

March 2014

APPENDIX E.8 DECOMMISSIONING MILNE INLET FUEL BLADDER FARM

March 2014

APPENDIX E.8.1 MILNE INLET INTERIM BLADDER DECOMMISSIONING REPORT

Technical Memorandum

To: Jim Millard

From: Andrew Vermeer

CC:

Date: March 22, 2014

Re: Milne Port - Interim Fuel Bladder Facility Decommissioning

1.0 - Introduction

The bulk fuel bladder facility (fuel bladder facility) at Milne Port was constructed in late 2007 to store a combined 8.25 million litres of Jet-A and P-50 (diesel) for future Baffinland mineral exploration activities. The facility consisted of 74 114,000 L fuel bladders in a lined containment facility, including a lined refueling station.

In July, 2011 a new 5 million litre capacity bulk fuel tank facility (bulk fuel tank facility) at Milne Port was constructed, consisting of a single 5 million litre steel tank and a refueling station in a lined containment facility. In May of 2013, the capacity of the bulk fuel tank facility was expanded to 34 million litres of P-50 diesel and 2.25 million litres of Jet-A to support the Project development as outlined in the approved NIRB Project Certificate No. 005.

With the interim expansion of the bulk fuel tank facility at Milne Port complete in September 2013, the fuel bladder facility at Milne Port was no longer needed and therefore was decommissioned starting in late August, 2013. Decommissioning of the fuel bladder facility involved following the objectives outlined in Baffinland's approved Abandonment and Reclamation Plan. Tier 1 criteria for the remediation of petroleum hydrocarbon contaminated fine-grained soil for commercial and industrial land use (Tier 1 guidelines), outlined in the Government of Nunavut's *Environmental Guideline for Contaminated Site Remediation* (GN, 2009), was used to determine the remediation objectives for the soil underneath the fuel bladder facility at Milne Port.

2.0 - Scope of Work

The decommissioning of the fuel bladder facility at Milne Port involved four (4) phases:

1) Removal and disposal of the fuel bladders, piping and refueling infrastructure.

¹ The capacity of bulk fuel tank facility at Milne Port will be expanded again during the summer of 2014 by constructing one additional 12 million litre tank for P-50 diesel fuel storage.

² The fuel bladder facility at Milne Port was slowly decommissioned over its lifespan by limiting the amount of bladders that were used to store fuel. During each open water season, an oily water separator was used to treat the contaminated water from the spring melt that had become entrained in the berm. Oily water emulsions that were difficult to treat and excess oily water were stored in unused fuel bladders until August, 2013 when all oily water, with the exception of one bladder, was backhauled on the 2013 sealift.

- 2) Removal of the geosynthetic liner and the excavation of contaminated soil within the lined containment berm and refueling station.
- 3) Further assessment and excavation of the soil underneath the facility where there was indication of petroleum hydrocarbon contamination exceeding referenced Tier 1 petroleum hydrocarbon criteria. The walls and floor of the excavated areas were sampled to confirm whether additional excavation would be required in the future.
- 4) The stockpiling of contaminated soils and discarded liner within a lined area located at the north end of the facility which was covered with geosynthetic liner to minimize meteoric water infiltration and contaminated runoff.

3.0 Field Program

Starting in late August, 2013, 73 fuel bladders and all unsalvageable flexible fuel hoses were drained and backhauled in lined sea containers during the 2013 sealift for proper disposal at a licensed facility. Fuel pumps and steel piping used at the fuel bladder facility were removed and are currently being stored at Milne Port.

Following the removal of the fuel bladder facility infrastructure, all contaminated water within the containment berm that could not be treated onsite was consolidated into an empty fuel bladder located at the north end of the containment berm. Starting at the south end of the facility, excavators removed the contaminated soil and geosynthetic liner from the lined refueling station and two thirds of the containment berm. During the excavation process, the liner condition was observed to be intact with no observable tears or breaches. All removed contaminated soil and geosynthetic liner were transferred to the remaining one third of the containment berm located at the north end of the facility. A containment berm wall stretching east to west was constructed to separate the remaining one third of the containment berm from the recently exposed underlying soil.

Once the soil underneath the geosynthetic liner was exposed, the freshly exposed soils were assessed for petroleum hydrocarbon contamination by visual and olfactory inspection and the systematic advancement of test pits throughout the area. The soils were classified mainly as fine to medium grained sands with some gravel and little silt. Contaminated areas that were identified during the inspection and as determined from test pits were excavated until petroleum hydrocarbon (PH) contamination could no longer be detected by visual or olfactory assessment. All excavated materials from the contaminated areas were transported to the remaining one third of the containment berm (north end). To confirm that contaminated areas had been substantially excavated, composite soil samples of the walls and floor of each excavated contaminated areas were collected. Six (6) PH contaminated areas were identified within the footprint of the removed containment berm and one (1) PH contaminated area was identified within the footprint of the lined refueling station.

In addition to the collecting soil samples from the excavation limits of each contaminated area, test pits were dug and allowed to fill with water after each contaminated area was excavated in order to collect water samples and gauge the level of residual and free phase petroleum hydrocarbons. A single test pit was dug for each contaminated area except for contaminated area no. 5 in which two test pits were dug to account for the contaminated area's larger size. Overall, eight (8) test pits were excavated and sampled within the PH contaminated areas.

If substantial volumes of hydrocarbons had leaked through the geosynthetic liner during the lifespan of the fuel bladder facility, the hydrocarbons would have likely migrated to and settled at the soil-permafrost interface. Therefore, to determine the depth and extent of the fuel contamination underneath the fuel bladder facility at Milne Port the exposed soil was partitioned into 15 m x 15 m (225 m²) grid sections and assessed for petroleum hydrocarbon contamination by excavating a test pit in the center of each grid section. Test pits were excavated to the depth of the permafrost and soil was sampled at several depths within the test pit to create a composite depth soil sample for each section. Overall, 29 test pits were excavated and sampled (see Figure E.8-1).

To prevent snow melt from mixing with the contaminated soil and liner in the spring, the remaining one third of the containment berm that included stockpiled contained soils, discarded liner material and the single remaining bladder with stored oily water was covered and sealed with geosynthetic liner for the winter. The total volume of stockpiled contaminated soil is estimated to be 8795 m³ (see Figure E.8-2).

4.0 - Sampling Methodology

Soil and water sample analyses were conducted by an accredited lab in Nepean, ON operated by Exova Canada Corp (Exova lab).

4.1 - Soil Samples

For each test pit, soil was collected at several depths from each wall so as to provide a representative depth composited soil sample. Similarly, soil samples were taken from the excavation walls and floor of each contaminated area following remediation efforts. All soil samples were collected in 250 mL glass jars using a spade and nitrile gloves. To avoid cross contamination, the spade was rinsed with potable water between samples and a new pair of nitrile gloves were worn for each soil sample that was collected.

4.2 - Water Samples

Water samples were collected from test pits of identified contaminated areas following excavation efforts. Water samples were collected from the standing water in each test pit and tested internally for total oil and grease (TOG). Water samples that exceeded a TOG concentration of 15 ppm³ were sent to the Exova lab for external testing. All water samples were collected in new 500 mL plastic bottles using a clean pair of nitrile gloves for each sample so as to minimize the potential for cross contamination during sampling.

5.0 - Analytical Results

The laboratory results for the composite soil samples collected from the test pits and excavation limits of identified PH contaminated areas were compared to the Tier 1 guidelines for commercial/industrial land use, as outlined in Table 1.

Of the soil samples collected from the test pits, none of the samples exceeded any of the Tier 1 guidelines for commercial/industrial land use. However, when PH results for the test pit soil samples were compared to the most conservative land use Tier 1 guidelines, agriculture/parkland, the soil sample from test pit MP-BF-C6 marginally exceeded the PH F2 guideline of 150 mg/kg with a F2 concentration of 210 mg/kg.

Soil samples from the excavation limits of identified contaminated areas that exceeded the PH F2 guideline for all land use types included: MP-BF-S7, MP-BF-S8, MP-BF-S10, MP-BF-CA5A and MP-CA5. These samples were collected from either contaminated area no. 5 or the containment berm sump area (see Figure E.8-3).

Soil samples from the excavation limits of identified contaminated areas with PH levels below the Tier 1 guidelines for commercial/industrial land use but above the agricultural/parkland land use Tier 1 guidelines for PH F1 or F2 included MP-BF-REFUEL-2, MP-BF-S3 and MP-BF-S5.

_

³ All water discharges into the receiving environment must not exceed 15 ppm TOG according to Baffinland's Type A Water License No. 2AM-MRY1325 (NWB, 2013).

Of the water samples taken from the contaminated area test pits, only the samples collected at the sump (MP-BF-STP1) and the first test pit of contaminated area 5 (MP-BF-CA5TP1) tested above the 15 ppm threshold for total oil and grease (TOG). When the water samples were tested externally by the Exova lab, MP-BF-STP1 and MP-BF-CA5TP1 showed TOG concentrations of 31 and 33 ppm, respectively.

6.0 - Conclusions and Recommendations

The low PH concentrations seen in the soil samples of the test pits and excavation limits of most of the identified PH contaminated areas suggests that the fuel contamination of the soil underneath the fuel bladder facility at Milne Port was localized and was most likely due to slow, pinhole type leaks in the liner system. Of the seven (7) PH contaminated areas that were identified and excavated during the decommissioning of the facility, only the containment berm sump area and contaminated area no. 5 registered residual PH levels above the Tier 1 guidelines for fine-grained soil in a commercial/industrial setting.

Out of all the PH contaminated areas that were excavated, the sump area of the containment berm registered the highest concentrations of residual PH contamination. The soil underneath the sump area of the containment berm was the most prone to potential PH contamination due to the longer term oily water residing at this location during each open water season. Both the refueling area and containment berm sump area required substantial excavation and removal of soil to the depth of permafrost in some areas.

Finally, the low TOG concentrations seen in the water samples collected from contaminated area test pits confirm that remediation excavations were successful in reducing PH contamination below Tier 1 guidelines for five (5) of the seven (7) PH contaminated areas. The excavated contaminated areas and test pits that registered a residual PH concentration greater than the Tier 1 guidelines for fine-grained soil for commercial/industrial land use will be reassessed and excavated/stockpiled further as required during the 2014 open water season.

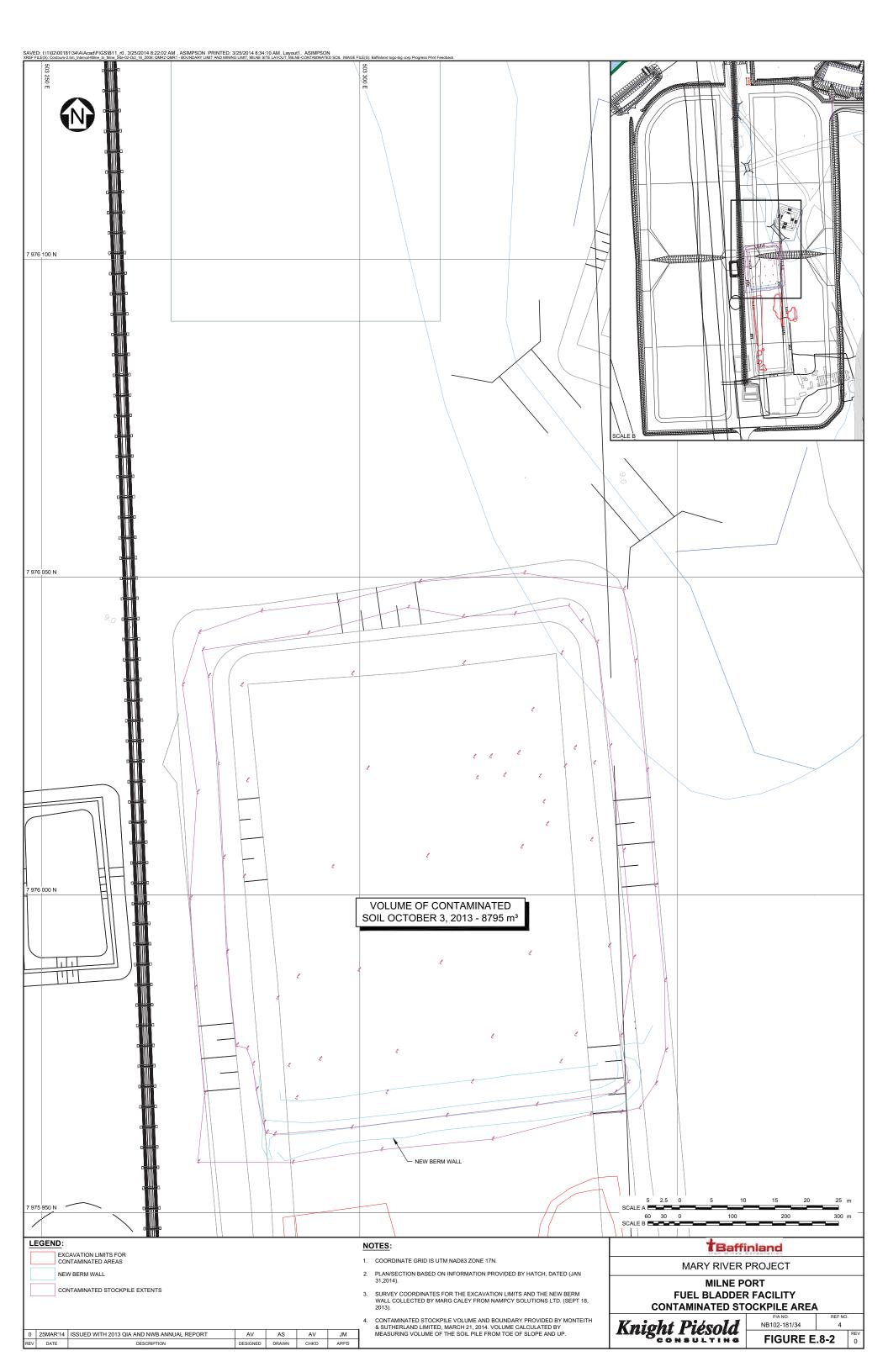
The area under the northern third of the containment berm, currently the site of the stockpiled contaminated soil and liner material still requires liner removal and assessment using techniques similar to those undertaken during 2013. The stockpiled contaminated soils will be resampled and transported to the planned landfarm treatment facility at Milne Port, slated for construction during the spring of 2014.

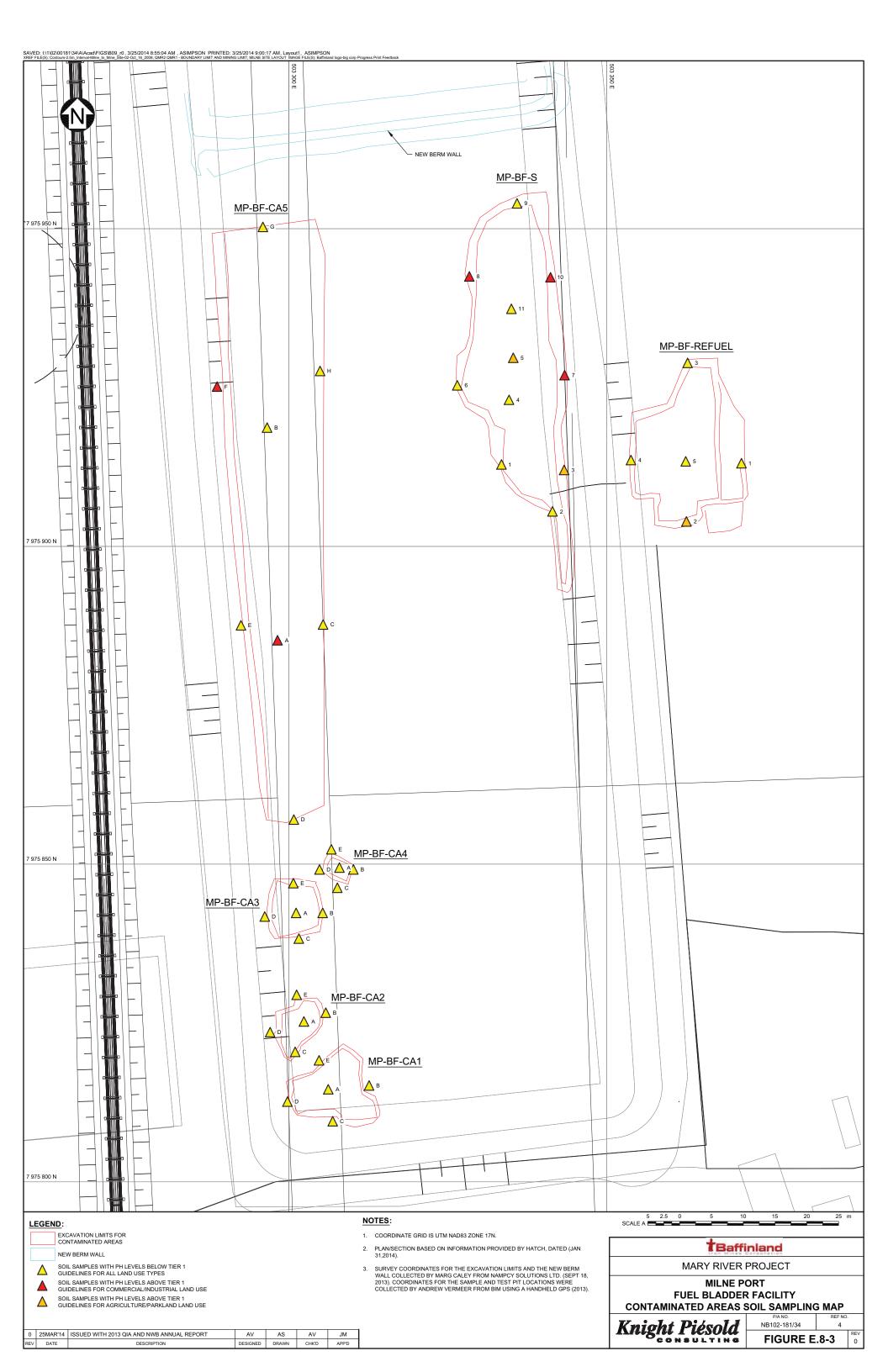
7.0 - References

NWB (Nunavut Water Board), 2013. <u>Baffinland Iron Mines Corp. – Class A Water License No: 2AM-MRY1325</u>. Issued by the Nunavut Water Board, 2013.

GN (Government of Nunavut), 2009. <u>Environmental Guideline for Contaminated Site Remediation</u>. Prepared by the Department of Environment of the Government of Nunavut, March 2009.


Appendices


Appendix A - Figures (Maps)


Appendix B – Tables

Appendix C - Photos

Appendix A – Figures (Maps)

Appendix B – Analytical Results

Table 1 - Tier 1 Remediation Criteria (mg/kg) for Petroleum Hydrocarbons in Surface Soil

Land Use	Soil Texture	Fraction 1 (C6-C10)	Fraction 2 (>C10-C16)	Fraction 3 (>C16-C34)	Fraction 4 (>C34)
Agricultural/Wildland	Fine-grained soil	210 (170 ^a)	150	1300	5600
Agricultural/Wildiand	Coarse-grained soil	30 ^b	150	300	2800
Residential/Parkland	Fine-grained soil	210 (170 ^a)	150	1300	5600
Nesideliliai/Faikialid	Coarse-grained soil	30 ^b	150	300	2800
Commercial	Fine-grained soil	320 (170 ^a)	260 (230°)	2500	6600
Commercial	Coarse-grained soil	320 (240 ^a)	260	1700	3300
Industrial	Fine-grained soil	320 (170 ^a)	260 (230°)	2500	6600
madstrial	Coarse-grained soil	320 (240 ^a)	260	1700	3300

a - Where applicable, for protection against contaminated groundwater discharge to an adjacent surface water body or for protection of notable groundwater

b - Assumes contamination near residence

Table 2 - Soil Sample Results for Test Pits (Row 1 -3)

				Sample ID	**MP-BF-W1	MP-BF-C1	MP-BF-E1	MP-BF-W2	MP-BF-C2	MP-BF-E2	MP-BF-W3	MP-BF-C3	MP-BF-E3
Parameter Group	Analyte	MRL	Units	Date and Time *Tier 1 PHC Guidelines	N/A	13/09/2013 13:35	13/09/2013 13:30	Sept 13, 2013 16:15	Sept 13, 2013 16:10	Sept 13, 2013 16:05	Sept 13, 2013 16:30	Sept 13, 2013 16:25	Sept 13, 2013 16:20
General Chemistry	Moisture	0.1	%	-	-	6.3	6.9	7.9	6.4	39.7	5.9	8	8.1
	F1 (C6-C10)	10	μg/g	320	-	<10	<10	<10	<10	<10	<10	<10	<10
	F1-BTEX (C6-C10)	10	μg/g	320	-	<10	<10	<10	<10	<10	<10	<10	<10
Hydrocarbons	F2 (C10-C16)	10	μg/g	260	-	<10	<10	<10	<10	<10	<10	<10	<10
	F3 (C16-C34)	20	μg/g	2500	-	<20	<20	<20	<20	<20	<20	<20	<20
	F4 (C34-C50)	20	μg/g	6600	-	<20	<20	<20	<20	<20	<20	<20	<20
Metals	Pb	1	μg/g	-	-	3	3	2	2	4	3	3	3
Oil and Grease	Total Oil & Grease	100	μg/g	-	-	<100	180	<100	<100	200	170	110	<100
	Benzene	0.02	μg/g	-	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
	Ethylbenzene	0.05	μg/g	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs	m/p-xylene	0.05	μg/g	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05
VOCS	o-xylene	0.05	μg/g	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05
	Toluene	0.2	μg/g	-	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
	Toluene-d8	0	%	-	-	91	87	92	90	90	98	90	99

^{*}Tier 1 remediation guidelines for petroleum hydrocarbon contaminated fine-grained soil for commerical/industrial land use.

^{**}Section W1 was not sampled because the section had already been covered by material for the new berm wall when the test pit samples were taken. Section W1 will be assessed when the remaining one third of the containment berm is decommissioned and remediated.

Table 3 - Soil Sample Results for Test Pits (Row 4 -6)

				Sample ID	MP-BF-W4	MP-BF-C4	MP-BF-E4	MP-BF-W5	MP-BF-C5	MP-BF-E5	MP-BF-W6	MP-BF-C6	MP-BF-E6
Parameter Group	Analyte	MRL	Units	Date and Time *Tier 1 PHC Guidelines	Sept 13, 2013 16:45	Sept 13, 2013 16:40	Sept 13, 2013 16:35	Sept 13, 2013 17:00	Sept 13, 2013 16:55	Sept 13, 2013 16:50	Sept 14, 2013 13:05	Sept 14, 2013 13:10	Sept 14, 2013 13:15
General Chemistry	Moisture	0.1	%	-	6.2	7.3	8.9	15.7	4.6	6.3	13.3	12.9	10.9
	F1 (C6-C10)	10	μg/g	320	<10	<10	<10	<10	<10	<10	<10	<10	<10
	F1-BTEX (C6-C10)	10	μg/g	320	<10	<10	<10	<10	<10	<10	<10	<10	<10
Hydrocarbons	F2 (C10-C16)	10	μg/g	260	50	<10	<10	20	<10	<10	<10	210	<10
	F3 (C16-C34)	20	μg/g	2500	<20	<20	<20	<20	<20	<20	<20	70	<20
	F4 (C34-C50)	20	μg/g	6600	<20	<20	<20	<20	<20	<20	<20	<20	<20
Metals	Pb	1	μg/g	-	3	2	3	2	2	3	1	2	2
Oil and Grease	Total Oil & Grease	100	μg/g	-	<100	<100	<100	<100	<100	<100	220	220	<100
	Benzene	0.02	μg/g	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
	Ethylbenzene	0.05	μg/g	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05
VOCs	m/p-xylene	0.05	μg/g	-	< 0.05	<0.05	<0.05	0.1	<0.05	<0.05	< 0.05	<0.05	<0.05
VOCS	o-xylene	0.05	μg/g	-	<0.05	<0.05	<0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Toluene	0.2	μg/g	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
	Toluene-d8	0	%	-	97	93	98	95	96	99	87	87	96

^{*}Tier 1 remediation guidelines for petroleum hydrocarbon contaminated fine-grained soil for commerical/industrial land use.

Exceedance of Tier 1 remediation guidelines for petroleum hydrocarbon contaminated fine-grained soil for agricultural/parkland land use.

Table 4 - Soil Sample Results for Test Pits (Row 7 -9)

				Sample ID	MP-BF-W7	MP-BF-C7	MP-BF-E7	MP-BF-W8	MP-BF-C8	MP-BF-E8	MP-BF-W9	MP-BF-C9	MP-BF-E9
Parameter Group	Analyte	MRL	Units	Date and Time *Tier 1 PHC Guidelines	Sept 14, 2013 13:20	Sept 14, 2013 13:25	Sept 14, 2013 13:30	Sept 14, 2013 13:35	Sept 14, 2013 13:40	Sept 14, 2013 13:45	Sept 14, 2013 13:50	Sept 14, 2013 13:55	Sept 14, 2013 14:00
General Chemistry	Moisture	0.1	%	-	7.5	6.7	11.3	9.4	11.2	17	9	12.9	13.5
	F1 (C6-C10)	10	μg/g	320	<10	<10	<10	<10	<10	<10	<10	<10	<10
	F1-BTEX (C6-C10)	10	μg/g	320	<10	<10	<10	<10	<10	<10	<10	<10	<10
Hydrocarbons	F2 (C10-C16)	10	μg/g	260	<10	<10	<10	<10	<10	<10	<10	<10	<10
	F3 (C16-C34)	20	μg/g	2500	<20	<20	<20	<20	40	<20	<20	<20	<20
	F4 (C34-C50)	20	μg/g	6600	<20	<20	<20	<20	<20	<20	<20	<20	<20
Metals	Pb	1	μg/g	-	2	2	2	2	2	2	2	2	2
Oil and Grease	Total Oil & Grease	100	μg/g	-	<100	<100	<100	280	250	250	<100	<100	140
	Benzene	0.02	μg/g	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
	Ethylbenzene	0.05	μg/g	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs	m/p-xylene	0.05	μg/g	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05
VOCS	o-xylene	0.05	μg/g	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Toluene	0.2	μg/g	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
	Toluene-d8	0	%	-	88	86	91	88	87	86	95	90	90

^{*}Tier 1 remediation guidelines for petroleum hydrocarbon contaminated fine-grained soil for commerical/industrial land use.

Table 5 - Soil Sample Results for Test Pits (Row 10) and Excavation Limits of Refueling Area

				Sample ID	MP-BF-W10	MP-BF-C10	MP-BF-E10	MP-BF-REFUEL-1	MP-BF-REFUEL-2	MP-BF-REFUEL-3	MP-BF-REFUEL-4	MP-BF-REFUEL-5	MP-BF-JETA
Parameter Group	Analyte	MRL	Units	Date and Time *Tier 1 PHC Guidelines	Sept 14, 2013 14:05	Sept 14, 2013 14:10	Sept 14, 2013 14:15	Sept 11, 2013 11:30	Sept 11, 2013 11:35	Sept 15, 2013 16:00	Sept 15, 2013 16:10	Sept 15, 2013 16:05	Sept 11, 2013 13:00
General Chemistry	Moisture	0.1	%	-	10.4	9.8	13.6	5.5	27.8	44.5	6.5	6.1	3.4
	F1 (C6-C10)	10	μg/g	320	<10	<10	<10	<10	<10	<10	<10	<10	<10
	F1-BTEX (C6-C10)	10	μg/g	320	<10	<10	<10	<10	<10	<10	<10	<10	<10
Hydrocarbons	F2 (C10-C16)	10	μg/g	260	<10	<10	<10	<10	250	20	<10	140	20
	F3 (C16-C34)	20	μg/g	2500	<20	<20	<20	<20	30	<20	<20	50	<20
	F4 (C34-C50)	20	μg/g	6600	<20	<20	50	<20	<20	<20	<20	<20	<20
Metals	Pb	1	μg/g	-	4	2	2	2	2	2	2	2	2
Oil and Grease	Total Oil & Grease	100	μg/g	-	100	<100	<100	<100	<100	240	<100	160	<100
	Benzene	0.02	μg/g	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
	Ethylbenzene	0.05	μg/g	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs	m/p-xylene	0.05	μg/g	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCS	o-xylene	0.05	μg/g	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Toluene	0.2	μg/g	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
	Toluene-d8	0	%	-	97	101	87	101	86	88	86	89	85

^{*}Tier 1 remediation guidelines for petroleum hydrocarbon contaminated fine-grained soil for commerical/industrial land use.

Exceedance of Tier 1 remediation guidelines for petroleum hydrocarbon contaminated fine-grained soil for agricultural/parkland land use.

Table 6 - Soil Sample Results for Excavation Limits of Containment Berm Sump Area

				Sample ID	MP-BF-S1	MP-BF-S2	MP-BF-S3	MP-BF-S4	MP-BF-S5	MP-BF-S6	MP-BF-S7	MP-BF-S8	MP-BF-S9	MP-BF-S10	MP-BF-S11	MP-BF-S12
Parameter Group	Analyte	MRL	Units	Date and Time *Tier 1 PHC Guidelines	Sept 15, 2013 13:10											
General Chemistry	Moisture	0.1	%	-	6.2	7.5	8.8	12.8	12.9	8.9	5.1	10.6	7.6	12.6	8.1	6.5
	F1 (C6-C10)	10	μg/g	320	<10	<10	20	30	70	<10	287	<10	14.2	71	<10	<10
	F1-BTEX (C6-C10)	10	μg/g	320	<10	<10	20	30	70	<10	277.3	<10	14.2	70	<10	<10
Hydrocarbons	F2 (C10-C16)	10	μg/g	260	<10	20	160	80	200	20	3700	420	80	960	50	30
	F3 (C16-C34)	20	μg/g	2500	<20	<20	60	20	40	<20	560	130	40	220	<20	<20
	F4 (C34-C50)	20	μg/g	6600	<20	<20	<20	<20	<20	<20	30	<20	<20	<20	<20	<20
Metals	Pb	1	μg/g	-	3	2	4	2	2	2	4	2	3	4	2	2
Oil and Grease	Total Oil & Grease	100	μg/g	-	<100	<100	100	200	100	120	600	420	360	890	<100	240
	Benzene	0.02	μg/g	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
	Ethylbenzene	0.05	μg/g	-	<0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05
VOCs	m/p-xylene	0.05	μg/g	-	<0.05	<0.05	<0.05	0.25	0.94	<0.05	5.14	<0.05	<0.05	0.26	<0.05	<0.05
VOC3	o-xylene	0.05	μg/g	-	<0.05	<0.05	<0.05	0.16	0.59	<0.05	4.55	<0.05	<0.05	0.92	<0.05	<0.05
	Toluene	0.2	μg/g	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
	Toluene-d8	0	%	-	96	95	100	103	99	88	99	98	98	106	100	101

^{*}Tier 1 remediation guidelines for petroleum hydrocarbon contaminated fine-grained soil for commerical/industrial land use.

Exceedance of Tier 1 remediation guidelines for petroleum hydrocarbon contaminated fine-grained soil for commerical/industrial land use. Exceedance of Tier 1 remediation guidelines for petroleum hydrocarbon contaminated fine-grained soil for agricultural/parkland land use.

Table 7 - Soil Sample Results for Excavation Limits of Contaminated Areas 1 and 2

				Sample ID	MP-BF-CA1A	MP-BF-CA1B	MP-BF-CA1C	MP-BF-CA1D	MP-BF-CA1E	MP-BF-CA2A	MP-BF-CA2B	MP-BF-CA2C	MP-BF-CA2D	MP-BF-CA2E
Parameter Group	Analyte	MRL	Units	Date and Time *Tier 1 PHC Guidelines	Sept 16, 2013 11:05	Sept 16, 2013 11:10	Sept 16, 2013 11:15	Sept 16, 2013 11:20	Sept 16, 2013 11:25	Sept 16, 2013 11:30	Sept 16, 2013 11:35	Sept 16, 2013 11:40	Sept 16, 2013 11:45	Sept 16, 2013 11:50
General Chemistry	Moisture	0.1	%	-	5.6	4.8	2.5	4.7	5.9	9.8	11.5	3.8	5.8	7.4
	F1 (C6-C10)	10	μg/g	320	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	F1-BTEX (C6-C10)	10	μg/g	320	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Hydrocarbons	F2 (C10-C16)	10	μg/g	260	40	<10	10	20	<10	<10	10	<10	<10	<10
	F3 (C16-C34)	20	μg/g	2500	20	<20	<20	40	<20	<20	<20	<20	<20	20
	F4 (C34-C50)	20	μg/g	6600	<20	<20	<20	30	<20	<20	<20	<20	<20	<20
Metals	Pb	1	μg/g	-	2	3	4	7	3	3	3	3	4	3
Oil and Grease	Total Oil & Grease	100	μg/g	-	200	400	190	200	200	200	100	100	<100	160
	Benzene	0.02	μg/g	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
	Ethylbenzene	0.05	μg/g	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs	m/p-xylene	0.05	μg/g	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
,,,,,,	o-xylene	0.05	μg/g	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Toluene	0.2	μg/g	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
	Toluene-d8	0	%	-	95	92	93	98	96	95	95	93	95	96

^{*}Tier 1 remediation guidelines for petroleum hydrocarbon contaminated fine-grained soil for commerical/industrial land use.

Table 8 - Soil Sample Results for Excavation Limits of Contaminated Areas 3 and 4

				Sample ID	MP-BF-CA3A	MP-BF-CA3B	MP-BF-CA3C	MP-BF-CA3D	MP-BF-CA3E	MP-BF-CA4A	MP-BF-CA4B	MP-BF-CA4C	MP-BF-CA4D	MP-BF-CA4E
Parameter Group	Analyte	MRL	Units	Date and Time *Tier 1 PHC Guidelines	Sept 16, 2013 11:55	Sept 16, 2013 12:00	Sept 16, 2013 12:35	Sept 16, 2013 12:40	Sept 16, 2013 12:45	Sept 16, 2013 12:50	Sept 16, 2013 12:55	Sept 16, 2013 13:00	Sept 16, 2013 13:05	Sept 16, 2013 13:10
General Chemistry	Moisture	0.1	%	-	5.2	7.5	6.1	4.5	5.3	3.7	4.4	4.3	4.9	4.1
	F1 (C6-C10)	10	μg/g	320	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	F1-BTEX (C6-C10)	10	μg/g	320	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Hydrocarbons	F2 (C10-C16)	10	μg/g	260	<10	80	<10	<10	50	<10	140	<10	<10	<10
	F3 (C16-C34)	20	μg/g	2500	<20	80	<20	<20	40	<20	150	<20	30	<20
	F4 (C34-C50)	20	μg/g	6600	<20	<20	<20	<20	<20	30	<20	<20	<20	<20
Metals	Pb	1	μg/g	-	3	3	4	5	2	3	4	4	3	4
Oil and Grease	Total Oil & Grease	100	μg/g	-	<100	<100	260	200	100	<100	300	<100	<100	100
	Benzene	0.02	μg/g	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
	Ethylbenzene	0.05	μg/g	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs	m/p-xylene	0.05	μg/g	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1000	o-xylene	0.05	μg/g	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Toluene	0.2	μg/g	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
	Toluene-d8	0	%	-	93	97	97	96	96	94	99	86	101	99

^{*}Tier 1 remediation guidelines for petroleum hydrocarbon contaminated fine-grained soil for commerical/industrial land use.

Table 9 - Soil Sample Results for Excavation Limits of Contaminated Area 5

				Sample ID	MP-BF-CA5A	MP-BF-CA5B	MP-BF-CA5C	MP-BF-CA5D	MP-BF-CA5E	MP-BF-CA5F	MP-BF-CA5G	MP-BF-CA5H
				Date and Time	Sept 16, 2013							
Parameter Group	Analyte	MRL	Units	*Tier 1 PHC Guidelines	13:15	13:20	13:25	13:30	13:35	13:40	13:45	13:50
General Chemistry	Moisture	0.1	%	-	7.1	9.1	6.5	8.7	4.5	3	4.1	7.5
	F1 (C6-C10)	10	μg/g	320	<10	<10	<10	<10	<10	22.4	<10	<10
	F1-BTEX (C6-C10)	10	μg/g	320	<10	<10	<10	<10	<10	22.4	<10	<10
Hydrocarbons	F2 (C10-C16)	10	μg/g	260	290	20	<10	<10	<10	800	10	<10
	F3 (C16-C34)	20	μg/g	2500	50	50	<20	<20	30	250	50	30
	F4 (C34-C50)	20	μg/g	6600	<20	<20	<20	<20	<20	<20	40	20
Metals	Pb	1	μg/g	-	3	3	3	4	6	3	3	3
Oil and Grease	Total Oil & Grease	100	μg/g	-	100	300	<100	320	300	500	170	210
	Benzene	0.02	μg/g	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
	Ethylbenzene	0.05	μg/g	-	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
VOCs	m/p-xylene	0.05	μg/g	-	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCS	o-xylene	0.05	μg/g	-	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Toluene	0.2	μg/g	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
	Toluene-d8	0	%	-	98	98	102	91	99	98	101	104

^{*}Tier 1 remediation guidelines for petroleum hydrocarbon contaminated fine-grained soil for commerical/industrial land use.

