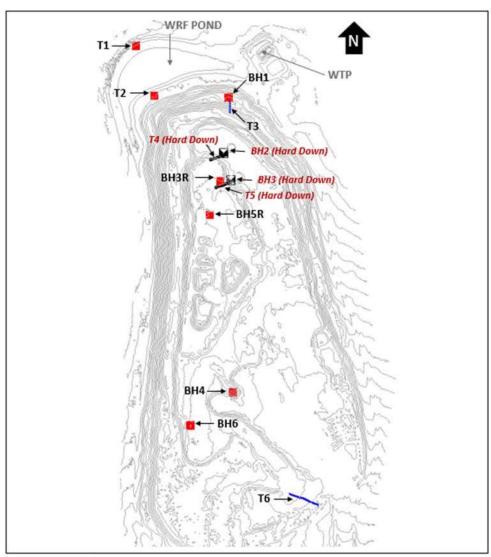


APPENDIX E.15


Technical Services Waste Rock Facility

Annual Report

APPENDIX E.15.1

Waste Rock Facility Thermistor Installations

PROJECT:	Waste Rock Facility Thermist	Waste Rock Facility Thermistors				
SURVEY DATE:	October 2024					
LEGEND:	■ Vertical thermistor site → Down thermistor site	Horizontal thermistor site Down thermistor site (Horizontal)				
SCALE:	Meters 0 100 200 400 600					

Waste Rock F	acility Insti	umentatio	n Status – March 2025
Station / Sensor	Sensor	Last Data	Damaged Sensors / Missing Data /
	Status	Download	Comments
BH1 - Thermistor	Up	March 2025	 No known damage Data missing between Nov 2021 and April 2022 (dead battery replaced) Data missing between Dec 2024 and February 2025 (dead battery replaced)
BH1 - Vibrating Wire Piezometer	Up	March 2025	No known damageSame records as BH1 - Thermistor
BH1 - Oxygen	Permanently Down	May 2020	Permanently down May 2020
BH2 - Thermistor	Permanently Down	March 2022	Permanently down March 2022
BH2 - Vibrating Wire Piezometer	Permanently Down	November 2021	 Permanently down after November 2021
BH2 - Oxygen	Permanently Down	August 2019	 Permanently down after August 2019
BH3R - Thermistor	Up	March 2025	 New install October 2024 in similar location to replace previously damaged BH3 No known damage
BH4 - Thermistor	Up	March 2025	New install April 2024 No known damage
BH5R - Thermistor	Up	March 2025	 New install April 2024, damaged July, reinstalled October 2024 similar location.
BH6 - Thermistor	Up	March 2025	New Install in PAG cell October 2024No known damage
T1 - Thermistor	Up	March 2025	 No known damage Data missing between July – Aug 2019 (disconnected for pond raise) Data missing between April 2022 and July 2022
T2 - Thermistor	Up	March 2025	 Bead at 0.93m damaged since August 2019 Missing data between April 2020 and August 2020 Bead at 1.93m functioning inconsistently between February 2021 and June 2021. Bead at 2.93m damaged since May 2021. Beads at 3.93 and 4.93m functioning inconsistently since May 2021
T3 - Thermistor	Up	March 2025	No known damage.

			 Data missing between June 2023 and January 2024 (dead battery replaced) Data missing between November 2024 and February 2025 (dead battery replaced)
T4 - Thermistor	Permanently Down	April 2022	Permanently down after April 2022
T5 - Thermistor	Permanently Down	April 2022	Permanently down after April 2022
T6 - Thermistor	Up	March 2025	New install October 2024No known damage

APPENDIX E.15.2

Waste Rock Facility Quarterly Compliance Reports

To: Andrew Keim, Lauren Perrin, CIRNAC, QIA, NWB

From: Baffinland Iron Mines Corporation

Date: May 24, 2024

Subject: 2024 Waste Rock Management Compliance

This memo summarizes the results of 2024 Quarter 1 (Q1) progressive reclamation in alignment with the Waste Rock Facility QAQC Monitoring Plan, included as part of the Phase I Waste Rock Management Plan (WRMP) issued April 2, 2024.

Q1 WRF Coverage Progress

Key performance indicators used to monitor conformance to the progressive placement of WRF cover include the WRF area covered by PAG in square metres, and the total % coverage to date. In Q1, 2024, Mine Operations placed 225,568 tonnes of Non-acid generating (Non-AG) material, covering an area of 59,584 square metres of the WRF, which is equivalent to a 15% coverage.

Dump compliance was fully adhered to, with 100% of PAG loads placed within delineated PAG cells. Records supporting in-pit material identification and WRF placement can be found in Appendix A.

Cover thickness, observed in the WRF 4m Cover Progress Report (Appendix B), was 100% compliant with exposed areas covered by a 4m Non-AG lift.

Q1 Corrective Actions

All performance indicators for the quarterly monitoring plan were in full compliance for Q1. No further corrective actions are required at this time.

Baffinland will continue to cover exposed PAG waste, further reducing the footprint of exposed PAG waste, and concentrate the deposition within designated PAG cells. Ongoing adherence to the Phase I Waste Rock Management Plan will promote freeze-back and greatly reduce the likelihood of an ARD incident while enabling the prevention and minimization of environmental harm.

Q2 Forecast

Baffinland projects an additional PAG coverage of 19% will be obtained during Q2 for a cumulative of 34% coverage by the end of the Quarter. The table below shows the current 2024 WRF Quarterly Targets.

2024 WRF 4m Cover Target						
Heading Units Q1 1 Q2 Q3 Q4						
4m Cover	m²	59,584	131,999	194,117	329,998	
% Cover ²	%	15	34	50	85	

Notes:

- 1. Cover completed 2024 Q1.
- 2. % Cover calculation is based on a total exposed footprint of 388,233 m².

The final result will be an exposed PAG surface area of less than 60,000 m² at the end of 2024. Baffinland intends to continue placing a 4 meter Non-AG layer over exposed PAG waste rock, the Targeted Waste Deposition Sequence is available in Appendix C. Currently the pile remains frozen (except the active layer area) and additional thermistors will be installed during Q2 to verify ongoing freeze-back of placed material.

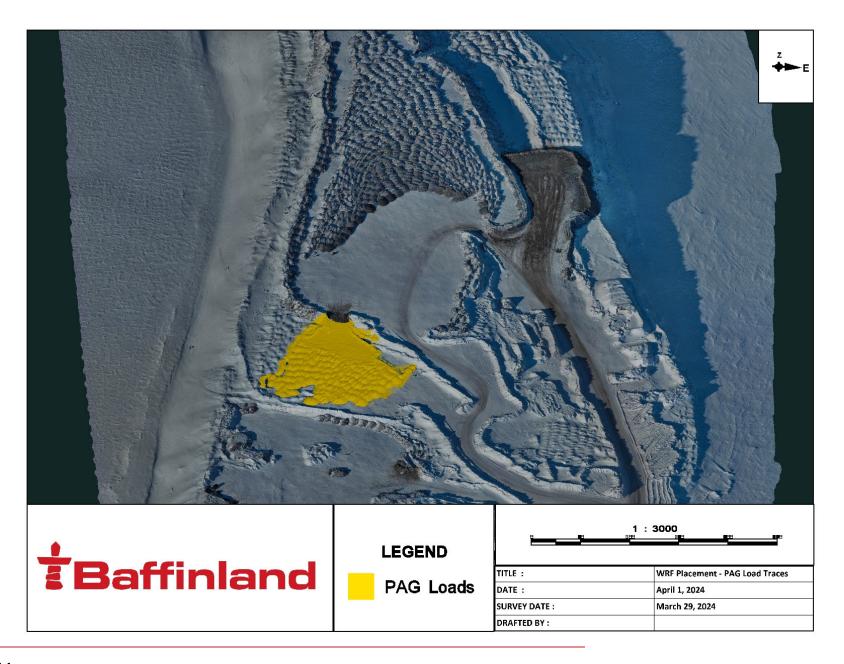
References

Baffinland Iron Mines Corporation, 2024. Phase I Waste Rock Management Plan. BAF-PH1-830-P16-0029, Rev 4. Issued March 25, 2023, 378 pages.

