------------|-------------|-----------|--------------|------|------------|------------|------------------------------------------|-----|---------|-------|---------|--------|--------------------------------------------------|----------------------------|
| H.                      | ДОН           | SOIL PROFILE                              | _           |           | 5            | SAM  | PLE        | _          |                                          | EXC | ESS ICE | CONTE | NT, PER | CENT   | آ ٿ<br>آ                                         | THERMISTER/<br>GROUND COND |
| I SCA<br>etres)         | MET           |                                           | PLOT        | (E)       | 띪            | <br> | 0.3m       | .RY %      | COMMENTS                                 |     |         | 20 :  | 30 4    | 10<br> | TIONA                                            | FROZEN                     |
| DEPTH SCALE<br>(metres) | BORING METHOD | DESCRIPTION                               | STRATA PLOT | ELEV. (m) | NUMBER       | TYPE | BLOWS/0.3m | RECOVERY % | DYNAMIC CONE PENETRATION RESISTANCE PLOT | w   | rp      | ow    |         | wl     | ADDITIONAL<br>LAB. TESTING                       | UNFROZEN W                 |
|                         | BC            |                                           | STI         |           | <del> </del> |      | В          | 묎          | 50 100 150 200 250                       | 1   | 0       | 20 :  | 30 4    | 10     | <del>                                     </del> | ONO ENTITUE                |
| -                       |               |                                           | W           | 20.50     |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
| -<br>- 21               |               | END OF BOREHOLE AT 20.50m.                | T           |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
|                         |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
| -22                     |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
| -                       |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
| - 23                    |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
| - 24                    |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
| <b>-</b> 24             |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
| - 25                    |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
| -                       |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
| -26                     |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
| - 27                    |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
| . 21                    |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
| -<br>-28                |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
| -<br>-                  |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
| - 29                    |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
| -30                     |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
| -                       |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
| -<br>- 31               |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
|                         |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
| <del>-</del> 32         |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
| -<br>- 33               |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
| -                       |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
| 34                      |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
| -                       |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
| - 35                    |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
| -<br>-36                |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
| -                       |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
| 37                      |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
| -<br>-                  |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
| <del>-</del> 38         |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
| -<br>- 39               |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
| . Ja                    |               |                                           |             |           |              |      |            |            |                                          |     |         |       |         |        |                                                  |                            |
|                         |               | GROUNDWATER ELE                           |             |           | Ļ            |      |            |            |                                          |     |         |       |         |        |                                                  |                            |

**GROUNDWATER ELEVATIONS** 

☐ SHALLOW/SINGLE INSTALLATION
WATER LEVEL (date)

THURBER2S(5126) 5126.GPJ 11/9/11

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Young CHECKED : KS



# **RECORD OF BOREHOLE NTUN-DH01**

Mary River Project **PROJECT** 

Project No. 19-1605-126

LOCATION Cockburn Lake - North Tunnel

STARTED August 3, 2011 COMPLETED August 3, 2011

DRILLER: BOART LONGYEAR, LM-55 N 7 835 656 E 605 976

SHEET 1 OF 1 DATUM: CGVD28

| CO                      | MPLE             | ETED : August 3, 2011                                                                           |             |             |        |      | N          | 7 8        | 35 656 E 605 976                                                     |                               | JM: C                      | GVD28                     |
|-------------------------|------------------|-------------------------------------------------------------------------------------------------|-------------|-------------|--------|------|------------|------------|----------------------------------------------------------------------|-------------------------------|----------------------------|---------------------------|
| щ                       | 00               | SOIL PROFILE                                                                                    |             |             |        | SAM  | PLE        | S          |                                                                      | EXCESS ICE CONTENT, PERCENT   | י ס                        | THERMISTER/<br>GROUND CON |
| DEPTH SCALE<br>(metres) | BORING METHOD    | DESCRIPTION                                                                                     | STRATA PLOT | ELEV. (m)   | NUMBER | TYPE | BLOWS/0.3m | RECOVERY % | COMMENTS DYNAMIC CONE PENETRATION RESISTANCE PLOT 50 100 150 200 250 | 10 20 30 40                   | ADDITIONAL<br>LAB. TESTING | FROZEN UNFROZEN UNCERTAIN |
|                         |                  | GROUND SURFACE                                                                                  |             | 90.21       |        |      |            |            |                                                                      |                               |                            | K                         |
| 1 2                     |                  | no recovery                                                                                     |             |             |        |      |            |            |                                                                      |                               |                            |                           |
|                         | NQ Diamond Drill | SAND and GRAVEL, some cobbles, granitic, rounded to subangular, fines washed out                |             | 2.60        |        | RUN  | ı          | 61         |                                                                      |                               |                            |                           |
| 5                       |                  | washed out                                                                                      |             | 4.80        |        | RUN  | 1          | 100        |                                                                      |                               |                            |                           |
| 7                       |                  | END OF SAMPLING AT 6.45m, START<br>CORING.<br>FOR ROCK DETAILS PLEASE REFER TO<br>NTUN-DH01(R). | 0           | 6.45        |        |      |            |            |                                                                      |                               |                            | 6.45                      |
| 8                       |                  |                                                                                                 |             |             |        |      |            |            |                                                                      |                               |                            |                           |
| 10                      |                  |                                                                                                 |             |             |        |      |            |            |                                                                      |                               |                            |                           |
| 11                      |                  |                                                                                                 |             |             |        |      |            |            |                                                                      |                               |                            |                           |
| 12                      |                  |                                                                                                 |             |             |        |      |            |            |                                                                      |                               |                            |                           |
| 13                      |                  |                                                                                                 |             |             |        |      |            |            |                                                                      |                               |                            |                           |
| 15                      |                  |                                                                                                 |             |             |        |      |            |            |                                                                      |                               |                            |                           |
| 16                      |                  |                                                                                                 |             |             |        |      |            |            |                                                                      |                               |                            |                           |
| 17<br>18                |                  |                                                                                                 |             |             |        |      |            |            |                                                                      |                               |                            |                           |
| 19                      |                  |                                                                                                 |             |             |        |      |            |            |                                                                      |                               |                            |                           |
|                         |                  | GROUNDWATER ELE\  \( \sqrt{2}\) SHALLOW/SINGLE INSTA                                            |             |             | <br>S  |      | <u> </u>   | )<br>EFI   | P/DUAL INSTALLATION                                                  | LOGGED : Durates              | <u> </u>                   |                           |
|                         |                  | WATER LEVEL (date)                                                                              | LLM         | I I I I I I |        |      |            |            | LEVEL (date)                                                         | LOGGED : Dunstan CHECKED : MB |                            | THUR                      |



Mary River Project **PROJECT** 

INCLINATION: 64° AZIMUTH: 223°

LOCATION STARTED

Cockburn Lake - North Tunnel August 3, 2011

DRILLER: BOART LONGYEAR, LM-55

SHEET 1 OF 2

Project No. 19-1605-126

August 3, 2011 COMPLETED

N 7 835 656 E 605 976

DATUM CGVD28

|          |                  | ETED : August 3, 2011                                                                                                               | ٥            |               |          | SATE                           |            | 7 835 656 E<br>FR-FRACTURE<br>CL-CLEAVAGE | F-FAI<br>J-JOI             | JLT  |                      | SM-SMOOTH<br>R-ROUGH                        | FO-FOLIATED<br>UE-UNEVEN     |          |                               | CGVD28  FIELD/LABORATO TESTING |
|----------|------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|----------|--------------------------------|------------|-------------------------------------------|----------------------------|------|----------------------|---------------------------------------------|------------------------------|----------|-------------------------------|--------------------------------|
| (metres) | BORING METHOD    | DESCRIPTION                                                                                                                         | SYMBOLIC LOG | ELEV. (m)     | RUN No.  | PENETRATRATION RATE<br>(m/min) | FLUSH COLO |                                           | P-PO<br>S-SLI<br>R.Q.D. FF | ISHE | DIP wrt<br>Core Axis | ST-STEPPED PL-PLANAR DISCONTINUITY TYPE AND | W-WAVY<br>C-CURVED<br>1 DATA | penfinod | Compressive<br>Strength (Mpa) | ' """                          |
| <u>'</u> | - BO             | ODOLIND OLDE: CE                                                                                                                    | ίς           |               |          | PEN                            | 긥          | 8848 8848                                 |                            | 548  | 0888                 | DESCR                                       | RIPTION                      | Ş        | 366                           | ■ Laboratory UCS<br>Test       |
|          |                  | GROUND SURFACE  GRANITIC GNEISS, moderately                                                                                         |              | 90.21<br>6.45 |          |                                |            |                                           |                            |      |                      | J                                           |                              | -        | +                             |                                |
| 7        |                  | weathered, strong, open joints with silty infill, dark grey evidence of water travel                                                |              |               | 2B       | 15                             | 7,         | 2                                         |                            |      |                      | J<br>J<br>J                                 |                              |          |                               |                                |
| 8        |                  | some heavily fractured zones<br>weathered, stepped joint with silty infill at<br>7.90m<br>weathered, heavily shattered zone at 8.25 |              |               |          |                                |            |                                           |                            |      |                      | J<br>J<br>J                                 |                              |          |                               |                                |
| 9        |                  | and 8.90m<br>diagonal, weathered, closed joint at 8.44<br>and 8.69m                                                                 |              |               | 3        | _                              | 60         |                                           |                            |      | •                    | J<br>J                                      |                              |          |                               |                                |
| 10       |                  | sub-horizontal to diagonal, weathered joints (3) at 9.47m                                                                           |              |               | 3        | 11                             | 9          |                                           |                            |      |                      | J<br>J<br>J                                 |                              |          |                               |                                |
| 11       |                  | very strong, moderately spaced discontinuities, coarse grained                                                                      |              |               |          |                                |            |                                           |                            |      | •                    | ]<br>]                                      |                              |          |                               |                                |
| 12       |                  | sub-vertical weathered joint at 11.23m                                                                                              |              |               |          |                                |            |                                           |                            |      |                      | J<br>J<br>J - along vein                    |                              |          |                               |                                |
| 13       |                  | diagonal, weathered joint at 12.40 and 12.60m                                                                                       |              |               | 4        | 12                             | 09         |                                           |                            |      | •                    | J<br>J                                      |                              |          |                               |                                |
| 14       |                  | horizontal, weathered joint at 13.75m                                                                                               |              |               |          |                                | -          |                                           |                            |      |                      | J                                           |                              |          |                               |                                |
| 15       |                  | weathered, open joint at 14.20m<br>fresh, strong, very widely spaced,<br>sub-horizontal, pink with grey foliation                   |              |               | 5        | 14                             | 90         |                                           |                            |      |                      | J                                           |                              |          |                               |                                |
| 16       | NQ Diamond Drill |                                                                                                                                     |              |               |          |                                |            |                                           |                            |      |                      |                                             |                              |          |                               |                                |
| 17       | ב<br>מ<br>מ      | slightly weathered, moderately spaced, pink with dark grey foliation                                                                |              |               |          |                                |            |                                           |                            |      |                      |                                             |                              |          |                               |                                |
| 18       |                  | joint with black staining on surface, green, soft, waxy infill at 17.63m                                                            |              |               | _        | 7                              | 09         |                                           |                            |      |                      | J                                           |                              |          |                               |                                |
| _        |                  | slightly weathered joint, soft, brown, clay infill at 18.20m                                                                        |              |               | 6        | 17                             | "          |                                           |                            |      |                      |                                             |                              |          |                               |                                |
| 19       |                  | joint with black staining on surface, green, soft, waxy infill at 19.01m                                                            |              |               |          |                                |            |                                           |                            |      |                      | J                                           |                              |          |                               |                                |
| 20       |                  | dark grey biotite schist banding at 19.70m<br>widely spaced, dark grey with pink banding                                            |              |               |          |                                |            |                                           |                            |      |                      |                                             |                              |          |                               |                                |
| 21       |                  | biotite schist seam with 2 parallel sub-horizontal breaks at 20.87m                                                                 |              |               | 7        | 6                              | 9          |                                           |                            |      |                      | J<br>J                                      |                              |          |                               |                                |
| 22       |                  |                                                                                                                                     |              |               |          |                                |            |                                           |                            |      |                      |                                             |                              |          |                               |                                |
| 23       |                  | dark grey and pink foliations<br>mechanical joints                                                                                  |              |               |          |                                |            |                                           |                            |      |                      |                                             |                              |          |                               |                                |
| 24       |                  |                                                                                                                                     |              |               | 8        | 8                              | 09         |                                           |                            |      |                      |                                             |                              |          |                               |                                |
| 25       |                  |                                                                                                                                     |              |               |          |                                |            |                                           |                            |      |                      |                                             |                              |          |                               |                                |
| 26       |                  | slightly weathered, moderately spaced                                                                                               |              |               |          |                                |            |                                           |                            |      |                      |                                             |                              |          |                               |                                |
|          |                  | GROUNDWATER ELE                                                                                                                     | VAT          | IONS          | <u> </u> |                                | _          | 0212012121                                |                            |      |                      |                                             |                              |          |                               |                                |
|          |                  | ☐ SHALLOW/SINGLE INSTA<br>WATER LEVEL (date)                                                                                        | LLA          | TION          |          |                                |            | DEEP/DUAL II<br>TER LEVEL (dat            |                            | ATIC | ON                   | LOGGE<br>CHECKI                             |                              |          |                               | THURE                          |



Mary River Project **PROJECT** 

INCLINATION: 64° AZIMUTH: 223°

LOCATION

Cockburn Lake - North Tunnel

SHEET 2 OF 2

Project No. 19-1605-126

DRILLER: BOART LONGYEAR, LM-55 STARTED August 3, 2011 N 7 835 656 E 605 976 August 3, 2011 COMPLETED : DATUM CGVD28

| DEPTH SCALE<br>(metres) | BORING METHOD    | DESCRIPTION                                                                     | SYMBOLIC LOG      | ELEV. (m) | RUN No.                                      | ATRATION RATE (m/min) | COLOUR % RETURN | CL-CL<br>SH-SH<br>VN-VE | OVERY             |           | F-FAULT<br>J-JOINT<br>P-POLISH<br>S-SLICKE | NSIDE |                   | R-ROUGH UE<br>ST-STEPPED W  | D-FOLIATED<br>E-UNEVEN<br>-WAVY<br>-CURVED | Unconfined<br>Compressive | trength (Mpa) | FIELD/LABORATOR' TESTING RESULTS Point Load Test Diametral Point Load Test |
|-------------------------|------------------|---------------------------------------------------------------------------------|-------------------|-----------|----------------------------------------------|-----------------------|-----------------|-------------------------|-------------------|-----------|--------------------------------------------|-------|-------------------|-----------------------------|--------------------------------------------|---------------------------|---------------|----------------------------------------------------------------------------|
| DEP                     | BORIN            |                                                                                 | SYME              | Ш         | 2                                            | PENETR                | FLUSH           | TOTAL<br>CORE %         |                   | 8848<br>% | PER .3                                     |       | IP wrt<br>re Axis | TYPE AND SURI<br>DESCRIPTIO | FACE<br>DN                                 | 50 U                      |               | Axial  Laboratory UCS Test                                                 |
|                         |                  | GROUND SURFACE                                                                  |                   |           |                                              |                       |                 |                         | 10000000          |           |                                            | ĬĬ    |                   |                             |                                            |                           |               | 1000                                                                       |
| 27                      |                  | parallel, sub-horizontal fresh joints (2) at 26.74m                             |                   |           | 9                                            | 1                     | 09              |                         |                   |           |                                            |       | •                 | J                           |                                            |                           |               |                                                                            |
| -28                     |                  | heavily fractured zone at 28.22 to 28.80m                                       |                   |           |                                              |                       |                 |                         |                   |           |                                            |       |                   | J                           |                                            |                           |               |                                                                            |
| - 29                    |                  | fresh, widely spaced, pink with grey foliation all joints are mechanical breaks |                   |           |                                              |                       |                 |                         |                   |           | 2.4.1.4.2                                  |       |                   |                             |                                            |                           |               |                                                                            |
| -30                     | ond Drill        |                                                                                 |                   |           | 10                                           | 10                    | Og.             | 8                       |                   |           |                                            |       |                   |                             |                                            |                           |               |                                                                            |
| · 31                    | NQ Diamond Drill |                                                                                 |                   |           |                                              |                       |                 |                         |                   |           |                                            |       |                   |                             |                                            |                           |               |                                                                            |
| -32                     |                  | massive                                                                         |                   |           |                                              |                       |                 |                         |                   |           |                                            |       |                   |                             |                                            |                           |               |                                                                            |
| 33                      |                  |                                                                                 |                   |           | 11                                           | 1                     | 9               | 8                       |                   |           |                                            |       |                   |                             |                                            |                           |               |                                                                            |
| -34                     |                  | sub-vertical, weathered, stepped open joint                                     |                   |           |                                              |                       |                 |                         |                   |           |                                            |       |                   |                             |                                            |                           |               |                                                                            |
| 35                      |                  | with sity infill at 34.45m  END OF BOREHOLE AT 34.80m.                          |                   | 34.80     |                                              |                       |                 |                         |                   |           |                                            |       |                   | J                           |                                            |                           |               |                                                                            |
| -36                     |                  |                                                                                 |                   |           |                                              |                       |                 |                         |                   |           |                                            |       |                   |                             |                                            |                           |               |                                                                            |
| 37                      |                  |                                                                                 |                   |           |                                              |                       |                 |                         |                   |           |                                            |       |                   |                             |                                            |                           |               |                                                                            |
| -38                     |                  |                                                                                 |                   |           |                                              |                       |                 |                         |                   |           |                                            |       |                   |                             |                                            |                           |               |                                                                            |
| 39                      |                  |                                                                                 |                   |           |                                              |                       |                 |                         |                   |           |                                            |       |                   |                             |                                            |                           |               |                                                                            |
| -40                     |                  |                                                                                 |                   |           |                                              |                       |                 |                         |                   |           |                                            |       |                   |                             |                                            |                           |               |                                                                            |
| · 41                    |                  |                                                                                 |                   |           |                                              |                       |                 |                         |                   |           |                                            |       |                   |                             |                                            |                           |               |                                                                            |
| -42                     |                  |                                                                                 |                   |           |                                              |                       |                 |                         |                   |           |                                            |       |                   |                             |                                            |                           |               |                                                                            |
| 43                      |                  |                                                                                 |                   |           |                                              |                       |                 |                         |                   |           |                                            |       |                   |                             |                                            |                           |               |                                                                            |
| -44                     |                  |                                                                                 |                   |           |                                              |                       |                 |                         |                   |           |                                            |       |                   |                             |                                            |                           |               |                                                                            |
| 45                      |                  |                                                                                 |                   |           |                                              |                       |                 |                         |                   |           |                                            |       |                   |                             |                                            |                           |               |                                                                            |
| -46                     |                  |                                                                                 |                   |           |                                              |                       |                 |                         |                   |           |                                            |       |                   |                             |                                            |                           |               |                                                                            |
|                         |                  | GROUNDWATER ELE                                                                 |                   |           | <u>.                                    </u> |                       |                 | <u> </u>                |                   |           |                                            |       |                   |                             |                                            |                           |               |                                                                            |
|                         |                  | SHALLOW/SINGLE INSTA                                                            | ALLA <sup>-</sup> | TION      |                                              |                       |                 |                         | OUAL I<br>VEL (da |           | LLAT                                       | ION   |                   | LOGGED :                    |                                            |                           |               | THURBE                                                                     |



# **RECORD OF BOREHOLE NTUN-DH03**

PROJECT : Mary River Project Project Project Project Project Project No. 19-1605-126

LOCATION : Cockburn Lake - North Tunnel

 STARTED
 : August 1, 2011
 DRILLER: BOART LONGYEAR, LM-55
 SHEET 1 OF 1

 COMPLETED
 : August 2, 2011
 N 7 835 382 E 605 698
 DATUM: CGVD28

|                         | JIVIFL           | ETED : August 2, 2011                                                                                                       |             |           |        |      | IN         | 1 0.       | 33 362 E 603 696                         |     |           |                |         | DATO   | ivi. C                     | GVD28                       |
|-------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------|-----------|--------|------|------------|------------|------------------------------------------|-----|-----------|----------------|---------|--------|----------------------------|-----------------------------|
| 삨                       | QQ.              | SOIL PROFILE                                                                                                                |             |           |        | SAM  | PLE        | _          |                                          | EXC | ESS ICE   | CONTEI<br>oice |         | CENT   | i c                        | THERMISTER/<br>GROUND COND. |
| SCA<br>tres)            | MET              |                                                                                                                             | -LOT        | Ē         | 监      | l    | 0.3m       | RY %       | COMMENTS                                 |     | 10 2<br>1 |                |         | 0<br>I | ION/                       | FROZEN                      |
| DEPTH SCALE<br>(metres) | BORING METHOD    | DESCRIPTION                                                                                                                 | STRATA PLOT | ELEV. (m) | NUMBER | TYPE | BLOWS/0.3m | RECOVERY % | DYNAMIC CONE PENETRATION RESISTANCE PLOT |     | ATER C    | TNETNC         | , PERCE |        | ADDITIONAL<br>LAB. TESTING | UNFROZEN                    |
| ă                       | BOF              |                                                                                                                             | STR         | Ш         | Ž      |      | BLC        | REC        | 50 100 150 200 250                       | ,   | 10 2<br>1 | 20 3<br>I      |         | 0<br>L | 4 2                        | UNCERTAIN                   |
| _                       |                  | GROUND SURFACE no sampling                                                                                                  |             | 146.68    |        |      |            |            |                                          |     |           |                |         |        |                            |                             |
| ŀ                       |                  | no sampling                                                                                                                 |             |           |        |      |            |            |                                          |     |           |                |         |        |                            |                             |
| 1                       |                  |                                                                                                                             |             | 1.17      |        |      |            |            |                                          |     |           |                |         |        |                            |                             |
| •                       | l≡               | GRAVEL and COBBLES (<170mm),<br>granitic, fine to medium grained, subangular<br>to subrounded, pinkish red to greyish black | 00          | ]         |        |      |            |            |                                          |     |           |                |         |        |                            |                             |
| -2                      | nd Di            | to subrounded, pinkish red to greyish black                                                                                 | 0           |           |        |      |            |            |                                          |     |           |                |         |        |                            | -                           |
| Ė                       | NQ Diamond Drill |                                                                                                                             |             |           |        |      |            |            |                                          |     |           |                |         |        |                            |                             |
| -<br>- 3                | N<br>D           |                                                                                                                             |             | 1         | 1A     | RUN  | 1          | 30         |                                          |     |           |                |         |        |                            | -                           |
| ŧ                       |                  |                                                                                                                             | 60          |           |        |      |            |            |                                          |     |           |                |         |        |                            |                             |
| -4                      |                  |                                                                                                                             | $P \sim$    | 1         |        |      |            |            |                                          |     |           |                |         |        |                            | -                           |
|                         |                  | END OF SAMPLING AT 4 50m START                                                                                              | 00          | 4.50      |        |      |            |            |                                          |     |           |                |         |        |                            | 4.50                        |
| -<br>- 5                |                  | END OF SAMPLING AT 4.50m, START CORING. FOR ROCK DETAILS PLEASE REFER TO                                                    |             |           |        |      |            |            |                                          |     |           |                |         |        |                            | -                           |
| -                       |                  | NTUN-DH03(R).                                                                                                               |             |           |        |      |            |            |                                          |     |           |                |         |        |                            | ]                           |
| -6                      |                  |                                                                                                                             |             |           |        |      |            |            |                                          |     |           |                |         |        |                            | _                           |
| Ī                       |                  |                                                                                                                             |             |           |        |      |            |            |                                          |     |           |                |         |        |                            | ]                           |
| 7                       |                  |                                                                                                                             |             |           |        |      |            |            |                                          |     |           |                |         |        |                            | -                           |
| [                       |                  |                                                                                                                             |             |           |        |      |            |            |                                          |     |           |                |         |        |                            | ]                           |
| -8                      |                  |                                                                                                                             |             |           |        |      |            |            |                                          |     |           |                |         |        |                            |                             |
| -                       |                  |                                                                                                                             |             |           |        |      |            |            |                                          |     |           |                |         |        |                            | -                           |
| 9                       |                  |                                                                                                                             |             |           |        |      |            |            |                                          |     |           |                |         |        |                            | -                           |
|                         |                  |                                                                                                                             |             |           |        |      |            |            |                                          |     |           |                |         |        |                            | -                           |
| -10                     |                  |                                                                                                                             |             |           |        |      |            |            |                                          |     |           |                |         |        |                            |                             |
| Ė                       |                  |                                                                                                                             |             |           |        |      |            |            |                                          |     |           |                |         |        |                            |                             |
| - 11                    |                  |                                                                                                                             |             |           |        |      |            |            |                                          |     |           |                |         |        |                            | -                           |
| •                       |                  |                                                                                                                             |             |           |        |      |            |            |                                          |     |           |                |         |        |                            |                             |
| -12                     |                  |                                                                                                                             |             |           |        |      |            |            |                                          |     |           |                |         |        |                            | -                           |
|                         |                  |                                                                                                                             |             |           |        |      |            |            |                                          |     |           |                |         |        |                            |                             |
| - 13                    |                  |                                                                                                                             |             |           |        |      |            |            |                                          |     |           |                |         |        |                            | -                           |
|                         |                  |                                                                                                                             |             |           |        |      |            |            |                                          |     |           |                |         |        |                            | ]                           |
| -14                     |                  |                                                                                                                             |             |           |        |      |            |            |                                          |     |           |                |         |        |                            | -                           |
|                         |                  |                                                                                                                             |             |           |        |      |            |            |                                          |     |           |                |         |        |                            | ]                           |
| - 15                    |                  |                                                                                                                             |             |           |        |      |            |            |                                          |     |           |                |         |        |                            | -                           |
| [                       |                  |                                                                                                                             |             |           |        |      |            |            |                                          |     |           |                |         |        |                            | ]                           |
| <b>-</b> 16             |                  |                                                                                                                             |             |           |        |      |            |            |                                          |     |           |                |         |        |                            | -                           |
| [                       |                  |                                                                                                                             |             |           |        |      |            |            |                                          |     |           |                |         |        |                            | ]                           |
| 17                      |                  |                                                                                                                             |             |           |        |      |            |            |                                          |     |           |                |         |        |                            | -                           |
|                         |                  |                                                                                                                             |             |           |        |      |            |            |                                          |     |           |                |         |        |                            | ]                           |
| <b>-</b> 18             |                  |                                                                                                                             |             |           |        |      |            |            |                                          |     |           |                |         |        |                            | -                           |
| <u>.</u>                |                  |                                                                                                                             |             |           |        |      |            |            |                                          |     |           |                |         |        |                            | ]                           |
| 19                      |                  |                                                                                                                             |             |           |        |      |            |            |                                          |     |           |                |         |        |                            |                             |
|                         |                  |                                                                                                                             | L           |           | L      |      |            |            |                                          |     |           |                |         |        | L                          | -                           |
|                         |                  | ODOLINDAMATED ELE                                                                                                           |             |           |        |      |            |            |                                          |     |           |                |         |        |                            |                             |

GROUNDWATER ELEVATIONS

☐ SHALLOW/SINGLE INSTALLATION
WATER LEVEL (date)

THURBER2S(5126) 5126.GPJ 11/9/11

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Hill/Dunstan
CHECKED : MB



Mary River Project **PROJECT** 

INCLINATION: 44° AZIMUTH: 63°

LOCATION

Cockburn Lake - North Tunnel August 1, 2011

DRILLER: BOART LONGYEAR, LM-55

SHEET 1 OF 6

Project No. 19-1605-126

STARTED August 2, 2011 COMPLETED

N 7 835 382 E 605 698

DATUM CGVD28

| CON                                   | /IPLE         | TED : August 2, 2011                                                                                       | <del></del>  |           |          |                             | IN .               | 7 835 382 E                                       | 605     | 098                       |                   |                             |                                                 |                                                | DAT    | UM                            | CGVD28                                         |
|---------------------------------------|---------------|------------------------------------------------------------------------------------------------------------|--------------|-----------|----------|-----------------------------|--------------------|---------------------------------------------------|---------|---------------------------|-------------------|-----------------------------|-------------------------------------------------|------------------------------------------------|--------|-------------------------------|------------------------------------------------|
| DEPTH SCALE<br>(metres)               | BORING METHOD | DESCRIPTION                                                                                                | SYMBOLIC LOG | ELEV. (m) | I No.    | PENETRATRATION RATE (m/min) | COLOUR<br>% RETURN | FR-FRACTURE<br>CL-CLEAVAGE<br>SH-SHEAR<br>VN-VEIN | J.<br>P | -FAUL<br>-JOINT<br>-POLIS | T<br>SHEI<br>KENS |                             | SM-SMOOTH<br>R-ROUGH<br>ST-STEPPED<br>PL-PLANAR | FO-FOLIATED<br>UE-UNEVEN<br>W-WAVY<br>C-CURVED | nfined | Compressive<br>Strength (Mpa) | FIELD/LABORATO TESTING RESULTS Point Load Test |
| me.                                   | SING          | DESCRIPTION                                                                                                | MBOI         | ELEV      | RUN      | TRATR<br>(m/n               |                    | RECOVERY TOTAL SOLID                              | R.Q.D.  | FRA<br>IND<br>PER         | CT.<br>EX         | DIP wrt                     | DISCONTINUIT                                    | / DATA<br>) SURFACE                            | Choco  | Stren                         | Diametral  ▲ Point Load Test Axial             |
| <u> </u>                              | BOR           |                                                                                                            | SYI          | -         |          | PENE                        | FLUSH              | TOTAL SOLID CORE %                                | 8848    | PER S                     |                   | Core Axis                   | DESCI                                           | SURFACE<br>RIPTION                             | 20     | - 1                           | ■ Laboratory UCS<br>Test                       |
| 士                                     |               | GROUND SURFACE                                                                                             |              | 146.68    |          |                             |                    |                                                   | 244     |                           |                   | 3,000                       |                                                 |                                                | (y) F  |                               | 1001                                           |
| 5                                     |               | GRANITIC GNEISS, slightly weathered, strong, moderately to thinly spaced, pink                             |              | 4.50      | 1B       | 45                          | $\dashv$           |                                                   | HHF     | $\  \ $                   |                   | •                           | J<br>J                                          |                                                |        |                               |                                                |
| ٦                                     |               | with dark and light grey foliations                                                                        |              |           | 2        |                             |                    |                                                   |         |                           |                   | lat                         | J                                               |                                                |        |                               |                                                |
|                                       |               |                                                                                                            |              |           |          |                             |                    |                                                   |         |                           |                   |                             | ·                                               |                                                |        |                               |                                                |
| 6                                     |               |                                                                                                            |              |           |          |                             |                    |                                                   |         |                           |                   |                             | J                                               |                                                |        |                               |                                                |
| ,                                     |               |                                                                                                            |              |           | 3        | 19                          | 75                 |                                                   |         |                           |                   | lack                        | J                                               |                                                |        | $\ \ $                        |                                                |
| 7                                     |               |                                                                                                            |              |           |          |                             |                    |                                                   |         |                           |                   |                             |                                                 |                                                |        |                               |                                                |
|                                       |               |                                                                                                            |              |           |          | H                           |                    |                                                   |         |                           |                   |                             |                                                 |                                                |        |                               |                                                |
| 8                                     |               |                                                                                                            |              |           |          |                             |                    |                                                   |         |                           |                   |                             | J                                               |                                                |        |                               |                                                |
|                                       |               | diagonal, faintly weathered joints (2) at                                                                  |              |           |          |                             |                    |                                                   |         |                           |                   |                             | J                                               |                                                |        |                               |                                                |
| 9                                     |               | 8.72m<br>diagonal open joint, some weathering at<br>8.88 and 9.05m                                         |              |           | 4        | 7                           | 100                |                                                   |         |                           |                   |                             | J                                               |                                                |        |                               |                                                |
| ,                                     |               | 8.88 and 9.05m<br>multi-planar, open joint at 9.25m                                                        |              |           |          |                             |                    |                                                   |         |                           |                   |                             | J<br>J                                          |                                                |        |                               |                                                |
| 10                                    |               | diagonal, faintly weathered joint at 10.00m                                                                |              |           |          |                             |                    |                                                   |         |                           |                   |                             | J<br>J                                          |                                                |        |                               |                                                |
|                                       |               | fresh, massive, very widely spaced discontinuities, sub-horizontal foliation                               |              |           |          | Н                           |                    |                                                   |         |                           |                   |                             |                                                 |                                                |        |                               |                                                |
| 11                                    |               |                                                                                                            |              |           |          |                             |                    |                                                   |         |                           |                   | $   \downarrow   $          | J                                               |                                                |        |                               |                                                |
| .                                     |               | diagonal, fresh open joint at 11.30m                                                                       |              |           |          |                             |                    |                                                   |         |                           |                   |                             |                                                 |                                                |        |                               |                                                |
| 12                                    |               |                                                                                                            |              |           | 5        | 7                           | 100                |                                                   |         |                           |                   |                             |                                                 |                                                |        |                               |                                                |
|                                       |               |                                                                                                            |              |           |          |                             |                    |                                                   |         |                           |                   |                             |                                                 |                                                |        |                               |                                                |
| 13                                    |               |                                                                                                            |              |           |          |                             |                    |                                                   |         |                           |                   |                             |                                                 |                                                |        | $\ \ $                        |                                                |
| .                                     | <u> </u>      |                                                                                                            |              |           |          | Н                           |                    |                                                   |         |                           |                   |                             |                                                 |                                                |        |                               |                                                |
| 14   5                                | Olig F        |                                                                                                            |              |           |          |                             |                    |                                                   |         |                           |                   |                             |                                                 |                                                |        |                               |                                                |
| 14   15   15   15   15   15   15   15 |               | diagonal open joint at 14.42m                                                                              |              |           |          |                             |                    |                                                   |         |                           |                   | ullet                       | J                                               |                                                |        |                               |                                                |
| 15                                    | Ž             |                                                                                                            |              |           | 6        | 6                           | 100                |                                                   |         |                           |                   |                             |                                                 |                                                |        |                               |                                                |
|                                       |               |                                                                                                            |              |           |          |                             |                    |                                                   |         |                           |                   |                             |                                                 |                                                |        |                               |                                                |
| 16                                    |               |                                                                                                            |              |           |          |                             |                    |                                                   |         |                           |                   |                             |                                                 |                                                |        | $\ \ $                        |                                                |
|                                       |               |                                                                                                            |              |           |          | Н                           |                    |                                                   |         |                           |                   |                             |                                                 |                                                |        | $\ \ $                        |                                                |
| 17                                    |               | biotite schist banding at 17.22m                                                                           |              |           |          |                             |                    |                                                   |         |                           |                   |                             |                                                 |                                                |        |                               |                                                |
|                                       |               | Mound Soriist Daniumy at 17.22111                                                                          |              |           |          |                             |                    |                                                   |         |                           |                   |                             |                                                 |                                                |        |                               |                                                |
| 18                                    |               | diagonal, irregular fresh joint at 18.10m<br>horizontal, irregular slightly weathered joint                |              |           | 7        | 7                           | 100                |                                                   |         |                           |                   | •                           | J                                               |                                                |        |                               |                                                |
|                                       |               | horizontal, irregular slightly weathered joint<br>at 18.26m<br>sub-vertical open joint with rust at 18.57m |              |           |          |                             |                    |                                                   |         |                           |                   | ullet                       | J - partially open<br>J                         |                                                |        |                               |                                                |
| 19                                    |               | sub-vertical open joint with rust at 18.5/m                                                                |              |           |          |                             |                    |                                                   |         |                           |                   |                             |                                                 |                                                |        |                               |                                                |
|                                       |               | mechanical breaks                                                                                          |              |           |          | Н                           |                    |                                                   |         |                           |                   |                             |                                                 |                                                |        | $\ \ $                        |                                                |
| 20                                    |               |                                                                                                            |              |           |          |                             |                    |                                                   |         |                           |                   |                             |                                                 |                                                |        |                               |                                                |
|                                       |               |                                                                                                            |              |           |          |                             |                    |                                                   |         |                           |                   |                             |                                                 |                                                |        |                               |                                                |
| 21                                    |               |                                                                                                            |              |           | 8        | 12                          | 100                |                                                   |         |                           |                   |                             |                                                 |                                                |        |                               |                                                |
|                                       |               |                                                                                                            |              |           |          |                             |                    |                                                   |         |                           |                   |                             |                                                 |                                                |        |                               |                                                |
| 22                                    |               |                                                                                                            |              |           |          |                             |                    |                                                   |         |                           |                   |                             |                                                 |                                                |        | $\ \ $                        |                                                |
|                                       |               | faintly weathered, moderately spaced discontinuities, trace biotite schist                                 |              |           |          | H                           |                    |                                                   |         |                           |                   |                             |                                                 |                                                |        | $\ \ $                        |                                                |
| 23                                    |               | alscontinuities, trace biotite schist                                                                      |              |           |          |                             |                    |                                                   |         |                           |                   |                             |                                                 |                                                |        |                               |                                                |
|                                       |               | diagonal, faintly weathered joint at 23.60                                                                 |              |           |          |                             |                    |                                                   |         |                           |                   | $   \blacktriangleright   $ | J<br>.I                                         |                                                |        |                               |                                                |
| 24                                    |               | and 23.67m                                                                                                 |              |           | 9        | 10                          | 100                |                                                   |         |                           |                   |                             | j                                               |                                                |        | $\ \ $                        |                                                |
|                                       |               | GROUNDWATER ELE                                                                                            | VAT          | IONS      | <u> </u> | ш                           |                    | 10000000000                                       |         |                           | ш                 |                             |                                                 |                                                |        |                               |                                                |
|                                       |               |                                                                                                            |              |           |          | -                           | 7 _                |                                                   |         |                           |                   |                             |                                                 |                                                |        |                               |                                                |
|                                       |               | abla shallow/single insta                                                                                  | ALLA I       | TION      |          | _₹                          | - D                | EEP/DUAL I                                        | NSTAI   | LLA                       | TIC               | NC                          | LOGGE                                           | D : Dunstan                                    | /Hill  |                               |                                                |

#### RECORD OF BOREHOLE NTUN-DH03(R) Mary River Project **PROJECT** Project No. 19-1605-126 INCLINATION: 44° AZIMUTH: 63° Cockburn Lake - North Tunnel LOCATION DRILLER: BOART LONGYEAR, LM-55 August 1, 2011 STARTED SHEET 2 OF 6 August 2, 2011 N 7 835 382 E 605 698 COMPLETED DATUM CGVD28 FIELD/LABORATORY TESTING RESULTS Point Load Test FR-FRACTURE CL-CLEAVAGE F-FAULT J-JOINT SM-SMOOTH R-ROUGH FO-FOLIATED UE-UNEVEN BORING METHOD SYMBOLIC LOG SH-SHEAR VN-VEIN P-POLISHED S-SLICKENSIDED ST-STEPPED PL-PLANAR DEPTH SCAL W-WAVY (metres) ELEV. (m) ġ C-CURVED DESCRIPTION RUN Diametral FRACT INDEX PER .3 RECOVERY DISCONTINUITY DATA ▲ Point Load Test Axial TOTAL SOLID TYPE AND SURFACE DESCRIPTION ■ Laboratory UCS 50 150 8848 245 ୦ ଚଟି ଚଟି GROUND SURFACE 25 diagonal, irregular, fresh closed joint at 25.60m 26 quartz veins (30mm) at 25.90 and 26.10m 27 10 15 28 4 29 diagonal, faintly weathered open joint at 29.40m 30 31 12 fresh, very widely spaced discontinuities, foliations are sub-horizontal 33 100 13 12 diagonal, slightly weathered closed joint at 33.64m 34 foliations are sub-vertical 35 36 100 14 37 38 39 15 40 41 quartz vein (50mm) at 41.55m 42 10 16 43 44 **GROUNDWATER ELEVATIONS** abla shallow/single installation ▼ DEEP/DUAL INSTALLATION LOGGED : Dunstan/Hill

WATER LEVEL (date)

CHECKED :

MB

5126.GPJ 11/9/11

ROCKM(5126)

WATER LEVEL (date)

#### Mary River Project **PROJECT** Project No. 19-1605-126 INCLINATION: 44° AZIMUTH: 63° Cockburn Lake - North Tunnel LOCATION DRILLER: BOART LONGYEAR, LM-55 August 1, 2011 STARTED SHEET 3 OF 6 August 2, 2011 N 7 835 382 E 605 698 COMPLETED DATUM CGVD28 FIELD/LABORATORY TESTING RESULTS Point Load Test FR-FRACTURE CL-CLEAVAGE F-FAULT J-JOINT SM-SMOOTH R-ROUGH FO-FOLIATED UE-UNEVEN BORING METHOD SYMBOLIC LOG SH-SHEAR VN-VEIN P-POLISHED S-SLICKENSIDED ST-STEPPED PL-PLANAR DEPTH SCAL W-WAVY (metres) ELEV. (m) ġ C-CURVED DESCRIPTION RUN Diametral FRACTINDEX RECOVERY DISCONTINUITY DATA ▲ Point Load Test Axial TOTAL SOLIC TYPE AND SURFACE DESCRIPTION ■ Laboratory UCS 50 100 150 8848 8848 245 ୦ ଚଟି ଚଟି GROUND SURFACE 45 17 pale white infill on joint surfaces partially open slightly weathered, banded, fine grained, pinkish grey to greyish black 47 18 49 .50 51 12 19 ·52 53 -54 20 55 -56 J - partially open 57 21 ω -58 59 -60 22 61 62 63 23 soft white infill in joints up to 1mm thick 64 **GROUNDWATER ELEVATIONS** abla shallow/single installation ▼ DEEP/DUAL INSTALLATION LOGGED : Dunstan/Hill WATER LEVEL (date) WATER LEVEL (date) CHECKED : MB

5126.GPJ 11/9/11

ROCKM(5126)

RECORD OF BOREHOLE NTUN-DH03(R)

#### **RECORD OF BOREHOLE NTUN-DH03(R)** Mary River Project **PROJECT** Project No. 19-1605-126 INCLINATION: 44° AZIMUTH: 63° Cockburn Lake - North Tunnel LOCATION DRILLER: BOART LONGYEAR, LM-55 STARTED August 1, 2011 SHEET 4 OF 6 August 2, 2011 N 7 835 382 E 605 698 COMPLETED DATUM CGVD28 FIELD/LABORATORY TESTING RESULTS Point Load Test FR-FRACTURE CL-CLEAVAGE F-FAULT J-JOINT SM-SMOOTH R-ROUGH FO-FOLIATED UE-UNEVEN BORING METHOD SYMBOLIC LOG DEPTH SCALE SH-SHEAR VN-VEIN P-POLISHED S-SLICKENSIDED ST-STEPPED PL-PLANAR W-WAVY ELEV. (m) ġ C-CURVED DESCRIPTION RUNI Diametral FRACTINDEX RECOVERY DISCONTINUITY DATA ▲ Point Load Test Axial FLUSH TOTAL SOLIC TYPE AND SURFACE DESCRIPTION ■ Laboratory UCS 50 150 8848 8848 245 ୦ ଚଟି ଚଟି GROUND SURFACE 65 -66 24 67 68 69 soft white infill in joints up to 1mm thick 25 26 soft white infill in joints 73 75 27 soft greyish green mud in joints up to 3mm thick 77 78 28 -80 81 29 82 83 84 J - partially open **GROUNDWATER ELEVATIONS** $\overline{Y}$ SHALLOW/SINGLE INSTALLATION ▼ DEEP/DUAL INSTALLATION LOGGED : Dunstan/Hill WATER LEVEL (date) WATER LEVEL (date) CHECKED : MB

5126.GPJ 11/9/11

ROCKM(5126)

#### RECORD OF BOREHOLE NTUN-DH03(R) Mary River Project **PROJECT** Project No. 19-1605-126 INCLINATION: 44° AZIMUTH: 63° LOCATION Cockburn Lake - North Tunnel August 1, 2011 DRILLER: BOART LONGYEAR, LM-55 STARTED SHEET 5 OF 6 August 2, 2011 COMPLETED N 7 835 382 E 605 698 DATUM CGVD28 FIELD/LABORATORY TESTING RESULTS Point Load Test FR-FRACTURE CL-CLEAVAGE SM-SMOOTH R-ROUGH FO-FOLIATED UE-UNEVEN BORING METHOD SYMBOLIC LOG J-JOINT SH-SHEAR VN-VEIN ST-STEPPED PL-PLANAR P-POLISHED W-WAVY DEPTH SCAL E ટું (metres) S-SLICKENSIDED C-CURVED DESCRIPTION ELEV. RUN Diametral FRACTINDEX RECOVERY DISCONTINUITY DATA ▲ Point Load Test Axial TOTAL SOLID TYPE AND SURFACE DESCRIPTION ■ Laboratory UCS 50 150 8848 8848 2345 ~888 GROUND SURFACE 85 moderately weathered, moderately spaced, pink with dark grey diagonal foliations -86 diagonal, planar, dark brown, weathered joint at 86.08m sub-horizontal, planar, dark grey, weathered joint at 86.34m 87 31 88 diagonal, planar, weathered joint at 88.90, 91.30, and 91.50m 89 90 32 91 grey silty infill diagonal, planar, slightly weathered, closed joint at 91.74 and 92.05m 92 93 10 33 94 fresh, very widely spaced, mechanical joints 95 96 34 97 slightly weathered, widely spaced -98 99 35 4 100 101 diagonal, faintly weathered, parallel planar joints (3) at 100.95 to 101.12m 102 36 103 dark grey biotite schist banding at 103.10m faintly weathered, very widely spaced discontinuities **GROUNDWATER ELEVATIONS** abla shallow/single installation ▼ DEEP/DUAL INSTALLATION LOGGED : Dunstan/Hill WATER LEVEL (date) WATER LEVEL (date)

CHECKED

MB

GPJ 11/9/17

ROCKM(5126)

#### RECORD OF BOREHOLE NTUN-DH03(R) Mary River Project **PROJECT** Project No. 19-1605-126 INCLINATION: 44° AZIMUTH: 63° LOCATION Cockburn Lake - North Tunnel August 1, 2011 DRILLER: BOART LONGYEAR, LM-55 STARTED SHEET 6 OF 6 August 2, 2011 COMPLETED N 7 835 382 E 605 698 DATUM CGVD28 FIELD/LABORATORY TESTING RESULTS Point Load Test FR-FRACTURE CL-CLEAVAGE F-FAULT J-JOINT SM-SMOOTH R-ROUGH FO-FOLIATED UE-UNEVEN BORING METHOD SYMBOLIC LOG SH-SHEAR VN-VEIN P-POLISHED S-SLICKENSIDED ST-STEPPED PL-PLANAR W-WAVY DEPTH SCAL ELEV. (m) ટું (metres) C-CURVED DESCRIPTION RUN Diametral FRACTINDEX RECOVERY DISCONTINUITY DATA ▲ Point Load Test Axial FLUSH TOTAL SOLID TYPE AND SURFACE DESCRIPTION ■ Laboratory UCS 50 150 8848 8848 245 ~888 GROUND SURFACE sub-horizontal, planar, weathered joint at 104.83m 105 37 106 very widely spaced discontinuities diagonal, parallel, planar, slightly weathered joints (2) at 106.60m 107 108 38 10 109 diagonal, planar, weathered joint at 110.02m 110 111 39 50 diagonal, planar, weathered joint at 112.54m 113 diagonal, irregular, weathered open joint at 113.86m 9 40 115 117 41 \$ quartz vein, crystalline structure, 2 mechanical breaks with irregular rough surfaces 118 widely spaced discontinuities 119 120 42 8 121 diagonal, planar, weathered joint at 120.97 and 121.43m END OF BOREHOLE AT 121.60m. 121.60 122 123 124 **GROUNDWATER ELEVATIONS** abla shallow/single installation ▼ DEEP/DUAL INSTALLATION LOGGED : Dunstan/Hill WATER LEVEL (date) WATER LEVEL (date)

CHECKED

MB

.GPJ 11/9/11

5126.0

ROCKM(5126)

# **RECORD OF BOREHOLE NTUN-DH05**

PROJECT : Mary River Project Project Project Project Project Project No. 19-1605-126