Exceedance of Tier 1 remediation guidelines for petroleum hydrocarbon contaminated fine-grained soil for commerical/industrial land use.

Table 10 - Water Sample Results for Excavated Contaminated Area Test Pits that exceeded 15 ppm TOG

				Sample ID	MP-BF-CA5TP1	MP-BF-STP1
				Date and Time	Sept 18, 2013	Sept 18, 2013
Laboratory	Parameter Group	Analyte	MRL	Units	13:30	13:45
BIM Internal	Oil and Grease	Total Oil & Grease	1	mg/L	27	37
	Oil and Grease	Total Oil & Grease	1	μg/L	33	31
Exova		Benzene	0.5	μg/L	3.2	7.3
EXUVA	VOCs	Ethylbenzene	0.5	μg/L	3.4	<0.5
	v O C s	Toluene	0.5	μg/L	4.8	3.4
		Toluene-d8	0	%	103	113

Appendix C - Photographs

Photo 1 – Fuel Bladder Storage Facility at Milne Port (2012)

Photo 2 - Removing Fuel Bladders (September, 2013)

Photo 3 – Loading Fuel Bladders into Lined Sea Containers for Backhaul

Photo 4 – New Containment Berm Wall Construction after Removal of Fuel Bladders and Piping (September, 2013)

Photo 5 – Transferring the Contained Contaminated Soil to the North End of the Containment Berm

Photo 6 – Demobilization and Remediation of the Refueling Area

Photo 7 – Final Excavation of the Containment Berm Sump Area

Photo 8 – Final Excavation of the Refueling Area

Photo 9 – Test Pits

Photo 10 – Sealed Containment Berm on North End of the Facility

March 2014

APPENDIX E.8.2 LANDFARM BIOREMEDIATION REPORT

Prepared for:

EBA Engineering

A Tetra Tech Company Environment Practice 14940-123 Avenue Edmonton, AB T5V 1B4

Final Report

Laboratory Biotreatability Study to Evaluate Biodegradation of Petroleum Hydrocarbons

Milne Inlet, Nunavut

Prepared by:

130 Research Lane, Suite 2 Guelph, Ontario N1G 5G3

SiREM Ref: TL0307B

17 July 2012

siremlab.com

TABLE OF CONTENTS

			<u>Page</u>
1.	INTROD	DUCTION	1
2.	MATER	IALS AND METHODS	2
2	2.1 Micro	cosm Construction and Incubation	2
2	2.2 Micro	cosm Sampling and Analysis	3
	2.2.1	Baseline Analysis and Waste Sludge Chemistry Analysis	3
	2.2.2	Petroleum Hydrocarbon, pH and Moisture Content Analysis	3
	2.2.3	Nitrogen, TKN and phosphorus, analysis	4
3.	RESUL7	rs	4

LIST OF TABLES

- Table 1: Summary of Microcosm Control and Treatments
 Table 2: Summary of Microcosm Control, Treatments and Amendments
 Table 3A: Summary of Baseline Soil Inorganic Results
 Table 3B: Summary of Baseline Soil CCME Metals Results
- Table 3C: Summary of Baseline Soil Petroleum Hydrocarbons Results
- Table 3D: Summary of Baseline Soil Salinity Results
- Table 3E: Summary of Baseline Waste Sludge Inorganic Results Table 3F: Summary of Baseline Waste Sludge Metals Results
- Table 4: Summary of Microcosm Petroleum Hydrocarbons, Nitrogen, Phosphorus, pH and Moisture Results
- Table 5: Percent Removal of Petroleum Hydrocarbons in Microcosms

LIST OF FIGURES

- Figure 1: Petroleum Hydrocarbon Compound Concentration Trends in Aerobic Active Control Microcosms
- Figure 2: Petroleum Hydrocarbon Compound Concentration Trends in Aerobic Tilling Control Microcosms
- Figure 3: Petroleum Hydrocarbon Compound Concentration Trends in Aerobic Tilling and Nutrient Amended Treatment Microcosms
- Figure 4: Petroleum Hydrocarbon Compound Concentration Trends in Aerobic Tilling and Waste Sludge Amended Treatment Microcosms

LIST OF APPENDICES

- APPENDIX A: Chain of Custody Documentation
- APPENDIX B: Summary of Percent Moisture and Water Holding Capacity Results
- APPENDIX C: Summary of Nutrient and Moisture Amendment Calculations for Treatment Microcosms
- APPENDIX D: Maxxam Analytical Reports

LIST OF ABBREVIATIONS

CCME Canadian Council of Ministers of Environment

°C degrees Celsius

DI deionized

DAP diammonium phosphate

EBA Engineering

g grams

mg/kg milligram per kilogram

mL milliliter

mL/g milliliter per gram

NH₃ ammonia % percent

PHC petroleum hydrocarbons
SiREM SiREM Laboratory
WHC water holding capacity

1. INTRODUCTION

EBA Engineering (EBA) retained SiREM Laboratories (SiREM) to perform a laboratory biotreatability study to evaluate the potential for *in situ* degradation of petroleum hydrocarbons (PHC) in soil from a site in Baffinland, Canada (the Site). As discussed in SiREM's proposal, Si-1434, the purpose of the study was to evaluate the natural and enhanced aerobic degradation processes for PHC using soil from one Site location.

The study design included aerobic active and aerobic tilling controls and two different treatments to evaluate the degradation of PHC at low temperature (10 degrees Celsius (°C)). The treatments evaluated included 1) a tilling and nutrient amended treatment, and 2) a tilling and waste sludge amended treatment. The controls and treatments are summarized in Table 1 shown below, with further details on the amendments provided in Table 2.

Table 1: Summary of Microcosm Controls and Treatments

	Treatment/Control	Description	Number of Microcosm Replicates
1	Aerobic Active Control	Un-amended	2
2	Aerobic Tilling Control	Un-amended + Tilling	2
3	Aerobic Nutrient Amended Tilling Treatment	Amended with nitrogen and phosphorus + Tilling	2
4	Aerobic Waste Sludge Amended Tilling Treatment	Amended with waste sludge + Tilling	2
		Number of Microcosms	8

Soil was collected from the Site on December 5, 2011 by EBA and was received by SiREM on December 6, 2011 and stored at 4 °C until required for testing. The waste sludge used in this study was also provided to SiREM by EBA. The initial set up and baseline analysis of the sludge consumed the majority of the sludge; therefore a second shipment of waste sludge was required for the actual weekly amendments. The second batch of sludge was received by SiREM on February 28, 2012. The chain of custody documentation related to these samples is provided in Appendix A.

The remainder of this report is divided into two sections. Section 2 presents the experimental materials and methods and Section 3 presents the results of the biotreatability study.

2. MATERIALS AND METHODS

The following sections summarize the methods for microcosm construction and incubation (Section 2.1); and microcosm sampling and analysis (Section 2.2).

2.1 Microcosm Construction and Incubation

Two controls and two treatments were evaluated in this study (Table 1). Forty microcosms were constructed to allow for sacrificial sampling of duplicate microcosms for each sampling event. Table 2 summarizes the details of microcosm construction and amendments for the treatment and control microcosms. Microcosms were incubated for 139 days in an incubator at 10°C. On December 21, 2011 sub-samples of the material were collected for baseline PHC, total kjehldahl nitrogen (TKN), nitrite, nitrate, phosphorus, pH, Canadian Council of Ministers of Environment (CCME) and major metals, and salinity package analysis to verify the material as received was representative of Site PHC concentrations (Tables 3A-3D). The waste sludge provided by EBA was also sub-sampled for sewage chemistry analysis (Tables 3E and 3F). The remainder of the soil material and waste sludge was stored in a cold room at 4 °C until microcosm construction.

On January 10, 2012 (Day 0), the material was removed from the cold room and was transferred to a laboratory fume hood. The soil was combined and mixed by hand to improve reproducibility between microcosm replicates. The homogenized soil was sub-divided into clean plastic bags for preparation of the treatment and control microcosms. For each of the two treatments 2,800 grams (g) of soil was required and for each of the two controls 3,000 g of soil was required to have sufficient material for the required replicates. After amendments were added to the soil, it was mixed well and dispensed in 200 g amounts into 250 milliliter (mL) glass wide-mouth bottles. The bottles were plugged with sterile foam bungs in order to allow oxygen transfer into the bottles and the bottles were stored in an incubator at 10°C.

In order to provide sufficient moisture for biodegradation deionized (DI) water was added to the bulk soil. Typically the target dosage amount in these studies is up to 50 percent (%) of the water holding capacity (WHC) without creating fee standing water. The WHC was determined to be 0.45 milliliters per gram (mL/g) (Appendix B) and given the amount of moisture in the material it was determined that 25 mL of DI water was required per 200 g of soil to reach 50% of the WHC (Appendix C). However, it was observed that beyond 25% of the WHC the soil became saturated (observed presence of free standing liquid). Therefore a volume of 12.5 mL of DI water per 200 g of soil was used. The DI water was added to the bulk homogenized soil prior to constructing the microcosms. A volume of 187.5 mL of DI water was added to the bulk soil (3,000 g) to reach 25% of the WHC for the control microcosms.

For the nutrient amended tilling treatment, nitrogen and phosphorus were evaluated as the nutrient source. Typical nutrient loading rates are based on a carbon:nitrogen:phosphorous ratio of 100:10:1. The baseline soil PHC concentrations were used to determine the approximate amount of carbon present in the soil. The amount of nitrogen required to achieve the ratio of 100:10:1 was calculated to be 221 milligram per kilogram (mg/kg) (Appendix C). Diammonium phosphate (DAP) was used to provide both nitrogen and phosphorus. A weight of

2.9 g of DAP was added to 175 mL of DI water. This solution was added to the bulk homogenized soil (2,800 g) designated for the nutrient amended tilling treatment to reach both the target nutrient concentration and 25% of the WHC.

For the tilling waste sludge amended treatment; water was not added to bring up the WHC because the waste sludge acted as the water source. A volume of 12.5 mL of waste sludge per 200g soil was used to provide both moisture and nutrients. A volume of 175 mL waste sludge was added to the bulk homogenized soil (2,800 g) to reach 25% of the WHC. Based on baseline analysis of the waste sludge and the volume of waste sludge added, the concentration of TKN in the soil was 25 mg/Kg after waste sludge amendment (Appendix C).

All treatment and control microcosms were weighed after the addition of soil and amendments to record a baseline weight at Time zero. The tilling treatment bottles were stirred and weighed once a week for the duration of the study. When a decrease in weight of greater than 10 % was observed, DI water or waste sludge as appropriate was added to the corresponding treatment or control bottles. Note that DI water was added to the waste sludge treatment for the first six weeks until fresh waste sludge was received on February 28, 2012. This was done to increase the weight back to the original weight and maintain the bottles at their original moisture content (25% WHC). The intrinsic control microcosms were only stirred when re-amended with DI water to replace any lost moisture. All other controls and treatments were stirred once a week to represent tilling.

2.2 Microcosm Sampling and Analysis

2.2.1 Baseline Analysis and Waste Sludge Chemistry Analysis

Analysis of the target PHC (F2-F4 Hydrocarbons) was conducted by an external laboratory, Maxxam Analytics Inc. (Mississauga, ON). On December 21, 2011, a sub-sample of the bulk homogenized soil was collected in two 250 mL (nominal volume) glass wide-mouth bottles. The samples were placed on ice packs in a cooler and submitted to Maxxam Analytics for PHC (F2-F4 Hydrocarbons), salinity package, CCME Metals, pH, TKN, nitrate, and nitrite analysis (Tables 3A-D). On Day 0 a subsample of the waste sludge used in the initial dosing of the waste sludge treatment microcosms was sent to Maxxam Analytics Inc. for sewage chemistry analysis (Tables 3E-F).

2.2.2 Petroleum Hydrocarbon, pH and Moisture Content Analysis

On Days 0, 28, 84, and 139, sacrificial bottles from both sets of control microcosms were sampled for PHC, pH (with the exception of Day 0 for the aerobic active control) and moisture content analysis. For both treatments, sacrificial microcosms were sampled on Days 0, 14, 28, 57, 84, 112, and 139 for PHC, pH (with the exception of Day 14) and moisture content analysis. At each sampling event the sacrificial bottles were shipped in a cooler with ice packs and couriered overnight to Maxxam Analytics Inc.

2.2.3 Nitrogen, TKN and phosphorus, analysis

Analysis of nitrogen (nitrate, nitrite, nitrate + nitrite), TKN, and phosphorous was also conducted by Maxxam Analytics Inc.

On Days 0, 28, 57, 84, 112 and 139 microcosms from both treatments were sacrificed and sampled for nitrogen (nitrate, nitrite, nitrate + nitrite), TKN and phosphorus analysis. The aerobic active control sacrificial microcosms were sampled for nitrogen (nitrate, nitrite, nitrate +nitrite), TKN and phosphorus analysis on Days 28 and 139. The aerobic tilling control sacrificial microcosms were sampled for nitrogen (nitrate, nitrite, nitrate +nitrite), TKN and phosphorus analysis on Days 0, 28 and 139. At each sampling event, sacrificial bottles were placed in a cooler with ice packs and couriered overnight to Maxxam Analytics Inc.

3. RESULTS

Table 4 provides PHC (F2-F4), pH, moisture content, nitrogen (nitrate, nitrite, nitrate +nitrite), TKN and phosphorous results from the control and treatment microcosms over the incubation period of the study. Table 5 provides a summary of the % PHC removal for each control and treatment. Figures 1 through 4 present trends in the concentrations of PHC concentrations in the control and treatment microcosms over the incubation period of the study.

Refer to Appendix B for the baseline WHC and moisture content results, Appendix C for amendment calculations and Appendix D for the Maxxam Analytics Inc. analytical reports.

Ximena Druar, Laboratory Technician Report Prepared by: Date: 25 June 2012

Report Reviewed by: Date: 26 June 2012

Jeff Roberts, Laboratory Manager

Report Reviewed by: Date: 26 June 2012

Sandra Dworatzek, Senior Manager

TABLES

Mil	Ine	Ini	et,	Nu	nav	u

Microcosm Name	Number of Bottles	Description
Aerobic Active Control	6	No amendments added. Amended with DI water throughout the duration of the study to maintain the % moisture (25% WHC) present at the beginning of the study. Soil was only mixed when DI water was added to maintain % moisture.
Aerobic Tilling Control	6	No amendments added. Amended with DI water throughout the duration of the study to maintain the % moisture (25% WHC) present at the beginning of the study. Soil was mixed weekly to represent tilling.
Aerobic Tilling and Nutrient Amended Treatment	14	Amended with 213 mg DAP/200 g soil to a target concentration of 226 mg/kg as Nitrogen on Day 0. Amended with DI water throughout the duration of the study to maintain the % moisture (25% WHC).
Aerobic Tilling and Waste Sludge Amended Treatment	14	Amended with 12.5 mL of waste sludge /200 g soil giving a TKN concentration in soil of 25 mg/Kg. Treatment microcosms were amended with waste sludge throughout the duration of the study to maintain the % moisture (25% WHC) present at the beginning of the study*.

Notes: * From week 1 to week 6 the moisture amendment of this treatment was done with DI water as there was not enough waste sludge left over after the initial bottle set up. On February 28, 2012 SiREM received a new batch of waste sludge from the client and from that date until the end of the study all moisture amendments were made with the waste sludge.

DAP – diammonium phosphate

DI - deionized

g – gram

mg – milligram

mg/kg – milligram per kilogram mL - milliliter

TKN – Total Kjehldahl Nitrogen

WHC - water holding capacity

% - percent

Table 2 1 of 1

TABLE 3A:SUMMARY OF BASELINE SOIL INORGANIC RESULTS

Milne Inlet, Nunavut

Inorganics	Units	Rep	licate	Average
- Company of the Comp		Replicate 1	Replicate 2	,
Moisture	%	12	12	12
Available (CaCl2) pH	рН	7.51	7.42	7.45
Total Kjeldahl Nitrogen	ug/g	228	283	265
Nitrite (N)	ug/g	0.1 U	0.1 U	NA
Nitrate (N)	ug/g	0.4 U	0.4 U	NA
Nitrate + Nitrite	ug/g	0.6 U	0.6 U	NA

Notes:

% - percent

μg/g - micrograms/gram

U - the compound was analyzed for but not detected, the assoiciated value is the detection limit

Table 3A 1 of 1

Milne Inlet, Nunavut

Metals	Units	Re	plicate	Average
		Replicate 1	Replicate 2	
Acid Extractable Sulphur (S)	ug/g	170	150	157
Acid Extractable Aluminum (Al)	ug/g	3200	3300	3267
Acid Extractable Antimony (Sb)	ug/g	0.040 U	0.040 U	NA
Acid Extractable Arsenic (As)	ug/g	0.93 J	0.92 J	NA
Acid Extractable Barium (Ba)	ug/g	9.2	9.0	9.1
Acid Extractable Beryllium (Be)	ug/g	0.28	0.30	0.29
Acid Extractable Bismuth (Bi) (1)	ug/g	<1.0	<1.0	NA
Acid Extractable Boron (B)	ug/g	6.3	6.4	6.4
Acid Extractable Cadmium (Cd)	ug/g	0.020 U	0.023 J	NA
Acid Extractable Calcium (Ca)	ug/g	17000	18000	17667
Acid Extractable Chromium (Cr)	ug/g	8.1	8.5	8.4
Acid Extractable Cobalt (Co)	ug/g	2.6	2.6	2.6
Acid Extractable Copper (Cu)	ug/g	5.3	5.5	5.4
Acid Extractable Iron (Fe)	ug/g	7400	7400	7400
Acid Extractable Lead (Pb)	ug/g	4.4	4.4	4.4
Acid Extractable Magnesium (Mg)	ug/g	10000	11000	10667
Acid Extractable Manganese (Mn)	ug/g	120	120	120
Acid Extractable Molybdenum (Mo)	ug/g	0.13 J	0.16 J	NA
Acid Extractable Nickel (Ni)	ug/g	4.9	5.2	5.1
Acid Extractable Phosphorus (P)	ug/g	200	230	220
Acid Extractable Potassium (K)	ug/g	540	560	553
Acid Extractable Selenium (Se)	ug/g	0.23 J	0.29 J	NA
Acid Extractable Silver (Ag)	ug/g	0.040 U	0.040 U	NA
Acid Extractable Sodium (Na)	ug/g	160	150	153
Acid Extractable Strontium (Sr)	ug/g	9.3	9.7	10
Acid Extractable Thallium (TI)	ug/g	0.083	0.079	0.080
Acid Extractable Tin (Sn) (1)	ug/g	<5.0	<5.0	NA
Acid Extractable Uranium (U)	ug/g	0.68	0.73	0.71
Acid Extractable Vanadium (V)	ug/g	11	11	11
Acid Extractable Zinc (Zn)	ug/g	15	14	14
Acid Extractable Mercury (Hg) (1)	ug/g	<0.050	<0.050	NA

Notes:

 $\mu g/g \text{ - micrograms/gram}$

g - gram

U - the compound was analyzed for but not detected, the assoiciated value is the detection limit

< - compound not detected, the associated value is the detection limit

NA - not applicable

Table 3B 1 of 1

J - The reported value was obtained from a reading that was less than the quantitation limit but greater than or equal to the method detection limit

Milne Inlet, Nunavut

F2-F4 Hydrocarbons	Units	Repl	icate	Average
		Replicate 1	Replicate 2	
F2 (C10-C16 Hydrocarbons)	ug/g	1700	2000	1850
F3 (C16-C34 Hydrocarbons)	ug/g	790	860	825
F4 (C34-C50 Hydrocarbons)	ug/g	2.0 U	2.0 U	NA
Reached Baseline at C50	ug/g	Yes	Yes	NA

Notes:

% - percent

μg/g - micrograms/gram

U - the compound was analyzed for but not detected, the assoiciated value is the detection limit

NA - not applicable

Table 3C 1 of 1

TABLE 3D: SUMMARY OF BASELINE SOIL SALINITY RESULTS

SiREM

Milne Inlet, Nunavut

Parameters	Units	Repl	icate	Average
		Replicate 1	Replicate 2	
Calculated Parameters				
Anion Sum	meq/L	11	9.9	10
Cation Sum	meq/L	15	16	16
Ion Balance	meq/L	1.4	1.6	1.5
Soluble Parameters				
Soluble Chloride (CI)	mg/L	360	330	345
Soluble Conductivity	dS/m	1.5	1.4	1.5
Soluble (CaCl2) pH	NA	7.26	7.18	7.22
Sodium Adsorption Ratio	NA	2.9	2.8	2.9
Soluble Calcium (Ca)	mg/L	100	110	105
Soluble Magnesium (Mg)	mg/L	42	46	44
Soluble Sodium (Na)	mg/L	140	140	140
Soluble Potassium (K)	mg/L	7.8	14	11
Saturation %	%	27	26	27
Soluble Sulphate (SO4)	mg/L	24	30	27

Notes:

mg/L - milligrams per liter

meq/L - milliequivalents per liter

dS/m - deciSiemens per metre

% - percent

ha - hectare

NA - not applicable

< - compound not detected, the associated value is the detected limit

Table 3D 1 of 1

Milne Inlet, Nunavut

Inorganics	Units	Waste Sludge
Conductivity	umho/cm	2100
Total Kjeldahl Nitrogen (TKN)	mg/L	400
рН	pН	7.14
Nitrite (N)	mg/L	0.003 J
Nitrate (N)	mg/L	0.02 U
Nitrate + Nitrite	mg/L	0.02 U

Notes:

mg/L - milligrams per liter

umho/cm - micromho per centimeter

U - the compound was analyzed for but not detected, the assoiciated value is the detection limit

J - The reported value was obtained from a reading that was less than the quantitation limit but greater than or equal to the method detection limit

Table 3E 1 of 1

TABLE 3F:SUMMARY OF BASELINE WASTE SLUDGE METALS RESULS

Milne Inlet, Nunavut

	4	T
Metals	Units	Waste Sludge
Total Aluminum (AI)	μg/L	850000
Total Antimony (Sb)	μg/L	54
Total Arsenic (As)	μg/L	17
Total Barium (Ba)	μg/L	560
Total Beryllium (Be)	μg/L	5.0 U
Total Bismuth (Bi)	μg/L	81
Total Boron (B)	μg/L	100 U
Total Cadmium (Cd)	μg/L	22
Total Calcium (Ca)	μg/L	140000
Total Chromium (Cr)	μg/L	180
Total Cobalt (Co)	μg/L	15
Total Copper (Cu)	μg/L	1400
Total Iron (Fe)	μg/L	61000
Total Lead (Pb)	μg/L	120
Total Lithium (Li)	μg/L	50 U
Total Magnesium (Mg)	μg/L	42000
Total Manganese (Mn)	μg/L	1000
Total Molybdenum (Mo)	μg/L	51
Total Nickel (Ni)	μg/L	200
Total Phosphorus (P))	μg/L	290000
Total Potassium (K)	μg/L	34000
Total Silicon (Si)	μg/L	15000
Total Selenium (Se)	μg/L	49
Total Silver (Ag)	μg/L	7.2
Total Sodium (Na)	μg/L	420000
Total Strontium (Sr)	μg/L	370
Total Tellurium (Te)	μg/L	10 U
Total Thallium (TI)	μg/L	0.50 U
Total Tin (Sn)	μg/L	70
Total Titanium (Ti)	μg/L	290
Total Tungsten (W)	μg/L	12
Total Uranium (U)	μg/L	18
Total Vanadium (V)	μg/L	33
Total Zinc (Zn)	μg/L	23000
Total Zirconium (Zr)	μg/L	50
Total Cesium (Cs)	μg/L	1.3 J
Total Rubidium (Rb)	μg/L	49

Notes:

μg/L - micrograms per liter

U - the compound was analyzed for but not detected, the assoiciated value is the detection limit

J - The reported value was obtained from a reading that was less than the quantitation limit but greater than or equal to the method detection limit

Table 3F 1 of 1

Treatment	Date	Day	Treatment Replicate	bottle #	F2 (C10-C16)	F3 (C16-C34)	F4 (C34-C50)	Nitrite (N)	Nitrate (N)	Nitrate + Nitrite	TKN	Phosphorus	рН	Moisture
Aerobic Active Control	10-Jan-12	0	AAC -1	1	μ g/g 770	μ g/g 340	μ g/g <2.0	μg/g 	μg/g 	μg/g 	μg/g 	μg/g 	S.U. 	% 15
Actobic Active Control	10 0011 12	Ů	AAC-2	2	820	370	<2.0							12
			Average		795	355	ND			-		-		14
	7-Feb-12	28	AAC -1	1	680	370	<2.0	<0.10	<0.40	<0.60	242	260	7.68	6.5
			AAC-2 Average	2	840 760	430 400	<2.0 ND	0.20J 0.21	<0.40 ND	<0.60 ND	281 262	320 290	7.63 7.66	5.8 6.2
	3-Apr-12	84	AAC -1	1	310	250	<2.0						7.54	6.9
	0 / tp: 12	04	AAC-2	2	310	240	<2.0						7.60	5.0
			Average		310	245	ND					-	7.57	6.0
	28-May-12	139	AAC -1	1	110	180	<2.0	0.20J	<0.40	<0.60	205	180	7.42	11
			AAC-2	2	110	180	<2.0	0.10J	<0.40	<0.60	220	210	7.45	12
Aerobic Tilling Control	40 1 40		Average		110	180	ND	0.15	ND	ND	213	195	7.44	12
Aerobic Tilling Control	10-Jan-12	0	Tilling Control- 1 Tilling Control- 2	3 4	770 820	340 370	<2.0 <2.0	0.20J 0.20J	<0.40 <0.40	<0.60 <0.60	232 191	240 280	7.34 7.36	14 14
			Average	4	795	355	ND	0.203	<0.40 ND	ND	212	260	7.35	14
	7-Feb-12	28	Tilling Control- 1	3	400	310	<2.0	0.20J	<0.40	<0.60	292	180	7.70	12
			Tilling Control- 2	4	410	360	<2.0	0.20J	< 0.40	<0.60	247	220	7.60	12
			Average		405	335	ND	0.20	ND	ND	270	200	7.65	12
	3-Apr-12	84	Tilling Control- 1	3	150	140	<2.0						7.54	14
	1	1	Tilling Control- 2	4	180	200	<2.0						7.81	9.2
	28-May-12	139	Average Tilling Control- 1	3	165 69	170 120	ND <2.0	0.20J	<0.40	 <0.60	184	200	7.68 7.49	12 12
	28-May-12	139	Tilling Control- 2	3 4	24	90	<2.0 <2.0	0.20J 0.10J	<0.40	<0.60	306	210	7.49 7.50	1.1
	1	1	Average	-	47	105	ND	0.15	ND	ND	245	205	7.50	6.6
Aerobic Tilling and Nutrient Amended Treatment	10-Jan-12	0	Tilling + Nutrient Treatment -1	5	770	340	<2.0	<0.1	<0.40	<0.60	344	880	6.95	14
-	1	1	Tilling + Nutrient Treatment -2	6	820	370	<2.0	<0.1	<0.40	<0.60	599	750	6.95	14
		1	Average		795	355	ND	ND	ND	ND	472	815	6.95	14
	24-Jan-12	14	Tilling + Nutrient Treatment -1	5	560	280	<2.0							12
			Tilling + Nutrient Treatment -2	6	560 560	290 285	<2.0 ND	 						11 12
	7-Feb-12	28	Average Tilling + Nutrient Treatment -1	5	300	240	<2.0	<0.1	<0.40	<0.60	470	910	7.26	10
	7-1 65-12	20	Tilling + Nutrient Treatment -2	6	280	280	<2.0	<0.1	<0.40	<0.60	485	770	7.29	2.4
			Average		290	260	ND	ND	ND	ND	478	840	7.28	6.2
	7-Mar-12	57	Tilling + Nutrient Treatment -1	5	200	180	<2.0	<0.1	<0.40	<0.60	463	590	7.21	2.3
			Tilling + Nutrient Treatment -2	6	230	170	<2.0	<0.1	<0.40	<0.60	404	710	7.19	5.4
		_	Average		215	175	ND	ND	ND	ND	434	650	7.20	3.9
	3-Apr-12	84	Tilling + Nutrient Treatment -1	5	83 65	150	<2.0	<0.1	<0.40	<0.60	504	760 890	7.24 7.27	12 11
			Tilling + Nutrient Treatment -2 Average	6	74	110 130	<2.0 ND	<0.1 ND	<0.40 ND	<0.60 ND	395 450	825	7.26	12
	1-May-12	112	Tilling + Nutrient Treatment -1	5	57	110	<2.0	<0.1	<0.40	<0.60	319	780	7.21	13
	,		Tilling + Nutrient Treatment -2	6	84	110	<2.0	<0.1	<0.40	<0.60	326	770	7.32	10
			Average		71	110	ND	ND	ND	ND	323	775	7.27	12
	28-May-12	139	Tilling + Nutrient Treatment -1	5	45	73	<2.0	<0.1	<0.40	<0.60	302	790	7.15	11
	1	1	Tilling + Nutrient Treatment -2	6	48	100	<2.0	<0.1	<0.40	<0.60	342	820	6.72	7.7
Acrehia Tillian and Masta Chilian America de Trans	+	+	Average		47	87	ND	ND	ND	ND	322	805	6.94	9.4
Aerobic Tilling and Waste Sludge Amended Treatment	10-Jan-12	0	Tillling + Waste Sludge -1	7	770	340	<2.0	<0.1	<0.40	<0.60	218	220	7.31	12
	1	1	Tillling + Waste Sludge- 2	8	820	370	<2.0	<0.1	<0.40	<0.60	213	230	7.26	13
	24-Jan-12	14	Average Tillling + Waste Sludge -1	7	795 570	355 320	ND <2.0	ND 	ND 	ND 	216	225	7.29	13 10
	2-7 Jan-12	'-	Tillling + Waste Sludge - 1 Tillling + Waste Sludge - 2	8	480	380	<2.0							1.2
	1	1	Average	, ,	525	350	ND							5.6
	7-Feb-12	28	Tillling + Waste Sludge -1	7	460	370	<2.0	<0.1	<0.40	<0.60	256	150	7.57	4.8
	1	1	Tillling + Waste Sludge- 2	8	340	240	<2.0	<0.1	<0.40	<0.60	216	320	7.45	13
	7.1440	1 57	Average	7	400	305	ND	ND	ND	ND	236	235	7.51	8.9
	7-Mar-12	57	Tillling + Waste Sludge -1	7	180 130	160 210	<2.0	0.60 0.60	<0.40	<0.60 <0.60	341	720 570	7.20	15
	1	1	Tillling + Waste Sludge- 2 Average	ď	130 155	210 185	<2.0 ND	0.60	<0.40 ND	<0.60 0.80	451 396	645	7.24 7.22	15 15
	3-Apr-12	84	Tillling + Waste Sludge -1	7	120	180	<2.0	0.3J	13	13	313	490	7.36	7.4
		1	Tillling + Waste Sludge- 2	8	80	170	<2.0	0.3J	22	22	418	410	7.39	6.9
			Average		100	175	ND	0.30	18	18	366	450	7.38	7.2
	1-May-12	112	Tillling + Waste Sludge -1	7	100	240	15	<0.1	18	18	590	1600	7.39	16
		1	Tillling + Waste Sludge- 2	8	120	200	11	<0.1	35	35	494	1000	7.28	11
	00.14 40	400	Average		110	220	13	ND	27	27	542	1300	7.34	14
	28-May-12	139	Tillling + Waste Sludge -1 Tillling + Waste Sludge- 2	7	54 36	210 170	28 26	0.3J 0.3J	25 91	25	699 485	1800 1600	7.12 7.06	11 5.7
	1	1		8	36 45	170 190	26 27	0.30	91 58	91 58	485 592	1600 1700	7.06	5.7 8.4
	1	1	Average		45	190	<u> </u>	0.30	36	3 0	J9Z	1700	7.09	0.4

Notes:

AAC - aerobic active control

J - The reported value was obtained from a reading that was less than the quantitation limit but greater than or equal to the method detection limit μg/g - micrograms per gram
μg/kg - micrograms per kilogram

ND - not detected

N - nitrogen

TKN - Total Kjeldahl Nitrogen

% - percent
--- not available/not applicable
< - compound not detected, the associated value is the detected limit
S.U. - standard units

Table 4 Page 1 of 1 Milne Inlet, Nunavut

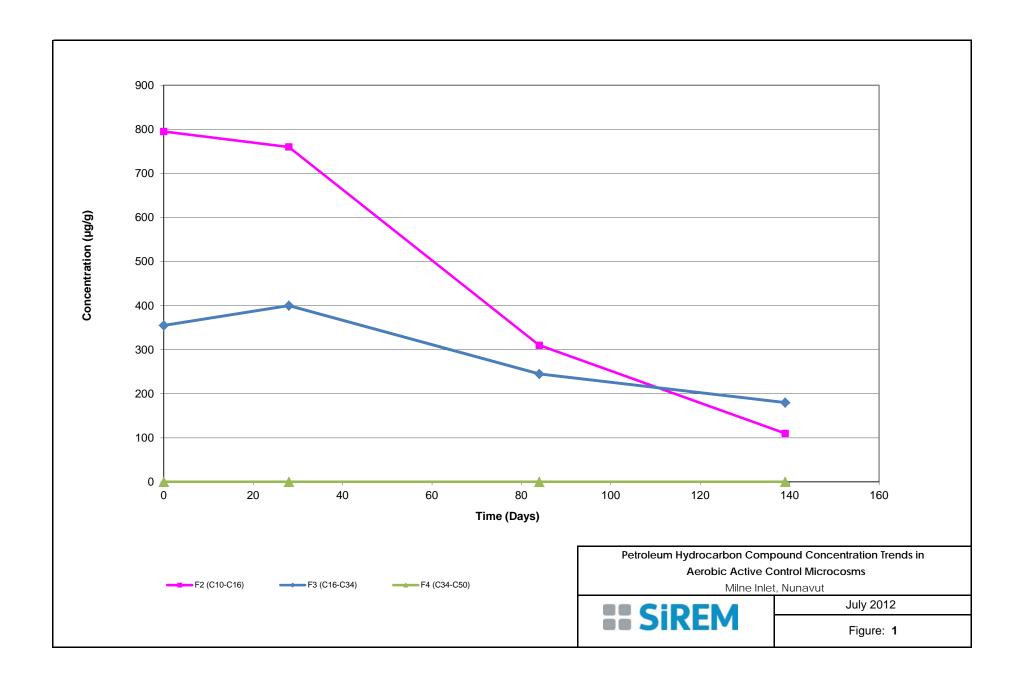
	F	2 (C10-C1	6)	F:	3 (C16-C34	l)	F4	(C34-C50	0)
Treatment	%	Initial []	Final []	%	Initial []	Final []	%	Initial []	Final []
	Removal	(μg/g)	(µg/g)	Removal	(μg/g)	(µg/g)	Removal	(μg/g)	(µg/g)
Aerobic Active Control	86	795	110	49	355	180	NA	0	0
Aerobic Tilling Control	94	795	47	70	355	105	NA	0	0
Aerobic Nutrient Amended Tilling Treatment	94	795	47	75	355	87	NA	0	0
Aerobic Waste Sludge Amended Tilling Treatment	94	795	45	46	355	190	NA	0	27