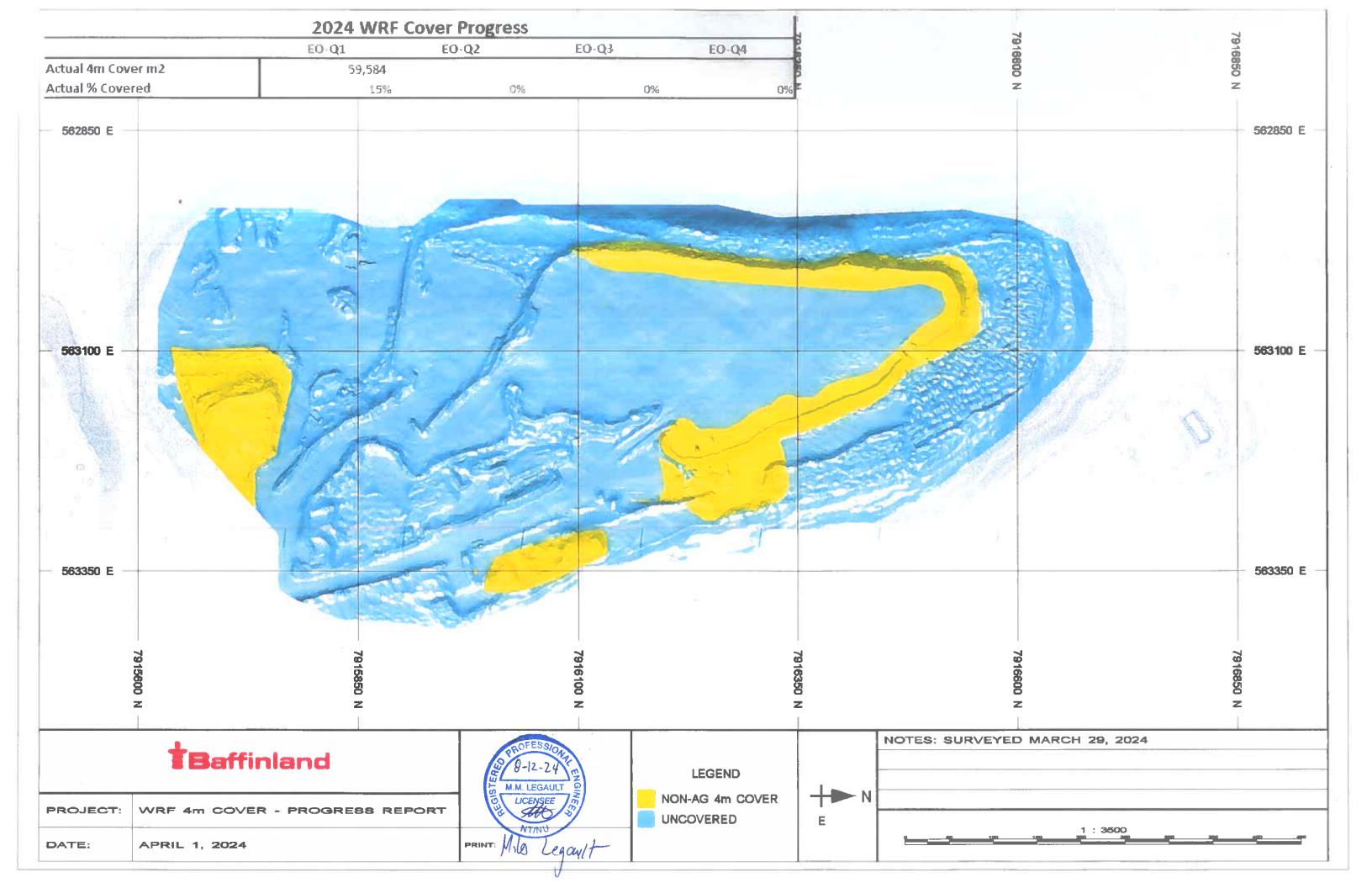
Appendices

- Appendix A: Material Identification and WRF Placement
- Appendix B: WRF 4m Cover Progress Report
- Appendix C: Targeted Waste Deposition Sequence

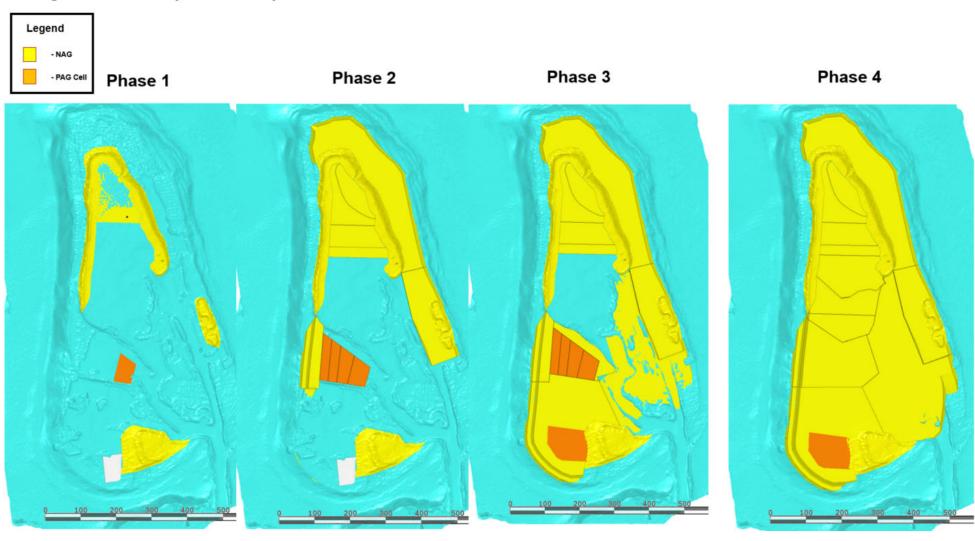
Appendix A: Material Identification and WRF Placement



	MHT LOAD TRACKING					
ShiftDate	Origin	Material	Destination	Tonnes		
2024-03-02	N1_480_031	PAG	WRD	1696		
2024-03-02	N1_480_029	NAG	WRD	1908		
2024-03-02	N1_470_025	NAG	WRD	1696		
2024-03-02	N1_480_029	PAG	WRD	3604		
2024-03-03	N1_470_025	NAG	WRD	7844		
2024-03-03	N1_480_031	PAG	WRD	212		
2024-03-03	N1_480_029	PAG	WRD	212		
2024-03-04	N1_470_025	NAG	WRD	3180		
2024-03-05	N1_480_020	NAG	WRD	212		
2024-03-05	N1_470_025	NAG	WRD	1060		
2024-03-06	N1_480_020	NAG	WRD	11448		
2024-03-06	N1_470_025	NAG	WRD	2120		
2024-03-06	N1_470_027	NAG	WRD	2120		
2024-03-07	N1_470_025	NAG	WRD	8480		
2024-03-07	N1_470_027	NAG	WRD	1484		
2024-03-07	N1_480_020	NAG	WRD	212		
2024-03-08	N1_460_003	NAG	WRD	7844		
2024-03-13	N1_460_003	NAG	WRD	1272		
2024-03-14	N1_460_003	NAG	WRD	23320		
2024-03-15	N1_460_003	NAG	WRD	16324		
2024-03-15	N1_470_027	NAG	WRD	1696		
2024-03-16	N1_460_003	NAG	WRD	21412		
2024-03-16	N1_460_001	NAG	WRD	212		
2024-03-17	N1_460_003	NAG	WRD	4664		
2024-03-17	N1_470_027	NAG	WRD	636		
2024-03-18	N1_460_003	NAG	WRD	424		
2024-03-19	N1_460_004	NAG	WRD	2332		
2024-03-19	N1_460_005	NAG	WRD	2120		
2024-03-19	N1_460_003	NAG	WRD	636		
2024-03-20	N1_480_031	PAG	WRD	8904		
2024-03-20	N1_480_035	PAG	WRD	3816		
2024-03-20	N1_480_035	NAG	WRD	6572		
2024-03-21	N1_480_035	NAG	WRD	14628		
2024-03-21	N1_480_035	PAG	WRD	8480		
2024-03-21	N1_480_031	PAG	WRD	212		
2024-03-22	N1_460_005	NAG	WRD	1908		
2024-03-22	N1_480_035	NAG	WRD	2120		
2024-03-23	 N1_470_027	NAG	WRD	636		
2024-03-23	N1_460_005	NAG	WRD	1272		
2024-03-24	 N1_480_035	PAG	WRD	424		
2024-03-24	N1_480_035	NAG	WRD	3816		
2024-03-24	 N1_470_027	NAG	WRD	1484		
2024-03-25	N1_480_035	NAG	WRD	212		
	_ _					


G WRD 636
G WRD 12084
WRD 2756
G WRD 4028
G WRD 424
G WRD 20140
WRD 11660
WRD 636
G WRD 28620
WRD 2756
G WRD 1484
NAG WRD 848

Appendix B: WRF 4m Cover Progress Report



Appendix C: Targeted Waste Deposition Sequence

Baffinland

Targeted Waste Deposition Sequence

To: Andrew Keim, Lauren Perrin, CIRNAC QIA, NWB

From: Baffinland Iron Mines Corporation

Date: July 28, 2024

Subject: 2024 Waste Rock Management Compliance

This memo summarizes the results of 2024 Quarter 2 (Q2) progressive reclamation in alignment with the Waste Rock Facility QAQC Monitoring Plan, included as part of the Phase I Waste Rock Management Plan (WRMP) issued April 2, 2024.

Summary

The placement of waste rock during Q2 2024 was consistent with the most recent WRMP commitment to cover exposed potentially acid generating (PAG) waste with a 4 m thick layer of non-acid generating (Non-AG) waste, and concentrate the deposition of PAG within designated PAG cells in order to reduce the footprint of exposed PAG waste. The portion of the WRF covered by non-AG cover increased by 20% from 15% at the end of Q1 to 35% in Q2. Baffinland projects an additional 15% coverage will be completed in Q3, for a cumulative coverage of 50% by the end of Q3. The QA/QC program did not reveal any inconsistencies with material classification for cover placement and the TARP performance indicators did not require any corrective actions in Q2.

WRF Coverage Progress

Key performance indicators used to monitor conformance to the progressive placement of WRF cover include the WRF area covered by Non-AG in square metres, and the total % coverage to date. In 2024 Q2, Mine Operations placed 1,089,051 tonnes of Non-AG material, covering an area of 74,445 m², for a cumulative coverage of 134,029 m² (35 % coverage).

Dump compliance was fully adhered to, with 100 % of PAG loads placed within delineated PAG cells. Records supporting in-pit material identification and WRF placement can be found in Appendix A.

Cover thickness, observed in the WRF 4 m Cover Progress Drawing (Appendix B), was compliant with exposed areas covered by a 4 m Non-AG lift.

QA/QC Program

To verify the chemistry of deposited material, 16 holes were drilled into the 4 m cover lift placed during Q2. The drill hole locations are shown on the drawing provided in Appendix B. Holes were drilled to a depth of 2 m and samples collected from 0.5 to 2.0 m depth. Samples were tested on-site for total sulphur and paste pH before being shipped off-site for Modified Sobek testing. Assay results from the on-site laboratory are presented in Appendix C. Due to longer turnaround time, results for Modified Sobek testing will be included in the Q3 report.