LOCATION : Cockburn Lake - North Tunnel

 STARTED
 :
 July 30, 2011
 DRILLER:
 BOART LONGYEAR, LM-55
 SHEET 1 OF 1

 COMPLETED
 :
 July 31, 2011
 N 7 835 245 E 605 535
 DATUM: CGVD28

| $\overline{}$           | _                |                                                       |               |           | Г.     |      |            |            |                                          | FXC      | SS ICE  | CONTE      | NT PFR   | CENT       |          | THE DAMAGE D                                          |
|-------------------------|------------------|-------------------------------------------------------|---------------|-----------|--------|------|------------|------------|------------------------------------------|----------|---------|------------|----------|------------|----------|-------------------------------------------------------|
| 끸                       | BORING METHOD    | SOIL PROFILE                                          |               |           |        | SAM  | PLE:       | _          |                                          | LXO      | -00 101 | ice        |          | OLIVI      | 일        | THERMISTER/ GROUND COND.  FROZEN  UNFROZEN  UNCERTAIN |
| DEPTH SCALE<br>(metres) | Æ                |                                                       | STRATA PLOT   | <u> </u>  | ~      |      | .3m        | RECOVERY % | 00111151170                              | 1        | 0 :     |            | 0 4      | <b>4</b> 0 | STIN     | FROZEN                                                |
| metr H                  | <u>5</u>         | DESCRIPTION                                           | AP            | ELEV. (m) | NUMBER | TYPE | BLOWS/0.3m | Æ          | COMMENTS                                 | W        | ATER C  | ONTENT     | PERCE    |            | ĒН.      | UNFROZEN                                              |
| <u>Д</u>                |                  | BESSIAII NOIV                                         | RAT           | Ë         | Ž      | }    | ŏ.         | 00         | DYNAMIC CONE PENETRATION RESISTANCE PLOT | w        | rp      | o <u>w</u> |          |            | AB AB    | UNCERTAIN                                             |
|                         | M                |                                                       | ST            |           |        |      | В          | R          | 50 100 150 200 250                       | 1        | 0 :     | 20 3       | 0 4      | 40<br>     |          | 0110211171111                                         |
|                         |                  | GROUND SURFACE                                        |               | 148.79    |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
|                         |                  | no sampling                                           |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
|                         | Ęĺ               |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
| -1                      | Δ                |                                                       |               | 1.30      |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
|                         | JOE              | GRAVEL and COBBLES, granitic,<br>boulders up to 710mm | 5             |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
| -2                      | NQ Diamond Drill | boulders up to 7 Tornim                               | 000           |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
| -                       | 8                |                                                       | S             |           | 1A     | RUN  | 1          | 100        |                                          |          |         |            |          |            |          |                                                       |
|                         |                  |                                                       | $\frac{1}{2}$ |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
| - 3                     | $\vdash$         | END OF SAMPLING AT 2.99m, START                       |               | 2.99      |        |      |            |            |                                          |          |         |            |          |            |          | 2.99                                                  |
|                         |                  | CORING.                                               |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
| -4                      |                  | FOR ROCK DETAILS PLEASE REFER TO NTUN-DH05(R).        |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
| -4                      |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
|                         |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
| 5                       |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
|                         |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
| -6                      |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
| -0                      |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
|                         |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
| 7                       |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
|                         |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
| -<br>8                  |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
| Ŭ                       |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
|                         |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
| 9                       |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
|                         |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
| -10                     |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
|                         |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
|                         |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
| - 11                    |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
|                         |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
| -<br>12                 |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
|                         |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
|                         |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
| - 13                    |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
|                         |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
| -<br>14                 |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
|                         |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
| . , ,                   |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
| - 15                    |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
| .                       |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
| -<br>16                 |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
|                         |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
| . 47                    |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
| - 17                    |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
|                         |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
| 18                      |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
|                         |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
| - 10                    |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
| 19                      |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
|                         |                  |                                                       |               |           |        |      |            |            |                                          |          |         |            |          |            |          |                                                       |
|                         | Щ                | GROUNDWATER ELE                                       | \/^-          |           | Ļ      |      |            |            |                                          | <u> </u> |         |            | <u> </u> |            | <u> </u> |                                                       |

**GROUNDWATER ELEVATIONS** 

☐ SHALLOW/SINGLE INSTALLATION
WATER LEVEL (date)

THURBER2S(5126) 5126.GPJ 11/9/11

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Dunstan
CHECKED : MB



Mary River Project **PROJECT** 

INCLINATION: 70° AZIMUTH: 45°

LOCATION

Cockburn Lake - North Tunnel

Project No. 19-1605-126

July 30, 2011 DRILLER: BOART LONGYEAR, LM-55 STARTED SHEET 1 OF 4 N 7 835 245 E 605 535 July 31, 2011 DATUM CGVD28 COMPLETED

| (metres) | BORING METHOD    | DESCRIPTION                                                                                                                   | SYMBOLIC LOG          | ELEV. (m) | No.     | RATION RATE min)               | COLOUR % RETURN   | FR-FRACTU<br>CL-CLEAVAI<br>SH-SHEAR<br>VN-VEIN | GE.        | J-<br>P-    |                     | T<br>SHEI<br>KEN: | D<br>SIDED        | R-R          | SMOOTH<br>DUGH<br>STEPPED<br>PLANAR | FO-FOL<br>UE-UNE<br>W-WAV<br>C-CURV   | VEN<br>Y     | Unconfined         | ngth (Mpa)     | FIELD/LABORATOI<br>TESTING<br>RESULTS<br>Point Load Test<br>Diametral |
|----------|------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|---------|--------------------------------|-------------------|------------------------------------------------|------------|-------------|---------------------|-------------------|-------------------|--------------|-------------------------------------|---------------------------------------|--------------|--------------------|----------------|-----------------------------------------------------------------------|
| (me      | BORING           | BESOMI HON                                                                                                                    | SYMBO                 | ELE       | RUN     | PENETRATRATION RATE<br>(m/min) | FLUSH             | RECOVERY TOTAL SOL CORE % COR 8898 88          | LID<br>E % | R.Q.D.<br>% | FRAI<br>INDI<br>PER | .3 m              | DIP wr<br>Core Ax |              | TYPE /                              | JITY DATA<br>AND SURFACE<br>SCRIPTION |              | 50 Unco<br>100 Com |                | ▲ Point Load Test<br>Axial<br>■ Laboratory UCS<br>Test                |
|          |                  | GROUND SURFACE                                                                                                                |                       | 148.79    |         |                                |                   |                                                |            |             | Ï                   | Π                 | ĨĬ                |              |                                     |                                       |              | Ш                  | $\blacksquare$ |                                                                       |
|          |                  | GRANITIC GNEISS, faintly weathered,<br>medium grained, strong, widely spaced,<br>pink with dark grey sub-horizontal foliation |                       | 2.99      |         |                                |                   |                                                |            |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
|          |                  |                                                                                                                               |                       |           | 1B      | 19                             |                   |                                                |            |             |                     |                   |                   | <sub>J</sub> |                                     |                                       |              |                    |                |                                                                       |
| 4        |                  | diagonal, open joint at 3.87m<br>diagonal, stepped joint at 4.17m<br>diagonal, faintly weathered, open joint at               |                       |           |         |                                |                   | No.                                            |            |             |                     |                   | 8                 | J<br>J-FO    |                                     |                                       |              |                    |                |                                                                       |
|          |                  | diagonal, faintly weathered, open joint at 4.30m                                                                              | M                     |           |         |                                |                   |                                                |            |             |                     |                   |                   | 3-10         |                                     |                                       |              |                    |                |                                                                       |
| 5        |                  |                                                                                                                               |                       |           |         |                                |                   |                                                |            |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
|          |                  | diagonal, faintly weathered, open joint at 5.40m                                                                              |                       |           | 2       | 3                              | light grey<br>100 |                                                |            |             |                     |                   |                   | J            |                                     |                                       |              |                    |                |                                                                       |
| 3        |                  | diagonal, weathered, stepped open joint at 5.50m                                                                              |                       |           | _       | _                              | light<br>10       |                                                |            |             |                     |                   |                   | IJ           |                                     |                                       |              |                    |                |                                                                       |
|          |                  | biotite schist banding at 5.55m<br>diagonal, closed joint at 5.70m                                                            |                       |           |         |                                |                   |                                                |            |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
| 7        |                  |                                                                                                                               |                       |           |         |                                |                   |                                                |            |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
|          |                  |                                                                                                                               |                       |           |         |                                |                   |                                                |            |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
| 8        |                  |                                                                                                                               |                       |           |         |                                |                   |                                                |            |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
|          |                  | diagonal, closed joint at 8.12m                                                                                               |                       |           |         |                                | <u>&gt;</u>       |                                                |            |             |                     |                   |                   | IJ           |                                     |                                       |              |                    |                |                                                                       |
|          |                  |                                                                                                                               |                       |           | 3       | 12                             | light grey<br>100 |                                                |            |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
| 9        |                  | six quartz veins (2-10mm)                                                                                                     |                       |           |         |                                | <u>lig</u>        |                                                |            |             |                     |                   |                   | J-VN<br>J-VN |                                     |                                       |              |                    |                |                                                                       |
|          |                  |                                                                                                                               |                       |           |         |                                |                   |                                                |            |             |                     |                   |                   | J-VN<br>J-VN |                                     |                                       |              |                    |                |                                                                       |
| 0        |                  |                                                                                                                               |                       |           |         |                                |                   |                                                |            |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
|          |                  | very widely spaced, pink with dark grey and white diagonal foliation                                                          |                       |           |         |                                |                   |                                                | ₩          |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
| 11       |                  |                                                                                                                               |                       |           |         |                                |                   |                                                | ₩          |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
|          |                  |                                                                                                                               |                       |           |         |                                | grey<br>0         |                                                | ₩          |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
| 2        | _                |                                                                                                                               |                       |           | 4       | 9                              | light grey<br>100 |                                                | ₩          |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
| 1        | NQ Diamond Drill | diagonal, open joint with faint black mineral infill at 12.39m                                                                |                       |           |         |                                | _                 |                                                | ₩          |             |                     |                   | $   _{ullet}$     | ,            |                                     |                                       |              |                    |                |                                                                       |
| 13       | uou<br>U         | infill at 12.39m                                                                                                              |                       |           |         |                                |                   |                                                | ₩          |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
|          | ğ                | sand seam, fine grained, trace silt, medium grey at 13.30m (~50mm)                                                            |                       |           |         |                                |                   |                                                |            |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
| 14       | ž                | grey at 13.30m (~50mm)                                                                                                        |                       |           |         |                                |                   |                                                |            |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
| '        |                  | sub-vertical, weathered, open joint at                                                                                        |                       |           |         |                                |                   |                                                |            |             |                     |                   |                   | J            |                                     |                                       |              |                    |                |                                                                       |
| ا ۔،     |                  | 14.25m                                                                                                                        |                       |           | 5       | 16                             |                   |                                                |            |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
| 15       |                  |                                                                                                                               |                       |           |         |                                |                   |                                                |            |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
|          |                  |                                                                                                                               |                       |           |         |                                |                   |                                                |            |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
| 16       |                  |                                                                                                                               |                       |           |         |                                |                   |                                                |            |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
|          |                  | pink with dark grey and light grey sub-horizontal foliation                                                                   |                       |           |         |                                |                   |                                                |            |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
| 17       |                  |                                                                                                                               |                       |           |         |                                |                   |                                                |            |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
|          |                  |                                                                                                                               |                       |           |         | _                              | <u></u> }.c       |                                                |            |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
| 18       |                  |                                                                                                                               |                       |           | 6       | 1                              | grey<br>100       |                                                |            |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
|          |                  |                                                                                                                               |                       |           |         |                                |                   |                                                |            |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
| 19       |                  |                                                                                                                               |                       |           |         |                                |                   |                                                |            |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
|          |                  | pink with dark grey and light grey diagonal                                                                                   |                       |           |         |                                |                   |                                                |            |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
| 20       |                  | foliation                                                                                                                     |                       |           |         |                                |                   |                                                |            |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
|          |                  |                                                                                                                               |                       |           |         |                                | <u>~</u>          |                                                |            |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
| ,        |                  |                                                                                                                               |                       |           | 7       | 6                              | light grey<br>100 |                                                |            |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
| 21       |                  |                                                                                                                               |                       |           |         |                                | lig               |                                                |            |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
|          |                  |                                                                                                                               |                       |           |         |                                |                   |                                                |            |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
| 22       |                  |                                                                                                                               |                       |           |         |                                |                   |                                                |            |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
| - 1      |                  | pink with dark grey and light grey sub-horizontal foliation                                                                   |                       |           |         |                                |                   |                                                |            |             |                     |                   |                   |              |                                     |                                       |              |                    |                |                                                                       |
|          |                  | GROUNDWATER ELE                                                                                                               | _ <u>r∨∕/l</u><br>VДТ | IONS      | <u></u> | <u> </u>                       | _                 |                                                | a14186     |             | Ш                   | Ш                 |                   | Ц            |                                     |                                       |              | ш                  | Ш              |                                                                       |
|          |                  | $\nabla$ shallow/single inst                                                                                                  |                       |           | •       | •                              | <b>,</b> ,        | EEP/DUA                                        |            | NOTA:       | 1 4                 | T1/               | SNI               |              |                                     |                                       |              |                    |                |                                                                       |
|          |                  | → SHALLOW/SINGLE INSTA  WATER LEVEL (date)                                                                                    | ALLA                  | IION      |         |                                |                   | EEP/DUA<br>TER LEVEL                           |            |             | _LA                 | ш                 | Ν                 |              | LOG                                 |                                       | ounstan/Hill |                    |                |                                                                       |
|          |                  | vv/ (i Li \ LL v LL (uale)                                                                                                    |                       |           |         | '                              |                   |                                                | (uai       | ,           |                     |                   |                   |              | CHE                                 | CKED : N                              | 1B           |                    |                | THUR                                                                  |



Mary River Project **PROJECT** 

INCLINATION: 70° AZIMUTH: 45°

LOCATION

Cockburn Lake - North Tunnel

Project No. 19-1605-126

July 30, 2011 DRILLER: BOART LONGYEAR, LM-55 STARTED SHEET 2 OF 4 N 7 835 245 E 605 535 July 31, 2011 DATUM CGVD28 COMPLETED :

| DEPTH SCALE<br>(metres) | BORING METHOD    | DESCRIPTION                                                                                                                                                                           | SYMBOLIC LOG | ELEV. (m) | UN No.   | PENETRATRATION RATE (m/min) | 4 COLOUR<br>% RETURN | FR-FRACTURE<br>CL-CLEAVAGE<br>SH-SHEAR<br>VN-VEIN<br>RECOVERY | ·    |     | IT<br>.ISHE | ISIDED     | SM-SMOOTH FO-FOLIATED R-ROUGH UE-UNEVEN ST-STEPPED W-WAVY PL-PLANAR C-CURVED DISCONTINUITY DATA | pouluod | Compressive<br>Strength (Mpa) | FIELD/LABORATOR TESTING RESULTS Point Load Test Diametral Point Load Test |
|-------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|----------|-----------------------------|----------------------|---------------------------------------------------------------|------|-----|-------------|------------|-------------------------------------------------------------------------------------------------|---------|-------------------------------|---------------------------------------------------------------------------|
| -<br>-<br>-             | SORIN            |                                                                                                                                                                                       | SYME         | 山         | 2        | ENETR                       | FLUSH                | TOTAL SOLID CORE %                                            | %    | PER | k .3 m      | OUIC AXIS  | TYPE AND SURFACE<br>DESCRIPTION                                                                 |         |                               | 1 , 0                                                                     |
| $\dashv$                | Ť                | GROUND SURFACE                                                                                                                                                                        | $\vdash$     |           | $\vdash$ | g.                          | ч                    | 8848 8848                                                     | 8848 | 92  | 11          | -888<br>   |                                                                                                 | 5       | 11<br>35 6                    | ■ Laboratory UCS<br>Test                                                  |
|                         |                  | sub-horizontal, open joint with silty infill at 22.95m                                                                                                                                | M            |           |          |                             |                      |                                                               |      |     | Ħ           | Ш          | J                                                                                               | T       |                               |                                                                           |
| 24                      |                  | diagonal, closed joint at 23.65m                                                                                                                                                      |              |           | 8        | 8                           | light grey           |                                                               |      |     |             |            | J                                                                                               |         |                               |                                                                           |
| 25                      |                  | diagonal, irregular joint at 24.72m                                                                                                                                                   |              |           |          |                             |                      |                                                               |      |     |             |            | J                                                                                               |         |                               |                                                                           |
| 26                      |                  | diagonal, faintly weathered, closed joint at 25.47m                                                                                                                                   |              |           |          |                             |                      |                                                               |      |     |             | $  \phi  $ | J                                                                                               |         |                               |                                                                           |
| 26                      |                  | diagonal, irregular, open joint with mineral infill at 25.79m                                                                                                                         | M            |           |          |                             |                      |                                                               |      |     |             |            |                                                                                                 |         |                               |                                                                           |
| 27                      |                  | diagonal, weathered, open joint with rust at 26.42m                                                                                                                                   |              |           | 9        | 9                           |                      |                                                               |      |     |             |            |                                                                                                 |         |                               |                                                                           |
| 28                      |                  | diagonal, planar, parallel open joints with mineral infill at 28.30, 28.82, and 28.97m                                                                                                |              |           |          |                             |                      |                                                               |      |     |             | •          | J                                                                                               |         |                               |                                                                           |
| 29                      |                  | тынстан ини at 20.30, 20.02, and 20.9/ M                                                                                                                                              |              |           |          |                             | yrey<br>J            |                                                               |      |     |             |            | J                                                                                               |         |                               |                                                                           |
| 30                      |                  | heavily fractured zone with multiple joints on different axis, weathered, with mineral infill, sub-vertical at 29.75 to 29.90m diagonal, weathered joints at 30.34, 30.55, and 30.99m |              |           | 10       | 8                           | light grey<br>100    |                                                               |      |     |             | •          | J-VN<br>J-FO<br>J                                                                               |         |                               |                                                                           |
| 31   32                 |                  | closely spaced discontinuities, numerous<br>diagonal and sub-vertucal open joints with<br>heavy weathering, rust, and mineral infill                                                  |              |           |          |                             |                      |                                                               |      |     |             |            | FR<br>J<br>J                                                                                    |         |                               |                                                                           |
|                         | NQ Diamond Drill | fractured zone at 32.70 to 33.00m                                                                                                                                                     |              |           | 11       | 7                           | brown<br>25          |                                                               |      |     |             | •          | n<br>n                                                                                          |         |                               |                                                                           |
| 34<br>35                |                  | fractured zone at 34.20m<br>heavily fractured zone at 34.30 to 35.30m                                                                                                                 |              |           |          |                             |                      |                                                               |      |     |             |            | J-VN                                                                                            |         |                               |                                                                           |
| 36                      |                  | fractured zone at 36.10 to 36.40m                                                                                                                                                     |              |           | 12       | 6                           | red<br>25            |                                                               |      |     |             |            | 7<br>7<br>7                                                                                     |         |                               |                                                                           |
| 37<br>38                |                  | slightly weathered, banded, fine to medium grained, pinkish grey to black                                                                                                             |              |           |          |                             |                      |                                                               |      |     |             |            | J-FO<br>J-FO<br>J-FO                                                                            |         |                               |                                                                           |
| 39                      |                  |                                                                                                                                                                                       |              |           | 13       | 14                          |                      |                                                               |      |     |             |            | J-FO<br>J-FO<br>J-FO<br>J-FO                                                                    |         |                               |                                                                           |
| 40                      |                  |                                                                                                                                                                                       |              |           |          |                             |                      |                                                               |      |     |             |            | J-FO                                                                                            |         |                               |                                                                           |
| 41                      |                  |                                                                                                                                                                                       |              |           |          |                             |                      |                                                               |      |     |             | •          | J-FO                                                                                            |         |                               |                                                                           |
| 42                      |                  |                                                                                                                                                                                       |              |           | 14       | 8                           | 20                   |                                                               |      |     |             |            | J                                                                                               |         |                               |                                                                           |
|                         |                  | GROUNDWATER ELE                                                                                                                                                                       | <u>Κ//</u> / | IONIS     | Ļ        |                             |                      |                                                               |      |     | П           |            | J                                                                                               |         | Ш                             |                                                                           |
|                         |                  | SHALLOW/SINGLE INSTA                                                                                                                                                                  |              |           | J        |                             |                      | EEP/DUAL I                                                    |      | LLA | λΤΙ         | NC         | LOGGED : Dunstan/                                                                               | Hill    |                               | THURB                                                                     |



Mary River Project **PROJECT** 

Cockburn Lake - North Tunnel

INCLINATION: 70° AZIMUTH: 45°

LOCATION

July 30, 2011 DRILLER: BOART LONGYEAR, LM-55 STARTED SHEET 3 OF 4 July 31, 2011 N 7 835 245 E 605 535 DATUM CGVD28 COMPLETED :

| DEPTH SCALE<br>(metres) | BORING METHOD    | DESCRIPTION                                                                          | SYMBOLIC LOG | ELEV. (m) | RUN No. | ETRATRATION RATE (m/min) | FLUSH COLOUR<br>WRETURN | CL-CLI<br>SH-SH<br>VN-VE<br>RECO | IN             | J.<br>P | -FAUL<br>-JOIN<br>-POLI<br>-SLIC<br>FRA<br>IND<br>PER | T<br>SHEI<br>KENS | SIDE      | D wrt      | SM-SMOOTH                          | Inconfined | Compressive<br>Strength (Mpa) | FIELD/LABORATOR TESTING RESULTS Point Load Test Diametral Point Load Test Axial |
|-------------------------|------------------|--------------------------------------------------------------------------------------|--------------|-----------|---------|--------------------------|-------------------------|----------------------------------|----------------|---------|-------------------------------------------------------|-------------------|-----------|------------|------------------------------------|------------|-------------------------------|---------------------------------------------------------------------------------|
|                         | - BO             |                                                                                      | S            |           |         | PEN                      | FLU                     |                                  | 8848<br>COKE % | 8848    | 92                                                    |                   |           | 388<br>888 | DESCRIPTION                        | 5          | 120                           | ■ Laboratory UCS<br>Test                                                        |
|                         | +                | GROUND SURFACE fractures with greenish clay infill at 42.84 to                       |              |           |         | Н                        |                         |                                  |                |         | H                                                     | $\mathbb{H}$      | $\coprod$ | +          | F                                  | +          | +                             |                                                                                 |
| -44<br>· 45<br>-46      |                  | 42.94m                                                                               |              |           | 15      | 3                        | 20                      |                                  |                |         |                                                       |                   |           |            | F<br>J-FO<br>J                     |            |                               |                                                                                 |
| 47                      |                  | greenish clay infill in all fractures in run                                         |              |           | 16      | 7                        | 90                      |                                  |                |         |                                                       |                   | •         |            | ]                                  |            |                               |                                                                                 |
| -48<br>· 49             |                  |                                                                                      |              |           | 10      | 7                        | 2                       |                                  |                |         |                                                       |                   |           |            | 7<br>7-^N<br>1<br>1-^N             |            |                               |                                                                                 |
| -50<br>-51              |                  |                                                                                      |              |           | 17      | 12                       | 25                      |                                  |                |         |                                                       |                   |           |            |                                    |            |                               |                                                                                 |
| -52                     | I Drill          |                                                                                      |              |           |         |                          |                         |                                  |                |         |                                                       |                   |           |            | J                                  |            |                               |                                                                                 |
| 53<br>-54<br>55         | NQ Diamond Drill | fractures with greyish green clay infill at 53.93m fractured zone at 54.20 to 54.50m |              |           | 18      | 8                        | 22                      |                                  |                |         |                                                       |                   |           |            | J-VN<br>J<br>J<br>J<br>J-FO        |            |                               |                                                                                 |
| ·56<br>57<br>·58        |                  | some fractures with greenish grey clay infill at 55.30 to 58.30m                     |              |           | 19      | 6                        | 75                      |                                  |                |         |                                                       |                   |           |            | J<br>J-FO<br>J                     |            |                               |                                                                                 |
| 59                      |                  |                                                                                      |              |           |         |                          |                         |                                  |                |         |                                                       |                   |           |            | J-VN                               |            |                               |                                                                                 |
| 60                      |                  |                                                                                      |              |           | 20      | 8                        |                         |                                  |                |         |                                                       |                   |           |            |                                    |            |                               |                                                                                 |
| 61<br>·62               |                  |                                                                                      |              |           |         |                          |                         |                                  |                |         |                                                       |                   |           |            |                                    |            |                               |                                                                                 |
|                         |                  | talc infill                                                                          |              |           | 21      | 7                        | 25                      |                                  |                |         |                                                       |                   |           |            | J                                  |            |                               |                                                                                 |
| !                       | -1               | GROUNDWATER ELE  SHALLOW/SINGLE INSTA                                                |              |           | _       | Ţ                        |                         | EEP/C                            |                |         | LLA                                                   | TIC               | N         |            | LOGGED : Dunstan/F<br>CHECKED : MB |            |                               | THURB                                                                           |



Project No. 19-1605-126

#### RECORD OF BOREHOLE NTUN-DH05(R) Mary River Project **PROJECT** Project No. 19-1605-126 INCLINATION: 70° AZIMUTH: 45° Cockburn Lake - North Tunnel LOCATION July 30, 2011 DRILLER: BOART LONGYEAR, LM-55 STARTED SHEET 4 OF 4 July 31, 2011 N 7 835 245 E 605 535 COMPLETED DATUM CGVD28 FIELD/LABORATORY TESTING RESULTS Point Load Test FR-FRACTURE CL-CLEAVAGE F-FAULT J-JOINT SM-SMOOTH R-ROUGH FO-FOLIATED UE-UNEVEN BORING METHOD DEPTH SCALE (metres) SYMBOLIC LOG SH-SHEAR VN-VEIN P-POLISHED S-SLICKENSIDED ST-STEPPED PL-PLANAR W-WAVY ELEV. (m) Š C-CURVED DESCRIPTION RUNI Diametral FRACTINDEX RECOVERY DISCONTINUITY DATA ▲ Point Load Test Axial TOTAL SOLIC TYPE AND SURFACE DESCRIPTION ■ Laboratory UCS 50 150 8848 2242 ୦ ନିତ୍ରର GROUND SURFACE 64 some fractures with greyish green clay infill 65 8 22 66 67 -68 13 23 69 24 72 73 soft infill in joints, possibly talc 25 75 talc coating in joints 77 12 26 78 J-FO 79 J-FO -80 J-FO 10 27 50 81 82 END OF BOREHOLE AT 82.30m.

**GROUNDWATER ELEVATIONS** 

SHALLOW/SINGLE INSTALLATION
 WATER LEVEL (date)

5126.GPJ 11/9/11

ROCKM(5126)

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Dunstan/Hill CHECKED : MB



PROJECT : Mary River Project Project Project Project Project Project No. 19-1605-126

LOCATION : Cockburn Lake - South Tunnel

 STARTED
 :
 July 29, 2011
 DRILLER:
 BOART LONGYEAR, LM-55
 SHEET 1 OF 1

 COMPLETED
 :
 July 29, 2011
 N 7 832 812 E 601 490
 DATUM: CGVD28

|                         |                  | <b>,</b> ,                                             |             |                    |              |      |            |            |                                          |               |                   |                         |                             |
|-------------------------|------------------|--------------------------------------------------------|-------------|--------------------|--------------|------|------------|------------|------------------------------------------|---------------|-------------------|-------------------------|-----------------------------|
|                         | Ö                | SOIL PROFILE                                           |             |                    |              | SAM  | PLE        | s          |                                          | EXCESS ICE CO | NTENT, PERCENT    | ·                       | THERMISTER/<br>GROUND COND. |
| DEPTH SCALE<br>(metres) | BORING METHOD    |                                                        | <br> -      |                    | Н            |      |            |            |                                          |               | •ice              | ADDITIONAL LAB. TESTING | GROUND COND.                |
| SC                      | M                |                                                        | STRATA PLOT | Ê                  | ĸ            | l    | BLOWS/0.3m | RECOVERY % | COMMENTS                                 | 10 20         | 30 40             | NS                      | FROZEN                      |
| H H                     | 9                | DESCRIPTION                                            | Α̈́         | ELEV. (m)          | NUMBER       | TYPE | )/S/       | ΥË         | DYNAMIC CONF PENETRATION                 | WATER CONT    | TENT, PERCENT     | 갸ᇊ                      | UNFROZEN 🏻                  |
| <u>Б</u>                |                  |                                                        | RA I        |                    | ĺ            | -    | ó          | S          | DYNAMIC CONE PENETRATION RESISTANCE PLOT | wp I          | ⊖ <sup>W</sup> wl | 188                     | UNCERTAIN                   |
| ľ                       | 8                |                                                        | STI         | "                  | -            |      | В          | R          | 50 100 150 200 250                       | 10 20         | 30 40             | -                       | CHOZINIA L                  |
|                         |                  | GROUND SURFACE                                         |             | 111.22             |              |      |            |            |                                          |               |                   |                         |                             |
| -                       |                  | no sampling                                            |             |                    |              |      |            |            |                                          |               |                   |                         |                             |
| ŀ                       |                  |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         |                             |
| ŀ                       |                  |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         | -                           |
| <b>l</b> 1              | ۵                |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         | 7                           |
| ţ.                      | NQ Diamond Drill |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         |                             |
| ŀ                       | iaπ              |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         | -                           |
| -2                      | ď                |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         | 7                           |
| ļ.                      | z                |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         |                             |
| - 3                     |                  |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         |                             |
| -                       |                  |                                                        |             | 3.30               |              |      |            |            |                                          |               |                   |                         | 3.30                        |
| ŀ                       |                  | END OF SAMPLING AT 3.30m, START                        |             |                    |              |      |            |            |                                          |               |                   |                         | ]                           |
| -4                      |                  | CORING. FOR ROCK DETAILS PLEASE REFER TO STUN-DH03(R). |             |                    |              |      |            |            |                                          |               |                   |                         |                             |
| }                       |                  | STUN-DH03(R).                                          |             |                    |              |      |            |            |                                          |               |                   |                         | -                           |
| F                       |                  |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         |                             |
| - 5                     |                  |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         |                             |
| ŀ                       |                  |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         | ]                           |
| F                       |                  |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         | -                           |
| -6                      |                  |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         | -                           |
| 1                       |                  |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         | 1                           |
| ŀ                       |                  |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         | -                           |
| <b>-</b> 7              |                  |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         | _                           |
| ļ.                      |                  |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         | ]                           |
| ŀ                       |                  |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         |                             |
| -8                      |                  |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         | -                           |
| Į.                      |                  |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         | ]                           |
| ļ.                      |                  |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         | ]                           |
| - 9                     |                  |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         | -                           |
| ŀ                       |                  |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         | -                           |
| ļ.,                     |                  |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         |                             |
| -10                     |                  |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         | -                           |
| ŀ                       |                  |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         | -                           |
| F.,                     |                  |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         | -                           |
| 11                      |                  |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         | -                           |
| ŀ                       |                  |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         | 1                           |
| ŀ.,                     |                  |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         | -                           |
| -12                     |                  |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         | ] -                         |
| ļ.                      |                  |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         |                             |
| 13                      |                  |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         |                             |
| ł '                     |                  |                                                        | 1           |                    |              |      |            |            |                                          |               |                   |                         | ]                           |
| Ī                       |                  |                                                        |             |                    |              |      |            |            |                                          |               |                   |                         | 1                           |
| 14                      |                  |                                                        | 1           |                    |              |      |            |            |                                          |               |                   |                         | ]                           |
| ŀ '¯                    |                  |                                                        | 1           |                    |              |      |            |            |                                          |               |                   |                         | ]                           |
| ŀ                       |                  |                                                        | 1           |                    |              |      |            |            |                                          |               |                   |                         | ]                           |
| 15                      |                  |                                                        | 1           |                    |              |      |            |            |                                          |               |                   |                         | -                           |
| ţ Ť                     |                  | 1                                                      | 1           |                    |              |      |            |            |                                          |               |                   |                         | :                           |
| ŀ                       |                  |                                                        | 1           |                    |              |      |            |            |                                          |               |                   |                         |                             |
| -16                     |                  |                                                        | 1           |                    |              |      |            |            |                                          |               |                   |                         | -                           |
| 1                       |                  | 1                                                      | 1           |                    |              |      |            |            |                                          |               |                   |                         | ] :                         |
| ŀ                       |                  |                                                        | 1           |                    |              |      |            |            |                                          |               |                   |                         |                             |
| - 17                    |                  |                                                        | 1           |                    |              |      |            |            |                                          |               |                   |                         |                             |
| F                       |                  | 1                                                      | 1           |                    |              |      |            |            |                                          |               |                   |                         | -                           |
| į.                      |                  |                                                        | 1           |                    |              |      |            |            |                                          |               |                   |                         | :                           |
| -18                     |                  |                                                        | 1           |                    |              |      |            |            |                                          |               |                   |                         | -                           |
| F                       |                  |                                                        | 1           |                    |              |      |            |            |                                          |               |                   |                         | ]                           |
| <b>!</b>                |                  | 1                                                      | 1           |                    |              |      |            |            |                                          |               |                   |                         | ] :                         |
| 19                      |                  |                                                        | 1           |                    |              |      |            |            |                                          |               |                   |                         | -                           |
| ŀ                       |                  |                                                        | 1           |                    |              |      |            |            |                                          |               |                   |                         | ]                           |
| Ŧ                       |                  | 1                                                      | 1           |                    |              |      |            |            |                                          |               |                   |                         |                             |
| $\vdash$                |                  | GROUNDWATER ELE                                        | 1/^-        | <del>L</del> IONIC | $\leftarrow$ | _    |            |            |                                          |               |                   |                         |                             |

**GROUNDWATER ELEVATIONS** 

SHALLOW/SINGLE INSTALLATION
 WATER LEVEL (date)

THURBER2S(5126) 5126.GPJ 11/9/11

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Hill CHECKED : MB



PROJECT : Mary River Project

INCLINATION: 56° AZIMUTH: 268°

LOCATION : Cockburn Lake - South Tunnel

STARTED : July 29, 2011 DRILLER: BOART LONGYEAR, LM-55

SHEET 1 OF 5

Project No. 19-1605-126

| cc                      |                  | ETED : July 29, 2011                                                                              |              |           |     |               | Ν             | 7 832 8           |                 |        |                          |         |                 |      |                         |                          |        |                               | CGVD28                                           |
|-------------------------|------------------|---------------------------------------------------------------------------------------------------|--------------|-----------|-----|---------------|---------------|-------------------|-----------------|--------|--------------------------|---------|-----------------|------|-------------------------|--------------------------|--------|-------------------------------|--------------------------------------------------|
| щ                       | dot              |                                                                                                   | 98           | ELEV. (m) |     | RATE          | JURN<br>JURN  | FR-FRA            | ACTURE<br>AVAGE | J-     | FAULT<br>JOINT           |         |                 |      | SM-SMOOTH<br>R-ROUGH    | FO-FOLIATED<br>UE-UNEVEN |        | e<br>pa)                      | FIELD/LABORATORY TESTING RESULTS Point Load Test |
| DEPTH SCALE<br>(metres) | BORING METHOD    | DECODIDATION                                                                                      | SYMBOLIC LOG | ELEV. (m) | ġ   | ATION<br>nin) | COLC<br>% RET | SH-SHE<br>VN-VEII | EAR             | S-     | POLISH<br>SLICKE         | NSI     | DED             |      | ST-STEPPED<br>PL-PLANAR | W-WAVY<br>C-CURVED       | nfined | Compressive<br>Strength (Mpa) | RESULTS Point Load Test                          |
| PTH<br>(met             | ING I            | DESCRIPTION                                                                                       | /BOL         | ELEV      | NS. | 'RATR'        | Į,            | RECO <sup>1</sup> | VERY            | R.Q.D. | FRACT<br>INDEX<br>PER .3 | Т.<br>К | DIP w           | vrt  | DISCONTINUIT            |                          |        | Stren                         | Diametral<br>▲ Point Load Test<br>Axial          |
| ㅂ                       | BOR              |                                                                                                   | SYI          | _         |     | PENET         | FLUS          | TOTAL<br>CORE %   |                 | l      |                          | - 1     | DIP w<br>Core A | - 1  | DESC                    | D SURFACE<br>RIPTION     | - 1    | 120                           | Laboratory UCS Test                              |
|                         |                  | GROUND SURFACE                                                                                    |              | 111.22    |     |               |               | 1111              |                 |        |                          | Ì       |                 | Ĭ    |                         |                          | Ĭ      | Ì                             | 1631                                             |
| ŀ                       |                  | GRANITIC GNEISS, slightly weathered, fine to medium grained, weakly banded, pinkish grey to black |              | 3.30      |     |               |               |                   |                 |        |                          |         |                 |      | J                       |                          |        |                               | ]                                                |
| -4                      |                  | pinkish grey to black                                                                             |              |           |     |               |               |                   |                 |        |                          |         |                 |      |                         |                          |        |                               | -                                                |
| ŧ                       |                  |                                                                                                   |              |           | ١.  |               |               |                   |                 |        |                          |         |                 |      | j                       |                          |        |                               | ]                                                |
| - 5                     |                  |                                                                                                   |              |           | 1   | 10            | 20            |                   |                 |        |                          |         |                 |      | Ĵ                       |                          |        |                               | <del>-</del>                                     |
| ŀ                       |                  |                                                                                                   |              |           |     |               |               |                   |                 |        |                          |         |                 |      |                         |                          |        |                               | ]                                                |
| -6                      |                  |                                                                                                   |              |           |     |               |               |                   |                 |        |                          |         |                 |      |                         |                          |        |                               | -                                                |
| ŀ                       |                  |                                                                                                   |              |           |     |               |               |                   |                 |        |                          |         |                 |      |                         |                          |        |                               | ]                                                |
| 7                       |                  |                                                                                                   |              |           |     |               |               |                   |                 |        |                          |         |                 |      | J<br>J                  |                          |        |                               | -                                                |
| ŀ                       |                  |                                                                                                   |              |           |     |               |               |                   |                 |        |                          |         |                 |      | J                       |                          |        |                               | ]                                                |
| -8                      |                  |                                                                                                   |              |           | 2   | 5             | 0             |                   |                 |        |                          |         |                 |      |                         |                          |        |                               | _                                                |
| E                       |                  |                                                                                                   |              |           |     |               |               |                   |                 |        |                          |         |                 |      | J                       |                          |        |                               | ]                                                |
| - 9                     |                  |                                                                                                   |              |           |     |               |               |                   |                 |        |                          |         |                 |      | J                       |                          |        |                               | -                                                |
| Ē.                      |                  |                                                                                                   |              |           |     |               |               |                   |                 |        |                          |         |                 |      |                         |                          |        |                               | ]                                                |
| -10                     |                  | possible silty sand seam at 9.95m                                                                 |              |           |     |               |               |                   |                 |        |                          |         |                 |      |                         |                          |        |                               | -                                                |
| Ē.                      |                  |                                                                                                   |              |           |     | _             |               |                   |                 |        | 1                        |         |                 |      | .i                      |                          |        |                               | ]                                                |
| 11                      |                  |                                                                                                   |              |           | 3   | 33            | 0             |                   |                 |        | <u>.</u>                 |         |                 |      | Ĵ                       |                          |        |                               | -                                                |
| Ē.,                     |                  |                                                                                                   |              |           |     |               |               |                   |                 |        |                          |         |                 |      | J                       |                          |        |                               |                                                  |
| <b>-</b> 12             |                  |                                                                                                   |              |           |     |               |               |                   |                 |        |                          |         |                 |      |                         |                          |        |                               | ]                                                |
| ļ.,                     | d Drill          |                                                                                                   |              |           |     |               |               |                   |                 |        |                          |         |                 |      |                         |                          |        |                               | -                                                |
| - 13                    | mong             | potassium feldspar vein (130mm) at 13.20m                                                         |              |           |     |               |               |                   |                 |        |                          |         | •               | N    | VN                      |                          |        |                               | <u> </u>                                         |
| ļ.,                     | NQ Diamond Drill |                                                                                                   |              |           | 4   | 15            | 0             |                   |                 |        |                          |         |                 |      |                         |                          |        |                               | -                                                |
| -14                     |                  |                                                                                                   |              |           | 4   | -             | ľ             |                   |                 |        |                          |         |                 |      |                         |                          |        |                               | ]                                                |
| ļ ,,                    |                  |                                                                                                   |              |           |     |               |               |                   |                 |        |                          |         |                 |      |                         |                          |        |                               | -                                                |
| - 15<br>-               |                  |                                                                                                   |              |           |     |               |               |                   |                 |        |                          |         |                 |      |                         |                          |        |                               | ]                                                |
| ļ.,                     |                  |                                                                                                   |              |           |     |               |               |                   |                 |        |                          |         | •               |      | J                       |                          |        |                               | -                                                |
| <b>-</b> 16             |                  |                                                                                                   |              |           |     |               |               |                   |                 |        |                          |         |                 |      |                         |                          |        |                               | ]                                                |
| ļ                       |                  |                                                                                                   |              |           | 5   | 10            | 0             |                   |                 |        |                          |         |                 |      |                         |                          |        |                               | -                                                |
| 17                      |                  |                                                                                                   |              |           | ľ   | _             |               |                   |                 |        |                          |         |                 |      |                         |                          |        |                               | ]                                                |
| 1,0                     |                  |                                                                                                   |              |           |     |               |               |                   |                 |        |                          |         |                 | •    | J                       |                          |        |                               | :                                                |
| -18<br>-                |                  |                                                                                                   |              |           |     |               |               |                   |                 |        |                          |         |                 |      | J<br>FR                 |                          |        |                               | ]                                                |
| :<br>- 19               |                  |                                                                                                   |              |           |     |               |               |                   |                 |        |                          |         |                 |      |                         |                          |        |                               | :                                                |
| Fia                     |                  |                                                                                                   |              |           |     |               |               |                   |                 |        |                          |         |                 |      |                         |                          |        |                               | ]                                                |
| <u> </u>                |                  |                                                                                                   |              |           | 6   | ω             | 0             |                   |                 |        |                          |         |                 |      | J                       |                          |        |                               | ]                                                |
| -20                     |                  |                                                                                                   |              |           | ľ   |               |               |                   |                 |        |                          |         |                 |      |                         |                          |        |                               | ]                                                |
| £ 21                    |                  |                                                                                                   |              |           |     |               |               |                   |                 |        |                          |         |                 |      |                         |                          |        |                               | ]                                                |
| 21                      |                  |                                                                                                   |              |           |     |               |               |                   |                 |        |                          |         |                 |      |                         |                          |        |                               | ]                                                |
| -22                     |                  |                                                                                                   |              |           |     |               |               |                   |                 |        |                          |         |                 | $\ $ | J                       |                          |        |                               | ]                                                |
|                         |                  |                                                                                                   |              |           |     |               |               |                   |                 |        |                          |         |                 |      |                         |                          |        |                               | ]                                                |
| - 23                    |                  |                                                                                                   |              |           | 7   | 6             | 20            |                   |                 |        |                          |         |                 |      | FR                      |                          |        |                               | ]                                                |
| -                       | Ш                | GROUNDWATER ELE                                                                                   | <u>K//</u>   | TONIC     |     | _             | L.,           |                   |                 |        |                          | Ш       | Ш               | Ш    | <u> </u>                |                          |        | Ш                             | <u> </u>                                         |

GROUNDWATER ELEVATIONS

ROCKM(5126) 5126.GPJ 11/9/11

SHALLOW/SINGLE INSTALLATION WATER LEVEL (date)

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Hill/Dunstan
CHECKED : MB

THURBER

Mary River Project **PROJECT** Cockburn Lake - South Tunnel LOCATION

INCLINATION: 56° AZIMUTH: 268° Project No. 19-1605-126

July 29, 2011 STARTED

DRILLER: BOART LONGYEAR, LM-55

SHEET 2 OF 5 July 29, 2011 COMPLETED N 7 832 812 E 601 490 DATUM CGVD28 FIELD/LABORATORY
TESTING
RESULTS
Point Load Test FR-FRACTURE CL-CLEAVAGE F-FAULT J-JOINT SM-SMOOTH R-ROUGH FO-FOLIATED UE-UNEVEN BORING METHOD SYMBOLIC LOG SH-SHEAR VN-VEIN P-POLISHED S-SLICKENSIDED ST-STEPPED PL-PLANAR DEPTH SCAL W-WAVY (metres) ELEV. (m) ġ C-CURVED DESCRIPTION RUN Diametral FRACTINDEX RECOVERY DISCONTINUITY DATA ▲ Point Load Test Axial FLUSH TOTAL SOLIC TYPE AND SURFACE DESCRIPTION ■ Laboratory UCS 50 150 8848 8848 2345 ୦ ନିତ୍ରର GROUND SURFACE clay coating in joint surfaces 24 25 8 26 possible sand seam in joint at 26.40m 27 28 9 9 29 30 31 10 32 J-FO 33 g 34 35 11 J-FO small fault (20mm) with clay guage infill at 35.20m potassium feldspar vein (120mm) at 35.60m 36 37 15 12 38 VN potassium feldspar vein at 38.60m J J-VN 39 40 FR-FO 13 41 FR-FO 43

**GROUNDWATER ELEVATIONS** 

abla shallow/single installation WATER LEVEL (date)

5126.GPJ 11/9/11

ROCKM(5126)

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Hill/Dunstan CHECKED : MB

**THURBER** 

PROJECT : Mary River Project

\_\_\_\_ INCLINATION: 56°

AZIMUTH: 268°

Project No. 19-1605-126

LOCATION : Cockburn Lake - South Tunnel STARTED : July 29, 2011

DRILLER: BOART LONGYEAR, LM-55 N 7 832 812 E 601 490 SHEET 3 OF 5 DATUM CGVD28

| DESCRIPTION  DESCRIPTION  DESCRIPTION  DESCRIPTION  DESCRIPTION  DESCRIPTION  DESCRIPTION  RECOVERY ROLD FRACT. INDEX DIP wit DISCONTINUITY DATA  DIP wit DIP wit Type AND SURFACE  Diameter Discontinuity DATA  Axial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                | July 29, 2011<br>July 29, 2011    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                     |                 | 7 832 812 E                                              |                      |                                              | IVI-55               |                                                    |                                 | JM     | 3 OF 5<br>CGVD28                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|-----------------|----------------------------------------------------------|----------------------|----------------------------------------------|----------------------|----------------------------------------------------|---------------------------------|--------|-----------------------------------------------------------------------------------------------------|
| GROLAND SURFACE   14   15   15   16   17   17   18   18   18   18   18   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | DESCRIPTION                       | SYMBOLIC LOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RUN No. | PENETRATRATION RATE | Main)           | SH-SHEAR<br>VN-VEIN<br>RECOVERY<br>TOTAL SOLID<br>CORE % | P-P<br>S-S<br>R.Q.D. | DLISHE<br>LICKEN<br>RACT.<br>NDEX<br>ER .3 m | DIP wrt<br>Core Axis | R-ROUGH<br>ST-STEPPED<br>PL-PLANAR<br>DISCONTINUIT | UE-UNEVEN<br>W-WAVY<br>C-CURVED | Streng | FIELD/LABORATOR TESTING RESULTS Point Load Test Diametral Point Load Test Axial Laboratory UCS Test |
| 14-46   1-46   1-47   1-48   1-47   1-48   1-47   1-48   1-48   1-47   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   1-48   | OUND             | SURFACE                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | İ                   |                 | 00444                                                    |                      |                                              |                      |                                                    |                                 | Ì      | 1651                                                                                                |
| 15 w \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14      | m                   | 25              |                                                          |                      |                                              |                      | J-FO                                               |                                 |        |                                                                                                     |
| Sub-vertical fracture at 48.45m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                     |                 |                                                          |                      |                                              |                      | ]<br>]<br>]                                        |                                 |        |                                                                                                     |
| Sub-vertical fracture at 48.45m   Sub-vertical fracture at 55.60m   Sub- |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15      | 22                  | 25              |                                                          |                      |                                              | •                    | J                                                  |                                 |        |                                                                                                     |
| 51   52   53   56   57   56   57   58   58   59   59   59   59   59   59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | o-vertica        | al fracture at 48.45m             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                     |                 |                                                          |                      |                                              | •                    | J<br>J                                             |                                 |        |                                                                                                     |
| 17 0 5  18 0 18  18 0 18  19 0 19 19 19 19 19 19 19 19 19 19 19 19 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16      | 10                  | 25              |                                                          |                      |                                              |                      |                                                    |                                 |        |                                                                                                     |
| 17 m 18 m 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                     |                 |                                                          |                      |                                              | •                    | J                                                  |                                 |        |                                                                                                     |
| fault, 560mm aperture at 55.60m  18 up 8  faintly weathered, strong, sub-horizontal foliation, moderate spacing, pink motited with dark grey and white diagonal, weathered joint at 58.37m  19 9 19 19 19 19 19 19 19 19 19 19 19 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17      | 83                  | 25              |                                                          |                      |                                              | •                    | J-FO                                               |                                 |        |                                                                                                     |
| fault, 560mm aperture at 55.60m  18 v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                     |                 |                                                          |                      |                                              | •                    | J                                                  |                                 |        |                                                                                                     |
| faintly weathered, strong, sub-horizontal foliation, moderate spacing, pink mottled with dark grey and white diagonal, weathered joint at 58.37m  19 0 19 19 19 19 19 19 19 19 19 19 19 19 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lt, 560m         | nm aperture at 55.60m             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18      | 22                  | 25 25           |                                                          |                      |                                              | •                    | J<br>J<br>F                                        |                                 |        |                                                                                                     |
| with dark grey and white diagonal, weathered joint at 58.37m  19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                     |                 |                                                          |                      |                                              | •                    | F<br>J<br>J                                        |                                 |        |                                                                                                     |
| 19 0 19 0 19 0 19 0 19 0 19 0 19 0 19 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n dark g         | grey and white                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                     |                 | 127                                                      |                      |                                              |                      | J                                                  |                                 |        |                                                                                                     |
| diagonal, faintly weathered, planar joint at 59.50m  heavily fractured at 61.11 to 61.29m  20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | yonal, w         | weatnered joint at 58.3/m         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19      | 10                  | dark grey       |                                                          |                      |                                              |                      | ı<br>1                                             |                                 |        |                                                                                                     |
| -62   heavily fractured at 61.11 to 61.29m   20 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | gonal, fa<br>50m | faintly weathered, planar joint a | at Signature of the state of th |         |                     |                 |                                                          |                      |                                              |                      | J                                                  |                                 |        |                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | avily frac       | ctured at 61.11 to 61.29m         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20      | 11                  | tht grey<br>100 |                                                          |                      |                                              |                      | J<br>J<br>J                                        |                                 |        |                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                     | ligi            |                                                          |                      |                                              |                      | J                                                  |                                 |        |                                                                                                     |