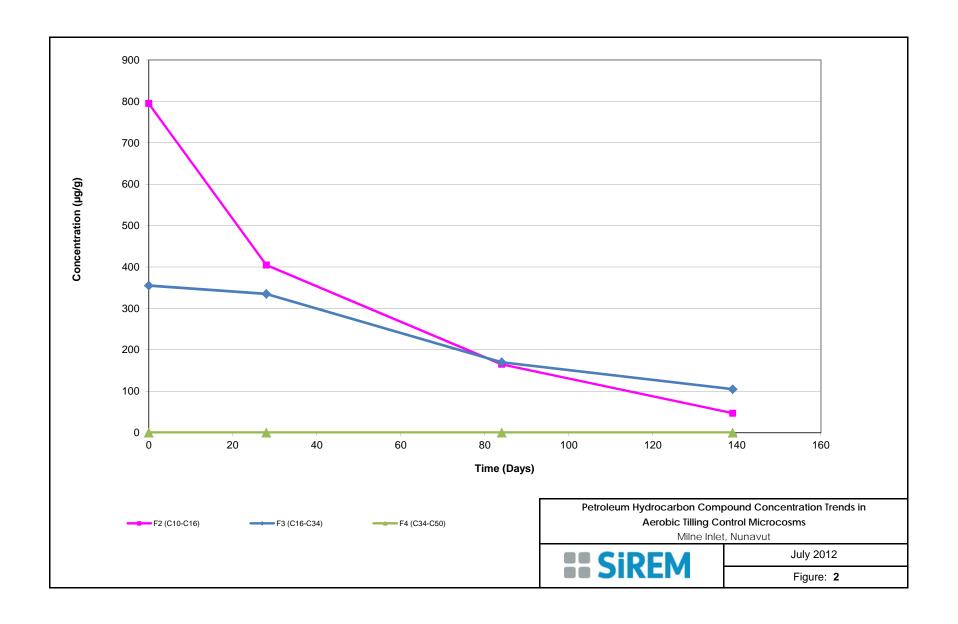
Notes: % removal = {(initial concentration - final concentration)/initial concentration} * 100

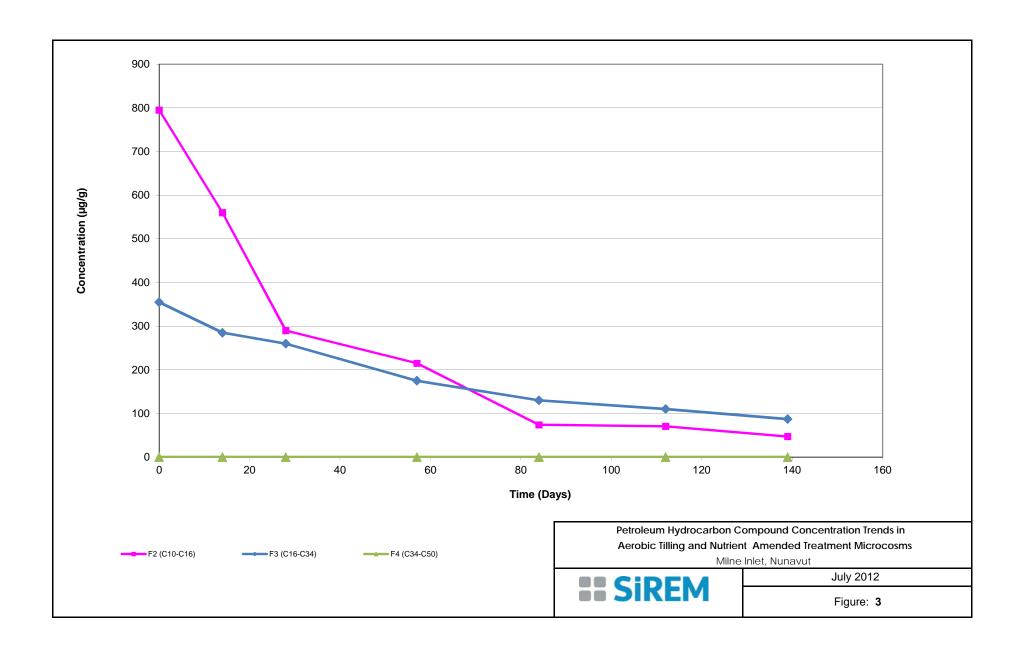
% - percent

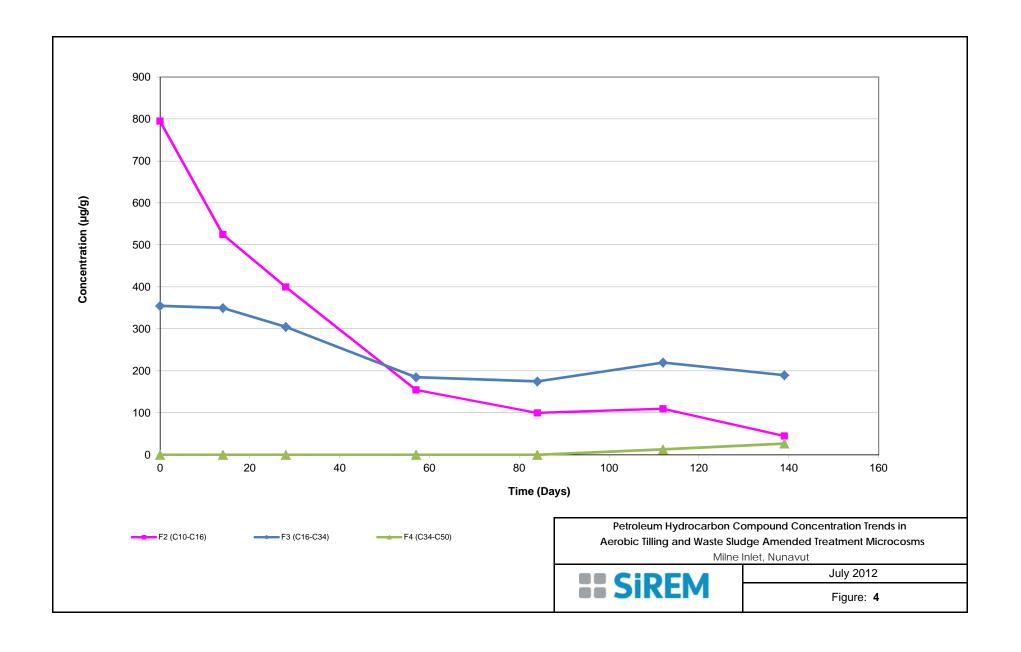
[] - concentration

μg/g - microgram per gram


NA - not applicable


Table 5 Page 1 of 1




FIGURES

APPENDIX A: Chain of Custody Documentation

ompany	1.	voice To:		Report Address		Report	То:	El e	S	Same a	as Invo	oice	# 15 Lo							E-Mai		00	1			14 18	EGUL AT		Y GUID	ELINE	S:
ontact:		14940	-123	ME												h	ho	YY	P	DE	ba	· C(71)		□ cc				
ddress:	Pro	PPMC 15V	IB4	JAB PC:		Prov:	400	m t	\$70 -		P	C:		no S			200 100		CIPTE.						W.		Re Ott	gulated ner:	d Drinki	ing Wa	ter
ontact #	#s: Ph:	780-1	-51-21	Cell:	100	Ph:	T hereig			(S	C	ell:				.WG	45							1		63	1/1		11	55	
O #:		60 calendar days aft	er sample receipt,	unless specified oth	nerwise.	1 10412	fics	GE :			S	OIL		Vie			4	WA	ATER	1000	led /ed	Y	15	17	ther	Anal	ysts V		16-	1. T	
roject #	/ Name:	arandilar.	ntoletedus"			7.5	specifics			AT1)			let.	idaga Maga			F1-F4			Regulated Metals (CCME / AT1)	Dissolve	N T	1	\$9	1	A	AC				
uote #:		(862)	1 100		La company	The same	ckage			-		8				Cs	EX	rb		ulated] Dis		7	3	B	H	2				tted
ampled	Ву:	(871)			14 62 7		or pa			(CCME		Metals				□VOCs	ПВТЕХ	1	DOC	gula (ccr	al	g.	V	9	OF	1	2			Analyze	bmil
	RVICE	D. Date	RUSH (Cor Required: REGULAR (S		eserve)		See reverse	=1-F4	nicron)	ed Metals	4	CP	Class II Landfill	to Colum		FI	F2	ine Water			y 🗆 Total		MITTELENTS		ME M	JOR L	ALD!			Do not Ana	ners
- 1		Sample ID		Depth (unit)	Matrix GW / SW Soil	Date/Time YY/MM/DI		BTEX F	Sieve (Regulated	Salinity	Assessment	Basic (□BTEX	□BTE)	□ Rou	TOC	Discolved	Mercury		MA		3	M	8		7	HOLD	# of Co
	JE	ETI																				1	X		XI.	X	X				
2	R	824	400	MPOSI	TE O	SAMPI	F															Attion for									12.5
3	3	AG54												. · ·			1	1		1				Carrier			100	3.0			
1															-	5)/	7		JK.	1	1.201	T	- 500							
5	Ž													K	V			11	1	厂								100			
5	800 TV	see	Fian	wel.	lor						0	1	V			7	1.	1	4					17.2			10		Apr. 30	6011	
,		F2	/F3),	on it	95							V	7		1.	2	X						-		-		122	HERE	1787	C# [2]	
3		50111	5 die	sel f	vel								/		1	(=							A ST		1.8	10					
9		and	Je:	HA								1	1	1									T I		61.			150	3		
0		10 100	084		in the last	Section 1	Tr.			1			P										9 8 1		.95	ž e		1	100		
1 .					1016				1														100			121	1	167			
2		37745	S.E. ET		avs0 k	A PAL							30	p.								B	107/	9	5	NA I			2000		
1		Please	indicate	Filtered, P	reserve	d or Boti	h (F, P,	F/F)						>												-	. 25			F/P
elinquis	hed By (S	Signature/Print)	D	Zing Taring	A Section	Date (YY/MI	M/DD):		V-LFR	T	Γime (24:00	0):		(10.0							LA	B USE	ONL	γ				Sec. 1. 22	(T	
L) HE	LSKE	= (V	X	100	DEC	54	1	Ju8	T.		I		100	Rec	eived					ite:		me:			Maxxa	ım Job	#:			
elinquis	hed By (S	Signature/Print)				Date (YY/MI	M/D/D):	,		Т	Time (24:00	0):		7	3	R	3	25		Dec	6	10	313	30	Custo Sea		Ten	nperatu	ıre	Ice
pecial I	nstructio	ons:	41							# of		Used mitte	l & Not d		Lab	Comr	nents:					in de de elli	1 (21)			No	5	30	o .		Ye

APPENDIX B: Summary of Percent Moisture and Water Holding Capacity Results

APPENDIX B: SUMMARY OF BASELINE MOISTURE CONTENT AND SOIL WATER HOLDING CAPACITY Minle Inlet, Nunavut

Moisture Content:

			Dish +			
		Dish +	Sample			
	Dish	Wet	Dried @			
	Weight	Sample	100 °C	% Dry	%	
Sample	(g)	(g)	16hr (g)	Matter	Moisture	average
1	0.95	14.30	12.95	90%	10%	
2	0.95	14.30	12.90	90%	10%	
3	1.00	14.55	13.20	90%	10%	10%

Water Holding Capacity:

Sample	Sample Weight (g)	Buret Reading Start (mL)	Buret Reading Finish (mL)	Total Water Used (mL)	Total Water Holding Capacity (mL/g)	Percent Water Holding Capacity per gram (%)	Average Water Holding Capacity (mL/g)
1	10.00	3.00	7.80	4.80	0.48	48%	
2	10.00	8.00	12.30	4.30	0.43	43%	
3	10.00	12.30	16.70	4.40	0.44	44%	0.45

Notes:

% - percent ° C - degrees Celsius

g - gram

hr - hour

mL - milliliter

mL/g - milliliter per gram

APPENDIX C:

Summary of Nutrient and Moisture Amendment Calculations for Treatment Microcosms

APPENDIX C: SUMMARY OF NUTRIENT AND MOISTURE AMENDMENT CALCULATIONS FOR TREATMENT MICROCOSMS

Minle Inlet, Nunavut

How much water needs to be added to the soil?

% Moisture = 10.19% (calculated)

water holding capacity (WHC) = 0.45 ml/g (calculated)

For 200 g of soil (each treatment microcosm contains 200 g of soil), based on the % percent moisture:

(200 g) * (10.19%)

= 20.4 g of water in 200 g of soil

WHC of 200 g of soil

0.45 ml/g * 200 g soil

= 90 ml of water, but we want to use 50% WHC (as per proposal)

=90/2 = 45 mL

45 ml -20.4 ml = 24.6 ml of water/treatment

Therefore need to add 24.6mL of water or sludge per bottle to reach 50% of the WHC. However, upon microcosms setup it was observed that only 12.5mL of sludge or DI water could be added per bottle without having free water accumulate in the soil.

How much TKN is present in 12.5 mL of Waste Sludge?

Baseline TKN = 400 mg/L (value from sludge baseline analysis) 400 mg/1000 mL= x/12.5 mL

x=5.0 mg TKN/12.5 mL of sludge or 5.0 mg/200 g of soil = 25 mg/Kg

How much Carbon present in F2 and F3 Hydorcarbons?

Assumption that 85% C by mass Soil Baseline F2 [] 1800 mg/Kg Therefore 1800 mg/Kg *0.85= 1530 mg/Kg as C

Soil Baseline F3 [] 800 mg/Kg Therefore 800 mg/Kg * 0.85 = 683 mg/Kg as C

Therefore total C present in soil is 1530 mg/Kg + 683 mg/Kg=2213 mg/Kg

We want a C:N:P ratio of 100:10:1 Therefore 2210:221:22

APPENDIX C: SUMMARY OF NUTRIENT AND MOISTURE AMENDMENT CALCULATIONS FOR TREATMENT MICROCOSMS

Minle Inlet, Nunavut

N Calculation

want 221 mg/Kg N

221mg/14mg/mmol (M.W of N) = 15.8 N Used Diammonium Phosphate (NH4)2 HPO4 2 N in each mole of DAP therefore 15.8/2= 7.89 mmol of DAP needed

7.89 mmol * 132 mg/mmol (M.W of DAP) = 1042 mg DAP/Kg = 209 mg DAP/200 g soil

Need to set up 14 bottles with 200 g soil in each 200 g * 14 = 2800 g soil in total therefore 209 mg DAP * 14 = 2926 mg or 2.9 g of DAP 50% WHC is 25 mL but beyond 12.5 mL of DI water it was observed to saturate the soil 12.5 mL DI *14 = 175 mL of DI water Dissolve 2.9 g of DAP in 175 mL of DI and add to 2800 g homoginized soil

P Calculation

How much P was added in the 209 mg of DAP? 7.89 mmol of DAP * 31 mg/mmol (MW of P)

= 246 mg of P added.

Therefore, in 209 mg of DAP added to each bottle there was 221 mg/kg of N and 246 mg/kg of P added

APPENDIX D: Maxxam Analytical Reports

Your Project #: EBA #2 Your C.O.C. #: 2111

Attention: Ximena Druar
SiREM - Site Recovery & Management
130 Research Lane
Suite 2
Guelph, ON
CANADA
N1G 5G3

Report Date: 2012/01/06

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B1K2045 Received: 2011/12/22, 10:30

Sample Matrix: Soil # Samples Received: 2

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Petroleum Hydrocarbons F2-F4 in Soil	2	2011/12/29	2011/12/29 CAM SOP-00316	CCME CWS
Total Metals Analysis by ICP	2	2011/12/29	2011/12/30 CAM SOP-00408	EPA 6010
Acid Extr. Metals (aqua regia) by ICPMS	2	2011/12/29	2012/01/03 CAM SOP-00447	EPA 6020
Moisture	2	N/A	2011/12/28 CAM SOP-00445	McKeague 2nd ed 1978
Nitrate (NO3) and Nitrite (NO2) in Soil	2	N/A	2012/01/04 CAM SOP-00440	SM 4500 NO3I/NO2B
pH CaCl2 EXTRACT	2	2011/12/29	2011/12/29 CAM SOP-00413	SM 4500 H
Salinity in Soil (SAL4) ()	2	N/A	N/A	
Total Kjeldahl Nitrogen - Soil	2	2011/12/29	2011/12/30 CAM SOP-00454	EPA 351.2 Rev 2

Remarks:

Maxxam Analytics has performed all analytical testing herein in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Reporting results to two significant figures at the RDL is to permit statistical evaluation and is not intended to be an indication of analytical precision.

The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following the 'Alberta Environment Draft Addenda to the CWS-PHC, Appendix 6, Validation of Alternate Methods'. Documentation is available upon request. Maxxam has made the following improvements to the CWS-PHC reference benchmark method: (i) Headspace for F1; and, (ii) Mechanical extraction for F2-F4. Note: F4G cannot be added to the C6 to C50 hydrocarbons. The extraction date for samples field preserved with methanol for F1 and Volatile Organic Compounds is considered to be the date sampled.

Maxxam Analytics is accredited by SCC (Lab ID 97) for all specific parameters as required by Ontario Regulation 153/04. Maxxam Analytics is limited in liability to the actual cost of analysis unless otherwise agreed in writing. There is no other warranty expressed or implied. Samples will be retained at Maxxam Analytics for three weeks from receipt of data or as

Your Project #: EBA #2 Your C.O.C. #: 2111

Attention: Ximena Druar
SiREM - Site Recovery & Management
130 Research Lane
Suite 2
Guelph, ON
CANADA
N1G 5G3

Report Date: 2012/01/06

CERTIFICATE OF ANALYSIS

-2-

per contract.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bedford to Calgary Subcontract

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

JOLANTA GORALCZYK, Project Manager Email: JGoralczyk@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 2

RESULTS OF ANALYSES OF SOIL

	Units	S-2049-122111-1	S-2049-122111-2	RDL	QC Batch
COC Number		2111	2111		
		14:40	14:40		
Sampling Date		2011/12/21	2011/12/21		
Maxxam ID		MB5541	MB5542		

Inorganics					
Moisture	%	12	12	1	2724662
Available (CaCl2) pH	рН	7.51	7.42		2725092
Total Kjeldahl Nitrogen	ug/g	228	283	10	2725809
Nitrite (N)	ug/g	0.1 U	0.1 U	0.5	2728246
Nitrate (N)	ug/g	0.4 U	0.4 U	2	2728246
Nitrate + Nitrite	ug/g	0.6 U	0.6 U	3	2728246
Subcontracted Analysis					
Subcontract Parameter	N/A	TBA	TBA	ТВА	2729302

TBA = Result to follow RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

COC Number	11-16-	2111 S-2049-122111-1	2111 S-2049-122111-2	201	QC Batch
		14:40	14:40		
Sampling Date		2011/12/21	2011/12/21		
Maxxam ID		MB5541	MB5542		

84-4-1-				1	
Metals					
Acid Extractable Sulphur (S)	ug/g	170	150	50	2725477
Acid Extractable Aluminum (Al)	ug/g	3200	3300	50	2725472
Acid Extractable Antimony (Sb)	ug/g	0.040 U	0.040 U	0.20	2725472
Acid Extractable Arsenic (As)	ug/g	0.93 J	0.92 J	1.0	2725472
Acid Extractable Barium (Ba)	ug/g	9.2	9.0	0.50	2725472
Acid Extractable Beryllium (Be)	ug/g	0.28	0.30	0.20	2725472
Acid Extractable Bismuth (Bi) (1)	ug/g	<1.0	<1.0	1.0	2725472
Acid Extractable Boron (B)	ug/g	6.3	6.4	5.0	2725472
Acid Extractable Cadmium (Cd)	ug/g	0.020 U	0.023 J	0.10	2725472
Acid Extractable Calcium (Ca)	ug/g	17000	18000	50	2725472
Acid Extractable Chromium (Cr)	ug/g	8.1	8.5	1.0	2725472
Acid Extractable Cobalt (Co)	ug/g	2.6	2.6	0.10	2725472
Acid Extractable Copper (Cu)	ug/g	5.3	5.5	0.50	2725472
Acid Extractable Iron (Fe)	ug/g	7400	7400	50	2725472
Acid Extractable Lead (Pb)	ug/g	4.4	4.4	1.0	2725472
Acid Extractable Magnesium (Mg)	ug/g	10000	11000	50	2725472
Acid Extractable Manganese (Mn)	ug/g	120	120	1.0	2725472
Acid Extractable Molybdenum (Mo)	ug/g	0.13 J	0.16 J	0.50	2725472
Acid Extractable Nickel (Ni)	ug/g	4.9	5.2	0.50	2725472
Acid Extractable Phosphorus (P)	ug/g	200	230	50	2725472
Acid Extractable Potassium (K)	ug/g	540	560	200	2725472
Acid Extractable Selenium (Se)	ug/g	0.23 J	0.29 J	0.50	2725472
Acid Extractable Silver (Ag)	ug/g	0.040 U	0.040 U	0.20	2725472
Acid Extractable Sodium (Na)	ug/g	160	150	100	2725472
Acid Extractable Strontium (Sr)	ug/g	9.3	9.7	1.0	2725472
Acid Extractable Thallium (TI)	ug/g	0.083	0.079	0.050	2725472
Acid Extractable Tin (Sn) (1)	ug/g	<5.0	<5.0	5.0	2725472
Acid Extractable Uranium (U)	ug/g	0.68	0.73	0.050	2725472
Acid Extractable Vanadium (V)	ug/g	11	11	5.0	2725472
Acid Extractable Zinc (Zn)	ug/g	15	14	5.0	2725472
Acid Extractable Mercury (Hg) (1)	ug/g	<0.050	<0.050	0.050	2725472

RDL = Reportable Detection Limit QC Batch = Quality Control Batch (1) UJ Flags are not applicable

SiREM - Site Recovery & Management Client Project #: EBA #2

PETROLEUM HYDROCARBONS (CCME)

	0	0 2040 1221111	Lab-Dup	0 2043 122111 2		GO Baton
	Units	S-2049-122111-1	S-2049-122111-1	S-2049-122111-2	RDI	QC Batch
COC Number		2111	2111	2111		
		14:40	14:40	14:40		
Sampling Date		2011/12/21	2011/12/21	2011/12/21		
Maxxam ID		MB5541	MB5541	MB5542		

F2-F4 Hydrocarbons						
F2 (C10-C16 Hydrocarbons)	ug/g	1700	1700	2000	10	2725051
F3 (C16-C34 Hydrocarbons)	ug/g	790	750	860	10	2725051
F4 (C34-C50 Hydrocarbons)	ug/g	2.0 U	2.0 U	2.0 U	10	2725051
Reached Baseline at C50	ug/g	Yes	Yes	Yes		2725051
Surrogate Recovery (%)						
o-Terphenyl	%	129	129	126		2725051

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

SiREM - Site Recovery & Management Client Project #: EBA #2

Collected 2011/12/21

Shipped

Test Summary

Maxxam ID MB5541

Sample ID S-2049-122111-1

Matrix Soil Received 2011/12/22

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2725051	2011/12/29	2011/12/29	BARBARA WOWK
Total Metals Analysis by ICP	ICP	2725477	2011/12/29	2011/12/30	SUBAN KANAPATHIPPLLAI
Acid Extr. Metals (aqua regia) by ICPMS	ICP/MS	2725472	2011/12/29	2012/01/03	KEVIN COMERFORD
Moisture	BAL	2724662	N/A	2011/12/28	VALENTINA KAFTANI
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2728246	N/A	2012/01/04	BAVANI KAILAYA
pH CaCl2 EXTRACT		2725092	2011/12/29	2011/12/29	XUANHONG QIU
Salinity in Soil (SAL4)		2729302	2012/01/05	2012/01/05	MARLENE BASDEO
Total Kieldahl Nitrogen - Soil	AC	2725809	2011/12/29	2011/12/30	CHANDRA NANDI AI

 Maxxam ID
 MB5541 Dup
 Collected
 2011/12/21

 Sample ID
 S-2049-122111-1
 Shipped

Matrix Soil Received 2011/12/22

Test DescriptionInstrumentationBatchExtractedAnalyzedAnalystPetroleum Hydrocarbons F2-F4 in SoilGC/FID27250512011/12/292011/12/29BARBARA WOWK

Maxxam ID MB5542 **Collected** 2011/12/21

 Sample ID
 S-2049-122111-2
 Shipped

 Matrix
 Soil
 Received
 2011/12/22

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2725051	2011/12/29	2011/12/29	BARBARA WOWK
Total Metals Analysis by ICP	ICP	2725477	2011/12/29	2011/12/30	SUBAN KANAPATHIPPLLAI
Acid Extr. Metals (aqua regia) by ICPMS	ICP/MS	2725472	2011/12/29	2012/01/03	KEVIN COMERFORD
Moisture	BAL	2724662	N/A	2011/12/28	VALENTINA KAFTANI
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2728246	N/A	2012/01/04	BAVANI KAILAYA
pH CaCl2 EXTRACT		2725092	2011/12/29	2011/12/29	XUANHONG QIU
Salinity in Soil (SAL4)		2729302	2012/01/05	2012/01/05	MARLENE BASDEO
Total Kjeldahl Nitrogen - Soil	AC	2725809	2011/12/29	2011/12/30	CHANDRA NANDLAL

SiREM - Site Recovery & Management Client Project #: EBA #2

GEN	FRΔI	COM	MFN	ITS

Results relate only to the items tested.

SiREM - Site Recovery & Management

Attention: Ximena Druar Client Project #: EBA #2

P.O. #: Site Location:

Quality Assurance Report Maxxam Job Number: MB1K2045

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
2724662 PHM	RPD	Moisture	2011/12/28	NC	%	20
2725051 BWW	Matrix Spike					
	[MB5541-01]	o-Terphenyl	2011/12/29	120	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2011/12/29	NC	%	50 - 130
		F3 (C16-C34 Hydrocarbons)	2011/12/29	120	%	50 - 130
		F4 (C34-C50 Hydrocarbons)	2011/12/29	118	%	50 - 130
	Spiked Blank	o-Terphenyl	2011/12/29	105	%	50 - 130
	•	F2 (C10-C16 Hydrocarbons)	2011/12/29	95	%	70 - 130
		F3 (C16-C34 Hydrocarbons)	2011/12/29	113	%	70 - 130
		F4 (C34-C50 Hydrocarbons)	2011/12/29	104	%	70 - 130
	Method Blank	o-Terphenyl	2011/12/29	106	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2011/12/29	2.0 U, MDL=2.0	ug/g	
		F3 (C16-C34 Hydrocarbons)	2011/12/29	2.0 U, MDL=2.0	ug/g	
		F4 (C34-C50 Hydrocarbons)	2011/12/29	2.0 U, MDL=2.0	ug/g	
	RPD [MB5541-01]	F2 (C10-C16 Hydrocarbons)	2011/12/29	0.6	%	30
	= [=00 0.1]	F3 (C16-C34 Hydrocarbons)	2011/12/29	4.5	%	30
		F4 (C34-C50 Hydrocarbons)	2011/12/29	NC	%	30
2725472 KCO	Matrix Spike	Acid Extractable Aluminum (Al)	2011/12/29	NC	%	75 - 125
2,20,,2,00	татх орто	Acid Extractable Antimony (Sb)	2011/12/29	108	%	75 - 125
		Acid Extractable Arsenic (As)	2011/12/29	99	%	75 - 125
		Acid Extractable Barium (Ba)	2011/12/29	NC (1)		75 - 125 75 - 125
		Acid Extractable Baridin (Ba) Acid Extractable Beryllium (Be)	2011/12/29	96	%	75 - 125 75 - 125
		Acid Extractable Bismuth (Bi)	2011/12/29	99	%	75 - 125 75 - 125
		Acid Extractable Boron (B)	2011/12/29	99	%	75 - 125 75 - 125
		Acid Extractable Cadmium (Cd)	2011/12/29	106	% %	75 - 125 75 - 125
		Acid Extractable Cadmidin (Cd) Acid Extractable Calcium (Ca)	2011/12/29	NC	%	75 - 125 75 - 125
		` ,		97		
		Acid Extractable Chromium (Cr)	2011/12/29		%	75 - 125
		Acid Extractable Cobalt (Co)	2011/12/29	98	%	75 - 125
		Acid Extractable Copper (Cu)	2011/12/29	94 NO	%	75 - 125
		Acid Extractable Iron (Fe)	2011/12/29	NC	%	75 - 125
		Acid Extractable Lead (Pb)	2011/12/29	100	%	75 - 125
		Acid Extractable Manganese (Mn)	2011/12/29	NC	%	75 - 125
		Acid Extractable Molybdenum (Mo)	2011/12/29	109	%	75 - 125
		Acid Extractable Nickel (Ni)	2011/12/29	95	%	75 - 125
		Acid Extractable Phosphorus (P)	2011/12/29	NC	%	75 - 125
		Acid Extractable Potassium (K)	2011/12/29	NC	%	75 - 125
		Acid Extractable Selenium (Se)	2011/12/29	101	%	75 - 125
		Acid Extractable Silver (Ag)	2011/12/29	102	%	75 - 125
		Acid Extractable Sodium (Na)	2011/12/29	97	%	75 - 125
		Acid Extractable Strontium (Sr)	2011/12/29	NC	%	75 - 125
		Acid Extractable Thallium (TI)	2011/12/29	100	%	75 - 125
		Acid Extractable Tin (Sn)	2011/12/29	109	%	75 - 125
		Acid Extractable Uranium (U)	2011/12/29	102	%	75 - 125
		Acid Extractable Vanadium (V)	2011/12/29	100	%	75 - 125
		Acid Extractable Zinc (Zn)	2011/12/29	NC (1)	%	75 - 125
		Acid Extractable Mercury (Hg)	2011/12/29	98	%	75 - 125
	Spiked Blank	Acid Extractable Aluminum (AI)	2011/12/29	103	%	75 - 125
		Acid Extractable Antimony (Sb)	2011/12/29	110	%	75 - 125
		Acid Extractable Arsenic (As)	2011/12/29	103	%	75 - 125
		Acid Extractable Barium (Ba)	2011/12/29	103	%	75 - 125
		Acid Extractable Beryllium (Be)	2011/12/29	102	%	75 - 125
		Acid Extractable Bismuth (Bi)	2011/12/29	106	%	75 - 125
		Acid Extractable Boron (B)	2011/12/29	102	%	75 - 125
		Acid Extractable Cadmium (Cd)	2011/12/29	108	%	75 - 125
		Acid Extractable Calcium (Ca)	2011/12/29	106	%	75 - 125
		(,				

SiREM - Site Recovery & Management

Attention: Ximena Druar Client Project #: EBA #2

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: MB1K2045

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
2725472 KCO	Spiked Blank	Acid Extractable Chromium (Cr)	2011/12/29	104	%	75 - 125
		Acid Extractable Cobalt (Co)	2011/12/29	105	%	75 - 125
		Acid Extractable Copper (Cu)	2011/12/29	104	%	75 - 125
		Acid Extractable Iron (Fe)	2011/12/29	115	%	75 - 125
		Acid Extractable Lead (Pb)	2011/12/29	107	%	75 - 125
		Acid Extractable Magnesium (Mg)	2011/12/29	112	%	75 - 125
		Acid Extractable Manganese (Mn)	2011/12/29	105	%	75 - 125
		Acid Extractable Molybdenum (Mo)	2011/12/29	107	%	75 - 125
		Acid Extractable Nickel (Ni)	2011/12/29	105	%	75 - 125
		Acid Extractable Phosphorus (P)	2011/12/29	114	%	75 - 125
		Acid Extractable Potassium (K)	2011/12/29	100	%	75 - 125
		Acid Extractable Selenium (Se)	2011/12/29	103	%	75 - 125
		Acid Extractable Silver (Ag)	2011/12/29	106	%	75 - 125
		Acid Extractable Sodium (Na)	2011/12/29	106	%	75 - 125
		Acid Extractable Strontium (Sr)	2011/12/29	105	%	75 - 125
		Acid Extractable Thallium (TI)	2011/12/29	109	%	75 - 125
		Acid Extractable Tin (Sn)	2011/12/29	106	%	75 - 125
		Acid Extractable Uranium (U)	2011/12/29	106	%	75 - 125
		Acid Extractable Vanadium (V)	2011/12/29	103	%	75 - 125
		Acid Extractable Zinc (Zn)	2011/12/29	107	%	75 - 125
		Acid Extractable Mercury (Hg)	2011/12/29	102	%	75 - 125
	Method Blank	Acid Extractable Aluminum (Al)	2011/12/29	10 U, MDL=10	ug/g	
		Acid Extractable Antimony (Sb)	2011/12/29	0.040 U, MDL=0.040	ug/g	
		Acid Extractable Arsenic (As)	2011/12/29	0.20 U, MDL=0.20	ug/g	
		Acid Extractable Barium (Ba)	2011/12/29	0.10 U, MDL=0.10	ug/g	
		Acid Extractable Beryllium (Be)	2011/12/29	0.040 U, MDL=0.040	ug/g	
		Acid Extractable Bismuth (Bi)	2011/12/29	<1.0	ug/g	
		Acid Extractable Boron (B)	2011/12/29	<5.0	ug/g	
		Acid Extractable Cadmium (Cd)	2011/12/29	0.020 U, MDL=0.020	ug/g	
		Acid Extractable Calcium (Ca)	2011/12/29	10 U, MDL=10	ug/g	
		Acid Extractable Chromium (Cr)	2011/12/29	0.20 U, MDL=0.20	ug/g	
		Acid Extractable Cobalt (Co)	2011/12/29	0.020 U, MDL=0.020	ug/g	
		Acid Extractable Copper (Cu)	2011/12/29	0.10 U, MDL=0.10	ug/g	
		Acid Extractable Iron (Fe)	2011/12/29	10 U, MDL=10	ug/g	
		Acid Extractable Lead (Pb)	2011/12/29	0.20 U, MDL=0.20	ug/g	
		Acid Extractable Magnesium (Mg)	2011/12/29	10 U, MDL=10	ug/g	
		Acid Extractable Manganese (Mn)	2011/12/29	0.20 U, MDL=0.20	ug/g	
		Acid Extractable Molybdenum (Mo)	2011/12/29	0.10 U, MDL=0.10	ug/g	
		Acid Extractable Nickel (Ni)	2011/12/29	0.39 J, MDL=0.10	ug/g	
		Acid Extractable Phosphorus (P)	2011/12/29	10 U, MDL=10	ug/g	
		Acid Extractable Potassium (K)	2011/12/29	40 U, MDL=40	ug/g	
		Acid Extractable Selenium (Se)	2011/12/29	0.10 U, MDL=0.10	ug/g	
		Acid Extractable Silver (Ag)	2011/12/29	0.040 U, MDL=0.040	ug/g	
		Acid Extractable Sodium (Na)	2011/12/29	20 U, MDL=20	ug/g	
		Acid Extractable Strontium (Śr)	2011/12/29	0.20 U, MDL=0.20	ug/g	
		Acid Extractable Thallium (TI)	2011/12/29	0.010 U, MDL=0.010	ug/g	
		Acid Extractable Tin (Sn)	2011/12/29	<5.0	ug/g	
		Acid Extractable Uranium (U)	2011/12/29	<0.050	ug/g	
		Acid Extractable Vanadium (V)	2011/12/29	1.0 U, MDL=1.0	ug/g	
		Acid Extractable Zinc (Zn)	2011/12/29	1.0 U, MDL=1.0	ug/g	
		Acid Extractable Mercury (Hg)	2011/12/29	<0.050	ug/g	
	RPD	Acid Extractable Antimony (Sb)	2011/12/29	NC	%	30
		Acid Extractable Arsenic (As)	2011/12/29	NC	%	30
		Acid Extractable Barium (Ba)	2011/12/29	5.3	%	30
		Acid Extractable Daridin (Da)				

SiREM - Site Recovery & Management

Attention: Ximena Druar Client Project #: EBA #2

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: MB1K2045

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value F	Recovery	Units	QC Limits
2725472 KCO	RPD	Acid Extractable Boron (B)	2011/12/29	NC		%	30
		Acid Extractable Cadmium (Cd)	2011/12/29	NC		%	30
		Acid Extractable Chromium (Cr)	2011/12/29	8.6		%	30
		Acid Extractable Cobalt (Co)	2011/12/29	5.9		%	30
		Acid Extractable Copper (Cu)	2011/12/29	0.2		%	30
		Acid Extractable Lead (Pb)	2011/12/29	NC		%	30
		Acid Extractable Molybdenum (Mo)	2011/12/29	NC		%	30
		Acid Extractable Nickel (Ni)	2011/12/29	2.8		%	30
		Acid Extractable Selenium (Se)	2011/12/29	NC		%	30
		Acid Extractable Silver (Ag)	2011/12/29	NC		%	30
		Acid Extractable Thallium (TI)	2011/12/29	NC		%	30
		Acid Extractable Uranium (U)	2011/12/29	1.9		%	30
		Acid Extractable Vanadium (V)	2011/12/29	NC		%	30
		Acid Extractable Zinc (Zn)	2011/12/29	2.0		%	30
2725477 SUK	Matrix Spike	Acid Extractable Sulphur (S)	2011/12/30		99	%	75 - 125
	QC Standard	Acid Extractable Sulphur (S)	2011/12/30		102	%	75 - 125
	Method Blank	Acid Extractable Sulphur (S)	2011/12/30	<50		ug/g	
2725809 C_N	Matrix Spike	Total Kjeldahl Nitrogen	2011/12/30		NC	%	75 - 125
_	QC Standard	Total Kjeldahl Nitrogen	2011/12/30		123	%	75 - 125
	Method Blank	Total Kjeldahl Nitrogen	2011/12/30	3 U, MDL:	=3	ug/g	
	RPD	Total Kjeldahl Nitrogen	2011/12/30	1.4		%	40
2728246 BAV	Matrix Spike	Nitrite (N)	2012/01/04		85	%	75 - 125
		Nitrate (N)	2012/01/04		109	%	80 - 120
	Spiked Blank	Nitrite (N)	2012/01/04		96	%	75 - 125
	·	Nitrate (N)	2012/01/04		101	%	85 - 115
	Method Blank	Nitrite (N)	2012/01/04	0.1 U, MDL:	=0.1	ug/g	
		Nitrate (N)	2012/01/04	0.4 U, MDL=0.4 ug/		ug/g	
		Nitrate + Nitrite	2012/01/04			ug/g	
	RPD	Nitrite (N)	2012/01/04	NC		%	25
		Nitrate (N)	2012/01/04	NC		%	25
		Nitrate + Nitrite	2012/01/04	NC		%	25

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was not sufficiently significant to permit a reliable recovery calculation.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

(1) The recovery in the matrix spike was not calculated (NC). Spiked concentration was less than 2x that native to the sample.