Results from on-site testing indicate material within the 4 m cover lift is classified as Non-AG using the waste rock classification criteria presented in Section 6 of the Phase 1 Waste Rock Management Plan.

Corrective Actions

All performance indicators for the quarterly monitoring plan were in compliance for Q2. The quarterly Trigger Action Response Plan (TARP) audit is included in Appendix D. No corrective actions are required at this time.

Forecast

Baffinland will continue to place a 4 m Non-AG cover over exposed PAG waste and deposit PAG within designated cells at the WRF. Baffinland projects 15% additional PAG coverage will be obtained during Q3, for a cumulative total of 50% coverage by the end of the quarter. The table below shows the current 2024 WRF Cover Targets. Drawings of the targeted waste deposition sequence are shown in Appendix E.

2024 WRF 4 m Cover Target					
Heading	Units	Q1 ¹	Q2 ¹	Q3	Q4
4 m Cover	m ²	59,584	134,029	194,117	329,998
% Cover ²	%	15	35	50	85

Notes:

- 1. Cover completed 2024 Q1 and Q2.
- 2. % Cover calculation is based on a total exposed footprint of 388,233 m².

References

Baffinland Iron Mines Corporation, 2024. Phase I Waste Rock Management Plan. BAF-PH1-830-P16-0029, Rev 4.1. Issued April 2, 2024, 378 pages.

Baffinland Iron Mines Corporation, 2024. Waste Rock Facility QAQC Monitoring Plan. BAF-PH1-340-P16-0004, Rev 2. Issued March 25, 2024, 29 pages.

Appendices

- Appendix A: In-pit Material Identification
- Appendix B: WRF 4m Cover Progress Drawing
- Appendix C: WRF Non-AG Cover Placement Verification Testing Results
- Appendix D: Quarterly TARP Audit
- Appendix E: Targeted Waste Deposition Sequence

Appendix A: In-Pit Material Identification

In-pit Material Identification						
Dig Block ID	Material	Tonnes	Sulphur %			
INPIT_CONS	Non-AG	2756	-			
N1_450_001_810	Non-AG	424	0.04			
N1_450_001_900	PAG	17172	0.25			
N1_450_003	Non-AG	2332	0.04			
N1_450_003_800	Non-AG	26076	0.04			
N1_450_003_900	PAG	11236	0.26			
N1_450_005_800	Non-AG	424	0.03			
N1_460_001	Non-AG	212	0.01			
N1_460_001_810	Non-AG	25228	0.01			
N1_460_005_810	Non-AG	1272	0.04			
N1_460_007_800	Non-AG	13780	0.02			
N1_460_008_810	Non-AG	424	0.01			
N1_460_009_800	Non-AG	3392	0.02			
N1_460_009_810	Non-AG	35404	0.11			
N1_460_009_900	PAG	20564	0.43			
N1_460_011_800	Non-AG	115752	0.02			
N1_460_011_810	Non-AG	636	0.02			
N1_460_013_800	Non-AG	151368	0.04			
N1_460_019	Non-AG	212	0.01			
N1_460_019_810	Non-AG	37948	0.01			
N1_460_019_900	PAG	37948	0.21			
N1_460_021_810	Non-AG	19292	0.06			
N1_460_023_800	Non-AG	6784	0.03			
N1_460_023_810	Non-AG	39220	0.1			
N1_460_023_900	PAG	2756	0.19			
N1_470_022_900	PAG	212	0.34			
N1_470_029_900	PAG	8904	0.31			
N1_470_031_810	Non-AG	36252	0.01			
N1_470_035_810	Non-AG	14628	0.01			
N1_470_035_900	PAG	44732	0.22			
N1_470_037	Non-AG	424	0.01			
N1_470_037_810	Non-AG	86072	0.01			
N1_470_037_900	PAG	5088	0.54			
N1_470_039	Non-AG	212	0.03			
N1_470_039_810	Non-AG	136316	0.01			
N1_470_039_900	PAG	18020	0.22			
N1_480_022_800	Non-AG	424	0.01			
N1_480_022_810	Non-AG	42400	0.01			
N1_480_031	PAG	636	-			
N1_480_031_810	Non-AG	2120	0.08			

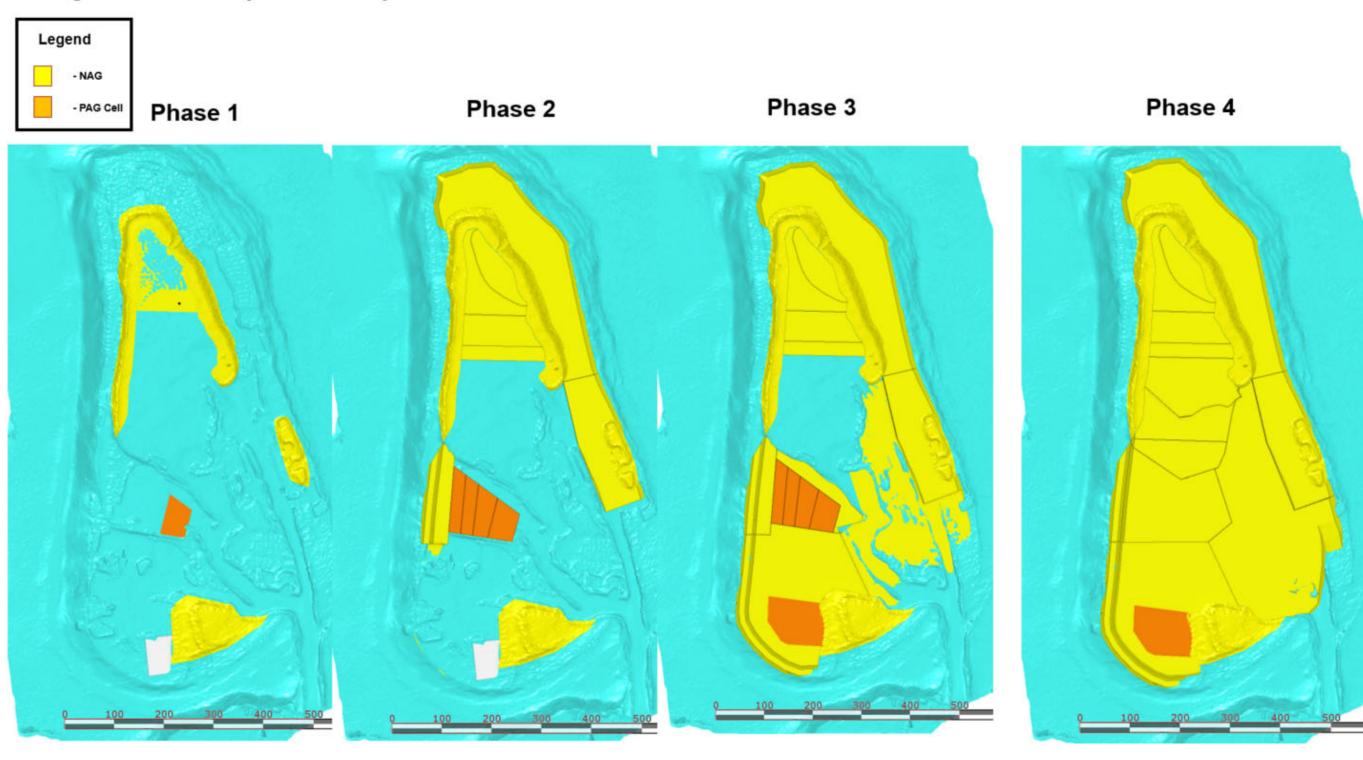
In-pit Material Identification							
Dig Block ID	Material	Tonnes	Sulphur %				
N1_480_031_900	PAG	40916	0.36				
N1_480_035_810	Non-AG	10898	0.01				
N1_Cleanup_810	Non-AG	424	-				
N2_640_107_810	Non-AG	11872	0.06				
N2_640_111_800	Non-AG	70517	0.02				
N2_650_103_800	Non-AG	54272	0.01				
N2_660_109	Non-AG	4240	0.02				
N2_660_109_800	Non-AG	95188	0.02				
N2_660_111	Non-AG	848	0.02				
N2_660_111_800	Non-AG	39008	0.02				

Appendix B: WRF 4m Cover Progress Drawing

Appendix C: WRF Non-AG Cover Placement Verification Testing Results

		Recvd Wt.	Dry Wt.	Moisture	S	Paste pH
Hole ID	ALS ID	kg	kg	%	%	Unity
205	S665629	5.7	5.4	5.4	0.028	8.2
508	S665636	5.1	4.9	3.0	0.039	7.7
608	S665627	6.5	6.3	3.7	0.021	7.7
708	S665634	5.7	5.3	6.4	0.082	7.0
807	S665621	5.9	5.7	3.3	0.048	8.4
808	S665632	5.2	4.9	6.3	0.112	8.3
906	S665626	5.8	5.7	3.1	0.036	8.3
907	S665630	6.6	6.3	4.3	0.031	8.3
1006	S665622	7.0	6.7	4.3	0.041	8.2
1007	S665623	7.5	7.2	4.5	0.026	8.4
1105	S665628	5.6	5.2	7.5	0.026	8.5
1106	S665633	4.6	4.5	3.3	0.023	8.0
1107	S665631	6.3	6.0	4.1	0.026	8.4
1205	S665624	6.1	5.8	4.6	0.029	7.9
1206	S665625	5.5	5.3	3.1	0.025	8.7
1207	S665635	6.9	6.6	4.2	0.009	8.3

Appendix D: Quarterly TARP Audit


	Waste Depo	01-Apr	30-Jun		
Project Activity	Objectives	Performance Indicators	Monitoring Program	Status	Response
IMaterial Classification	Ensuring accurate material categorization	Chemical characteristics and categorization of dig blocks	Ouarterly Audit of Dig Blocks	Dig blocks correctly classified according to site standards	No action required.
IMaterial (lassification		Chemical characteristics and categorization of dig blocks	Iconfirmation testwork, and SEE	Results pending and will be reported in Q3.	
Execution Control	Adherence to WRMP	Dump Compliance	Quarterly Reporting and Planning	100% of loads within allowed PAG dumping locations	No action required.
Execution Control	Adherence to WRMP	Lift Thickness. Cover thickness.	() Harterly Reporting and Planning	Lift thickness, Cover thickness 100% compliant	No action required

Appendix E: Targeted Waste Deposition Sequence

Baffinland

Targeted Waste Deposition Sequence

To: Andrew Keim, Lauren Perrin, CIRNAC QIA, NWB

From: Baffinland Iron Mines Corporation

Date: September 30, 2024

Subject: 2024 Q3 Waste Rock Management Compliance

This memo summarizes the results of 2024 Quarter 3 (Q3) progressive reclamation in alignment with the Waste Rock Facility QAQC Monitoring Plan, included as part of the Phase I Waste Rock Management Plan (WRMP) issued April 2, 2024.