ROCKM(5126) 5126.GPJ 11/9/11

GROUNDWATER ELEVATION

SHALLOW/SINGLE INSTALLATION WATER LEVEL (date)

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Hill/Dunstan
CHECKED : MB



Mary River Project **PROJECT** 

INCLINATION: 56° AZIMUTH: 268°

LOCATION Cockburn Lake - South Tunnel

July 29, 2011

DRILLER: BOART LONGYEAR, LM-55

SHEET 4 OF 5

STARTED COMPLETED July 29, 2011

N 7 832 812 E 601 490

DATUM CGVD28

Project No. 19-1605-126

| CO                      | MPLE             | TED : July 29, 2011                                                                        |              |           |         |                             | N :                  | 7 832 812 E                                                                                          | 601    | 490            | 0           | _   |             |                                                                                    |                                                                | DA   | TUM                                                    | CGVD28 |
|-------------------------|------------------|--------------------------------------------------------------------------------------------|--------------|-----------|---------|-----------------------------|----------------------|------------------------------------------------------------------------------------------------------|--------|----------------|-------------|-----|-------------|------------------------------------------------------------------------------------|----------------------------------------------------------------|------|--------------------------------------------------------|--------|
| DEPTH SCALE<br>(metres) | BORING METHOD    | DESCRIPTION                                                                                | SYMBOLIC LOG | ELEV. (m) | RUN No. | PENETRATRATION RATE (m/min) | FLUSH COLOUR WRETURN | FR-FRACTURE CL-CLEAVAGE SH-SHEAR VN-VEIN  RECOVERY TOTAL CORE % SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | J<br>F | FR<br>IN<br>PE | NT<br>LISHE | DIP | wrt<br>Axis | SM-SMOOTH<br>R-ROUGH<br>ST-STEPPED<br>PL-PLANAR<br>DISCONTINUIT<br>TYPE AN<br>DESC | FO-FOLIATED UE-UNEVEN W-WAVY C-CURVED Y DATA D SURFACE RIPTION |      | 50 Unconfined<br>100 Compressive<br>150 Strength (Mpa) | 1      |
| $\dashv$                |                  | GROUND SURFACE                                                                             | +            |           |         | ш.                          | _                    | <u>8044 8044</u>                                                                                     | 2044   | 120            |             | 100 | 00          |                                                                                    |                                                                | +    | 111                                                    | lest   |
| 64<br>65<br>66          |                  | horizontal, irregular, closed joint at 65.15m                                              |              |           | 21      | 6                           |                      |                                                                                                      |        |                |             |     | ••          | J                                                                                  |                                                                |      |                                                        |        |
| 67                      |                  | fresh, very wide spacing, medium grey with<br>dark grey and pink sub-horizontal foliations |              |           |         |                             | y                    |                                                                                                      |        |                |             |     |             |                                                                                    |                                                                |      |                                                        |        |
| 68<br>69                |                  |                                                                                            |              |           | 22      | 15                          | light grey<br>100    |                                                                                                      |        |                |             |     |             |                                                                                    |                                                                |      |                                                        |        |
| 70<br>71                |                  | diagonal, planar, weathered joints at 70.46 and 70.70m                                     |              |           | 23      | 13                          | light grey<br>100    |                                                                                                      |        |                |             |     |             | J                                                                                  |                                                                |      | •                                                      |        |
| 72                      | =                |                                                                                            |              |           |         |                             | lig                  |                                                                                                      |        |                |             |     |             |                                                                                    |                                                                |      |                                                        |        |
| 73<br>74                | NQ Diamond Drill |                                                                                            |              |           | 24      | 14                          | light grey<br>100    |                                                                                                      |        |                |             |     |             |                                                                                    |                                                                |      |                                                        |        |
| 75<br>76                |                  |                                                                                            |              |           |         |                             |                      |                                                                                                      |        |                |             |     |             |                                                                                    |                                                                |      |                                                        |        |
| 77                      |                  |                                                                                            |              |           | 25      | 10                          | light grey<br>100    |                                                                                                      |        |                |             |     |             |                                                                                    |                                                                |      | •                                                      |        |
| 78                      |                  |                                                                                            |              |           |         |                             |                      |                                                                                                      |        |                |             |     |             |                                                                                    |                                                                |      | •                                                      |        |
| 79<br>80                |                  | diagonal, irregular, closed joint at 79.65m                                                |              |           | 26      | 12                          | light grey<br>100    |                                                                                                      |        |                |             |     |             | J<br>J-FO<br>J                                                                     |                                                                |      |                                                        |        |
| 81<br>82                |                  |                                                                                            |              |           |         |                             |                      |                                                                                                      |        |                |             |     |             |                                                                                    |                                                                |      |                                                        |        |
| 83                      |                  | becoming pinker<br>diagonal, planar, weathered, open joints at<br>82.59 to 84.22m          |              |           | 27      | 11                          | light grey<br>100    |                                                                                                      |        |                |             | •   |             | J                                                                                  |                                                                |      | 4                                                      |        |
|                         |                  | GROUNDWATER ELE  SHALLOW/SINGLE INSTA WATER LEVEL (date)                                   |              |           | 8       |                             |                      | EEP/DUAL IN                                                                                          |        | LL             | ΑΤΙ         | ON  |             | LOGGE<br>CHECK                                                                     |                                                                | stan |                                                        | THURB  |



#### RECORD OF BOREHOLE STUN-DH03(R) Mary River Project **PROJECT** Project No. 19-1605-126 INCLINATION: 56° AZIMUTH: 268° Cockburn Lake - South Tunnel LOCATION DRILLER: BOART LONGYEAR, LM-55 July 29, 2011 STARTED SHEET 5 OF 5 July 29, 2011 COMPLETED N 7 832 812 E 601 490 DATUM CGVD28 FIELD/LABORATORY TESTING RESULTS Point Load Test FR-FRACTURE CL-CLEAVAGE F-FAULT J-JOINT SM-SMOOTH R-ROUGH FO-FOLIATED UE-UNEVEN BORING METHOD SYMBOLIC LOG DEPTH SCALE SH-SHEAR VN-VEIN P-POLISHED S-SLICKENSIDED ST-STEPPED PL-PLANAR W-WAVY (metres) ELEV. (m) Š C-CURVED DESCRIPTION RUNI Diametral FRACT INDEX PER .3 RECOVERY DISCONTINUITY DATA ▲ Point Load Test Axial FLUSH TOTAL SOLID TYPE AND SURFACE DESCRIPTION ■ Laboratory UCS 50 150 8848 8848 2458 ୦ ନିତ୍ରର GROUND SURFACE 84 85 10 28 -86 g sub-vertical, undulating to planar, weathered, open joint with mineral infill at 86.55m 87 END OF BOREHOLE AT 87.45m. 87.45 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 **GROUNDWATER ELEVATIONS** $\overline{Y}$ SHALLOW/SINGLE INSTALLATION T DEEP/DUAL INSTALLATION LOGGED : Hill/Dunstan

WATER LEVEL (date)

CHECKED :

MB

**THURBER** 

5126.GPJ 11/9/11

ROCKM(5126)

WATER LEVEL (date)

# **RECORD OF BOREHOLE Q114+600**

PROJECT : Mary River Project

114+600 - Quarry
July 25, 2011 DRILLER: BOART LONGYEAR

Project No. 19-1605-126

STARTED : July COMPLETED : July

LOCATION

July 25, 2011 N 7 827 828 E 597 850

SHEET 1 OF 2 DATUM: CGVD28

| CC                      | OMPL             | ETED : July 25, 2011                                                                       |             |           |          |      | N          | 7 82       | 27 828 E 597 850                         |                             | M: C                       | GVD28                       |
|-------------------------|------------------|--------------------------------------------------------------------------------------------|-------------|-----------|----------|------|------------|------------|------------------------------------------|-----------------------------|----------------------------|-----------------------------|
| щ                       | ОО               | SOIL PROFILE                                                                               |             |           | Ş        | SAM  | PLE        | S          |                                          | EXCESS ICE CONTENT, PERCENT | را                         | THERMISTER/<br>GROUND COND. |
| DEPTH SCALE<br>(metres) | BORING METHOD    |                                                                                            | LOT         | ر (       | ~        |      | 3m         | γ %        |                                          | 10 20 30 40                 | ADDITIONAL<br>LAB. TESTING | FROZEN                      |
| TH 8                    | 9                | DESCRIPTION                                                                                | A PI        | ELEV. (m) | NUMBER   | TYPE | /S/0       | VER        | COMMENTS DYNAMIC CONF PENETRATION        | WATER CONTENT, PERCENT      | ĬĔË.                       | UNFROZEN                    |
|                         | ORII             |                                                                                            | STRATA PLOT | ELE       | Ž        | ←    | BLOWS/0.3m | RECOVERY % | DYNAMIC CONE PENETRATION RESISTANCE PLOT | wp I → → W   wl 10 20 30 40 | A B                        | UNCERTAIN                   |
| $\vdash$                | <u> </u>         | GROUND SURFACE                                                                             | S           |           | L        |      | Δ.         | ~          | 50 100 150 200 250                       | 10 20 30 40                 | ├                          |                             |
| -                       |                  | TOPSOIL                                                                                    | <b>3</b>    | 0.00      |          |      |            |            |                                          |                             | -                          |                             |
| •                       |                  | BOULDERS and COBBLES, granitic, grey                                                       | 00          |           |          |      |            |            |                                          |                             |                            | :                           |
| <u>-</u> 1              |                  |                                                                                            | n a         |           |          | RUN  |            |            |                                          |                             |                            |                             |
| ŀ                       |                  |                                                                                            | 000         |           | l        | KUN  |            |            |                                          |                             |                            |                             |
| -2                      |                  |                                                                                            | 64          |           |          |      |            |            |                                          |                             |                            | ]                           |
| _                       |                  | CPANITIC CNEISS slightly weathered                                                         |             | 2.30      |          |      |            |            |                                          |                             |                            | 2.30                        |
|                         |                  | <b>GRANITIC GNEISS</b> , slightly weathered, fine grained, slightly fractured, black, grey |             |           |          |      |            |            |                                          |                             |                            | -                           |
| - 3                     |                  |                                                                                            |             |           |          |      |            |            |                                          |                             |                            | 1                           |
| ŀ                       |                  |                                                                                            |             |           |          |      |            |            |                                          |                             |                            | ]                           |
| -4                      |                  |                                                                                            | M           |           | 2        | RUN  | ı          |            | TCR=100% SCR=100% RQD=77%                |                             |                            | ]                           |
| ŀ                       |                  |                                                                                            |             |           |          |      |            |            |                                          |                             |                            | -                           |
| - 5                     |                  |                                                                                            |             |           |          |      |            |            |                                          |                             |                            | ]                           |
| ļ                       |                  |                                                                                            |             |           |          |      |            |            |                                          |                             |                            |                             |
| •                       |                  |                                                                                            |             |           |          |      |            |            |                                          |                             |                            |                             |
| <del>-</del> 6          |                  |                                                                                            |             |           |          |      |            |            |                                          |                             |                            | ]                           |
| •                       |                  |                                                                                            |             |           |          |      |            |            |                                          |                             |                            | ]                           |
| 7                       |                  |                                                                                            |             |           |          |      |            |            | TOD-400% COD-04% DOD-04%                 |                             |                            | -                           |
| į.                      |                  |                                                                                            |             |           | 3        | RUN  |            |            | TCR=100% SCR=81% RQD=81%                 |                             |                            |                             |
| -8                      |                  |                                                                                            |             |           |          |      |            |            |                                          |                             |                            | -                           |
| ŀ                       |                  |                                                                                            |             |           |          |      |            |            |                                          |                             |                            | -                           |
| - 9                     |                  |                                                                                            |             |           |          |      |            |            |                                          |                             |                            | ]                           |
| 1                       | Ē                |                                                                                            |             |           |          |      |            |            |                                          |                             |                            |                             |
| İ                       | NQ Diamond Drill |                                                                                            |             |           |          |      |            |            |                                          |                             |                            |                             |
| -10                     | jamo             |                                                                                            |             |           | 4        | RUN  | ı          |            | TCR=100% SCR=100% RQD=100%               |                             |                            | -                           |
| ŀ                       | ğ                |                                                                                            |             |           |          |      |            |            |                                          |                             |                            | -                           |
| - 11                    | -                |                                                                                            |             |           |          |      |            |            |                                          |                             |                            | -                           |
| ŀ                       |                  |                                                                                            |             |           |          |      |            |            |                                          |                             |                            |                             |
| 12                      |                  |                                                                                            |             |           |          |      |            |            |                                          |                             |                            |                             |
| ŀ                       |                  | layers of biotite interbeds                                                                |             |           |          |      |            |            |                                          |                             |                            | 1                           |
| 13                      |                  |                                                                                            |             |           | 5        | RUN  | ı          |            | TCR=100% SCR=100% RQD=100%               |                             |                            | 1                           |
| F 13                    |                  |                                                                                            |             |           |          |      |            |            |                                          |                             |                            | ]                           |
| ŀ                       |                  |                                                                                            |             |           |          |      |            |            |                                          |                             |                            |                             |
| -14                     |                  |                                                                                            |             |           |          |      |            |            |                                          |                             |                            | -                           |
| ŀ                       |                  | quartz crystal                                                                             |             |           |          |      |            |            |                                          |                             |                            |                             |
| - 15                    |                  |                                                                                            |             |           |          |      |            |            |                                          |                             |                            | ]                           |
| ŀ                       |                  |                                                                                            | M           |           |          | L    |            |            |                                          |                             |                            |                             |
| 16                      |                  |                                                                                            |             |           | 6        | RUN  | 1          |            | TCR=100% SCR=100% RQD=100%               |                             |                            |                             |
| "                       |                  |                                                                                            |             |           |          |      |            |            |                                          |                             |                            | -                           |
| 1,-                     |                  | biotite schist at 16.90m                                                                   |             |           |          |      |            |            |                                          |                             |                            | :                           |
| 17                      |                  | DIOLIC SCHIST AT 10.30111                                                                  |             |           | $\vdash$ |      |            |            |                                          |                             |                            |                             |
| -                       |                  |                                                                                            |             |           |          |      |            |            |                                          |                             |                            |                             |
| -18                     |                  | biotite schist (100mm) at 18.2m                                                            |             |           |          |      |            |            |                                          |                             |                            | -                           |
| :[                      |                  |                                                                                            |             |           | 7        | RUN  |            |            | TCR=100% SCR=100% RQD=92%                |                             |                            |                             |
| 19                      |                  |                                                                                            |             |           | ′        | NOIN |            |            | 1017-100/0 3017-100/0 RQD-32/0           |                             |                            |                             |
| <u> </u>                |                  |                                                                                            |             |           |          |      |            |            |                                          |                             |                            |                             |
| (OZ                     |                  |                                                                                            |             |           | L        | L    |            |            |                                          |                             |                            |                             |
| 2                       |                  | GROUNDWATER ELE                                                                            | VAT         | IONS      | 3        |      |            |            |                                          |                             |                            |                             |

☐ SHALLOW/SINGLE INSTALLATION
WATER LEVEL (date)

THURBER2S(5126) 5126.GPJ 11/9/11

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Khabbaznia
CHECKED : KS



# **RECORD OF BOREHOLE Q114+600**

Mary River Project **PROJECT** 

> 114+600 - Quarry DRILLER: BOART LONGYEAR

Project No. 19-1605-126

STARTED

LOCATION

July 25, 2011 July 25, 2011

SHEET 2 OF 2 DATUM: CGVD28

|                         | MPLE          | TED : July 25, 2011        |             |           |        |       |            |            | 27 828 E 597 850                         |     |                  |              |               |        | M: C                       | GVD28                     |
|-------------------------|---------------|----------------------------|-------------|-----------|--------|-------|------------|------------|------------------------------------------|-----|------------------|--------------|---------------|--------|----------------------------|---------------------------|
| щ                       | GOI           | SOIL PROFILE               |             |           | ,      | SAM   | PLE        | S          |                                          | EXC | ESS ICE          | CONTE        | NT, PER       | CENT   | ١٥                         | THERMISTER/<br>GROUND CON |
| DEPTH SCALE<br>(metres) | BORING METHOD |                            | чот         | (m.       | 监      |       | J.3m       | ۶۲ %       | COMMENTS                                 | 1   | 0 :<br>I         | _            |               | 10<br> | ADDITIONAL<br>LAB. TESTING | FROZEN                    |
| EPTH<br>(me             | RING          | DESCRIPTION                | STRATA PLOT | ELEV. (m) | NUMBER | TYPE  | BLOWS/0.3m | RECOVERY % | DYNAMIC CONE PENETRATION RESISTANCE PLOT |     | ATER C<br>′p I—— | ONTENT       | , PERCE       |        | ADDIT<br>AB. TI            | UNFROZEN                  |
|                         | BOI           |                            | STR         | Ш         | z      |       | BLO        | REC        | 50 100 150 200 250                       |     | 0 :              |              |               | 10     | ′ ′                        | UNCERTAIN                 |
|                         |               |                            |             |           |        |       |            |            |                                          |     |                  |              |               |        |                            |                           |
|                         |               |                            |             |           |        |       |            |            |                                          |     |                  |              |               |        |                            |                           |
| - 21                    |               |                            |             |           |        |       |            |            |                                          |     |                  |              |               |        |                            |                           |
| -22                     |               |                            |             |           | 8      | RUN   | ı          |            | TCR=100% SCR=100% RQD=90%                |     |                  |              |               |        |                            |                           |
|                         |               |                            |             |           |        |       |            |            |                                          |     |                  |              |               |        |                            |                           |
| 23                      |               |                            |             |           |        |       |            |            |                                          |     |                  |              |               |        |                            |                           |
|                         |               | biotite interbeds          |             |           |        |       |            |            |                                          |     |                  |              |               |        |                            |                           |
| -24                     | _             |                            |             |           |        |       |            |            |                                          |     |                  |              |               |        |                            |                           |
|                         | and Drill     |                            |             |           | ۵      | RUN   |            |            | TCR=100% SCR=100% RQD=77%                |     |                  |              |               |        |                            |                           |
| 25                      | Diamond       |                            |             |           | "      | IXOIX |            |            | 101-100% 301-100% 1QD-11%                |     |                  |              |               |        |                            |                           |
|                         | Ø             |                            |             |           |        |       |            |            |                                          |     |                  |              |               |        |                            |                           |
| -26                     |               |                            |             |           |        |       |            |            |                                          |     |                  |              |               |        |                            |                           |
| - 27                    |               |                            |             |           |        |       |            |            |                                          |     |                  |              |               |        |                            |                           |
|                         |               |                            |             |           |        |       |            |            |                                          |     |                  |              |               |        |                            |                           |
| -28                     |               |                            |             |           | 10     | RUN   | ı          |            | TCR=100% SCR=100% RQD=100%               |     |                  |              |               |        |                            |                           |
|                         |               |                            |             |           |        |       |            |            |                                          |     |                  |              |               |        |                            |                           |
| 29                      |               |                            |             |           |        |       |            |            |                                          |     |                  |              |               |        |                            |                           |
| -30                     |               |                            |             |           |        |       |            |            |                                          |     |                  |              |               |        |                            |                           |
| -30                     |               |                            |             |           |        |       |            |            |                                          |     |                  |              |               |        |                            |                           |
| 31                      |               |                            |             |           |        |       |            |            |                                          |     |                  |              |               |        |                            |                           |
|                         |               |                            |             |           | 11     | RUN   | ı          |            | TCR=100% SCR=100% RQD=100%               |     |                  |              |               |        |                            |                           |
| -32                     |               |                            |             |           |        |       |            |            |                                          |     |                  |              |               |        |                            |                           |
|                         |               |                            |             |           |        |       |            |            |                                          |     |                  |              |               |        |                            |                           |
| 33                      |               |                            |             |           |        |       |            |            |                                          |     |                  |              |               |        |                            |                           |
| -24                     |               | END OF BOREHOLE AT 33.60m. | _\Y/2       | 33.60     |        |       |            |            |                                          |     |                  |              |               |        |                            |                           |
| -34                     |               |                            |             |           |        |       |            |            |                                          |     |                  |              |               |        |                            |                           |
| 35                      |               |                            |             |           |        |       |            |            |                                          |     |                  |              |               |        |                            |                           |
|                         |               |                            |             |           |        |       |            |            |                                          |     |                  |              |               |        |                            |                           |
| -36                     |               |                            |             |           |        |       |            |            |                                          |     |                  |              |               |        |                            |                           |
|                         |               |                            |             |           |        |       |            |            |                                          |     |                  |              |               |        |                            |                           |
| 37                      |               |                            |             |           |        |       |            |            |                                          |     |                  |              |               |        |                            |                           |
|                         |               |                            |             |           |        |       |            |            |                                          |     |                  |              |               |        |                            |                           |
| -38                     |               |                            |             |           |        |       |            |            |                                          |     |                  |              |               |        |                            |                           |
| - 39                    |               |                            |             |           |        |       |            |            |                                          |     |                  |              |               |        |                            |                           |
|                         |               |                            |             |           |        |       |            |            |                                          |     |                  |              |               |        |                            |                           |
|                         |               | ODOLINDA/ATED E            |             |           | Ļ      |       |            |            |                                          |     |                  |              |               |        |                            |                           |
|                         |               | GROUNDWATER EL             |             |           | )      | •     | 7 -        |            | D/DIIAI INGT                             |     |                  |              |               |        |                            |                           |
|                         |               | SHALLOW/SINGLE INST        | IALLA       | ITON      |        |       |            |            | P/DUAL INSTALLATION<br>LEVEL (date)      |     | LOGGE<br>CHECKI  |              | Khabbaz<br>KS | nia    |                            |                           |
|                         |               | (3000)                     |             |           |        |       |            |            | V/                                       |     |                  | - <b>-</b> . |               |        |                            | THUE                      |



Mary River Project **PROJECT** 

116+500 - Quarry

Project No. 19-1605-126

LOCATION STARTED COMPLETED :

July 25, 2011 July 26, 2011

DRILLER: BOART LONGYEAR, LM-55 N 7 826 260 E 600 261

SHEET 1 OF 2 DATUM: CGVD28

| щ                       | 0             | SOIL PROFILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |         |        | SAM  | PLE        | S          |                                          | EXCESS ICE CONTENT, PERCENT                                     | ر ا                        | THERMISTER<br>GROUND CO |
|-------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|--------|------|------------|------------|------------------------------------------|-----------------------------------------------------------------|----------------------------|-------------------------|
| DEPTH SCALE<br>(metres) | BORING METHOD |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PLOT        | (m)     | H.     | l    | 0.3m       | RY %       | COMMENTS                                 | 10 20 30 40                                                     | ADDITIONAL<br>LAB. TESTING | FROZEN                  |
| EPTH<br>(me             | RING          | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STRATA PLOT | ELEV. ( | NUMBER | TYPE | BLOWS/0.3m | RECOVERY % | DYNAMIC CONE PENETRATION RESISTANCE PLOT | WATER CONTENT, PERCENT wp I———————————————————————————————————— | AB. TI                     | UNFROZEN                |
| _                       | <u>B</u>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | STR         | ш       | Z      |      | BL(        | REC        | 50 100 150 200 250                       | 10 20 30 40                                                     |                            | UNCERTAIN               |
|                         |               | GROUND SURFACE  COBBLES(150mm) and GRAVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60          | 0.00    |        |      |            |            |                                          |                                                                 | $\vdash$                   | 0.30                    |
|                         |               | GRANITIC GNEISS, fresh, very strong, light grey and pink                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |         | 1      |      |            |            |                                          |                                                                 |                            |                         |
| 1                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         | 1      | RUN  | 1          |            | TCR=63% SCR=54% RQD=31%                  |                                                                 |                            |                         |
|                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |        |      |            |            |                                          |                                                                 |                            |                         |
| 2                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |        |      |            |            |                                          |                                                                 |                            |                         |
| 3                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |        |      |            |            |                                          |                                                                 |                            |                         |
|                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |        |      |            |            |                                          |                                                                 |                            |                         |
| 4                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         | 2      | RUN  | 1          |            | TCR=103% SCR=100% RQD=100%               |                                                                 |                            |                         |
|                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |        |      |            |            |                                          |                                                                 |                            |                         |
| 5                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |        |      |            |            |                                          |                                                                 |                            |                         |
|                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |        |      |            |            |                                          |                                                                 |                            |                         |
| 6                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |        |      |            |            |                                          |                                                                 |                            |                         |
| 7                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         | 3      | RUN  | 1          |            | TCR=100% SCR=97% RQD=97%                 |                                                                 |                            |                         |
| ′                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |        |      |            |            |                                          |                                                                 |                            |                         |
| 8                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |        |      |            |            |                                          |                                                                 |                            |                         |
|                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |        |      |            |            |                                          |                                                                 |                            |                         |
| 9                       | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |        |      |            |            |                                          |                                                                 |                            |                         |
|                         | nd Drill      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |        |      |            |            |                                          |                                                                 |                            |                         |
| 10                      | NQ Diamond    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         | 4      | RUN  | 1          |            | TCR=100% SCR=100% RQD=99%                |                                                                 |                            |                         |
|                         | ă             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |        |      |            |            |                                          |                                                                 |                            |                         |
| 11                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |        |      |            |            |                                          |                                                                 |                            |                         |
| 12                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |        |      |            |            |                                          |                                                                 |                            |                         |
| _                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |        |      |            |            |                                          |                                                                 |                            |                         |
| 13                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         | 5      | RUN  | 1          |            | TCR=100% SCR=98% RQD=93%                 |                                                                 |                            |                         |
|                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |        |      |            |            |                                          |                                                                 |                            |                         |
| 14                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |        |      |            |            |                                          |                                                                 |                            |                         |
|                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |        |      |            |            |                                          |                                                                 |                            |                         |
| 15                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |        |      |            |            |                                          |                                                                 |                            |                         |
| 16                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         | 6      | RUN  | 1          |            | TCR=100% SCR=100% RQD=95%                |                                                                 |                            |                         |
|                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |        |      |            |            |                                          |                                                                 |                            |                         |
| 17                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |        |      |            |            |                                          |                                                                 |                            |                         |
|                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |        |      |            |            |                                          |                                                                 |                            |                         |
| 18                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |        |      |            |            |                                          |                                                                 |                            |                         |
|                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         | _      | P:   |            |            | TOD-4000/ 00D 4000/ === ===:             |                                                                 |                            |                         |
| 19                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         | 7      | RUN  | 1          |            | TCR=100% SCR=100% RQD=97%                |                                                                 |                            |                         |
|                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         |        |      |            |            |                                          |                                                                 |                            |                         |
| _                       |               | GROUNDWATER ELE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |         | S      | 1    |            |            |                                          |                                                                 |                            |                         |
|                         |               | $\overline{egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} arra$ | ALLA        | TION    |        |      |            |            | P/DUAL INSTALLATION                      | LOGGED : Mediwake/Braver                                        | man                        |                         |
|                         |               | WATER LEVEL (date)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |         |        |      | WA         | ΓER        | LEVEL (date)                             | CHECKED : KS                                                    |                            | THUR                    |

Mary River Project **PROJECT** 

116+500 - Quarry

Project No. 19-1605-126

LOCATION STARTED

July 25, 2011

DRILLER: BOART LONGYEAR, LM-55

SHEET 2 OF 2

July 26, 2011 COMPLETED

N 7 826 260 E 600 261

DATUM: CGVD28

| ш                       | 8                | SOIL PROFILE                            |             |           | ;      | SAM  | PLE        | S          |                                                                      | EXCESS ICE CONTENT, PERCENT              | THERMISTER/<br>GROUND COND.                              |
|-------------------------|------------------|-----------------------------------------|-------------|-----------|--------|------|------------|------------|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------|
| DEPTH SCALE<br>(metres) | BORING METHOD    | DESCRIPTION                             | STRATA PLOT | ELEV. (m) | NUMBER | TYPE | BLOWS/0.3m | RECOVERY % | COMMENTS DYNAMIC CONE PENETRATION RESISTANCE PLOT 50 100 150 200 250 | 10 20 30 40                              | GROUND COND. FROZEN UNFROZEN UNFROZEN UNFROZEN UNCERTAIN |
|                         |                  |                                         |             |           |        |      |            |            | 7 77 77 77                                                           |                                          |                                                          |
| - 21<br>- 22<br>- 22    |                  |                                         |             |           | 8      | RUN  | 1          |            | TCR=100% SCR=100% RQD=100%                                           |                                          |                                                          |
| -24                     |                  |                                         |             |           |        |      |            |            |                                                                      |                                          |                                                          |
| - 25                    | NQ Diamond Drill |                                         |             |           | 9      | RUN  | 1          |            | TCR=100% SCR=100% RQD=100%                                           |                                          |                                                          |
| 27                      | Ž                |                                         |             |           |        |      |            |            |                                                                      |                                          |                                                          |
| -28                     |                  |                                         |             |           | 10     | RUN  | 1          |            | TCR=100% SCR=97% RQD=77%                                             |                                          |                                                          |
| - 29                    |                  |                                         |             |           |        |      |            |            |                                                                      |                                          |                                                          |
| -30                     |                  |                                         |             |           |        |      |            |            |                                                                      |                                          |                                                          |
| 31                      |                  |                                         |             |           | 11     | RUN  | 1          |            | TCR=100% SCR=100% RQD=100%                                           |                                          |                                                          |
| -32                     |                  | END OF BOREHOLE AT 32.40m.              |             | 32.40     |        |      |            |            |                                                                      |                                          |                                                          |
| - 33<br>-               |                  |                                         |             |           |        |      |            |            |                                                                      |                                          |                                                          |
| -34<br>-                |                  |                                         |             |           |        |      |            |            |                                                                      |                                          |                                                          |
| - 35<br>-               |                  |                                         |             |           |        |      |            |            |                                                                      |                                          |                                                          |
| -36                     |                  |                                         |             |           |        |      |            |            |                                                                      |                                          |                                                          |
| - 37                    |                  |                                         |             |           |        |      |            |            |                                                                      |                                          |                                                          |
| -38<br>-38              |                  |                                         |             |           |        |      |            |            |                                                                      |                                          |                                                          |
| - 39<br>-               |                  |                                         |             |           |        |      |            |            |                                                                      |                                          |                                                          |
| -38<br>-39              |                  | GROUNDWATER ELE                         |             |           | <br>}  |      |            |            |                                                                      |                                          |                                                          |
|                         |                  | SHALLOW/SINGLE INST. WATER LEVEL (date) | ALLA        | TION      |        |      |            |            | P/DUAL INSTALLATION<br>LEVEL (date)                                  | LOGGED : Mediwake/Braver<br>CHECKED : KS | man THURBER                                              |



# **RECORD OF BOREHOLE Q116+800**

Mary River Project **PROJECT** 

116+800 - Quarry

Project No. 19-1605-126

LOCATION STARTED

July 26, 2011 July 26, 2011

DRILLER: BOART LONGYEAR, LM-55 N 7 826 194 E 597 422

SHEET 1 OF 2 DATUM: CGVD28

| co                       |                  | ETED : July 26, 2011                                                                                                        |             |           |         |       |            |            | 26 194 E 597 422                         | EVO | EGG IOF | CONTE         | NT DEC  |          | IM: C                      | GVD28                |
|--------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------|-----------|---------|-------|------------|------------|------------------------------------------|-----|---------|---------------|---------|----------|----------------------------|----------------------|
| پ                        | BORING METHOD    | SOIL PROFILE                                                                                                                | 1.          |           | :       | SAM   |            |            |                                          | EXC | ESS ICE | CONTE<br>oice |         | CENÍ     | 후                          | THERMIST<br>GROUND ( |
| DEP IN SCALE<br>(metres) | METI             |                                                                                                                             | LOT         | Ê         | ik.     |       | 1.3m       | % X>       | COMMENTS                                 |     | 10<br>I | _             |         | 10<br>   | NON/                       | FROZEN               |
| (me                      | NG.              | DESCRIPTION                                                                                                                 | STRATA PLOT | ELEV. (m) | NUMBER  | TYPE  | BLOWS/0.3m | RECOVERY % | DYNAMIC CONE PENETRATION RESISTANCE PLOT |     |         | ONTENT        | , PERCE |          | ADDITIONAL<br>LAB. TESTING | UNFROZE              |
| 4                        | BOR              |                                                                                                                             | STR         |           | ۱ź      | [     | BLO        | RECO       | 50 100 150 200 250                       |     | vp      |               |         | wl<br>10 | ₹≤                         | UNCERTA              |
|                          |                  | GROUND SURFACE                                                                                                              |             | 0.00      |         |       |            |            |                                          |     |         |               |         |          |                            |                      |
|                          |                  | COBBLES and GRAVEL, fines washed out                                                                                        | 000         |           |         |       |            |            |                                          |     |         |               |         |          |                            |                      |
| , I                      |                  |                                                                                                                             | 00          |           |         |       |            |            |                                          |     |         |               |         |          |                            |                      |
| '                        |                  |                                                                                                                             | 00          |           | 1       | RUN   | ı          | 61         |                                          |     |         |               |         |          |                            |                      |
| ,                        |                  |                                                                                                                             |             | 1.93      |         |       |            |            |                                          |     |         |               |         |          | FI<br>1                    | 1.9                  |
| 2                        |                  | GRANITIC GNEISS, fresh, moderately spaced, very strong, with diagonal foliations horizontal to subhorizontal closed joints, | , 🚫         |           |         |       |            |            |                                          |     |         |               |         |          | 0                          |                      |
|                          |                  | grey, pink, white                                                                                                           |             |           |         |       |            |            |                                          |     |         |               |         |          | 1                          |                      |
| 3                        |                  |                                                                                                                             |             |           |         |       |            |            |                                          |     |         |               |         |          | 3<br>4                     |                      |
|                          |                  |                                                                                                                             |             |           | ,       | RUN   |            |            | TCR=100% SCR=92% RQD=92%                 |     |         |               |         |          | 1                          |                      |
| 4                        |                  |                                                                                                                             |             |           | _       | Itolt |            |            | 1011-100/0 0011-32/0 11QD-32/0           |     |         |               |         |          | 1                          |                      |
|                          |                  |                                                                                                                             |             |           |         |       |            |            |                                          |     |         |               |         |          | 1                          |                      |
| 5                        |                  |                                                                                                                             |             |           |         |       |            |            |                                          |     |         |               |         |          | 1                          |                      |
|                          |                  |                                                                                                                             |             |           |         |       |            |            |                                          |     |         |               |         |          | 0                          |                      |
| 3                        |                  |                                                                                                                             |             |           |         |       |            |            |                                          |     |         |               |         |          | 0<br>2                     |                      |
|                          |                  |                                                                                                                             |             |           |         |       |            |            |                                          |     |         |               |         |          | 1 2                        |                      |
| 7                        |                  |                                                                                                                             |             |           | 3       | RUN   | l          |            | TCR=100% SCR=94% RQD=94%                 |     |         |               |         |          | 1                          |                      |
|                          |                  |                                                                                                                             |             |           |         |       |            |            |                                          |     |         |               |         |          | 1<br>0                     |                      |
| 3                        |                  |                                                                                                                             |             |           |         |       |            |            |                                          |     |         |               |         |          | 2                          |                      |
|                          |                  |                                                                                                                             |             |           |         |       |            |            |                                          |     |         |               |         |          | 1                          |                      |
| 9                        |                  |                                                                                                                             |             |           |         |       |            |            |                                          |     |         |               |         |          | 1 2                        |                      |
|                          | Ē                | open diagonal joint with black weathering at 9.20m                                                                          |             |           |         |       |            |            |                                          |     |         |               |         |          | 0                          |                      |
| 10                       | NQ Diamond Drill | 0.25.11                                                                                                                     |             |           | 4       | RUN   | ı          |            | TCR=100% SCR=96% RQD=96%                 |     |         |               |         |          | 0                          |                      |
|                          | Diar             |                                                                                                                             |             |           |         |       |            |            |                                          |     |         |               |         |          | 1                          |                      |
| 11                       | ž                |                                                                                                                             |             |           |         |       |            |            |                                          |     |         |               |         |          | 1 2                        |                      |
| `                        |                  |                                                                                                                             |             |           |         |       |            |            |                                          |     |         |               |         |          | 1                          |                      |
| 12                       |                  |                                                                                                                             |             |           |         |       |            |            |                                          |     |         |               |         |          | 1 0                        |                      |
| ا ۲                      |                  |                                                                                                                             |             |           | 5       | RUN   | ı          |            | TCR=100% SCR=97% RQD=94%                 |     |         |               |         |          | 0                          |                      |
| 13                       |                  |                                                                                                                             |             |           |         |       |            |            |                                          |     |         |               |         |          | 0                          |                      |
| 13                       |                  |                                                                                                                             |             |           |         |       |            |            |                                          |     |         |               |         |          | 3<br>1                     |                      |
|                          |                  |                                                                                                                             |             |           | 6       | RUN   |            |            | TCR=100% SCR=93% RQD=93%                 |     |         |               |         |          | 0                          |                      |
| 14                       |                  |                                                                                                                             |             |           |         |       |            |            |                                          |     |         |               |         |          | 2 2                        |                      |
| ا ٍ ,                    |                  | white questrite handing at 44.0                                                                                             |             |           |         |       |            |            |                                          |     |         |               |         |          | 2                          |                      |
| 15                       |                  | white quartzite banding at 14.8m                                                                                            |             |           |         |       |            |            |                                          |     |         |               |         |          | 0                          |                      |
|                          |                  |                                                                                                                             |             |           | -       | RUN   |            |            | TCR=100% SCR=93% RQD=93%                 |     |         |               |         |          | 0                          |                      |
| 16                       |                  |                                                                                                                             |             |           | ′       | KUN   |            |            | 1011-100% SUK-93% KQD-93%                |     |         |               |         |          | 2<br>1                     |                      |
|                          |                  |                                                                                                                             |             |           |         |       |            |            |                                          |     |         |               |         |          | 0                          |                      |
| 17                       |                  |                                                                                                                             |             |           |         |       |            |            |                                          |     |         |               |         |          | 1                          |                      |
|                          |                  | becoming widely spaced massive                                                                                              |             |           |         |       |            |            |                                          |     |         |               |         |          | 0                          |                      |
| 18                       |                  | 5 - 2 - 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2                                                                                   |             |           |         |       |            |            |                                          |     |         |               |         |          | 0                          |                      |
|                          |                  |                                                                                                                             |             |           |         |       |            |            |                                          |     |         |               |         |          | 0                          |                      |
| 19                       |                  |                                                                                                                             |             |           | 8       | RUN   | ı          |            | TCR=100% SCR=100% RQD=100%               |     |         |               |         |          | 0                          |                      |
|                          |                  |                                                                                                                             |             |           |         |       |            |            |                                          |     |         |               |         |          | 0                          |                      |
|                          |                  | CDOLINDWATED ELS                                                                                                            |             |           | $\perp$ |       |            |            |                                          |     |         |               |         |          | 1                          |                      |
|                          |                  | GROUNDWATER ELE  ▽                                                                                                          |             |           | >       |       | ,          |            |                                          |     |         |               |         |          |                            |                      |
|                          |                  | ∑ SHALLOW/SINGLE INST                                                                                                       | ALLA        | TION      |         |       |            |            | P/DUAL INSTALLATION                      |     | LOGGE   |               | Dunstan |          |                            |                      |
|                          |                  | WATER LEVEL (date)                                                                                                          |             |           |         | ,     | VVA٦       | ΕR         | LEVEL (date)                             |     | CHECK   | ED :          | KS      |          |                            | THU                  |



# **RECORD OF BOREHOLE Q116+800**

Mary River Project **PROJECT** 

Project No. 19-1605-126

LOCATION

116+800 - Quarry

July 26, 2011 DRILLER: BOART LONGYEAR, LM-55 STARTED SHEET 2 OF 2 July 26, 2011 N 7 826 194 E 597 422 COMPLETED DATUM: CGVD28

| ш                       | 8                | SOIL PROFILE                                   |             |           |        | SAM  | PLE        | S          |                                                                      | EXCESS                                     | ICE (            |        | NT, PER       | CENT | . (1)                      | THERMISTER/<br>GROUND COND. |
|-------------------------|------------------|------------------------------------------------|-------------|-----------|--------|------|------------|------------|----------------------------------------------------------------------|--------------------------------------------|------------------|--------|---------------|------|----------------------------|-----------------------------|
| DEPTH SCALE<br>(metres) | BORING METHOD    | DESCRIPTION                                    | STRATA PLOT | ELEV. (m) | NUMBER | TYPE | BLOWS/0.3m | RECOVERY % | COMMENTS DYNAMIC CONE PENETRATION RESISTANCE PLOT 50 100 150 200 250 | 10<br> <br>  WATE<br>  wp H<br>  10<br>  I | 20<br>R CO<br>20 | NTENT, | PERCE         |      | ADDITIONAL<br>LAB. TESTING | FROZEN UNFROZEN UNCERTAIN   |
| _                       |                  |                                                |             |           |        |      |            |            |                                                                      |                                            |                  |        |               |      | 0                          |                             |
| · 21                    |                  | biotite schist interbeds from 22.32m to 22.49m |             |           | 9      | RUN  | 1          |            | TCR=100% SCR=96% RQD=96%                                             |                                            |                  |        |               |      | 0 0 0 1 0 3 0 3 0 1 3      |                             |
| -24                     | III.             | very widely spaced joints                      |             |           |        |      |            |            |                                                                      |                                            |                  |        |               |      | 0<br>0<br>0<br>0           |                             |
| - 25                    | NQ Diamond Drill |                                                |             |           | 10     | RUN  | 1          |            | TCR=100% SCR=99% RQD=99%                                             |                                            |                  |        |               |      | 0<br>0<br>0<br>0           |                             |
| -26                     | Z                | closely spaced joints                          |             |           |        |      |            |            |                                                                      |                                            |                  |        |               |      | 0<br>1<br>0<br>0           |                             |
| · 27<br>-28             |                  |                                                |             |           | 11     | RUN  | 1          |            | TCR=100% SCR=90% RQD=90%                                             |                                            |                  |        |               |      | 0 0 0 1                    |                             |
| 29                      |                  |                                                |             |           |        |      |            |            |                                                                      |                                            |                  |        |               |      | 3<br>0<br>0                |                             |
| -30                     |                  |                                                |             |           |        |      |            |            |                                                                      |                                            |                  |        |               |      | 0<br>0<br>5<br>0           |                             |
| · 31                    |                  |                                                |             |           | 12     | RUN  | 1          |            | TCR=100% SCR=100% RQD=100%                                           |                                            |                  |        |               |      | 0 0 0 0                    |                             |
| -32                     |                  |                                                |             | 32.39     |        |      |            |            |                                                                      |                                            |                  |        |               |      | 3                          |                             |
| 33                      |                  | END OF BOREHOLE AT 32.39m.                     |             |           |        |      |            |            |                                                                      |                                            |                  |        |               |      |                            |                             |
| -34                     |                  |                                                |             |           |        |      |            |            |                                                                      |                                            |                  |        |               |      |                            |                             |
| · 35<br>-36             |                  |                                                |             |           |        |      |            |            |                                                                      |                                            |                  |        |               |      |                            |                             |
| · 37                    |                  |                                                |             |           |        |      |            |            |                                                                      |                                            |                  |        |               |      |                            |                             |
| -38                     |                  |                                                |             |           |        |      |            |            |                                                                      |                                            |                  |        |               |      |                            |                             |
| . 39                    |                  |                                                |             |           |        |      |            |            |                                                                      |                                            |                  |        |               |      |                            |                             |
|                         |                  | GROUNDWATER ELI                                | <br>F\/∆7   |           | Ĭ<br>L |      | <u> </u>   |            |                                                                      |                                            |                  |        |               |      | <u> </u>                   |                             |
|                         |                  | SHALLOW/SINGLE INST                            |             |           | ی      |      |            |            | P/DUAL INSTALLATION<br>LEVEL (date)                                  |                                            | GED<br>CKEI      |        | Dunstan<br>KS |      |                            | THURBER                     |



PROJECT: Mary River Project

123+000 - Quarry

LOCATION : 123 STARTED : Aug

August 4, 2011

DRILLER: BOART LONGYEAR, LM-55

SHEET 1 OF 2

Project No. 19-1605-126

N 7 820 410 E 598 555 COMPLETED August 4, 2011 DATUM: CGVD28 EXCESS ICE CONTENT, PERCENT THERMISTER/ GROUND COND SAMPLES SOIL PROFILE BORING METHOD ADDITIONAL LAB. TESTING oice DEPTH SCAL 20 STRATA PLOT BLOWS/0.3m 10 FROZEN NUMBER RECOVERY ELEV. (m) **COMMENTS** TYPE WATER CONTENT, PERCENT UNFROZEN DYNAMIC CONE PENETRATION RESISTANCE PLOT DESCRIPTION <del>O</del>W UNCERTAIN 20 30 100 150 200 250 10 40 GROUND SURFACE **GRAVEL**, granitic, light grey to reddish brown, sub-angular to sub-rounded, fine to 1A RUN 0.51 0.51 medium grained GRANITIC GNEISS, slightly to moderately weathered, closely spaced foliations, medium grained, strong, grey to pink 1B RUN TCR=84% SCR=62% 3 0 0 2 0 2 RUN TCR=100% SCR=98% RQD=69% 5 6 2 6 0 0 0 2 3 RUN TCR=100% SCR=100% RQD=71% 3 >25 >25 -8 1 0 0 9 1 slightly weathered, moderately spaced 0 0 RUN TCR=100% SCR=98% RQD=82% 0 0 1 1 0 12 0 0 TCR=100% SCR=94% RQD=71% 3 RUN 1 3 0 moderately to highly weathered, closely spaced joints, numerous open joints with silt/sand infill 15 6 RUN TCR=100% SCR=8% RQD=0% 16 heavily fractured from 17.45m to 21.05m 18 11/9/1

**GROUNDWATER ELEVATIONS** 

SHALLOW/SINGLE INSTALLATION
WATER LEVEL (date)

5126.GPJ

19

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

TCR=100% SCR=100% RQD=90%

RUN

LOGGED : Hill/Dunstan
CHECKED : KS



0

PROJECT : Mary River Project

123+000 - Quarry

Project No. 19-1605-126

LOCATION : STARTED :