Validation Signature Page

Maxxam Job #: B1K2045

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

CRISTINA CARRIERE, Scientific Services

EWA PRANJIC, M.Sc., C.Chem, Scientific Specialist

MAMDOUH SALIB, Analyst, Hydrocarbons

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: MB1K2045 Site Location: EBA #2

Attention: SUB CONTRACTOR
MAXXAM ANALYTICS
CAMPOBELLO
6740 CAMPOBELLO ROAD
MISSISSAUGA, ON
CANADA L5N 2L8

Report Date: 2012/01/04

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B1C4573 Received: 2011/12/29, 8:20

Sample Matrix: Soil # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Chloride (Soluble)	2	2011/12/30	2011/12/30	AB SOP-00026	SM 4110-B
Conductivity @25C (Soluble)	2	2011/12/30	2011/12/30	AB SOP-00004	SSMA 15.3
Ion Balance	2	N/A	2011/12/30	AB WI-00065	SM 1030E
Sum of Cations, Anions	2	N/A	2011/12/30	AB WI-00065	SM 1030E
pH @25C (1:2 Calcium Chloride Extract)	2	2012/01/04	2012/01/04	AB SOP-00006	SSMA 16.3
Sodium Adsorption Ratio	2	N/A	2011/12/30	AB WI-00065	SSMA 15.4.4
Ca,Mg,Na,K,SO4 (Soluble)	2	2011/12/30	2011/12/30	AB SOP-00042	EPA 200.7
Soluble Paste	2	2011/12/30	2011/12/30	AB SOP-00033	SSMA 15.2
Theoretical Gypsum Requirement ()	2	N/A	2011/12/30	CAL WI-00087	CJSS 79:449-455

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Units for TGR have changed from tons/acre to tonnes/ha

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Candace Fahey, Project Manager Email: CFahey@maxxam.ca Phone# (403) 291-3077

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxxam Job #: B1C4573 Report Date: 2012/01/04

MAXXAM ANALYTICS Client Project #: MB1K2045

Site Location: EBA #2

SOIL SALINITY 4 (SOIL)

Maxxam ID		CL1758	CL1759		
Sampling Date		2011/12/21	2011/12/21		
	Units	S-2049-122111-1	S-2049-122111-2	RDL	QC Batch
		(MB5541-01R)	(MB5542-01R)		
Calculated Parameters				Ι	
Anion Sum	meq/L	11	9.9	N/A	5483465
Cation Sum	meq/L	15	16	N/A	5483465
Ion Balance	N/A	1.4	1.6	0.010	5483464
Soluble Parameters					
Soluble Chloride (CI)	mg/L	360	330	5.0	5486871
Soluble Conductivity	dS/m	1.5	1.4	0.020	5486694
Soluble (CaCl2) pH	N/A	7.26	7.18	N/A	5491817
Sodium Adsorption Ratio	N/A	2.9	2.8	0.10	5483466
Soluble Calcium (Ca)	mg/L	100	110	1.5	5487225
Soluble Magnesium (Mg)	mg/L	42	46	1.0	5487225
Soluble Sodium (Na)	mg/L	140	140	2.5	5487225
Soluble Potassium (K)	mg/L	7.8	14	1.3	5487225
Saturation %	%	27	26	N/A	5486144
Soluble Sulphate (SO4)	mg/L	24	30	5.0	5487225
Theoretical Gypsum Requirement	tonnes/ha	<0.10	<0.10	0.10	5483467
RDL = Reportable Detection Limit	I			ı	1

Maxxam Job #: B1C4573 Report Date: 2012/01/04

MAXXAM ANALYTICS Client Project #: MB1K2045

Site Location: EBA #2

Package 1 3.7°C

Each temperature is the average of up to three cooler temperatures taken at receipt

General Comments

Results relate only to the items tested.

MAXXAM ANALYTICS Attention: SUB CONTRACTOR Client Project #: MB1K2045

P.O. #:

Site Location: EBA #2

Quality Assurance Report Maxxam Job Number: CB1C4573

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
5486144 FZ	QC Standard	Saturation %	2011/12/30		101	%	93 - 107
	RPD	Saturation %	2011/12/30	0.7		%	12
5486694 FM0	QC Standard	Soluble Conductivity	2011/12/30		96	%	87 - 113
	Spiked Blank	Soluble Conductivity	2011/12/30		100	%	94 - 105
	Method Blank	Soluble Conductivity	2011/12/30	< 0.020		dS/m	
	RPD	Soluble Conductivity	2011/12/30	5.6		%	35
5486871 RR6	Matrix Spike	Soluble Chloride (CI)	2011/12/30		NC	%	75 - 125
	QC Standard	Soluble Chloride (CI)	2011/12/30		99	%	75 - 125
	Spiked Blank	Soluble Chloride (CI)	2011/12/30		95	%	80 - 120
	Method Blank	Soluble Chloride (CI)	2011/12/30	<5.0		mg/L	
	RPD	Soluble Chloride (CI)	2011/12/30	2.6		%	35
5487225 PK0	Matrix Spike	Soluble Calcium (Ca)	2011/12/30		112	%	75 - 125
		Soluble Magnesium (Mg)	2011/12/30		108	%	75 - 125
		Soluble Sodium (Na)	2011/12/30		99	%	75 - 125
		Soluble Potassium (K)	2011/12/30		108	%	75 - 125
	QC Standard	Soluble Calcium (Ca)	2011/12/30		94	%	76 - 120
		Soluble Magnesium (Mg)	2011/12/30		90	%	80 - 120
		Soluble Sodium (Na)	2011/12/30		92	%	77 - 123
		Soluble Potassium (K)	2011/12/30		116	%	75 - 125
		Soluble Sulphate (SO4)	2011/12/30		93	%	81 - 119
	Spiked Blank	Soluble Calcium (Ca)	2011/12/30		102	%	80 - 120
		Soluble Magnesium (Mg)	2011/12/30		105	%	80 - 120
		Soluble Sodium (Na)	2011/12/30		96	%	80 - 120
		Soluble Potassium (K)	2011/12/30		103	%	80 - 120
	Method Blank	Soluble Calcium (Ca)	2011/12/30	<1.5		mg/L	
		Soluble Magnesium (Mg)	2011/12/30	<1.0		mg/L	
		Soluble Sodium (Na)	2011/12/30	<2.5		mg/L	
		Soluble Potassium (K)	2011/12/30	<1.3		mg/L	
		Soluble Sulphate (SO4)	2011/12/30	< 5.0		mg/L	
	RPD	Soluble Calcium (Ca)	2011/12/30	1.6		%	35
		Soluble Magnesium (Mg)	2011/12/30	1.8		%	35
		Soluble Sodium (Na)	2011/12/30	0.1		%	35
		Soluble Potassium (K)	2011/12/30	2.6		%	35
		Soluble Sulphate (SO4)	2011/12/30	8.9		%	3
5491817 SLO	QC Standard	Soluble (CaCl2) pH	2012/01/04		97	%	95 - 10
	Spiked Blank	Soluble (CaCl2) pH	2012/01/04		100	%	99 - 102
	RPD	Soluble (CaCl2) pH	2012/01/04	1.1		%	5

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was not sufficiently significant to permit a reliable recovery calculation.

Maxxam Analytics International Corporation o/a Maxxam Analytics Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 Fax(403) 291-9468

Validation Signature Page

Maxxam .	Job	#:	B 1	C4573	
----------	-----	----	------------	-------	--

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Lhi Zhou, Senior analyst, Inorganic department.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: EBA #2 Your C.O.C. #: 2115

Attention: Ximena Druar SiREM - Site Recovery & Management 130 Research Lane Suite 2 Guelph, ON CANADA

N1G 5G3

Report Date: 2012/01/18

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B204400 Received: 2012/01/11. 10:44

Sample Matrix: Soil # Samples Received: 8

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Petroleum Hydrocarbons F2-F4 in Soil	2	2012/01/16	2012/01/16	CAM SOP-00316	CCME CWS
Total Metals Analysis by ICP	6	2012/01/16	2012/01/16	CAM SOP-00408	EPA 6010
Moisture	8	N/A	2012/01/14	CAM SOP-00445	R.Carter,1993
Nitrate (NO3) and Nitrite (NO2) in Soil	6	N/A	2012/01/17	CAM SOP-00440	SM 4500 NO3I/NO2B
pH CaCl2 EXTRACT	6	2012/01/16	2012/01/16	CAM SOP-00413	SM 4500 H
Total Kjeldahl Nitrogen - Soil	6	2012/01/16	2012/01/16	CAM SOP-00454	EPA 351.2 Rev 2

Sample Matrix: Water # Samples Received: 1

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Conductivity	1	N/A	2012/01/13 CAM SOP-00448	SM 2510
Total Metals Analysis by ICPMS	1	N/A	2012/01/16 CAM SOP-00447	EPA 6020
Nitrate (NO3) and Nitrite (NO2) in Water ()	1	N/A	2012/01/13 CAM SOP-00440	SM 4500 NO3I/NO2B
рН	1	N/A	2012/01/13 CAM SOP-00448	SM 4500H
Total Kjeldahl Nitrogen in Water	1	2012/01/16	2012/01/16 CAM SOP-00454	EPA 351.2 Rev 2

Remarks:

Maxxam Analytics has performed all analytical testing herein in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Reporting results to two significant figures at the RDL is to permit statistical evaluation and is not intended to be an indication of analytical precision.

The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following the 'Alberta Environment Draft Addenda to the CWS-PHC, Appendix 6, Validation of Alternate Methods'. Documentation is

Your Project #: EBA #2 Your C.O.C. #: 2115

Attention: Ximena Druar SiREM - Site Recovery & Management 130 Research Lane Suite 2 Guelph, ON CANADA N1G 5G3

Report Date: 2012/01/18

CERTIFICATE OF ANALYSIS -2-

available upon request. Maxxam has made the following improvements to the CWS-PHC reference benchmark method: (i) Headspace for F1; and, (ii) Mechanical extraction for F2-F4. Note: F4G cannot be added to the C6 to C50 hydrocarbons. The extraction date for samples field preserved with methanol for F1 and Volatile Organic Compounds is considered to be the date sampled.

Maxxam Analytics is accredited by SCC (Lab ID 97) for all specific parameters as required by Ontario Regulation 153/04. Maxxam Analytics is limited in liability to the actual cost of analysis unless otherwise agreed in writing. There is no other warranty expressed or implied. Samples will be retained at Maxxam Analytics for three weeks from receipt of data or as per contract.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

JOLANTA GORALCZYK, Project Manager Email: JGoralczyk@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 2

SiREM - Site Recovery & Management

Client Project #: EBA #2

Sampler Initials: RS

RESULTS OF ANALYSES OF SOIL

Maxxam ID		ME9935	ME9936		ME9937	ME9938	ME9938		
Sampling Date		2012/01/10	2012/01/10		2012/01/10	2012/01/10	2012/01/10		
COC Number		2115	2115		2115	2115	2115		
	Units	EBA2-100112-1	EBA2-100112-2	QC Batch	EBA2-100112-3	EBA2-100112-4	EBA2-100112-4	RDL	QC Batch
							Lab-Dup		
norganics									
Moisture	%	15	12	2737017	14	14		1	2736989
Available (CaCl2) pH	рН				7.34	7.36			2737320
Total Kjeldahl Nitrogen	ug/g				232	191		10	2737267
Nitrite (N)	ug/g				0.2 J	0.2 J	0.3 J	0.5	2737377
Nitrate (N)	ug/g				0.4 U	0.4 U	0.4 U	2	2737377
Nitrate + Nitrite	ug/g				0.6 U	0.6 U	0.6 U	3	2737377

Maxxam ID		ME9939		ME9940		ME9941	ME9941	ME9942		
Sampling Date		2012/01/10		2012/01/10		2012/01/10	2012/01/10	2012/01/10		
COC Number		2115		2115		2115	2115	2115		
	Units	EBA2-100112-5	RDL	EBA2-100112-6	RDL	EBA2-100112-7	EBA2-100112-7	EBA2-100112-8	RDL	QC Batch
							Lab-Dup			
				1				·		
Inorganics										
Moisture	%	14	1	14	1	12		13	1	2736989
Available (CaCl2) pH	рН	6.95		6.95		7.31	7.26	7.19		2737320
Total Kjeldahl Nitrogen	ug/g	344	10	599	50	218		213	10	2737267
Nitrite (N)	ug/g	0.1 U	0.5	0.1 U	0.5	0.2 J		0.2 J	0.5	2737377
Nitrate (N)	ug/g	0.4 U	2	0.4 U	2	0.4 U		0.4 U	2	2737377
Nitrate + Nitrite	ug/g	0.6 U	3	0.6 U	3	0.6 U		0.6 U	3	2737377

SiREM - Site Recovery & Management

Client Project #: EBA #2

Sampler Initials: RS

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		ME9937	ME9938	ME9939	ME9940	ME9941		
Sampling Date		2012/01/10	2012/01/10	2012/01/10	2012/01/10	2012/01/10		
COC Number		2115	2115	2115	2115	2115		
	Units	EBA2-100112-3	EBA2-100112-4	EBA2-100112-5	EBA2-100112-6	EBA2-100112-7	RDL	QC Batch

Metals								
Acid Extractable Phosphorus (P)	ug/g	240	280	880	750	220	20	2737751

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

	Units	EBA2-100112-8	RDL	QC Batch
COC Number		2115		
Sampling Date		2012/01/10		
Maxxam ID		ME9942		

Metals				
Acid Extractable Phosphorus (P)	ug/g	230	20	2737751

SiREM - Site Recovery & Management

Client Project #: EBA #2

Sampler Initials: RS

PETROLEUM HYDROCARBONS (CCME)

	Units	EBA2-100112-1	EBA2-100112-2	RDL	QC Batch
COC Number		2115	2115		
Sampling Date		2012/01/10	2012/01/10		
Maxxam ID		ME9935	ME9936		

F2-F4 Hydrocarbons					
F2 (C10-C16 Hydrocarbons)	ug/g	770	820	10	2737303
F3 (C16-C34 Hydrocarbons)	ug/g	340	370	10	2737303
F4 (C34-C50 Hydrocarbons)	ug/g	2.0 U	2.0 U	10	2737303
Reached Baseline at C50	ug/g	Yes	Yes		2737303
Surrogate Recovery (%)					
o-Terphenyl	%	91	95		2737303

SiREM - Site Recovery & Management

Client Project #: EBA #2

Sampler Initials: RS

RESULTS OF ANALYSES OF WATER

	Units	S-2436	RDL	QC Batch
COC Number		2115		
Sampling Date		2012/01/10		
Maxxam ID		ME9943		

Inorganics				
Conductivity	umho/cm	2100	1	2735481
Total Kjeldahl Nitrogen (TKN)	mg/L	400	10	2737318
рН	рН	7.14		2735482
Nitrite (N)	mg/L	0.003 J	0.01	2735897
Nitrate (N)	mg/L	0.02 U	0.1	2735897
Nitrate + Nitrite	mg/L	0.02 U	0.1	2735897

SiREM - Site Recovery & Management

Client Project #: EBA #2

Sampler Initials: RS

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		ME9943		
Sampling Date		2012/01/10		
COC Number		2115		
	Units	S-2436	RDL	QC Batch

Metals				
Total Aluminum (Al)	ug/L	850000	50	2737322
Total Antimony (Sb)	ug/L	54	5.0	2737322
Total Arsenic (As)	ug/L	17	10	2737322
Total Barium (Ba)	ug/L	560	20	2737322
Total Beryllium (Be)	ug/L	5.0 U	5.0	2737322
Total Bismuth (Bi)	ug/L	81	10	2737322
Total Boron (B)	ug/L	100 U	100	2737322
Total Cadmium (Cd)	ug/L	22	1.0	2737322
Total Calcium (Ca)	ug/L	140000	2000	2737322
Total Chromium (Cr)	ug/L	180	50	2737322
Total Cobalt (Co)	ug/L	15	5.0	2737322
Total Copper (Cu)	ug/L	1400	10	2737322
Total Iron (Fe)	ug/L	61000	1000	2737322
Total Lead (Pb)	ug/L	120	5.0	2737322
Total Lithium (Li)	ug/L	50 U	50	2737322
Total Magnesium (Mg)	ug/L	42000	500	2737322
Total Manganese (Mn)	ug/L	1000	20	2737322
Total Molybdenum (Mo)	ug/L	51	5.0	2737322
Total Nickel (Ni)	ug/L	200	10	2737322
Total Phosphorus (P)	ug/L	290000	10000	2737322
Total Potassium (K)	ug/L	34000	2000	2737322
Total Silicon (Si)	ug/L	15000	500	2737322
Total Selenium (Se)	ug/L	49	20	2737322
Total Silver (Ag)	ug/L	7.2	1.0	2737322
Total Sodium (Na)	ug/L	420000	1000	2737322
Total Strontium (Sr)	ug/L	370	10	2737322
Total Tellurium (Te)	ug/L	10 U	10	2737322
Total Thallium (TI)	ug/L	0.50 U	0.50	2737322
Total Tin (Sn)	ug/L	70	10	2737322
Total Titanium (Ti)	ug/L	290	100	2737322
Total Tungsten (W)	ug/L	12	10	2737322
Total Uranium (U)	ug/L	18	1.0	2737322
, ,		ı	-1	1

SiREM - Site Recovery & Management

Client Project #: EBA #2

Sampler Initials: RS

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		ME9943		
Sampling Date		2012/01/10		
COC Number		2115		
	Units	S-2436	RDL	QC Batch

Total Vanadium (V)	ug/L	33	5.0	2737322
Total Zinc (Zn)	ug/L	23000	50	2737322
Total Zirconium (Zr)	ug/L	50	10	2737322
Total Cesium (Cs)	ug/L	1.3 J	2.0	2737322
Total Rubidium (Rb)	ug/L	49	2.0	2737322

SiREM - Site Recovery & Management

Client Project #: EBA #2

Sampler Initials: RS

Test Summary

Maxxam ID ME9935

Sample ID EBA2-100112-1

Matrix Soil

Collected 2012/01/10

Shipped

Received 2012/01/11

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2737303	2012/01/16	2012/01/16	ZHIYUE (FRANK) ZHU
Moisture	BAL	2737017	N/A	2012/01/14	LAKHVIR KALER

Maxxam ID ME9936

Sample ID EBA2-100112-2

Matrix Soil

Shipped

Collected 2012/01/10

Received 2012/01/11

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2737303	2012/01/16	2012/01/16	ZHIYUE (FRANK) ZHU
Moisture	BAL	2737017	N/A	2012/01/14	LAKHVIR KALER

Maxxam ID ME9937 Sample ID EBA2-100112-3

IIIpie ID LBA2-100112-3

Matrix Soil

Collected 2012/01/10

Shipped

Received 2012/01/11

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Total Metals Analysis by ICP	ICP	2737751	2012/01/16	2012/01/16	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2736989	N/A	2012/01/14	LAKHVIR KALER
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2737377	N/A	2012/01/17	BAVANI KAILAYA
pH CaCl2 EXTRACT		2737320	2012/01/16	2012/01/16	YOGESH PATEL
Total Kjeldahl Nitrogen - Soil	AC	2737267	2012/01/16	2012/01/16	CHANDRA NANDLAL

Maxxam ID ME9938 Sample ID EBA2-100112-4

Matrix Soil

Collected 2012/01/10

Shipped

Received 2012/01/11

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Total Metals Analysis by ICP	ICP	2737751	2012/01/16	2012/01/16	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2736989	N/A	2012/01/14	LAKHVIR KALER
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2737377	N/A	2012/01/17	BAVANI KAILAYA
pH CaCl2 EXTRACT		2737320	2012/01/16	2012/01/16	YOGESH PATEL
Total Kieldahl Nitrogen - Soil	AC.	2737267	2012/01/16	2012/01/16	CHANDRA NANDI AI

Maxxam ID ME9938 Dup Sample ID EBA2-100112-4

Matrix Soil

Collected 2012/01/10

Shipped

Received 2012/01/11

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2737377	N/A	2012/01/17	BAVANI KAILAYA

SiREM - Site Recovery & Management

Client Project #: EBA #2

Sampler Initials: RS

Test Summary

Maxxam ID ME9939 Collected 2012/01/10 **Sample ID** EBA2-100112-5 Shipped

Matrix Soil Received 2012/01/11

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Total Metals Analysis by ICP	ICP	2737751	2012/01/16	2012/01/16	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2736989	N/A	2012/01/14	LAKHVIR KALER
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2737377	N/A	2012/01/17	BAVANI KAILAYA
pH CaCl2 EXTRACT	•	2737320	2012/01/16	2012/01/16	YOGESH PATEL
Total Kjeldahl Nitrogen - Soil	AC	2737267	2012/01/16	2012/01/16	CHANDRA NANDLAL

Maxxam ID ME9940 Collected 2012/01/10 **Sample ID** EBA2-100112-6 Shipped

Received 2012/01/11 Matrix Soil

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Total Metals Analysis by ICP	ICP	2737751	2012/01/16	2012/01/16	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2736989	N/A	2012/01/14	LAKHVIR KALER
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2737377	N/A	2012/01/17	BAVANI KAILAYA
pH CaCl2 EXTRACT		2737320	2012/01/16	2012/01/16	YOGESH PATEL
Total Kjeldahl Nitrogen - Soil	AC	2737267	2012/01/16	2012/01/16	CHANDRA NANDLAL

Maxxam ID ME9941 Collected 2012/01/10 **Sample ID** EBA2-100112-7

Shipped

Matrix Soil Received 2012/01/11

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Total Metals Analysis by ICP	ICP	2737751	2012/01/16	2012/01/16	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2736989	N/A	2012/01/14	LAKHVIR KALER
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2737377	N/A	2012/01/17	BAVANI KAILAYA
pH CaCl2 EXTRACT		2737320	2012/01/16	2012/01/16	YOGESH PATEL
Total Kjeldahl Nitrogen - Soil	AC	2737267	2012/01/16	2012/01/16	CHANDRA NANDLAL

Maxxam ID ME9941 Dup Collected 2012/01/10 Sample ID EBA2-100112-7 **Shipped**

Received 2012/01/11 Matrix Soil

Test Description Instrumentation Batch Extracted Analyzed **Analyst** pH CaCl2 EXTRACT 2012/01/16 2737320 2012/01/16 YOGESH PATEL

Maxxam ID ME9942 Collected 2012/01/10 Sample ID EBA2-100112-8 **Shipped** Received 2012/01/11 Matrix Soil

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Total Metals Analysis by ICP	ICP	2737751	2012/01/16	2012/01/16	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2736989	N/A	2012/01/14	LAKHVIR KALER
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2737377	N/A	2012/01/17	BAVANI KAILAYA
pH CaCl2 EXTRACT		2737320	2012/01/16	2012/01/16	YOGESH PATEL
Total Kjeldahl Nitrogen - Soil	AC	2737267	2012/01/16	2012/01/16	CHANDRA NANDLAL

SiREM - Site Recovery & Management

Client Project #: EBA #2

Sampler Initials: RS

Test Summary

 Maxxam ID
 ME9943
 Collected
 2012/01/10

 Sample ID
 S-2436
 Shipped

Matrix Water Received 2012/01/11

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Conductivity	COND	2735481	N/A	2012/01/13	YOGESH PATEL
Total Metals Analysis by ICPMS	ICP/MS	2737322	N/A	2012/01/16	JOHN BOWMAN
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	2735897	N/A	2012/01/13	BAVANI KAILAYA
pH	PH	2735482	N/A	2012/01/13	YOGESH PATEL
Total Kieldahl Nitrogen in Water	AC	2737318	2012/01/16	2012/01/16	CHANDRA NANDLAL

SiREM - Site Recovery & Management

Client Project #: EBA #2

Sampler Initials: RS

GEN	IER A	I C	OMI	MEN	ITS

Results relate only to the items tested.

Attention: Ximena Druar Client Project #: EBA #2

P.O. #: Site Location:

Quality Assurance Report Maxxam Job Number: MB204400

QA/QC Batch			Date Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
2735481 YPA	QC Standard	Conductivity	2012/01/13	101	%	85 - 115
2700-101 1170	Method Blank	Conductivity	2012/01/13	0.4 J, MDL=0.2	umho/cm	00 110
	RPD	Conductivity	2012/01/13	0.06	%	25
2735897 BAV	Matrix Spike	Nitrite (N)	2012/01/13	104	%	80 - 120
2700007 1577	Matrix Opino	Nitrate (N)	2012/01/13	103	%	80 - 120
	Spiked Blank	Nitrite (N)	2012/01/13	106	%	85 - 115
	Opinoa Biarin	Nitrate (N)	2012/01/13	98	%	85 - 115
	Method Blank	Nitrite (N)	2012/01/13	0.002 U, MDL=0.002	mg/L	00 110
	Motriod Biarin	Nitrate (N)	2012/01/13	0.02 U, MDL=0.02	mg/L	
	RPD	Nitrite (N)	2012/01/13	NC	g/_ %	25
	INI D	Nitrate (N)	2012/01/13	NC	%	25
2736989 LKA	RPD	Moisture	2012/01/14	3.0	%	20
2737017 LKA	RPD	Moisture	2012/01/14	2.2	%	20
2737267 C_N	Matrix Spike	Total Kjeldahl Nitrogen	2012/01/14	105	%	75 - 125
2/0/20/ 0_11	QC Standard	Total Kjeldahl Nitrogen	2012/01/16	90	%	75 - 125
	Method Blank	Total Kjeldahl Nitrogen	2012/01/16	3 U, MDL=3	ug/g	75 125
	RPD	Total Kjeldahl Nitrogen	2012/01/16	10.1	ug/g %	40
2737303 ZZ		o-Terphenyl	2012/01/16	86	% %	50 - 130
2131303 ZZ	Matrix Spike		2012/01/16		% %	
		F2 (C10-C16 Hydrocarbons)		94		50 - 130
		F3 (C16-C34 Hydrocarbons)	2012/01/16	99	%	50 - 130
	On the st Disselv	F4 (C34-C50 Hydrocarbons)	2012/01/16	94	%	50 - 130
	Spiked Blank	o-Terphenyl	2012/01/16	88	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2012/01/16	96	%	70 - 130
		F3 (C16-C34 Hydrocarbons)	2012/01/16	100	%	70 - 130
		F4 (C34-C50 Hydrocarbons)	2012/01/16	96	%	70 - 130
	Method Blank	o-Terphenyl	2012/01/16	92	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2012/01/16	2.0 U, MDL=2.0	ug/g	
		F3 (C16-C34 Hydrocarbons)	2012/01/16	2.0 U, MDL=2.0	ug/g	
		F4 (C34-C50 Hydrocarbons)	2012/01/16	2.0 U, MDL=2.0	ug/g	
	RPD	F2 (C10-C16 Hydrocarbons)	2012/01/16	NC	%	30
		F3 (C16-C34 Hydrocarbons)	2012/01/16	NC	%	30
		F4 (C34-C50 Hydrocarbons)	2012/01/16	NC	%	30
2737318 C_N	Matrix Spike	Total Kjeldahl Nitrogen (TKN)	2012/01/16	NC	%	80 - 120
	QC Standard	Total Kjeldahl Nitrogen (TKN)	2012/01/16	88	%	85 - 115
	Spiked Blank	Total Kjeldahl Nitrogen (TKN)	2012/01/16	94	%	85 - 115
	Method Blank	Total Kjeldahl Nitrogen (TKN)	2012/01/16	0.05 J, MDL=0.02	mg/L	
	RPD	Total Kjeldahl Nitrogen (TKN)	2012/01/16	4.7	%	20
2737322 JBW	Matrix Spike	Total Aluminum (AI)	2012/01/16	109	%	80 - 120
		Total Antimony (Sb)	2012/01/16	111	%	80 - 120
		Total Arsenic (As)	2012/01/16	103	%	80 - 120
		Total Barium (Ba)	2012/01/16	102	%	80 - 120
		Total Beryllium (Be)	2012/01/16	105	%	80 - 120
		Total Bismuth (Bi)	2012/01/16	103	%	80 - 120
		Total Boron (B)	2012/01/16	111	%	80 - 120
		Total Cadmium (Cd)	2012/01/16	106	%	80 - 120
		Total Calcium (Ca)	2012/01/16	NC	%	80 - 120
		Total Chromium (Cr)	2012/01/16	103	%	80 - 120
		Total Cobalt (Co)	2012/01/16	104	%	80 - 120
		Total Copper (Cu)	2012/01/16	100	%	80 - 120
		Total Iron (Fe)	2012/01/16	105	%	80 - 120
		Total Lead (Pb)	2012/01/16	101	%	80 - 120
		Total Lithium (Li)	2012/01/16	107	%	80 - 120
		Total Magnesium (Mg)	2012/01/16	107	% %	80 - 120
		Total Manganese (Mn)	2012/01/16	105		80 - 120
		Total Manganese (Mn) Total Molybdenum (Mo)	2012/01/16	108	% %	80 - 120
		i olai Moiybu c iiuiII (MO)	2012/01/10	108	/0	00 - 120

Attention: Ximena Druar Client Project #: EBA #2

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: MB204400

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
2737322 JBW	Matrix Spike	Total Nickel (Ni)	2012/01/16		100	%	80 - 120
		Total Phosphorus (P)	2012/01/16		112	%	80 - 120
		Total Potassium (K)	2012/01/16		106	%	80 - 120
		Total Silicon (Si)	2012/01/16		105	%	80 - 120
		Total Selenium (Se)	2012/01/16		105	%	80 - 120
		Total Silver (Ag)	2012/01/16		101	%	80 - 120
		Total Sodium (Na)	2012/01/16		112	%	80 - 120
		Total Strontium (Sr)	2012/01/16		107	%	80 - 120
		Total Tellurium (Te)	2012/01/16		104	%	80 - 120
		Total Thallium (TI)	2012/01/16		101	%	80 - 120
		Total Tin (Sn)	2012/01/16		110	%	80 - 120
		Total Titanium (Ti)	2012/01/16		104	%	80 - 120
		Total Tungsten (W)	2012/01/16		104	%	80 - 120
		Total Uranium (U)	2012/01/16		101	%	80 - 120
		Total Vanadium (V)	2012/01/16		104	%	80 - 120
		Total Zinc (Zn)	2012/01/16		104	%	80 - 120
		Total Zirconium (Zr)	2012/01/16		112	%	80 - 120
		Total Cesium (Cs)	2012/01/16		98	%	80 - 120
	0 "	Total Rubidium (Rb)	2012/01/16		103	%	80 - 120
	Spiked Blank	Total Aluminum (Al)	2012/01/16		114	%	80 - 120
		Total Antimony (Sb)	2012/01/16		113	%	80 - 120
		Total Arsenic (As)	2012/01/16		106	%	80 - 120
		Total Barium (Ba)	2012/01/16		105	%	80 - 120
		Total Beryllium (Be)	2012/01/16		107	%	80 - 120
		Total Bismuth (Bi)	2012/01/16		105	%	80 - 120
		Total Boron (B)	2012/01/16		112	%	80 - 120
		Total Cadmium (Cd)	2012/01/16		109	%	80 - 120
		Total Calcium (Ca)	2012/01/16		110	%	80 - 120
		Total Chromium (Cr)	2012/01/16		108	%	80 - 120
		Total Cobalt (Co)	2012/01/16		108	%	80 - 120
		Total Copper (Cu)	2012/01/16		104	%	80 - 120
		Total Iron (Fe)	2012/01/16		110	%	80 - 120
		Total Lead (Pb)	2012/01/16		105	%	80 - 120
		Total Lithium (Li)	2012/01/16		108	%	80 - 120
		Total Magnesium (Mg)	2012/01/16		114	%	80 - 120
		Total Manganese (Mn)	2012/01/16		109	%	80 - 120
		Total Molybdenum (Mo)	2012/01/16		110	%	80 - 120
		Total Nickel (Ni)	2012/01/16		104	%	80 - 120
		Total Phosphorus (P)	2012/01/16		113	%	80 - 120
		Total Potassium (K)	2012/01/16		111	%	80 - 120
		Total Silicon (Si)	2012/01/16		110	%	80 - 120
		Total Selenium (Se)	2012/01/16		112	%	80 - 120
		Total Silver (Ag)	2012/01/16		105	%	80 - 120
		Total Sodium (Na)	2012/01/16		117	%	80 - 120
		Total Strontium (Sr)	2012/01/16		111	%	80 - 120
		Total Tellurium (Te)	2012/01/16		106	%	80 - 120
		Total Thallium (TI)	2012/01/16		104	%	80 - 120
		Total Tin (Sn)	2012/01/16		111	%	80 - 120
		Total Titanium (Ti)	2012/01/16		111	%	80 - 120
		Total Tungsten (W)	2012/01/16		107	%	80 - 120
		Total Uranium (U)	2012/01/16		105	%	80 - 120
		Total Vanadium (V)	2012/01/16		108	%	80 - 120
		Total Zinc (Zn)	2012/01/16		108	%	80 - 120
		Total Zirconium (Zr)	2012/01/16		114	%	80 - 120
		Total Cesium (Cs)	2012/01/16		100	%	80 - 120