Summary

The placement of waste rock during 2024 Q3 was consistent with the most recent WRMP commitment to cover exposed potentially acid generating (PAG) waste with a 4 m thick layer of non-acid generating (Non-AG) waste, and concentrate the deposition of PAG within designated PAG cells in order to reduce the footprint of exposed PAG waste. The portion of the waste rock facility (WRF) covered by non-AG increased by 15% from 35% at the end of Q2 to 50% in Q3. The QAQC program did not reveal any inconsistencies with material classification for cover placement and the TARP performance indicators did not require any corrective actions in Q3.

WRF Coverage Progress

Key performance indicators used to monitor conformance to the progressive placement of WRF cover include the area covered by Non-AG in square metres, and the total % coverage to date. In 2024 Q3, Mine Operations placed 1,013,148 tonnes of Non-AG material, covering an area of 60,480 m², for a cumulative coverage of 194,509 m² (50 % coverage).

Dump compliance was fully adhered to, with 100 % of PAG loads placed within delineated PAG cells. Records supporting in-pit material identification and WRF placement can be found in Appendix A.

Cover thickness, observed in the WRF 4 m Cover Progress Drawing (Appendix B), was compliant with exposed areas covered by a 4 m Non-AG lift.

QAQC Program

To verify the chemistry of deposited material, 13 holes were drilled into the 4 m cover lift placed during Q3. The drill hole locations are shown on the drawing provided in Appendix B. Holes were drilled to a depth of 2 m and samples collected from 0.5 to 2.0 m depth. Samples were tested on-site for total sulphur and paste pH before being shipped off-site for Modified Sobek testing. Assay results from the on-site laboratory are presented in Appendix C. Results for Q1 and Q2 Modified Sobek are included in this report. Due to longer turnaround time, results for Q3 Modified Sobek testing will be included in the Q4 report.

Results from on-site testing indicate material within the 4 m cover lift is classified as Non-AG using the waste rock classification criteria presented in Section 6 of the Phase 1 Waste Rock Management Plan.

Corrective Actions

All performance indicators for the quarterly monitoring plan were in compliance for Q3. The quarterly Trigger Action Response Plan (TARP) audit is included in Appendix D. No corrective actions are required at this time.

Forecast

Baffinland will continue to place a 4 m Non-AG cover over exposed PAG waste and deposit PAG within designated cells at the WRF. The table below shows the current 2024 WRF Cover Targets. Drawings of the targeted waste deposition sequence are shown in Appendix E.

2024 WRF 4 m Cover Target					
Heading Units Q1 ¹ Q2 ¹ Q3 ¹ Q4					
4 m Cover	m ²	59,584	134,029	194,509	329,998
% Cover ²	%	15	35	50	85

Notes:

- 1. Cover completed 2024 Q1, Q2 and Q3.
- 2. % Cover calculation is based on a total exposed footprint of 388,233 m².

References

Baffinland Iron Mines Corporation, 2024. Phase I Waste Rock Management Plan. BAF-PH1-830-P16-0029, Rev 4.1. Issued April 2, 2024, 378 pages.

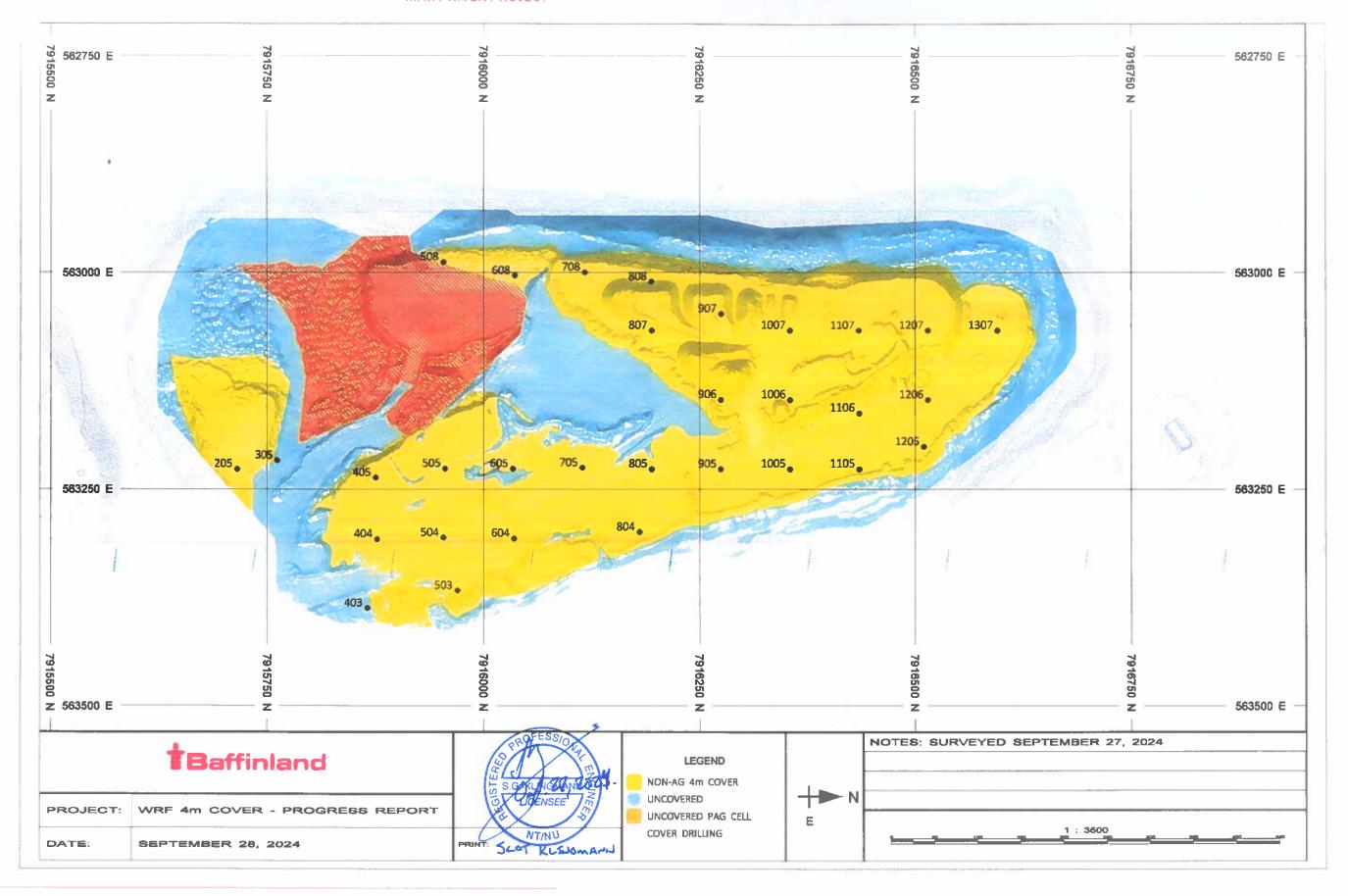
Baffinland Iron Mines Corporation, 2024. Waste Rock Facility QAQC Monitoring Plan. BAF-PH1-340-P16-0004, Rev 2. Issued March 25, 2024, 29 pages.