August 4, 2011

DRILLER: BOART LONGYEAR, LM-55

SHEET 2 OF 2

| CC                      | OMPL             | ETED : August 4, 2011                                                                      |             |           |        |      | Ν          | 7 8        | 20 410 E 598 555                                                     |            |                 |           | DATU    | M: C                                      | GVD28                       |
|-------------------------|------------------|--------------------------------------------------------------------------------------------|-------------|-----------|--------|------|------------|------------|----------------------------------------------------------------------|------------|-----------------|-----------|---------|-------------------------------------------|-----------------------------|
| ш                       | 9                | SOIL PROFILE                                                                               |             |           | 5      | SAM  | PLE        | S          |                                                                      | EXCESS ICE | CONTE           |           | ENT     | . (5)                                     | THERMISTER/<br>GROUND COND. |
| DEPTH SCALE<br>(metres) | BORING METHOD    | DESCRIPTION                                                                                | STRATA PLOT | ELEV. (m) | NUMBER | TYPE | BLOWS/0.3m | RECOVERY % | COMMENTS DYNAMIC CONE PENETRATION RESISTANCE PLOT 50 100 150 200 250 | WATER C    | 20 S<br>CONTENT | 30 40<br> | NT<br>I | ADDITIONAL<br>LAB. TESTING                | FROZEN UNFROZEN UNCERTAIN   |
| -                       |                  |                                                                                            | W           |           |        |      |            |            |                                                                      |            |                 |           |         | 0                                         |                             |
| -21                     |                  |                                                                                            |             |           | 8      | RUN  |            |            | TCR=100% SCR=90% RQD=81%                                             |            |                 |           |         | 0<br>1<br>5<br>3<br>1<br>1<br>0<br>1<br>0 | -                           |
| - 25<br>- 26            | NQ Diamond Drill |                                                                                            |             |           | 9      | RUN  |            |            | TCR=100% SCR=89% RQD=78%                                             |            |                 |           |         | 0<br>1<br>1<br>1<br>0<br>0<br>4<br>2      |                             |
| - 27<br>- 28<br>- 29    | NON              |                                                                                            |             |           | 10     | RUN  |            |            | TCR=100% SCR=90% RQD=85%                                             |            |                 |           |         | 3<br>0<br>0<br>0<br>2<br>1<br>0<br>0      | -                           |
| -31<br>-32              |                  | trace biotite schist banding sub-vertical joints with red silty infill from 30.0m to 30.3m |             | 32.45     |        | RUN  |            |            | TCR=100% SCR=95% RQD=84%                                             |            |                 |           |         | 0<br>1<br>4<br>3<br>0<br>0<br>1           | 1                           |
| - 33<br>- 34            |                  | END OF BOREHOLE AT 32.45m.                                                                 |             |           |        |      |            |            |                                                                      |            |                 |           |         | 0                                         |                             |
| - 35                    |                  |                                                                                            |             |           |        |      |            |            |                                                                      |            |                 |           |         |                                           |                             |
| -36<br>-37              |                  |                                                                                            |             |           |        |      |            |            |                                                                      |            |                 |           |         |                                           |                             |

GROUNDWATER ELEVATIONS

☐ SHALLOW/SINGLE INSTALLATION WATER LEVEL (date)

THURBER2S(5126) 5126.GPJ 11/9/11

-38

39

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Hill/Dunstan
CHECKED : KS



# **RECORD OF BOREHOLE Q131+100**

Mary River Project **PROJECT** 

Project No. 19-1605-126

LOCATION

COMPLETED :

STARTED

131+100 - Quarry

August 5, 2011

August 5, 2011

DRILLER: BOART LONGYEAR

N 7 813 509 E 600 177

SHEET 1 OF 2 DATUM: CGVD28

| <u></u>        | НОР              | SOIL PROFILE                                                                                                                                 | 1. 1              |           | Ľ       | SAM  | _          | _          |                                                                      | EXCESS                 | CE CONT        |                           | RCEINT | ۵ ا                        | THERMISTER<br>GROUND CON  |
|----------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|---------|------|------------|------------|----------------------------------------------------------------------|------------------------|----------------|---------------------------|--------|----------------------------|---------------------------|
| (metres)       | BORING METHOD    | DESCRIPTION                                                                                                                                  | STRATA PLOT       | ELEV. (m) | NUMBER  | TYPE | BLOWS/0.3m | RECOVERY % | COMMENTS DYNAMIC CONE PENETRATION RESISTANCE PLOT 50 100 150 200 250 | 10<br> <br>WATEF<br>wp | 20<br>R CONTEN | 30<br>IT, PERC<br>V<br>30 | 40<br> | ADDITIONAL<br>LAB. TESTING | FROZEN UNFROZEN UNCERTAIN |
| ヿ              |                  | GROUND SURFACE                                                                                                                               |                   | 0.00      |         |      |            |            |                                                                      |                        |                |                           |        | 1                          |                           |
| 1 2            |                  | SAND and GRAVEL (INFERRED), some cobbles (< 170mm), trace silt, occasional boulders (< 740mm), granitic, pinkish red to greyish black, moist |                   |           | 1       | RUN  | ı          | 19         |                                                                      |                        |                |                           |        |                            |                           |
| 3              |                  |                                                                                                                                              |                   |           | 2       | RUN  |            | 67         |                                                                      |                        |                |                           |        |                            |                           |
| 5              |                  | SAND and CRAVEL some sitt trace                                                                                                              |                   | 5.48      |         |      |            |            |                                                                      |                        |                |                           |        |                            |                           |
| 6<br>7         |                  | SAND and GRAVEL, some silt, trace cobbles and boulders (< 210mm), granitic                                                                   |                   |           | 3       | RUN  | I          | 100        |                                                                      |                        |                |                           |        |                            |                           |
| 3              |                  | GRANITIC GNEISS, moderately weathered, fine grained, banded, strong                                                                          |                   | 8.35      |         |      |            |            |                                                                      |                        |                |                           |        |                            | 8.35                      |
| 9   10   11    | NQ Diamond Drill |                                                                                                                                              |                   |           | 4       | RUN  | I          |            | TCR=100% SCR=90% RQD=72%                                             |                        |                |                           |        |                            |                           |
| 12             |                  | highly fractured zone at 11.1m (0.10m) with clayey infill                                                                                    |                   |           | 5       | RUN  |            |            | TCR=100% SCR=84% RQD=75%                                             |                        |                |                           |        | FI 1 1 1 >25 3 >25 1 0     |                           |
| 14<br>15<br>16 |                  | becoming moderately spaced, with white foliations                                                                                            |                   |           | 6       | RUN  |            |            | TCR=100% SCR=98% RQD=89%                                             |                        |                |                           |        | 0<br>0<br>0<br>1<br>0      |                           |
| 17             |                  |                                                                                                                                              |                   |           |         |      |            |            | 23. 35.6 1.40 55.6                                                   |                        |                |                           |        | 1 1 0 0 0 0 1              |                           |
| 18             |                  |                                                                                                                                              |                   |           | 7       | RUN  | l          |            | TCR=100% SCR=98% RQD=94%                                             |                        |                |                           |        | 0<br>1<br>0<br>0<br>0      |                           |
|                |                  | GROUNDWATER ELE                                                                                                                              |                   |           | <u></u> |      |            |            |                                                                      |                        |                |                           |        | 0                          |                           |
|                |                  | SHALLOW/SINGLE INSTA     WATER LEVEL (date)                                                                                                  | ALLA <sup>-</sup> | TION      |         |      |            |            | P/DUAL INSTALLATION<br>LEVEL (date)                                  | LOG(                   | GED :          | Hill/Dur                  | ıstan  |                            | THURE                     |

# **RECORD OF BOREHOLE Q131+100**

Mary River Project **PROJECT** 

August 5, 2011

131+100 - Quarry

Project No. 19-1605-126

LOCATION August 5, 2011 STARTED

COMPLETED :

DRILLER: BOART LONGYEAR N 7 813 509 E 600 177

SHEET 2 OF 2 DATUM: CGVD28

| COMPLETED : August 5, 2011 |               |                              |      |           |        |      |            |            | 13 509 E 600 177                            | DATUM: CGVD28  EXCESS ICE CONTENT, PERCENT THERMISTER/ |                                                    |       |     |                             |                            |            |  |  |
|----------------------------|---------------|------------------------------|------|-----------|--------|------|------------|------------|---------------------------------------------|--------------------------------------------------------|----------------------------------------------------|-------|-----|-----------------------------|----------------------------|------------|--|--|
| щ                          | ООН           | SOIL PROFILE                 |      |           |        | SAM  | PLE        | S          |                                             | EXC                                                    | ESS ICE                                            | CONTE | آ گ | THERMISTER/<br>GROUND COND. |                            |            |  |  |
| DEPTH SCALE<br>(metres)    | BORING METHOD |                              |      | ELEV. (m) | ik.    | l    | .3m        | RECOVERY % | COMMENTS                                    | 10 20 30 40                                            |                                                    |       |     |                             | ADDITIONAL<br>LAB. TESTING | FROZEN     |  |  |
| PTH (met                   | ING           | DESCRIPTION STRATA PLOT      |      |           | NUMBER | TYPE | BLOWS/0.3m | OVER       | DYNAMIC CONE PENETRATION<br>RESISTANCE PLOT | WATER CONTENT, PERCENT                                 |                                                    |       |     |                             | B. 75                      | UNFROZEN 💹 |  |  |
| B                          | BOR           |                              | STR/ | 핍         | ž      | ľ    | BLO        | REC        | 50 100 150 200 250                          | <b>W</b>                                               | wp <del>                                    </del> |       |     |                             | ⋖₹                         | UNCERTAIN  |  |  |
|                            |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            |            |  |  |
| ŀ                          |               | END OF BOREHOLE AT 20.48m.   | M    | 20.48     |        |      |            |            |                                             |                                                        |                                                    |       |     |                             | 0                          |            |  |  |
| - 21                       |               | END OF BOREHOLE AT 20.46III. |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            | -          |  |  |
| Ė                          |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            | :          |  |  |
| -22                        |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            | _          |  |  |
| Ė                          |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            | ]          |  |  |
| - 23                       |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            | -          |  |  |
| •                          |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            | ]          |  |  |
| -<br>-24                   |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            |            |  |  |
| •                          |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            | ]          |  |  |
| -<br>- 25                  |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            | -          |  |  |
| [                          |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            | ]          |  |  |
| -<br>-26                   |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            |            |  |  |
| [                          |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            |            |  |  |
| - 27                       |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            | -          |  |  |
|                            |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            | -          |  |  |
| -28                        |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            |            |  |  |
| [                          |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            | -          |  |  |
| 29                         |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            |            |  |  |
| [                          |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            |            |  |  |
| -30                        |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            |            |  |  |
| -                          |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            | -          |  |  |
| - 31                       |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            | <u> </u>   |  |  |
|                            |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            |            |  |  |
| -32                        |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            | -          |  |  |
|                            |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            | -          |  |  |
| 33                         |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            | -          |  |  |
| Ė                          |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            | -          |  |  |
| -34                        |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            |            |  |  |
|                            |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            | ]          |  |  |
| - 35                       |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            | -          |  |  |
| Ė                          |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            | -          |  |  |
| -36                        |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            | -          |  |  |
| Ė .                        |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            | ]          |  |  |
| - 37                       |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            | -          |  |  |
| [                          |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            | ]          |  |  |
| -38                        |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            | -          |  |  |
|                            |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            | ]          |  |  |
| - 39                       |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            | -          |  |  |
|                            |               |                              |      |           |        |      |            |            |                                             |                                                        |                                                    |       |     |                             |                            | ]          |  |  |
|                            |               | GROUNDWATER ELE              | VAT  | IONS      | 5      |      | _          | L          |                                             |                                                        |                                                    |       |     | <u> </u>                    |                            |            |  |  |
| <b>1</b>                   |               | 7                            |      |           |        | _    | _          |            |                                             |                                                        |                                                    |       |     |                             |                            |            |  |  |

WATER LEVEL (date)

THURBER2S(5126) 5126.GPJ 11/9/11

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Hill/Dunstan CHECKED : KS



# **RECORD OF BOREHOLE Q138+100**

Mary River Project **PROJECT** 

138+100 - Quarry

Project No. 19-1605-126

July 16, 2011 STARTED July 17, 2011 COMPLETED

LOCATION

DRILLER: WALKER DRILLING

SHEET 1 OF 2

N 7 807 612 E 598 865 DATUM: CGVD28

|                                                  | 0                | SOIL PROFILE                                                          |                                               |           | ,      | SAM  | PLE        | s          |                                          | EXCE | SS ICE |        | NT, PER     | CENT | (1)                        | THERMISTER<br>GROUND CO |
|--------------------------------------------------|------------------|-----------------------------------------------------------------------|-----------------------------------------------|-----------|--------|------|------------|------------|------------------------------------------|------|--------|--------|-------------|------|----------------------------|-------------------------|
| DEP IN SCALE<br>(metres)                         | BORING METHOD    |                                                                       | Ь<br>О                                        |           |        |      | E          | %          |                                          | 1    | 0 2    | o ice  |             | 0    | ADDITIONAL<br>LAB. TESTING | FROZEN                  |
| n or<br>netre                                    | _ნ               | DECODED TO A                                                          | PL                                            | ELEV. (m) | NUMBER | Щ    | BLOWS/0.3m | RECOVERY % | COMMENTS                                 |      |        |        | PERCE       |      | 를                          |                         |
| ֡֡֓֞֞֜֞֜֞֡֡֞֜֞֜֞֡֞֞֜֞֜֞֞֓֓֡֡֞֞֡֞֡֡֡֞֡֞֜֞֡֡֡֡֡֡֡֡ | N<br>N           | DESCRIPTION                                                           | ATA                                           | EV.       | M      | TYPE | ) WS       | 8          | DYNAMIC CONE PENETRATION RESISTANCE PLOT |      |        | OW     | , FERCE<br> |      |                            | UNFROZEN                |
| בֿ                                               | BO               |                                                                       | STRATA PLOT                                   | ӹ         | z      |      | BLC        | REC        | 50 100 150 200 250                       | 1    |        | 0 3    |             | 0    | ~ ``                       | UNCERTAIN               |
|                                                  |                  | GROUND SURFACE                                                        |                                               | 0.00      |        |      |            |            |                                          |      |        |        |             |      |                            |                         |
|                                                  |                  | GRANITIC GNEISS, moderately weathered, medium to coarse grained, pink |                                               |           |        |      |            |            |                                          |      |        |        |             |      |                            |                         |
|                                                  |                  | to grey                                                               |                                               |           | 1      | RUN  |            |            | TCR=86% SCR=69% RQD=52%                  |      |        |        |             |      |                            |                         |
| 1                                                |                  |                                                                       |                                               |           |        |      |            |            |                                          |      |        |        |             |      |                            |                         |
|                                                  |                  | becoming moderately strong, slightly                                  |                                               |           | _      |      |            |            |                                          |      |        |        |             |      |                            |                         |
| 2                                                |                  | weathered                                                             |                                               |           |        |      |            |            |                                          |      |        |        |             |      |                            |                         |
| _                                                |                  |                                                                       |                                               |           |        |      |            |            |                                          |      |        |        |             |      |                            |                         |
|                                                  |                  |                                                                       |                                               |           | 2      | RUN  |            |            | TCR=97% SCR=82% RQD=70%                  |      |        |        |             |      |                            |                         |
| 3                                                |                  |                                                                       |                                               |           |        |      |            |            |                                          |      |        |        |             |      |                            |                         |
|                                                  |                  |                                                                       |                                               |           |        |      |            |            |                                          |      |        |        |             |      |                            |                         |
| 4                                                |                  |                                                                       |                                               |           |        |      |            |            |                                          |      |        |        |             |      |                            |                         |
| ·                                                |                  |                                                                       |                                               |           |        |      |            |            |                                          |      |        |        |             |      |                            |                         |
|                                                  |                  |                                                                       | $\mathbb{K}$                                  |           |        |      |            |            |                                          |      |        |        |             |      |                            |                         |
| 5                                                |                  |                                                                       |                                               |           | 3      | RUN  | l          |            | TCR=98% SCR=80% RQD=47%                  |      |        |        |             |      |                            |                         |
|                                                  |                  |                                                                       |                                               |           |        |      |            |            |                                          |      |        |        |             |      |                            |                         |
| 6                                                |                  |                                                                       |                                               |           |        |      |            |            |                                          |      |        |        |             |      |                            |                         |
|                                                  |                  | with black bands (mm scale), greenish clay                            |                                               |           |        |      |            |            |                                          |      |        |        |             |      |                            |                         |
| ,                                                |                  | infilled gouge at 6.24m                                               |                                               |           |        |      |            |            |                                          |      |        |        |             |      |                            |                         |
| 7                                                |                  |                                                                       |                                               |           | 4      | RUN  |            |            | TCR=99% SCR=99% RQD=80%                  |      |        |        |             |      |                            |                         |
|                                                  |                  |                                                                       |                                               |           | -      |      |            |            | 161 3676 GGI 3676 11QD 3676              |      |        |        |             |      |                            |                         |
| 8                                                |                  |                                                                       |                                               |           |        |      |            |            |                                          |      |        |        |             |      |                            |                         |
|                                                  |                  |                                                                       |                                               |           |        |      |            |            |                                          |      |        |        |             |      |                            |                         |
| 9                                                |                  |                                                                       |                                               |           | 5      | RUN  |            |            | TCR=98% SCR=97% RQD=85%                  |      |        |        |             |      |                            |                         |
|                                                  | ≣                |                                                                       |                                               |           |        |      |            |            |                                          |      |        |        |             |      |                            |                         |
|                                                  | NQ Diamond Drill |                                                                       |                                               |           |        |      |            |            |                                          |      |        |        |             |      |                            |                         |
| 10                                               | amo              |                                                                       | $\mathbb{K}$                                  |           |        |      |            |            |                                          |      |        |        |             |      |                            |                         |
|                                                  | g                |                                                                       |                                               |           | 6      | RUN  |            |            | TCR=98% SCR=98% RQD=68%                  |      |        |        |             |      |                            |                         |
| 11                                               | z                | and a sately at some all solutions at least of                        |                                               |           |        |      |            |            |                                          |      |        |        |             |      |                            |                         |
|                                                  |                  | moderately strong, slightly weathered                                 |                                               |           |        |      |            |            |                                          |      |        |        |             |      |                            |                         |
| ,                                                |                  |                                                                       |                                               |           | 7      | RUN  |            |            | TCR=86% SCR=76% RQD=52%                  |      |        |        |             |      |                            |                         |
| 12                                               |                  |                                                                       |                                               |           |        |      |            |            |                                          |      |        |        |             |      |                            |                         |
|                                                  |                  |                                                                       |                                               |           | _      |      |            | -          |                                          |      |        |        |             |      |                            |                         |
| 13                                               |                  |                                                                       |                                               |           |        |      |            |            |                                          |      |        |        |             |      |                            |                         |
|                                                  |                  |                                                                       |                                               |           | 8      | RUN  |            |            | TCR=97% SCR=87% RQD=81%                  |      |        |        |             |      |                            |                         |
| 14                                               |                  |                                                                       |                                               |           |        |      |            |            |                                          |      |        |        |             |      |                            |                         |
| '4                                               |                  | medium strong to strong, moderately                                   |                                               |           | _      |      |            |            |                                          |      |        |        |             |      |                            |                         |
|                                                  |                  | weathered                                                             | $\mathbb{M}$                                  |           |        |      |            |            |                                          |      |        |        |             |      |                            |                         |
| 15                                               |                  |                                                                       |                                               |           | 9      | RUN  |            |            | TCR=100% SCR=96% RQD=96%                 |      |        |        |             |      |                            |                         |
|                                                  |                  |                                                                       |                                               |           | L      |      |            | L          |                                          |      |        |        |             |      |                            |                         |
| 16                                               |                  |                                                                       |                                               |           |        |      |            |            |                                          |      |        |        |             |      |                            |                         |
|                                                  |                  |                                                                       |                                               |           | 10     | RUN  |            |            | TCR=92% SCR=81% RQD=73%                  |      |        |        |             |      |                            |                         |
| ,                                                |                  |                                                                       |                                               |           | '      |      |            |            | . S. COZ/O SOIN-01/O INQU-13/0           |      |        |        |             |      |                            |                         |
| 17                                               |                  |                                                                       |                                               |           |        |      |            | _          |                                          |      |        |        |             |      |                            |                         |
| l                                                |                  | strong, faintly weathered                                             |                                               |           |        |      |            |            |                                          |      |        |        |             |      |                            |                         |
| 18                                               |                  |                                                                       |                                               |           | 11     | RUN  |            |            | TCR=99% SCR=93% RQD=81%                  |      |        |        |             |      |                            |                         |
|                                                  |                  |                                                                       |                                               |           |        |      |            |            |                                          |      |        |        |             |      |                            |                         |
| 19                                               |                  |                                                                       |                                               |           |        |      |            |            |                                          |      |        |        |             |      |                            |                         |
| וש                                               |                  |                                                                       |                                               |           |        |      |            |            |                                          |      |        |        |             |      |                            |                         |
| l                                                |                  |                                                                       |                                               |           | 12     | RUN  | l          |            | TCR=97% SCR=90% RQD=79%                  |      |        |        |             |      |                            |                         |
|                                                  |                  | I GROUNDWATER ELE                                                     | <u>                                      </u> |           | Ļ      |      |            |            |                                          |      |        |        | <u> </u>    |      |                            |                         |
|                                                  |                  |                                                                       |                                               |           | •      | _    | ,          |            |                                          |      |        |        |             |      |                            |                         |
|                                                  |                  | $\overline{igspace}$ shallow/single inst                              | ALLA <sup>.</sup>                             | TION      |        | 7    | <u>-</u> c | EE         | P/DUAL INSTALLATION                      | L    | .OGGE  | ) : ;  | Singh       |      |                            |                         |
|                                                  |                  | WATER LEVEL (date)                                                    |                                               |           |        | ,    | WA         | TER        | LEVEL (date)                             | (    | CHECKE | :D : I | KS          |      |                            | THUR                    |



# **RECORD OF BOREHOLE Q138+100**

Mary River Project **PROJECT** 

Project No. 19-1605-126

138+100 - Quarry LOCATION STARTED

COMPLETED

July 16, 2011 July 17, 2011

DRILLER: WALKER DRILLING SHEET 2 OF 2 N 7 807 612 E 598 865 DATUM: CGVD28

| ]                       | ۵                | SOIL PROFILE               |             |           |        | SAMI | PLE        | s          |                |                     |              |                  | EXC | SS ICE                 |         | NT, PER              | CENT   | Ι                          | THERMISTER<br>GROUND CO   |
|-------------------------|------------------|----------------------------|-------------|-----------|--------|------|------------|------------|----------------|---------------------|--------------|------------------|-----|------------------------|---------|----------------------|--------|----------------------------|---------------------------|
| DEPTH SCALE<br>(metres) | BORING METHOD    | DESCRIPTION                | STRATA PLOT | ELEV. (m) | NUMBER | TYPE | BLOWS/0.3m | RECOVERY % | DYNAN<br>RESIS | COMME<br>MIC CONE I | PENETF<br>OT | ration<br>>      | W.  | L<br>ATER C∈<br>′p I—— | TUSTINC | 30 4<br>L<br>, PERCE | wl     | ADDITIONAL<br>LAB. TESTING | FROZEN UNFROZEN UNCERTAIN |
| _                       | <u> </u>         |                            | S           |           |        |      | В          | R          | 50             | 100 150             | 200          | 250              | '   | 0 2                    | 20 3    | 30 4                 | 40<br> | <u> </u>                   |                           |
| 21                      |                  |                            |             |           | 13     | RUN  |            |            | TCR=98%        | SCR=92%             | RQD=         | -88%             |     |                        |         |                      |        |                            |                           |
| 22                      |                  |                            |             |           | 14     | RUN  |            |            | TCR=99%        | SCR=95%             | RQD=         | <del>-</del> 90% |     |                        |         |                      |        |                            |                           |
| 24                      | ond Drill        | becoming strong, fresh     |             |           | 15     | RUN  |            |            | TCR=90%        | SCR=90%             | RQD=         | ÷80%             |     |                        |         |                      |        |                            |                           |
| 25<br>26                | NQ Diamond Drill |                            |             |           | 16     | RUN  |            |            | TCR=97%        | SCR=93%             | RQD=         | <del>-</del> 70% |     |                        |         |                      |        |                            |                           |
| 27<br>28                |                  |                            |             |           | 17     | RUN  |            |            | TCR=94%        | SCR=91%             | RQD=         | -86%             |     |                        |         |                      |        |                            |                           |
| 29                      |                  |                            |             |           | 18     | RUN  |            |            | TCR=100%       | SCR=93%             | 6 RQD        | 9=91%            |     |                        |         |                      |        |                            |                           |
| 30<br>31                |                  | END OF BOREHOLE AT 30.95m. |             | 30.93     |        | RUN  |            |            | TCR=97%        | SCR=92%             | RQD=         | -88%             |     |                        |         |                      |        |                            |                           |
| 32                      |                  |                            |             |           |        |      |            |            |                |                     |              |                  |     |                        |         |                      |        |                            |                           |
| 33<br>34                |                  |                            |             |           |        |      |            |            |                |                     |              |                  |     |                        |         |                      |        |                            |                           |
| 35                      |                  |                            |             |           |        |      |            |            |                |                     |              |                  |     |                        |         |                      |        |                            |                           |
| 36<br>37                |                  |                            |             |           |        |      |            |            |                |                     |              |                  |     |                        |         |                      |        |                            |                           |
| 38                      |                  |                            |             |           |        |      |            |            |                |                     |              |                  |     |                        |         |                      |        |                            |                           |
| 39                      |                  |                            |             |           |        |      |            |            |                |                     |              |                  |     |                        |         |                      |        |                            |                           |
|                         |                  | GROUNDWATER ELI            |             |           | 3      |      |            |            | P/DUAL IN      |                     | 1OITA        | ١                |     | LOGGEI                 |         | Singh<br>KS          | •      |                            | THURE                     |



# **RECORD OF BOREHOLE Q139+600**

Mary River Project **PROJECT** 

139+600 - Quarry

Project No. 19-1605-126

LOCATION

SHEET 1 OF 1

July 19, 2011 DRILLER: WALKER DRILLING STARTED July 19, 2011 N 7 806 105 E 598 727 COMPLETED DATUM: CGVD28

| ш           |        | ОО            | SOIL PROFILE                                                                                          |                   |           |        | SAM  | PLE        | S          |                                          | EXC | ESS ICE | CONTE      |           | CENT   | . (1)                      | THERMISTER/<br>GROUND COND. |
|-------------|--------|---------------|-------------------------------------------------------------------------------------------------------|-------------------|-----------|--------|------|------------|------------|------------------------------------------|-----|---------|------------|-----------|--------|----------------------------|-----------------------------|
| DEPTH SCALE | etres) | BORING METHOD |                                                                                                       | PLOT              | (E)       | Ä      | ш    | /0.3m      | ERY %      | COMMENTS                                 |     |         | 20 3       | 80 4<br>I | 40<br> | ADDITIONAL<br>LAB. TESTING | FROZEN                      |
| DEPT        | Ĕ      | ORING         | DESCRIPTION                                                                                           | STRATA PLOT       | ELEV. (m) | NUMBER | TYPE | BLOWS/0.3m | RECOVERY % | DYNAMIC CONE PENETRATION RESISTANCE PLOT | v   | ATER C0 | o <u>w</u> |           |        | ADDI<br>LAB. T             | UNFROZEN W                  |
|             | +      |               | GROUND SURFACE                                                                                        | $\top$            | 0.00      |        |      | ш          | ~          | 50 100 150 200 250                       |     |         |            |           | 1      |                            |                             |
| E           |        |               | GRANITIC GNEISS, slightly weathered,<br>medium strong, medium to coarse grained,<br>grey, pink, black |                   |           |        |      |            |            |                                          |     |         |            |           |        | FI<br>0<br>2               |                             |
| 1           |        |               | groy, print, black                                                                                    |                   |           | 1      | RUN  | 1          |            | TCR=99% SCR=99% RQD=96%                  |     |         |            |           |        | 3                          |                             |
| ŀ           |        |               |                                                                                                       |                   |           |        |      |            |            |                                          |     |         |            |           |        | 0                          |                             |
| -2          |        |               |                                                                                                       |                   |           | 2      | RUN  | ı          |            | TCR=100% SCR=100% RQD=100%               |     |         |            |           |        | 0                          |                             |
| :<br>- 3    |        |               |                                                                                                       |                   |           |        |      |            |            |                                          |     |         |            |           |        | 0                          |                             |
| •           |        |               |                                                                                                       |                   |           |        |      |            |            | TOD 05% 00D 04% DOD 04%                  |     |         |            |           |        | 2                          |                             |
| -4          |        |               |                                                                                                       |                   |           | 3      | RUN  |            |            | TCR=95% SCR=91% RQD=91%                  |     |         |            |           |        | 1                          |                             |
| •           |        |               |                                                                                                       |                   |           |        |      |            |            |                                          |     |         |            |           |        | 3<br>2                     |                             |
| 5           |        |               |                                                                                                       |                   |           | 4      | RUN  | ı          |            | TCR=95% SCR=89% RQD=77%                  |     |         |            |           |        | 2                          |                             |
| -6          |        |               |                                                                                                       |                   |           |        |      |            |            |                                          |     |         |            |           |        | 1<br>3                     |                             |
| E           |        | Diamond Drill |                                                                                                       |                   |           | 5      | RUN  |            |            | TCR=99% SCR=96% RQD=84%                  |     |         |            |           |        | 0                          |                             |
| 7           | l      | Diamo         |                                                                                                       |                   |           | ľ      |      |            |            | TON 35% SON 35% NQD 54%                  |     |         |            |           |        | 2                          |                             |
| -8          | :      | o<br>N        |                                                                                                       |                   |           |        |      |            |            |                                          |     |         |            |           |        |                            |                             |
| ļ           |        |               |                                                                                                       |                   |           | 6      | RUN  |            |            | TCR=100% SCR=100% RQD=100%               |     |         |            |           |        |                            |                             |
| 9           |        |               |                                                                                                       |                   |           |        |      |            |            |                                          |     |         |            |           |        | 2                          |                             |
| ļ.,         |        |               |                                                                                                       |                   |           | 7      | RUN  |            |            | TCR=91% SCR=91% RQD=88%                  |     |         |            |           |        | 0                          |                             |
| F10         | 1      |               |                                                                                                       |                   |           |        |      |            |            |                                          |     |         |            |           |        | 0                          | •                           |
| 11          | 1      |               |                                                                                                       |                   |           |        |      |            |            |                                          |     |         |            |           |        |                            |                             |
| ŀ           |        |               |                                                                                                       |                   |           | 8      | RUN  |            |            | TCR=100% SCR=100% RQD=98%                |     |         |            |           |        |                            |                             |
| -12         | 2      |               |                                                                                                       |                   |           |        |      |            |            |                                          |     |         |            |           |        |                            | •                           |
| 13          |        |               |                                                                                                       |                   |           |        |      |            |            |                                          |     |         |            |           |        |                            |                             |
| "           |        |               |                                                                                                       |                   |           |        | RUN  |            |            | TCR=99% SCR=80% RQD=80%                  |     |         |            |           |        |                            |                             |
| -14         | 1      |               | END OF BOREHOLE AT 13.89m.                                                                            |                   | 13.89     |        |      |            |            |                                          |     |         |            |           |        |                            |                             |
| Ĺ,          |        |               |                                                                                                       |                   |           |        |      |            |            |                                          |     |         |            |           |        |                            |                             |
| - 15<br>-   | 1      |               |                                                                                                       |                   |           |        |      |            |            |                                          |     |         |            |           |        |                            |                             |
| 16          | 3      |               |                                                                                                       |                   |           |        |      |            |            |                                          |     |         |            |           |        |                            |                             |
| E           |        |               |                                                                                                       |                   |           |        |      |            |            |                                          |     |         |            |           |        |                            |                             |
| F 17        | 7      |               |                                                                                                       |                   |           |        |      |            |            |                                          |     |         |            |           |        |                            |                             |
| -18         |        |               |                                                                                                       |                   |           |        |      |            |            |                                          |     |         |            |           |        |                            |                             |
| -18         |        |               |                                                                                                       |                   |           |        |      |            |            |                                          |     |         |            |           |        |                            |                             |
| - 19        | 9      |               |                                                                                                       |                   |           |        |      |            |            |                                          |     |         |            |           |        |                            |                             |
| ţ           |        |               |                                                                                                       |                   |           |        |      |            |            |                                          |     |         |            |           |        |                            |                             |
|             |        |               | GROUNDWATER ELE                                                                                       |                   |           | 5      | _    |            |            |                                          |     | 1       | ı          |           | ı      |                            |                             |
|             |        |               | ☐ SHALLOW/SINGLE INSTA                                                                                | ALLA <sup>.</sup> | TION      |        |      |            |            | P/DUAL INSTALLATION                      |     | LOGGE   |            | Santos/S  | Singh  |                            |                             |
| L           |        |               | WATER LEVEL (date)                                                                                    |                   |           |        |      | ννΑ        | ıER        | LEVEL (date)                             |     | CHECKE  | D :        | KS        |        |                            | THURBER                     |



# **RECORD OF BOREHOLE QS-3A**

Mary River Project **PROJECT** 

LOCATION Steensby Inlet - Quarry Project No. 19-1605-126

STARTED COMPLETED :

July 23, 2011 July 23, 2011

DRILLER: WALKER DRILLING N 7 800 000 E 595 698

SHEET 1 OF 1 DATUM: CGVD28

|                                          | <u></u>          | SOIL PROFILE                                                                   |                |           | Τ        | SAN        |            |            | 00 000 E 595 698                         | EXCESS ICI  | E CONTE | NT, PER  |          |                            | THERMISTER<br>GROUND CO |
|------------------------------------------|------------------|--------------------------------------------------------------------------------|----------------|-----------|----------|------------|------------|------------|------------------------------------------|-------------|---------|----------|----------|----------------------------|-------------------------|
| DEPTH SCALE<br>(metres)                  | BORING METHOD    | 301211101122                                                                   | E              |           | +        | Т          | _          |            |                                          | 10          | 20 ice  |          | 40       | ADDITIONAL<br>LAB. TESTING |                         |
| etres                                    | ) ME             |                                                                                | PLC            | ELEV. (m) | NUMBER   | <u>і</u> ш | BLOWS/0.3m | Z.         | COMMENTS                                 |             |         |          |          | TIO                        | FROZEN                  |
| ֓֞֝֝֟֝֓֓֓֓֓֓֓֓֓֓֟֝֟֝֟֝֟֝ <u>֚֚֚֚֟֟֟֟</u> | SI NG            | DESCRIPTION                                                                    | ΥTΑ            | ∑         | JMB      | TYPE       | NS/        |            | DYNAMIC CONE PENETRATION RESISTANCE PLOT | WATER 0     | 141     |          |          | B. T. B.                   | UNFROZEN                |
| 5                                        | BOR              |                                                                                | STRATA PLOT    |           | =        | -          | BLO        | RECOVERY % | 50 100 150 200 250                       | wp ⊢—<br>10 |         |          | wl<br>10 | ⁴ ≦                        | UNCERTAIN               |
| $\dashv$                                 | $\overline{}$    | GROUND SURFACE                                                                 | $\Box$         | 0.0       |          | +          | $^{-}$     | +-         |                                          |             |         |          |          |                            |                         |
|                                          |                  | GRANITIC GNEISS, highly weathered and fractured, coarse grained, weak, pinkish |                |           |          | D          | N          |            | TCD=270/ CCD=250/ DCD=250/               |             |         |          |          |                            |                         |
|                                          |                  | grey                                                                           |                |           | Ľ        | RUI        | IN         |            | TCR=37% SCR=25% RQD=25%                  |             |         |          |          |                            |                         |
| 1                                        |                  |                                                                                |                |           |          |            |            |            |                                          |             |         |          |          |                            |                         |
|                                          |                  |                                                                                |                |           | 2        | RUI        | N          |            | TCR=98% SCR=56% RQD=40%                  |             |         |          |          |                            |                         |
| 2                                        |                  |                                                                                |                |           | $\vdash$ | +          | +          | +          |                                          |             |         |          |          |                            |                         |
| ۱ ا                                      |                  |                                                                                |                |           |          |            |            |            |                                          |             |         |          |          | FI 5                       |                         |
|                                          |                  |                                                                                |                |           |          |            |            |            |                                          |             |         |          |          | >10<br>3                   |                         |
| 3                                        |                  |                                                                                |                |           |          |            |            |            |                                          |             |         |          |          | 2 2                        |                         |
| - 1                                      |                  |                                                                                |                |           | 3        | RUI        | N          |            | TCR=100% SCR=69% RQD=26%                 |             |         |          |          | 5                          |                         |
| 4                                        |                  |                                                                                |                |           |          |            |            |            |                                          |             |         |          |          | 3<br>0                     |                         |
| - 1                                      |                  | clovinfill at 4 Arr                                                            |                |           |          |            |            |            |                                          |             |         |          |          | 1 2                        |                         |
| _                                        |                  | clay infill at 4.4m                                                            |                |           |          |            |            |            |                                          |             |         |          |          | 4                          |                         |
| 5                                        |                  |                                                                                |                |           |          |            |            |            |                                          |             |         |          |          | 5<br>>10                   |                         |
|                                          |                  |                                                                                |                |           |          |            |            |            |                                          |             |         |          |          | 1 2                        |                         |
| 6                                        |                  |                                                                                |                |           | 4        | RUI        | N          |            | TCR=100% SCR=74% RQD=41%                 |             |         |          |          | 2                          |                         |
| - 1                                      |                  |                                                                                |                |           |          |            |            |            |                                          |             |         |          |          | 4<br>3                     |                         |
| ,                                        |                  |                                                                                |                | 1         |          | $\perp$    | 1          |            |                                          |             |         |          |          | 4<br>>10                   |                         |
| '   '                                    | NQ Diamond Drill | moderately to highly weathered                                                 |                |           |          |            |            |            |                                          |             |         |          |          | 1                          |                         |
|                                          | jam<br>          | ,                                                                              |                |           | 5        | RUI        | N          |            | TCR=100% SCR=74% RQD=33%                 |             |         |          |          | 2                          |                         |
| 3                                        | ğ                |                                                                                |                |           |          | _          | 1          |            |                                          |             |         |          |          | 4<br>3                     |                         |
| - [                                      | -                |                                                                                |                |           | 6        | RUI        | N          |            | TCR=100% SCR=88% RQD=35%                 |             |         |          |          | 4                          |                         |
| ,                                        |                  |                                                                                |                |           | Ľ        |            | 1          |            |                                          |             |         |          |          | >10<br>4                   |                         |
|                                          |                  | moderately weathered                                                           |                |           | ,        | RUI        | N          |            | TCD-100% SCD-05% DOD-90%                 |             |         |          |          | 2                          |                         |
|                                          |                  |                                                                                |                |           | '        | KUI        | I N        |            | TCR=100% SCR=95% RQD=89%                 |             |         |          |          | 5                          |                         |
| 10                                       |                  | highly woothors d                                                              |                |           | H        | 1          | +          | 1          |                                          |             |         |          |          | 3<br>>10                   |                         |
|                                          |                  | highly weathered                                                               |                | 1         |          |            |            |            |                                          |             |         |          |          | >10                        |                         |
| 11                                       |                  | vertical joint, clay infill                                                    |                |           | ٥        | RUI        | N          |            | TCR=100% SCR=53% RQD=27%                 |             |         |          |          | 2                          |                         |
|                                          |                  | vortical joint, day IIIIII                                                     |                |           | °        |            |            |            | 1511-100/0 3011-03/0 RQD-21/0            |             |         |          |          | 2                          |                         |
| , [                                      |                  |                                                                                |                |           |          |            |            |            |                                          |             |         |          |          | 3                          |                         |
| 12                                       |                  |                                                                                |                |           |          | _          | 1          |            |                                          |             |         |          |          | 1<br>>10                   |                         |
| - 1                                      |                  |                                                                                |                |           | 9        | RUI        | N          |            | TCR=100% SCR=100% RQD=69%                |             |         |          |          | >10<br>>10                 |                         |
| 13                                       |                  | slightly to moderately weathered                                               |                |           |          |            |            |            |                                          |             |         |          |          | 6                          |                         |
|                                          |                  | 5 .,                                                                           |                |           |          |            |            |            |                                          |             |         |          |          | 2<br>0                     |                         |
| 14                                       |                  |                                                                                |                |           | 10       | RUI        | N          |            | TCR=100% SCR=94% RQD=92%                 |             |         |          |          | 7<br>>10                   |                         |
| '                                        |                  |                                                                                |                |           | ``       |            |            |            |                                          |             |         |          |          | >10                        |                         |
|                                          |                  |                                                                                |                |           |          |            |            |            |                                          |             |         |          |          | 2<br>1                     |                         |
| 15                                       | -                | END OF BOREHOLE AT 15.13m.                                                     | <b> </b>       | 15.1      | 3        | +          | +          | -          |                                          |             |         |          |          | 2                          |                         |
|                                          |                  | END OF BOILEHOLE AT 10.10III.                                                  |                |           |          |            |            |            |                                          |             |         |          |          |                            |                         |
| 16                                       |                  |                                                                                |                |           |          |            |            |            |                                          |             |         |          |          |                            |                         |
|                                          |                  |                                                                                |                |           |          |            |            |            |                                          |             |         |          |          |                            |                         |
| , ,                                      |                  |                                                                                |                |           |          |            |            |            |                                          |             |         |          |          |                            |                         |
| 17                                       |                  |                                                                                |                |           |          |            |            |            |                                          |             |         |          |          |                            |                         |
|                                          |                  |                                                                                |                |           |          |            |            |            |                                          |             |         |          |          |                            |                         |
| 18                                       |                  |                                                                                |                |           |          |            |            |            |                                          |             |         |          |          |                            |                         |
|                                          |                  |                                                                                |                |           |          |            |            |            |                                          |             |         |          |          |                            |                         |
| 19                                       |                  |                                                                                |                |           |          |            |            |            |                                          |             |         |          |          |                            |                         |
| ן פּי                                    |                  |                                                                                |                |           |          |            |            |            |                                          |             |         |          |          |                            |                         |
|                                          |                  |                                                                                |                |           |          |            |            |            |                                          |             |         |          |          |                            |                         |
|                                          |                  | GROUNDWATER ELE                                                                | \/\\\<br>\/\\\ |           | <u></u>  |            |            |            | <u> </u>                                 |             |         |          |          | L                          |                         |
|                                          |                  |                                                                                |                |           | J        | ,          | _          |            |                                          |             |         |          |          |                            |                         |
|                                          |                  | $\overline{igspace}$ shallow/single insta                                      | ALLA           | TION      |          |            |            |            | P/DUAL INSTALLATION                      | LOGGE       | D :     | Singh/Ra | amos     |                            |                         |
|                                          |                  | WATER LEVEL (date)                                                             |                |           |          |            | WA         | ATER       | LEVEL (date)                             | CHECK       | ED :    | KS       |          |                            | THUR                    |



# **RECORD OF BOREHOLE QS-2**

Mary River Project **PROJECT** 

LOCATION Steensby Inlet - Quarry

DRILLER: WALKER DRILLING

STARTED COMPLETED :

July 24, 2011 July 25, 2011

N 7 801 066 E 595 200

SHEET 1 OF 2 DATUM: CGVD28

Project No. 19-1605-126

| <sub>ц</sub> Т           | 0                | SOIL PROFILE                                                                                    |             |           |        | SAM  | IPLE       | s          |                                                    | E | XCES | SS ICE       | CONT             | ENT<br>ce   | , PER  | CENT  | ی ا                                  | THERMISTE<br>GROUND CO    |
|--------------------------|------------------|-------------------------------------------------------------------------------------------------|-------------|-----------|--------|------|------------|------------|----------------------------------------------------|---|------|--------------|------------------|-------------|--------|-------|--------------------------------------|---------------------------|
| DEP IN SCALE<br>(metres) | BORING METHOD    | DESCRIPTION                                                                                     | STRATA PLOT | ELEV. (m) | NUMBER | TYPE | BLOWS/0.3m | RECOVERY % | COMMENTS  DYNAMIC CONE PENETRATION RESISTANCE PLOT |   |      | TER C        | 20<br> <br>ONTEN | 30<br>NT, F | PERCE  |       | ADDITIONAL<br>LAB. TESTING           | FROZEN UNFROZEN UNCERTAIN |
| -                        |                  | GROUND SURFACE                                                                                  | S)          | 0.0       | +      | -    | ш          | 2          | 50 100 150 200 250                                 | _ | Ť    |              | 1                | Ť           |        | +     | -                                    |                           |
| 1                        |                  | GRANITIC GNEISS, faintly to slightly weathered, coarse grained, medium strong black, grey, pink |             | 0.0       |        | RUN  | 7          |            | TCR=100% SCR=100% RQD=95%                          |   |      |              |                  |             |        |       | FI 0 0 3 1 1 1 1 1 1 1               |                           |
| 3<br>4                   |                  |                                                                                                 |             |           | 2      | RUN  | ,          |            | TCR=100% SCR=100% RQD=100%                         |   |      |              |                  |             |        |       | 0<br>0<br>0<br>3<br>0<br>2           |                           |
| 5                        |                  |                                                                                                 |             |           | 3      | RUN  | 7          |            | TCR=98% SCR=98% RQD=98%                            |   |      |              |                  |             |        |       | 0<br>0<br>1<br>0<br>0                |                           |
| 7                        |                  |                                                                                                 |             |           | 4      | RUN  | ٧          |            | TCR=100% SCR=97% RQD=97%                           |   |      |              |                  |             |        |       | 0<br>0<br>1<br>0<br>0<br>0           |                           |
| 10                       | NQ Diamond Drill |                                                                                                 |             |           | 5      | RUN  | ٧          |            | TCR=91% SCR=91% RQD=86%                            |   |      |              |                  |             |        |       | 0<br>2<br>0<br>0<br>0<br>1<br>1<br>0 |                           |
| 12                       |                  |                                                                                                 |             |           | 6      | RUN  | ٧          |            | TCR=100% SCR=100% RQD=92%                          |   |      |              |                  |             |        |       | 0<br>1<br>0<br>3<br>0<br>2           |                           |
| 14                       |                  |                                                                                                 |             |           | 7      | RUN  | 1          |            | TCR=100% SCR=96% RQD=92%                           |   |      |              |                  |             |        |       | 0 0 0 0 0                            |                           |
| 15                       |                  | slightly weathered, medium to coarse grained                                                    |             |           | 8      | RUN  | ١          |            | TCR=98% SCR=93% RQD=81%                            |   |      |              |                  |             |        |       | 2<br>3<br>1<br>0                     |                           |
| 16<br>17                 |                  | strong, fresh to faintly weathered                                                              |             |           | 9      | RUN  | ,          |            | TCR=99% SCR=95% RQD=91%                            |   |      |              |                  |             |        |       | 0 0 0                                |                           |
| 18                       |                  | massive                                                                                         |             |           | 10     | RUN  | ٧          |            | TCR=100% SCR=92% RQD=88%                           |   |      |              |                  |             |        |       | 1 2                                  |                           |
|                          |                  | GROUNDWATER ELI                                                                                 | EVAT        | ΓΙΟΝ      | L<br>s |      |            |            |                                                    |   |      |              |                  |             |        |       | 0                                    |                           |
|                          |                  | ☐ SHALLOW/SINGLE INST WATER LEVEL (date)                                                        |             |           |        |      |            |            | P/DUAL INSTALLATION<br>LEVEL (date)                |   |      | OGGE<br>HECK |                  | Ra<br>KS    | amos/S | Singh |                                      | THUE                      |