Attention: Ximena Druar Client Project #: EBA #2

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: MB204400

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
2737322 JBW	Spiked Blank	Total Rubidium (Rb)	2012/01/16		106	%	80 - 120
	Method Blank	Total Aluminum (Al)	2012/01/16	9.3, M	IDL=5.0	ug/L	
		Total Antimony (Sb)	2012/01/16	0.50 U, M		ug/L	
		Total Arsenic (As)	2012/01/16	1.0 U, M		ug/L	
		Total Barium (Ba)	2012/01/16	2.0 U, M		ug/L	
		Total Beryllium (Be)	2012/01/16	0.50 U, M		ug/L	
		Total Bismuth (Bi)	2012/01/16	1.0 U, M		ug/L	
		Total Boron (B)	2012/01/16	10 U, M	IDL=10	ug/L	
		Total Cadmium (Cd)	2012/01/16	0.10 U, M	IDL=0.10	ug/L	
		Total Calcium (Ca)	2012/01/16	200 U, M	IDL=200	ug/L	
		Total Chromium (Cr)	2012/01/16	5.0 U, M	IDL=5.0	ug/L	
		Total Cobalt (Co)	2012/01/16	0.50 U, M		ug/L	
		Total Copper (Cu)	2012/01/16	1.0 U, M	IDL=1.0	ug/L	
		Total Iron (Fe)	2012/01/16	50 U, M		ug/L	
		Total Lead (Pb)	2012/01/16	0.50 U, M	IDL=0.50	ug/L	
		Total Lithium (Li)	2012/01/16	5.0 U, M	IDL=5.0	ug/L	
		Total Magnesium (Mg)	2012/01/16	50 U, M		ug/L	
		Total Manganese (Mn)	2012/01/16	2.0 U, M	IDL=2.0	ug/L	
		Total Molybdenum (Mo)	2012/01/16	0.50 U, M	IDL=0.50	ug/L	
		Total Nickel (Ni)	2012/01/16	1.0 U, M	IDL=1.0	ug/L	
		Total Phosphorus (P)	2012/01/16	50 U, M	IDL=50	ug/L	
		Total Potassium (K)	2012/01/16	200 U, M	IDL=200	ug/L	
		Total Silicon (Si)	2012/01/16	50 U, M	IDL=50	ug/L	
		Total Selenium (Se)	2012/01/16	2.0 U, M	IDL=2.0	ug/L	
		Total Silver (Ag)	2012/01/16	0.10 U, M	IDL=0.10	ug/L	
		Total Sodium (Na)	2012/01/16	100 U, M	IDL=100	ug/L	
		Total Strontium (Sr)	2012/01/16	1.0 U, M	IDL=1.0	ug/L	
		Total Tellurium (Te)	2012/01/16	1.0 U, M	IDL=1.0	ug/L	
		Total Thallium (TI)	2012/01/16	0.050 U, M	IDL=0.050	ug/L	
		Total Tin (Sn)	2012/01/16	1.0 U, M		ug/L	
		Total Titanium (Ti)	2012/01/16	5.0 U, M	IDL=5.0	ug/L	
		Total Tungsten (W)	2012/01/16	1.0 U, M	IDL=1.0	ug/L	
		Total Uranium (U)	2012/01/16	0.10 U, M	IDL=0.10	ug/L	
		Total Vanadium (V)	2012/01/16	0.50 U, M	IDL=0.50	ug/L	
		Total Zinc (Zn)	2012/01/16	5.2, M	IDL=5.0	ug/L	
		Total Zirconium (Zr)	2012/01/16	1.0 U, M	IDL=1.0	ug/L	
		Total Cesium (Cs)	2012/01/16	0.040 U, M	IDL=0.040	ug/L	
		Total Rubidium (Rb)	2012/01/16	0.040 U, M	IDL=0.040	ug/L	
	RPD	Total Aluminum (AI)	2012/01/16	2.7		%	20
		Total Antimony (Sb)	2012/01/16	NC		%	20
		Total Arsenic (As)	2012/01/16	NC		%	20
		Total Barium (Ba)	2012/01/16	NC		%	20
		Total Beryllium (Be)	2012/01/16	NC		%	20
		Total Bismuth (Bi)	2012/01/16	NC		%	20
		Total Boron (B)	2012/01/16	NC		%	20
		Total Cadmium (Cd)	2012/01/16	NC		%	20
		Total Calcium (Ca)	2012/01/16	3.5		%	20
		Total Chromium (Cr)	2012/01/16	NC		%	20
		Total Cobalt (Co)	2012/01/16	NC		%	20
		Total Copper (Cu)	2012/01/16	NC		%	20
		Total Iron (Fe)	2012/01/16	NC		%	20
		Total Lead (Pb)	2012/01/16	NC		%	20
		Total Lithium (Ĺi)	2012/01/16	NC		%	20
		Total Magnesium (Mg)	2012/01/16	2.5		%	20
		Total Manganese (Mn)	2012/01/16	1.6		%	20

Attention: Ximena Druar Client Project #: EBA #2

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: MB204400

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
2737322 JBW	RPD	Total Molybdenum (Mo)	2012/01/16	NC		%	20
		Total Nickel (Ni)	2012/01/16	NC		%	20
		Total Potassium (K)	2012/01/16	5.5		%	20
		Total Silicon (Si)	2012/01/16	3.9		%	20
		Total Selenium (Se)	2012/01/16	NC		%	20
		Total Silver (Ag)	2012/01/16	NC		%	20
		Total Sodium (Na)	2012/01/16	3.2		%	20
		Total Strontium (Sr)	2012/01/16	4.4		%	20
		Total Tellurium (Te)	2012/01/16	NC		%	20
		Total Thallium (TI)	2012/01/16	NC		%	20
		Total Tin (Sn)	2012/01/16	NC		%	20
		Total Titanium (Ti)	2012/01/16	NC		%	20
		Total Tungsten (W)	2012/01/16	NC		%	20
		Total Uranium (U)	2012/01/16	NC		%	20
		Total Vanadium (V)	2012/01/16	NC		%	20
		Total Zinc (Zn)	2012/01/16	4.1		%	20
		Total Zirconium (Zr)	2012/01/16	NC		%	20
2737377 BAV	Matrix Spike						
	[ME9938-01]	Nitrite (N)	2012/01/17		102	%	75 - 125
		Nitrate (N)	2012/01/17		107	%	80 - 120
	Spiked Blank	Nitrite (N)	2012/01/17		98	%	75 - 125
	•	Nitrate (N)	2012/01/17		104	%	85 - 115
	Method Blank	Nitrite (N)	2012/01/17	0.1 U, M	1DL=0.1	ug/g	
		Nitrate (N)	2012/01/17	0.4 U, M	1DL=0.4	ug/g	
		Nitrate + Nitrite	2012/01/17	0.6 U, M	1DL=0.6	ug/g	
	RPD [ME9938-01]	Nitrite (N)	2012/01/17	NC		%	25
	-	Nitrate (N)	2012/01/17	NC		%	25
		Nitrate + Nitrite	2012/01/17	NC		%	25
2737751 SUK	Matrix Spike	Acid Extractable Phosphorus (P)	2012/01/16		NC	%	75 - 125
	QC Standard	Acid Extractable Phosphorus (P)	2012/01/16		101	%	75 - 125
	Method Blank	Acid Extractable Phosphorus (P)	2012/01/16	<20		ug/g	

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was not sufficiently significant to permit a reliable recovery calculation.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

Validation Signature Page

Maxxam Job #: B204400

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

CRISTINA CARRIERE, Scientific Services

EWA PRANJIC, M.Sc., C.Chem, Scientific Specialist

M. Risheld MEDHAT RISKALLAH, Manager, Hydrocarbon Department

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: EBA #2 Your C.O.C. #: 2115

Attention: Ximena Druar SiREM - Site Recovery & Management 130 Research Lane Suite 2 Guelph, ON CANADA

N1G 5G3

Report Date: 2012/01/18

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B204400 Received: 2012/01/11. 10:44

Sample Matrix: Soil # Samples Received: 8

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Petroleum Hydrocarbons F2-F4 in Soil	2	2012/01/16	2012/01/16	CAM SOP-00316	CCME CWS
Total Metals Analysis by ICP	6	2012/01/16	2012/01/16	CAM SOP-00408	EPA 6010
Moisture	8	N/A	2012/01/14	CAM SOP-00445	R.Carter,1993
Nitrate (NO3) and Nitrite (NO2) in Soil	6	N/A	2012/01/17	CAM SOP-00440	SM 4500 NO3I/NO2B
pH CaCl2 EXTRACT	6	2012/01/16	2012/01/16	CAM SOP-00413	SM 4500 H
Total Kjeldahl Nitrogen - Soil	6	2012/01/16	2012/01/16	CAM SOP-00454	EPA 351.2 Rev 2

Sample Matrix: Water # Samples Received: 1

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Conductivity	1	N/A	2012/01/13 CAM SOP-00448	SM 2510
Total Metals Analysis by ICPMS	1	N/A	2012/01/16 CAM SOP-00447	EPA 6020
Nitrate (NO3) and Nitrite (NO2) in Water ()	1	N/A	2012/01/13 CAM SOP-00440	SM 4500 NO3I/NO2B
рН	1	N/A	2012/01/13 CAM SOP-00448	SM 4500H
Total Kjeldahl Nitrogen in Water	1	2012/01/16	2012/01/16 CAM SOP-00454	EPA 351.2 Rev 2

Remarks:

Maxxam Analytics has performed all analytical testing herein in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Reporting results to two significant figures at the RDL is to permit statistical evaluation and is not intended to be an indication of analytical precision.

The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following the 'Alberta Environment Draft Addenda to the CWS-PHC, Appendix 6, Validation of Alternate Methods'. Documentation is

Your Project #: EBA #2 Your C.O.C. #: 2115

Attention: Ximena Druar SiREM - Site Recovery & Management 130 Research Lane Suite 2 Guelph, ON CANADA N1G 5G3

Report Date: 2012/01/18

CERTIFICATE OF ANALYSIS -2-

available upon request. Maxxam has made the following improvements to the CWS-PHC reference benchmark method: (i) Headspace for F1; and, (ii) Mechanical extraction for F2-F4. Note: F4G cannot be added to the C6 to C50 hydrocarbons. The extraction date for samples field preserved with methanol for F1 and Volatile Organic Compounds is considered to be the date sampled.

Maxxam Analytics is accredited by SCC (Lab ID 97) for all specific parameters as required by Ontario Regulation 153/04. Maxxam Analytics is limited in liability to the actual cost of analysis unless otherwise agreed in writing. There is no other warranty expressed or implied. Samples will be retained at Maxxam Analytics for three weeks from receipt of data or as per contract.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

JOLANTA GORALCZYK, Project Manager Email: JGoralczyk@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 2

SiREM - Site Recovery & Management

Client Project #: EBA #2

Sampler Initials: RS

RESULTS OF ANALYSES OF SOIL

Maxxam ID		ME9935	ME9936		ME9937	ME9938	ME9938		
Sampling Date		2012/01/10	2012/01/10		2012/01/10	2012/01/10	2012/01/10		
COC Number		2115	2115		2115	2115	2115		
	Units	EBA2-100112-1	EBA2-100112-2	QC Batch	EBA2-100112-3	EBA2-100112-4	EBA2-100112-4	RDL	QC Batch
							Lab-Dup		
norganics									
Moisture	%	15	12	2737017	14	14		1	2736989
Available (CaCl2) pH	рН				7.34	7.36			2737320
Total Kjeldahl Nitrogen	ug/g				232	191		10	2737267
Nitrite (N)	ug/g				0.2 J	0.2 J	0.3 J	0.5	2737377
Nitrate (N)	ug/g				0.4 U	0.4 U	0.4 U	2	2737377
Nitrate + Nitrite	ug/g				0.6 U	0.6 U	0.6 U	3	2737377

Maxxam ID		ME9939		ME9940		ME9941	ME9941	ME9942		
Sampling Date		2012/01/10		2012/01/10		2012/01/10	2012/01/10	2012/01/10		
COC Number		2115		2115		2115	2115	2115		
	Units	EBA2-100112-5	RDL	EBA2-100112-6	RDL	EBA2-100112-7	EBA2-100112-7	EBA2-100112-8	RDL	QC Batch
							Lab-Dup			
				1				·		
Inorganics										
Moisture	%	14	1	14	1	12		13	1	2736989
Available (CaCl2) pH	рН	6.95		6.95		7.31	7.26	7.19		2737320
Total Kjeldahl Nitrogen	ug/g	344	10	599	50	218		213	10	2737267
Nitrite (N)	ug/g	0.1 U	0.5	0.1 U	0.5	0.2 J		0.2 J	0.5	2737377
Nitrate (N)	ug/g	0.4 U	2	0.4 U	2	0.4 U		0.4 U	2	2737377
Nitrate + Nitrite	ug/g	0.6 U	3	0.6 U	3	0.6 U		0.6 U	3	2737377

SiREM - Site Recovery & Management

Client Project #: EBA #2

Sampler Initials: RS

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		ME9937	ME9938	ME9939	ME9940	ME9941		
Sampling Date		2012/01/10	2012/01/10	2012/01/10	2012/01/10	2012/01/10		
COC Number		2115	2115	2115	2115	2115		
	Units	EBA2-100112-3	EBA2-100112-4	EBA2-100112-5	EBA2-100112-6	EBA2-100112-7	RDL	QC Batch

Metals								
Acid Extractable Phosphorus (P)	ug/g	240	280	880	750	220	20	2737751

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

	Units	EBA2-100112-8	RDL	QC Batch
COC Number		2115		
Sampling Date		2012/01/10		
Maxxam ID		ME9942		

Metals				
Acid Extractable Phosphorus (P)	ug/g	230	20	2737751

SiREM - Site Recovery & Management

Client Project #: EBA #2

Sampler Initials: RS

PETROLEUM HYDROCARBONS (CCME)

	Units	EBA2-100112-1	EBA2-100112-2	RDL	QC Batch
COC Number		2115	2115		
Sampling Date		2012/01/10	2012/01/10		
Maxxam ID		ME9935	ME9936		

F2-F4 Hydrocarbons					
F2 (C10-C16 Hydrocarbons)	ug/g	770	820	10	2737303
F3 (C16-C34 Hydrocarbons)	ug/g	340	370	10	2737303
F4 (C34-C50 Hydrocarbons)	ug/g	2.0 U	2.0 U	10	2737303
Reached Baseline at C50	ug/g	Yes	Yes		2737303
Surrogate Recovery (%)					
o-Terphenyl	%	91	95		2737303

SiREM - Site Recovery & Management

Client Project #: EBA #2

Sampler Initials: RS

RESULTS OF ANALYSES OF WATER

	Units	S-2436	RDL	QC Batch
COC Number		2115		
Sampling Date		2012/01/10		
Maxxam ID		ME9943		

Inorganics				
Conductivity	umho/cm	2100	1	2735481
Total Kjeldahl Nitrogen (TKN)	mg/L	400	10	2737318
рН	рН	7.14		2735482
Nitrite (N)	mg/L	0.003 J	0.01	2735897
Nitrate (N)	mg/L	0.02 U	0.1	2735897
Nitrate + Nitrite	mg/L	0.02 U	0.1	2735897

SiREM - Site Recovery & Management

Client Project #: EBA #2

Sampler Initials: RS

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		ME9943		
Sampling Date		2012/01/10		
COC Number		2115		
	Units	S-2436	RDL	QC Batch

Metals				
Total Aluminum (Al)	ug/L	850000	50	2737322
Total Antimony (Sb)	ug/L	54	5.0	2737322
Total Arsenic (As)	ug/L	17	10	2737322
Total Barium (Ba)	ug/L	560	20	2737322
Total Beryllium (Be)	ug/L	5.0 U	5.0	2737322
Total Bismuth (Bi)	ug/L	81	10	2737322
Total Boron (B)	ug/L	100 U	100	2737322
Total Cadmium (Cd)	ug/L	22	1.0	2737322
Total Calcium (Ca)	ug/L	140000	2000	2737322
Total Chromium (Cr)	ug/L	180	50	2737322
Total Cobalt (Co)	ug/L	15	5.0	2737322
Total Copper (Cu)	ug/L	1400	10	2737322
Total Iron (Fe)	ug/L	61000	1000	2737322
Total Lead (Pb)	ug/L	120	5.0	2737322
Total Lithium (Li)	ug/L	50 U	50	2737322
Total Magnesium (Mg)	ug/L	42000	500	2737322
Total Manganese (Mn)	ug/L	1000	20	2737322
Total Molybdenum (Mo)	ug/L	51	5.0	2737322
Total Nickel (Ni)	ug/L	200	10	2737322
Total Phosphorus (P)	ug/L	290000	10000	2737322
Total Potassium (K)	ug/L	34000	2000	2737322
Total Silicon (Si)	ug/L	15000	500	2737322
Total Selenium (Se)	ug/L	49	20	2737322
Total Silver (Ag)	ug/L	7.2	1.0	2737322
Total Sodium (Na)	ug/L	420000	1000	2737322
Total Strontium (Sr)	ug/L	370	10	2737322
Total Tellurium (Te)	ug/L	10 U	10	2737322
Total Thallium (TI)	ug/L	0.50 U	0.50	2737322
Total Tin (Sn)	ug/L	70	10	2737322
Total Titanium (Ti)	ug/L	290	100	2737322
Total Tungsten (W)	ug/L	12	10	2737322
Total Uranium (U)	ug/L	18	1.0	2737322
, ,		ı	-1	1

SiREM - Site Recovery & Management

Client Project #: EBA #2

Sampler Initials: RS

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		ME9943		
Sampling Date		2012/01/10		
COC Number		2115		
	Units	S-2436	RDL	QC Batch

Total Vanadium (V)	ug/L	33	5.0	2737322
Total Zinc (Zn)	ug/L	23000	50	2737322
Total Zirconium (Zr)	ug/L	50	10	2737322
Total Cesium (Cs)	ug/L	1.3 J	2.0	2737322
Total Rubidium (Rb)	ug/L	49	2.0	2737322

SiREM - Site Recovery & Management

Client Project #: EBA #2

Sampler Initials: RS

Test Summary

Maxxam ID ME9935

Sample ID EBA2-100112-1

Matrix Soil

Collected 2012/01/10

Shipped

Received 2012/01/11

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2737303	2012/01/16	2012/01/16	ZHIYUE (FRANK) ZHU
Moisture	BAL	2737017	N/A	2012/01/14	LAKHVIR KALER

Maxxam ID ME9936

Sample ID EBA2-100112-2

Matrix Soil

Shipped

Collected 2012/01/10

Received 2012/01/11

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2737303	2012/01/16	2012/01/16	ZHIYUE (FRANK) ZHU
Moisture	BAL	2737017	N/A	2012/01/14	LAKHVIR KALER

Maxxam ID ME9937 Sample ID EBA2-100112-3

IIIpie ID LBA2-100112-3

Matrix Soil

Collected 2012/01/10

Shipped

Received 2012/01/11

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Total Metals Analysis by ICP	ICP	2737751	2012/01/16	2012/01/16	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2736989	N/A	2012/01/14	LAKHVIR KALER
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2737377	N/A	2012/01/17	BAVANI KAILAYA
pH CaCl2 EXTRACT		2737320	2012/01/16	2012/01/16	YOGESH PATEL
Total Kjeldahl Nitrogen - Soil	AC	2737267	2012/01/16	2012/01/16	CHANDRA NANDLAL

Maxxam ID ME9938 Sample ID EBA2-100112-4

Matrix Soil

Collected 2012/01/10

Shipped

Received 2012/01/11

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Total Metals Analysis by ICP	ICP	2737751	2012/01/16	2012/01/16	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2736989	N/A	2012/01/14	LAKHVIR KALER
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2737377	N/A	2012/01/17	BAVANI KAILAYA
pH CaCl2 EXTRACT		2737320	2012/01/16	2012/01/16	YOGESH PATEL
Total Kieldahl Nitrogen - Soil	AC.	2737267	2012/01/16	2012/01/16	CHANDRA NANDI AI

Maxxam ID ME9938 Dup Sample ID EBA2-100112-4

Matrix Soil

Collected 2012/01/10

Shipped

Received 2012/01/11

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2737377	N/A	2012/01/17	BAVANI KAILAYA

SiREM - Site Recovery & Management

Client Project #: EBA #2

Sampler Initials: RS

Test Summary

Maxxam ID ME9939 Collected 2012/01/10 **Sample ID** EBA2-100112-5 Shipped

Matrix Soil Received 2012/01/11

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Total Metals Analysis by ICP	ICP	2737751	2012/01/16	2012/01/16	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2736989	N/A	2012/01/14	LAKHVIR KALER
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2737377	N/A	2012/01/17	BAVANI KAILAYA
pH CaCl2 EXTRACT	•	2737320	2012/01/16	2012/01/16	YOGESH PATEL
Total Kjeldahl Nitrogen - Soil	AC	2737267	2012/01/16	2012/01/16	CHANDRA NANDLAL

Maxxam ID ME9940 Collected 2012/01/10 **Sample ID** EBA2-100112-6 Shipped

Received 2012/01/11 Matrix Soil

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Total Metals Analysis by ICP	ICP	2737751	2012/01/16	2012/01/16	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2736989	N/A	2012/01/14	LAKHVIR KALER
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2737377	N/A	2012/01/17	BAVANI KAILAYA
pH CaCl2 EXTRACT		2737320	2012/01/16	2012/01/16	YOGESH PATEL
Total Kjeldahl Nitrogen - Soil	AC	2737267	2012/01/16	2012/01/16	CHANDRA NANDLAL

Maxxam ID ME9941 Collected 2012/01/10 **Sample ID** EBA2-100112-7

Shipped

Matrix Soil Received 2012/01/11

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Total Metals Analysis by ICP	ICP	2737751	2012/01/16	2012/01/16	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2736989	N/A	2012/01/14	LAKHVIR KALER
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2737377	N/A	2012/01/17	BAVANI KAILAYA
pH CaCl2 EXTRACT		2737320	2012/01/16	2012/01/16	YOGESH PATEL
Total Kjeldahl Nitrogen - Soil	AC	2737267	2012/01/16	2012/01/16	CHANDRA NANDLAL

Maxxam ID ME9941 Dup Collected 2012/01/10 Sample ID EBA2-100112-7 **Shipped**

Received 2012/01/11 Matrix Soil

Test Description Instrumentation Batch Extracted Analyzed **Analyst** pH CaCl2 EXTRACT 2012/01/16 2737320 2012/01/16 YOGESH PATEL

Maxxam ID ME9942 Collected 2012/01/10 Sample ID EBA2-100112-8 **Shipped** Received 2012/01/11 Matrix Soil

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Total Metals Analysis by ICP	ICP	2737751	2012/01/16	2012/01/16	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2736989	N/A	2012/01/14	LAKHVIR KALER
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2737377	N/A	2012/01/17	BAVANI KAILAYA
pH CaCl2 EXTRACT		2737320	2012/01/16	2012/01/16	YOGESH PATEL
Total Kjeldahl Nitrogen - Soil	AC	2737267	2012/01/16	2012/01/16	CHANDRA NANDLAL

SiREM - Site Recovery & Management

Client Project #: EBA #2

Sampler Initials: RS

Test Summary

 Maxxam ID
 ME9943
 Collected
 2012/01/10

 Sample ID
 S-2436
 Shipped

Matrix Water Received 2012/01/11

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Conductivity	COND	2735481	N/A	2012/01/13	YOGESH PATEL
Total Metals Analysis by ICPMS	ICP/MS	2737322	N/A	2012/01/16	JOHN BOWMAN
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	2735897	N/A	2012/01/13	BAVANI KAILAYA
pH	PH	2735482	N/A	2012/01/13	YOGESH PATEL
Total Kieldahl Nitrogen in Water	AC	2737318	2012/01/16	2012/01/16	CHANDRA NANDLAL

SiREM - Site Recovery & Management

Client Project #: EBA #2

Sampler Initials: RS

GEN	IER A	I C	OMI	MEN	ITS

Results relate only to the items tested.

Attention: Ximena Druar Client Project #: EBA #2

P.O. #: Site Location:

Quality Assurance Report Maxxam Job Number: MB204400

QA/QC Batch			Date Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
2735481 YPA	QC Standard	Conductivity	2012/01/13	101	%	85 - 115
27001011171	Method Blank	Conductivity	2012/01/13	0.4 J, MDL=0.2	umho/cm	00 110
	RPD	Conductivity	2012/01/13	0.06	%	25
2735897 BAV	Matrix Spike	Nitrite (N)	2012/01/13	104	%	80 - 120
		Nitrate (N)	2012/01/13	103	%	80 - 120
	Spiked Blank	Nitrite (N)	2012/01/13	106	%	85 - 115
		Nitrate (N)	2012/01/13	98	%	85 - 115
	Method Blank	Nitrite (N)	2012/01/13	0.002 U, MDL=0.002	mg/L	
		Nitrate (N)	2012/01/13	0.02 U, MDL=0.02	mg/L	
	RPD	Nitrite (N)	2012/01/13	NC	%	25
		Nitrate (Ń)	2012/01/13	NC	%	25
2736989 LKA	RPD	Moisture	2012/01/14	3.0	%	20
2737017 LKA	RPD	Moisture	2012/01/14	2.2	%	20
2737267 C_N	Matrix Spike	Total Kjeldahl Nitrogen	2012/01/16	105	%	75 - 125
	QC Standard	Total Kjeldahl Nitrogen	2012/01/16	90	%	75 - 125
	Method Blank	Total Kjeldahl Nitrogen	2012/01/16	3 U, MDL=3	ug/g	
	RPD	Total Kjeldahl Nitrogen	2012/01/16	10.1	%	40
2737303 ZZ	Matrix Spike	o-Terphenyl	2012/01/16	86	%	50 - 130
	·	F2 (C10-C16 Hydrocarbons)	2012/01/16	94	%	50 - 130
		F3 (C16-C34 Hydrocarbons)	2012/01/16	99	%	50 - 130
		F4 (C34-C50 Hydrocarbons)	2012/01/16	94	%	50 - 130
	Spiked Blank	o-Terphenyl	2012/01/16	88	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2012/01/16	96	%	70 - 130
		F3 (C16-C34 Hydrocarbons)	2012/01/16	100	%	70 - 130
		F4 (C34-C50 Hydrocarbons)	2012/01/16	96	%	70 - 130
	Method Blank	o-Terphenyl	2012/01/16	92	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2012/01/16	2.0 U, MDL=2.0	ug/g	
		F3 (C16-C34 Hydrocarbons)	2012/01/16	2.0 U, MDL=2.0	ug/g	
		F4 (C34-C50 Hydrocarbons)	2012/01/16	2.0 U, MDL=2.0	ug/g	
	RPD	F2 (C10-C16 Hydrocarbons)	2012/01/16	NC	%	30
		F3 (C16-C34 Hydrocarbons)	2012/01/16	NC	%	30
		F4 (C34-C50 Hydrocarbons)	2012/01/16	NC	%	30
2737318 C_N	Matrix Spike	Total Kjeldahl Nitrogen (TKN)	2012/01/16	NC	%	80 - 120
	QC Standard	Total Kjeldahl Nitrogen (TKN)	2012/01/16	88	%	85 - 115
	Spiked Blank	Total Kjeldahl Nitrogen (TKN)	2012/01/16	94	%	85 - 115
	Method Blank	Total Kjeldahl Nitrogen (TKN)	2012/01/16	0.05 J, MDL=0.02	mg/L	
	RPD	Total Kjeldahl Nitrogen (TKN)	2012/01/16	4.7	%	20
2737322 JBW	Matrix Spike	Total Aluminum (AI)	2012/01/16	109	%	80 - 120
		Total Antimony (Sb)	2012/01/16	111	%	80 - 120
		Total Arsenic (As)	2012/01/16	103	%	80 - 120
		Total Barium (Ba)	2012/01/16	102	%	80 - 120
		Total Beryllium (Be)	2012/01/16	105	%	80 - 120
		Total Bismuth (Bi)	2012/01/16	103	%	80 - 120
		Total Boron (B)	2012/01/16	111	%	80 - 120
		Total Cadmium (Cd)	2012/01/16	106	%	80 - 120
		Total Calcium (Ca)	2012/01/16	NC	%	80 - 120
		Total Chromium (Cr)	2012/01/16	103	%	80 - 120
		Total Cobalt (Co)	2012/01/16	104	%	80 - 120
		Total Copper (Cu)	2012/01/16	100	%	80 - 120
		Total Iron (Fe)	2012/01/16	105	%	80 - 120
		Total Lead (Pb)	2012/01/16	101	%	80 - 120
		Total Lithium (Ĺi)	2012/01/16	107	%	80 - 120
		Total Magnesium (Mg)	2012/01/16	109	%	80 - 120
		Total Manganese (Mn)	2012/01/16	105	%	80 - 120

Attention: Ximena Druar Client Project #: EBA #2

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: MB204400

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
2737322 JBW	Matrix Spike	Total Nickel (Ni)	2012/01/16		100	%	80 - 120
		Total Phosphorus (P)	2012/01/16		112	%	80 - 120
		Total Potassium (K)	2012/01/16		106	%	80 - 120
		Total Silicon (Si)	2012/01/16		105	%	80 - 120
		Total Selenium (Se)	2012/01/16		105	%	80 - 120
		Total Silver (Ag)	2012/01/16		101	%	80 - 120
		Total Sodium (Na)	2012/01/16		112	%	80 - 120
		Total Strontium (Sr)	2012/01/16		107	%	80 - 120
		Total Tellurium (Te)	2012/01/16		104	%	80 - 120
		Total Thallium (TI)	2012/01/16		101	%	80 - 120
		Total Tin (Sn)	2012/01/16		110	%	80 - 120
		Total Titanium (Ti)	2012/01/16		104	%	80 - 120
		Total Tungsten (W)	2012/01/16		104	%	80 - 120
		Total Uranium (U)	2012/01/16		101	%	80 - 120
		Total Vanadium (V)	2012/01/16		104	%	80 - 120
		Total Zinc (Zn)	2012/01/16		104	%	80 - 120
		Total Zirconium (Zr)	2012/01/16		112	%	80 - 120
		Total Cesium (Cs)	2012/01/16		98	%	80 - 120
	0 "	Total Rubidium (Rb)	2012/01/16		103	%	80 - 120
	Spiked Blank	Total Aluminum (Al)	2012/01/16		114	%	80 - 120
		Total Antimony (Sb)	2012/01/16		113	%	80 - 120
		Total Arsenic (As)	2012/01/16		106	%	80 - 120
		Total Barium (Ba)	2012/01/16		105	%	80 - 120
		Total Beryllium (Be)	2012/01/16		107	%	80 - 120
		Total Bismuth (Bi)	2012/01/16		105	%	80 - 120
		Total Boron (B)	2012/01/16		112	%	80 - 120
	Total Cadmium (Cd)	2012/01/16		109	%	80 - 120	
		Total Calcium (Ca)	2012/01/16		110	%	80 - 120
		Total Chromium (Cr)	2012/01/16		108	%	80 - 120
		Total Cobalt (Co)	2012/01/16		108	%	80 - 120
		Total Copper (Cu)	2012/01/16		104	%	80 - 120
		Total Iron (Fe)	2012/01/16		110	%	80 - 120
		Total Lead (Pb)	2012/01/16		105	%	80 - 120
		Total Lithium (Li)	2012/01/16		108	%	80 - 120
		Total Magnesium (Mg)	2012/01/16		114	%	80 - 120
		Total Manganese (Mn)	2012/01/16		109	%	80 - 120
	Total Molybdenum (Mo)	2012/01/16		110	%	80 - 120	
	Total Nickel (Ni)	2012/01/16		104	%	80 - 120	
	Total Phosphorus (P)	2012/01/16		113	%	80 - 120	
	Total Potassium (K)	2012/01/16		111	%	80 - 120	
	Total Silicon (Si)	2012/01/16		110	%	80 - 120	
	Total Selenium (Se)	2012/01/16		112	%	80 - 120	
	Total Silver (Ag)	2012/01/16		105	%	80 - 120	
	Total Sodium (Na)	2012/01/16		117	%	80 - 120	
	Total Strontium (Sr)	2012/01/16		111	%	80 - 120	
	Total Tellurium (Te)	2012/01/16		106	%	80 - 120	
	Total Thallium (TI)	2012/01/16		104	%	80 - 120	
	Total Tin (Sn)	2012/01/16		111	%	80 - 120	
		Total Titanium (Ti)	2012/01/16		111	%	80 - 120
		Total Tungsten (W)	2012/01/16		107	%	80 - 120
		Total Uranium (U)	2012/01/16		105	%	80 - 120
		Total Vanadium (V)	2012/01/16		108	%	80 - 120
		Total Zinc (Zn)	2012/01/16		108	%	80 - 120
		Total Zirconium (Zr)	2012/01/16		114	%	80 - 120
	Total Cesium (Cs)	2012/01/16		100	%	80 - 120	

SiREM - Site Recovery & Management

Attention: Ximena Druar Client Project #: EBA #2

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: MB204400

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
2737322 JBW	Spiked Blank	Total Rubidium (Rb)	2012/01/16		106	%	80 - 120
	Method Blank	Total Aluminum (Al)	2012/01/16	9.3, M	IDL=5.0	ug/L	
		Total Antimony (Sb)	2012/01/16	0.50 U, M		ug/L	
		Total Arsenic (As)	2012/01/16	1.0 U, M		ug/L	
		Total Barium (Ba)	2012/01/16	2.0 U, M		ug/L	
		Total Beryllium (Be)	2012/01/16	0.50 U, M		ug/L	
		Total Bismuth (Bi)	2012/01/16	1.0 U, M		ug/L	
		Total Boron (B)	2012/01/16	10 U, M	IDL=10	ug/L	
		Total Cadmium (Cd)	2012/01/16	0.10 U, M	IDL=0.10	ug/L	
		Total Calcium (Ca)	2012/01/16	200 U, M	IDL=200	ug/L	
		Total Chromium (Cr)	2012/01/16	5.0 U, M	IDL=5.0	ug/L	
		Total Cobalt (Co)	2012/01/16	0.50 U, M		ug/L	
		Total Copper (Cu)	2012/01/16	1.0 U, M	IDL=1.0	ug/L	
		Total Iron (Fe)	2012/01/16	50 U, M		ug/L	
		Total Lead (Pb)	2012/01/16	0.50 U, M	IDL=0.50	ug/L	
		Total Lithium (Li)	2012/01/16	5.0 U, M	IDL=5.0	ug/L	
		Total Magnesium (Mg)	2012/01/16	50 U, M		ug/L	
		Total Manganese (Mn)	2012/01/16	2.0 U, M	IDL=2.0	ug/L	
		Total Molybdenum (Mo)	2012/01/16	0.50 U, M	IDL=0.50	ug/L	
		Total Nickel (Ni)	2012/01/16	1.0 U, M	IDL=1.0	ug/L	
		Total Phosphorus (P)	2012/01/16	50 U, M	IDL=50	ug/L	
		Total Potassium (K)	2012/01/16	200 U, M	IDL=200	ug/L	
		Total Silicon (Si)	2012/01/16	50 U, M	IDL=50	ug/L	
		Total Selenium (Se)	2012/01/16	2.0 U, M	IDL=2.0	ug/L	
		Total Silver (Ag)	2012/01/16	0.10 U, M	IDL=0.10	ug/L	
		Total Sodium (Na)	2012/01/16	100 U, M	IDL=100	ug/L	
		Total Strontium (Sr)	2012/01/16	1.0 U, M	IDL=1.0	ug/L	
		Total Tellurium (Te)	2012/01/16	1.0 U, M	IDL=1.0	ug/L	
		Total Thallium (TI)	2012/01/16	0.050 U, M	IDL=0.050	ug/L	
		Total Tin (Sn)	2012/01/16	1.0 U, M		ug/L	
		Total Titanium (Ti)	2012/01/16	5.0 U, M	IDL=5.0	ug/L	
		Total Tungsten (W)	2012/01/16	1.0 U, M	IDL=1.0	ug/L	
		Total Uranium (U)	2012/01/16	0.10 U, M	IDL=0.10	ug/L	
		Total Vanadium (V)	2012/01/16	0.50 U, M	IDL=0.50	ug/L	
		Total Zinc (Zn)	2012/01/16	5.2, M	IDL=5.0	ug/L	
		Total Zirconium (Zr)	2012/01/16	1.0 U, M	IDL=1.0	ug/L	
		Total Cesium (Cs)	2012/01/16	0.040 U, M	IDL=0.040	ug/L	
		Total Rubidium (Rb)	2012/01/16	0.040 U, M	IDL=0.040	ug/L	
	RPD	Total Aluminum (AI)	2012/01/16	2.7		%	20
		Total Antimony (Sb)	2012/01/16	NC		%	20
		Total Arsenic (As)	2012/01/16	NC		%	20
		Total Barium (Ba)	2012/01/16	NC		%	20
		Total Beryllium (Be)	2012/01/16	NC		%	20
		Total Bismuth (Bi)	2012/01/16	NC		%	20
		Total Boron (B)	2012/01/16	NC		%	20
		Total Cadmium (Cd)	2012/01/16	NC		%	20
		Total Calcium (Ca)	2012/01/16	3.5		%	20
		Total Chromium (Cr)	2012/01/16	NC		%	20
		Total Cobalt (Co)	2012/01/16	NC		%	20
		Total Copper (Cu)	2012/01/16	NC		%	20
		Total Iron (Fe)	2012/01/16	NC		%	20
		Total Lead (Pb)	2012/01/16	NC		%	20
		Total Lithium (Ĺi)	2012/01/16	NC		%	20
		Total Magnesium (Mg)	2012/01/16	2.5		%	20
		Total Manganese (Mn)	2012/01/16	1.6		%	20

SiREM - Site Recovery & Management

Attention: Ximena Druar Client Project #: EBA #2

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: MB204400

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
2737322 JBW	RPD	Total Molybdenum (Mo)	2012/01/16	NC		%	20
		Total Nickel (Ni)	2012/01/16	NC		%	20
		Total Potassium (K)	2012/01/16	5.5		%	20
		Total Silicon (Si)	2012/01/16	3.9		%	20
		Total Selenium (Se)	2012/01/16	NC		%	20
		Total Silver (Ag)	2012/01/16	NC		%	20
		Total Sodium (Na)	2012/01/16	3.2		%	20
		Total Strontium (Sr)	2012/01/16	4.4		%	20
		Total Tellurium (Te)	2012/01/16	NC		%	20
		Total Thallium (TI)	2012/01/16	NC		%	20
		Total Tin (Sn)	2012/01/16	NC		%	20
		Total Titanium (Ti)	2012/01/16	NC		%	20
		Total Tungsten (W)	2012/01/16	NC		%	20
		Total Uranium (U)	2012/01/16	NC		%	20
		Total Vanadium (V)	2012/01/16	NC		%	20
		Total Zinc (Zn)	2012/01/16	4.1		%	20
		Total Zirconium (Zr)	2012/01/16	NC		%	20
2737377 BAV	Matrix Spike						
	[ME9938-01]	Nitrite (N)	2012/01/17		102	%	75 - 125
		Nitrate (N)	2012/01/17		107	%	80 - 120
	Spiked Blank	Nitrite (N)	2012/01/17		98	%	75 - 125
	•	Nitrate (N)	2012/01/17		104	%	85 - 115
	Method Blank	Nitrite (N)	2012/01/17	0.1 U, M	1DL=0.1	ug/g	
		Nitrate (N)	2012/01/17	0.4 U, M	1DL=0.4	ug/g	
		Nitrate + Nitrite	2012/01/17	0.6 U, M	1DL=0.6	ug/g	
	RPD [ME9938-01]	Nitrite (N)	2012/01/17	NC		%	25
	-	Nitrate (N)	2012/01/17	NC		%	25
		Nitrate + Nitrite	2012/01/17	NC		%	25
2737751 SUK	Matrix Spike	Acid Extractable Phosphorus (P)	2012/01/16		NC	%	75 - 125
	QC Standard	Acid Extractable Phosphorus (P)	2012/01/16		101	%	75 - 125
	Method Blank	Acid Extractable Phosphorus (P)	2012/01/16	<20		ug/g	

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was not sufficiently significant to permit a reliable recovery calculation.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

Validation Signature Page

Maxxam Job #: B204400

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

CRISTINA CARRIERE, Scientific Services

EWA PRANJIC, M.Sc., C.Chem, Scientific Specialist

M. Risheld MEDHAT RISKALLAH, Manager, Hydrocarbon Department

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: EBA Your C.O.C. #: na

Attention: Ximena Druar
SiREM - Site Recovery & Management
130 Research Lane
Suite 2
Guelph, ON
CANADA
N1G 5G3

Report Date: 2012/01/31

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B211501 Received: 2012/01/25, 09:30

Sample Matrix: Soil # Samples Received: 4

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Petroleum Hydrocarbons F2-F4 in Soil	4	2012/01/30	2012/01/30	CAM SOP-00316	CCME CWS
Moisture	4	N/A	2012/01/28	CAM SOP-00445	R.Carter,1993

Remarks:

Maxxam Analytics has performed all analytical testing herein in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Reporting results to two significant figures at the RDL is to permit statistical evaluation and is not intended to be an indication of analytical precision.