Appendices

- Appendix A: In-pit Material Identification
- Appendix B: WRF 4m Cover Progress Drawing
- Appendix C: WRF Non-AG Cover Placement Verification Testing Results
- Appendix D: Quarterly TARP Audit
- Appendix E: Targeted Waste Deposition Sequence

Appendix A: In-Pit Material Identification

In-pit Material Identification				
Dig Block ID	Material	Tonnes	Sulphur %	
460 HSR	Non-AG	212	-	
BF 460 HSR	Non-AG	100064	-	
BF 470 HSR	Non-AG	39644	0.03	
BF N2 110 Pad	Non-AG	115752	-	
MHR	Non-AG	212	-	
N1_440_001_800	Non-AG	56392	0.06	
N1_440_001_810	Non-AG	27348	0.03	
N1_450_001_900	PAG	13568	0.25	
N1_450_002_810	Non-AG	1060	0	
N1_450_003_800	Non-AG	19292	0.04	
N1_450_003_900	PAG	1272	0.26	
N1_450_005_800	Non-AG	42824	0.03	
N1_450_005_810	Non-AG	212	0.03	
N1_450_007_800	Non-AG	14840	0.05	
N1_450_007_900	PAG	6572	0.21	
N1_450_011	Non-AG	2968	0.11	
N1_450_011	PAG	212	0.24	
N1_450_011_810	Non-AG	22260	0.11	
N1_450_011_900	PAG	5936	0.24	
N1_450_013_810	Non-AG	424	0.07	
N1_450_019_810	Non-AG	3180	0.04	
N1_460_014	Non-AG	2756	0	
N1_460_014_810	Non-AG	22896	0	
N1_460_025_810	Non-AG	13992	0.01	
N1_460_027_810	Non-AG	7844	0	
N1_460_029_810	Non-AG	212	0	
N1_470_027	Non-AG	212	0	
N1_470_027_810	Non-AG	4452	0	
N1_470_037_810	Non-AG	212	0.01	
N1_470_039_810	Non-AG	43460	0.01	
N1_470_039_900	PAG	11236	0.22	
N1_470_041_810	Non-AG	22048	0.03	
N1_470_041_900	PAG	9116	0.26	
N1_470_043_810	Non-AG	65508	0.02	
N1_470_043_900	PAG	85012	0.51	
N1_Cleanup	Non-AG	2544	-	
N1_Cleanup_810	Non-AG	18020	-	
N1_Cleanup_900	PAG	212	-	
N2_640_107_810	Non-AG	4240	0.06	
N2_650_105_800	Non-AG	70172	0.03	



In-pit Material Identification				
Dig Block ID	Material	Tonnes	Sulphur %	
N2_650_107_800	Non-AG	8904	0.03	
N2_650_107_810	Non-AG	1272	0	
N2_650_109	Non-AG	212	0.02	
N2_650_109_800	Non-AG	152216	0.02	
N2_650_111	Non-AG	4876	0.02	
N2_650_111	Non-AG	212	0.02	
N2_650_111_800	Non-AG	120204	0.02	

Appendix B: WRF 4m Cover Progress Drawing

Appendix C: WRF Non-AG Cover Placement Verification Testing Results

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: BAFFINLAND IRON MINES CORPORATION 360 OAKVILLE PLACE DRIVE SUITE 300 OAKVILLE ON L6H 6K8

Total # Pages: 2 (A - B) Plus Appendix Pages Finalized Date: 15-MAY-2024

Account: BIMCIO

CERTIFICATE BF24107383

Project: Waste Dump P.O. No.: 4500132820

This report is for 3 samples of Rock submitted to our lab in Baffinland, NU, Canada

on 23-APR-2024.

The following have access to data associated with this certificate:

KIMBERLY ANGNATSIAK PAUL BRYDEN JEREMY HANN OCHE MAGBEGOR JACOB PRINCE JHON SUAREZ

MADELEINE BISAILLON JASON DUFF ERICH HENSE WILLIE ONALIK ROBERT ROBERTSON

TREVOR BRISCO SIMON FLEURY CAROLINE LI CHAY CHUNG HAYLEY POTHIER MELISSA ROSE

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
DRY-21	High Temperature Drying
WEI-22	Dry Weight
LOG-21	Sample logging – ClientBarCode
CRU-31	Fine crushing - 70% < 2mm
SPL-21	Split sample – riffle splitter
PUL-31	Pulverize up to 250g 85% <75 um

ANALYTICAL PROCEDURES						
ALS CODE	DESCRIPTION	INSTRUMENT				
ME-XRF21bf	BF - Iron Ore by XRF Fusion	XRF				
OA-GRA05x	LOI at 1000C for XRF	WST-SEQ				
S-IR08	Total Sulphur (IR Spectroscopy)	LECO				
C-IR07	Total Carbon (IR Spectroscopy)	LECO				
MAG-SUS	Magnetic Susceptability	WST-SEQ				
FeO-CALC21	FeO from MAG-SUS					
OA-VOL08	Basic Acid Base Accounting					
OA-ELE07	Paste pH					
OA-GRA05s	Moisture at Sample Receipt					

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

**** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, General Manager, North America

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: +1 604 984 0221 Fax: +1 604 984 0218

www.alsglobal.com/geochemistry

To: BAFFINLAND IRON MINES CORPORATION 360 OAKVILLE PLACE DRIVE SUITE 300 OAKVILLE ON L6H 6K8 Page: 2 – A Total # Pages: 2 (A – B) Plus Appendix Pages Finalized Date: 15–MAY–2024

Account: BIMCIO

Project: Waste Dump

									(CERTIFIC	CATE O	F ANAL	YSIS	BF2410	7383	
Sample Description	Method	WEI-21	WEI-22	OA-GRA05s	ME-XRF21bf	OA-GRA05x										
	Analyte	Recvd Wt.	Dry Wt.	Moisture	Al2O3	CaO	Fe	Fe2O3	K2O	MgO	Mn	Na2O	P	SiO2	TiO2	LOI 1000
	Units	kg	kg	%	%	%	%	%	%	%	%	%	%	%	%	%
	LOD	0.02	0.02	0.01	0.1	0.01	0.05	0.05	0.003	0.01	0.01	0.05	0.002	0.09	0.01	0.01
Waste Dump-1005-86	14417	5.83	4.74	18.70	13.5	1.79	8.47	12.12	3.60	6.47	0.13	0.82	0.064	55.7	0.66	3.09
Waste Dump-905-864		6.07	5.18	14.65	6.3	0.48	47.33	67.67	0.351	5.60	0.09	0.15	0.129	14.35	0.36	3.22
Waste Dump-805-864		8.20	7.61	7.20	5.9	0.22	43.13	61.66	0.289	6.44	0.13	0.13	0.028	19.75	0.27	3.63

To: BAFFINLAND IRON MINES CORPORATION 360 OAKVILLE PLACE DRIVE SUITE 300 OAKVILLE ON L6H 6K8 Page: 2 - B Total # Pages: 2 (A - B) Plus Appendix Pages Finalized Date: 15-MAY-2024

Account: BIMCIO

Project: Waste Dump

										ERTIFIC	CATE O	F ANALYS	IS	BF24107383	
Sample Description	Method Analyte Units LOD	MAG-SUS Magnetic % 0.01	FeO-CALC21 FeO % 0.01	ME-XRF21bf S % 0.003	C-IR07 C % 0.01	S-IR08 S % 0.01	OA-VOLO8 FIZZ RAT Unity 1	NP	OA-VOL08 MPA tCaCO3/1Kt 0.3	NNP	OA-VOL08 Ratio (N Unity 0.01	OA-ELE07 pH Unity 0.1			
Waste Dump-1005-B Waste Dump-905-B6 Waste Dump-805-B6	44417	1.94 5.09 10.18	0.60 1.58 3.16	0.016 0.005 0.034	0.11 0.06 0.07	0.01 <0.01 0.03	1 1 1	19 15 21	0.3 <0.3 0.9	19 15 20	60.80 96.00 22.40	8.8 8.4 8.1			

To: BAFFINLAND IRON MINES CORPORATION 360 OAKVILLE PLACE DRIVE SUITE 300 OAKVILLE ON L6H 6K8

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 15-MAY-2024

Account: BIMCIO

Project: Waste Dump

CERTIFICATE OF ANALYSIS BF24107383

	CEF	RTIFICATE COMMENTS		
		LABORATORY ADD		
Applies to Method:	Processed at ALS Val d'Or located at 1324 F C-IR07 S-IR		a.	
Applies to Method:		′-21 XRF21bf ·VOL08	FeO-CALC21 OA-ELE07 PUL-31	LOG-21 OA-GRA05s SPL-21

To: BAFFINLAND IRON MINES CORPORATION 360 OAKVILLE PLACE DRIVE SUITE 300 OAKVILLE ON L6H 6K8

Page: 1 Total # Pages: 2 (A - B) Plus Appendix Pages Finalized Date: 28-JUL-2024

Account: BIMCIO

CERTIFICATE BF24187999

Project: Waste Dump P.O. No.: 4500132820

This report is for 16 samples of Drill Chip submitted to our lab in Baffinland, NU,

Canada on 13-JUL-2024.

The following have access to data associated with this certificate:

MBERLY ANGNATSIAK	MADELEINE BISAILLON	
PAUL BRYDEN	JASON DUFF	
JEREMY HANN	ERICH HENSE	CAR
OCHE MAGBEGOR	WILLIE ONALIK	
HAYLEY POTHIER	JACOB PRINCE	R
MELISSA ROSE	JHON SUAREZ	

TREVOR BRISCO SIMON FLEURY ROLINE LI CHAY CHUNG MALITUQ OTTOKIE ROBERT ROBERTSON

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
DRY-21	High Temperature Drying
WEI-22	Dry Weight
LOG-21	Sample logging - ClientBarCode
CRU-31	Fine crushing - 70% < 2mm
SPL-21	Split sample – riffle splitter
PUL-31	Pulverize up to 250g 85% <75 um

DESCRIPTION	INSTRUMENT
PE 1 0 1 VPEE :	
BF – Iron Ore by XRF Fusion	XRF
LOI at 1000C for XRF	WST-SEQ
Total Sulphur (IR Spectroscopy)	LECO
Total Carbon (IR Spectroscopy)	LECO
Magnetic Susceptability	WST-SEQ
FeO from MAG-SUS	
Paste pH	
Moisture at Sample Receipt	
	LOI at 1000C for XRF Total Sulphur (IR Spectroscopy) Total Carbon (IR Spectroscopy) Magnetic Susceptability FeO from MAG-SUS Paste pH

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

**** See Appendix Page for comments regarding this certificate ****

Signature: Colin Ramshaw, General Manager, North America

To: BAFFINLAND IRON MINES CORPORATION 360 OAKVILLE PLACE DRIVE SUITE 300 OAKVILLE ON L6H 6K8

CERTIFICATE OF ANALYSIS RE24187999

Page: 2 – A
Total # Pages: 2 (A – B)
Plus Appendix Pages
Finalized Date: 28–JUL–2024
Account: BIMCIO