# **RECORD OF BOREHOLE QS-2**

Mary River Project **PROJECT** 

Steensby Inlet - Quarry

Project No. 19-1605-126

LOCATION STARTED

COMPLETED

July 24, 2011 July 25, 2011

DRILLER: WALKER DRILLING

SHEET 2 OF 2

N 7 801 066 E 595 200

DATUM: CGVD28

| Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sec    |                |          | 9                                         | SOIL PROFILE               |             |           |        | SAM  | PLE        | S          |                                          | EXC | ESS ICE                | CONTEN               | NT, PER           | CENT     | . (1)                         | THERMISTER/<br>GROUND COND. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|-------------------------------------------|----------------------------|-------------|-----------|--------|------|------------|------------|------------------------------------------|-----|------------------------|----------------------|-------------------|----------|-------------------------------|-----------------------------|
| 21   22   23   24   25   26   27   28   29   29   20   20   20   20   20   20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DEPTH SCAL     | (sanaii) | BORING METH                               | DESCRIPTION                | STRATA PLOT | ELEV. (m) | NUMBER | TYPE | BLOWS/0.3m | RECOVERY % | DYNAMIC CONE PENETRATION RESISTANCE PLOT | W   | L<br>ATER Co<br>/p ├── | 20 3<br>L<br>DNTENT, | 0 4<br>L<br>PERCE | NT<br>vl | ADDITIONAL<br>LAB. TESTING    | FROZEN UNFROZEN             |
| 21   22   23   24   25   26   27   28   29   29   20   20   20   20   20   20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |          |                                           |                            | \//         |           |        |      |            |            |                                          |     |                        |                      |                   |          | 0                             | _                           |
| 12 RIN TCR=100% SCR=0% RQD=100%  13 RIN TCR=100% SCR=100% RQD=100%  14 RIN TCR=100% SCR=100% RQD=100%  15 RIN TCR=100% SCR=91% RQD=79%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |          |                                           |                            |             |           | 11     | RUN  | N          |            | TCR=100% SCR=53% RQD=47%                 |     |                        |                      |                   |          | 0<br>>10<br>>10<br>>10<br>>10 |                             |
| 23   13 RUN   TGR=100% SCR=100% RQD=100%   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |          |                                           |                            |             |           | 12     | RUN  | 1          |            | TCR=100% SCR=0% RQD=0%                   |     |                        |                      |                   |          |                               |                             |
| 13 RUN TCR=100% SCR=100% RQD=100%  14 RUN TCR=100% SCR=100% RQD=100%  15 RUN TCR=100% SCR=100% RQD=100%  15 RUN TCR=100% SCR=100% RQD=100%  15 RUN TCR=100% SCR=91% RQD=79%  15 RUN TCR=100% SCR=91% RQD=79%  16 RUN TCR=100% SCR=91% RQD=79%  17 RUN TCR=100% SCR=91% RQD=79%  18 RUN TCR=100% SCR=100% RQD=100%  19 RUN TCR=100% SCR=100% RQD=100%  10 RUN TCR=100% SCR=100% RQD=100%  10 RUN TCR=100% SCR=100% RQD=100%  10 RUN TCR=100% SCR=100% RQD=100%  10 RUN TCR=100% SCR=100% RQD=100%  11 RUN TCR=100% SCR=100% RQD=100%  12 RUN TCR=100% SCR=100% RQD=100%  13 RUN TCR=100% SCR=100% RQD=100%  14 RUN TCR=100% SCR=100% RQD=100%  15 RUN TCR=100% SCR=100% RQD=100%  16 RUN TCR=100% SCR=100% RQD=100%  17 RUN TCR=100% SCR=100% RQD=100%  18 RUN TCR=100% SCR=100% RQD=100%  19 RUN TCR=100% SCR=100% RQD=100%  10 RUN TCR=100% SCR=100% RQD=100%  10 RUN TCR=100% SCR=100% RQD=100%  10 RUN TCR=100% SCR=100% RQD=100%  10 RUN TCR=100% SCR=100% RQD=100%  10 RUN TCR=100% SCR=100% RQD=100%  10 RUN TCR=100% SCR=100% RQD=100%  10 RUN TCR=100% SCR=100% RQD=100%  10 RUN TCR=100% SCR=100% RQD=100%  10 RUN TCR=100% SCR=100% RQD=100%  10 RUN TCR=100% SCR=100% RQD=100%  10 RUN TCR=100% SCR=100% RQD=100%  10 RUN TCR=100% SCR=100% RQD=100%  10 RUN TCR=100% SCR=100% RQD=100%  10 RUN TCR=100% SCR=100% RQD=100%  10 RUN TCR=100% SCR=100% RQD=100%  10 RUN TCR=100% SCR=100% RQD=100%  10 RUN TCR=100% SCR=100% RQD=100%  10 RUN TCR=100% SCR=100% RQD=100%  10 RUN TCR=100% SCR=100% RQD=100%  10 RUN TCR=100% SCR=100% RQD=100%  10 RUN TCR=100% SCR=100% RQD=100%  10 RUN TCR=100% SCR=100% RQD=100%  10 RUN TCR=100% SCR=100% RQD=100%  10 RUN TCR=100% SCR=100% RQD=100%  10 RUN TCR=100% SCR=100% RQD=100%  10 RUN TCR=100% RQD=100%  23             | 3        |                                           |                            |             |           |        |      |            |            |                                          |     |                        |                      |                   |          |                               |                             |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -24            | 5        |                                           |                            |             |           | 13     | RUN  | 1          |            | TCR=100% SCR=100% RQD=100%               |     |                        |                      |                   |          | 0<br>0<br>0                   | -                           |
| -26   2   14 RUN   TCR=100% SCR=100% RQD=100%   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :<br>- 25      |          | DI OLI OLI OLI OLI OLI OLI OLI OLI OLI OL |                            |             |           |        |      |            |            |                                          |     |                        |                      |                   |          | 0                             |                             |
| 14 RUN  TCR=100% SCR=100% RQD=100%  TCR=100% SCR=91% RQD=79%  TCR=100% SCR=100% RQD=79%  TCR=100% SCR=10 | ŀ              | 5        | אַר (אַר                                  |                            |             |           |        |      |            |            |                                          |     |                        |                      |                   |          | 1                             |                             |
| 14 RUN TCR=100% SCR=100% RQD=100%  15 RUN  TCR=100% SCR=91% RQD=79%  TCR=100% SCR=100% RQD=79%  TCR=100% SCR=100% RQD=79%  | -26            |          |                                           |                            |             |           |        |      |            |            |                                          |     |                        |                      |                   |          | 0                             | -                           |
| -28 -29 -30 -31 END OF BOREHOLE AT 30.00m.  -31 -32 -33 -34 -35 -36 -37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27             | ,        |                                           |                            |             |           | 14     | RUN  | 1          |            | TCR=100% SCR=100% RQD=100%               |     |                        |                      |                   |          | 0                             |                             |
| 29   Is run   TCR=100% SCR=91% ROD=79%   CR=100% SCR=91% ROD=79%   CR= |                |          |                                           |                            |             |           |        |      |            |            |                                          |     |                        |                      |                   |          | 0                             |                             |
| 15 RUN TCR=100% SCR=91% RQD=79%  15 RUN TCR=100% SCR=91% RQD=79%  15 RUN TCR=100% SCR=91% RQD=79%  15 RUN TCR=100% SCR=91% RQD=79%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -28            | 3        |                                           |                            |             |           |        |      |            |            |                                          |     |                        |                      |                   |          | 0                             | -                           |
| 15 RUN TCR=100% SCR=91% RQD=79%  2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ŀ              |          |                                           |                            |             |           |        |      |            |            |                                          |     |                        |                      |                   |          | 0                             |                             |
| 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00  | - 29           | 1        |                                           |                            |             |           | 15     | RUN  | 1          |            | TCR=100% SCR=91% RQD=79%                 |     |                        |                      |                   |          | 2                             |                             |
| - 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | :<br>-30       | ,        |                                           | END OF DODELIOUS AT 22 22  |             | 30.00     |        |      |            |            |                                          |     |                        |                      |                   |          |                               | -                           |
| -32<br>-33<br>-34<br>-35<br>-36<br>-37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |                                           | END OF BOREHOLE AT 30.00m. |             |           |        |      |            |            |                                          |     |                        |                      |                   |          |                               |                             |
| -34<br>-35<br>-36<br>-37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 31           |          |                                           |                            |             |           |        |      |            |            |                                          |     |                        |                      |                   |          |                               |                             |
| -34<br>-35<br>-36<br>-37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ŀ              |          |                                           |                            |             |           |        |      |            |            |                                          |     |                        |                      |                   |          |                               |                             |
| -34<br>-35<br>-36<br>-37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -32            | 2        |                                           |                            |             |           |        |      |            |            |                                          |     |                        |                      |                   |          |                               | -                           |
| -34<br>-35<br>-36<br>-37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :<br>- 33      | ,        |                                           |                            |             |           |        |      |            |            |                                          |     |                        |                      |                   |          |                               |                             |
| - 35<br>- 36<br>- 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |          |                                           |                            |             |           |        |      |            |            |                                          |     |                        |                      |                   |          |                               |                             |
| 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -34            |          |                                           |                            |             |           |        |      |            |            |                                          |     |                        |                      |                   |          |                               | -                           |
| 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •              |          |                                           |                            |             |           |        |      |            |            |                                          |     |                        |                      |                   |          |                               |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 35           |          |                                           |                            |             |           |        |      |            |            |                                          |     |                        |                      |                   |          |                               |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :<br>-36       | ,        |                                           |                            |             |           |        |      |            |            |                                          |     |                        |                      |                   |          |                               | _                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |                                           |                            |             |           |        |      |            |            |                                          |     |                        |                      |                   |          |                               |                             |
| GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION WATER LEVEL (date)  GROUNDWATER ELEVATIONS  CHECKED: KS  THURBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 37           | ·        |                                           |                            |             |           |        |      |            |            |                                          |     |                        |                      |                   |          |                               |                             |
| GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION WATER LEVEL (date)  GROUNDWATER ELEVATIONS  CHECKED: KS  THURBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |          |                                           |                            |             |           |        |      |            |            |                                          |     |                        |                      |                   |          |                               |                             |
| GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION WATER LEVEL (date)  GROUNDWATER ELEVATIONS  UGGED: Ramos/Singh CHECKED: KS  THURBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/9/1<br>1/9/1 | ·        |                                           |                            |             |           |        |      |            |            |                                          |     |                        |                      |                   |          |                               | -                           |
| GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION WATER LEVEL (date)  WATER LEVEL (date)  GROUNDWATER ELEVATIONS  LOGGED: Ramos/Singh CHECKED: KS  THURBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 39<br>- 39     | ,        |                                           |                            |             |           |        |      |            |            |                                          |     |                        |                      |                   |          |                               |                             |
| GROUNDWATER ELEVATIONS  SHALLOW/SINGLE INSTALLATION WATER LEVEL (date)  WATER LEVEL (date)  GROUNDWATER ELEVATIONS  LOGGED: Ramos/Singh CHECKED: KS  THURBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5126           |          |                                           |                            |             |           |        |      |            |            |                                          |     |                        |                      |                   |          |                               |                             |
| SHALLOW/SINGLE INSTALLATION  WATER LEVEL (date)  WATER LEVEL (date)  WATER LEVEL (date)  CHECKED: KS  THURBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (5126)         |          |                                           | GROUNDWATER ELE            | LLI<br>VA1  | IONS      | <br>S  |      | <u> </u>   |            |                                          |     |                        |                      |                   |          |                               |                             |
| WATER LEVEL (date) WATER LEVEL (date) CHECKED : KS THURBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3ER28          |          |                                           |                            |             |           |        | Ž    |            | DEE        | P/DUAL INSTALLATION                      |     | LOGGEI                 | D : I                | Ramos/S           | ingh     |                               |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THUR.          |          |                                           |                            |             |           |        |      |            |            |                                          |     |                        |                      |                   |          |                               | THURBER                     |

# **RECORD OF BOREHOLE QS-1**

Mary River Project **PROJECT** 

Steensby Inlet - Quarry

Project No. 19-1605-126

LOCATION STARTED

August 6, 2011

DRILLER: BOART LONGYEAR, LM-55

SHEET 1 OF 1

August 6, 2011 N 7 803 054 E 593 500 COMPLETED DATUM: CGVD28 EXCESS ICE CONTENT, PERCENT THERMISTER/ GROUND COND SAMPLES SOIL PROFILE BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE oice 10 20 STRATA PLOT BLOWS/0.3m FROZEN NUMBER RECOVERY ELEV. (m) **COMMENTS** TYPE WATER CONTENT, PERCENT UNFROZEN DYNAMIC CONE PENETRATION RESISTANCE PLOT DESCRIPTION UNCERTAIN 20 30 100 150 200 250 10 40 GROUND SURFACE **GRANITIC GNEISS**, slightly weathered, medium grained, foliated, pinkish grey FI 3 0 3 1 RUN TCR=89% SCR=86% RQD=84% 2 1 P clay infill in some joints 3 1 4 0 TCR=100% SCR=100% RQD=94% 2 RUN 2 1 3 0 5 4 2 2 6 0 1 3 7 3 RUN TCR=100% SCR=100% RQD=72% 1 2 1 -8 3 9 g 1 1 4 RUN TCR=100% SCR=100% RQD=93% 2 4 2 1 3 1 12 0 4 5 RUN TCR=100% SCR=100% RQD=76% 0 2 highly weathered from 14.52m to 16.00m, vertical joint 15 0 16 6 RUN TCR=100% SCR=56% RQD=50% 0 0 0 0 0 17.52 END OF BOREHOLE AT 17.52m. 18 5126.GPJ 19

**GROUNDWATER ELEVATIONS** 

abla shallow/single installation WATER LEVEL (date)

11/9/1

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Hill CHECKED : KS



AZIMUTH:

PROJECT : Mary River Project

ary River Project INCLINATION:

LOCATION : Steensby Inlet - Ore Loading Dock

STARTED : August 8, 2011 DRILLER: BOART LONGYEAR, LM-55

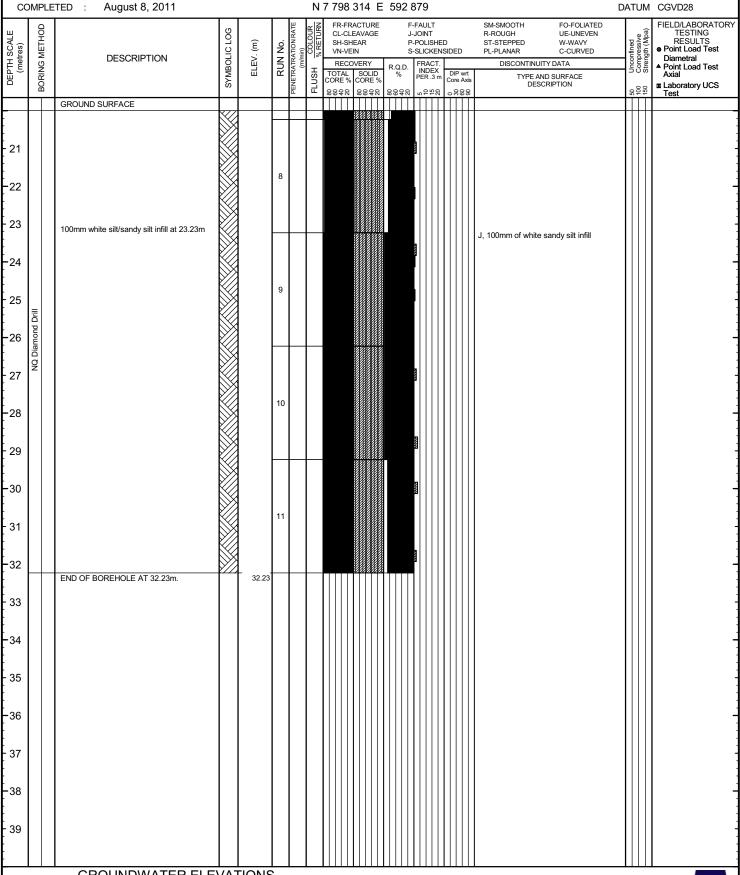
SHEET 1 OF 2

Project No. 19-1605-126

|                       | COMPL         | LETED : August 8, 2011                                                                                                     |              |           |          |                             | N                  | 7 798 314 E                                       |                |                                      |       |                   |                                                                                                                                                                                                          |                                                                      |            | CGVD28                                                     |
|-----------------------|---------------|----------------------------------------------------------------------------------------------------------------------------|--------------|-----------|----------|-----------------------------|--------------------|---------------------------------------------------|----------------|--------------------------------------|-------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------|------------------------------------------------------------|
| DEPTH SCALE           | BORING METHOD | DESCRIPTION                                                                                                                | SYMBOLIC LOG | ELEV. (m) | . No.    | PENETRATRATION RATE (m/min) | COLOUR<br>% RETURN | FR-FRACTURE<br>CL-CLEAVAGE<br>SH-SHEAR<br>VN-VEIN | J-<br>P-<br>S- | FAULT<br>JOINT<br>POLISHE<br>SLICKEN | NSIDE | ED                | SM-SMOOTH FO-FOLIATED<br>R-ROUGH UE-UNEVEN<br>ST-STEPPED W-WAVY<br>PL-PLANAR C-CURVED                                                                                                                    | Unconfined                                                           | ngth (Mpa) | FIELD/LABORATORY TESTING RESULTS Point Load Test Diametral |
| DEPTH                 | BORING        | Beer un nen                                                                                                                | SYMBO        | ELE       | RU       | PENETRATE<br>(m             | FLUSH              | RECOVERY  TOTAL SOLID CORE % CORE %  8898 8898    |                | FRACT.<br>INDEX<br>PER .3 m          | 1     | IP wrt<br>re Axis | DISCONTINUITY DATA  TYPE AND SURFACE DESCRIPTION                                                                                                                                                         | - 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | - 1        | ▲ Point Load Test<br>Axial<br>■ Laboratory UCS<br>Test     |
|                       |               | GROUND SURFACE                                                                                                             |              | 4.54      |          |                             |                    |                                                   |                |                                      | П     |                   |                                                                                                                                                                                                          |                                                                      | $\prod$    |                                                            |
| - 1                   |               | GRANITIC GNEISS, faintly weathered, moderately wide horizontal foliation, strong, pink with dark and light grey foliations |              |           | 1        |                             |                    |                                                   |                |                                      |       |                   | J, open (25mm), irregular<br>J, closed, planar, horizontal<br>J, planar, diagonal<br>J, planar, horizontal<br>J, closed, planar, horizontal                                                              |                                                                      |            | -                                                          |
| -2                    |               |                                                                                                                            |              |           | 2        |                             |                    |                                                   |                |                                      |       |                   | J, closed, irregular, horizontal<br>J, closed, irregular, horizontal, weather<br>J, closed, diagonal, black staining<br>J, closed, black crystalline intrusion<br>J, closed, black crystalline intrusion | ed                                                                   |            |                                                            |
| -4<br>-5              |               | slightly weathered                                                                                                         |              |           |          |                             |                    |                                                   |                |                                      |       |                   | J, closed, irregular, diagonal, black staining                                                                                                                                                           |                                                                      |            |                                                            |
| -6                    |               |                                                                                                                            |              |           |          |                             |                    |                                                   |                |                                      |       |                   | J, open, sub-vertical, weathered (5.48 5.69m)<br>J, open, diagonal, weathered                                                                                                                            | o                                                                    |            | -                                                          |
| 7                     |               |                                                                                                                            |              |           | 3        |                             |                    |                                                   |                |                                      |       |                   | J, closed, sub-horizontal, black staining                                                                                                                                                                |                                                                      |            | -                                                          |
| -8<br>-9              |               |                                                                                                                            |              |           |          |                             |                    |                                                   |                |                                      |       |                   | J, closed, sub-horizontal<br>J, 2mm aperture, stepped, vertical, silt<br>(8.23 to 10.36m)                                                                                                                | infill                                                               |            | -                                                          |
| -10                   | NO Di         | becoming coarse grained                                                                                                    |              |           | 4        |                             |                    | B-2-2-2-                                          |                |                                      |       |                   |                                                                                                                                                                                                          |                                                                      |            | -<br>-<br>-                                                |
| - 12<br>- 13          |               | strong to very strong, wide spacing                                                                                        |              |           | 5        |                             |                    |                                                   |                |                                      |       |                   | J, closed, horizontal, weathered<br>J, sub-vertical, weathered (12.06 to<br>12.25m)                                                                                                                      |                                                                      |            |                                                            |
| -14                   |               |                                                                                                                            |              |           |          |                             |                    |                                                   |                | 70 P                                 |       |                   | J, closed, horizontal, black staining J, closed, horizontal, black staining                                                                                                                              |                                                                      |            |                                                            |
| - 15                  |               |                                                                                                                            |              |           | 6        |                             |                    |                                                   |                |                                      |       |                   |                                                                                                                                                                                                          |                                                                      |            | -                                                          |
| -16<br>-<br>-<br>- 17 |               |                                                                                                                            |              |           |          |                             |                    |                                                   |                |                                      |       |                   |                                                                                                                                                                                                          |                                                                      |            |                                                            |
| -18<br>-18            |               |                                                                                                                            |              |           | 7        |                             |                    |                                                   |                |                                      |       |                   |                                                                                                                                                                                                          |                                                                      |            | -<br>-                                                     |
| <b>—</b>              | $\perp$       | GROUNDWATER ELE                                                                                                            | 17/1         |           | <u> </u> |                             | ь_                 | 101001010010                                      |                |                                      |       | ш                 | I.                                                                                                                                                                                                       | $\perp$                                                              | Ш          |                                                            |

GROUNDWATER ELEVATIONS

ROCKM(5126) 5126.GPJ 11/9/11


SHALLOW/SINGLE INSTALLATION
WATER LEVEL (date)

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Dunstan/Hill CHECKED : MB

THURBER

# PROJECT : Mary River Project INCLINATION: AZIMUTH: Project No. 19-1605-126 STARTED : August 8, 2011 DRILLER: BOART LONGYEAR, LM-55 SHEET 2 OF 2



**GROUNDWATER ELEVATIONS** 

SHALLOW/SINGLE INSTALLATION
 WATER LEVEL (date)

5126.GPJ 11/9/11

ROCKM(5126)

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Dunstan/Hill CHECKED : MB



PROJECT: Mary River Project

Steensby Inlet - Ore Loading Dock

INCLINATION: AZIMUTH:

Project No. 19-1605-126

LOCATION : STARTED :

August 9, 2011

DRILLER: BOART LONGYEAR, LM-55

SHEET 1 OF 2

COMPLETED August 10, 2011 N 7 798 331 E 592 860 DATUM CGVD28 FIELD/LABORATORY
TESTING
RESULTS
Point Load Test FR-FRACTURE CL-CLEAVAGE SM-SMOOTH R-ROUGH FO-FOLIATED UE-UNEVEN BORING METHOD SYMBOLIC LOG J-JOINT ST-STEPPED PL-PLANAR SH-SHEAR P-POLISHED W-WAVY DEPTH SCAL E ટું S-SLICKENSIDED C-CURVED VN-VEIN ELEV. DESCRIPTION RUN Diametral FRACT INDEX PER .3 RECOVERY DISCONTINUITY DATA ▲ Point Load Test Axial FLUSH SOLID CORE 9 TYPE AND SURFACE DESCRIPTION ■ Laboratory UCS 50 120 130 8848 8848 245 ~888 GROUND SURFACE J, closed, sub-vertical, brown weathering (0.12 to 0.24m) **GRANITIC GNEISS**, faintly weathered, closely spaced sub-horizontal foliation, strong, pink, white and grey J, 3 parallel, closed, diagonal (0.64 to 0.84m) J, open, 4mm silty infill J, open, 3mm, diagonal 3 2 J, closed, diagonal, black staining J, closed, diagonal, black staining J, closed, irregular, horizontal, brown weathering J, closed, horizontal, black weathering 5 becoming strong to very strong, widely spaced foliation J, closed, horizontal to sub-horizontal 6 J, closed, horizontal to sub-horizontal J. closed, horizontal to sub-horizontal J, closed, horizontal to sub-horizontal 3 J, closed, horizontal to sub-horizontal J, closed, horizontal to sub-horizontal J, closed, horizontal to sub-horizontal 8 J, closed, vertical, red weathering (9.08 to 9.36m) 9 becoming very coarse grained moderately weathered J, closed, vertical, red weathering (9.98 to 10.39m) J. closed, horizontal 12 J. closed, horizontal J, open, 2mm, horizontal becoming fresh J, closed, horizontal 15 J, open, 3mm, horizontal 6 16 J, open, 2mm, irregular, horizontal J, open, 2mm, irregular, horizontal biotite schist, dark grey banding (150mm) at 16.6m J, closed, sub-horizontal J, closed, vertical, black weathering (17.37 to 17.66m) 18 J, closed, planar, diagonal 19 J, closed, horizontal

**GROUNDWATER ELEVATIONS** 

SHALLOW/SINGLE INSTALLATION
WATER LEVEL (date)

5126.GPJ 11/9/11

ROCKM(5126)

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Dunstan/Hill
CHECKED : MB

THURBER

Mary River Project **PROJECT** 

Steensby Inlet - Ore Loading Dock

AZIMUTH: INCLINATION:

Project No. 19-1605-126

STARTED

LOCATION

August 9, 2011

DRILLER: BOART LONGYEAR, LM-55

SHEET 2 OF 2 August 10, 2011 COMPLETED N 7 798 331 E 592 860 DATUM CGVD28 FIELD/LABORATORY
TESTING
RESULTS
Point Load Test FR-FRACTURE CL-CLEAVAGE F-FAULT J-JOINT SM-SMOOTH R-ROUGH FO-FOLIATED UE-UNEVEN BORING METHOD SYMBOLIC LOG SH-SHEAR VN-VEIN P-POLISHED S-SLICKENSIDED ST-STEPPED PL-PLANAR DEPTH SCAL W-WAVY ENETRATRATION ELEV. (m) Š C-CURVED DESCRIPTION RUN Diametral FRACT INDEX PER .3 RECOVERY DISCONTINUITY DATA ▲ Point Load Test Axial FLUSH TOTAL SOLID TYPE AND SURFACE DESCRIPTION ■ Laboratory UCS 50 150 8848 8848 2458 ୦ ନିତ୍ରର GROUND SURFACE J, closed, planar, vertical (20.23 to 20.46m) 21 23 24 J, closed, planar, sub-vertical, black 25 veathering (24.90 to 25.02m) J, closed, planar, diagonal, grey and black weathering (25.89 to 25.96m) J, sub-vertical, 70° J, sub-vertical, 70° 27 10 J, sub-vertical, 70° J, horizontal
J, horizontal 28 J, sub-vertical, 70° 29 J. horizontal 30 J, horizontal J, sub-vertical J, sub-vertical 31 J, sub-vertical 32 END OF BOREHOLE AT 31.96m. 33 34 35 36 37 38 39

**GROUNDWATER ELEVATIONS** 

5126.GPJ 11/9/11

ROCKM(5126)

abla shallow/single installation WATER LEVEL (date)

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Dunstan/Hill CHECKED MB

PROJECT : Mary River Project

Steensby Inlet - Ore Loading Dock

DRILLER: BOART LONGYEAR, LM-55

SHEET 1 OF 2

Project No. 19-1605-126

STARTED : August 10, 2011 COMPLETED : August 11, 2011

LOCATION

N 7 798 409 E 592 876

AZIMUTH:

DATUM CGVD28

| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L | CC                      | ואועונ        | LETED : August 11, 2011                                                               |              |           |         |                             | IN 7  | 190 2                                                   | +U9 E                          | 592    | 570                                           |                     |                                                                      |                                               | DATO | JΙVΙ | CGVD28                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------|---------------|---------------------------------------------------------------------------------------|--------------|-----------|---------|-----------------------------|-------|---------------------------------------------------------|--------------------------------|--------|-----------------------------------------------|---------------------|----------------------------------------------------------------------|-----------------------------------------------|------|------|---------------------------------------------------------|
| GROUND CRIPATED CRIPATES approximation of photoling grey to Base, spray workmand, photoling grey to Base, strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Strength of Base and Streng   |   | DEPTH SCALE<br>(metres) | BORING METHOD | DESCRIPTION                                                                           | SYMBOLIC LOG | ELEV. (m) | RUN No. | PENETRATRATION RATE (m/min) | HSN   | CL-CLE<br>SH-SHE<br>VN-VEII<br>RECOV<br>TOTAL<br>CORE % | EAVAGE EAR N VERY SOLID CORE % | R.Q.D. | JOINT -POLISHE -SLICKEN FRACT. INDEX PER .3 m | DIP wrt<br>Core Axi | R-ROUGH<br>ST-STEPPED<br>PL-PLANAR<br>DISCONTINU<br>S TYPE AI<br>DES | UE-UNEVEN W-WAVY C-CURVED TY DATA ND SURFACE  |      |      | RESULTS Point Load Test Diametral Point Load Test Axial |
| GRANTIC CARLES, stylery washined, from the first is die no to the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the  | t |                         |               | GROUND SURFACE                                                                        | ⇈            | 0.00      |         | Т                           | + + + | 777                                                     | 1111                           | 11111  |                                               |                     | ·                                                                    |                                               | TT   | Ħ    | 1001                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 1                       |               |                                                                                       |              | 9.09      |         |                             |       |                                                         |                                |        |                                               |                     |                                                                      |                                               |      |      | -                                                       |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ŀ |                         |               | heavily fractured zone from 2.3m to 2.6m moderately weathered, sub-vertical foliation |              |           |         |                             |       |                                                         |                                |        | 1                                             |                     | J, sub-horizontal<br>J, sub-vertical, 80°                            |                                               |      |      | -<br>-<br>-<br>-                                        |
| 5.38m  1. sub-vertical  3. J. sub-vertical  4. sub-vertical  J. horizontal  J. horizontal  J. sub-vertical  Tolorm white silly sand seam at 15.35m  6. sub-vertical  Tolorm white silly sand seam at 15.35m  Tolorm white silly sand seam at 15.35m  Tolorm white silly sand infill from 16.6m to 17.3m  most fractures have silty sand infill from 16.6m to 17.3m  most fractures have silty sand infill from 16.7m  Tolorm white silty sand seam at 15.35m  Tolor white silty sand seam at 15.35m  Tolor white silty sand seam at 15.35m  Tolor white silty sand seam at 15.35m  Tolor white silty sand seam at 15.35m  Tolor white silty sand seam at 15.35m  Tolor white silty sand seam a |   | 4                       |               |                                                                                       |              |           | 2       |                             |       |                                                         |                                |        |                                               |                     | J. closed, sub-vert                                                  | ical, rusty weathering ical, rusty weathering |      |      |                                                         |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                         |               |                                                                                       |              |           |         |                             |       |                                                         |                                |        |                                               |                     | J, sub-vertical J. sub-vertical                                      |                                               |      |      | -<br>-<br>-                                             |
| 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | 7                       |               |                                                                                       |              |           | 3       |                             |       |                                                         |                                |        |                                               |                     |                                                                      |                                               |      |      | -<br>-<br>-<br>-                                        |
| 100mm white silty sand seam at 15.35m  11  12  13  15  16  17  18  19  10  10  10  10  10  10  10  10  10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ŀ |                         |               |                                                                                       |              |           |         |                             |       |                                                         |                                |        |                                               |                     | J, horizontal                                                        |                                               |      |      | <u>-</u><br>-<br>-<br>-                                 |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ŀ |                         | Diamond Drill |                                                                                       |              |           | 4       |                             |       |                                                         |                                |        |                                               |                     | J, sub-vertical                                                      |                                               |      |      | -                                                       |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 11                      | NOI           |                                                                                       |              |           |         |                             |       |                                                         |                                |        |                                               |                     |                                                                      |                                               |      |      | -<br>-                                                  |
| 100mm white silty sand seam at 15.35m  100mm white silty sand seam at 15.35m  6  17  18  19  7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ŀ |                         |               |                                                                                       |              |           | 5       |                             |       |                                                         |                                |        |                                               |                     | J, sub-vertical, 60°                                                 |                                               |      |      | <u>-</u>                                                |
| 100mm white silty sand seam at 15.35m  6  17  18  100mm white silty sand seam at 15.35m  6  7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ŀ |                         |               |                                                                                       |              |           |         |                             |       |                                                         |                                |        |                                               |                     |                                                                      |                                               |      |      | -                                                       |
| fractures have silty sand infill from 16.6m to 17.3m most fractures have trace silty sand infill from 17.38 to 20.38m  7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - | 15                      |               | 100mm white silty sand seam at 15.35m                                                 |              |           |         |                             |       |                                                         |                                |        |                                               |                     |                                                                      |                                               |      |      | -<br>-                                                  |
| most fractures have trace silty sand infill from 17.38 to 20.38m  7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ŀ |                         |               | fractures have silty sand infill from 16.6m to                                        |              |           | 6       |                             |       |                                                         |                                |        |                                               |                     |                                                                      |                                               |      |      | -                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ŀ |                         |               | most fractures have trace silty sand infill                                           |              |           |         |                             |       |                                                         |                                |        |                                               |                     |                                                                      |                                               |      |      |                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 19                      |               |                                                                                       |              |           |         |                             |       |                                                         |                                |        |                                               |                     |                                                                      |                                               |      |      |                                                         |

ROCKM(5126) 5126.GPJ 11/9/11

**GROUNDWATER ELEVATIONS** 

☐ SHALLOW/SINGLE INSTALLATION
WATER LEVEL (date)

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Hill CHECKED : MB



#### **RECORD OF BOREHOLE SI-OLD-006** Mary River Project **PROJECT** Project No. 19-1605-126 INCLINATION: AZIMUTH: Steensby Inlet - Ore Loading Dock LOCATION August 10, 2011 DRILLER: BOART LONGYEAR, LM-55 STARTED SHEET 2 OF 2 August 11, 2011 N 7 798 409 E 592 876 COMPLETED DATUM CGVD28 FIELD/LABORATORY TESTING RESULTS Point Load Test FR-FRACTURE CL-CLEAVAGE F-FAULT J-JOINT SM-SMOOTH R-ROUGH FO-FOLIATED UE-UNEVEN BORING METHOD DEPTH SCALE (metres) SYMBOLIC LOG SH-SHEAR VN-VEIN P-POLISHED S-SLICKENSIDED ST-STEPPED PL-PLANAR W-WAVY C-CURVED ELEV. (m) Š RUN DESCRIPTION Diametral FRACTINDEX RECOVERY DISCONTINUITY DATA ▲ Point Load Test Axial TOTAL SOLID TYPE AND SURFACE DESCRIPTION ■ Laboratory UCS Test 50 150 8848 8848 2458 ୦ ନିତ୍ରର GROUND SURFACE 21 23 24 25 26 27 10 28 29 30 31 32 33 12 34 35 36 13 37 38 END OF BOREHOLE AT 38.38m. 38.38 39 **GROUNDWATER ELEVATIONS** $\overline{Y}$ SHALLOW/SINGLE INSTALLATION ▼ DEEP/DUAL INSTALLATION LOGGED : Hill WATER LEVEL (date) WATER LEVEL (date) CHECKED : MB

5126.GPJ 11/9/11

ROCKM(5126)

Mary River Project **PROJECT** 

AZIMUTH: INCLINATION:

LOCATION

August 11, 2011

Steensby Inlet - Ore Loading Dock

DRILLER: BOART LONGYEAR, LM-55

SHEET 1 OF 2

Project No. 19-1605-126

STARTED August 11, 2011 COMPLETED

N 7 798 424 E 592 840

DATUM CGVD28

|              |                  | ETED : August 11, 2011                                                | , ,                     |           |          | l                              | -                  | 7 798 424 E                |             |                |                |       |          | 011010071                                                                       | — <del>—</del> |                                             |              | CGVD28                  |
|--------------|------------------|-----------------------------------------------------------------------|-------------------------|-----------|----------|--------------------------------|--------------------|----------------------------|-------------|----------------|----------------|-------|----------|---------------------------------------------------------------------------------|----------------|---------------------------------------------|--------------|-------------------------|
| ,            | ᄋ                |                                                                       | g                       |           |          | RATE                           | JUR<br>TURN        | FR-FRACTURE<br>CL-CLEAVAGE |             | F-FAL<br>J-JOI | NT             |       |          | SM-SMOOTH FO-FOLIATED<br>R-ROUGH UE-UNEVEN                                      |                | 9 (                                         | ра)<br>Н     | FIELD/LABORAT           |
| (metres)     | BORING METHOD    |                                                                       | SYMBOLIC LOG            | ELEV. (m) | ģ.       | PENETRATRATION RATI<br>(m/min) | COLOUR<br>% RETURN | SH-SHEAR<br>VN-VEIN        |             |                | LISHI<br>CKE   |       | DED      | ST-STEPPED W-WAVY PL-PLANAR C-CURVED                                            | - [            | Unconfined<br>Compressive<br>Strength (Mna) | <u>ق</u>   و | RESULTS Point Load Test |
| (metres)     | ∑<br>(¹)         | DESCRIPTION                                                           | <u>j</u>                | <u>;</u>  | Z        | TRA1                           |                    | RECOVERY                   |             | FR             | ACT            | Т     | ,LU      | DISCONTINUITY DATA                                                              | ⊢'             | mpre                                        | .engi        | Diametral               |
| <u>ا</u> ڪ ا | ΣK               |                                                                       | Μ̈́B                    | ELE       | R        | TRA                            | SH                 | TOTAL SOLID                | R.Q.D.<br>% | IN             | IDEX<br>R .3 n | .     | OIP wrt  | TYPE AND CUREACE                                                                | $\dashv$       | 50°                                         | ਲੋ 🖣         | Point Load Tes<br>Axial |
| í            | BOF              |                                                                       | l y                     |           |          | ENE                            | FLUSH              |                            |             |                |                | - 1 - | ore Axis | DESCRIPTION                                                                     |                | 100                                         | - I _        | Laboratory UCS          |
| +            | Ŧ                | GROUND SURFACE                                                        | ++                      | 0.00      | $\vdash$ | L                              | ۳                  | 8848 8848                  | 8888        | 1 2            | 111<br>5 to 8  | ic    | 888<br>  |                                                                                 | $\dashv$       | 111<br>22 5 4                               | +            | Test                    |
| $\dashv$     | +                | GRANITIC GNEISS, moderately                                           | <del>k</del>            | 2.93      |          |                                |                    |                            |             | +              | ₩              | +     | +++      |                                                                                 | +              | +++                                         | +            |                         |
|              |                  | weathered, closely spaced sub-horizontal                              |                         |           |          |                                |                    |                            |             |                |                |       |          |                                                                                 |                |                                             | П            |                         |
| .            |                  | foliation, strong, pinkish grey<br>highly fractured at 0.45m to 0.64m |                         |           |          |                                |                    |                            |             |                |                |       |          | J, open, fresh (0.84 to 0.91m)                                                  |                |                                             | П            |                         |
| 1            |                  |                                                                       |                         |           | 1        |                                |                    |                            |             |                |                |       |          | J, closed, sub-vertical, white weathering                                       | ng             |                                             | П            |                         |
|              |                  |                                                                       |                         |           |          |                                |                    |                            |             | 37             |                |       |          | (0.95 to 2.10m)<br>J, closed, diagonal, fresh                                   |                |                                             | П            |                         |
|              |                  |                                                                       | M                       |           |          |                                |                    |                            |             |                |                |       |          | o, closed, diagonal, fresh                                                      |                |                                             | П            |                         |
| 2            |                  |                                                                       |                         |           |          |                                |                    |                            |             |                |                |       |          |                                                                                 |                |                                             | П            |                         |
|              |                  |                                                                       | $\mathbb{N}$            |           |          |                                |                    |                            |             | 23             |                |       |          |                                                                                 |                |                                             | П            |                         |
| ,            |                  |                                                                       |                         |           |          |                                |                    |                            |             |                |                |       |          |                                                                                 |                |                                             | П            |                         |
| 3            |                  | highly fractured, some sand infill in open                            | $\mathbb{K}/\!\!\!/$    |           |          |                                |                    |                            |             |                |                |       |          |                                                                                 |                |                                             | П            |                         |
|              |                  | joints, sub-vertical joint running through 80% of run                 | $\mathbb{K}$            |           |          |                                |                    |                            |             |                |                |       |          |                                                                                 |                |                                             | П            |                         |
| 4            |                  |                                                                       |                         |           | 2        |                                |                    |                            |             |                |                |       |          |                                                                                 |                |                                             | П            |                         |
| '            |                  |                                                                       |                         |           |          |                                |                    |                            |             |                |                |       |          |                                                                                 |                |                                             | П            |                         |
|              |                  |                                                                       |                         |           |          |                                |                    |                            |             |                |                |       |          |                                                                                 |                |                                             |              |                         |
| 5            |                  |                                                                       |                         |           |          |                                |                    |                            |             |                |                |       |          |                                                                                 |                |                                             |              |                         |
|              |                  |                                                                       | <b>Y</b> //             |           |          |                                |                    |                            |             |                |                |       |          |                                                                                 |                |                                             |              |                         |
|              |                  |                                                                       |                         |           |          |                                |                    |                            |             |                |                |       |          | J, open, diagonal, black weathering                                             |                |                                             |              |                         |
| 3            |                  |                                                                       |                         |           |          |                                |                    |                            |             |                |                |       |          | J, open, diagonal, black weathering                                             |                |                                             |              |                         |
|              |                  |                                                                       | $\mathbb{N}$            |           |          |                                |                    |                            |             |                |                |       |          | J, open, diagonal, black weathering                                             |                |                                             |              |                         |
|              |                  |                                                                       |                         |           |          |                                |                    |                            |             |                |                |       |          | J, closed, vertical, weathered (6.80 to                                         |                |                                             |              |                         |
| 7            |                  |                                                                       | $\mathbb{K}/\!\!\!/$    |           | 3        |                                |                    |                            |             |                |                |       |          | 6.90m)                                                                          |                |                                             | П            |                         |
|              |                  |                                                                       | NXI.                    |           |          |                                |                    |                            |             |                |                |       |          | J, closed, vertical, weathered (7.11 to 7.20m)                                  |                |                                             | П            |                         |
|              |                  |                                                                       | $\mathbb{K}/\mathbb{A}$ |           |          |                                |                    |                            |             |                |                |       |          | J, open, vertical, weathering and infill                                        |                |                                             | П            |                         |
| 3            |                  |                                                                       |                         |           |          |                                |                    |                            |             |                |                |       |          | (7.32 to 8.40m)                                                                 |                |                                             | П            |                         |
|              |                  |                                                                       |                         |           |          | -                              |                    |                            |             | 41             |                |       |          | I along impositor discond weathers                                              |                |                                             | П            |                         |
|              |                  | dark grey biotite schist zones, slightly weathered                    |                         |           |          |                                |                    |                            |             | Ш              |                |       |          | J, closed, irregular, diagonal, weathere                                        | ,a             |                                             | П            |                         |
| 9            | <b>.</b>         | weathered                                                             |                         |           |          |                                |                    |                            |             | 11             |                |       |          |                                                                                 |                |                                             | П            |                         |
|              | NQ Diamond Drill |                                                                       | M                       |           |          |                                |                    |                            |             |                |                |       |          | J, closed, irregular, diagonal, weathered                                       |                |                                             | П            |                         |
| - 1          | g                |                                                                       |                         |           | 4        |                                |                    |                            |             | Ш              |                |       |          | J, closed, irregular, diagonal, weathere                                        | ;d             |                                             | П            |                         |
| 10           | <u>a</u>         |                                                                       | $\mathbb{N}$            |           | 4        |                                |                    |                            |             |                |                |       |          |                                                                                 |                |                                             | П            |                         |
| 100          | 3                | highly fractured biotite schist at 10.43m to                          |                         |           |          |                                |                    |                            |             |                |                |       |          | J, closed, irregular, diagonal, weathere                                        | ∌d             |                                             | П            |                         |
|              | ž                | 10.56m                                                                | $\mathbb{K}/\mathbb{A}$ |           |          |                                |                    |                            |             | M              |                |       |          |                                                                                 |                |                                             | П            |                         |
| 11           |                  |                                                                       | NXI.                    |           |          |                                |                    |                            |             |                |                |       |          |                                                                                 |                |                                             | П            |                         |
|              |                  | becoming slightly weathered, moderately                               |                         |           |          |                                |                    |                            |             |                |                |       |          |                                                                                 |                |                                             | П            |                         |
| ۱. ا         |                  | spaced foliation                                                      | $\bowtie$               |           |          |                                |                    |                            |             |                |                |       |          |                                                                                 |                |                                             | П            |                         |
| 12           |                  |                                                                       |                         |           |          |                                |                    |                            |             |                |                |       |          | J, closed, diagonal, brown weathering                                           |                |                                             | П            |                         |
|              |                  |                                                                       | $\mathbb{N}$            |           |          |                                |                    |                            |             |                |                |       |          |                                                                                 |                |                                             | П            |                         |
| 13           |                  |                                                                       |                         |           | 5        |                                |                    |                            |             | 221            |                |       |          | J, open, irregular, vertical, brown                                             |                |                                             | П            |                         |
| '            |                  |                                                                       |                         |           |          |                                |                    |                            |             | 81             |                |       |          | weathering (12.98 to 13.23m)                                                    |                |                                             | П            |                         |
|              |                  |                                                                       |                         |           |          |                                |                    |                            |             |                |                |       |          | L desert discount                                                               |                |                                             |              |                         |
| 14           |                  |                                                                       | $\mathbb{N}$            |           |          |                                |                    |                            |             | 1              |                |       |          | J, closed, diagonal                                                             |                |                                             |              |                         |
|              |                  |                                                                       |                         |           |          |                                |                    |                            |             |                |                |       |          | J, closed, sub-vertical, black weatherir (14.29 to 14.40m)                      | ng             |                                             |              |                         |
|              |                  |                                                                       | $\mathbb{N}$            |           |          |                                |                    |                            |             |                |                |       |          | J, closed, planar, vertical, brown                                              |                |                                             |              |                         |
| 15           |                  |                                                                       | NXI                     |           |          |                                |                    |                            |             | 劃              |                |       |          | weathering (14.62 to 14.87m)                                                    |                |                                             |              |                         |
|              |                  |                                                                       |                         |           |          |                                |                    |                            |             |                |                |       |          |                                                                                 |                |                                             |              |                         |
|              |                  |                                                                       |                         |           |          |                                |                    |                            |             |                |                |       |          |                                                                                 |                |                                             |              |                         |
| 16           |                  |                                                                       |                         |           | 6        |                                |                    |                            |             |                |                |       |          |                                                                                 |                |                                             |              |                         |
|              |                  |                                                                       |                         |           |          |                                |                    |                            |             |                |                |       |          |                                                                                 |                |                                             |              |                         |
|              |                  |                                                                       |                         |           |          |                                |                    |                            |             |                |                |       |          | J, closed, diagonal, weathered                                                  |                |                                             |              |                         |
| 17           |                  |                                                                       |                         |           |          |                                |                    |                            |             |                |                |       |          |                                                                                 |                |                                             |              |                         |
|              |                  |                                                                       |                         |           |          | $\vdash$                       | <u> </u>           |                            |             | 20             |                |       |          | J, closed, diagonal, weathered (17.52)                                          | to             |                                             |              |                         |
|              |                  |                                                                       | $\mathbb{N}$            |           |          |                                |                    |                            |             | 4              |                |       |          | 17.78)                                                                          | _              |                                             |              |                         |
| 8            |                  | becoming very coarse grained                                          |                         |           |          |                                |                    |                            |             |                |                |       |          |                                                                                 |                |                                             |              |                         |
|              |                  | ]                                                                     | $\mathbb{K}/\mathbb{A}$ |           |          |                                |                    |                            |             |                |                |       |          | J, closed, diagonal, black weathering                                           |                |                                             |              |                         |
|              |                  | biotite seam with diagonal closed joint at                            | NX/                     |           | _        |                                |                    |                            |             |                |                |       |          |                                                                                 |                |                                             |              |                         |
| 19           |                  | 18.74 to 18.89m                                                       |                         |           | 7        |                                |                    |                            |             |                |                |       |          |                                                                                 |                |                                             |              |                         |
|              |                  |                                                                       |                         |           |          |                                |                    |                            |             |                |                |       |          | J, closed, diagonal, black weathering J, closed, sub-vertical, black weathering | _              |                                             |              |                         |
|              |                  |                                                                       |                         |           |          |                                |                    |                            |             |                |                |       |          | J, closed, sub-vertical, black weathering (19.50 to 19.60m)                     | ıg             |                                             |              |                         |
|              |                  | GROUNDWATER ELE                                                       | 1///                    | IUNIC     | <u> </u> | _                              | _                  | 100101000                  | 4           |                | Ш              | ш     | ш        | , <del></del>                                                                   | <b>—</b>       | ш                                           | щ.           |                         |
|              |                  |                                                                       |                         |           | ,        | _                              | ,                  |                            |             |                |                |       |          |                                                                                 |                |                                             |              |                         |
|              |                  | $\overline{igspace}$ shallow/single inst                              | 4LLA1                   | ΓΙΟΝ      |          | Ā                              | - D                | EEP/DUAL I                 | NSTA        | LL             | ATI            | 10    | ٧        | LOGGED : Dunstan                                                                |                |                                             |              |                         |
|              |                  | WATER LEVEL (date)                                                    |                         |           |          | ١                              | WAT                | ER LEVEL (da               | te)         |                |                |       |          | CHECKED : MB                                                                    |                |                                             |              |                         |
|              |                  |                                                                       |                         |           |          |                                |                    |                            | /           |                |                |       |          | OFFICINED . IVID                                                                |                |                                             |              | TH                      |