The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following the 'Alberta Environment Draft Addenda to the CWS-PHC, Appendix 6, Validation of Alternate Methods'. Documentation is available upon request. Maxxam has made the following improvements to the CWS-PHC reference benchmark method: (i) Headspace for F1; and, (ii) Mechanical extraction for F2-F4. Note: F4G cannot be added to the C6 to C50 hydrocarbons. The extraction date for samples field preserved with methanol for F1 and Volatile Organic Compounds is considered to be the date sampled.

Maxxam Analytics is accredited by SCC (Lab ID 97) for all specific parameters as required by Ontario Regulation 153/04. Maxxam Analytics is limited in liability to the actual cost of analysis unless otherwise agreed in writing. There is no other warranty expressed or implied. Samples will be retained at Maxxam Analytics for three weeks from receipt of data or as per contract.

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: EBA Your C.O.C. #: na

Attention: Ximena Druar SiREM - Site Recovery & Management 130 Research Lane Suite 2 Guelph, ON CANADA N1G 5G3

Report Date: 2012/01/31

CERTIFICATE OF ANALYSIS -2-

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

JOLANTA GORALCZYK, Project Manager Email: JGoralczyk@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 2

SiREM - Site Recovery & Management

Client Project #: EBA

Sampler Initials: RS

RESULTS OF ANALYSES OF SOIL

Maxxam ID		MI5238	MI5238	MI5239	MI5240	MI5241		
Sampling Date		2012/01/24	2012/01/24	2012/01/24	2012/01/24	2012/01/24		
		11:30	11:30	11:30	11:30	11:30		
COC Number		na	na	na	na	na		
	Units	EBA-240112-5A	EBA-240112-5A	EBA-240112-6A	EBA-240112-7A	EBA-240112-8A	RDL	QC Batch
			Lab-Dup					
Inorganics								
Moisture	%	12	12	11	10	1.2	1.0	2749469

SiREM - Site Recovery & Management

Client Project #: EBA

Sampler Initials: RS

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		MI5238	MI5239	MI5240	MI5241		
Sampling Date		2012/01/24	2012/01/24	2012/01/24	2012/01/24		
		11:30	11:30	11:30	11:30		
COC Number		na	na	na	na		
	Units	EBA-240112-5A	EBA-240112-6A	EBA-240112-7A	EBA-240112-8A	RDL	QC Batch

F2-F4 Hydrocarbons							
F2 (C10-C16 Hydrocarbons)	ug/g	560	560	570	480	10	2749849
F3 (C16-C34 Hydrocarbons)	ug/g	290	280	320	380	10	2749849
F4 (C34-C50 Hydrocarbons)	ug/g	2.0 U	2.0 U	2.0 U	2.0 U	10	2749849
Reached Baseline at C50	ug/g	Yes	Yes	Yes	Yes		2749849
Surrogate Recovery (%)							
o-Terphenyl	%	88	94	89	95		2749849

SiREM - Site Recovery & Management

Client Project #: EBA

Sampler Initials: RS

Test Summary

Maxxam ID MI5238 Sample ID EBA-240112-5A

Shipped

Collected 2012/01/24

Matrix Soil

Received 2012/01/25

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2749849	2012/01/30	2012/01/30	ZHIYUE (FRANK) ZHU
Moisture	BAL	2749469	N/A	2012/01/28	MIN YANG

Maxxam ID MI5238 Dup Sample ID EBA-240112-5A Collected 2012/01/24

Shipped

Matrix Soil

Received 2012/01/25

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Moisture	BAL	2749469	N/A	2012/01/28	MIN YANG

Maxxam ID MI5239 Sample ID EBA-240112-6A Matrix Soil

Collected 2012/01/24

Shipped

Received 2012/01/25

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2749849	2012/01/30	2012/01/30	ZHIYUE (FRANK) ZHU
Moisture	BAL	2749469	N/A	2012/01/28	MIN YANG

Maxxam ID MI5240 Sample ID EBA-240112-7A Collected 2012/01/24

Shipped

Matrix Soil

Received 2012/01/25

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2749849	2012/01/30	2012/01/30	ZHIYUE (FRANK) ZHU
Moisture	BAL	2749469	N/A	2012/01/28	MIN YANG

Maxxam ID MI5241 Sample ID EBA-240112-8A Collected 2012/01/24

Shipped

Matrix Soil

Received 2012/01/25

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2749849	2012/01/30	2012/01/30	ZHIYUE (FRANK) ZHU
Moisture	BAL	2749469	N/A	2012/01/28	MIN YANG

SiREM - Site Recovery & Management

Client Project #: EBA

Sampler Initials: RS

GEN	JER AI	COM	MENTS

Results relate only to the items tested.

SiREM - Site Recovery & Management

Attention: Ximena Druar Client Project #: EBA

P.O. #: Site Location:

Quality Assurance Report Maxxam Job Number: MB211501

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Reco	overy	Units	QC Limits
2749469 LKA	RPD [MI5238-01]	Moisture	2012/01/28	0.8		%	20
2749849 ZZ	Matrix Spike	o-Terphenyl	2012/01/30		88	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2012/01/30		97	%	50 - 130
		F3 (C16-C34 Hydrocarbons)	2012/01/30		101	%	50 - 130
		F4 (C34-C50 Hydrocarbons)	2012/01/30		96	%	50 - 130
	Spiked Blank	o-Terphenyl	2012/01/30		85	%	50 - 130
	·	F2 (C10-C16 Hydrocarbons)	2012/01/30		96	%	70 - 130
		F3 (C16-C34 Hydrocarbons)	2012/01/30		102	%	70 - 130
		F4 (C34-C50 Hydrocarbons)	2012/01/30		96	%	70 - 130
	Method Blank	o-Terphenyl	2012/01/30		91	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2012/01/30	2.0 U, MDL=2.0)	ug/g	
		F3 (C16-C34 Hydrocarbons)	2012/01/30	2.6 J, MDL=2.0)	ug/g	
		F4 (C34-C50 Hydrocarbons)	2012/01/30	2.0 U, MDL=2.0)	ug/g	
	RPD	F2 (C10-C16 Hydrocarbons)	2012/01/30	NC		%	30
		F3 (C16-C34 Hydrocarbons)	2012/01/30	NC		%	30
		F4 (C34-C50 Hydrocarbons)	2012/01/30	NC		%	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

Validation Signature Page

Maxxam Job #: B211501

M. Risheld

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

CRISTINA CARRIERE, Scientific Services

MEDHAT RISKALLAH, Manager, Hydrocarbon Department

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: EBA #2 Your C.O.C. #: 2157

Attention: Ximena Druar
SiREM - Site Recovery & Management
130 Research Lane
Suite 2
Guelph, ON
CANADA
N1G 5G3

Report Date: 2012/02/22

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B220254 Received: 2012/02/10, 10:45

Sample Matrix: Soil # Samples Received: 8

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Petroleum Hydrocarbons F2-F4 in Soil	7	2012/02/15	2012/02/16	CAM SOP-00316	CCME CWS
Petroleum Hydrocarbons F2-F4 in Soil	1	2012/02/15	2012/02/17	CAM SOP-00316	CCME CWS
Total Metals Analysis by ICP	8	2012/02/16	2012/02/16	CAM SOP-00408	SW-846 6010C
Moisture	8	N/A	2012/02/16	CAM SOP-00445	R.Carter,1993
Nitrate (NO3) and Nitrite (NO2) in Soil	8	N/A	2012/02/16	CAM SOP-00440	SM 4500 NO3I/NO2B
pH CaCl2 EXTRACT	8	2012/02/17	2012/02/17	CAM SOP-00413	SM 4500H+ B

Remarks:

Maxxam Analytics has performed all analytical testing herein in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Reporting results to two significant figures at the RDL is to permit statistical evaluation and is not intended to be an indication of analytical precision.

The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following the 'Alberta Environment Draft Addenda to the CWS-PHC, Appendix 6, Validation of Alternate Methods'. Documentation is available upon request. Maxxam has made the following improvements to the CWS-PHC reference benchmark method: (i) Headspace for F1; and, (ii) Mechanical extraction for F2-F4. Note: F4G cannot be added to the C6 to C50 hydrocarbons. The extraction date for samples field preserved with methanol for F1 and Volatile Organic Compounds is considered to be the date sampled.

Maxxam Analytics is accredited by SCC (Lab ID 97) for all specific parameters as required by Ontario Regulation 153/04. Maxxam Analytics is limited in liability to the actual cost of analysis unless otherwise agreed in writing. There is no other warranty expressed or implied. Samples will be retained at Maxxam Analytics for three weeks from receipt of data or as per contract.

../2

CANADA

Your Project #: EBA #2 Your C.O.C. #: 2157

Attention: Ximena Druar
SiREM - Site Recovery & Management
130 Research Lane
Suite 2
Guelph, ON

N1G 5G3

Report Date: 2012/02/22

CERTIFICATE OF ANALYSIS

-2-

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

JOLANTA GORALCZYK, Project Manager Email: JGoralczyk@maxxam.ca

Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 2

SiREM - Site Recovery & Management Client Project #: EBA #2

RESULTS OF ANALYSES OF SOIL

	MM7924		MM7925	MM7926	MM7926		
	2012/02/07		2012/02/07	2012/02/07	2012/02/07		
	02:45		02:45	02:45	02:45		
	2157		2157	2157	2157		
Units	EBA2-070212-1B	QC Batch	EBA2-070212-2B	EBA2-070212-3B	EBA2-070212-3B	RDL	QC Batch
					Lab-Dup		
%	6.5	2766107	5.8	12		1.0	2766060
рН	7.68	2767255	7.63	7.70	7.75		2767255
ug/g	0.1 U	2766049	0.2 J	0.2 J	0.2 J	0.5	2766049
ug/g	0.4 U	2766049	0.4 U	0.4 U	0.4 U	2	2766049
ug/g	0.6 U	2766049	0.6 U	0.6 U	0.6 U	3	2766049
		•	•	•	•		
ection I	imit						
	% pH ug/g ug/g ug/g	2012/02/07 02:45 2157 Units EBA2-070212-1B % 6.5 pH 7.68 ug/g 0.1 U ug/g 0.4 U	2012/02/07 02:45 2157 Units EBA2-070212-1B QC Batch % 6.5 2766107 pH 7.68 2767255 ug/g 0.1 U 2766049 ug/g 0.6 U 2766049 ug/g 0.6 U 2766049	2012/02/07 02:45 2157 2157 2157 Units EBA2-070212-1B QC Batch EBA2-070212-2B % 6.5 2766107 5.8 pH 7.68 2767255 7.63 ug/g 0.1 U 2766049 0.2 J ug/g 0.4 U 2766049 0.4 U ug/g 0.6 U 2766049 0.6 U	2012/02/07 2012/02/07 02:45 02	2012/02/07 2012/02/07 2012/02/07 02:45	2012/02/07 2012/02/07 2012/02/07 2012/02/07 02:45

Maxxam ID		MM7927		MM7928	MM7929	MM7930		
Sampling Date		2012/02/07		2012/02/07	2012/02/07	2012/02/07		
		02:45		02:45	02:45	02:45		
COC Number		2157		2157	2157	2157		
	Units	EBA2-070212-4B	QC Batch	EBA2-070212-5B	EBA2-070212-6B	EBA2-070212-7B	RDL	QC Batch

Inorganics								
Moisture	%	12	2766060	10	2.4	4.8	1.0	2766107
Available (CaCl2) pH	рН	7.60	2767255	7.26	7.29	7.57		2767255
Nitrite (N)	ug/g	0.1 U	2766049	0.1 U	0.1 U	0.1 U	0.5	2766049
Nitrate (N)	ug/g	0.4 U	2766049	0.4 U	0.4 U	0.4 U	2	2766049
Nitrate + Nitrite	ug/g	0.6 U	2766049	0.6 U	0.6 U	0.6 U	3	2766049

RESULTS OF ANALYSES OF SOIL

	Units	EBA2-070212-8B	RDL	QC Batch
COC Number		2157		
		02:45		
Sampling Date		2012/02/07		
Maxxam ID		MM7931		

Inorganics				
Moisture	%	13	1.0	2766107
Available (CaCl2) pH	рН	7.45		2767255
Nitrite (N)	ug/g	0.1 U	0.5	2766049
Nitrate (N)	ug/g	0.4 U	2	2766049
Nitrate + Nitrite	ug/g	0.6 U	3	2766049

SiREM - Site Recovery & Management Client Project #: EBA #2

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		MM7924	MM7925	MM7926	MM7927		
Sampling Date		2012/02/07	2012/02/07	2012/02/07	2012/02/07		
		02:45	02:45	02:45	02:45		
COC Number		2157	2157	2157	2157		
	Units	EBA2-070212-1B	EBA2-070212-2B	EBA2-070212-3B	EBA2-070212-4B	RDL	QC Batch

Metals							
Acid Extractable Phosphorus (P)	ug/g	260	320	180	220	20	2766162

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		MM7928	MM7929	MM7930	MM7931		
Sampling Date		2012/02/07	2012/02/07	2012/02/07	2012/02/07		
		02:45	02:45	02:45	02:45		
COC Number		2157	2157	2157	2157		
	Units	EBA2-070212-5B	EBA2-070212-6B	EBA2-070212-7B	EBA2-070212-8B	RDL	QC Batch

Metals							
Acid Extractable Phosphorus (P)	ug/g	910	770	150	320	20	2766162

SiREM - Site Recovery & Management Client Project #: EBA #2

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		MM7924	MM7925	MM7926	MM7927		
Sampling Date		2012/02/07	2012/02/07	2012/02/07	2012/02/07		
		02:45	02:45	02:45	02:45		
COC Number		2157	2157	2157	2157		
	Units	EBA2-070212-1B	EBA2-070212-2B	EBA2-070212-3B	EBA2-070212-4B	RDL	QC Batch

F2-F4 Hydrocarbons							
F2 (C10-C16 Hydrocarbons)	ug/g	680	840	400	410	10	2765120
F3 (C16-C34 Hydrocarbons)	ug/g	370	430	310	360	10	2765120
F4 (C34-C50 Hydrocarbons)	ug/g	2.0 U	2.0 U	2.0 U	10	10	2765120
Reached Baseline at C50	ug/g	Yes	Yes	Yes	Yes		2765120
Surrogate Recovery (%)							
o-Terphenyl	%	117	113	111	113		2765120

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		MM7928	MM7929	MM7930	MM7931		
Sampling Date		2012/02/07	2012/02/07	2012/02/07	2012/02/07		
		02:45	02:45	02:45	02:45		
COC Number		2157	2157	2157	2157		
	Units	EBA2-070212-5B	EBA2-070212-6B	EBA2-070212-7B	EBA2-070212-8B	RDL	QC Batch

F2-F4 Hydrocarbons							
F2 (C10-C16 Hydrocarbons)	ug/g	300	280	460	340	10	2765120
F3 (C16-C34 Hydrocarbons)	ug/g	240	280	370	240	10	2765120
F4 (C34-C50 Hydrocarbons)	ug/g	2.0 U	2.0 U	2.0 U	2.0 U	10	2765120
Reached Baseline at C50	ug/g	Yes	Yes	Yes	Yes		2765120
Surrogate Recovery (%)							
o-Terphenyl	%	110	117	112	89		2765120

SiREM - Site Recovery & Management Client Project #: EBA #2

Test Summary

Maxxam ID MM7924

Collected 2012/02/07

Sample ID EBA2-070212-1B

Shipped

Matrix Soil

Received 2012/02/10

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2765120	2012/02/15	2012/02/16	JOLANTA KAWZOWICZ
Total Metals Analysis by ICP	ICP	2766162	2012/02/16	2012/02/16	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2766107	N/A	2012/02/16	LAKHVIR KALER
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2766049	N/A	2012/02/16	BAVANI KAILAYA
pH CaCl2 EXTRACT		2767255	2012/02/17	2012/02/17	XUANHONG QIU

Maxxam ID MM7925

Collected 2012/02/07

Sample ID EBA2-070212-2B

Shipped

Matrix Soil

Received 2012/02/10

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2765120	2012/02/15	2012/02/16	JOLANTA KAWZOWICZ
Total Metals Analysis by ICP	ICP	2766162	2012/02/16	2012/02/16	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2766060	N/A	2012/02/16	ANITA CHEEMA
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2766049	N/A	2012/02/16	BAVANI KAILAYA
pH CaCl2 EXTRACT		2767255	2012/02/17	2012/02/17	XUANHONG QIU

Maxxam ID MM7926

Collected 2012/02/07

Shipped

Sample ID EBA2-070212-3B Matrix Soil

Received 2012/02/10

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2765120	2012/02/15	2012/02/16	JOLANTA KAWZOWICZ
Total Metals Analysis by ICP	ICP	2766162	2012/02/16	2012/02/16	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2766060	N/A	2012/02/16	ANITA CHEEMA
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2766049	N/A	2012/02/16	BAVANI KAILAYA
pH CaCl2 EXTRACT		2767255	2012/02/17	2012/02/17	XUANHONG QIU

Maxxam ID MM7926 Dup

Collected 2012/02/07

Sample ID EBA2-070212-3B

Shipped

Matrix Soil

Received 2012/02/10

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2766049	N/A	2012/02/16	BAVANI KAILAYA
pH CaCl2 EXTRACT	•	2767255	2012/02/17	2012/02/17	XUANHONG QIU

Maxxam ID MM7927

Collected 2012/02/07

Sample ID EBA2-070212-4B

Shipped

Matrix Soil

Received 2012/02/10

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2765120	2012/02/15	2012/02/16	JOLANTA KAWZOWICZ
Total Metals Analysis by ICP	ICP	2766162	2012/02/16	2012/02/16	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2766060	N/A	2012/02/16	ANITA CHEEMA
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2766049	N/A	2012/02/16	BAVANI KAILAYA
pH CaCl2 EXTRACT		2767255	2012/02/17	2012/02/17	XUANHONG QIU

SiREM - Site Recovery & Management Client Project #: EBA #2

Test Summary

Maxxam ID MM7928

Collected 2012/02/07

Sample ID EBA2-070212-5B

Shipped

Matrix Soil

Received 2012/02/10

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2765120	2012/02/15	2012/02/16	JOLANTA KAWZOWICZ
Total Metals Analysis by ICP	ICP	2766162	2012/02/16	2012/02/16	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2766107	N/A	2012/02/16	LAKHVIR KALER
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2766049	N/A	2012/02/16	BAVANI KAILAYA
pH CaCl2 FXTRACT		2767255	2012/02/17	2012/02/17	XUANHONG QIU

Maxxam ID MM7929 Matrix Soil

Collected 2012/02/07

Sample ID EBA2-070212-6B

Shipped

Received 2012/02/10

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2765120	2012/02/15	2012/02/16	JOLANTA KAWZOWICZ
Total Metals Analysis by ICP	ICP	2766162	2012/02/16	2012/02/16	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2766107	N/A	2012/02/16	LAKHVIR KALER
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2766049	N/A	2012/02/16	BAVANI KAILAYA
pH CaCl2 EXTRACT		2767255	2012/02/17	2012/02/17	XUANHONG QIU

Maxxam ID MM7930

Collected 2012/02/07

Sample ID EBA2-070212-7B Matrix Soil

Shipped

Received 2012/02/10

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2765120	2012/02/15	2012/02/16	JOLANTA KAWZOWICZ
Total Metals Analysis by ICP	ICP	2766162	2012/02/16	2012/02/16	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2766107	N/A	2012/02/16	LAKHVIR KALER
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2766049	N/A	2012/02/16	BAVANI KAILAYA
pH CaCl2 EXTRACT		2767255	2012/02/17	2012/02/17	XUANHONG QIU

Maxxam ID MM7931

Collected 2012/02/07

Sample ID EBA2-070212-8B

Shipped

Matrix Soil

Received 2012/02/10

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2765120	2012/02/15	2012/02/17	JOLANTA KAWZOWICZ
Total Metals Analysis by ICP	ICP	2766162	2012/02/16	2012/02/16	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2766107	N/A	2012/02/16	LAKHVIR KALER
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2766049	N/A	2012/02/16	BAVANI KAILAYA
pH CaCl2 EXTRACT		2767255	2012/02/17	2012/02/17	XUANHONG QIU

CENEDAL	COMMENTS
GENERAL	COMMENTS

Results relate only to the items tested.

SiREM - Site Recovery & Management

Attention: Ximena Druar Client Project #: EBA #2

P.O. #: Site Location:

Quality Assurance Report Maxxam Job Number: MB220254

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
2765120 JKA	Matrix Spike	o-Terphenyl	2012/02/16		105	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2012/02/16		101	%	50 - 130
		F3 (C16-C34 Hydrocarbons)	2012/02/16		104	%	50 - 130
		F4 (C34-C50 Hydrocarbons)	2012/02/16		99	%	50 - 130
	Spiked Blank	o-Terphenyl	2012/02/16		104	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2012/02/16		100	%	70 - 130
		F3 (C16-C34 Hydrocarbons)	2012/02/16		106	%	70 - 130
		F4 (C34-C50 Hydrocarbons)	2012/02/16		105	%	70 - 130
	Method Blank	o-Terphenyl	2012/02/16		111	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2012/02/16	2.0 U, M	IDL=2.0	ug/g	
		F3 (C16-C34 Hydrocarbons)	2012/02/16	2.0 U, M	IDL=2.0	ug/g	
		F4 (C34-C50 Hydrocarbons)	2012/02/16	2.0 U, M	IDL=2.0	ug/g	
	RPD	F2 (C10-C16 Hydrocarbons)	2012/02/16	NC		%	30
		F3 (C16-C34 Hydrocarbons)	2012/02/16	NC		%	30
		F4 (C34-C50 Hydrocarbons)	2012/02/16	NC		%	30
2766049 BAV	Matrix Spike						
	[MM7926-01]	Nitrite (N)	2012/02/16		102	%	75 - 125
		Nitrate (N)	2012/02/16		106	%	75 - 125
	Spiked Blank	Nitrite (N)	2012/02/16		99	%	75 - 125
		Nitrate (N)	2012/02/16		102	%	75 - 125
		Nitrate + Nitrite	2012/02/16		101	%	75 - 125
	Method Blank	Nitrite (N)	2012/02/16	0.1 U, M	IDL=0.1	ug/g	
		Nitrate (N)	2012/02/16	0.4 U, M	IDL=0.4	ug/g	
		Nitrate + Nitrite	2012/02/16	0.6 U, M	IDL=0.6	ug/g	
	RPD [MM7926-01]	Nitrite (N)	2012/02/16	NC		%	25
		Nitrate (N)	2012/02/16	NC		%	25
		Nitrate + Nitrite	2012/02/16	NC		%	25
2766060 PHM	RPD	Moisture	2012/02/16	5.5		%	20
2766107 PHM	RPD	Moisture	2012/02/16	8.2		%	20
2766162 SUK	Matrix Spike	Acid Extractable Phosphorus (P)	2012/02/16		99	%	75 - 125
	Spiked Blank	Acid Extractable Phosphorus (P)	2012/02/16		96	%	80 - 120
	Method Blank	Acid Extractable Phosphorus (P)	2012/02/16	<20		ug/g	

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

Validation Signature Page

Maxxam Job #: B220254

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Cristina Carriere

CRISTINA CARRIERE, Scientific Services

n. Risheld

MEDHAT RISKALLAH, Manager, Hydrocarbon Department

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: EBA #2 Your C.O.C. #: 2157

Attention: Ximena Druar
SiREM - Site Recovery & Management
130 Research Lane
Suite 2
Guelph, ON
CANADA
N1G 5G3

Report Date: 2012/02/24

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B220254 Received: 2012/02/10. 10:45

Sample Matrix: Soil # Samples Received: 8

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Petroleum Hydrocarbons F2-F4 in Soil	7	2012/02/15	2012/02/16	CAM SOP-00316	CCME CWS
Petroleum Hydrocarbons F2-F4 in Soil	1	2012/02/15	2012/02/17	CAM SOP-00316	CCME CWS
Total Metals Analysis by ICP	8	2012/02/16	2012/02/16	CAM SOP-00408	SW-846 6010C
Moisture	8	N/A	2012/02/16	CAM SOP-00445	R.Carter,1993
Nitrate (NO3) and Nitrite (NO2) in Soil	8	N/A	2012/02/16	CAM SOP-00440	SM 4500 NO3I/NO2B
pH CaCl2 EXTRACT	8	2012/02/17	2012/02/17	CAM SOP-00413	SM 4500H+ B
Total Kjeldahl Nitrogen - Soil	8	2012/02/24	2012/02/24	CAM SOP-00454	EPA 351.2 Rev 2

Remarks:

Maxxam Analytics has performed all analytical testing herein in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Reporting results to two significant figures at the RDL is to permit statistical evaluation and is not intended to be an indication of analytical precision.

The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following the 'Alberta Environment Draft Addenda to the CWS-PHC, Appendix 6, Validation of Alternate Methods'. Documentation is available upon request. Maxxam has made the following improvements to the CWS-PHC reference benchmark method: (i) Headspace for F1; and, (ii) Mechanical extraction for F2-F4. Note: F4G cannot be added to the C6 to C50 hydrocarbons. The extraction date for samples field preserved with methanol for F1 and Volatile Organic Compounds is considered to be the date sampled.

Maxxam Analytics is accredited by SCC (Lab ID 97) for all specific parameters as required by Ontario Regulation 153/04. Maxxam Analytics is limited in liability to the actual cost of analysis unless otherwise agreed in writing. There is no other warranty expressed or implied. Samples will be retained at Maxxam Analytics for three weeks from receipt of data or as per contract.

../2

Your Project #: EBA #2 Your C.O.C. #: 2157

Attention: Ximena Druar SiREM - Site Recovery & Management 130 Research Lane Suite 2 Guelph, ON **CANADA** N1G 5G3

Report Date: 2012/02/24

CERTIFICATE OF ANALYSIS -2-

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

JOLANTA GORALCZYK, Project Manager Email: JGoralczyk@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 2

0.4 U

0.6 U

2

3

2766049

2766049

Maxxam Job #: B220254 Report Date: 2012/02/24

Nitrate (N)

Nitrate + Nitrite

RESULTS OF ANALYSES OF SOIL

Maxxam ID		MM7924	MM7924		MM7925	MM7926		
Sampling Date		2012/02/07	2012/02/07		2012/02/07	2012/02/07		
		02:45	02:45		02:45	02:45		
COC Number		2157	2157		2157	2157		
	Units	EBA2-070212-1B	EBA2-070212-1B	QC Batch	EBA2-070212-2B	EBA2-070212-3B	RDL	QC Batch
			Lab-Dup					
Inorganics								
Moisture	%	6.5		2766107	5.8	12	1.0	2766060
Available (CaCl2) pH	рН	7.68		2767255	7.63	7.70		2767255
Total Kjeldahl Nitrogen	ug/g	242	242	2772583	281	292	10	2772583
, , , , , , , , , , , , , , , , , , , ,								

2766049

2766049

0.4 U

0.6 U

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

ug/g

ug/g

0.4 U

0.6 U

Maxxam ID		MM7926	MM7927		MM7928	MM7929		
Sampling Date		2012/02/07	2012/02/07		2012/02/07	2012/02/07		
		02:45	02:45		02:45	02:45		
COC Number		2157	2157		2157	2157		
	Units	EBA2-070212-3B	EBA2-070212-4B	QC Batch	EBA2-070212-5B	EBA2-070212-6B	RDL	QC Batch
		Lab-Dup						
Inorganics								
Moisture	%		12	2766060	10	2.4	1.0	2766107
Available (CaCl2) pH	рН	7.75	7.60	2767255	7.26	7.29		2767255
Total Kjeldahl Nitrogen	ug/g		247	2772583	470	485	10	2772583
Nitrite (N)	ug/g	0.2 J	0.1 U	2766049	0.1 U	0.1 U	0.5	2766049
Nitrate (N)	ug/g	0.4 U	0.4 U	2766049	0.4 U	0.4 U	2	2766049
Nitrate + Nitrite	ug/g	0.6 U	0.6 U	2766049	0.6 U	0.6 U	3	2766049

RESULTS OF ANALYSES OF SOIL

	Units	EBA2-070212-7B	EBA2-070212-8B	RDL	QC Batch
COC Number	, and the second	2157	2157		
		02:45	02:45		
Sampling Date		2012/02/07	2012/02/07		
Maxxam ID		MM7930	MM7931		

Inorganics					
Moisture	%	4.8	13	1.0	2766107
Available (CaCl2) pH	рН	7.57	7.45		2767255
Total Kjeldahl Nitrogen	ug/g	256	216	10	2772583
Nitrite (N)	ug/g	0.1 U	0.1 U	0.5	2766049
Nitrate (N)	ug/g	0.4 U	0.4 U	2	2766049
Nitrate + Nitrite	ug/g	0.6 U	0.6 U	3	2766049

SiREM - Site Recovery & Management Client Project #: EBA #2

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		MM7924	MM7925	MM7926	MM7927		
Sampling Date		2012/02/07	2012/02/07	2012/02/07	2012/02/07		
		02:45	02:45	02:45	02:45		
COC Number		2157	2157	2157	2157		
	Units	EBA2-070212-1B	EBA2-070212-2B	EBA2-070212-3B	EBA2-070212-4B	RDL	QC Batch

Metals							
Acid Extractable Phosphorus (P)	ug/g	260	320	180	220	20	2766162

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		MM7928	MM7929	MM7930	MM7931		
Sampling Date		2012/02/07	2012/02/07	2012/02/07	2012/02/07		
		02:45	02:45	02:45	02:45		
COC Number		2157	2157	2157	2157		
	Units	EBA2-070212-5B	EBA2-070212-6B	EBA2-070212-7B	EBA2-070212-8B	RDL	QC Batch

Metals							
Acid Extractable Phosphorus (P)	ug/g	910	770	150	320	20	2766162

SiREM - Site Recovery & Management Client Project #: EBA #2

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		MM7924	MM7925	MM7926	MM7927		
Sampling Date		2012/02/07	2012/02/07	2012/02/07	2012/02/07		
		02:45	02:45	02:45	02:45		
COC Number		2157	2157	2157	2157		
	Units	EBA2-070212-1B	EBA2-070212-2B	EBA2-070212-3B	EBA2-070212-4B	RDL	QC Batch

F2-F4 Hydrocarbons							
F2 (C10-C16 Hydrocarbons)	ug/g	680	840	400	410	10	2765120
F3 (C16-C34 Hydrocarbons)	ug/g	370	430	310	360	10	2765120
F4 (C34-C50 Hydrocarbons)	ug/g	2.0 U	2.0 U	2.0 U	10	10	2765120
Reached Baseline at C50	ug/g	Yes	Yes	Yes	Yes		2765120
Surrogate Recovery (%)							
o-Terphenyl	%	117	113	111	113		2765120

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		MM7928	MM7929	MM7930	MM7931		
Sampling Date		2012/02/07	2012/02/07	2012/02/07	2012/02/07		
		02:45	02:45	02:45	02:45		
COC Number		2157	2157	2157	2157		
	Units	EBA2-070212-5B	EBA2-070212-6B	EBA2-070212-7B	EBA2-070212-8B	RDL	QC Batch

F2-F4 Hydrocarbons							
F2 (C10-C16 Hydrocarbons)	ug/g	300	280	460	340	10	2765120
F3 (C16-C34 Hydrocarbons)	ug/g	240	280	370	240	10	2765120
F4 (C34-C50 Hydrocarbons)	ug/g	2.0 U	2.0 U	2.0 U	2.0 U	10	2765120
Reached Baseline at C50	ug/g	Yes	Yes	Yes	Yes		2765120
Surrogate Recovery (%)							
o-Terphenyl	%	110	117	112	89		2765120

SiREM - Site Recovery & Management Client Project #: EBA #2

Test Summary

Maxxam ID MM7924 Sample ID EBA2-070212-1B

Matrix Soil

Collected 2012/02/07

Shipped

Received 2012/02/10

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2765120	2012/02/15	2012/02/16	JOLANTA KAWZOWICZ
Total Metals Analysis by ICP	ICP	2766162	2012/02/16	2012/02/16	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2766107	N/A	2012/02/16	LAKHVIR KALER
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2766049	N/A	2012/02/16	BAVANI KAILAYA
pH CaCl2 EXTRACT		2767255	2012/02/17	2012/02/17	XUANHONG QIU
Total Kieldahl Nitrogen - Soil	AC	2772583	2012/02/24	2012/02/24	CHANDRA NANDLAL

Maxxam ID MM7924 Dup Sample ID EBA2-070212-1B

Matrix Soil

Collected 2012/02/07

Shipped

Received 2012/02/10

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Total Kjeldahl Nitrogen - Soil	AC	2772583	2012/02/24	2012/02/24	CHANDRA NANDLAL

Maxxam ID MM7925

Sample ID EBA2-070212-2B

Matrix Soil

Collected 2012/02/07

Shipped

Received 2012/02/10

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2765120	2012/02/15	2012/02/16	JOLANTA KAWZOWICZ
Total Metals Analysis by ICP	ICP	2766162	2012/02/16	2012/02/16	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2766060	N/A	2012/02/16	ANITA CHEEMA
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2766049	N/A	2012/02/16	BAVANI KAILAYA
pH CaCl2 EXTRACT		2767255	2012/02/17	2012/02/17	XUANHONG QIU
Total Kieldahl Nitrogen - Soil	AC	2772583	2012/02/24	2012/02/24	CHANDRA NANDLAL

Maxxam ID MM7926

Sample ID EBA2-070212-3B

Matrix Soil

Collected 2012/02/07

Shipped

Received 2012/02/10

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2765120	2012/02/15	2012/02/16	JOLANTA KAWZOWICZ
Total Metals Analysis by ICP	ICP	2766162	2012/02/16	2012/02/16	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2766060	N/A	2012/02/16	ANITA CHEEMA
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2766049	N/A	2012/02/16	BAVANI KAILAYA
pH CaCl2 EXTRACT		2767255	2012/02/17	2012/02/17	XUANHONG QIU
Total Kjeldahl Nitrogen - Soil	AC	2772583	2012/02/24	2012/02/24	CHANDRA NANDLAL

Maxxam ID MM7926 Dup Sample ID EBA2-070212-3B

Matrix Soil

Collected 2012/02/07

Shipped

Received 2012/02/10

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2766049	N/A	2012/02/16	BAVANI KAILAYA
pH CaCl2 EXTRACT		2767255	2012/02/17	2012/02/17	XUANHONG QIU

SiREM - Site Recovery & Management Client Project #: EBA #2

Test Summary

 Maxxam ID
 MM7927
 Collected
 2012/02/07

 Sample ID
 EBA2-070212-4B
 Shipped

Matrix Soil Received 2012/02/10

Analyst **Test Description** Instrumentation Extracted Analyzed Batch Petroleum Hydrocarbons F2-F4 in Soil GC/FID 2765120 2012/02/15 2012/02/16 JOLANTA KAWZOWICZ SUBAN KANAPATHIPPLLAI Total Metals Analysis by ICP ICP 2766162 2012/02/16 2012/02/16 Moisture BAL 2766060 N/A 2012/02/16 ANITA CHEEMA Nitrate (NO3) and Nitrite (NO2) in Soil LACH 2766049 N/A 2012/02/16 BAVANI KAILAYA pH CaCl2 EXTRACT 2767255 2012/02/17 2012/02/17 **XUANHONG QIU** Total Kjeldahl Nitrogen - Soil AC 2772583 2012/02/24 2012/02/24 CHANDRA NANDLAL

 Maxxam ID
 MM7928
 Collected
 2012/02/07

 Sample ID
 EBA2-070212-5B
 Shipped

Matrix Soil Received 2012/02/10

Test Description Instrumentation **Batch** Extracted Analyzed **Analyst** Petroleum Hydrocarbons F2-F4 in Soil GC/FID 2012/02/15 JOLANTA KAWZOWICZ 2012/02/16 2765120 Total Metals Analysis by ICP ICP 2012/02/16 SUBAN KANAPATHIPPLLAI 2766162 2012/02/16 Moisture BAL 2766107 N/A 2012/02/16 LAKHVIR KALER Nitrate (NO3) and Nitrite (NO2) in Soil BAVANI KAILAYA N/A 2012/02/16 LACH 2766049 pH CaCl2 EXTRACT 2012/02/17 2012/02/17 XUANHONG QIU 2767255 Total Kjeldahl Nitrogen - Soil AC 2772583 2012/02/24 2012/02/24 CHANDRA NANDLAL

 Maxxam ID
 MM7929
 Collected
 2012/02/07

 Sample ID
 EBA2-070212-6B
 Shipped

Matrix Soil Received 2012/02/10

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2765120	2012/02/15	2012/02/16	JOLANTA KAWZOWICZ
Total Metals Analysis by ICP	ICP	2766162	2012/02/16	2012/02/16	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2766107	N/A	2012/02/16	LAKHVIR KALER
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2766049	N/A	2012/02/16	BAVANI KAILAYA
pH CaCl2 EXTRACT		2767255	2012/02/17	2012/02/17	XUANHONG QIU
Total Kjeldahl Nitrogen - Soil	AC	2772583	2012/02/24	2012/02/24	CHANDRA NANDLAL

 Maxxam ID
 MM7930
 Collected
 2012/02/07

 Sample ID
 EBA2-070212-7B
 Shipped

Matrix Soil Received 2012/02/10

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2765120	2012/02/15	2012/02/16	JOLANTA KAWZOWICZ
Total Metals Analysis by ICP	ICP	2766162	2012/02/16	2012/02/16	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2766107	N/A	2012/02/16	LAKHVIR KALER
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2766049	N/A	2012/02/16	BAVANI KAILAYA
pH CaCl2 EXTRACT		2767255	2012/02/17	2012/02/17	XUANHONG QIU
Total Kjeldahl Nitrogen - Soil	AC	2772583	2012/02/24	2012/02/24	CHANDRA NANDLAL

SiREM - Site Recovery & Management Client Project #: EBA #2

Test Summary

 Maxxam ID
 MM7931
 Collected
 2012/02/07

 Sample ID
 EBA2-070212-8B
 Shipped

Matrix Soil Received 2012/02/10

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2765120	2012/02/15	2012/02/17	JOLANTA KAWZOWICZ
Total Metals Analysis by ICP	ICP	2766162	2012/02/16	2012/02/16	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2766107	N/A	2012/02/16	LAKHVIR KALER
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2766049	N/A	2012/02/16	BAVANI KAILAYA
pH CaCl2 EXTRACT		2767255	2012/02/17	2012/02/17	XUANHONG QIU
Total Kieldahl Nitrogen - Soil	AC	2772583	2012/02/24	2012/02/24	CHANDRA NANDLAL

SiREM - Site Recovery & Management Client Project #: EBA #2

GEN	IER A	I C	OMI	MEN	ITS

Results relate only to the items tested.