Project: Waste Dump

										EKIIFI	CATEO	r ANAL	.1313	DFZ410	57999	
A	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	WEI-22 Dry Wt. kg 0.02	OA-GRA05s Moisture % 0.01	ME-XRF21bf Al2O3 % 0.1	ME-XRF21bf CaO % 0.01	ME-XRF21bf Fe % 0.05	ME-XRF21bf Fe2O3 % 0.05	ME-XRF21bf K2O % 0.003	ME-XRF21bf MgO % 0.01	ME-XRF21bf Mn % 0.01	ME-XRF21bf Na2O % 0.05	ME-XRF21bf P % 0.002	ME-XRF21bf SiO2 % 0.09	ME-XRF21bf TiO2 % 0.01	OA-GRA05x LOI 1000 % 0.01
Waste Dump-807-56656 Waste Dump-1006-5665 Waste Dump-1007-5665 Waste Dump-1205-5665 Waste Dump-1206-5665	5622 5623 5624	5.85 7.00 7.49 6.11 5.45	5.66 6.70 7.15 5.83 5.28	3.25 4.29 4.54 4.58 3.12	16.3 10.1 13.0 8.5 14.8	0.32 0.40 0.36 0.18 1.03	8.36 23.53 14.96 39.32 7.24	11.96 33.64 21.39 56.21 10.35	3.66 1.990 3.13 1.145 4.35	4.98 4.99 4.57 4.73 3.04	0.05 0.05 0.05 0.14 0.08	0.27 0.22 0.31 0.15 1.24	0.089 0.094 0.068 0.041 0.080	58.8 45.7 53.2 24.8 62.4	0.82 0.48 0.49 0.33 0.75	3.52 2.95 2.98 2.68 1.97
Waste Dump-906-S6656 Waste Dump-608-S6656 Waste Dump-1105-S6656 Waste Dump-205-S6656 Waste Dump-907-S6656	627 5628 629	5.83 6.51 5.57 5.71 6.59	5.65 6.27 5.15 5.40 6.31	3.09 3.69 7.54 5.43 4.25	13.8 3.4 14.5 14.2 12.6	0.97 0.12 1.39 0.27 0.67	10.43 55.72 9.31 18.34 15.72	14.92 79.66 13.31 26.22 22.47	3.96 0.467 3.97 1.960 2.94	3.69 0.87 6.56 9.52 4.09	0.08 0.10 0.12 0.07 0.06	1.02 0.15 0.85 0.18 0.46	0.071 0.033 0.069 0.070 0.076	58.7 14.15 55.7 43.0 53.5	0.56 0.13 0.75 0.65 0.57	2.46 1.26 2.98 5.64 3.59
Waste Dump-1107-S665 Waste Dump-808-S6656 Waste Dump-1106-S665 Waste Dump-708-S6656 Waste Dump-1207-S665	632 5633 634	6.30 5.23 4.61 5.66 6.93	6.04 4.90 4.46 5.30 6.64	4.13 6.31 3.25 6.36 4.18	11.7 9.8 13.1 6.8 11.9	0.59 0.66 0.39 0.24 0.73	20.78 27.95 20.15 48.67 20.53	29.72 39.96 28.81 69.59 29.36	2.69 2.34 2.76 0.395 3.26	4.15 5.15 4.35 3.98 4.93	0.06 0.09 0.09 0.10 0.09	0.48 0.46 0.44 0.07 0.57	0.087 0.109 0.062 0.068 0.126	47.9 38.8 46.7 16.00 47.6	0.50 0.40 0.61 0.28 0.51	2.61 2.62 3.17 3.00 2.44
Waste Dump-508-56656	636	5.09	4.94	2.95	14.2	0.26	24.39	34.87	1.825	5.78	0.09	0.17	0.053	38.1	0.66	3.81

To: BAFFINLAND IRON MINES CORPORATION 360 OAKVILLE PLACE DRIVE SUITE 300 OAKVILLE ON L6H 6K8

CERTIFICATE OF ANALYSIS RE2/187000

Page: 2 - B Total # Pages: 2 (A - B) Plus Appendix Pages Finalized Date: 28-JUL-2024 Account: BIMCIO

Project: Waste Dump

Method Analyte Magnetic FeO S
aste Dump-807-5665621 2.68 0.83 0.048 0.06 0.05 8.4 aste Dump-1006-5665622 5.09 1.58 0.041 0.04 0.03 8.2 aste Dump-1007-5665623 3.98 1.23 0.026 0.08 0.02 8.4 aste Dump-1205-5665624 17.31 5.37 0.029 0.06 0.03 7.9 aste Dump-1206-5665625 3.15 0.98 0.025 0.04 0.02 8.7 aste Dump-1206-5665626 2.78 0.86 0.036 0.11 0.04 8.3 aste Dump-906-5665626 2.78 0.86 0.036 0.11 0.04 8.3 aste Dump-105-5665628 2.59 0.80 0.026 0.06 0.02 8.5 aste Dump-105-5665628 2.59 0.80 0.026 0.06 0.02 8.5 aste Dump-907-5665629 3.61 1.12 0.028 0.09 0.03 8.2 aste Dump-907-5665630 3.42 1.06 0.031 0.17 0.03 8.3 aste Dump-1107-5665631 4.07 1.26 0.026 0.06 0.03 8.4 aste Dump-1107-5665631 4.07 1.26 0.026 0.06 0.03 8.4 aste Dump-1106-5665633 4.54 1.41 0.023 0.04 0.03 8.0 aste Dump-106-5665634 1.21 3.76 0.082 0.09 0.08 7.0 aste Dump-1207-5665635 5.00 1.55 0.009 0.05 0.01 8.3 aste Dump-1207-5665635 5.00 1.55 0.009 0.05 0.01 8.3
aste Dump-1006-S665622 5.09 1.58 0.041 0.04 0.03 8.2 aste Dump-1007-S665623 3.98 1.23 0.026 0.08 0.02 8.4 aste Dump-1205-S665624 17.31 5.37 0.029 0.06 0.03 7.9 aste Dump-1206-S665625 3.15 0.98 0.025 0.04 0.02 8.7 aste Dump-906-S665626 2.78 0.98 0.025 0.04 0.02 8.7 aste Dump-906-S665626 2.78 0.98 0.036 0.11 0.04 8.3 aste Dump-105-S665628 2.59 0.90 0.026 0.06 0.02 7.7 aste Dump-105-S665628 2.59 0.90 0.026 0.06 0.02 8.5 aste Dump-105-S665629 3.61 1.12 0.028 0.09 0.03 8.2 aste Dump-907-S665630 3.42 1.06 0.031 0.17 0.03 8.3 aste Dump-107-S665631 4.07 1.26 0.026 0.06 0.03 8.4 aste Dump-1107-S665631 4.07 1.26 0.026 0.06 0.03 8.4 aste Dump-1107-S665632 6.02 1.87 0.112 0.06 0.10 8.3 aste Dump-1106-S665631 4.54 1.41 0.023 0.04 0.03 8.0 aste Dump-708-S665634 12.13 3.76 0.082 0.09 0.08 7.0 aste Dump-708-S665635 5.00 1.55 0.009 0.05 0.01 8.3
aste Dump-1007-S665623 3.98 1.23 0.026 0.08 0.02 8.4 aste Dump-1205-S665624 17.31 5.37 0.029 0.06 0.03 7.9 aste Dump-1206-S665625 3.15 0.98 0.025 0.04 0.02 8.7 aste Dump-906-S665626 2.78 0.86 0.036 0.11 0.04 8.3 aste Dump-608-S665627 5.66 1.75 0.021 0.09 0.02 7.7 aste Dump-1105-S665628 2.59 0.80 0.026 0.06 0.02 8.5 aste Dump-205-S665629 3.61 1.12 0.028 0.09 0.03 8.2 aste Dump-907-S665630 3.42 1.06 0.031 0.17 0.03 8.3 aste Dump-1107-S665631 4.07 1.26 0.026 0.06 0.03 8.4 aste Dump-1107-S665631 4.07 1.26 0.026 0.06 0.03 8.4 aste Dump-1106-S665632 6.02 1.87 0.112 0.06 0.10 8.3 aste Dump-1106-S665633 4.54 1.41 0.023 0.04 0.03 8.0 aste Dump-708-S665634 12.13 3.76 0.082 0.09 0.08 7.0 aste Dump-708-S665635 5.00 1.55 0.009 0.05 0.01 8.3
aste Dump-1205-S665624 17.31 5.37 0.029 0.06 0.03 7.9 aste Dump-1206-S665625 3.15 0.98 0.025 0.04 0.02 8.7 aste Dump-906-S665626 2.78 0.86 0.036 0.11 0.04 8.3 aste Dump-608-S665627 5.65 1.75 0.021 0.09 0.02 7.7 aste Dump-1105-S665628 2.59 0.80 0.026 0.06 0.02 8.5 aste Dump-205-S665629 3.61 1.12 0.028 0.09 0.03 8.2 aste Dump-907-S665630 3.42 1.06 0.031 0.17 0.03 8.3 aste Dump-907-S665631 4.07 1.26 0.026 0.06 0.03 8.4 aste Dump-808-S665632 6.02 1.87 0.112 0.06 0.10 8.3 aste Dump-1106-S665633 4.54 1.41 0.023 0.04 0.03 8.0 aste Dump-708-S665634 12.13 3.76 0.082 0.09 0.08 7.0 aste Dump-708-S665635 5.00 1.55 0.009 0.05 0.01 8.3
aste Dump-1206-S665625 3.15 0.98 0.025 0.04 0.02 8.7 aste Dump-906-S665626 2.78 0.86 0.036 0.11 0.04 8.3 aste Dump-608-S665627 5.65 1.75 0.021 0.09 0.02 7.7 aste Dump-1105-S665628 2.59 0.80 0.026 0.06 0.02 8.5 aste Dump-205-S665629 3.61 1.12 0.028 0.09 0.03 8.2 aste Dump-907-S665630 3.42 1.06 0.031 0.17 0.03 8.3 aste Dump-917-S665631 4.07 1.26 0.026 0.06 0.03 8.4 aste Dump-808-S665632 6.02 1.87 0.112 0.06 0.10 8.3 aste Dump-1106-S665633 4.54 1.41 0.023 0.04 0.03 8.0 aste Dump-708-S665634 12.13 3.76 0.082 0.09 0.08 7.0 aste Dump-7207-S665635 5.00 1.55 0.009 0.05 0.01 8.3
aste Dump-608-S665627 5.65 1.75 0.021 0.09 0.02 7.7 aste Dump-1105-S665628 2.59 0.80 0.026 0.06 0.02 8.5 aste Dump-205-S665629 3.61 1.12 0.028 0.09 0.03 8.2 aste Dump-907-S665630 3.42 1.06 0.031 0.17 0.03 8.3 aste Dump-1107-S665631 4.07 1.26 0.026 0.06 0.03 8.4 aste Dump-808-S665632 6.02 1.87 0.112 0.06 0.10 8.3 aste Dump-1106-S665633 4.54 1.41 0.023 0.04 0.03 8.0 aste Dump-708-S665634 12.13 3.76 0.082 0.09 0.08 7.0 aste Dump-708-S665635 5.00 1.55 0.009 0.05 0.01 8.3
aste Dump-1105-S665628 2.59 0.80 0.026 0.06 0.02 8.5 aste Dump-205-S665629 3.61 1.12 0.028 0.09 0.03 8.2 aste Dump-907-S665630 3.42 1.06 0.031 0.17 0.03 8.3 aste Dump-1107-S665631 4.07 1.26 0.026 0.06 0.03 8.4 aste Dump-808-S665632 6.02 1.87 0.112 0.06 0.10 8.3 aste Dump-1106-S665633 4.54 1.41 0.023 0.04 0.03 8.0 aste Dump-708-S665634 12.13 3.76 0.082 0.09 0.08 7.0 aste Dump-1207-S665635 5.00 1.55 0.009 0.05 0.01 8.3
aste Dump-205-S665629 3.61 1.12 0.028 0.09 0.03 8.2 aste Dump-907-S665630 3.42 1.06 0.031 0.17 0.03 8.3 aste Dump-1107-S665631 4.07 1.26 0.026 0.06 0.03 8.4 aste Dump-808-S665632 6.02 1.87 0.112 0.06 0.10 8.3 aste Dump-1106-S665633 4.54 1.41 0.023 0.04 0.03 8.0 aste Dump-708-S665634 12.13 3.76 0.082 0.09 0.08 7.0 aste Dump-1207-S665635 5.00 1.55 0.009 0.05 0.01 8.3
aste Dump-907-S665630 3.42 1.06 0.031 0.17 0.03 8.3 aste Dump-1107-S665631 4.07 1.26 0.026 0.06 0.03 8.4 aste Dump-808-S665632 6.02 1.87 0.112 0.06 0.10 8.3 aste Dump-1106-S665633 4.54 1.41 0.023 0.04 0.03 8.0 aste Dump-708-S665634 12.13 3.76 0.082 0.09 0.08 7.0 aste Dump-1207-S665635 5.00 1.55 0.009 0.05 0.01 8.3
aste Dump-1107-5665631
aste Dump-808-S665632 6.02 1.87 0.112 0.06 0.10 8.3 aste Dump-1106-S665633 4.54 1.41 0.023 0.04 0.03 8.0 aste Dump-708-S665634 12.13 3.76 0.082 0.09 0.08 7.0 aste Dump-1207-S665635 5.00 1.55 0.009 0.05 0.01 8.3
aste Dump-1106-S665633 4.54 1.41 0.023 0.04 0.03 8.0 aste Dump-708-S665634 12.13 3.76 0.082 0.09 0.08 7.0 aste Dump-1207-S665635 5.00 1.55 0.009 0.05 0.01 8.3
aste Dump-708-S665634 12.13 3.76 0.082 0.09 0.08 7.0 aste Dump-1207-S665635 5.00 1.55 0.009 0.05 0.01 8.3
aste Dump-1207-S665635 5.00 1.55 0.009 0.05 0.01 8.3
·
aste Dump-508-5665636 5.37 1.67 0.039 0.05 0.03 7.7