**PROJECT** Mary River Project

Steensby Inlet - Ore Loading Dock

AZIMUTH: INCLINATION:

Project No. 19-1605-126

LOCATION STARTED

August 11, 2011

DRILLER: BOART LONGYEAR, LM-55

SHEET 2 OF 2

COMPLETED August 11, 2011 N 7 798 424 E 592 840 DATUM CGVD28 FIELD/LABORATORY
TESTING
RESULTS
Point Load Test FR-FRACTURE CL-CLEAVAGE SM-SMOOTH R-ROUGH FO-FOLIATED UE-UNEVEN BORING METHOD SYMBOLIC LOG J-JOINT ST-STEPPED PL-PLANAR SH-SHEAR P-POLISHED W-WAVY DEPTH SCAL ELEV. (m) ટું S-SLICKENSIDED C-CURVED VN-VEIN DESCRIPTION RUN Diametral FRACTINDEX RECOVERY DISCONTINUITY DATA ▲ Point Load Test Axial FLUSH TOTAL SOLID TYPE AND SURFACE DESCRIPTION ■ Laboratory UCS 120 22 8848 245 ~888 GROUND SURFACE J, closed, diagonal, black weathering

J, closed, vertical, black weathering (20.40 to 20.48m) J. closed, horizontal, black weathering 21 J, open, 3mm, white crystalline infill, weathered (21.34 to 21.55m) white crystaline infill from 21.3m to 21.5m J, heavily fractured, vertical, black weathering (22.33 to 22.63m) heavily fractured vertical joint from 22.3m to 22.6m  $\,$ 23 becoming faintly weathered 24 J, closed, planar, sub-vertical, red weathering (24.18 to 24.29m) 9 J, closed, irregular, horizontal, fresh 25 J, closed, irregular, horizontal, fresh J, closed, planar, sub-vertical, grey weathering (25.90 to 26.02m) J, closed, planar, sub-vertical, black weathering (26.82 to 27.04m) J, closed, irregular, horizontal, brown weathering 27 weathering 10 28 29 biotite schist banding (<300mm) 30 J, closed, irregular, horizontal, weathered 31 J, closed, irregular, horizontal, weathered J, closed, sub-vertical, black weathering (31.30 to 31.62m) 32 END OF BOREHOLE AT 32.40m. 32.40 33 34 35 36 37 38 5126.GPJ 11/9/11 39

**GROUNDWATER ELEVATIONS** 

abla shallow/single installation WATER LEVEL (date)

ROCKM(5126)

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Dunstan CHECKED MB

INCLINATION:

Mary River Project **PROJECT** LOCATION

Steensby Inlet - Ore Loading Dock

DRILLER: BOART LONGYEAR, LM-55

Project No. 19-1605-126

STARTED

August 12, 2011 August 12, 2011

AZIMUTH:

SHEET 1 OF 2 DATUM CGVD28

|                         | ARTE<br>OMPLI    | ED : August 12, 2011<br>ETED : August 12, 2011                                                          |              |           | DK      | ILL             |                  | 7 798                   |                 |        |                                                   | LI    | /I-55                |                                                                                                                             |                                                                                               | SHEE1<br>DATUN            |                | CGVD28                                                                           |
|-------------------------|------------------|---------------------------------------------------------------------------------------------------------|--------------|-----------|---------|-----------------|------------------|-------------------------|-----------------|--------|---------------------------------------------------|-------|----------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------|----------------|----------------------------------------------------------------------------------|
| DEPTH SCALE<br>(metres) | BORING METHOD    | DESCRIPTION                                                                                             | SYMBOLIC LOG | ELEV. (m) | RUN No. | TRATRATION RATE | SH COLOUR RETURN | CL-CL<br>SH-SH<br>VN-VE | OVERY           | J<br>P | FAULT JOINT -POLISH -SLICKEI FRACT INDEX PER .3 r | NSI   | DIP wrt              | SM-SMOOTH<br>R-ROUGH<br>ST-STEPPED<br>PL-PLANAR<br>DISCONTINUIT                                                             |                                                                                               | Unconfined<br>Compressive | Strength (Mpa) | FIELD/LABORATORY TESTING RESULTS Point Load Test Diametral Point Load Test Axial |
|                         | BOR              |                                                                                                         | SYI          |           |         | PENE            | FLUSH            | TOTAL CORE %            | SOLID<br>CORE % | 8848   | °548                                              | - 1 - | Core Axis<br>- ೫ 8 8 | DESC                                                                                                                        | D SURFACE<br>RIPTION                                                                          | 100                       | - 1            | ■ Laboratory UCS<br>Test                                                         |
|                         |                  | GROUND SURFACE                                                                                          |              | 5.80      |         |                 |                  |                         | Maria           |        |                                                   |       | Ш                    | J, closed, planar, su                                                                                                       | ub vertical block                                                                             |                           | П              | -                                                                                |
| 1                       |                  | GRANITIC GNEISS, moderately weathered, medium grained, closely spaced foliation, strong, pink with grey |              |           | 1       |                 |                  |                         |                 |        |                                                   |       |                      | weathering (0.00 to                                                                                                         | 0.34m)                                                                                        |                           |                |                                                                                  |
| -2<br>-2                |                  | heavily weathered zones, frequent black<br>biotite schist seams, frequent sub-vertical<br>bands         |              |           |         |                 |                  |                         |                 |        |                                                   |       |                      |                                                                                                                             |                                                                                               |                           |                |                                                                                  |
| - 3<br>-<br>-4          |                  |                                                                                                         |              |           | 2       |                 |                  |                         |                 |        |                                                   |       |                      |                                                                                                                             |                                                                                               |                           |                |                                                                                  |
| 5                       |                  | slightly weathered                                                                                      |              |           | 3       |                 |                  |                         |                 |        |                                                   |       |                      | J, closed, horizontal                                                                                                       |                                                                                               |                           |                |                                                                                  |
| -6<br>-7                |                  | dark grey biotite schist zones, highly fractured zones                                                  |              |           | 4       |                 |                  |                         |                 |        |                                                   |       |                      | J, closed, diagonal, to 6.71m) J, closed, sub-vertice                                                                       | I, black weathering<br>diagonal, weathered<br>black weathering (6.9<br>cal, heavily weathered | 52                        |                |                                                                                  |
| -8                      |                  |                                                                                                         |              |           | 7       |                 |                  |                         |                 |        |                                                   |       |                      | (6.77 to 6.86m) J, closed, horizontal J, closed, horizontal                                                                 |                                                                                               |                           |                |                                                                                  |
| 9                       | NQ Diamond Drill |                                                                                                         |              |           | 5       |                 |                  |                         |                 |        |                                                   |       |                      | J, closed, irregular,<br>J, closed, planar, di<br>weathering (9.31 to                                                       | horizontal<br>agonal, black<br>9.47m)                                                         |                           |                |                                                                                  |
| 11                      | NO               |                                                                                                         |              |           |         |                 |                  |                         |                 |        |                                                   |       |                      | J, open, 2mm, sub-<br>weathering (10.75 to                                                                                  | vertical, dark brown<br>o 11.11m)                                                             |                           |                |                                                                                  |
| -12<br>-<br>13          |                  |                                                                                                         |              |           | 6       |                 |                  |                         |                 |        |                                                   |       |                      | J, closed, planar, ho<br>weathering<br>J, closed, planar, ho<br>weathering<br>J, closed, irregular,<br>vertical, brown weat | orizontal, red                                                                                |                           |                |                                                                                  |
| -14                     |                  |                                                                                                         |              |           |         |                 |                  |                         |                 |        |                                                   |       |                      | 13.16m) J, closed, planar, di weathering (13.59 to                                                                          | agonal, brown<br>o 13.71m)                                                                    |                           |                |                                                                                  |
| 15                      |                  | dark grey biotite schist banding<br>broken schist seam, irregular and horizontal                        |              |           |         |                 |                  |                         |                 |        |                                                   |       |                      | J, closed, diagonal,<br>(14.73 to 14.86m)                                                                                   | ыаск weathering                                                                               |                           |                |                                                                                  |
| -16<br>-<br>17          |                  | fractured zone                                                                                          |              |           | 7       |                 |                  |                         |                 |        |                                                   |       |                      |                                                                                                                             |                                                                                               |                           |                |                                                                                  |
| -18                     |                  | some coarse grained zones                                                                               |              |           |         |                 |                  |                         |                 |        |                                                   |       |                      |                                                                                                                             |                                                                                               |                           |                |                                                                                  |
| - 19<br>-               |                  |                                                                                                         |              |           | 8       |                 |                  |                         |                 |        |                                                   |       |                      | J, open, 2mm, stepp<br>weathering<br>J, closed, irregular,<br>weathering (19.57 to                                          | ped, diagonal, brown                                                                          |                           |                |                                                                                  |
| <u> </u>                |                  | GROUNDWATER ELE                                                                                         | <u> </u>     | IONIC     | Ļ       |                 |                  |                         |                 |        | Ш                                                 | Ш     | Ш                    | wearriering (19.57 to                                                                                                       | u 2U.49IN)                                                                                    |                           | Ц              |                                                                                  |

**GROUNDWATER ELEVATIONS** 

ROCKM(5126) 5126.GPJ 11/9/11

 $\overline{Y}$  SHALLOW/SINGLE INSTALLATION WATER LEVEL (date)

▼ DEEP/DUAL INSTALLATION WATER LEVEL (date)

LOGGED : Dunstan CHECKED : MB



Mary River Project **PROJECT** 

INCLINATION: Steensby Inlet - Ore Loading Dock

DRILLER: BOART LONGYEAR, LM-55

AZIMUTH:

Project No. 19-1605-126

STARTED

LOCATION

August 12, 2011

SHEET 2 OF 2 DATUM CGVD28

| DEPTH SCALE<br>(metres) | BORING METHOD    | DESCRIPTION                                                                                 | SYMBOLIC LOG                          | ELEV. (m) | RUN No. | PENETRATRATION RATE (m/min) | FLUSH COLOUR WRETURN | FR-FRACTURI CL-CLEAVAGE SH-SHEAR VN-VEIN RECOVERY TOTAL SOLIE CORE % CORE | ROD | J-JC<br>P-PC<br>S-SI | AULT<br>DINT<br>DLISH<br>LICKE<br>RACT<br>NDEX<br>ER .3 r | NSI | DED  DIP wrt | SM-SMOOTH FO-FOLIATED R-ROUGH UE-UNEVEN ST-STEPPED W-WAVY PL-PLANAR C-CURVED DISCONTINUITY DATA  TYPE AND SURFACE DESCRIPTION                                                      |     | Unconfined<br>Compressive<br>Strength (Mpa) | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|-------------------------|------------------|---------------------------------------------------------------------------------------------|---------------------------------------|-----------|---------|-----------------------------|----------------------|---------------------------------------------------------------------------|-----|----------------------|-----------------------------------------------------------|-----|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------|-----------------------------------------|
| _                       | <u> </u>         | GROUND SURFACE                                                                              | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |           |         | PE                          | F                    | 8848 8848                                                                 |     | ı u                  | 11<br>548                                                 | 3 6 | -888<br>     |                                                                                                                                                                                    | - 1 | 111<br>8                                    | ■ Laboratory UCS<br>Test                |
| 21<br>22<br>23          |                  | medium grained with dark grey diagonal foliations                                           |                                       |           | 9       |                             |                      |                                                                           |     |                      |                                                           |     |              | J, closed, diagonal, red weathering J, closed, sub-vertical, red weatherin (21.41 to 21.52m) J, closed, diagonal, red weathering J, closed, diagonal, red weathering               | 9   |                                             |                                         |
| 24                      | NQ Diamond Drill | coarse grained, massive, occasional biotite schist banding                                  |                                       |           | 10      |                             |                      |                                                                           |     |                      |                                                           |     |              |                                                                                                                                                                                    |     |                                             |                                         |
| 27                      | S<br>N           | very coarse grained                                                                         |                                       |           |         |                             |                      |                                                                           |     |                      |                                                           |     |              | J closed irregular diagonal black                                                                                                                                                  |     |                                             |                                         |
| 28                      |                  | 300mm biotite schist band at 27.75m                                                         |                                       |           | 11      |                             |                      |                                                                           |     |                      |                                                           |     |              | J, closed, irregular, diagonal, black<br>weathering (27.45 to 27.60m)  J, closed, irregular, diagonal, black<br>weathering (28.12 to 28.36m) J, closed, irregular, vertical, black |     |                                             |                                         |
| 29<br>30<br>31<br>32    |                  | medium grained, with fine seams of dark<br>grey biotite schist bands                        |                                       |           | 12      |                             |                      |                                                                           |     |                      |                                                           |     |              | J, closed, planar, sub-vertical, fresh (30.04 to 31.34m)  J, closed, planar, diagonal, fresh (31.32.04m)  J, closed, diagonal, black weathering                                    |     |                                             |                                         |
| 33  <br>34              |                  | dark grey biotite schist from 32.61m to 32.24m fractured zone, weathered at 33.20 to 33.90m |                                       |           | 13      |                             |                      |                                                                           |     |                      |                                                           |     |              | J, closed, diagonal, black and red weathering (33.37 to 33.50m)                                                                                                                    |     |                                             |                                         |
| 35                      |                  |                                                                                             |                                       |           | 10      |                             |                      |                                                                           |     |                      |                                                           |     |              | J, closed, sub-vertical, black weather (34.45 to 34.80m)                                                                                                                           | ing |                                             |                                         |
| 36                      |                  | END OF BOREHOLE AT 35.61m.                                                                  |                                       | 35.61     |         |                             |                      |                                                                           |     |                      |                                                           |     |              |                                                                                                                                                                                    |     |                                             |                                         |
| 37                      |                  |                                                                                             |                                       |           |         |                             |                      |                                                                           |     |                      |                                                           |     |              |                                                                                                                                                                                    |     |                                             |                                         |
| 38<br>39                |                  |                                                                                             |                                       |           |         |                             |                      |                                                                           |     |                      |                                                           |     |              |                                                                                                                                                                                    |     |                                             |                                         |
|                         |                  | GROUNDWATER ELE                                                                             |                                       |           |         |                             |                      |                                                                           |     |                      |                                                           |     |              |                                                                                                                                                                                    |     |                                             |                                         |
|                         |                  | SHALLOW/SINGLE INSTA                                                                        | ALLA <sup>-</sup>                     | TION      |         |                             |                      | EEP/DUAL                                                                  |     | LL                   | AT                                                        | Ю   | N            | LOGGED : Dunsta                                                                                                                                                                    | า   |                                             |                                         |







Baffinland Iron Mines Corporation - Mary River Project 2011 Potential Quarry and Borrow Investigations

# **Appendix C: Point Load Test Data**





| Job No :       | 19-                  | 1605-126                   | Client :       | HATCH     |  |
|----------------|----------------------|----------------------------|----------------|-----------|--|
| _              |                      |                            | Date Drilled : | 7/28/2011 |  |
| Project Name : | Mary River Project - | Geotechnical Investigation | Date Tested :  | 8/30/2011 |  |
| Core Size :    | NQ BH No:            | Q7+500                     | Tester :       | AS        |  |

| Test<br>No. | Run No. | Depth<br>(m) | Axial or Diametral | Force<br>(kN) | Diameter<br>(mm) | Length<br>(mm) | UCS<br>(MPa) | Rock Type | Notes         |
|-------------|---------|--------------|--------------------|---------------|------------------|----------------|--------------|-----------|---------------|
| 1           | 10      | 26.0         | D                  | 0.5           | 47.5             | 138.3          | 5.2          | Sandstone | Weak          |
| 2           | 13      | 35.1         | D                  | 0.5           | 47.5             | 110.5          | 5.2          | Sandstone | Weak          |
| 3           | 13      | 37.5         | D                  | 3.5           | 47.5             | 114.8          | 36.4         | Sandstone | Medium Strong |

<sup>\*</sup> It is ideal to perform axial test on core specimens with D/L ratio of  $1.1 \pm 0.1$ 

Long pieces of core can be tested diametrically to produce suitable lengths for axial testing

\* Diametral Test should have 0.7 x D on either side of test point.



| lob No :       | 19                 | 9-1605-126                   | Client :       | HATCH     |
|----------------|--------------------|------------------------------|----------------|-----------|
|                |                    |                              | Date Drilled : | 7/25/2011 |
| Project Name : | Mary River Project | - Geotechnical Investigation | Date Tested :  | 8/30/2011 |
| Core Size :    | NQ BH No:          | Q10+250                      | Tester :       | SH        |

| Test<br>No. | Run No. | Depth<br>(m) | Axial or Diametral | Force<br>(kN) | Diameter<br>(mm) | Length<br>(mm) | UCS<br>(MPa) | Rock Type       | Notes         |
|-------------|---------|--------------|--------------------|---------------|------------------|----------------|--------------|-----------------|---------------|
| 1           | 4       | 8.0          | D                  | 21.5          | 47.5             | 88.8           | 223.5        | Granitic Gneiss | Very Strong   |
| 2           | 4       | 8.1          | Α                  | 24.5          | 47.5             | 48.8           | 206.9        | Granitic Gneiss | Very Strong   |
| 3           | 4       | 9.7          | D                  | 0.5           | 47.5             | 85.0           | 5.2          | Granitic Gneiss | Weak          |
| 4           | 5       | 12.5         | D                  | -             | 47.5             | 102.8          |              | Granitic Gneiss |               |
| 5           | 5       | 12.7         | D                  | 15.5          | 47.5             | 60.5           | 161.1        | Granitic Gneiss | Very Strong   |
| 6           | 6       | 15.7         | Α                  | 0.5           | 47.5             | 60.9           | 3.6          | Granitic Gneiss | Very Weak     |
| 7           | 7       | 18.0         | D                  | 13.5          | 47.5             | 75.3           | 140.3        | Granitic Gneiss | Very Strong   |
| 8           | 7       | 18.2         | Α                  | 8.0           | 47.5             | 74.1           | 48.8         | Granitic Gneiss | Medium Strong |
| 9           | 8       | 20.4         | D                  | 11.5          | 47.5             | 63.7           | 119.5        | Granitic Gneiss | Very Strong   |
| 10          | 8       | 22.3         | Α                  | 16.0          | 47.5             | 68.5           | 103.8        | Granitic Gneiss | Very Strong   |
| 11          | 9       | 23.5         | D                  | 6.5           | 47.5             | 78.1           | 67.6         | Granitic Gneiss | Strong        |
| 12          | 9       | 23.5         | Α                  | 12.0          | 47.5             | 54.0           | 93.6         | Granitic Gneiss | Strong        |
| 13          | 10      | 26.5         | Α                  | 16.5          | 47.5             | 73.9           | 101.0        | Granitic Gneiss | Very Strong   |
| 14          | 10      | 26.6         | D                  | 16.5          | 47.5             | 51.2           | 171.5        | Granitic Gneiss | Very Strong   |
| 15          | 10      | 27.0         | Α                  | 11.5          | 47.5             | 53.1           | 90.9         | Granitic Gneiss | Strong        |
| 16          | 10      | 28.1         | D                  | 18.0          | 47.5             | 85.3           | 187.1        | Granitic Gneiss | Very Strong   |
| 17          | 11      | 30.5         | Α                  | -             | 47.5             | 62.0           |              | Granitic Gneiss |               |
| 18          | 11      | 30.5         | D                  | 5.0           | 47.5             | 94.4           | 52.0         | Granitic Gneiss | Strong        |
| 19          | 11      | 31.9         | Α                  | 7.0           | 47.5             | 36.5           | 74.0         | Granitic Gneiss | Strong        |
| 20          | 12      | 34.0         | D                  | 5.5           | 47.5             | 54.4           | 57.2         | Granitic Gneiss | Strong        |
| 21          | 12      | 34.8         | Α                  | 27.0          | 47.5             | 55.3           | 207.0        | Granitic Gneiss | Very Strong   |
| 22          | 12      | 34.7         | D                  | 16.0          | 47.5             | 73.4           | 166.3        | Granitic Gneiss | Very Strong   |
| 23          | 12      | 34.9         | D                  | 12.0          | 47.5             | 66.8           | 124.7        | Granitic Gneiss | Very Strong   |

It is ideal to perform axial test on core specimens with D/L ratio of  $1.1 \pm 0.1$ Long pieces of core can be tested diametrically to produce suitable lengths for axial testing

\* Diametral Test should have 0.7 x D on either side of test point.



| Job No :       | 1                  | 9-1605-126                   | Client :       | HATCH     |
|----------------|--------------------|------------------------------|----------------|-----------|
|                |                    |                              | Date Drilled : | 7/24/2011 |
| Project Name : | Mary River Project | - Geotechnical Investigation | Date Tested :  | 8/30/2011 |
| Core Size :    | NQ BH No:          | Q14+500                      | Tester :       | AS        |

| Test<br>No. | Run No. | Depth<br>(m) | Axial or Diametral | Force<br>(kN) | Diameter<br>(mm) | Length<br>(mm) | UCS<br>(MPa) | Rock Type       | Notes         |
|-------------|---------|--------------|--------------------|---------------|------------------|----------------|--------------|-----------------|---------------|
| 1           | 5       | 11.2         | D                  | 4.0           | 47.5             | 118.6          | 41.6         | Granitic Gneiss | Medium Strong |
| 2           | 6       | 14.8         | D                  | 23.0          | 47.5             | 88.7           | 239.1        | Granitic Gneiss | Very Strong   |
| 3           | 7       | 17.8         | D                  | 1.0           | 47.5             | 113.7          | 10.4         | Granitic Gneiss | Weak          |

<sup>\*</sup> It is ideal to perform axial test on core specimens with D/L ratio of 1.1 ± 0.1

Long pieces of core can be tested diametrically to produce suitable lengths for axial testing

\* Diametral Test should have 0.7 x D on either side of test point.



| Job No :       | 19-                  | -1605-126                  | Client :       | HATCH     |  |
|----------------|----------------------|----------------------------|----------------|-----------|--|
| _              |                      |                            | Date Drilled : | 7/23/2011 |  |
| Project Name : | Mary River Project - | Geotechnical Investigation | Date Tested :  | 8/29/2011 |  |
| Core Size :    | NQ BH No:            | Q18+100                    | Tester :       | AS        |  |

| Test<br>No. | Run No. | Depth<br>(m) | Axial or Diametral | Force<br>(kN) | Diameter<br>(mm) | Length<br>(mm) | UCS<br>(MPa) | Rock Type | Notes         |
|-------------|---------|--------------|--------------------|---------------|------------------|----------------|--------------|-----------|---------------|
| 1           | 3       | 7.8          | D                  | 0.5           | 47.5             | 129.8          | 5.2          | Sandstone | Weak          |
| 2           | 5       | 11.4         | D                  | 0.5           | 47.5             | 116.1          | 5.2          | Sandstone | Weak          |
| 3           | 6       | 14.1         | D                  | 0.5           | 47.5             | 133.0          | 5.2          | Sandstone | Weak          |
| 4           | 6       | 14.5         | D                  | 0.5           | 47.5             | 126.8          | 5.2          | Sandstone | Weak          |
| 5           | 6       | 15.0         | D                  | 0.5           | 47.5             | 171.0          | 5.2          | Sandstone | Weak          |
| 6           | 6       | 16.0         | D                  | 3.5           | 47.5             | 141.6          | 36.4         | Sandstone | Medium Strong |
| 7           | 9       | 26.0         | D                  | 0.8           | 47.5             | 85.2           | 7.8          | Sandstone | Weak          |
| 8           | 12      | 33.0         | D                  | 0.5           | 47.5             | 87.8           | 5.2          | Sandstone | Weak          |
| 9           | 14      | 38.0         | D                  | 0.8           | 47.5             | 120.9          | 7.8          | Sandstone | Weak          |

<sup>\*</sup> It is ideal to perform axial test on core specimens with D/L ratio of 1.1 ± 0.1

Long pieces of core can be tested diametrically to produce suitable lengths for axial testing

<sup>\*</sup> Diametral Test should have 0.7 x D on either side of test point.



| lob No :       | 19                   | -1605-126                  | Client :       | HATCH     |
|----------------|----------------------|----------------------------|----------------|-----------|
|                |                      |                            | Date Drilled : | 7/22/2011 |
| Project Name : | Mary River Project - | Geotechnical Investigation | Date Tested :  | 8/29/2011 |
| Core Size :    | NQ BH No:            | Q22+500                    | Tester :       | AS        |

| Test<br>No. | Run No. | Depth<br>(m) | Axial or Diametral | Force<br>(kN) | Diameter<br>(mm) | Length<br>(mm) | UCS<br>(MPa) | Rock Type       | Notes            |
|-------------|---------|--------------|--------------------|---------------|------------------|----------------|--------------|-----------------|------------------|
| 1           | 2       | 2.3          | D                  | 0.5           | 47.5             | 105.5          | 5.2          | Granitic Gneiss | Weak             |
| 2           | 2       | 4.5          | D                  | 13.0          | 47.5             | 147.2          | 135.1        | Granitic Gneiss | Very Strong      |
| 3           | 3       | 5.2          | D                  | 16.0          | 47.5             | 105.4          | 166.3        | Granitic Gneiss | Very Strong      |
| 4           | 4       | 8.2          | D                  | 23.5          | 47.5             | 122.9          | 244.3        | Granitic Gneiss | Very Strong      |
| 5           | 4       | 10.0         | D                  | 1.5           | 47.5             | 89.2           | 15.6         | Granitic Gneiss | Weak             |
| 6           | 4       | 10.8         | D                  | 2.0           | 47.5             | 120.2          | 20.8         | Granitic Gneiss | Weak             |
| 7           | 6       | 16.8         | D                  | 21.0          | 47.5             | 108.9          | 218.3        | Granitic Gneiss | Very Strong      |
| 8           | 8       | 20.6         | D                  | 7.0           | 47.5             | 100.4          | 72.8         | Granitic Gneiss | Strong           |
| 9           | 9       | 23.5         | D                  | 5.5           | 47.5             | 81.0           | 57.2         | Granitic Gneiss | Strong           |
| 10          | 10      | 26.0         | D                  | 7.0           | 47.5             | 78.4           | 72.8         | Granitic Gneiss | Strong           |
| 11          | 10      | 29.1         | D                  | 19.0          | 47.5             | 99.8           | 197.5        | Granitic Gneiss | Very Strong      |
| 12          | 11      | 29.3         | D                  | 7.5           | 47.5             | 132.9          | 78.0         | Granitic Gneiss | Strong           |
| 13          | 14      | 39.8         | D                  | 35.0          | 47.5             | 86.8           | 363.8        | Granitic Gneiss | Extremely Strong |

<sup>\*</sup> It is ideal to perform axial test on core specimens with D/L ratio of 1.1 ± 0.1

Long pieces of core can be tested diametrically to produce suitable lengths for axial testing

\* Diametral Test should have 0.7 x D on either side of test point.



| Job No :       | 19-                  | 1605-126                   | Client :       | HATCH     |
|----------------|----------------------|----------------------------|----------------|-----------|
| _              |                      |                            | Date Drilled : | 7/22/2011 |
| Project Name : | Mary River Project - | Geotechnical Investigation | Date Tested :  | 8/29/2011 |
| Core Size :    | NQ BH No:            | Q25+500                    | Tester :       | AS        |

| Test<br>No. | Run No. | Depth<br>(m) | Axial or Diametral | Force<br>(kN) | Diameter<br>(mm) | Length<br>(mm) | UCS<br>(MPa) | Rock Type       | Notes            |
|-------------|---------|--------------|--------------------|---------------|------------------|----------------|--------------|-----------------|------------------|
| 1           | 3       | 5.4          | D                  | 30.0          | 47.5             | 74.2           | 311.8        | Granitic Gneiss | Extremely Strong |
| 2           | 5       | 11.6         | D                  | 26.0          | 47.5             | 88.3           | 270.3        | Granitic Gneiss | Extremely Strong |
| 3           | 6       | 14.3         | D                  | 17.5          | 47.5             | 86.8           | 181.9        | Granitic Gneiss | Very Strong      |
| 4           | 11      | 32.1         | D                  | 18.0          | 47.5             | 108.6          | 187.1        | Granitic Gneiss | Very Strong      |

 $<sup>^{*}</sup>$  It is ideal to perform axial test on core specimens with D/L ratio of 1.1  $\pm$  0.1 Long pieces of core can be tested diametrically to produce suitable lengths for axial testing \* Diametral Test should have 0.7 x D on either side of test point.



| Job No :       | 1                  | 9-1605-126                   | Client :       | HATCH     |
|----------------|--------------------|------------------------------|----------------|-----------|
|                |                    |                              | Date Drilled : | 7/17/2011 |
| Project Name : | Mary River Project | - Geotechnical Investigation | Date Tested :  | 8/29/2011 |
| Core Size :    | NQ BH No:          | Q35+500                      | Tester :       | AS        |

| Test<br>No. | Run No. | Depth<br>(m) | Axial or Diametral | Force<br>(kN) | Diameter<br>(mm) | Length<br>(mm) | UCS<br>(MPa) | Rock Type       | Notes            |
|-------------|---------|--------------|--------------------|---------------|------------------|----------------|--------------|-----------------|------------------|
| 1           | 2       | 2.6          | D                  | 14.5          | 47.5             | 190.0          | 150.7        | Granitic Gneiss | Very Strong      |
| 2           | 3       | 7.5          | D                  | 13.5          | 47.5             | 101.2          | 140.3        | Granitic Gneiss | Very Strong      |
| 3           | 5       | 11.5         | D                  | 13.0          | 47.5             | 131.7          | 135.1        | Granitic Gneiss | Very Strong      |
| 4           | 5       | 14.4         | D                  | 18.5          | 47.5             | 125.9          | 192.3        | Granitic Gneiss | Very Strong      |
| 5           | 7       | 18.2         | D                  | 16.0          | 47.5             | 190.0          | 166.3        | Granitic Gneiss | Very Strong      |
| 6           | 8       | 21.5         | D                  | 25.0          | 47.5             | 76.0           | 259.9        | Granitic Gneiss | Extremely Strong |
| 7           | 9       | 25.5         | D                  | 14.0          | 47.5             | 155.0          | 145.5        | Granitic Gneiss | Very Strong      |

<sup>\*</sup> It is ideal to perform axial test on core specimens with D/L ratio of  $1.1 \pm 0.1$ Long pieces of core can be tested diametrically to produce suitable lengths for axial testing

\* Diametral Test should have 0.7 x D on either side of test point.



| Job No :       | 19-1605                   | -126                   | Client :       | HATCH     |
|----------------|---------------------------|------------------------|----------------|-----------|
| _              |                           |                        | Date Drilled : | 7/16/2011 |
| Project Name : | Mary River Project - Geot | echnical Investigation | Date Tested :  | 8/29/2011 |
| Core Size :    | NQ BH No:                 | Q38+700                | Tester :       | AS        |

| Test<br>No. | Run No. | Depth<br>(m) | Axial or Diametral | Force<br>(kN) | Diameter<br>(mm) | Length<br>(mm) | UCS<br>(MPa) | Rock Type       | Notes            |
|-------------|---------|--------------|--------------------|---------------|------------------|----------------|--------------|-----------------|------------------|
| 1           | 11      | 32.3         | D                  | 25.0          | 47.5             | 126.5          | 259.9        | Granitic Gneiss | Extremely Strong |
| 2           | 12      | 33.0         | D                  | 22.5          | 47.5             | 135.3          | 233.9        | Granitic Gneiss | Very Strong      |
| 3           | 14      | 38.5         | D                  | 16.5          | 47.5             | 161.0          | 171.5        | Granitic Gneiss | Very Strong      |
| 4           | 14      | 41.5         | D                  | 21.0          | 47.5             | 77.2           | 218.3        | Granitic Gneiss | Very Strong      |
| 5           | 16      | 47.1         | D                  | 14.5          | 47.5             | 99.7           | 150.7        | Granitic Gneiss | Very Strong      |

<sup>\*</sup> It is ideal to perform axial test on core specimens with D/L ratio of 1.1 ± 0.1

Long pieces of core can be tested diametrically to produce suitable lengths for axial testing

\* Diametral Test should have 0.7 x D on either side of test point.



| Job No :       | 1                  | 9-1605-126                   | Client :       | HATCH     |
|----------------|--------------------|------------------------------|----------------|-----------|
|                |                    |                              | Date Drilled : | 7/16/2011 |
| Project Name : | Mary River Project | - Geotechnical Investigation | Date Tested :  | 8/29/2011 |
| Core Size :    | NQ BH No:          | Q42+000                      | Tester :       | AS        |

| Test<br>No. | Run No. | Depth<br>(m) | Axial or Diametral | Force<br>(kN) | Diameter<br>(mm) | Length<br>(mm) | UCS<br>(MPa) | Rock Type       | Notes       |
|-------------|---------|--------------|--------------------|---------------|------------------|----------------|--------------|-----------------|-------------|
| 1           | 3       | 7.8          | D                  | 20.5          | 47.7             | 113.9          | 211.7        | Granitic Gneiss | Very Strong |
| 2           | 3       | 8.2          | D                  | 11.5          | 47.5             | 89.8           | 119.5        | Granitic Gneiss | Very Strong |
| 3           | 6       | 14.5         | D                  | 15.8          | 47.5             | 164.0          | 163.7        | Granitic Gneiss | Very Strong |
| 4           | 7       | 19.5         | D                  | 0.5           | 47.5             | 107.0          | 5.2          | Granitic Gneiss | Weak        |
| 5           | 8       | 20.5         | D                  | 22.5          | 47.5             | 97.5           | 233.9        | Granitic Gneiss | Very Strong |

It is ideal to perform axial test on core specimens with D/L ratio of  $1.1 \pm 0.1$ Long pieces of core can be tested diametrically to produce suitable lengths for axial testing

\* Diametral Test should have 0.7 x D on either side of test point.



| Job No :       | 19-1605- <sup>-</sup>      | Client :                            | HATCH     |
|----------------|----------------------------|-------------------------------------|-----------|
|                |                            | Date Drilled :                      | 7/15/2011 |
| Project Name : | Mary River Project - Geote | chnical Investigation Date Tested : | 8/27/2011 |
| Core Size :    | NQ BH No:                  | Q44+000 <b>Tester</b> :             | AS        |

| Test<br>No. | Run No. | Depth<br>(m) | Axial or Diametral | Force<br>(kN) | Diameter<br>(mm) | Length<br>(mm) | UCS<br>(MPa) | Rock Type       | Notes            |
|-------------|---------|--------------|--------------------|---------------|------------------|----------------|--------------|-----------------|------------------|
| 1           | 7       | 17.4         | D                  | 5.5           | 47.5             | 106.6          | 57.2         | Granitic Gneiss | Strong           |
| 2           | 7       | 18.6         | D                  | 30.0          | 47.5             | 84.9           | 311.8        | Granitic Gneiss | Extremely Strong |

<sup>\*</sup> It is ideal to perform axial test on core specimens with D/L ratio of 1.1 ± 0.1

Long pieces of core can be tested diametrically to produce suitable lengths for axial testing

\* Diametral Test should have 0.7 x D on either side of test point.



| Job No :       | 1                  | 9-1605-126                   | Client :       | HATCH     |
|----------------|--------------------|------------------------------|----------------|-----------|
|                |                    |                              | Date Drilled : | 7/15/2011 |
| Project Name : | Mary River Project | - Geotechnical Investigation | Date Tested :  | 8/28/2011 |
| Core Size :    | NQ BH No:          | Q44+300                      | Tester :       | AS        |

| Test<br>No. | Run No. | Depth<br>(m) | Axial or Diametral | Force<br>(kN) | Diameter<br>(mm) | Length<br>(mm) | UCS<br>(MPa) | Rock Type       | Notes            |
|-------------|---------|--------------|--------------------|---------------|------------------|----------------|--------------|-----------------|------------------|
| 1           | 2       | 2.5          | D                  | 17.0          | 47.5             | 94.8           | 176.7        | Granitic Gneiss | Very Strong      |
| 2           | 2       | 5.3          | D                  | 1.0           | 47.5             | 75.5           | 10.4         | Granitic Gneiss | Weak             |
| 3           | 3       | 8.2          | D                  | 19.5          | 47.5             | 93.9           | 202.7        | Granitic Gneiss | Very Strong      |
| 4           | 4       | 9.3          | D                  | 20.0          | 47.5             | 77.7           | 207.9        | Granitic Gneiss | Very Strong      |
| 5           | 4       | 11.2         | D                  | 27.0          | 47.5             | 118.5          | 280.6        | Granitic Gneiss | Extremely Strong |
| 6           | 5       | 14.3         | D                  | 26.0          | 47.5             | 101.7          | 270.3        | Granitic Gneiss | Extremely Strong |

<sup>\*</sup> It is ideal to perform axial test on core specimens with D/L ratio of 1.1 ± 0.1
Long pieces of core can be tested diametrically to produce suitable lengths for axial testing

\* Diametral Test should have 0.7 x D on either side of test point.



| Job No :       | 1                  | 9-1605-126                   | Client :       | HATCH     |
|----------------|--------------------|------------------------------|----------------|-----------|
|                |                    |                              | Date Drilled : | 7/14/2011 |
| Project Name : | Mary River Project | - Geotechnical Investigation | Date Tested :  | 8/29/2011 |
| Core Size :    | NQ BH No:          | Q45+000                      | Tester :       | AS        |

| Test<br>No. | Run No. | Depth<br>(m) | Axial or Diametral | Force<br>(kN) | Diameter<br>(mm) | Length<br>(mm) | UCS<br>(MPa) | Rock Type       | Notes            |
|-------------|---------|--------------|--------------------|---------------|------------------|----------------|--------------|-----------------|------------------|
| 1           | 2       | 2.5          | D                  | 21.5          | 47.5             | 105.5          | 223.5        | Granitic Gneiss | Very Strong      |
| 2           | 2       | 4.9          | D                  | 2.0           | 47.5             | 147.2          | 20.8         | Granitic Gneiss | Weak             |
| 3           | 3       | 5.1          | D                  | 29.0          | 47.5             | 105.4          | 301.4        | Granitic Gneiss | Extremely Strong |
| 4           | 4       | 9.5          | D                  | 0.5           | 47.5             | 122.9          | 5.2          | Granitic Gneiss | Weak             |
| 5           | 5       | 11.8         | D                  | 13.0          | 47.5             | 89.2           | 135.1        | Granitic Gneiss | Very Strong      |

It is ideal to perform axial test on core specimens with D/L ratio of  $1.1 \pm 0.1$ Long pieces of core can be tested diametrically to produce suitable lengths for axial testing

\* Diametral Test should have 0.7 x D on either side of test point.



| Job No :       | 19-1                   | 605-126                    | Client :       | HATCH     |
|----------------|------------------------|----------------------------|----------------|-----------|
|                |                        |                            | Date Drilled : | 7/14/2011 |
| Project Name : | Mary River Project - C | Seotechnical Investigation | Date Tested :  | 8/29/2011 |
| Core Size :    | NQ BH No:              | Q50+000                    | Tester :       | AS        |

| Test<br>No. | Run No. | Depth<br>(m) | Axial or Diametral | Force<br>(kN) | Diameter<br>(mm) | Length<br>(mm) | UCS<br>(MPa) | Rock Type       | Notes       |
|-------------|---------|--------------|--------------------|---------------|------------------|----------------|--------------|-----------------|-------------|
| 1           | 2       | 1.9          | D                  | 1.0           | 47.5             | 101.8          | 10.4         | Granitic Gneiss | Weak        |
| 2           | 3       | 4.9          | D                  | 18.0          | 47.5             | 133.6          | 187.1        | Granitic Gneiss | Very Strong |
| 3           | 4       | 8.6          | D                  | 15.5          | 47.5             | 47.1           | 161.1        | Granitic Gneiss | Very Strong |
| 4           | 5       | 13.7         | D                  | 1.5           | 47.5             | 137.4          | 15.6         | Granitic Gneiss | Weak        |
| 5           | 6       | 14.7         | D                  | 14.0          | 47.5             | 114.4          | 145.5        | Granitic Gneiss | Very Strong |

It is ideal to perform axial test on core specimens with D/L ratio of  $1.1 \pm 0.1$ Long pieces of core can be tested diametrically to produce suitable lengths for axial testing

\* Diametral Test should have 0.7 x D on either side of test point.



| Job No :       | 19-                  | 1605-126                   | Client :       | HATCH     |
|----------------|----------------------|----------------------------|----------------|-----------|
|                |                      |                            | Date Drilled : | 7/13/2011 |
| Project Name : | Mary River Project - | Geotechnical Investigation | Date Tested :  | 8/28/2011 |
| Core Size :    | NQ BH No:            | Q53+700                    | Tester :       | AS        |

| Test<br>No. | Run No. | Depth<br>(m) | Axial or Diametral | Force<br>(kN) | Diameter (mm) | Length<br>(mm) | UCS<br>(MPa) | Rock Type       | Notes |
|-------------|---------|--------------|--------------------|---------------|---------------|----------------|--------------|-----------------|-------|
| 1           | 4       | 10.6         | D                  | 1.3           | 47.5          | 63.2           | 13.0         | Granitic Gneiss | Weak  |

<sup>\*</sup> It is ideal to perform axial test on core specimens with D/L ratio of  $1.1 \pm 0.1$ Long pieces of core can be tested diametrically to produce suitable lengths for axial testing

\* Diametral Test should have 0.7 x D on either side of test point.



| Job No :       | 1                  | 9-1605-126                   | Client :       | HATCH     |
|----------------|--------------------|------------------------------|----------------|-----------|
|                |                    |                              | Date Drilled : | 7/22/2011 |
| Project Name : | Mary River Project | - Geotechnical Investigation | Date Tested :  | 8/13/2011 |
| Core Size :    | NQ BH No:          | Q82+700                      | Tester :       | CC        |

| Test<br>No. | Run No. | Depth<br>(m) | Axial or Diametral | Force<br>(kN) | Diameter<br>(mm) | Length<br>(mm) | UCS<br>(MPa) | Rock Type       | Notes            |
|-------------|---------|--------------|--------------------|---------------|------------------|----------------|--------------|-----------------|------------------|
| 1           | 6       | 9.8          | D                  | 23.5          | 47.5             | 107.8          | 244.3        | Granitic Gneiss | Very Strong      |
| 2           | 6       | 9.8          | Α                  | 30.0          | 47.5             | 39.4           | 299.1        | Granitic Gneiss | Extremely Strong |
| 3           | 7       | 11.1         | D                  | 26.0          | 47.5             | 61.3           | 270.3        | Granitic Gneiss | Extremely Strong |
| 4           | 7       | 11.1         | Α                  | 22.8          | 47.5             | 33.7           | 256.2        | Granitic Gneiss | Extremely Strong |
| 5           | 7       | 12.1         | D                  | 12.0          | 47.5             | 85.2           | 124.7        | Granitic Gneiss | Very Strong      |
| 6           | 7       | 12.1         | D                  | 15.8          | 47.5             | 85.2           | 163.7        | Granitic Gneiss | Very Strong      |
| 7           | 7       | 12.1         | Α                  | 22.5          | 47.5             | 39.3           | 224.8        | Granitic Gneiss | Very Strong      |
| 8           | 9       | 14.8         | D                  | 24.0          | 47.5             | 85.7           | 249.5        | Granitic Gneiss | Very Strong      |
| 9           | 9       | 14.8         | Α                  | 28.0          | 47.5             | 41.8           | 266.3        | Granitic Gneiss | Extremely Strong |
| 10          | 10      | 15.9         | D                  | 27.0          | 47.5             | 102.5          | 280.6        | Granitic Gneiss | Extremely Strong |
| 11          | 10      | 15.9         | Α                  | 22.5          | 47.5             | 46.1           | 198.4        | Granitic Gneiss | Very Strong      |

<sup>\*</sup> It is ideal to perform axial test on core specimens with D/L ratio of 1.1 ± 0.1

Long pieces of core can be tested diametrically to produce suitable lengths for axial testing

\* Diametral Test should have 0.7 x D on either side of test point.



| Job No :       | 1                  | 9-1605-126                   | Client :       | HATCH     |
|----------------|--------------------|------------------------------|----------------|-----------|
|                |                    |                              | Date Drilled : | 7/18/2011 |
| Project Name : | Mary River Project | - Geotechnical Investigation | Date Tested :  | 8/27/2011 |
| Core Size :    | NQ BH No:          | Q88+800                      | Tester :       | AS        |

| Test<br>No. | Run No. | Depth<br>(m) | Axial or Diametral | Force<br>(kN) | Diameter<br>(mm) | Length<br>(mm) | UCS<br>(MPa) | Rock Type       | Notes       |
|-------------|---------|--------------|--------------------|---------------|------------------|----------------|--------------|-----------------|-------------|
| 1           | 1       | 1.4          | D                  | 11.5          | 47.5             | 182.0          | 119.5        | Granitic Gneiss | Very Strong |
| 2           | 3       | 3.4          | D                  | 18.0          | 47.5             | 152.2          | 187.1        | Granitic Gneiss | Very Strong |
| 3           | 6       | 5.0          | D                  | 20.8          | 47.5             | 102.1          | 215.7        | Granitic Gneiss | Very Strong |
| 4           | 13      | 9.6          | D                  | 17.5          | 47.5             | 122.5          | 181.9        | Granitic Gneiss | Very Strong |
| 5           | 15      | 12.5         | D                  | 2.0           | 47.5             | 151.6          | 20.8         | Granitic Gneiss | Weak        |

<sup>\*</sup> It is ideal to perform axial test on core specimens with D/L ratio of 1.1 ± 0.1

Long pieces of core can be tested diametrically to produce suitable lengths for axial testing

\* Diametral Test should have 0.7 x D on either side of test point.