SiREM - Site Recovery & Management

Attention: Ximena Druar Client Project #: EBA #2

P.O. #: Site Location:

Quality Assurance Report Maxxam Job Number: MB220254

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
2765120 JKA	Matrix Spike	o-Terphenyl	2012/02/16	105	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2012/02/16	101	%	50 - 130
		F3 (C16-C34 Hydrocarbons)	2012/02/16	104	%	50 - 130
		F4 (C34-C50 Hydrocarbons)	2012/02/16	99	%	50 - 130
	Spiked Blank	o-Terphenyl	2012/02/16	104	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2012/02/16	100	%	70 - 130
		F3 (C16-C34 Hydrocarbons)	2012/02/16	106	%	70 - 130
		F4 (C34-C50 Hydrocarbons)	2012/02/16	105	%	70 - 130
	Method Blank	o-Terphenyl	2012/02/16	111	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2012/02/16	2.0 U, MDL=2.0	ug/g	
		F3 (C16-C34 Hydrocarbons)	2012/02/16	2.0 U, MDL=2.0	ug/g	
		F4 (C34-C50 Hydrocarbons)	2012/02/16	2.0 U, MDL=2.0	ug/g	
	RPD	F2 (C10-C16 Hydrocarbons)	2012/02/16	NC	%	30
		F3 (C16-C34 Hydrocarbons)	2012/02/16	NC	%	30
		F4 (C34-C50 Hydrocarbons)	2012/02/16	NC	%	30
2766049 BAV	Matrix Spike					
	[MM7926-01]	Nitrite (N)	2012/02/16	102	%	75 - 125
		Nitrate (N)	2012/02/16	106	%	75 - 125
	Spiked Blank	Nitrite (N)	2012/02/16	99	%	75 - 125
		Nitrate (N)	2012/02/16	102	%	75 - 125
		Nitrate + Nitrite	2012/02/16	101	%	75 - 125
	Method Blank	Nitrite (N)	2012/02/16	0.1 U, MDL=0.1	ug/g	
		Nitrate (N)	2012/02/16	0.4 U, MDL=0.4	ug/g	
		Nitrate + Nitrite	2012/02/16	0.6 U, MDL=0.6	ug/g	
	RPD [MM7926-01]	Nitrite (N)	2012/02/16	NC	%	25
		Nitrate (N)	2012/02/16	NC	%	25
		Nitrate + Nitrite	2012/02/16	NC	%	25
2766060 PHM	RPD	Moisture	2012/02/16	5.5	%	20
2766107 PHM	RPD	Moisture	2012/02/16	8.2	%	20
2766162 SUK	Matrix Spike	Acid Extractable Phosphorus (P)	2012/02/16	99	%	75 - 125
	Spiked Blank	Acid Extractable Phosphorus (P)	2012/02/16	96	%	80 - 120
	Method Blank	Acid Extractable Phosphorus (P)	2012/02/16	<20	ug/g	
2772583 C_N	Matrix Spike	. ()			0.0	
	[MM7924-01]	Total Kjeldahl Nitrogen	2012/02/24	93	%	75 - 125
	QC Standard	Total Kjeldahl Nitrogen	2012/02/24	94	%	75 - 125
	Method Blank	Total Kjeldahl Nitrogen	2012/02/24	3 U, MDL=3	ug/g	
	RPD [MM7924-01]	Total Kjeldahl Nitrogen	2012/02/24	0.2	%	40

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

Validation Signature Page

Maxxam	Job	#:	B220)25	4
--------	-----	----	-------------	-----	---

M. Risheld

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

CRISTINA CARRIERE, Scientific Services

MEDHAT RISKALLAH, Manager, Hydrocarbon Department

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: EBA#2 Your C.O.C. #: na

Attention: Ximena Druar
SiREM - Site Recovery & Management
130 Research Lane
Suite 2
Guelph, ON
CANADA
N1G 5G3

Report Date: 2012/03/15

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B233267 Received: 2012/03/08, 10:39

Sample Matrix: Soil # Samples Received: 4

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Petroleum Hydrocarbons F2-F4 in Soil	4	2012/03/13	2012/03/14 CAM SOP-00316	CCME CWS
Total Metals Analysis by ICP	4	2012/03/14	2012/03/14 CAM SOP-00408	SW-846 6010C
Moisture	4	N/A	2012/03/13 CAM SOP-00445	R.Carter,1993
Nitrate (NO3) and Nitrite (NO2) in Soil	4	N/A	2012/03/14 CAM SOP-00440	SM 4500 NO3I/NO2B
pH CaCl2 EXTRACT	4	2012/03/14	2012/03/14 CAM SOP-00413	SM 4500H+ B
Total Kjeldahl Nitrogen - Soil	4	2012/03/13	2012/03/14 CAM SOP-00454	EPA 351.2 Rev 2

Remarks:

Maxxam Analytics has performed all analytical testing herein in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Reporting results to two significant figures at the RDL is to permit statistical evaluation and is not intended to be an indication of analytical precision.

The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following the 'Alberta Environment Draft Addenda to the CWS-PHC, Appendix 6, Validation of Alternate Methods'. Documentation is available upon request. Maxxam has made the following improvements to the CWS-PHC reference benchmark method: (i) Headspace for F1; and, (ii) Mechanical extraction for F2-F4. Note: F4G cannot be added to the C6 to C50 hydrocarbons. The extraction date for samples field preserved with methanol for F1 and Volatile Organic Compounds is considered to be the date sampled.

Maxxam Analytics is accredited by SCC (Lab ID 97) for all specific parameters as required by Ontario Regulation 153/04. Maxxam Analytics is limited in liability to the actual cost of analysis unless otherwise agreed in writing. There is no other warranty expressed or implied. Samples will be retained at Maxxam Analytics for three weeks from receipt of data or as per contract.

Your Project #: EBA#2 Your C.O.C. #: na

Attention: Ximena Druar SiREM - Site Recovery & Management 130 Research Lane Suite 2 Guelph, ON CANADA N1G 5G3

Report Date: 2012/03/15

CERTIFICATE OF ANALYSIS -2-

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

JOLANTA GORALCZYK, Project Manager Email: JGoralczyk@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 2

RESULTS OF ANALYSES OF SOIL

Maxxam ID		MT2416	MT2416	MT2417	MT2418	MT2418		
Sampling Date		2012/03/07	2012/03/07	2012/03/07	2012/03/07	2012/03/07		
COC Number		na	na	na	na	na		
	Units	EBA2-070312-5C	EBA2-070312-5C	EBA2-070312-6C	EBA2-070312-7C		RDL	QC Batch
			Lab-Dup			Lab-Dup		
						_		
Inorganics								
Moisture	%	2.3	2.1	5.4	15		1.0	2788613
Available (CaCl2) pH	рН	7.21		7.19	7.20			2789040
Total Kjeldahl Nitrogen	ug/g	463		404	341	363	10	2788627
Nitrite (N)	ug/g	0.1 U		0.1 U	0.6		0.5	2789128
Nitrate (N)	ug/g	0.4 U		0.4 U	0.4 U		2	2789128
Nitrate + Nitrite	ug/g	0.6 U		0.6 U	0.8 J		3	2789128

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		MT2419		
Sampling Date		2012/03/07		
COC Number		na		
	Units	EBA2-070312-8C	RDL	QC Batch
_				
	_			
Inorganics				
Inorganics Moisture	%	15	1.0	2788613

Available (CaCl2) pH рΗ 7.24 2789040 Total Kjeldahl Nitrogen ug/g 451 10 2788627 Nitrite (N) 0.6 0.5 2789128 ug/g Nitrate (N) ug/g 0.4 U 2 2789128 Nitrate + Nitrite 0.8 J 3 2789128 ug/g

SiREM - Site Recovery & Management Client Project #: EBA#2

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		MT2416	MT2417	MT2418	MT2419		
Sampling Date		2012/03/07	2012/03/07	2012/03/07	2012/03/07		
COC Number		na	na	na	na		
	Units	EBA2-070312-5C	EBA2-070312-6C	EBA2-070312-7C	EBA2-070312-8C	RDL	QC Batch

Metals							
Acid Extractable Phosphorus (P)	ug/g	590	710	720	570	20	2789053

SiREM - Site Recovery & Management Client Project #: EBA#2

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		MT2416	MT2417	MT2418	MT2419		
Sampling Date		2012/03/07	2012/03/07	2012/03/07	2012/03/07		
COC Number		na	na	na	na		
	Units	EBA2-070312-5C	EBA2-070312-6C	EBA2-070312-7C	EBA2-070312-8C	RDL	QC Batch

F2-F4 Hydrocarbons							
F2 (C10-C16 Hydrocarbons)	ug/g	200	230	180	130	10	2787907
F3 (C16-C34 Hydrocarbons)	ug/g	180	170	160	210	10	2787907
F4 (C34-C50 Hydrocarbons)	ug/g	2.0 U	2.0 U	2.0 U	2.0 U	10	2787907
Reached Baseline at C50	ug/g	Yes	Yes	Yes	Yes		2787907
Surrogate Recovery (%)							
o-Terphenyl	%	114	117	110	112		2787907

SiREM - Site Recovery & Management Client Project #: EBA#2

Test Summary

Maxxam ID MT2416

Sample ID EBA2-070312-5C

Matrix Soil

Collected 2012/03/07

Shipped

Received 2012/03/08

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2787907	2012/03/13	2012/03/14	BARBARA WOWK
Total Metals Analysis by ICP	ICP	2789053	2012/03/14	2012/03/14	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2788613	N/A	2012/03/13	PHILIP MAST
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2789128	N/A	2012/03/14	BAVANI KAILAYA
pH CaCl2 EXTRACT		2789040	2012/03/14	2012/03/14	XUANHONG QIU
Total Kieldahl Nitrogen - Soil	AC	2788627	2012/03/13	2012/03/14	CHANDRA NANDI AI

Maxxam ID MT2416 Dup Sample ID EBA2-070312-5C

Matrix Soil

Collected 2012/03/07 **Shipped**

Received 2012/03/08

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Moisture	BAL	2788613	N/A	2012/03/13	PHILIP MAST

Maxxam ID MT2417

Sample ID EBA2-070312-6C

Matrix Soil

Collected 2012/03/07

Shipped

Received 2012/03/08

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2787907	2012/03/13	2012/03/14	BARBARA WOWK
Total Metals Analysis by ICP	ICP	2789053	2012/03/14	2012/03/14	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2788613	N/A	2012/03/13	PHILIP MAST
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2789128	N/A	2012/03/14	BAVANI KAILAYA
pH CaCl2 EXTRACT		2789040	2012/03/14	2012/03/14	XUANHONG QIU
Total Kieldahl Nitrogen - Soil	AC	2788627	2012/03/13	2012/03/14	CHANDRA NANDLAL

Maxxam ID MT2418

Sample ID EBA2-070312-7C

Matrix Soil

Collected 2012/03/07

Shipped

Received 2012/03/08

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2787907	2012/03/13	2012/03/14	BARBARA WOWK
Total Metals Analysis by ICP	ICP	2789053	2012/03/14	2012/03/14	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2788613	N/A	2012/03/13	PHILIP MAST
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2789128	N/A	2012/03/14	BAVANI KAILAYA
pH CaCl2 EXTRACT		2789040	2012/03/14	2012/03/14	XUANHONG QIU
Total Kjeldahl Nitrogen - Soil	AC	2788627	2012/03/13	2012/03/14	CHANDRA NANDLAL

Maxxam ID MT2418 Dup Sample ID EBA2-070312-7C

Matrix Soil

Collected 2012/03/07

Shipped

Received 2012/03/08

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Total Kjeldahl Nitrogen - Soil	AC	2788627	2012/03/13	2012/03/14	CHANDRA NANDLAL

SiREM - Site Recovery & Management Client Project #: EBA#2

Test Summary

 Maxxam ID
 MT2419
 Collected
 2012/03/07

 Sample ID
 EBA2-070312-8C
 Shipped

Matrix Soil Received 2012/03/08

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2787907	2012/03/13	2012/03/14	BARBARA WOWK
Total Metals Analysis by ICP	ICP	2789053	2012/03/14	2012/03/14	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2788613	N/A	2012/03/13	PHILIP MAST
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2789128	N/A	2012/03/14	BAVANI KAILAYA
pH CaCl2 EXTRACT		2789040	2012/03/14	2012/03/14	XUANHONG QIU
Total Kieldahl Nitrogen - Soil	AC	2788627	2012/03/13	2012/03/14	CHANDRA NANDLAL

SiREM - Site Recovery & Management Client Project #: EBA#2

GEN	IFRΔI	COM	MENT	ς

Results relate only to the items tested.

SiREM - Site Recovery & Management

Attention: Ximena Druar Client Project #: EBA#2

P.O. #: Site Location:

Quality Assurance Report Maxxam Job Number: MB233267

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery		QC Limits
2787907 BWW	Matrix Spike	o-Terphenyl	2012/03/14	95	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2012/03/14	85	%	50 - 130
		F3 (C16-C34 Hydrocarbons)	2012/03/14	91	%	50 - 130
		F4 (C34-C50 Hydrocarbons)	2012/03/14	93	%	50 - 130
	Spiked Blank	o-Terphenyl	2012/03/13	108	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2012/03/13	95	%	70 - 130
		F3 (C16-C34 Hydrocarbons)	2012/03/13	105	%	70 - 130
		F4 (C34-C50 Hydrocarbons)	2012/03/13	104	%	70 - 130
	Method Blank	o-Terphenyl	2012/03/13	124	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2012/03/13	2.0 U, MDL=2.0	ug/g	
		F3 (C16-C34 Hydrocarbons)	2012/03/13	2.0 U, MDL=2.0	ug/g	
		F4 (C34-C50 Hydrocarbons)	2012/03/13	2.0 U, MDL=2.0	ug/g	
	RPD	F2 (C10-C16 Hydrocarbons)	2012/03/14	NC	%	30
		F3 (C16-C34 Hydrocarbons)	2012/03/14	NC	%	30
		F4 (C34-C50 Hydrocarbons)	2012/03/14	NC	%	30
2788613 DEE	RPD [MT2416-01]	Moisture	2012/03/13	NC	%	20
2788627 C_N	Matrix Spike					
	[MT2418-01]	Total Kjeldahl Nitrogen	2012/03/14	NC	%	75 - 125
	QC Standard	Total Kjeldahl Nitrogen	2012/03/14	89	%	75 - 125
	Method Blank	Total Kjeldahl Nitrogen	2012/03/14	3 U, MDL=3	ug/g	
	RPD [MT2418-01]	Total Kjeldahl Nitrogen	2012/03/14	6.3	%	40
2789053 SUK	Spiked Blank	Acid Extractable Phosphorus (P)	2012/03/14	119	%	80 - 120
	Method Blank	Acid Extractable Phosphorus (P)	2012/03/14	<20	ug/g	
2789128 BAV	Matrix Spike	Nitrite (N)	2012/03/14	128		75 - 125
		Nitrate (N)	2012/03/14	96	%	75 - 125
	Spiked Blank	Nitrite (N)	2012/03/14	99	%	75 - 125
		Nitrate (N)	2012/03/14	102	2 %	75 - 125
		Nitrate + Nitrite	2012/03/14	102	2 %	75 - 125
	Method Blank	Nitrite (N)	2012/03/14	0.1 U, MDL=0.1	ug/g	
		Nitrate (N)	2012/03/14	0.4 U, MDL=0.4	ug/g	
		Nitrate + Nitrite	2012/03/14	0.6 U, MDL=0.6	ug/g	
	RPD	Nitrite (N)	2012/03/14	NC	%	25
		Nitrate (N)	2012/03/14	NC	%	25
		Nitrate + Nitrite	2012/03/14	NC	%	25

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was not sufficiently significant to permit a reliable recovery calculation.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Validation Signature Page

Maxxam	Job	#:	B233267	,
--------	-----	----	---------	---

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

CRISTINA CARRIERE, Scientific Services

MAMDOUH SALIB, Analyst, Hydrocarbons

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: EBA #2 Your C.O.C. #: 2203

Attention: TWYLA GILBERT
SiREM - Site Recovery & Management
130 Research Lane
Suite 2
Guelph, ON

N1G 5G3

Report Date: 2012/04/12

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B247079 Received: 2012/04/04, 10:05

CANADA

Sample Matrix: Soil # Samples Received: 8

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Petroleum Hydrocarbons F2-F4 in Soil	4	2012/04/07	2012/04/07	CAM SOP-00316	CCME CWS
Petroleum Hydrocarbons F2-F4 in Soil	2	2012/04/07	2012/04/08	CAM SOP-00316	CCME CWS
Petroleum Hydrocarbons F2-F4 in Soil	2	2012/04/10	2012/04/11	CAM SOP-00316	CCME CWS
Total Metals Analysis by ICP	4	2012/04/11	2012/04/11	CAM SOP-00408	SW-846 6010C
Moisture	1	N/A	2012/04/09	CAM SOP-00445	R.Carter,1993
Moisture	7	N/A	2012/04/10	CAM SOP-00445	R.Carter,1993
Nitrate (NO3) and Nitrite (NO2) in Soil	4	N/A	2012/04/11	CAM SOP-00440	SM 4500 NO3I/NO2B
pH CaCl2 EXTRACT	8	2012/04/10	2012/04/10	CAM SOP-00413	SM 4500H+ B
Total Kjeldahl Nitrogen - Soil	2	2012/04/09	2012/04/10	CAM SOP-00454	EPA 351.2 Rev 2
Total Kjeldahl Nitrogen - Soil	2	2012/04/12	2012/04/12	CAM SOP-00454	EPA 351.2 Rev 2

Remarks:

Maxxam Analytics has performed all analytical testing herein in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Reporting results to two significant figures at the RDL is to permit statistical evaluation and is not intended to be an indication of analytical precision.

The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following the 'Alberta Environment Draft Addenda to the CWS-PHC, Appendix 6, Validation of Alternate Methods'. Documentation is available upon request. Maxxam has made the following improvements to the CWS-PHC reference benchmark method: (i) Headspace for F1; and, (ii) Mechanical extraction for F2-F4. Note: F4G cannot be added to the C6 to C50 hydrocarbons. The extraction date for samples field preserved with methanol for F1 and Volatile Organic Compounds is considered to be the date sampled.

Maxxam Analytics is accredited by SCC (Lab ID 97) for all specific parameters as required by Ontario Regulation 153/04. Maxxam Analytics is limited in liability to the actual cost of analysis unless otherwise agreed in writing. There is no other

Your Project #: EBA #2 Your C.O.C. #: 2203

Attention: TWYLA GILBERT SiREM - Site Recovery & Management 130 Research Lane Suite 2 Guelph, ON **CANADA** N1G 5G3

Report Date: 2012/04/12

CERTIFICATE OF ANALYSIS -2-

warranty expressed or implied. Samples will be retained at Maxxam Analytics for three weeks from receipt of data or as per contract.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

JOLANTA GORALCZYK, Project Manager Email: JGoralczyk@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 2

SiREM - Site Recovery & Management Client Project #: EBA #2

RESULTS OF ANALYSES OF SOIL

Maxxam ID		MZ9451		MZ9452	MZ9452	MZ9453		
Sampling Date		2012/04/03		2012/04/03	2012/04/03	2012/04/03		
		13:30		13:30	13:30	13:30		
COC Number		2203		2203	2203	2203		
	Units	EBA2-030412-1D	QC Batch	EBA2-030412-2D	EBA2-030412-2D	EBA2-030412-3D	RDL	QC Batch
					Lab-Dup			
Inorganics								
Inorganics Moisture	%	6.9	2814474	5.0		14	1.0	2814474

Maxxam ID		MZ9454	MZ9454		MZ9455	MZ9455		
Sampling Date		2012/04/03	2012/04/03		2012/04/03	2012/04/03		
		13:30	13:30		13:30	13:30		
COC Number		2203	2203		2203	2203		
	Units	EBA2-030412-4D	EBA2-030412-4D	QC Batch	EBA2-030412-5D	EBA2-030412-5D	RDL	QC Batch
			Lab-Dup			Lab-Dup		
Inorganics								
Moisture	%	9.2	8.6	2813180	12		1.0	2814474
Available (CaCl2) pH	рН	7.81		2814548	7.24			2814548
Total Kjeldahl Nitrogen	ug/g				504		10	2813829
Nitrite (N)	ug/g				0.1 U	0.1 U	0.5	2815586
Nitrate (N)	ug/g				0.4 U	0.4 U	2	2815586
Nitrate + Nitrite	ug/g				0.6 U	0.6 U	3	2815586

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

QC Batch = Quality Control Batch

RESULTS OF ANALYSES OF SOIL

COC Number	Unito	2203 EBA2-030412-6D	OC Batab	2203 EDA2 020442 7D	2203 EBA2 030442 8D	DDI	QC Batch
		13:30		13:30	13:30		
Sampling Date		2012/04/03		2012/04/03	2012/04/03		
Maxxam ID		MZ9456		MZ9457	MZ9458		

Inorganics							
Moisture	%	11	2814474	7.4	6.9	1.0	2815181
Available (CaCl2) pH	рН	7.27	2814548	7.36	7.39		2814286
Total Kjeldahl Nitrogen	ug/g	395	2813829	313	418	10	2816677
Nitrite (N)	ug/g	0.1 U	2815586	0.3 J	0.3 J	0.5	2815586
Nitrate (N)	ug/g	0.4 U	2815586	13	22	2	2815586
Nitrate + Nitrite	ug/g	0.6 U	2815586	13	22	3	2815586

SiREM - Site Recovery & Management Client Project #: EBA #2

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

	Units	EBA2-030412-5D	EBA2-030412-6D	EBA2-030412-7D	EBA2-030412-8D	RDL	QC Batch
COC Number		2203	2203	2203	2203		
		13:30	13:30	13:30	13:30		
Sampling Date		2012/04/03	2012/04/03	2012/04/03	2012/04/03		
Maxxam ID		MZ9455	MZ9456	MZ9457	MZ9458		

Metals							
Acid Extractable Phosphorus (P)	ug/g	760	890	490	410	20	2815444

SiREM - Site Recovery & Management Client Project #: EBA #2

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		MZ9451	MZ9452	MZ9453	MZ9454		
Sampling Date		2012/04/03	2012/04/03	2012/04/03	2012/04/03		
		13:30	13:30	13:30	13:30		
COC Number		2203	2203	2203	2203		
	Units	EBA2-030412-1D	EBA2-030412-2D	EBA2-030412-3D	EBA2-030412-4D	RDL	QC Batch

F2-F4 Hydrocarbons							
F2 (C10-C16 Hydrocarbons)	ug/g	310	310	150	180	10	2812697
F3 (C16-C34 Hydrocarbons)	ug/g	250	240	140	200	10	2812697
F4 (C34-C50 Hydrocarbons)	ug/g	2.0 U	2.0 U	2.0 U	2.0 U	10	2812697
Reached Baseline at C50	ug/g	Yes	Yes	Yes	Yes		2812697
Surrogate Recovery (%)							
o-Terphenyl	%	94	92	95	94		2812697

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		MZ9454	MZ9455	MZ9456		MZ9457		
Sampling Date		2012/04/03	2012/04/03	2012/04/03		2012/04/03		
		13:30	13:30	13:30		13:30		
COC Number		2203	2203	2203		2203		
	Units	EBA2-030412-4D	EBA2-030412-5D	EBA2-030412-6D	QC Batch	EBA2-030412-7D	RDL	QC Batch
		Lab-Dup						l

F2-F4 Hydrocarbons								
F2 (C10-C16 Hydrocarbons)	ug/g	170	83	65	2812697	120	10	2815236
F3 (C16-C34 Hydrocarbons)	ug/g	200	150	110	2812697	180	10	2815236
F4 (C34-C50 Hydrocarbons)	ug/g	2.0 U	2.0 U	2.0 U	2812697	2.0 U	10	2815236
Reached Baseline at C50	ug/g	Yes	Yes	Yes	2812697	Yes		2815236
Surrogate Recovery (%)								
o-Terphenyl	%	97	93	93	2812697	94		2815236

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		MZ9458		
Sampling Date		2012/04/03		
		13:30		
COC Number		2203		
	Units	EBA2-030412-8D	RDL	QC Batch

F2-F4 Hydrocarbons				
F2 (C10-C16 Hydrocarbons)	ug/g	80	10	2815236
F3 (C16-C34 Hydrocarbons)	ug/g	170	10	2815236
F4 (C34-C50 Hydrocarbons)	ug/g	2.0 U	10	2815236
Reached Baseline at C50	ug/g	Yes		2815236
Surrogate Recovery (%)				
o-Terphenyl	%	93		2815236

SiREM - Site Recovery & Management Client Project #: EBA #2

Test Summary

Maxxam ID MZ9451

Collected 2012/04/03

Sample ID EBA2-030412-1D

Shipped

Matrix Soil

Received 2012/04/04

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2812697	2012/04/07	2012/04/07	NICOLETA CIUBLEA
Moisture	BAL	2814474	N/A	2012/04/10	MIN YANG
pH CaCl2 EXTRACT		2814286	2012/04/10	2012/04/10	XUANHONG QIU

Maxxam ID MZ9452

Collected 2012/04/03

Sample ID EBA2-030412-2D

Shipped

Matrix Soil

Received 2012/04/04

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2812697	2012/04/07	2012/04/07	NICOLETA CIUBLEA
Moisture	BAL	2814474	N/A	2012/04/10	MIN YANG
pH CaCl2 EXTRACT		2814548	2012/04/10	2012/04/10	XUANHONG QIU

Maxxam ID MZ9452 Dup Sample ID EBA2-030412-2D **Collected** 2012/04/03

Shipped

Matrix Soil

Received 2012/04/04

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst	
pH CaCl2 EXTRACT		2814548	2012/04/10	2012/04/10	XUANHONG QIU	

Maxxam ID MZ9453

Collected 2012/04/03

Sample ID EBA2-030412-3D

Shipped

Matrix Soil

Received 2012/04/04

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2812697	2012/04/07	2012/04/07	NICOLETA CIUBLEA
Moisture	BAL	2814474	N/A	2012/04/10	MIN YANG
pH CaCl2 EXTRACT		2814548	2012/04/10	2012/04/10	XUANHONG QIU

Maxxam ID MZ9454

Matrix Soil

Collected 2012/04/03

Sample ID EBA2-030412-4D

Shipped

Received 2012/04/04

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2812697	2012/04/07	2012/04/07	NICOLETA CIUBLEA
Moisture	BAL	2813180	N/A	2012/04/09	MIN YANG
pH CaCl2 EXTRACT		2814548	2012/04/10	2012/04/10	XUANHONG QIU

Maxxam ID MZ9454 Dup Sample ID EBA2-030412-4D Collected 2012/04/03

Shipped

Received 2012/04/04

Matrix Soil

Test Description Instrumentation Batch Extracted Analyzed Analyst

rest bescription	instrumentation	Datcii	Extracted	Allalyzeu	Allalyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2812697	2012/04/07	2012/04/07	NICOLETA CIUBLEA
Moisture	BAL	2813180	N/A	2012/04/09	MIN YANG

SiREM - Site Recovery & Management Client Project #: EBA #2

Test Summary

Maxxam ID MZ9455

Sample ID EBA2-030412-5D

Matrix Soil

Collected 2012/04/03

Shipped

Received 2012/04/04

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2812697	2012/04/07	2012/04/08	NICOLETA CIUBLEA
Total Metals Analysis by ICP	ICP	2815444	2012/04/11	2012/04/11	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2814474	N/A	2012/04/10	MIN YANG
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2815586	N/A	2012/04/11	CHANDRA NANDLAL
pH CaCl2 EXTRACT		2814548	2012/04/10	2012/04/10	XUANHONG QIU
Total Kieldahl Nitrogen - Soil	AC	2813829	2012/04/09	2012/04/10	CHANDRA NANDLAL

Maxxam ID MZ9455 Dup

Sample ID EBA2-030412-5D

Matrix Soil

Collected 2012/04/03

Shipped

Received 2012/04/04

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2815586	N/A	2012/04/11	CHANDRA NANDLAL

Maxxam ID MZ9456

Sample ID EBA2-030412-6D

Matrix Soil

Collected 2012/04/03

Shipped

Received 2012/04/04

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2812697	2012/04/07	2012/04/08	NICOLETA CIUBLEA
Total Metals Analysis by ICP	ICP	2815444	2012/04/11	2012/04/11	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2814474	N/A	2012/04/10	MIN YANG
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2815586	N/A	2012/04/11	CHANDRA NANDLAL
pH CaCl2 EXTRACT		2814548	2012/04/10	2012/04/10	XUANHONG QIU
Total Kieldahl Nitrogen - Soil	AC	2813829	2012/04/09	2012/04/10	CHANDRA NANDLAL

Maxxam ID MZ9457

Sample ID EBA2-030412-7D

Matrix Soil

Collected 2012/04/03

Shipped

Received 2012/04/04

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2815236	2012/04/10	2012/04/11	RAVINDER GAIDHU
Total Metals Analysis by ICP	ICP	2815444	2012/04/11	2012/04/11	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2815181	N/A	2012/04/10	PHILIP MAST
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2815586	N/A	2012/04/11	CHANDRA NANDLAL
pH CaCl2 EXTRACT		2814286	2012/04/10	2012/04/10	XUANHONG QIU
Total Kieldahl Nitrogen - Soil	AC.	2816677	2012/04/12	2012/04/12	CHANDRA NANDI AI

Maxxam ID MZ9458

Sample ID EBA2-030412-8D

Matrix Soil

Collected 2012/04/03

Shipped

Received 2012/04/04

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2815236	2012/04/10	2012/04/11	RAVINDER GAIDHU
Total Metals Analysis by ICP	ICP	2815444	2012/04/11	2012/04/11	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2815181	N/A	2012/04/10	PHILIP MAST
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2815586	N/A	2012/04/11	CHANDRA NANDLAL
pH CaCl2 EXTRACT		2814286	2012/04/10	2012/04/10	XUANHONG QIU
Total Kjeldahl Nitrogen - Soil	AC	2816677	2012/04/12	2012/04/12	CHANDRA NANDLAL

SiREM - Site Recovery & Management Client Project #: EBA #2

GFI	MERA	L COM	MEN.	ГS

Results relate only to the items tested.