To: BAFFINLAND IRON MINES CORPORATION 360 OAKVILLE PLACE DRIVE SUITE 300 OAKVILLE ON L6H 6K8 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 28-JUL-2024 Account: BIMCIO

Project: Waste Dump

CERTIFICATE OF ANALYSIS BF24187999

		CERTIFICATE COMMENTS		
		LABORATORY AD	DDRESSES	
Applies to Method:	Processed at ALS Val d'Or located at C-IR07	1324 Rue Turcotte, Val d'Or, QC, Cana S-IR08	ada.	
Applies to Method:	Processed at ALS Baffinland, Mary Riv CRU-31 MAG-SUS OA-GRA05x WEI-22	ver, Baffin Island, Nunavut, Canada DRY-21 ME-XRF21bf PUL-31	FeO-CALC21 OA-ELE07 SPL-21	LOG-21 OA-GRA05s WEI-21

To: BAFFINLAND IRON MINES CORPORATION 360 OAKVILLE PLACE DRIVE SUITE 300 OAKVILLE ON L6H 6K8

Page: 1 Total # Pages: 2 (A) Plus Appendix Pages Finalized Date: 18-SEP-2024

> This copy reported on 4-OCT-2024 Account: BIMCIO

CERTIFICATE BF24217807

Project: WRF QAQC P.O. No.: 4500132820

This report is for 19 samples of Rock submitted to our lab in Baffinland, NU, Canada

on 10-AUG-2024.

The following have access to data associated with this certificate:

KIMBERLY ANGNATSIAK	MADELEINE BISAILLON	TREVOR BRISCO
PAUL BRYDEN	JASON DUFF	SIMON FLEURY
ERICH HENSE	FRED LAWRENCE	HAYLEY POTHIER
JACOB PRINCE	ROBERT ROBERTSON	MELISSA ROSE
NOEL SHEMBILU	JHON SUAREZ	

SAMPLE PREPARATION					
DESCRIPTION					
Disposal of all sample fractions					
Sample login – Rcd w/o BarCode					
Split sample – riffle splitter					
Pulverize up to 250g 85% < 75 um					
Pulp Splitting Charge					
	DESCRIPTION Disposal of all sample fractions Sample login – Rcd w/o BarCode Split sample – riffle splitter Pulverize up to 250g 85% < 75 um				

ANALYTICAL PROCEDURES							
ALS CODE	DESCRIPTION	INSTRUMENT					
OA-VOL08m	Modified NP						
S-IR08	Total Sulphur (IR Spectroscopy)	LECO					
OA-ELE07	Paste pH						
S-GRA06	Sulfate Sulfur-carbonate leach	WST-SEQ					
S-CAL06	Sufide Sulfur (calculated)	LECO					
C-GAS05	Inorganic Carbon (CO2)						
S-GRA06a	Sulfate Sulfur (HCI leachable)	WST-SEQ					

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Saa Traxler, Director, North Vancouver Operations

To: BAFFINLAND IRON MINES CORPORATION 360 OAKVILLE PLACE DRIVE SUITE 300 OAKVILLE ON L6H 6K8

CERTIFICATE OF ANALYSIS

Page: 2 - A Total # Pages: 2 (A) Plus Appendix Pages Finalized Date: 18-SEP-2024

DE2/217007

Account: BIMCIO

Project: WRF QAQC

									(CERTIFI	CATE O	F ANAL	YSIS	BF24217807
Sample Description	Method Analyte Units LOD	OA-VOL08m MPA tCaCO3/1Kt 0.3	OA-VOL08m FIZZ RAT Unity 1	OA-VOL08m NNP tCaCO3/1Kt 1	NP	OA-ELE07 pH Unity 0.1	OA-VOL08m Ratio (N Unity 0.01	S-IR08 S % 0.01	S-GRA06 S % 0.01	S-GRA06a S % 0.01	S-CAL06 S % 0.01	C-GAS05 C % 0.05	C-GAS05 CO2 % 0.2	
S665621 S665622 S665623 S665624 S665625		1.6 1.6 1.3 1.3	1 1 1 1	7 10 9 8 8	9 12 10 9	8.3 8.3 8.4 7.8 8.6	5.76 7.68 8.00 7.20 7.20	0.05 0.05 0.04 0.04 0.04	0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01	0.04 0.05 0.04 0.04 0.04	<0.05 <0.05 <0.05 <0.05 <0.05	<0.2 <0.2 <0.2 <0.2 <0.2	
S665626 S665627 S665628 S665629 S665630		1.3 0.9 1.3 1.3	1 1 1 1	9 2 13 12 13	10 3 14 13 14	8.2 7.4 8.6 8.2 8.4	8.00 3.20 11.20 10.40 11.20	0.04 0.03 0.04 0.04 0.04	<0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01	0.04 0.03 0.04 0.04 0.04	<0.05 <0.05 <0.05 <0.05 <0.05	<0.2 <0.2 <0.2 <0.2 <0.2	
S665631 S665632 S665633 S665634 S665635		1.3 3.8 1.3 2.5 0.6	1 1 1 1	10 10 7 6 13	11 14 8 8 14	8.3 8.4 8.0 7.2 8.6	8.80 3.73 6.40 3.20 22.40	0.04 0.12 0.04 0.08 0.02	<0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01	0.04 0.12 0.04 0.08 0.02	<0.05 <0.05 <0.05 <0.05 <0.05	<0.2 <0.2 <0.2 <0.2 <0.2	
S665636 B644416 B644417 B644418		1.6 0.9 0.3 1.6	1 1 1	5 14 12 12	7 15 12 14	7.6 8.6 8.0 7.9	4.48 16.00 38.40 8.96	0.05 0.03 0.01 0.05	<0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01	0.05 0.03 0.01 0.05	<0.05 <0.05 <0.05 0.05	<0.2 <0.2 <0.2 0.2	