| Job No :       | 19-1                   | 1605-126                   | _Client :      | HATCH     |
|----------------|------------------------|----------------------------|----------------|-----------|
| _              |                        |                            | Date Drilled : | 7/25/2011 |
| Project Name : | Mary River Project - 0 | Geotechnical Investigation | Date Tested :  | 8/12/2011 |
| Core Size :    | NQ BH No:              | Q114+600                   | Tester :       | ВТ        |

| Test | D 11    | Depth | Axial or  | Force | Diameter | Length | UCS   |                 | Neteri           |
|------|---------|-------|-----------|-------|----------|--------|-------|-----------------|------------------|
| No.  | Run No. | (m)   | Diametral | (kN)  | (mm)     | (mm)   | (MPa) | Rock Type       | Notes            |
| 1    | 2       | 2.5   | D         | 21.0  | 47.5     | 89.3   | 218.3 | Granitic Gneiss | Very Strong      |
| 2    | 2       | 2.5   | Α         | 31.0  | 47.5     | 47.8   | 266.0 | Granitic Gneiss | Extremely Strong |
| 3    | 2       | 3.8   | D         | 13.3  | 47.5     | 101.6  | 137.7 | Granitic Gneiss | Very Strong      |
| 4    | 2       | 3.8   | Α         | 26.5  | 47.5     | 50.7   | 217.1 | Granitic Gneiss | Very Strong      |
| 5    | 2       | 5.0   | D         | 18.5  | 47.5     | 100.0  | 192.3 | Granitic Gneiss | Very Strong      |
| 6    | 2       | 5.0   | Α         | 26.5  | 47.5     | 51.3   | 215.3 | Granitic Gneiss | Very Strong      |
| 7    | 3       | 5.8   | D         | 19.8  | 47.5     | 78.8   | 205.3 | Granitic Gneiss | Very Strong      |
| 8    | 3       | 5.8   | Α         | 24.5  | 47.5     | 44.8   | 220.9 | Granitic Gneiss | Very Strong      |
| 9    | 3       | 7.1   | D         | 11.8  | 47.5     | 86.5   | 122.1 | Granitic Gneiss | Very Strong      |
| 10   | 3       | 7.2   | Α         | 31.0  | 47.5     | 45.4   | 276.6 | Granitic Gneiss | Extremely Strong |
| 11   | 3       | 8.0   | D         | 20.5  | 47.5     | 88.6   | 213.1 | Granitic Gneiss | Very Strong      |
| 12   | 3       | 8.0   | Α         | 24.0  | 47.5     | 39.0   | 241.1 | Granitic Gneiss | Very Strong      |
| 13   | 4       | 9.3   | D         | 21.3  | 47.5     | 88.6   | 220.9 | Granitic Gneiss | Very Strong      |
| 14   | 6       | 14.5  | D         | 18.0  | 47.5     | 92.4   | 187.1 | Granitic Gneiss | Very Strong      |
| 15   | 6       | 15.6  | Α         | 27.0  | 47.5     | 52.2   | 216.3 | Granitic Gneiss | Very Strong      |
| 16   | 6       | 16.6  | D         | 16.7  | 47.5     | 93.9   | 173.6 | Granitic Gneiss | Very Strong      |
| 17   | 6       | 16.6  | Α         | 23.0  | 47.5     | 44.3   | 209.3 | Granitic Gneiss | Very Strong      |
| 18   | 7       | 17.7  | D         | 19.5  | 47.5     | 74.6   | 202.7 | Granitic Gneiss | Very Strong      |
| 19   | 7       | 17.8  | Α         | 28.0  | 47.5     | 42.6   | 262.5 | Granitic Gneiss | Extremely Strong |
| 20   | 7       | 18.5  | D         | 15.3  | 47.5     | 76.3   | 158.5 | Granitic Gneiss | Very Strong      |
| 21   | 7       | 18.6  | Α         | 12.5  | 47.5     | 47.5   | 107.7 | Granitic Gneiss | Very Strong      |
| 22   | 7       | 19.6  | Α         | 34.0  | 47.5     | 58.8   | 248.3 | Granitic Gneiss | Very Strong      |
| 23   | 7       | 19.7  | D         | 19.8  | 47.5     | 84.5   | 205.3 | Granitic Gneiss | Very Strong      |
| 24   | 8       | 20.7  | Α         | 19.3  | 47.5     | 79.7   | 111.1 | Granitic Gneiss | Very Strong      |
| 25   | 8       | 20.7  | D         | 24.3  | 47.5     | 42.0   | 252.1 | Granitic Gneiss | Extremely Strong |
| 26   | 8       | 21.6  | Α         | 24.5  | 47.5     | 49.0   | 206.3 | Granitic Gneiss | Very Strong      |
| 27   | 8       | 21.8  | D         | 19.0  | 47.5     | 86.5   | 197.5 | Granitic Gneiss | Very Strong      |
| 28   | 8       | 22.2  | Α         | 15.8  | 47.5     | 48.5   | 133.6 | Granitic Gneiss | Very Strong      |
| 29   | 8       | 22.5  | D         | 23.0  | 47.5     | 87.5   | 239.1 | Granitic Gneiss | Very Strong      |
| 30   | 9       | 23.9  | D         | 19.8  | 47.5     | 91.9   | 205.3 | Granitic Gneiss | Very Strong      |
| 31   | 9       | 23.9  | Α         | 35.0  | 47.5     | 47.9   | 299.9 | Granitic Gneiss | Extremely Strong |
| 32   | 9       | 24.6  | D         | 19.5  | 47.5     | 90.3   | 202.7 | Granitic Gneiss | Very Strong      |
| 33   | 9       | 24.7  | Α         | 29.0  | 47.5     | 50.5   | 238.4 | Granitic Gneiss | Very Strong      |
| 34   | 9       | 25.7  | D         | 12.0  | 47.5     | 113.6  | 46.3  | Granitic Gneiss | Medium Strong    |
| 35   | 9       | 25.8  | Α         | 14.8  | 47.5     | 49.9   | 122.5 | Granitic Gneiss | Very Strong      |

| 36 | 10 | 26.8 | D | 13.3 | 47.5 | 87.6 | 137.7 | Granitic Gneiss | Very Strong |
|----|----|------|---|------|------|------|-------|-----------------|-------------|
| 37 | 10 | 26.9 | Α | 24.3 | 47.5 | 44.7 | 219.0 | Granitic Gneiss | Very Strong |
| 38 | 10 | 27.0 | D | 13.0 | 47.5 | 75.4 | 135.1 | Granitic Gneiss | Very Strong |
| 39 | 10 | 27.0 | Α | 27.0 | 47.5 | 50.2 | 223.0 | Granitic Gneiss | Very Strong |
| 40 | 10 | 28.1 | D | 16.3 | 47.5 | 81.0 | 168.9 | Granitic Gneiss | Very Strong |
| 41 | 10 | 28.1 | Α | 20.0 | 47.5 | 50.8 | 163.6 | Granitic Gneiss | Very Strong |
| 42 | 10 | 28.9 | D | 12.8 | 47.5 | 87.8 | 132.5 | Granitic Gneiss | Very Strong |
| 43 | 10 | 28.9 | Α | 24.3 | 47.5 | 49.4 | 202.8 | Granitic Gneiss | Very Strong |
| 44 | 11 | 29.9 | D | 22.5 | 47.5 | 82.7 | 233.9 | Granitic Gneiss | Very Strong |
| 45 | 11 | 29.9 | Α | 19.5 | 47.5 | 45.0 | 175.3 | Granitic Gneiss | Very Strong |
| 46 | 11 | 31.2 | D | 18.0 | 47.5 | 85.3 | 187.1 | Granitic Gneiss | Very Strong |
| 47 | 11 | 31.3 | Α | 24.3 | 47.5 | 44.5 | 219.9 | Granitic Gneiss | Very Strong |
| 48 | 11 | 32.2 | D | 20.0 | 47.5 | 85.9 | 207.9 | Granitic Gneiss | Very Strong |
| 49 | 11 | 32.3 | Α | 24.3 | 47.5 | 50.6 | 199.2 | Granitic Gneiss | Very Strong |

<sup>\*</sup> It is ideal to perform axial test on core specimens with D/L ratio of 1.1 ± 0.1

Long pieces of core can be tested diametrically to produce suitable lengths for axial testing

\* Diametral Test should have 0.7 x D on either side of test point.



| Job No :       | 19-1605-126                       | Client :                    | HATCH     |
|----------------|-----------------------------------|-----------------------------|-----------|
| _              |                                   | Date Drilled :              | 7/26/2011 |
| Project Name : | Mary River Project - Geotechnical | Investigation Date Tested : | 8/13/2011 |
| Core Size :    | NQ BH No: Q11                     | 6+800 <b>Tester</b> :       | ВТ        |

| Test | D 11    | Depth | Axial or  | Force | Diameter | Length | UCS   | T               | Negative         |
|------|---------|-------|-----------|-------|----------|--------|-------|-----------------|------------------|
| No.  | Run No. | (m)   | Diametral | (kN)  | (mm)     | (mm)   | (MPa) | Rock Type       | Notes            |
| 1    | 1       | 2.8   | Α         | 21.3  | 47.5     | 45.0   | 191.1 | Granitic Gneiss | Very Strong      |
| 2    | 2       | 3.2   | D         | 14.8  | 47.5     | 83.8   | 153.3 | Granitic Gneiss | Very Strong      |
| 3    | 2       | 4.5   | D         | 14.5  | 47.5     | 98.3   | 150.7 | Granitic Gneiss | Very Strong      |
| 4    | 2       | 4.6   | Α         | 22.5  | 47.5     | 39.2   | 225.1 | Granitic Gneiss | Very Strong      |
| 5    | 3       | 5.6   | D         | 13.8  | 47.5     | 84.8   | 142.9 | Granitic Gneiss | Very Strong      |
| 6    | 3       | 5.7   | Α         | 20.8  | 47.5     | 50.3   | 171.0 | Granitic Gneiss | Very Strong      |
| 7    | 3       | 6.7   | D         | 10.5  | 47.5     | 96.1   | 109.1 | Granitic Gneiss | Very Strong      |
| 8    | 3       | 6.7   | Α         | 25.0  | 47.5     | 52.8   | 198.6 | Granitic Gneiss | Very Strong      |
| 9    | 3       | 7.8   | D         | 17.3  | 47.5     | 95.5   | 179.3 | Granitic Gneiss | Very Strong      |
| 10   | 3       | 7.8   | Α         | 32.0  | 47.5     | 52.3   | 256.1 | Granitic Gneiss | Extremely Strong |
| 11   | 4       | 8.5   | Α         | 11.0  | 47.5     | 43.4   | 101.6 | Granitic Gneiss | Very Strong      |
| 12   | 4       | 8.9   | D         | 23.5  | 47.5     | 90.3   | 244.3 | Granitic Gneiss | Very Strong      |
| 13   | 4       | 9.6   | D         | 13.5  | 47.5     | 87.0   | 140.3 | Granitic Gneiss | Very Strong      |
| 14   | 4       | 10.0  | Α         | 13.3  | 47.5     | 42.2   | 125.1 | Granitic Gneiss | Very Strong      |
| 15   | 4       | 10.6  | D         | 15.3  | 47.5     | 76.9   | 158.5 | Granitic Gneiss | Very Strong      |
| 16   | 5       | 11.4  | D         | 18.8  | 47.5     | 86.7   | 194.9 | Granitic Gneiss | Very Strong      |
| 17   | 5       | 11.4  | Α         | 22.0  | 47.5     | 47.5   | 189.8 | Granitic Gneiss | Very Strong      |
| 18   | 5       | 12.7  | D         | 16.3  | 47.5     | 91.6   | 168.9 | Granitic Gneiss | Very Strong      |
| 19   | 5       | 12.7  | А         | 26.5  | 47.5     | 46.4   | 232.6 | Granitic Gneiss | Very Strong      |
| 20   | 8       | 18.0  | D         | 18.5  | 47.5     | 89.7   | 192.3 | Granitic Gneiss | Very Strong      |
| 21   | 8       | 18.1  | Α         | 15.3  | 47.5     | 48.8   | 128.7 | Granitic Gneiss | Very Strong      |
| 22   | 8       | 19.1  | А         | 30.0  | 47.5     | 91.1   | 156.1 | Granitic Gneiss | Very Strong      |
| 23   | 8       | 19.2  | D         | 20.5  | 47.5     | 50.2   | 213.1 | Granitic Gneiss | Very Strong      |
| 24   | 9       | 20.4  | D         | 18.5  | 47.5     | 79.4   | 192.3 | Granitic Gneiss | Very Strong      |
| 25   | 9       | 20.4  | Α         | 19.8  | 47.5     | 47.7   | 169.6 | Granitic Gneiss | Very Strong      |
| 26   | 9       | 21.6  | D         | 18.5  | 47.5     | 95.6   | 192.3 | Granitic Gneiss | Very Strong      |
| 27   | 9       | 21.7  | Α         | 26.0  | 47.5     | 47.8   | 223.2 | Granitic Gneiss | Very Strong      |
| 28   | 9       | 22.4  | D         | 17.8  | 47.5     | 79.2   | 184.5 | Granitic Gneiss | Very Strong      |
| 29   | 10      | 23.6  | D         | 16.8  | 47.5     | 85.8   | 174.1 | Granitic Gneiss | Very Strong      |
| 30   | 10      | 23.6  | А         | 15.5  | 47.5     | 49.1   | 130.1 | Granitic Gneiss | Very Strong      |
| 31   | 10      | 24.7  | D         | 20.3  | 47.5     | 70.5   | 210.5 | Granitic Gneiss | Very Strong      |
| 32   | 10      | 24.7  | А         | 23.3  | 47.5     | 51.1   | 189.3 | Granitic Gneiss | Very Strong      |
| 33   | 11      | 26.4  | D         | 18.5  | 47.5     | 99.2   | 46.3  | Granitic Gneiss | Medium Strong    |
| 34   | 11      | 26.4  | Α         | 21.8  | 47.5     | 49.8   | 180.8 | Granitic Gneiss | Very Strong      |
| 35   | 11      | 27.3  | D         | 16.8  | 47.5     | 94.0   | 174.1 | Granitic Gneiss | Very Strong      |

| 36 | 11 | 27.4 | Α | 18.3 | 47.5 | 50.6  | 149.8 | Granitic Gneiss | Very Strong |
|----|----|------|---|------|------|-------|-------|-----------------|-------------|
| 37 | 11 | 28.6 | D | 16.8 | 47.5 | 92.2  | 174.1 | Granitic Gneiss | Very Strong |
| 38 | 11 | 28.8 | Α | 21.8 | 47.5 | 48.2  | 185.4 | Granitic Gneiss | Very Strong |
| 39 | 12 | 29.8 | D | 21.0 | 47.5 | 111.2 | 218.3 | Granitic Gneiss | Very Strong |
| 40 | 12 | 29.8 | Α | 19.8 | 47.5 | 49.1  | 165.9 | Granitic Gneiss | Very Strong |
| 41 | 12 | 30.9 | D | 18.5 | 47.5 | 95.6  | 192.3 | Granitic Gneiss | Very Strong |
| 42 | 12 | 30.9 | Α | 23.3 | 47.5 | 47.6  | 200.1 | Granitic Gneiss | Very Strong |
| 43 | 12 | 32.1 | D | 19.5 | 47.5 | 96.0  | 202.7 | Granitic Gneiss | Very Strong |
| 44 | 12 | 32.1 | Α | 22.8 | 47.5 | 46.3  | 199.9 | Granitic Gneiss | Very Strong |

<sup>\*</sup> It is ideal to perform axial test on core specimens with D/L ratio of 1.1 ± 0.1

Long pieces of core can be tested diametrically to produce suitable lengths for axial testing

\* Diametral Test should have 0.7 x D on either side of test point.



| lob No :       | 19                 | -1605-126                  | Client :       | HATCH     |
|----------------|--------------------|----------------------------|----------------|-----------|
|                |                    |                            | Date Drilled : | 8/5/2011  |
| Project Name : | Mary River Project | Geotechnical Investigation | Date Tested :  | 8/12/2011 |
| Core Size :    | NQ BH No:          | Q131+100                   | Tester :       | CC        |

| Test<br>No. | Run No. | Depth<br>(m) | Axial or Diametral | Force<br>(kN) | Diameter<br>(mm) | Length<br>(mm) | UCS<br>(MPa) | Rock Type       | Notes            |
|-------------|---------|--------------|--------------------|---------------|------------------|----------------|--------------|-----------------|------------------|
| 1           | 4       | 8.6          | D                  | 21.3          | 47.5             | 104.3          | 220.9        | Granitic Gneiss | Very Strong      |
| 2           | 4       | 8.7          | Α                  | 25.7          | 47.5             | 39.0           | 257.9        | Granitic Gneiss | Extremely Strong |
| 3           | 4       | 9.8          | D                  | 24.0          | 47.5             | 102.3          | 249.5        | Granitic Gneiss | Very Strong      |
| 4           | 4       | 9.8          | Α                  | 28.0          | 47.5             | 44.2           | 255.3        | Granitic Gneiss | Extremely Strong |
| 5           | 4       | 10.7         | D                  | 22.8          | 47.5             | 77.0           | 236.5        | Granitic Gneiss | Very Strong      |
| 6           | 4       | 10.8         | Α                  | 18.5          | 47.5             | 34.9           | 202.5        | Granitic Gneiss | Very Strong      |
| 7           | 6       | 16.3         | D                  | 16.0          | 47.5             | 108.0          | 166.3        | Granitic Gneiss | Very Strong      |
| 8           | 6       | 16.3         | Α                  | 14.5          | 47.5             | 46.2           | 127.7        | Granitic Gneiss | Very Strong      |
| 9           | 6       | 17.3         | D                  | 24.3          | 47.5             | 79.9           | 252.1        | Granitic Gneiss | Extremely Strong |
| 10          | 6       | 17.3         | Α                  | 26.5          | 47.5             | 44.3           | 241.3        | Granitic Gneiss | Very Strong      |
| 11          | 7       | 18.5         | D                  | 17.8          | 47.5             | 106.8          | 184.5        | Granitic Gneiss | Very Strong      |
| 12          | 7       | 18.5         | Α                  | 18.0          | 47.5             | 43.1           | 167.4        | Granitic Gneiss | Very Strong      |
| 13          | 7       | 19.4         | D                  | 22.0          | 47.5             | 101.1          | 228.7        | Granitic Gneiss | Very Strong      |
| 14          | 7       | 19.5         | Α                  | 27.5          | 47.5             | 47.5           | 237.2        | Granitic Gneiss | Very Strong      |

<sup>\*</sup> It is ideal to perform axial test on core specimens with D/L ratio of 1.1 ± 0.1

Long pieces of core can be tested diametrically to produce suitable lengths for axial testing

\* Diametral Test should have 0.7 x D on either side of test point.



| Job No :       | 19-1                   | 605-126                   | Client :       | HATCH     |  |
|----------------|------------------------|---------------------------|----------------|-----------|--|
| _              |                        |                           | Date Drilled : | 7/16/2011 |  |
| Project Name : | Mary River Project - G | eotechnical Investigation | Date Tested :  | 8/12/2011 |  |
| Core Size :    | NO BH No:              | Q138+100                  | Tester :       | CC        |  |

| Test | D 11    | Depth | Axial or  | Force | Diameter | Length | UCS   | D   F           | Notes            |
|------|---------|-------|-----------|-------|----------|--------|-------|-----------------|------------------|
| No.  | Run No. | (m)   | Diametral | (kN)  | (mm)     | (mm)   | (MPa) | Rock Type       | Notes            |
| 1    | 1       | 0.3   | D         | 11.3  | 47.5     | 130.3  | 116.9 | Granitic Gneiss | Very Strong      |
| 2    | 1       | 0.6   | Α         | 25.8  | 47.5     | 48.1   | 219.9 | Granitic Gneiss | Very Strong      |
| 3    | 2       | 1.5   | D         | 10.0  | 47.5     | 97.2   | 103.9 | Granitic Gneiss | Very Strong      |
| 4    | 2       | 1.5   | Α         | 16.8  | 47.5     | 42.9   | 156.1 | Granitic Gneiss | Very Strong      |
| 5    | 2       | 2.6   | D         | 9.0   | 47.5     | 111.8  | 93.5  | Granitic Gneiss | Strong           |
| 6    | 2       | 2.6   | Α         | 25.5  | 47.5     | 50.8   | 208.7 | Granitic Gneiss | Very Strong      |
| 7    | 2       | 3.5   | D         | 11.0  | 47.5     | 89.2   | 114.3 | Granitic Gneiss | Very Strong      |
| 8    | 2       | 3.5   | Α         | 17.5  | 47.5     | 41.2   | 168.5 | Granitic Gneiss | Very Strong      |
| 9    | 3       | 4.6   | D         | 11.0  | 47.5     | 100.4  | 114.3 | Granitic Gneiss | Very Strong      |
| 10   | 3       | 4.6   | Α         | 10.0  | 47.5     | 41.9   | 95.1  | Granitic Gneiss | Strong           |
| 11   | 3       | 5.6   | D         | 17.3  | 47.5     | 80.2   | 179.3 | Granitic Gneiss | Very Strong      |
| 12   | 3       | 5.6   | Α         | 9.5   | 47.5     | 30.8   | 114.5 | Granitic Gneiss | Very Strong      |
| 13   | 4       | 6.7   | D         | 15.0  | 47.5     | 90.6   | 155.9 | Granitic Gneiss | Very Strong      |
| 14   | 4       | 6.8   | Α         | 21.8  | 47.5     | 46.1   | 191.8 | Granitic Gneiss | Very Strong      |
| 15   | 4       | 7.9   | D         | 16.0  | 47.5     | 74.7   | 166.3 | Granitic Gneiss | Very Strong      |
| 16   | 4       | 7.8   | Α         | 18.0  | 47.5     | 47.0   | 156.3 | Granitic Gneiss | Very Strong      |
| 17   | 5       | 8.8   | D         | 12.3  | 47.5     | 77.0   | 127.3 | Granitic Gneiss | Very Strong      |
| 18   | 5       | 8.8   | Α         | 20.0  | 47.5     | 42.0   | 189.6 | Granitic Gneiss | Very Strong      |
| 19   | 6       | 9.8   | D         | 13.5  | 47.5     | 95.1   | 140.3 | Granitic Gneiss | Very Strong      |
| 20   | 6       | 9.8   | Α         | 25.5  | 47.5     | 44.4   | 231.5 | Granitic Gneiss | Very Strong      |
| 21   | 6       | 10.8  | D         | 10.0  | 47.5     | 82.8   | 103.9 | Granitic Gneiss | Very Strong      |
| 22   | 6       | 10.8  | Α         | 16.5  | 47.5     | 36.6   | 173.9 | Granitic Gneiss | Very Strong      |
| 23   | 7       | 11.9  | D         | 15.3  | 47.5     | 85.8   | 158.5 | Granitic Gneiss | Very Strong      |
| 24   | 7       | 11.9  | Α         | 19.8  | 47.5     | 34.6   | 217.7 | Granitic Gneiss | Very Strong      |
| 25   | 8       | 13.1  | D         | 11.0  | 47.5     | 82.6   | 114.3 | Granitic Gneiss | Very Strong      |
| 26   | 8       | 13.0  | Α         | 16.3  | 47.5     | 34.0   | 181.5 | Granitic Gneiss | Very Strong      |
| 27   | 8       | 13.7  | D         | 16.5  | 47.5     | 101.6  | 171.5 | Granitic Gneiss | Very Strong      |
| 28   | 8       | 13.8  | Α         | 19.8  | 47.5     | 43.4   | 182.4 | Granitic Gneiss | Very Strong      |
| 29   | 9       | 15.3  | D         | 12.0  | 47.5     | 97.2   | 124.7 | Granitic Gneiss | Very Strong      |
| 30   | 9       | 15.4  | Α         | 15.5  | 47.5     | 30.1   | 190.4 | Granitic Gneiss | Very Strong      |
| 31   | 10      | 16.2  | D         | 19.5  | 47.5     | 98.2   | 202.7 | Granitic Gneiss | Very Strong      |
| 32   | 10      | 16.2  | А         | 34.0  | 47.5     | 48.6   | 288.0 | Granitic Gneiss | Extremely Strong |
| 33   | 10      | 17.1  | D         | 14.0  | 47.5     | 85.0   | 145.5 | Granitic Gneiss | Very Strong      |
| 34   | 10      | 17.1  | Α         | 15.3  | 47.5     | 35.9   | 46.3  | Granitic Gneiss | Medium Strong    |
| 35   | 14      | 22.4  | D         | 10.0  | 47.5     | 94.8   | 103.9 | Granitic Gneiss | Very Strong      |

| 36 | 14 | 22.5 | Α | 15.0 | 47.5 | 51.4  | 121.7 | Granitic Gneiss | Very Strong |
|----|----|------|---|------|------|-------|-------|-----------------|-------------|
| 37 | 15 | 23.6 | D | 11.0 | 47.5 | 90.4  | 114.3 | Granitic Gneiss | Very Strong |
| 38 | 15 | 23.6 | Α | 22.5 | 47.5 | 42.8  | 210.2 | Granitic Gneiss | Very Strong |
| 39 | 15 | 24.7 | D | 9.5  | 47.5 | 105.0 | 98.7  | Granitic Gneiss | Strong      |
| 40 | 15 | 24.8 | Α | 14.5 | 47.5 | 42.9  | 135.3 | Granitic Gneiss | Very Strong |
| 41 | 16 | 25.9 | D | 14.0 | 47.5 | 84.6  | 145.5 | Granitic Gneiss | Very Strong |
| 42 | 16 | 25.9 | Α | 22.5 | 47.5 | 38.9  | 226.5 | Granitic Gneiss | Very Strong |

<sup>\*</sup> It is ideal to perform axial test on core specimens with D/L ratio of 1.1 ± 0.1

Long pieces of core can be tested diametrically to produce suitable lengths for axial testing

\* Diametral Test should have 0.7 x D on either side of test point.



| Job No :       | •                 | 19-1605-126                    | Client :       | HATCH     |
|----------------|-------------------|--------------------------------|----------------|-----------|
|                |                   |                                | Date Drilled : | 7/19/2011 |
| Project Name : | Mary River Projec | t - Geotechnical Investigation | Date Tested :  | 8/29/2011 |
| Core Size :    | NQ BH No:         | Q139+600                       | Tester :       | AS        |

| Test<br>No. | Run No. | Depth<br>(m) | Axial or Diametral | Force<br>(kN) | Diameter<br>(mm) | Length<br>(mm) | UCS<br>(MPa) | Rock Type       | Notes  |
|-------------|---------|--------------|--------------------|---------------|------------------|----------------|--------------|-----------------|--------|
| 1           | 4       | 4.6          | D                  | 1.5           | 47.5             | 105.5          | 15.6         | Granitic Gneiss | Weak   |
| 2           | 6       | 9.0          | D                  | 7.0           | 47.5             | 147.2          | 72.8         | Granitic Gneiss | Strong |
| 3           | 7       | 10.7         | D                  | 9.5           | 47.5             | 105.4          | 98.7         | Granitic Gneiss | Strong |

<sup>\*</sup> It is ideal to perform axial test on core specimens with D/L ratio of 1.1 ± 0.1
Long pieces of core can be tested diametrically to produce suitable lengths for axial testing

\* Diametral Test should have 0.7 x D on either side of test point.



| Job No :       | 19-1605-12                   | Client :                         | HATCH                |
|----------------|------------------------------|----------------------------------|----------------------|
| _              |                              | Date Drilled                     | 8/7/2011             |
| Project Name : | Mary River Project - Geotech | nnical Investigation Date Tested | <b>3</b> : 8/13/2011 |
| Core Size :    | NQ BH No:                    | QMR2 Tester:                     | CC                   |

| Test<br>No. | Run No. | Depth<br>(m) | Axial or Diametral | Force<br>(kN) | Diameter<br>(mm) | Length<br>(mm) | UCS<br>(MPa) | Rock Type       | Notes       |
|-------------|---------|--------------|--------------------|---------------|------------------|----------------|--------------|-----------------|-------------|
| 1           | 1       | 1.3          | Α                  | 20.3          | 47.5             | 112.0          | 89.8         | Granitic Gneiss | Strong      |
| 2           | 1       | 1.3          | D                  | 22.8          | 47.5             | 48.7           | 236.5        | Granitic Gneiss | Very Strong |
| 3           | 3       | 7.2          | Α                  | ı             | 47.5             | 94.1           |              | Granitic Gneiss |             |
| 4           | 3       | 7.2          | D                  | 10.3          | 47.5             | 44.7           | 106.5        | Granitic Gneiss | Very Strong |
| 5           | 4       | 8.8          | Α                  | 15.5          | 47.5             | 104.3          | 72.6         | Granitic Gneiss | Strong      |
| 6           | 4       | 8.8          | D                  | 17.0          | 47.5             | 39.0           | 176.7        | Granitic Gneiss | Very Strong |
| 7           | 4       | 9.4          | Α                  | 16.3          | 47.5             | 102.3          | 77.3         | Granitic Gneiss | Strong      |
| 8           | 4       | 9.3          | D                  | 22.5          | 47.5             | 44.2           | 233.9        | Granitic Gneiss | Very Strong |
| 9           | 4       | 10.4         | Α                  | 23.3          | 47.5             | 77.0           | 137.9        | Granitic Gneiss | Very Strong |
| 10          | 4       | 10.4         | D                  | 11.3          | 47.5             | 34.9           | 116.9        | Granitic Gneiss | Very Strong |
| 11          | 5       | 11.8         | Α                  | 12.3          | 47.5             | 108.0          | 55.9         | Granitic Gneiss | Strong      |
| 12          | 5       | 11.6         | D                  | 19.0          | 47.5             | 108.0          | 197.5        | Granitic Gneiss | Very Strong |
| 13          | 5       | 12.8         | Α                  | 19.0          | 47.5             | 46.2           | 167.3        | Granitic Gneiss | Very Strong |
| 14          | 5       | 12.8         | D                  | 12.5          | 47.5             | 79.9           | 129.9        | Granitic Gneiss | Very Strong |

<sup>\*</sup> It is ideal to perform axial test on core specimens with D/L ratio of 1.1 ± 0.1

Long pieces of core can be tested diametrically to produce suitable lengths for axial testing

\* Diametral Test should have 0.7 x D on either side of test point.



| lob No :       | 19                 | -1605-126                    | Client :       | HATCH     |
|----------------|--------------------|------------------------------|----------------|-----------|
|                |                    |                              | Date Drilled : | 6/8/2011  |
| Project Name : | Mary River Project | - Geotechnical Investigation | Date Tested :  | 8/12/2011 |
| Core Size :    | NQ BH No:          | QS1                          | Tester :       | ВТ        |

| Test<br>No. | Run No. | Depth<br>(m) | Axial or Diametral | Force<br>(kN) | Diameter<br>(mm) | Length<br>(mm) | UCS<br>(MPa) | Rock Type       | Notes       |
|-------------|---------|--------------|--------------------|---------------|------------------|----------------|--------------|-----------------|-------------|
| 1           | 1       | 1.2          | D                  | 16.0          | 47.5             | 47.5           | 166.3        | Granitic Gneiss | Very Strong |
| 2           | 1       | 1.2          | Α                  | 20.0          | 47.5             | 47.5           | 172.3        | Granitic Gneiss | Very Strong |
| 3           | 1       | 2.4          | D                  | 21.3          | 47.5             | 47.6           | 220.9        | Granitic Gneiss | Very Strong |
| 4           | 1       | 2.4          | Α                  | 23.3          | 47.5             | 47.5           | 200.3        | Granitic Gneiss | Very Strong |
| 5           | 2       | 3.4          | D                  | 17.0          | 47.5             | 71.0           | 176.7        | Granitic Gneiss | Very Strong |
| 6           | 2       | 3.4          | Α                  | 24.5          | 47.5             | 46.0           | 216.4        | Granitic Gneiss | Very Strong |
| 7           | 2       | 4.3          | D                  | 19.5          | 47.5             | 79.4           | 202.7        | Granitic Gneiss | Very Strong |
| 8           | 2       | 4.3          | Α                  | 25.3          | 47.5             | 45.8           | 224.1        | Granitic Gneiss | Very Strong |
| 9           | 2       | 4.7          | D                  | 21.3          | 47.5             | 88.4           | 220.9        | Granitic Gneiss | Very Strong |
| 10          | 2       | 4.9          | Α                  | 30.0          | 47.5             | 55.9           | 227.9        | Granitic Gneiss | Very Strong |
| 11          | 3       | 6.1          | D                  | 15.3          | 47.5             | 85.2           | 158.5        | Granitic Gneiss | Very Strong |
| 12          | 3       | 6.2          | Α                  | 22.0          | 47.5             | 44.5           | 199.4        | Granitic Gneiss | Very Strong |
| 13          | 3       | 7.2          | D                  | 16.8          | 47.5             | 80.9           | 174.1        | Granitic Gneiss | Very Strong |
| 14          | 3       | 7.2          | Α                  | 27.0          | 47.5             | 51.0           | 220.4        | Granitic Gneiss | Very Strong |
| 15          | 3       | 8.4          | D                  | 19.8          | 47.5             | 92.7           | 205.3        | Granitic Gneiss | Very Strong |
| 16          | 4       | 10.6         | D                  | 19.3          | 47.5             | 76.0           | 200.1        | Granitic Gneiss | Very Strong |
| 17          | 4       | 10.7         | Α                  | 19.0          | 47.5             | 53.8           | 148.7        | Granitic Gneiss | Very Strong |
| 18          | 4       | 11.4         | D                  | 20.3          | 47.5             | 85.4           | 210.5        | Granitic Gneiss | Very Strong |
| 19          | 6       | 16.0         | D                  | 20.3          | 47.5             | 72.9           | 210.5        | Granitic Gneiss | Very Strong |
| 20          | 6       | 16.0         | Α                  | 25.3          | 47.5             | 48.4           | 214.5        | Granitic Gneiss | Very Strong |
| 21          | 6       | 17.3         | D                  | 17.5          | 47.5             | 85.2           | 181.9        | Granitic Gneiss | Very Strong |
| 22          | 6       | 17.4         | Α                  | 13.3          | 47.5             | 49.5           | 110.6        | Granitic Gneiss | Very Strong |

<sup>\*</sup> It is ideal to perform axial test on core specimens with D/L ratio of 1.1 ± 0.1

Long pieces of core can be tested diametrically to produce suitable lengths for axial testing

\* Diametral Test should have 0.7 x D on either side of test point.



| Job No :       |               | 19-1605-126                        | Client :       | HATCH     |
|----------------|---------------|------------------------------------|----------------|-----------|
|                |               |                                    | Date Drilled : | 7/24/2011 |
| Project Name : | Mary River Pr | oject - Geotechnical Investigation | Date Tested :  | 8/26/2011 |
| Core Size :    | NQ BH No      | : QS2                              | Tester :       | AS        |

| Test<br>No. | Run No. | Depth<br>(m) | Axial or Diametral | Force<br>(kN) | Diameter<br>(mm) | Length<br>(mm) | UCS<br>(MPa) | Rock Type       | Notes            |
|-------------|---------|--------------|--------------------|---------------|------------------|----------------|--------------|-----------------|------------------|
| 1           | 1       | 2.0          | D                  | 24.0          | 47.5             | 88.3           | 249.5        | Granitic Gneiss | Very Strong      |
| 2           | 1       | 2.0          | Α                  | 2.0           | 47.5             | 42.9           | 18.7         | Granitic Gneiss | Weak             |
| 3           | 3       | 5.0          | D                  | 24.5          | 47.5             | 84.9           | 254.7        | Granitic Gneiss | Extremely Strong |
| 4           | 3       | 5.0          | Α                  | 22.0          | 47.5             | 39.1           | 220.5        | Granitic Gneiss | Very Strong      |
| 5           | 4       | 11.2         | D                  | 22.0          | 47.5             | 110.0          | 228.7        | Granitic Gneiss | Very Strong      |
| 6           | 5       | 12.2         | D                  | 24.0          | 47.5             | 101.1          | 249.5        | Granitic Gneiss | Very Strong      |
| 7           | 9       | 17.5         | D                  | 21.2          | 47.5             | 73.8           | 220.4        | Granitic Gneiss | Very Strong      |
| 8           | 13      | 22.9         | D                  | 25.0          | 47.5             | 94.0           | 259.9        | Granitic Gneiss | Extremely Strong |
| 9           | 14      | 26.3         | D                  | 19.7          | 47.5             | 142.8          | 205.2        | Granitic Gneiss | Very Strong      |
| 10          | 15      | 29.5         | D                  | 16.8          | 47.5             | 145.0          | 174.6        | Granitic Gneiss | Very Strong      |

<sup>\*</sup> It is ideal to perform axial test on core specimens with D/L ratio of 1.1 ± 0.1

Long pieces of core can be tested diametrically to produce suitable lengths for axial testing

\* Diametral Test should have 0.7 x D on either side of test point.



| lob No :       | 19                 | -1605-126                    | Client :       | HATCH     |
|----------------|--------------------|------------------------------|----------------|-----------|
|                |                    |                              | Date Drilled : | 7/11/2011 |
| Project Name : | Mary River Project | - Geotechnical Investigation | Date Tested :  | 8/13/2011 |
| Core Size :    | NQ BH No:          | QS3A                         | Tester :       | CC        |

| Test<br>No. | Run No. | Depth<br>(m) | Axial or Diametral | Force<br>(kN) | Diameter<br>(mm) | Length<br>(mm) | UCS<br>(MPa) | Rock Type       | Notes         |
|-------------|---------|--------------|--------------------|---------------|------------------|----------------|--------------|-----------------|---------------|
| 1           | 2       | 1.2          | D                  | 20.0          | 47.5             | 112.0          | 207.9        | Granitic Gneiss | Very Strong   |
| 2           | 2       | 1.2          | Α                  | 21.3          | 47.5             | 48.7           | 179.7        | Granitic Gneiss | Very Strong   |
| 3           | 3       | 1.9          | Α                  | 7.5           | 47.5             | 94.1           | 38.1         | Granitic Gneiss | Medium Strong |
| 4           | 3       | 3.8          | D                  | 23.0          | 47.5             | 44.7           | 239.1        | Granitic Gneiss | Very Strong   |
| 5           | 3       | 4.7          | D                  | 19.0          | 47.5             | 104.3          | 197.5        | Granitic Gneiss | Very Strong   |
| 6           | 8       | 11.0         | D                  | 23.5          | 47.5             | 39.0           | 244.3        | Granitic Gneiss | Very Strong   |
| 7           | 8       | 11.1         | Α                  | 25.0          | 47.5             | 102.3          | 118.9        | Granitic Gneiss | Very Strong   |
| 8           | 8       | 12.2         | D                  | 20.3          | 47.5             | 44.2           | 210.5        | Granitic Gneiss | Very Strong   |
| 9           | 9       | 12.5         | Α                  | 18.0          | 47.5             | 77.0           | 106.8        | Granitic Gneiss | Very Strong   |
| 10          | 10      | 13.5         | D                  | 19.5          | 47.5             | 34.9           | 202.7        | Granitic Gneiss | Very Strong   |
| 11          | 10      | 13.5         | Α                  | 25.5          | 47.5             | 108.0          | 116.3        | Granitic Gneiss | Very Strong   |
| 12          | 10      | 14.5         | D                  | 11.0          | 47.5             | 46.2           | 114.3        | Granitic Gneiss | Very Strong   |
| 13          | 10      | 14.5         | Α                  | 21.5          | 47.5             | 79.9           | 123.9        | Granitic Gneiss | Very Strong   |

<sup>\*</sup> It is ideal to perform axial test on core specimens with D/L ratio of 1.1 ± 0.1

Long pieces of core can be tested diametrically to produce suitable lengths for axial testing

\* Diametral Test should have 0.7 x D on either side of test point.



| Job No :       | 19                 | 9-1605-126                   | Client :       | HATCH     |  |
|----------------|--------------------|------------------------------|----------------|-----------|--|
|                |                    |                              | Date Drilled : | 8/4/2011  |  |
| Project Name : | Mary River Project | - Geotechnical Investigation | Date Tested :  | 8/12/2011 |  |
| Core Size :    | NQ BH No:          | QTR4-1                       | Tester :       | BT        |  |

| Test | D 11    | Depth | Axial or  | Force | Diameter | Length | UCS   |                 | NI . C           |
|------|---------|-------|-----------|-------|----------|--------|-------|-----------------|------------------|
| No.  | Run No. | (m)   | Diametral | (kN)  | (mm)     | (mm)   | (MPa) | Rock Type       | Notes            |
| 1    | 1       | 2.4   | D         | 10.0  | 47.5     | 106.1  | 103.9 | Granitic Gneiss | Very Strong      |
| 2    | 1       | 2.4   | Α         | 15.8  | 47.5     | 43.9   | 144.2 | Granitic Gneiss | Very Strong      |
| 3    | 1       | 3.1   | D         | 18.8  | 47.5     | 84.3   | 194.9 | Granitic Gneiss | Very Strong      |
| 4    | 1       | 3.1   | Α         | 18.8  | 47.5     | 42.6   | 175.8 | Granitic Gneiss | Very Strong      |
| 5    | 1       | 3.5   | D         | 17.8  | 47.5     | 99.7   | 184.5 | Granitic Gneiss | Very Strong      |
| 6    | 1       | 3.5   | Α         | 17.3  | 47.5     | 44.5   | 156.4 | Granitic Gneiss | Very Strong      |
| 7    | 2       | 3.9   | Α         | 15.0  | 47.5     | 36.2   | 159.6 | Granitic Gneiss | Very Strong      |
| 8    | 2       | 3.9   | D         | 12.5  | 47.5     | 107.6  | 129.9 | Granitic Gneiss | Very Strong      |
| 9    | 2       | 4.9   | Α         | 24.5  | 47.5     | 47.7   | 210.6 | Granitic Gneiss | Very Strong      |
| 10   | 2       | 4.9   | D         | 18.3  | 47.5     | 93.3   | 189.7 | Granitic Gneiss | Very Strong      |
| 11   | 3       | 6.3   | D         | 16.0  | 47.5     | 126.4  | 166.3 | Granitic Gneiss | Very Strong      |
| 12   | 3       | 6.4   | Α         | 29.0  | 47.5     | 51.8   | 233.7 | Granitic Gneiss | Very Strong      |
| 13   | 3       | 7.2   | Α         | 30.0  | 47.5     | 45.2   | 268.7 | Granitic Gneiss | Extremely Strong |
| 14   | 3       | 7.3   | D         | 13.3  | 47.5     | 121.1  | 137.7 | Granitic Gneiss | Very Strong      |
| 15   | 4       | 8.6   | Α         | 19.5  | 47.5     | 52.9   | 154.7 | Granitic Gneiss | Very Strong      |
| 16   | 4       | 8.7   | D         | 24.8  | 47.5     | 102.0  | 257.3 | Granitic Gneiss | Extremely Strong |
| 17   | 4       | 9.3   | D         | 30.0  | 47.5     | 110.5  | 311.8 | Granitic Gneiss | Extremely Strong |
| 18   | 4       | 9.4   | Α         | 29.8  | 47.5     | 47.0   | 258.5 | Granitic Gneiss | Extremely Strong |
| 19   | 4       | 10.3  | D         | 12.0  | 47.5     | 92.4   | 124.7 | Granitic Gneiss | Very Strong      |
| 20   | 4       | 10.7  | Α         | 23.0  | 47.5     | 53.9   | 179.7 | Granitic Gneiss | Very Strong      |
| 21   | 4       | 11.3  | D         | 17.3  | 47.5     | 99.7   | 179.3 | Granitic Gneiss | Very Strong      |
| 22   | 4       | 11.4  | Α         | 21.0  | 47.5     | 52.9   | 166.5 | Granitic Gneiss | Very Strong      |
| 23   | 5       | 12.2  | D         | 12.8  | 47.5     | 101.7  | 132.5 | Granitic Gneiss | Very Strong      |
| 24   | 5       | 12.2  | Α         | 17.0  | 47.5     | 55.1   | 130.6 | Granitic Gneiss | Very Strong      |
| 25   | 5       | 13.4  | Α         | 27.5  | 47.5     | 50.2   | 227.0 | Granitic Gneiss | Very Strong      |
| 26   | 5       | 13.4  | D         | 20.0  | 47.5     | 89.9   | 207.9 | Granitic Gneiss | Very Strong      |
| 27   | 5       | 14.1  | Α         | 14.0  | 47.5     | 38.1   | 143.2 | Granitic Gneiss | Very Strong      |
| 28   | 5       | 14.1  | D         | 9.8   | 47.5     | 87.3   | 101.3 | Granitic Gneiss | Very Strong      |
| 29   | 6       | 14.5  | D         | 11.0  | 47.5     | 106.3  | 114.3 | Granitic Gneiss | Very Strong      |
| 30   | 7       | 17.8  | D         | 16.3  | 47.5     | 89.6   | 168.9 | Granitic Gneiss | Very Strong      |
| 31   | 7       | 20.4  | D         | 14.0  | 47.5     | 87.0   | 145.5 | Granitic Gneiss | Very Strong      |
| 32   | 7       | 20.4  | А         | 24.8  | 47.5     | 44.6   | 224.1 | Granitic Gneiss | Very Strong      |
| 33   | 9       | 25.8  | Α         | 16.8  | 47.5     | 41.7   | 159.6 | Granitic Gneiss | Very Strong      |
| 34   | 9       | 25.8  | D         | 18.8  | 47.5     | 102.5  | 46.3  | Granitic Gneiss | Medium Strong    |
| 35   | 10      | 27.0  | D         | 13.5  | 47.5     | 67.1   | 140.3 | Granitic Gneiss | Very Strong      |

| 36 | 10 | 27.1 | А | 6.3  | 47.5 | 48.1 | 53.4  | Granitic Gneiss | Strong           |
|----|----|------|---|------|------|------|-------|-----------------|------------------|
| 37 | 10 | 27.9 | D | 17.5 | 47.5 | 75.7 | 181.9 | Granitic Gneiss | Very Strong      |
| 38 | 10 | 27.9 | Α | 19.3 | 47.5 | 43.5 | 177.6 | Granitic Gneiss | Very Strong      |
| 39 | 10 | 28.9 | D | 31.5 | 47.5 | 48.2 | 327.4 | Granitic Gneiss | Extremely Strong |
| 40 | 10 | 29.1 | Α | 18.8 | 47.5 | 91.9 | 96.9  | Granitic Gneiss | Strong           |
| 41 | 11 | 29.6 | Α | 27.0 | 47.5 | 49.3 | 52.6  | Granitic Gneiss | Strong           |
| 42 | 11 | 29.9 | D | 21.3 | 47.5 | 87.3 | 100.1 | Granitic Gneiss | Very Strong      |
| 43 | 11 | 31.2 | D | 17.8 | 47.5 | 74.2 | 86.8  | Granitic Gneiss | Strong           |
| 44 | 11 | 31.2 | Α | 22.5 | 47.5 | 49.6 | 48.7  | Granitic Gneiss | Medium Strong    |
| 45 | 11 | 32.3 | Α | 23.5 | 47.5 | 49.6 | 99.0  | Granitic Gneiss | Strong           |
| 46 | 11 | 32.3 | D | 17.3 | 47.5 | 91.3 | 46.3  | Granitic Gneiss | Medium Strong    |

<sup>\*</sup> It is ideal to perform axial test on core specimens with D/L ratio of 1.1 ± 0.1

Long pieces of core can be tested diametrically to produce suitable lengths for axial testing

\* Diametral Test should have 0.7 x D on either side of test point.



| Job No :       | 19- <sup>-</sup>       | 1605-126                   | Client :       | HATCH     |
|----------------|------------------------|----------------------------|----------------|-----------|
| _              |                        |                            | Date Drilled : | 7/25/2011 |
| Project Name : | Mary River Project - 0 | Geotechnical Investigation | Date Tested :  | 8/29/2011 |
| Core Size :    | NQ BH No:              | QTR-9                      | Tester :       | AS        |

| Test<br>No. | Run No. | Depth<br>(m) | Axial or Diametral | Force<br>(kN) | Diameter<br>(mm) | Length<br>(mm) | UCS<br>(MPa) | Rock Type       | Notes            |
|-------------|---------|--------------|--------------------|---------------|------------------|----------------|--------------|-----------------|------------------|
| 1           | 1       | 0.7          | D                  | 18.5          | 47.5             | 87.3           | 192.3        | Granitic Gneiss | Very Strong      |
| 2           | 1       | 1.6          | D                  | 28.0          | 47.5             | 66.3           | 291.0        | Granitic Gneiss | Extremely Strong |
| 3           | 1       | 5.5          | D                  | 23.0          | 47.5             | 86.6           | 239.1        | Granitic Gneiss | Very Strong      |
| 4           | 5       | 12.9         | D                  | 17.5          | 47.5             | 94.7           | 181.9        | Granitic Gneiss | Very Strong      |
| 5           | 5       | 15.7         | D                  | 15.5          | 47.5             | 86.9           | 161.1        | Granitic Gneiss | Very Strong      |
| 6           | 8       | 20.3         | D                  | 20.5          | 47.5             | 132.5          | 213.1        | Granitic Gneiss | Very Strong      |
| 7           | 8       | 23.5         | D                  | 16.5          | 47.5             | 106.8          | 171.5        | Granitic Gneiss | Very Strong      |
| 8           | 11      | 30.7         | D                  | 8.0           | 47.5             | 79.5           | 83.2         | Granitic Gneiss | Strong           |
| 9           | 11      | 30.8         | D                  | 23.5          | 47.5             | 103.0          | 244.3        | Granitic Gneiss | Very Strong      |

<sup>\*</sup> It is ideal to perform axial test on core specimens with D/L ratio of 1.1 ± 0.1
Long pieces of core can be tested diametrically to produce suitable lengths for axial testing

\* Diametral Test should have 0.7 x D on either side of test point.