SiREM - Site Recovery & Management

Attention: TWYLA GILBERT Client Project #: EBA #2

P.O. #: Site Location:

Quality Assurance Report Maxxam Job Number: MB247079

QA/QC Batch			Date Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limi
2812697 NCI	Matrix Spike	Talameter	уууулттаа	value recovery	OTINO	QO EIIIII
	[MZ9454-01]	o-Terphenyl	2012/04/07	90	%	50 - 13
	[=0.0.0.]	F2 (C10-C16 Hydrocarbons)	2012/04/07	NC	%	50 - 13
		F3 (C16-C34 Hydrocarbons)	2012/04/07	89	%	50 - 13
		F4 (C34-C50 Hydrocarbons)	2012/04/07	91	%	50 - 13
	Spiked Blank	o-Terphenyl	2012/04/07	90	%	50 - 13
	Opinoa Biarin	F2 (C10-C16 Hydrocarbons)	2012/04/07	89	%	70 - 13
		F3 (C16-C34 Hydrocarbons)	2012/04/07	89	%	70 - 13
		F4 (C34-C50 Hydrocarbons)	2012/04/07	91	%	70 - 13
	Method Blank	o-Terphenyl	2012/04/07	87	%	50 - 1
	WELLIOU DIALIK	F2 (C10-C16 Hydrocarbons)	2012/04/07	2.0 U, MDL=2.0	ug/g	30 - 1
		F3 (C16-C34 Hydrocarbons)	2012/04/07	2.4 J, MDL=2.0		
		F4 (C34-C50 Hydrocarbons)	2012/04/07	2.4 J, MDL=2.0 2.0 U, MDL=2.0	ug/g	
	DDD [M70454 04]				ug/g	
	KPD [IVIZ9454-01]	F2 (C10-C16 Hydrocarbons)	2012/04/07	4.3	%	;
		F3 (C16-C34 Hydrocarbons)	2012/04/07	3.9	%	
040400 10/0	DDD [M70454 04]	F4 (C34-C50 Hydrocarbons)	2012/04/07	NC	%	
		Moisture	2012/04/09	6.7	%	
813829 C_N	Matrix Spike	Total Kjeldahl Nitrogen	2012/04/10	89	%	75 - 1
	QC Standard	Total Kjeldahl Nitrogen	2012/04/10	112	%	75 - 1
	Method Blank	Total Kjeldahl Nitrogen	2012/04/10	3 U, MDL=3	ug/g	
	RPD	Total Kjeldahl Nitrogen	2012/04/10	0.4	%	
814474 PHM	RPD	Moisture	2012/04/10	12.4	%	
815181 PHM	RPD	Moisture	2012/04/10	6.4	%	
815236 RGA	Matrix Spike	o-Terphenyl	2012/04/11	88	%	50 - 1
		F2 (C10-C16 Hydrocarbons)	2012/04/11	94	%	50 - 1
		F3 (C16-C34 Hydrocarbons)	2012/04/11	101	%	50 - 1
		F4 (C34-C50 Hydrocarbons)	2012/04/11	98	%	50 - 1
	Spiked Blank	o-Terphenyl	2012/04/11	87	%	50 - 1
		F2 (C10-C16 Hydrocarbons)	2012/04/11	93	%	70 - 1
		F3 (C16-C34 Hydrocarbons)	2012/04/11	98	%	70 - 1
		F4 (C34-C50 Hydrocarbons)	2012/04/11	95	%	70 - 1
	Method Blank	o-Terphenyl	2012/04/11	92	%	50 - 1
		F2 (C10-C16 Hydrocarbons)	2012/04/11	2.0 U, MDL=2.0	ug/g	
		F3 (C16-C34 Hydrocarbons)	2012/04/11	3.2 J, MDL=2.0	ug/g	
		F4 (C34-C50 Hydrocarbons)	2012/04/11	2.0 U, MDL=2.0	ug/g	
	RPD	F2 (C10-C16 Hydrocarbons)	2012/04/11	NC	%	
		F3 (C16-C34 Hydrocarbons)	2012/04/11	11.7	%	
		F4 (C34-C50 Hydrocarbons)	2012/04/11	NC	%	
815444 SUK	Matrix Spike	Acid Extractable Phosphorus (P)	2012/04/11	89	%	75 - 1
0.0	Spiked Blank	Acid Extractable Phosphorus (P)	2012/04/11	100	%	80 - 1
	Method Blank	Acid Extractable Phosphorus (P)	2012/04/11	<20	ug/g	
815586 C_N	Matrix Spike	Tiola Extraolable Friedpriorae (F)	2012/01/11	120	ug/g	
010000 0_11	[MZ9455-01]	Nitrite (N)	2012/04/11	100	%	75 - 1
	[11125455-01]	Nitrate (N)	2012/04/11	101	%	75 - <i>1</i>
		Nitrate + Nitrite	2012/04/11	101	%	75 - 1
	Spiked Blank	Nitrite (N)	2012/04/11	98	%	75 - 1
	Opiked Dialik	Nitrate (N)	2012/04/11	100	%	75 - 1 75 - 1
		` ,		99		
	Mothad Plank	Nitrate + Nitrite	2012/04/11		%	75 - 1
	Method Blank	Nitrite (N)	2012/04/11	0.1 U, MDL=0.1	ug/g	
		Nitrate (N)	2012/04/11	0.4 U, MDL=0.4	ug/g	
	DDD 11.472.477.477	Nitrate + Nitrite	2012/04/11	0.6 U, MDL=0.6	ug/g	
	RPD [MZ9455-01]	Nitrite (N)	2012/04/11	NC	%	
		Nitrate (N)	2012/04/11	NC	%	
		Nitrate + Nitrite	2012/04/11	NC	%	
2816677 C_N	Matrix Spike	Total Kjeldahl Nitrogen	2012/04/05	110	%	75 - 1

SiREM - Site Recovery & Management

Attention: TWYLA GILBERT Client Project #: EBA #2

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: MB247079

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
2816677 C_N	QC Standard	Total Kjeldahl Nitrogen	2012/04/12		107	%	75 - 125
	Method Blank	Total Kjeldahl Nitrogen	2012/04/12	3 U, M	IDL=3	ug/g	
	RPD	Total Kjeldahl Nitrogen	2012/04/12	16.5		%	40

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was not sufficiently significant to permit a reliable recovery calculation.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

Validation Signature Page

Maxxam Job #: B247079

n. Risheld

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

CRISTINA CARRIERE, Scientific Services

MEDHAT RISKALLAH, Manager, Hydrocarbon Department

SUZANA POPOVIC, Supervisor, Hydrocarbons

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: EBA #2 Your C.O.C. #: 2240

Attention: Ximena Druar
SiREM - Site Recovery & Management
130 Research Lane
Suite 2
Guelph, ON
CANADA
N1G 5G3

Report Date: 2012/05/11

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B262266 Received: 2012/05/02, 10:30

Sample Matrix: Soil # Samples Received: 4

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Petroleum Hydrocarbons F2-F4 in Soil	4	2012/05/07	2012/05/08	CAM SOP-00316	CCME CWS
Total Metals Analysis by ICP	4	2012/05/08	2012/05/08	CAM SOP-00408	SW-846 6010C
Moisture	4	N/A	2012/05/07	CAM SOP-00445	R.Carter,1993
Nitrate (NO3) and Nitrite (NO2) in Soil	4	N/A	2012/05/08	CAM SOP-00440	SM 4500 NO3I/NO2B
pH CaCl2 EXTRACT	4	2012/05/08	2012/05/08	CAM SOP-00413	SM 4500H+ B
Total Kjeldahl Nitrogen - Soil	4	2012/05/08	2012/05/11	CAM SOP-00454	EPA 351.2 Rev 2

Remarks:

Maxxam Analytics has performed all analytical testing herein in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Reporting results to two significant figures at the RDL is to permit statistical evaluation and is not intended to be an indication of analytical precision.

The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following the 'Alberta Environment Draft Addenda to the CWS-PHC, Appendix 6, Validation of Alternate Methods'. Documentation is available upon request. Maxxam has made the following improvements to the CWS-PHC reference benchmark method: (i) Headspace for F1; and, (ii) Mechanical extraction for F2-F4. Note: F4G cannot be added to the C6 to C50 hydrocarbons. The extraction date for samples field preserved with methanol for F1 and Volatile Organic Compounds is considered to be the date sampled.

Maxxam Analytics is accredited by SCC (Lab ID 97) for all specific parameters as required by Ontario Regulation 153/04. Maxxam Analytics is limited in liability to the actual cost of analysis unless otherwise agreed in writing. There is no other warranty expressed or implied. Samples will be retained at Maxxam Analytics for three weeks from receipt of data or as per contract.

Your Project #: EBA #2 Your C.O.C. #: 2240

Attention: Ximena Druar SiREM - Site Recovery & Management 130 Research Lane Suite 2 Guelph, ON CANADA N1G 5G3

Report Date: 2012/05/11

CERTIFICATE OF ANALYSIS -2-

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

JOLANTA GORALCZYK, Project Manager Email: JGoralczyk@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 2

RESULTS OF ANALYSES OF SOIL

Maxxam ID		NH6913	NH6913	NH6914		NH6915		
Sampling Date		2012/05/01	2012/05/01	2012/05/01		2012/05/01		
		15:00	15:00	15:00		15:00		
COC Number		2240	2240	2240		2240		
	Units	EBA2-010512-5E	EBA2-010512-5E	EBA2-010512-6E	RDL	EBA2-010512-7E	RDL	QC Batch
			Lab-Dup					

Inorganics								
Moisture	%	13		10	1.0	16	1.0	2841308
Available (CaCl2) pH	рН	7.21	7.22	7.32		7.39		2841946
Total Kjeldahl Nitrogen	ug/g	319		326	10	590	20	2842361
Nitrite (N)	ug/g	0.1 U		0.1 U	0.5	0.1 U	0.5	2842088
Nitrate (N)	ug/g	0.4 U		0.4 U	2	18	2	2842088
Nitrate + Nitrite	ug/g	0.6 U		0.6 U	3	18	3	2842088

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

			Lab-Dup		
	Units	EBA2-010512-8E	EBA2-010512-8E	RDL	QC Batch
COC Number		2240	2240		
		15:00	15:00		
Sampling Date		2012/05/01	2012/05/01		
Maxxam ID		NH6916	NH6916		

Inorganics					
Moisture	%	11		1.0	2841308
Available (CaCl2) pH	рН	7.28			2841946
Total Kjeldahl Nitrogen	ug/g	494		10	2842361
Nitrite (N)	ug/g	0.1 U	0.1 U	0.5	2842088
Nitrate (N)	ug/g	35	36	2	2842088
Nitrate + Nitrite	ug/g	35	36	3	2842088

SiREM - Site Recovery & Management Client Project #: EBA #2

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

COC Number	2240	2240	2240	2240	
Sampling Date	2012/05/01 15:00	2012/05/01 15:00	2012/05/01 15:00	2012/05/01 15:00	
Maxxam ID	NH6913	NH6914	NH6915	NH6916	

Metals							
Acid Extractable Phosphorus (P)	ug/g	780	770	1600	1000	20	2842003

SiREM - Site Recovery & Management Client Project #: EBA #2

PETROLEUM HYDROCARBONS (CCME)

COC Number	15:00 2240	15:00 2240	15:00 2240	15:00 2240	
Sampling Date	15:00	15:00	15:00	15:00	
Compling Data	2012/05/01	2012/05/01	2012/05/01	2012/05/01	
Maxxam ID	NH6913	NH6914	NH6915	NH6916	

F2-F4 Hydrocarbons							
F2 (C10-C16 Hydrocarbons)	ug/g	57	84	100	120	10	2840945
F3 (C16-C34 Hydrocarbons)	ug/g	110	110	240	200	10	2840945
F4 (C34-C50 Hydrocarbons)	ug/g	2.0 U	2.0 U	15	11	10	2840945
Reached Baseline at C50	ug/g	Yes	Yes	Yes	Yes		2840945
Surrogate Recovery (%)							
o-Terphenyl	%	109	108	109	112		2840945

SiREM - Site Recovery & Management Client Project #: EBA #2

Test Summary

Maxxam ID NH6913 Sample ID EBA2-010512-5E

Matrix Soil

Collected 2012/05/01

Shipped

Received 2012/05/02

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2840945	2012/05/07	2012/05/08	BILJANA LAZOVIC
Total Metals Analysis by ICP	ICP	2842003	2012/05/08	2012/05/08	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2841308	N/A	2012/05/07	VALENTINA KAFTANI
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2842088	N/A	2012/05/08	CHRIS LI
pH CaCl2 EXTRACT		2841946	2012/05/08	2012/05/08	XUANHONG QIU
Total Kjeldahl Nitrogen - Soil	AC	2842361	2012/05/08	2012/05/11	CHANDRA NANDLAL

Maxxam ID NH6913 Dup Sample ID EBA2-010512-5E

Matrix Soil

Collected 2012/05/01

Shipped

Received 2012/05/02

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
pH CaCl2 EXTRACT		2841946	2012/05/08	2012/05/08	XUANHONG QIU

Maxxam ID NH6914

Sample ID EBA2-010512-6E

Matrix Soil

Collected 2012/05/01

Shipped

Received 2012/05/02

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2840945	2012/05/07	2012/05/08	BILJANA LAZOVIC
Total Metals Analysis by ICP	ICP	2842003	2012/05/08	2012/05/08	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2841308	N/A	2012/05/07	VALENTINA KAFTANI
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2842088	N/A	2012/05/08	CHRIS LI
pH CaCl2 EXTRACT		2841946	2012/05/08	2012/05/08	XUANHONG QIU
Total Kieldahl Nitrogen - Soil	AC	2842361	2012/05/08	2012/05/11	CHANDRA NANDLAL

Maxxam ID NH6915

Sample ID EBA2-010512-7E

Matrix Soil

Collected 2012/05/01

Shipped

Received 2012/05/02

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2840945	2012/05/07	2012/05/08	BILJANA LAZOVIC
Total Metals Analysis by ICP	ICP	2842003	2012/05/08	2012/05/08	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2841308	N/A	2012/05/07	VALENTINA KAFTANI
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2842088	N/A	2012/05/08	CHRIS LI
pH CaCl2 EXTRACT		2841946	2012/05/08	2012/05/08	XUANHONG QIU
Total Kjeldahl Nitrogen - Soil	AC	2842361	2012/05/08	2012/05/11	CHANDRA NANDLAL

Maxxam ID NH6916

Sample ID EBA2-010512-8E

Matrix Soil

Collected 2012/05/01

Shipped

Received 2012/05/02

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2840945	2012/05/07	2012/05/08	BILJANA LAZOVIC
Total Metals Analysis by ICP	ICP	2842003	2012/05/08	2012/05/08	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2841308	N/A	2012/05/07	VALENTINA KAFTANI
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2842088	N/A	2012/05/08	CHRIS LI
pH CaCl2 EXTRACT		2841946	2012/05/08	2012/05/08	XUANHONG QIU
Total Kjeldahl Nitrogen - Soil	AC	2842361	2012/05/08	2012/05/11	CHANDRA NANDLAL

SiREM - Site Recovery & Management Client Project #: EBA #2

Test Summary

Maxxam ID NH6916 Dup Sample ID EBA2-010512-8E

Matrix Soil

Collected 2012/05/01

Shipped

Received 2012/05/02

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2842088	N/A	2012/05/08	CHRIS LI

SiREM - Site Recovery & Management Client Project #: EBA #2

GEN	FR/	ΔI	CO	MM	FN	TS

Results relate only to the items tested.

SiREM - Site Recovery & Management

Attention: Ximena Druar Client Project #: EBA #2

P.O. #: Site Location:

Quality Assurance Report Maxxam Job Number: MB262266

QA/QC			Date			
Batch	00 T		Analyzed		11.2	001: "
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
2840945 BLZ	Matrix Spike	o-Terphenyl	2012/05/08	100	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2012/05/08	89	%	50 - 130
		F3 (C16-C34 Hydrocarbons)	2012/05/08	111	%	50 - 130
		F4 (C34-C50 Hydrocarbons)	2012/05/08	100	%	50 - 130
	Spiked Blank	o-Terphenyl	2012/05/08	102	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2012/05/08	88	%	70 - 130
		F3 (C16-C34 Hydrocarbons)	2012/05/08	113	%	70 - 130
		F4 (C34-C50 Hydrocarbons)	2012/05/08	99	%	70 - 130
	Method Blank	o-Terphenyl	2012/05/08	100	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2012/05/08	2.0 U, MDL=2.0	ug/g	
		F3 (C16-C34 Hydrocarbons)	2012/05/08	2.2 J, MDL=2.0	ug/g	
		F4 (C34-C50 Hydrocarbons)	2012/05/08	2.0 U, MDL=2.0	ug/g	
	RPD	F2 (C10-C16 Hydrocarbons)	2012/05/08	NC	%	30
		F3 (C16-C34 Hydrocarbons)	2012/05/08	NC	%	30
		F4 (C34-C50 Hydrocarbons)	2012/05/08	NC	%	30
2841308 LKA	RPD	Moisture	2012/05/07	0.8	%	20
2842003 SUK	Matrix Spike	Acid Extractable Phosphorus (P)	2012/05/08	NC	%	75 - 125
	Spiked Blank	Acid Extractable Phosphorus (P)	2012/05/08	109	%	80 - 120
	Method Blank	Acid Extractable Phosphorus (P)	2012/05/08	<20	ug/g	
2842088 C_H	Matrix Spike	, , , , , , , , , , , , , , , , , , , ,			. 3-3	
	[NH6916-01]	Nitrite (N)	2012/05/08	99	%	75 - 125
	parter and a	Nitrate (N)	2012/05/08	99	%	75 - 125
		Nitrate + Nitrite	2012/05/08	99	%	75 - 125
	Spiked Blank	Nitrite (N)	2012/05/08	98	%	75 - 125
	Op.,,oc. 2.c	Nitrate (N)	2012/05/08	103	%	75 - 125
		Nitrate + Nitrite	2012/05/08	102	%	75 - 125
	Method Blank	Nitrite (N)	2012/05/08	0.1 U, MDL=0.1	ug/g	
	Woulda Blaim	Nitrate (N)	2012/05/08	0.4 U, MDL=0.4	ug/g	
		Nitrate + Nitrite	2012/05/08	0.6 U, MDL=0.6	ug/g ug/g	
	RPD [NH6916-01]	Nitrite (N)	2012/05/08	NC	wg/g %	25
	IN D [IN IOO IO O I]	Nitrate (N)	2012/05/08	2.6	%	25
		Nitrate + Nitrite	2012/05/08	2.5	%	25
2842361 C N	Matrix Spike	Total Kjeldahl Nitrogen	2012/05/05	NC NC	%	75 - 125
20-72-001 01	QC Standard	Total Kjeldahl Nitrogen	2012/05/11	96	%	75 - 125 75 - 125
	Method Blank	Total Kjeldahl Nitrogen	2012/05/11	3 U, MDL=3	ug/g	10 - 120
				15.4		40
	RPD	Total Kjeldahl Nitrogen	2012/05/11			

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was not sufficiently significant to permit a reliable recovery calculation.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

Validation Signature Page

Maxxam Job #: B262266

M. Risheld

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

CRISTINA CARRIERE, Scientific Services

MEDHAT RISKALLAH, Manager, Hydrocarbon Department

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: EBA #2 Your C.O.C. #: 2223

Attention: Ximena Druar
SiREM - Site Recovery & Management
130 Research Lane
Suite 2
Guelph, ON
CANADA
N1G 5G3

Report Date: 2012/06/07

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B278662 Received: 2012/05/30, 10:50

Sample Matrix: Soil # Samples Received: 8

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Petroleum Hydrocarbons F2-F4 in Soil	8	2012/06/02	2012/06/05	CAM SOP-00316	CCME CWS
Total Metals Analysis by ICP	8	2012/06/04	2012/06/05	CAM SOP-00408	SW-846 6010C
Moisture	8	N/A	2012/06/02	CAM SOP-00445	R.Carter,1993
Nitrate (NO3) and Nitrite (NO2) in Soil	8	N/A	2012/06/06	CAM SOP-00440	SM 4500 NO3I/NO2B
pH CaCl2 EXTRACT	8	2012/06/04	2012/06/04	CAM SOP-00413	SM 4500H+ B
Total Kjeldahl Nitrogen - Soil	8	2012/06/04	2012/06/06	CAM SOP-00454	EPA 351.2 Rev 2

Remarks:

Maxxam Analytics has performed all analytical testing herein in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Reporting results to two significant figures at the RDL is to permit statistical evaluation and is not intended to be an indication of analytical precision.

The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following the 'Alberta Environment Draft Addenda to the CWS-PHC, Appendix 6, Validation of Alternate Methods'. Documentation is available upon request. Maxxam has made the following improvements to the CWS-PHC reference benchmark method: (i) Headspace for F1; and, (ii) Mechanical extraction for F2-F4. Note: F4G cannot be added to the C6 to C50 hydrocarbons. The extraction date for samples field preserved with methanol for F1 and Volatile Organic Compounds is considered to be the date sampled.

Maxxam Analytics is accredited by SCC (Lab ID 97) for all specific parameters as required by Ontario Regulation 153/04. Maxxam Analytics is limited in liability to the actual cost of analysis unless otherwise agreed in writing. There is no other warranty expressed or implied. Samples will be retained at Maxxam Analytics for three weeks from receipt of data or as per contract.

Your Project #: EBA #2 Your C.O.C. #: 2223

Attention: Ximena Druar SiREM - Site Recovery & Management 130 Research Lane Suite 2 Guelph, ON CANADA N1G 5G3

Report Date: 2012/06/07

CERTIFICATE OF ANALYSIS -2-

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

JOLANTA GORALCZYK, Project Manager Email: JGoralczyk@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 2

SiREM - Site Recovery & Management Client Project #: EBA #2

RESULTS OF ANALYSES OF SOIL

Maxxam ID		NP8761	NP8762	NP8763	NP8764	NP8765		
Sampling Date		2012/05/28	2012/05/28	2012/05/28	2012/05/28	2012/05/28		
		13:50	13:50	13:50	13:50	13:50		
COC Number		2223	2223	2223	2223	2223		
	Units	EBA2-280512-1F	EBA2-280512-2F	EBA2-280512-3F	EBA2-280512-4F	EBA2-280512-5F	RDL	QC Batch

Inorganics								
Moisture	%	12	11	12	1.1	11	1.0	2868600
Available (CaCl2) pH	рН	7.42	7.45	7.49	7.50	7.15		2869067
Total Kjeldahl Nitrogen	ug/g	205	220	184	306	302	10	2870196
Nitrite (N)	ug/g	0.2 J	0.1 J	0.2 J	0.1 J	0.1 U	0.5	2870364
Nitrate (N)	ug/g	0.4 U	2	2870364				
Nitrate + Nitrite	ug/g	0.6 U	3	2870364				

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

000110111001	Units	EBA2-280512-6F	RDL			RDL	QC Batch
COC Number		2223		2223	2223		
		13:50		13:50	13:50		
Sampling Date		2012/05/28		2012/05/28	2012/05/28		
Maxxam ID		NP8766		NP8767	NP8768		

Inorganics							
Moisture	%	7.7	1.0	11	5.7	1.0	2868600
Available (CaCl2) pH	рН	6.72		7.12	7.06		2869067
Total Kjeldahl Nitrogen	ug/g	342	10	699	485	100	2870196
Nitrite (N)	ug/g	0.1 U	0.5	0.3 J	0.3 J	0.5	2870364
Nitrate (N)	ug/g	0.4 U	2	25	91	2	2870364
Nitrate + Nitrite	ug/g	0.6 U	3	25	91	3	2870364

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		NP8761	NP8762	NP8763	NP8763		
Sampling Date		2012/05/28	2012/05/28	2012/05/28	2012/05/28		
		13:50	13:50	13:50	13:50		
COC Number		2223	2223	2223	2223		
	Units	EBA2-280512-1F	EBA2-280512-2F	EBA2-280512-3F	EBA2-280512-3F	RDL	QC Batch
					Lab-Dup		

Metals							
Acid Extractable Phosphorus (P)	ug/g	180	210	200	210	20	2869687

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		NP8764	NP8765	NP8766	NP8767		
Sampling Date		2012/05/28	2012/05/28	2012/05/28	2012/05/28		
		13:50	13:50	13:50	13:50		
COC Number		2223	2223	2223	2223		
	Units	EBA2-280512-4F	EBA2-280512-5F	EBA2-280512-6F	EBA2-280512-7F	RDL	QC Batch

Metals							
Acid Extractable Phosphorus (P)	ug/g	210	790	820	1800	20	2869687

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

	Units	EBA2-280512-8F	RDL	QC Batch
COC Number		2223		
		13:50		
Sampling Date		2012/05/28		
Maxxam ID		NP8768		

Metals				
Acid Extractable Phosphorus (P)	ug/g	1600	20	2869687

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		NP8761	NP8761	NP8762	NP8763		
Sampling Date		2012/05/28	2012/05/28	2012/05/28	2012/05/28		
		13:50	13:50	13:50	13:50		
COC Number		2223	2223	2223	2223		
	Units	EBA2-280512-1F	EBA2-280512-1F	EBA2-280512-2F	EBA2-280512-3F	RDL	QC Batch
			Lab-Dup				
F2-F4 Hydrocarbons							
F2 (C10-C16 Hydrocarbons)	ug/g	110	96	110	69	10	2868425
F3 (C16-C34 Hydrocarbons)	ug/g	180	150	180	120	10	2868425
F4 (C34-C50 Hydrocarbons)	ug/g	2.0 U	2.0 U	2.0 U	2.0 U	10	2868425
Reached Baseline at C50	ug/g	Yes	Yes	Yes	Yes		2868425
Surrogate Recovery (%)							
o-Terphenyl	%	92	93	94	92		2868425

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		NP8764	NP8765	NP8766	NP8767		
Sampling Date		2012/05/28	2012/05/28	2012/05/28	2012/05/28		
		13:50	13:50	13:50	13:50		
COC Number		2223	2223	2223	2223		
	Units	EBA2-280512-4F	EBA2-280512-5F	EBA2-280512-6F	EBA2-280512-7F	RDL	QC Batch

F2-F4 Hydrocarbons							
F2 (C10-C16 Hydrocarbons)	ug/g	24	45	48	54	10	2868425
F3 (C16-C34 Hydrocarbons)	ug/g	90	73	100	210	10	2868425
F4 (C34-C50 Hydrocarbons)	ug/g	2.0 U	2.0 U	2.0 U	28	10	2868425
Reached Baseline at C50	ug/g	Yes	Yes	Yes	Yes		2868425
Surrogate Recovery (%)							
o-Terphenyl	%	90	91	90	89		2868425

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		NP8768		
Sampling Date		2012/05/28		
		13:50		
COC Number		2223		
	Units	EBA2-280512-8F	RDL	QC Batch

F2-F4 Hydrocarbons				
F2 (C10-C16 Hydrocarbons)	ug/g	36	10	2868425
F3 (C16-C34 Hydrocarbons)	ug/g	170	10	2868425
F4 (C34-C50 Hydrocarbons)	ug/g	26	10	2868425
Reached Baseline at C50	ug/g	Yes		2868425
Surrogate Recovery (%)				
o-Terphenyl	%	89		2868425

SiREM - Site Recovery & Management Client Project #: EBA #2

Test Summary

Maxxam ID NP8761

Sample ID EBA2-280512-1F

Matrix Soil

Collected 2012/05/28

Shipped

Received 2012/05/30

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2868425	2012/06/02	2012/06/05	(KENT) MAOLIN LI
Total Metals Analysis by ICP	ICP	2869687	2012/06/04	2012/06/05	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2868600	N/A	2012/06/02	VALENTINA KAFTANI
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2870364	N/A	2012/06/06	CHRIS LI
pH CaCl2 EXTRACT		2869067	2012/06/04	2012/06/04	XUANHONG QIU
Total Kjeldahl Nitrogen - Soil	AC	2870196	2012/06/04	2012/06/06	CHANDRA NANDLAL

Maxxam ID NP8761 Dup Sample ID EBA2-280512-1F

Matrix Soil

Collected 2012/05/28

Shipped

Received 2012/05/30

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2868425	2012/06/02	2012/06/05	(KENT) MAOLIN LI

Maxxam ID NP8762

Sample ID EBA2-280512-2F

Matrix Soil

Collected 2012/05/28

Shipped

Received 2012/05/30

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2868425	2012/06/02	2012/06/05	(KENT) MAOLIN LI
Total Metals Analysis by ICP	ICP	2869687	2012/06/04	2012/06/05	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2868600	N/A	2012/06/02	VALENTINA KAFTANI
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2870364	N/A	2012/06/06	CHRIS LI
pH CaCl2 EXTRACT		2869067	2012/06/04	2012/06/04	XUANHONG QIU
Total Kieldahl Nitrogen - Soil	AC	2870196	2012/06/04	2012/06/06	CHANDRA NANDLAL

Maxxam ID NP8763

Sample ID EBA2-280512-3F

Matrix Soil

Collected 2012/05/28

Shipped

Received 2012/05/30

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2868425	2012/06/02	2012/06/05	(KENT) MAOLIN LI
Total Metals Analysis by ICP	ICP	2869687	2012/06/04	2012/06/05	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2868600	N/A	2012/06/02	VALENTINA KAFTANI
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2870364	N/A	2012/06/06	CHRIS LI
pH CaCl2 EXTRACT		2869067	2012/06/04	2012/06/04	XUANHONG QIU
Total Kieldahl Nitrogen - Soil	AC.	2870196	2012/06/04	2012/06/06	CHANDRA NANDI AI

Maxxam ID NP8763 Dup Sample ID EBA2-280512-3F

Matrix Soil

Collected 2012/05/28

Shipped

Received 2012/05/30

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Total Metals Analysis by ICP	ICP	2869687	2012/06/04	2012/06/05	SUBAN KANAPATHIPPLLAI

SiREM - Site Recovery & Management Client Project #: EBA #2

Test Summary

 Maxxam ID
 NP8764
 Collected
 2012/05/28

 Sample ID
 EBA2-280512-4F
 Shipped

Matrix Soil Received 2012/05/30

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2868425	2012/06/02	2012/06/05	(KENT) MAOLIN LI
Total Metals Analysis by ICP	ICP	2869687	2012/06/04	2012/06/05	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2868600	N/A	2012/06/02	VALENTINA KAFTANI
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2870364	N/A	2012/06/06	CHRIS LI
pH CaCl2 EXTRACT		2869067	2012/06/04	2012/06/04	XUANHONG QIU
Total Kieldahl Nitrogen - Soil	AC	2870196	2012/06/04	2012/06/06	CHANDRA NANDLAL

 Maxxam ID
 NP8765
 Collected
 2012/05/28

 Sample ID
 EBA2-280512-5F
 Shipped

Matrix Soil Received 2012/05/30

Test Description Instrumentation Batch Extracted Analyzed Analyst Petroleum Hydrocarbons F2-F4 in Soil GC/FID 2012/06/02 (KENT) MAOLIN LI 2012/06/05 2868425 Total Metals Analysis by ICP ICP 2869687 2012/06/04 2012/06/05 SUBAN KANAPATHIPPLLAI Moisture BAL 2868600 N/A 2012/06/02 VALENTINA KAFTANI Nitrate (NO3) and Nitrite (NO2) in Soil CHRIS LI LACH N/A 2012/06/06 2870364 pH CaCl2 EXTRACT 2012/06/04 2012/06/04 **XUANHONG QIU** 2869067 Total Kjeldahl Nitrogen - Soil AC 2870196 2012/06/04 2012/06/06 CHANDRA NANDLAL

 Maxxam ID
 NP8766
 Collected
 2012/05/28

 Sample ID
 EBA2-280512-6F
 Shipped

Matrix Soil Received 2012/05/30

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2868425	2012/06/02	2012/06/05	(KENT) MAOLIN LI
Total Metals Analysis by ICP	ICP	2869687	2012/06/04	2012/06/05	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2868600	N/A	2012/06/02	VALENTINA KAFTANI
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2870364	N/A	2012/06/06	CHRIS LI
pH CaCl2 EXTRACT		2869067	2012/06/04	2012/06/04	XUANHONG QIU
Total Kjeldahl Nitrogen - Soil	AC	2870196	2012/06/04	2012/06/06	CHANDRA NANDLAL

 Maxxam ID
 NP8767
 Collected
 2012/05/28

 Sample ID
 EBA2-280512-7F
 Shipped

Matrix Soil Received 2012/05/30

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	2868425	2012/06/02	2012/06/05	(KENT) MAOLIN LI
Total Metals Analysis by ICP	ICP	2869687	2012/06/04	2012/06/05	SUBAN KANAPATHIPPLLAI
Moisture	BAL	2868600	N/A	2012/06/02	VALENTINA KAFTANI
Nitrate (NO3) and Nitrite (NO2) in Soil	LACH	2870364	N/A	2012/06/06	CHRIS LI
pH CaCl2 EXTRACT		2869067	2012/06/04	2012/06/04	XUANHONG QIU
Total Kjeldahl Nitrogen - Soil	AC	2870196	2012/06/04	2012/06/06	CHANDRA NANDLAL

SiREM - Site Recovery & Management Client Project #: EBA #2

Test Summary

 Maxxam ID
 NP8768
 Collected
 2012/05/28

 Sample ID
 EBA2-280512-8F
 Shipped

Matrix Soil Received 2012/05/30

Test Description Instrumentation Batch Extracted Analyzed Analyst Petroleum Hydrocarbons F2-F4 in Soil GC/FID 2868425 2012/06/02 2012/06/05 (KENT) MAOLIN LI Total Metals Analysis by ICP SUBAN KANAPATHIPPLLAI ICP 2869687 2012/06/04 2012/06/05 2012/06/02 VALENTINA KAFTANI Moisture BAL 2868600 N/A Nitrate (NO3) and Nitrite (NO2) in Soil LACH 2870364 N/A 2012/06/06 CHRIS LI pH CaCl2 EXTRACT XUANHONG QIU 2869067 2012/06/04 2012/06/04 Total Kjeldahl Nitrogen - Soil CHANDRA NANDLAL AC 2870196 2012/06/04 2012/06/06

SiREM - Site Recovery & Management Client Project #: EBA #2

GEN	FR/	ΔI	CO	MM	FN	TS

Results relate only to the items tested.

SiREM - Site Recovery & Management

Attention: Ximena Druar Client Project #: EBA #2

P.O. #: Site Location:

Quality Assurance Report Maxxam Job Number: MB278662

QA/QC			Date			
Batch	~~~		Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
2868425 KLI	Matrix Spike		22.42.42.42			
	[NP8761-01]	o-Terphenyl	2012/06/05	87	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2012/06/05	NC	%	50 - 130
		F3 (C16-C34 Hydrocarbons)	2012/06/05	104	%	50 - 130
		F4 (C34-C50 Hydrocarbons)	2012/06/05	100	%	50 - 130
	Spiked Blank	o-Terphenyl	2012/06/05	84	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2012/06/05	102	%	70 - 130
		F3 (C16-C34 Hydrocarbons)	2012/06/05	106	%	70 - 130
		F4 (C34-C50 Hydrocarbons)	2012/06/05	100	%	70 - 130
	Method Blank	o-Terphenyl	2012/06/05	94	%	50 - 130
		F2 (C10-C16 Hydrocarbons)	2012/06/05	2.0 U, MDL=2.0	ug/g	
		F3 (C16-C34 Hydrocarbons)	2012/06/05	3.1 J, MDL=2.0	ug/g	
		F4 (C34-C50 Hydrocarbons)	2012/06/05	2.0 U, MDL=2.0	ug/g	
	RPD [NP8761-01]	F2 (C10-C16 Hydrocarbons)	2012/06/05	17.5	%	30
		F3 (C16-C34 Hydrocarbons)	2012/06/05	16.5	%	30
		F4 (C34-C50 Hydrocarbons)	2012/06/05	NC	%	30
2868600 PHM	RPD	Moisture	2012/06/02	2.3	%	20
2869687 SUK	Matrix Spike					
	[NP8763-01]	Acid Extractable Phosphorus (P)	2012/06/05	NC	%	75 - 125
	Spiked Blank	Acid Extractable Phosphorus (P)	2012/06/05	96	%	80 - 120
	Method Blank	Acid Extractable Phosphorus (P)	2012/06/05	<20	ug/g	
	RPD [NP8763-01]	Acid Extractable Phosphorus (P)	2012/06/05	8.1	%	30
2870196 C_N	Matrix Spike	Total Kjeldahl Nitrogen	2012/06/06	NC	%	75 - 125
	QC Standard	Total Kjeldahl Nitrogen	2012/06/06	82	%	75 - 125
	Method Blank	Total Kjeldahl Nitrogen	2012/06/06	3 U, MDL=3	ug/g	
	RPD	Total Kjeldahl Nitrogen	2012/06/06	3.8	%	40
2870364 C_H	Matrix Spike	Nitrite (N)	2012/06/06	99	%	75 - 125
		Nitrate (N)	2012/06/06	101	%	75 - 125
		Nitrate + Nitrite	2012/06/06	100	%	75 - 125
	Spiked Blank	Nitrite (N)	2012/06/06	100	%	75 - 125
	·	Nitrate (N)	2012/06/06	100	%	75 - 125
		Nitrate + Nitrite	2012/06/06	100	%	75 - 125
	Method Blank	Nitrite (N)	2012/06/06	0.1 U, MDL=0.1	ug/g	
		Nitrate (N)	2012/06/06	0.4 U, MDL=0.4	ug/g	
		Nitrate + Nitrite	2012/06/06	0.6 U, MDL=0.6	ug/g	
	RPD	Nitrite (N)	2012/06/06	NC	%	25
		Nitrate (N)	2012/06/06	NC	%	25
		Nitrate + Nitrite	2012/06/06	NC	%	25

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was not sufficiently significant to permit a reliable recovery calculation.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

Validation Signature Page

Maxxam Job #: B278662

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

BRAD NEWMAN, Scientific Specialist

CRISTINA CARRIERE, Scientific Services

MEDHAT RISKALLAH, Manager, Hydrocarbon Department

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.