| Job No :       |                   | 19-1605-126                    | Client :       | HATCH     |
|----------------|-------------------|--------------------------------|----------------|-----------|
|                |                   |                                | Date Drilled : | 7/15/2011 |
| Project Name : | Mary River Projec | t - Geotechnical Investigation | Date Tested :  | 7/25/2011 |
| Core Size :    | NQ BH No:         | QTR-12                         | Tester :       | ВТ        |

| Test<br>No. | Run No. | Depth<br>(m) | Axial or Diametral | Force<br>(kN) | Diameter<br>(mm) | Length<br>(mm) | UCS<br>(MPa) | Rock Type       | Notes         |
|-------------|---------|--------------|--------------------|---------------|------------------|----------------|--------------|-----------------|---------------|
| 1           | 2       | 3.0          | D                  | 5.0           | 47.5             | 76.8           | 52.0         | Granitic Gneiss | Strong        |
| 2           | 2       | 3.2          | Α                  | 15.8          | 47.5             | 53.2           | 124.3        | Granitic Gneiss | Very Strong   |
| 3           | 2       | 4.3          | Α                  | 26.0          | 47.5             | 53.8           | 203.5        | Granitic Gneiss | Very Strong   |
| 4           | 3       | 5.4          | Α                  | 16.0          | 47.5             | 47.4           | 138.1        | Granitic Gneiss | Very Strong   |
| 5           | 3       | 5.4          | D                  | 8.0           | 47.5             | 88.6           | 83.2         | Granitic Gneiss | Strong        |
| 6           | 3       | 6.3          | Α                  | 10.5          | 47.5             | 44.9           | 94.5         | Granitic Gneiss | Strong        |
| 7           | 3       | 6.3          | D                  | 8.0           | 47.5             | 87.3           | 83.2         | Granitic Gneiss | Strong        |
| 8           | 3       | 7.4          | D                  | 2.5           | 47.5             | 80.9           | 26.0         | Granitic Gneiss | Medium Strong |
| 9           | 3       | 7.5          | Α                  | 14.3          | 47.5             | 47.1           | 123.6        | Granitic Gneiss | Very Strong   |
| 10          | 4       | 8.5          | D                  | 0.5           | 47.5             | 66.1           | 5.2          | Granitic Gneiss | Weak          |
| 11          | 4       | 8.5          | Α                  | 3.0           | 47.5             | 43.4           | 27.8         | Granitic Gneiss | Medium Strong |
| 12          | 4       | 9.0          | Α                  | 18.0          | 47.5             | 42.9           | 167.9        | Granitic Gneiss | Very Strong   |
| 13          | 4       | 9.3          | D                  | 0.5           | 47.5             | 80.9           | 5.2          | Granitic Gneiss | Weak          |
| 14          | 4       | 9.4          | D                  | 17.5          | 47.5             | 80.0           | 181.9        | Granitic Gneiss | Very Strong   |
| 15          | 4       | 10.3         | D                  | 9.5           | 47.5             | 73.4           | 98.7         | Granitic Gneiss | Strong        |
| 16          | 4       | 10.3         | Α                  | 0.5           | 47.5             | 40.7           | 4.9          | Granitic Gneiss | Very Weak     |
| 17          | 5       | 11.4         | Α                  | 4.5           | 47.5             | 45.3           | 40.2         | Granitic Gneiss | Medium Strong |
| 18          | 5       | 11.4         | D                  | 0.5           | 47.5             | 91.1           | 5.2          | Granitic Gneiss | Weak          |
| 19          | 5       | 12.5         | Α                  | 9.5           | 47.5             | 43.5           | 87.7         | Granitic Gneiss | Strong        |
| 20          | 5       | 12.5         | D                  | 11.5          | 47.5             | 85.9           | 119.5        | Granitic Gneiss | Very Strong   |
| 21          | 5       | 13.7         | Α                  | 9.5           | 47.5             | 48.8           | 80.2         | Granitic Gneiss | Strong        |
| 22          | 5       | 13.7         | D                  | 3.0           | 47.5             | 87.5           | 31.2         | Granitic Gneiss | Medium Strong |
| 23          | 6       | 14.8         | Α                  | 15.5          | 47.5             | 40.5           | 151.3        | Granitic Gneiss | Very Strong   |
| 24          | 6       | 15.1         | D                  | 16.0          | 47.5             | 76.5           | 166.3        | Granitic Gneiss | Very Strong   |
| 25          | 6       | 16.6         | D                  | 0.5           | 47.5             | 72.9           | 5.2          | Granitic Gneiss | Weak          |
| 26          | 6       | 16.7         | Α                  | 12.5          | 47.5             | 53.4           | 98.4         | Granitic Gneiss | Strong        |
| 27          | 7       | 18.2         | Α                  | 16.3          | 47.5             | 44.4           | 52.6         | Granitic Gneiss | Strong        |
| 28          | 7       | 18.2         | D                  | 7.5           | 47.5             | 73.8           | 100.1        | Granitic Gneiss | Very Strong   |
| 29          | 7       | 19.1         | D                  | 1.0           | 47.5             | 46.1           | 86.8         | Granitic Gneiss | Strong        |
| 30          | 7       | 19.2         | Α                  | 12.8          | 47.5             | 104.3          | 48.7         | Granitic Gneiss | Medium Strong |
| 31          | 7       | 20.3         | Α                  | 20.0          | 47.5             | 53.1           | 99.0         | Granitic Gneiss | Strong        |
| 32          | 7       | 20.3         | D                  | 25.5          | 47.5             | 85.0           | 46.3         | Granitic Gneiss | Medium Strong |

<sup>\*</sup> It is ideal to perform axial test on core specimens with D/L ratio of 1.1 ± 0.1
Long pieces of core can be tested diametrically to produce suitable lengths for axial testing

\* Diametral Test should have 0.7 x D on either side of test point.



| Job No :       | 1                 | 9-1605-126                     | Client :       | HATCH     |
|----------------|-------------------|--------------------------------|----------------|-----------|
|                |                   |                                | Date Drilled : | 7/14/2011 |
| Project Name : | Mary River Projec | t - Geotechnical Investigation | Date Tested :  | 8/29/2011 |
| Core Size :    | NQ BH No:         | QTR-13                         | Tester :       | AS        |

| Test<br>No. | Run No. | Depth<br>(m) | Axial or Diametral | Force<br>(kN) | Diameter<br>(mm) | Length<br>(mm) | UCS<br>(MPa) | Rock Type       | Notes            |
|-------------|---------|--------------|--------------------|---------------|------------------|----------------|--------------|-----------------|------------------|
| 1           | 4       | 11.4         | D                  | 24.0          | 47.5             | 123.4          | 249.5        | Granitic Gneiss | Very Strong      |
| 2           | 5       | 13.2         | D                  | 24.5          | 47.5             | 102.2          | 254.7        | Granitic Gneiss | Extremely Strong |
| 3           | 6       | 14.8         | D                  | 32.0          | 47.5             | 72.9           | 332.6        | Granitic Gneiss | Extremely Strong |

<sup>\*</sup> It is ideal to perform axial test on core specimens with D/L ratio of 1.1 ± 0.1

Long pieces of core can be tested diametrically to produce suitable lengths for axial testing

\* Diametral Test should have 0.7 x D on either side of test point.



| Job No :       | 19-                  | 1605-126                   | Client :       | HATCH     |
|----------------|----------------------|----------------------------|----------------|-----------|
| _              |                      |                            | Date Drilled : | 8/2/2011  |
| Project Name : | Mary River Project - | Geotechnical Investigation | Date Tested :  | 8/18/2011 |
| Core Size :    | NQ BH No:            | NTUN-DH03                  | Tester :       | Sharif    |

| Test | D No.   | Depth | Axial or  | Force | Diameter | Length | UCS   | De ele Terre | Mata        |
|------|---------|-------|-----------|-------|----------|--------|-------|--------------|-------------|
| No.  | Run No. | (m)   | Diametral | (kN)  | (mm)     | (mm)   | (MPa) | Rock Type    | Notes       |
| 19   | 17      | 43.7  | Α         | 20.0  | 47.7     | 52.6   | 158.7 | Gneiss       | Very Strong |
| 20   | 17      | 43.7  | D         | 16.0  | 47.6     | 53.9   | 165.6 | Gneiss       | Very Strong |
| 21   | 17      | 43.9  | Α         | 16.5  | 47.5     | 56.6   | 124.2 | Gneiss       | Very Strong |
| 22   | 17      | 43.9  | D         | 14.0  | 47.6     | 54.7   | 145.1 | Gneiss       | Very Strong |
| 23   | 17      | 44.8  | Α         | 12.5  | 47.7     | 53.8   | 97.6  | Gneiss       | Strong      |
| 24   | 17      | 44.8  | D         | 16.0  | 47.6     | 63.4   | 166.0 | Gneiss       | Very Strong |
| 25   | 17      | 45.1  | Α         | 13.0  | 47.5     | 58.3   | 95.6  | Gneiss       | Strong      |
| 26   | 17      | 45.5  | D         | 17.5  | 47.6     | 69.6   | 181.6 | Gneiss       | Very Strong |
| 27   | 17      | 45.9  | Α         | 15.5  | 47.6     | 40.8   | 150.2 | Gneiss       | Very Strong |
| 28   | 17      | 45.9  | D         | 14.5  | 47.6     | 69.0   | 150.1 | Gneiss       | Very Strong |
| 29   | 17      | 46.5  | Α         | 17.5  | 47.5     | 46.3   | 153.9 | Gneiss       | Very Strong |
| 30   | 17      | 46.5  | D         | 18.5  | 47.8     | 67.8   | 190.3 | Gneiss       | Very Strong |
| 3    | 18      | 46.9  | Α         | 22.0  | 47.9     | 46.7   | 190.9 | Gneiss       | Very Strong |
| 4    | 18      | 47.0  | D         | 16.0  | 47.5     | 60.0   | 166.4 | Gneiss       | Very Strong |
| 5    | 18      | 47.5  | Α         | 11.0  | 47.5     | 44.8   | 99.2  | Gneiss       | Strong      |
| 6    | 18      | 47.5  | D         | 16.5  | 48.6     | 49.2   | 165.4 | Gneiss       | Very Strong |
| 7    | 18      | 47.9  | А         | 26.0  | 48.0     | 54.4   | 200.2 | Gneiss       | Very Strong |
| 8    | 18      | 47.9  | D         | 23.5  | 47.8     | 72.4   | 241.7 | Gneiss       | Very Strong |
| 9    | 18      | 48.5  | А         | 15.5  | 48.5     | 46.6   | 133.4 | Gneiss       | Very Strong |
| 10   | 18      | 48.9  | D         | 13.5  | 47.7     | 63.4   | 139.5 | Gneiss       | Very Strong |
| 11   | 18      | 49.4  | Α         | 16.5  | 48.3     | 48.0   | 139.3 | Gneiss       | Very Strong |
| 12   | 18      | 49.4  | D         | 20.5  | 47.5     | 64.8   | 213.3 | Gneiss       | Very Strong |
| 13   | 19      | 49.6  | Α         | 12.5  | 48.1     | 47.4   | 107.0 | Gneiss       | Very Strong |
| 14   | 19      | 49.7  | D         | 21.5  | 47.4     | 61.8   | 223.9 | Gneiss       | Very Strong |
| 15   | 19      | 50.5  | Α         | 14.0  | 48.2     | 40.7   | 134.6 | Gneiss       | Very Strong |
| 16   | 19      | 50.5  | D         | 18.0  | 47.4     | 45.4   | 187.6 | Gneiss       | Very Strong |
| 17   | 19      | 50.8  | А         | 20.0  | 47.6     | 40.4   | 195.4 | Gneiss       | Very Strong |
| 18   | 19      | 50.8  | D         | 18.0  | 48.1     | 52.1   | 183.3 | Gneiss       | Very Strong |
| 1    | 20      | 54.2  | А         | 21.5  | 47.8     | 47.2   | 185.4 | Gneiss       | Very Strong |
| 2    | 20      | 54.2  | D         | 21.0  | 48.0     | 48.8   | 214.6 | Gneiss       | Very Strong |

<sup>\*</sup> It is ideal to perform axial test on core specimens with D/L ratio of 1.1 ± 0.1 Long pieces of core can be tested diametrically to produce suitable lengths for axial testing \* Diametral Test should have 0.7 x D on either side of test point.



| Job No:        | 19-                  | 1605-126                   | Client :       | HATCH     |
|----------------|----------------------|----------------------------|----------------|-----------|
|                |                      |                            | Date Drilled : | 8/2/2011  |
| Project Name : | Mary River Project - | Geotechnical Investigation | Date Tested :  | 8/18/2011 |
| Core Size :    | NQ BH No:            | NTUN-DH03                  | Tester :       | Sharif    |

| Test | D 11    | Depth | Axial or  | Force | Diameter | Length | ucs   | 5.1.      | N. C.       |
|------|---------|-------|-----------|-------|----------|--------|-------|-----------|-------------|
| No.  | Run No. | (m)   | Diametral | (kN)  | (mm)     | (mm)   | (MPa) | Rock Type | Notes       |
| 15   | 19      | 50.5  | Α         | 18.0  | 47.9     | 40.0   | 176.0 | Gneiss    | Very Strong |
| 16   | 19      | 50.5  | D         | 20.0  | 47.8     | 48.0   | 205.8 | Gneiss    | Very Strong |
| 17   | 19      | 51.1  | Α         | 20.5  | 47.7     | 52.8   | 162.3 | Gneiss    | Very Strong |
| 18   | 19      | 51.1  | D         | 20.5  | 47.5     | 54.8   | 212.8 | Gneiss    | Very Strong |
| 19   | 19      | 51.6  | Α         | 21.0  | 47.4     | 43.8   | 193.2 | Gneiss    | Very Strong |
| 20   | 19      | 51.6  | D         | 18.5  | 47.6     | 57.3   | 191.7 | Gneiss    | Very Strong |
| 21   | 19      | 52.4  | Α         | 14.0  | 48.1     | 37.8   | 142.5 | Gneiss    | Very Strong |
| 22   | 19      | 52.4  | D         | 11.5  | 47.4     | 51.7   | 119.8 | Gneiss    | Very Strong |
| 24   | 19      | 52.5  | Α         | 18.0  | 47.7     | 67.4   | 117.9 | Gneiss    | Very Strong |
| 23   | 19      | 52.6  | D         | 16.5  | 48.4     | 70.9   | 166.6 | Gneiss    | Very Strong |
| 25   | 20      | 52.9  | Α         | 23.5  | 47.8     | 47.3   | 202.2 | Gneiss    | Very Strong |
| 26   | 20      | 53.0  | D         | 17.0  | 48.1     | 56.3   | 173.5 | Gneiss    | Very Strong |
| 27   | 20      | 53.4  | Α         | 17.0  | 47.7     | 50.4   | 139.5 | Gneiss    | Very Strong |
| 28   | 20      | 53.4  | D         | 21.0  | 47.8     | 67.5   | 216.0 | Gneiss    | Very Strong |
| 29   | 20      | 53.8  | Α         | 17.0  | 48.2     | 52.7   | 133.8 | Gneiss    | Very Strong |
| 30   | 20      | 53.8  | D         | 22.5  | 47.9     | 73.2   | 231.2 | Gneiss    | Very Strong |
| 2    | 21      | 54.5  | D         | 21.5  | 47.5     | 64.3   | 223.4 | Gneiss    | Very Strong |
| 1    | 21      | 55.0  | Α         | 17.0  | 47.5     | 61.7   | 119.6 | Gneiss    | Very Strong |
| 3    | 21      | 55.5  | Α         | 21.5  | 47.5     | 44.3   | 195.8 | Gneiss    | Very Strong |
| 4    | 21      | 55.6  | D         | 21.0  | 47.5     | 54.3   | 218.1 | Gneiss    | Very Strong |
| 5    | 22      | 55.8  | Α         | 26.0  | 47.5     | 49.0   | 219.0 | Gneiss    | Very Strong |
| 6    | 22      | 55.9  | D         | 21.5  | 48.3     | 56.6   | 217.8 | Gneiss    | Very Strong |
| 7    | 22      | 56.3  | D         | 20.5  | 47.5     | 73.3   | 212.8 | Gneiss    | Very Strong |
| 8    | 22      | 56.3  | Α         | 22.5  | 47.5     | 41.6   | 215.0 | Gneiss    | Very Strong |
| 9    | 22      | 57.0  | А         | 13.5  | 47.5     | 40.0   | 132.8 | Gneiss    | Very Strong |
| 10   | 22      | 57.1  | D         | 17.0  | 48.0     | 62.5   | 173.8 | Gneiss    | Very Strong |
| 11   | 22      | 58.0  | Α         | 20.5  | 47.6     | 65.2   | 137.9 | Gneiss    | Very Strong |
| 12   | 22      | 58.0  | D         | 17.5  | 47.4     | 64.6   | 182.3 | Gneiss    | Very Strong |
| 13   | 22      | 58.5  | Α         | 25.0  | 47.5     | 51.3   | 202.9 | Gneiss    | Very Strong |
| 14   | 22      | 58.6  | D         | 23.0  | 47.5     | 53.7   | 239.1 | Gneiss    | Very Strong |

<sup>\*</sup> It is ideal to perform axial test on core specimens with D/L ratio of 1.1 ± 0.1 Long pieces of core can be tested diametrically to produce suitable lengths for axial testing \* Diametral Test should have 0.7 x D on either side of test point.



| Job No :       | 19-                  | 1605-126                   | Client :       | HATCH     |
|----------------|----------------------|----------------------------|----------------|-----------|
|                |                      |                            | Date Drilled : | 8/2/2011  |
| Project Name : | Mary River Project - | Geotechnical Investigation | Date Tested :  | 8/17/2011 |
| Core Size :    | NQ BH No:            | NTUN-DH03                  | Tester :       | BT/CC     |

| Test | Dun Na  | Depth | Axial or  | Force | Diameter | Length | UCS   | Dook Turns | Notes            |
|------|---------|-------|-----------|-------|----------|--------|-------|------------|------------------|
| No.  | Run No. | (m)   | Diametral | (kN)  | (mm)     | (mm)   | (MPa) | Rock Type  | Notes            |
| 27   | 22      | 59.5  | D         | 16.8  | 47.4     | 108.5  | 174.5 | Gneiss     | Very Strong      |
| 28   | 22      | 59.5  | Α         | 15.0  | 47.4     | 45.0   | 135.2 | Gneiss     | Very Strong      |
| 25   | 22      | 60.5  | D         | 21.3  | 47.4     | 99.2   | 221.7 | Gneiss     | Very Strong      |
| 26   | 22      | 60.5  | Α         | 25.3  | 47.4     | 45.6   | 225.0 | Gneiss     | Very Strong      |
| 23   | 23      | 61.6  | D         | 19.3  | 47.5     | 104.6  | 200.4 | Gneiss     | Very Strong      |
| 24   | 23      | 61.6  | Α         | 12.3  | 47.4     | 49.7   | 102.0 | Gneiss     | Very Strong      |
| 22   | 23      | 62.6  | D         | 1.5   | 47.4     | 105.8  | 15.6  | Gneiss     | Weak             |
| 20   | 23      | 63.6  | D         | 1.5   | 47.5     | 95.2   | 15.6  | Gneiss     | Weak             |
| 21   | 23      | 63.7  | D         | 19.0  | 47.4     | 105.6  | 198.0 | Gneiss     | Very Strong      |
| 18   | 23      | 64.5  | D         | 25.8  | 47.4     | 111.8  | 268.3 | Gneiss     | Extremely Strong |
| 19   | 24      | 64.7  | Α         | 15.8  | 47.4     | 34.5   | 174.3 | Gneiss     | Very Strong      |
| 16   | 24      | 65.6  | D         | 16.0  | 47.5     | 110.7  | 166.5 | Gneiss     | Very Strong      |
| 17   | 24      | 65.6  | Α         | 18.8  | 47.4     | 57.0   | 140.4 | Gneiss     | Very Strong      |
| 14   | 24      | 66.6  | D         | 21.0  | 47.4     | 100.2  | 218.9 | Gneiss     | Very Strong      |
| 15   | 24      | 66.7  | Α         | 25.8  | 47.5     | 50.4   | 212.2 | Gneiss     | Very Strong      |
| 12   | 25      | 67.6  | D         | 17.3  | 47.5     | 77.9   | 179.5 | Gneiss     | Very Strong      |
| 13   | 25      | 67.6  | Α         | 20.0  | 47.5     | 38.4   | 203.5 | Gneiss     | Very Strong      |
| 10   | 25      | 68.7  | D         | 17.0  | 47.4     | 91.2   | 177.3 | Gneiss     | Very Strong      |
| 11   | 25      | 68.7  | Α         | 14.0  | 47.4     | 37.0   | 146.8 | Gneiss     | Very Strong      |
| 9    | 25      | 69.7  | Α         | 8.0   | 47.5     | 40.9   | 77.5  | Gneiss     | Strong           |
| 8    | 25      | 69.7  | D         | 10.0  | 47.4     | 122.4  | 104.2 | Gneiss     | Very Strong      |
| 7    | 26      | 70.6  | D         | 17.3  | 47.4     | 100.8  | 179.9 | Gneiss     | Very Strong      |
| 6    | 26      | 72.0  | Α         | 22.8  | 47.4     | 50.8   | 186.4 | Gneiss     | Very Strong      |
| 5    | 26      | 72.1  | D         | 18.3  | 47.4     | 92.7   | 190.1 | Gneiss     | Very Strong      |
| 4    | 26      | 73.4  | А         | 13.8  | 47.4     | 42.5   | 129.3 | Gneiss     | Very Strong      |
| 3    | 26      | 73.6  | D         | 17.8  | 47.4     | 92.5   | 185.0 | Gneiss     | Very Strong      |
| 2    | 27      | 74.8  | Α         | 24.8  | 47.4     | 47.2   | 214.7 | Gneiss     | Very Strong      |
| 1    | 27      | 74.8  | D         | 21.5  | 47.4     | 98.3   | 223.9 | Gneiss     | Very Strong      |
| 29   |         |       |           |       |          |        |       |            |                  |
| 30   |         |       |           |       |          |        |       |            |                  |

 $<sup>^{*}</sup>$  It is ideal to perform axial test on core specimens with D/L ratio of 1.1  $\pm$  0.1 Long pieces of core can be tested diametrically to produce suitable lengths for axial testing \* Diametral Test should have 0.7 x D on either side of test point.



| Job No :       | 19-                  | 1605-126                   | Client :       | HATCH     |
|----------------|----------------------|----------------------------|----------------|-----------|
|                |                      |                            | Date Drilled : | 8/2/2011  |
| Project Name : | Mary River Project - | Geotechnical Investigation | Date Tested :  | 8/14/2011 |
| Core Size :    | NQ BH No:            | NTUN-DH03                  | Tester :       | CC        |

| Test | D N.    | Depth | Axial or  | Force | Diameter | Length | UCS   | Dools Tons | Notes            |
|------|---------|-------|-----------|-------|----------|--------|-------|------------|------------------|
| No.  | Run No. | (m)   | Diametral | (kN)  | (mm)     | (mm)   | (MPa) | Rock Type  | Notes            |
| 25   | 26      | 74.9  | Α         | 14.5  | 47.5     | 36.0   | 154.9 | Gneiss     | Very Strong      |
| 24   | 26      | 75.0  | D         | 24.3  | 47.5     | 84.2   | 252.4 | Gneiss     | Extremely Strong |
| 23   | 27      | 76.0  | Α         | 17.5  | 47.6     | 36.9   | 183.2 | Gneiss     | Very Strong      |
| 22   | 27      | 76.0  | D         | 23.0  | 47.5     | 88.8   | 239.1 | Gneiss     | Very Strong      |
| 20   | 28      | 77.2  | D         | 21.5  | 47.5     | 106.0  | 223.6 | Gneiss     | Very Strong      |
| 21   | 28      | 77.2  | Α         | 16.3  | 47.5     | 44.8   | 146.4 | Gneiss     | Very Strong      |
| 18   | 28      | 78.2  | D         | 22.0  | 47.5     | 92.6   | 228.8 | Gneiss     | Very Strong      |
| 19   | 28      | 78.3  | Α         | 24.5  | 47.6     | 41.8   | 232.9 | Gneiss     | Very Strong      |
| 16   | 28      | 79.1  | D         | 19.5  | 47.5     | 94.6   | 203.0 | Gneiss     | Very Strong      |
| 17   | 28      | 79.2  | Α         | 21.0  | 47.5     | 41.8   | 200.2 | Gneiss     | Very Strong      |
| 15   | 29      | 80.4  | Α         | 19.5  | 47.5     | 51.5   | 157.9 | Gneiss     | Very Strong      |
| 14   | 29      | 80.4  | D         | 13.0  | 47.5     | 101.4  | 135.0 | Gneiss     | Very Strong      |
| 13   | 29      | 81.6  | Α         | 19.0  | 47.5     | 40.9   | 184.0 | Gneiss     | Very Strong      |
| 12   | 29      | 81.6  | D         | 18.5  | 47.6     | 86.1   | 191.9 | Gneiss     | Very Strong      |
| 11   | 29      | 82.5  | D         | 19.3  | 47.5     | 97.0   | 200.2 | Gneiss     | Very Strong      |
| 9    | 30      | 83.4  | D         | 17.0  | 47.4     | 89.1   | 177.1 | Gneiss     | Very Strong      |
| 10   | 30      | 83.4  | Α         | 14.5  | 47.5     | 38.4   | 147.5 | Gneiss     | Very Strong      |
| 7    | 30      | 84.5  | D         | 19.5  | 47.6     | 91.0   | 202.2 | Gneiss     | Very Strong      |
| 8    | 30      | 84.6  | Α         | 16.5  | 47.5     | 35.5   | 178.0 | Gneiss     | Very Strong      |
| 5    | 30      | 85.4  | D         | 13.0  | 47.6     | 104.4  | 134.8 | Gneiss     | Very Strong      |
| 6    | 30      | 85.5  | Α         | 12.0  | 47.6     | 36.7   | 126.2 | Gneiss     | Very Strong      |
| 3    | 31      | 86.6  | D         | 18.0  | 47.2     | 117.9  | 188.9 | Gneiss     | Very Strong      |
| 4    | 31      | 86.7  | Α         | 18.5  | 47.1     | 53.3   | 146.7 | Gneiss     | Very Strong      |
| 1    | 31      | 87.7  | D         | 27.0  | 47.6     | 104.3  | 279.7 | Gneiss     | Extremely Strong |
| 2    | 31      | 87.7  | А         | 23.0  | 47.6     | 50.3   | 189.2 | Gneiss     | Very Strong      |
| 26   |         |       |           |       |          |        |       |            |                  |
| 27   |         |       |           |       |          |        |       |            |                  |
| 28   |         |       |           |       |          |        |       |            |                  |
| 29   |         |       |           |       |          |        |       |            |                  |
| 30   |         |       |           |       |          |        |       |            |                  |

 $<sup>^{*}</sup>$  It is ideal to perform axial test on core specimens with D/L ratio of 1.1  $\pm$  0.1 Long pieces of core can be tested diametrically to produce suitable lengths for axial testing \* Diametral Test should have 0.7 x D on either side of test point.



| Job No :       | •                 | 9-1605-126                     | Client :       | HATCH     |
|----------------|-------------------|--------------------------------|----------------|-----------|
|                |                   |                                | Date Drilled : | 8/2/2011  |
| Project Name : | Mary River Projec | t - Geotechnical Investigation | Date Tested :  | 8/14/2011 |
| Core Size :    | NQ BH No:         | NTUN-DH03                      | Tester :       | CC        |

| Test | Run No.  | Depth | Axial or  | Force | Diameter | Length | UCS   | Rock Type | Notes            |
|------|----------|-------|-----------|-------|----------|--------|-------|-----------|------------------|
| No.  | Ruii NO. | (m)   | Diametral | (kN)  | (mm)     | (mm)   | (MPa) | Nock Type | Notes            |
| 29   | 32       | 88.6  | D         | 21.5  | 47.6     | 83.2   | 222.8 | Gneiss    | Very Strong      |
| 30   | 32       | 88.6  | Α         | 16.0  | 47.6     | 36.0   | 170.6 | Gneiss    | Very Strong      |
| 28   | 32       | 89.7  | Α         | 30.5  | 47.6     | 46.3   | 267.7 | Gneiss    | Extremely Strong |
| 27   | 32       | 89.8  | D         | 29.0  | 47.7     | 114.1  | 300.0 | Gneiss    | Extremely Strong |
| 25   | 32       | 90.6  | D         | 25.3  | 47.5     | 94.3   | 262.3 | Gneiss    | Extremely Strong |
| 26   | 32       | 90.6  | Α         | 24.0  | 47.6     | 42.4   | 225.6 | Gneiss    | Very Strong      |
| 23   | 33       | 91.6  | D         | 23.0  | 47.6     | 90.4   | 238.1 | Gneiss    | Very Strong      |
| 24   | 33       | 91.6  | Α         | 21.3  | 47.6     | 41.9   | 201.4 | Gneiss    | Very Strong      |
| 22   | 33       | 92.6  | D         | 21.5  | 47.5     | 105.7  | 223.3 | Gneiss    | Very Strong      |
| 20   | 33       | 93.6  | D         | 17.5  | 47.6     | 99.5   | 181.2 | Gneiss    | Very Strong      |
| 21   | 33       | 93.6  | Α         | 16.3  | 47.6     | 47.5   | 139.8 | Gneiss    | Very Strong      |
| 18   | 34       | 94.6  | D         | 19.5  | 47.5     | 104.3  | 202.4 | Gneiss    | Very Strong      |
| 19   | 34       | 94.6  | Α         | 15.3  | 47.5     | 48.3   | 129.7 | Gneiss    | Very Strong      |
| 17   | 34       | 96.0  | Α         | 21.8  | 47.6     | 44.3   | 197.5 | Gneiss    | Very Strong      |
| 16   | 34       | 96.1  | D         | 19.8  | 47.6     | 108.1  | 204.5 | Gneiss    | Very Strong      |
| 14   | 34       | 97.2  | D         | 24.0  | 47.6     | 101.2  | 248.8 | Gneiss    | Very Strong      |
| 15   | 34       | 97.2  | Α         | 26.5  | 47.6     | 41.5   | 253.2 | Gneiss    | Extremely Strong |
| 12   | 35       | 98.0  | D         | 22.0  | 47.7     | 110.1  | 227.5 | Gneiss    | Very Strong      |
| 13   | 35       | 98.0  | Α         | 25.5  | 47.6     | 55.1   | 195.4 | Gneiss    | Very Strong      |
| 11   | 35       | 99.1  | D         | 26.5  | 47.6     | 107.2  | 274.9 | Gneiss    | Extremely Strong |
| 10   | 35       | 100.2 | Α         | 14.8  | 47.6     | 36.1   | 157.0 | Gneiss    | Very Strong      |
| 9    | 35       | 100.2 | D         | 17.0  | 47.5     | 96.0   | 176.6 | Gneiss    | Very Strong      |
| 7    | 36       | 101.3 | D         | 19.5  | 47.6     | 97.9   | 202.0 | Gneiss    | Very Strong      |
| 8    | 36       | 101.3 | Α         | 14.5  | 47.7     | 43.1   | 134.5 | Gneiss    | Very Strong      |
| 5    | 36       | 102.7 | D         | 19.0  | 47.5     | 116.0  | 197.7 | Gneiss    | Very Strong      |
| 6    | 36       | 102.8 | Α         | 22.5  | 47.5     | 52.3   | 180.0 | Gneiss    | Very Strong      |
| 3    | 37       | 103.8 | D         | 16.5  | 47.5     | 96.6   | 171.5 | Gneiss    | Very Strong      |
| 4    | 37       | 103.8 | Α         | 17.0  | 47.6     | 45.5   | 151.2 | Gneiss    | Very Strong      |
| 1    | 37       | 104.9 | D         | 21.0  | 47.6     | 85.9   | 217.5 | Gneiss    | Very Strong      |
| 2    | 37       | 104.9 | Α         | 15.8  | 47.6     | 37.5   | 162.6 | Gneiss    | Very Strong      |

 $<sup>^{\</sup>star}$  It is ideal to perform axial test on core specimens with D/L ratio of 1.1  $\pm$  0.1 Long pieces of core can be tested diametrically to produce suitable lengths for axial testing \* Diametral Test should have 0.7 x D on either side of test point.



| Job No :       | 19-                  | 1605-126                   | Client :       | HATCH     |
|----------------|----------------------|----------------------------|----------------|-----------|
|                |                      |                            | Date Drilled : | 8/2/2011  |
| Project Name : | Mary River Project - | Geotechnical Investigation | Date Tested :  | 8/14/2011 |
| Core Size :    | NQ BH No:            | NTUN-DH03                  | Tester :       | CC        |

| Test | Run No. | Depth | Axial or  | Force | Diameter | Length | UCS   | Rock Type | Notes            |
|------|---------|-------|-----------|-------|----------|--------|-------|-----------|------------------|
| No.  |         | (m)   | Diametral | (kN)  | (mm)     | (mm)   | (MPa) |           |                  |
| 29   | 37      | 105.8 | D         | 23.3  | 47.6     | 97.7   | 241.0 | Gneiss    | Very Strong      |
| 30   | 37      | 105.8 | Α         | 21.3  | 47.6     | 46.0   | 187.7 | Gneiss    | Very Strong      |
| 27   | 38      | 107.0 | D         | 19.8  | 47.5     | 108.8  | 205.3 | Gneiss    | Very Strong      |
| 28   | 38      | 107.0 | Α         | 21.0  | 47.6     | 52.8   | 166.7 | Gneiss    | Very Strong      |
| 25   | 38      | 108.2 | D         | 16.0  | 47.5     | 102.9  | 166.4 | Gneiss    | Very Strong      |
| 26   | 38      | 108.2 | Α         | 22.5  | 47.6     | 47.5   | 193.8 | Gneiss    | Very Strong      |
| 23   | 38      | 109.1 | D         | 16.8  | 47.6     | 94.3   | 173.3 | Gneiss    | Very Strong      |
| 24   | 38      | 109.1 | Α         | 15.0  | 47.6     | 47.2   | 129.8 | Gneiss    | Very Strong      |
| 21   | 39      | 110.4 | D         | 21.8  | 47.7     | 108.9  | 224.6 | Gneiss    | Very Strong      |
| 22   | 39      | 110.4 | Α         | 16.0  | 47.6     | 50.6   | 131.0 | Gneiss    | Very Strong      |
| 20   | 39      | 111.2 | Α         | 35.0  | 47.6     | 52.6   | 278.3 | Gneiss    | Extremely Strong |
| 19   | 39      | 111.3 | D         | 23.0  | 47.6     | 110.3  | 238.3 | Gneiss    | Very Strong      |
| 17   | 40      | 112.6 | D         | 24.0  | 47.5     | 76.4   | 249.1 | Gneiss    | Very Strong      |
| 18   | 40      | 112.6 | Α         | 19.3  | 47.6     | 35.5   | 207.5 | Gneiss    | Very Strong      |
| 15   | 40      | 113.7 | D         | 20.5  | 47.7     | 95.6   | 212.0 | Gneiss    | Very Strong      |
| 16   | 40      | 113.7 | Α         | 22.0  | 47.7     | 43.0   | 204.5 | Gneiss    | Very Strong      |
| 13   | 40      | 114.6 | D         | 21.0  | 47.6     | 100.5  | 217.6 | Gneiss    | Very Strong      |
| 14   | 40      | 114.7 | Α         | 13.8  | 47.7     | 45.5   | 122.2 | Gneiss    | Very Strong      |
| 11   | 41      | 115.6 | D         | 22.0  | 47.6     | 98.2   | 227.6 | Gneiss    | Very Strong      |
| 12   | 41      | 115.6 | Α         | 27.5  | 47.6     | 48.0   | 234.7 | Gneiss    | Very Strong      |
| 8    | 41      | 117.1 | D         | 20.0  | 47.7     | 83.7   | 206.7 | Gneiss    | Very Strong      |
| 10   | 41      | 117.1 | Α         | 17.0  | 47.7     | 46.2   | 149.4 | Gneiss    | Very Strong      |
| 9    | 41      | 117.1 | Α         | 13.5  | 47.7     | 37.7   | 138.9 | Gneiss    | Very Strong      |
| 7    | 41      | 118.5 | D         | 23.5  | 47.6     | 87.5   | 243.3 | Gneiss    | Very Strong      |
| 6    | 42      | 118.6 | Α         | 24.0  | 47.6     | 44.3   | 217.8 | Gneiss    | Very Strong      |
| 5    | 42      | 118.6 | D         | 16.3  | 47.6     | 80.2   | 168.1 | Gneiss    | Very Strong      |
| 3    | 42      | 119.5 | D         | 21.0  | 47.7     | 95.0   | 217.1 | Gneiss    | Very Strong      |
| 4    | 42      | 119.6 | Α         | 6.0   | 47.7     | 33.2   | 68.0  | Gneiss    | Strong           |
| 1    | 42      | 120.8 | D         | 19.0  | 47.6     | 108.3  | 197.2 | Gneiss    | Very Strong      |
| 2    | 42      | 120.9 | Α         | 16.5  | 47.6     | 36.0   | 176.0 | Gneiss    | Very Strong      |

 $<sup>^{\</sup>star}$  It is ideal to perform axial test on core specimens with D/L ratio of 1.1  $\pm$  0.1 Long pieces of core can be tested diametrically to produce suitable lengths for axial testing \* Diametral Test should have 0.7 x D on either side of test point.



| lob No :       | 19-                  | 1605-126                   | Client :       | HATCH     |
|----------------|----------------------|----------------------------|----------------|-----------|
| _              |                      |                            | Date Drilled : |           |
| Project Name : | Mary River Project - | Geotechnical Investigation | Date Tested :  | 8/27/2011 |
| Core Size :    | NQ3 BH No:           | NTUN-DH05                  | Tester :       | AS        |

| Test<br>No. | Run No. | Depth<br>(m) | Axial or Diametral | Force<br>(kN) | Diameter<br>(mm) | Length<br>(mm) | UCS<br>(MPa) | Rock Type | Notes       |
|-------------|---------|--------------|--------------------|---------------|------------------|----------------|--------------|-----------|-------------|
| 1           | 22      | 65.4         | D                  | 7.0           | 47.2             | 98.6           | 73.5         | gneiss    | Strong      |
| 2           | 22      | 65.8         | D                  | 17.3          | 47.6             | 74.3           | 178.8        | gneiss    | Very Strong |
| 3           | 22      | 66.2         | D                  | 17.5          | 47.2             | 181.0          | 183.8        | gneiss    | Very Strong |
| 4           |         |              |                    |               |                  |                |              | <u> </u>  | , ,         |
| 5           |         |              |                    |               |                  |                |              |           |             |
| 6           |         |              |                    |               |                  |                |              |           |             |
| 7           |         |              |                    |               |                  |                |              |           |             |
| 8           |         |              |                    |               |                  |                |              |           |             |
| 9           |         |              |                    |               |                  |                |              |           |             |
| 10          |         |              |                    |               |                  |                |              |           |             |
| 11          |         |              |                    |               |                  |                |              |           |             |
| 12          |         |              |                    |               |                  |                |              |           |             |
| 13          |         |              |                    |               |                  |                |              |           |             |
| 14          |         |              |                    |               |                  |                |              |           |             |
| 15          |         |              |                    |               |                  |                |              |           |             |
| 16          |         |              |                    |               |                  |                |              |           |             |
| 17          |         |              |                    |               |                  |                |              |           |             |
| 18          |         |              |                    |               |                  |                |              |           |             |
| 19          |         |              |                    |               |                  |                |              |           |             |
| 20          |         |              |                    |               |                  |                |              |           |             |
| 21          |         |              |                    |               |                  |                |              |           |             |
| 22          |         |              |                    |               |                  |                |              |           |             |
| 23          |         |              |                    |               |                  |                |              |           |             |
| 24          |         |              |                    |               |                  |                |              |           |             |
| 25          |         |              |                    |               |                  |                |              |           |             |
| 26          |         |              |                    |               |                  |                |              |           |             |
| 27          |         |              |                    |               |                  |                |              |           |             |
| 28          |         |              |                    |               |                  |                |              |           |             |
| 29          |         |              |                    |               |                  |                |              |           |             |
| 30          |         |              |                    |               |                  |                |              |           |             |

 $<sup>^{*}</sup>$  It is ideal to perform axial test on core specimens with D/L ratio of 1.1  $\pm$  0.1 Long pieces of core can be tested diametrically to produce suitable lengths for axial testing \* Diametral Test should have 0.7 x D on either side of test point.



| Job No :       |          | 19           | -1605-126                  | Client :       | HATCH     |
|----------------|----------|--------------|----------------------------|----------------|-----------|
|                |          |              |                            | Date Drilled : | 7/28/2011 |
| Project Name : | Mary Riv | er Project - | Geotechnical Investigation | Date Tested :  | 8/2/2011  |
| Core Size :    | NQ BI    | H No :       | STUN-DH03                  | Tester :       | BT        |

| Test<br>No. | Run No. | Depth<br>(m) | Axial or Diametral | Force<br>(kN) | Diameter<br>(mm) | Length<br>(mm) | UCS<br>(MPa) | Rock Type | Notes       |
|-------------|---------|--------------|--------------------|---------------|------------------|----------------|--------------|-----------|-------------|
| 2           | 22      | 70.1         | D                  | 12.0          | 47.7             | 89.4           | 124.1        | Gneiss    | Very Strong |
| 3           | 22      | 70.4         | Α                  | 18.5          | 47.7             | 43.6           | 170.1        | Gneiss    | Very Strong |
| 1           | 22      | 71.3         | Α                  | 19.8          | 47.7             | 46.2           | 173.5        | Gneiss    | Very Strong |
| 4           |         |              |                    |               |                  |                |              |           |             |
| 5           |         |              |                    |               |                  |                |              |           |             |
| 6           |         |              |                    |               |                  |                |              |           |             |
| 7           |         |              |                    |               |                  |                |              |           |             |
| 8           |         |              |                    |               |                  |                |              |           |             |
| 9           |         |              |                    |               |                  |                |              |           |             |
| 10          |         |              |                    |               |                  |                |              |           |             |
| 11          |         |              |                    |               |                  |                |              |           |             |
| 12          |         |              |                    |               |                  |                |              |           |             |
| 13          |         |              |                    |               |                  |                |              |           |             |
| 14          |         |              |                    |               |                  |                |              |           |             |
| 15          |         |              |                    |               |                  |                |              |           |             |
| 16          |         |              |                    |               |                  |                |              |           |             |
| 17          |         |              |                    |               |                  |                |              |           |             |
| 18          |         |              |                    |               |                  |                |              |           |             |
| 19          |         |              |                    |               |                  |                |              |           |             |
| 20          |         |              |                    |               |                  |                |              |           |             |
| 21          |         |              |                    |               |                  |                |              |           |             |
| 22          |         |              |                    |               |                  |                |              |           |             |
| 23          |         |              |                    |               |                  |                |              |           |             |
| 24          |         |              |                    |               |                  |                |              |           |             |
| 25          |         |              |                    |               |                  |                |              |           |             |
| 26          |         |              |                    |               |                  |                |              |           |             |
| 27          |         |              |                    |               |                  |                |              |           |             |
| 28<br>29    |         |              |                    |               |                  |                |              |           |             |
| -           |         |              |                    |               |                  |                |              |           |             |
| 30          |         |              |                    |               |                  |                |              |           |             |

 $<sup>^{*}</sup>$  It is ideal to perform axial test on core specimens with D/L ratio of 1.1  $\pm$  0.1 Long pieces of core can be tested diametrically to produce suitable lengths for axial testing \* Diametral Test should have 0.7 x D on either side of test point.



| Job No :       | 19-1                   | 605-126                    | Client :       | HATCH     |  |
|----------------|------------------------|----------------------------|----------------|-----------|--|
| _              |                        |                            | Date Drilled : | 7/29/2011 |  |
| Project Name : | Mary River Project - 0 | Geotechnical Investigation | Date Tested :  | 8/2/2011  |  |
| Core Size :    | NQ BH No:              | STUN-DH03                  | Tester :       | BT        |  |

| Test | Run No.  | Depth | Axial or  | Force | Diameter | Length | UCS   | Deek Type | Notes       |
|------|----------|-------|-----------|-------|----------|--------|-------|-----------|-------------|
| No.  | Kull No. | (m)   | Diametral | (kN)  | (mm)     | (mm)   | (MPa) | Rock Type | Notes       |
| 30   | 23       | 71.3  | D         | 18.8  | 47.6     | 106.7  | 194.0 | Gneiss    | Very Strong |
| 28   | 23       | 72.5  | D         | 12.0  | 47.6     | 95.5   | 124.2 | Gneiss    | Very Strong |
| 29   | 23       | 72.5  | Α         | 20.3  | 47.6     | 42.0   | 191.6 | Gneiss    | Very Strong |
| 26   | 24       | 73.6  | D         | 15.5  | 47.7     | 88.5   | 160.2 | Gneiss    | Very Strong |
| 27   | 24       | 73.6  | Α         | 17.0  | 47.7     | 47.5   | 146.2 | Gneiss    | Very Strong |
| 24   | 24       | 74.5  | D         | 18.0  | 47.6     | 88.6   | 186.4 | Gneiss    | Very Strong |
| 25   | 24       | 74.5  | Α         | 25.0  | 47.6     | 54.8   | 192.5 | Gneiss    | Very Strong |
| 22   | 25       | 75.5  | D         | 15.0  | 47.6     | 109.1  | 155.6 | Gneiss    | Very Strong |
| 23   | 25       | 75.5  | Α         | 13.0  | 47.6     | 46.0   | 114.7 | Gneiss    | Very Strong |
| 21   | 25       | 76.4  | D         | 9.5   | 47.6     | 74.5   | 98.3  | Gneiss    | Strong      |
| 19   | 25       | 77.7  | D         | 16.5  | 47.6     | 78.0   | 170.8 | Gneiss    | Very Strong |
| 20   | 25       | 77.7  | Α         | 24.0  | 47.6     | 43.2   | 222.3 | Gneiss    | Very Strong |
| 17   | 26       | 79.1  | D         | 17.0  | 47.6     | 102.6  | 176.0 | Gneiss    | Very Strong |
| 18   | 26       | 79.2  | Α         | 24.0  | 47.7     | 46.8   | 208.9 | Gneiss    | Very Strong |
| 15   | 26       | 80.0  | D         | 16.5  | 47.6     | 98.9   | 170.7 | Gneiss    | Very Strong |
| 16   | 26       | 80.1  | Α         | 21.5  | 47.7     | 47.4   | 185.2 | Gneiss    | Very Strong |
| 13   | 26       | 80.8  | D         | 16.5  | 47.7     | 93.1   | 170.4 | Gneiss    | Very Strong |
| 14   | 26       | 80.8  | Α         | 23.0  | 47.7     | 47.3   | 198.2 | Gneiss    | Very Strong |
| 11   | 27       | 82.0  | D         | 18.5  | 47.7     | 79.4   | 190.9 | Gneiss    | Very Strong |
| 12   | 27       | 82.1  | Α         | 19.5  | 47.7     | 42.0   | 184.2 | Gneiss    | Very Strong |
| 9    | 27       | 82.7  | D         | 17.0  | 47.7     | 78.7   | 175.6 | Gneiss    | Very Strong |
| 10   | 27       | 82.7  | Α         | 20.0  | 47.7     | 47.7   | 171.4 | Gneiss    | Very Strong |
| 7    | 27       | 83.9  | D         | 18.0  | 47.7     | 88.5   | 185.8 | Gneiss    | Very Strong |
| 8    | 27       | 84.0  | Α         | 21.3  | 47.7     | 43.5   | 195.6 | Gneiss    | Very Strong |
| 5    | 28       | 85.1  | D         | 21.0  | 47.7     | 88.3   | 216.7 | Gneiss    | Very Strong |
| 6    | 28       | 85.1  | Α         | 16.0  | 47.7     | 42.4   | 150.2 | Gneiss    | Very Strong |
| 3    | 28       | 86.5  | D         | 18.0  | 47.7     | 80.6   | 185.7 | Gneiss    | Very Strong |
| 4    | 28       | 86.5  | Α         | 26.5  | 47.7     | 47.2   | 228.7 | Gneiss    | Very Strong |
| 1    | 28       | 87.0  | D         | 16.5  | 47.7     | 78.1   | 170.3 | Gneiss    | Very Strong |
| 2    | 28       | 87.1  | Α         | 23.0  | 47.7     | 40.1   | 225.4 | Gneiss    | Very Strong |

 $<sup>^{*}</sup>$  It is ideal to perform axial test on core specimens with D/L ratio of 1.1  $\pm$  0.1 Long pieces of core can be tested diametrically to produce suitable lengths for axial testing \* Diametral Test should have 0.7 x D on either side of test point.