To: BAFFINLAND IRON MINES CORPORATION 360 OAKVILLE PLACE DRIVE SUITE 300 OAKVILLE ON L6H 6K8

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 18-SEP-2024

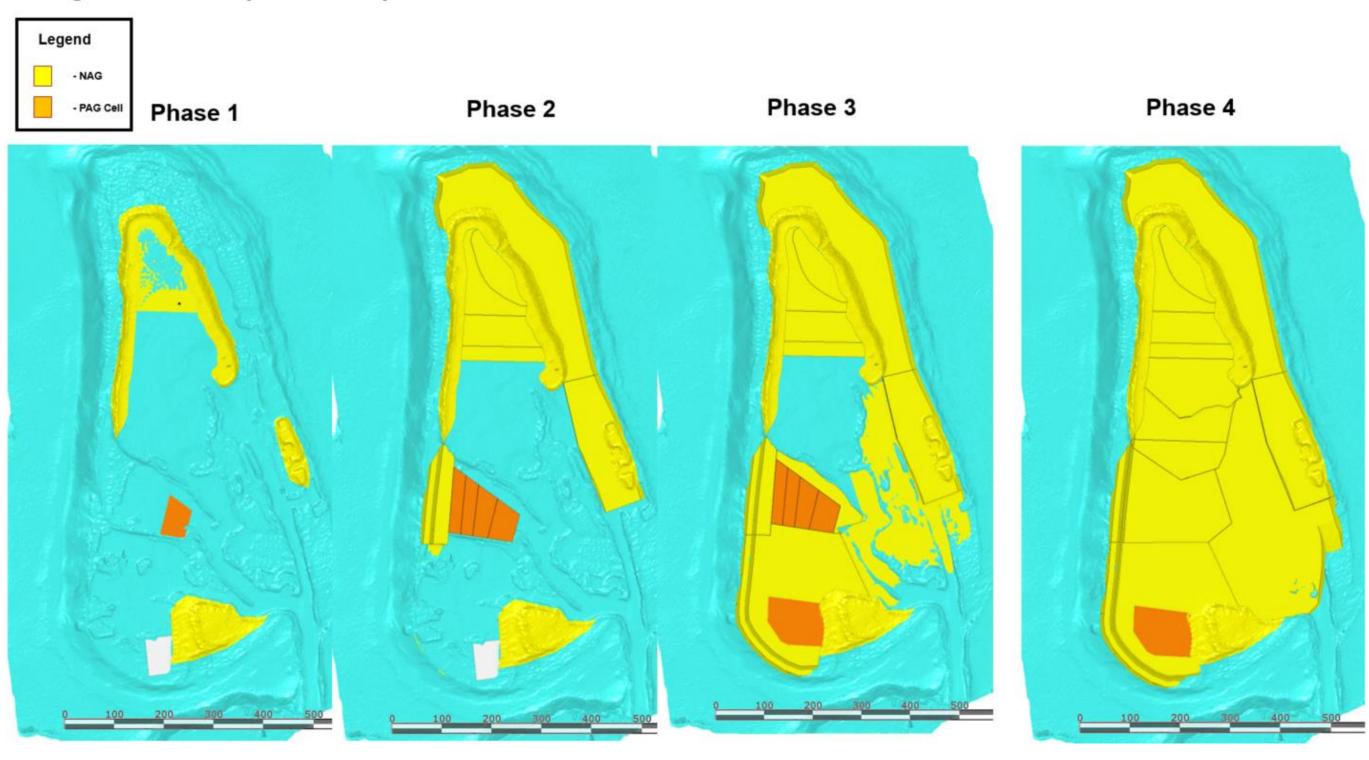
Account: BIMCIO

Project: WRF QAQC

CERTIFICATE OF ANALYSIS BF24217807

			CERTIFICATE OF ANA	ALTSIS BFZ4217607
		CERTIFICATE COM	MMENTS	
		LABOF	RATORY ADDRESSES	
Applies to Method:	Processed at ALS Vancouv C-GAS05 S-CAL06	er located at 2103 Dollarton Hwy, No DISP-01 S-GRA06	orth Vancouver, BC, Canada. OA-ELE07 S-GRA06a	OA-VOL08m S-IR08
Applies to Method:	Processed at ALS Baffinlan LOG-22	d, Mary River, Baffin Island, Nunavut PUL-31	t, Canada SPL-21	SPL-34

Appendix D: Quarterly TARP Audit


	Waste Depo	30-Jun	28-Sep		
Project Activity	Objectives	Status	Response		
Material Classification	Ensuring accurate material categorization	Chemical characteristics and categorization of dig blocks	Quarterly Audit of Dig Blocks	Dig blocks correctly classified according to site standards	No action required.
Material Classification	Ensuring accurate material categorization	Chemical characteristics and categorization of dig blocks	Quarterly Total Sulfur vs ABA confirmation testwork, and SFE analysis.	<2% of material types improperly allocated.	No action required.
Execution Control	Adherence to WRMP	Dump Compliance	Quarterly Reporting and Planning	100% of loads within allowed PAG dumping locations	No action required.
Execution Control	Adherence to WRMP	Lift Thickness. Cover thickness.	Quarterly Reporting and Planning	Lift thickness, Cover thickness 100% compliant	No action required

Appendix E: Targeted Waste Deposition Sequence

Targeted Waste Deposition Sequence

To:

Andrew Keim, Lauren Perrin, CIRNAC QIA, NWB

From:

Baffinland Iron Mines Corporation

Date:

January 31, 2024

Subject:

2024 Q4 Waste Rock Management Compliance

This memo summarizes the results of 2024 progressive reclamation in alignment with the Waste Rock Facility (WRF) QAQC Monitoring Plan, included as part of the Phase I Waste Rock Management Plan (WRMP) issued April 2nd, 2024.

Summary

The placement of waste rock during 2024 Q4 was consistent with the most recent WRMP commitment to cover exposed Potentially Acid Generating (PAG) waste with a 4 m thick layer of non-Acid Generating (non-AG) waste. The portion of the WRF overlain by non-AG waste increased from 50 % at the end of Q3 to 92 % in Q4. The QAQC program did not reveal any inconsistencies with material classification for cover placement and the TARP performance indicators did not require any corrective actions in Q4. In 2025, Baffinland will maintain no more than 15 % of exposed PAG at all times.

Q4 WRF Coverage Progress

The portion of the WRF overlain by non-AG waste increased from 50 % at the end of Q3 to 92 % (total area 357,322 m²) in Q4. This 42 % increase includes 16 % (63,610 m²) area covered with 4 m of Non-AG waste placed in Q4 and 26 % (99,595 m²) area confirmed to already have 4 m of non-AG waste as part of a comprehensive drilling and sampling program completed in Q4. Details of waste placement and the drilling and sampling program are discussed below. A drawing of the WRF surface highlighting Non-AG and PAG areas is included in Appendix A.

4 m Non-AG Waste Placement

Mine Operations placed 626,672 tonnes of non-AG material in Q4. The portion of the WRF covered by 4 m of non-AG increased by 16 % (63,610 m²).

Dump compliance was fully adhered to with 100 % of PAG loads placed within delineated PAG cell. Records supporting in-pit material identification and WRF placement can be found in Appendix B.

The QAQC sampling was completed on January 20, 2025 and consisted of drilling 10 holes into the 4 m Non-AG cover lift placed during Q4. The drill hole locations are shown on the drawing provided in Appendix A. Holes were drilled to a depth of 2 m and samples collected from 0.5 to 2.0 m depth. Samples were tested on-site for total sulphur and paste pH before being shipped off-site for Modified Sobek testing. Assay results from the on-site laboratory are presented in Appendix C, as well as the results for Q3 Modified Sobek. Due to longer turnaround time, results for Q4 Modified Sobek testing will be shared at a later date.

Results from on-site testing indicate material within the 4 m cover lift is classified as Non-AG using the waste rock classification criteria presented in Section 6 of the Phase 1 Waste Rock Management Plan.

WRF Drilling and Sampling Campaign

Baffinland engaged WSP Canada Inc. (WSP) to develop a comprehensive drilling and sampling program to validate the classification of existing material in the top 4 m of selected zones of the WRF surface as PAG or Non-AG. The purpose of the program was to evaluate selected zones to determine if there was a 4 m cover of Non-AG and these zones are therefore already covered. The method, analysis and results of the drilling and sampling campaign developed by WSP is detailed in the Waste Rock Facility Drilling and Sampling Campaign, Cover Requirement Evaluation report (WSP, 2025).

This investigation increased the area covered by 4 m of Non-AG waste by 26 % (99,595 m²) in Q4.

2025 WRF Action Plan

The performance indicators outlined in the quarterly monitoring plan for Q4 were fully compliant, demonstrating a strong alignment with established standards. The comprehensive quarterly Trigger Action Response Plan (TARP) audit, detailed in Appendix E, confirms that all processes were executed effectively.

Corrective actions from 2024 will remain in place and be actively monitored, with continued followup to ensure adherence to the waste dump deposition plan. All PAG waste will be properly placed within the designated PAG cell, maintaining no more than 15 % of exposed PAG at all times. At this time, no additional corrective actions are required.

In 2025, Baffinland will maintain a maximum of 15 % of exposed PAG at all times. As the progressive reclamation of the waste rock facility was completed in 2024, Baffinland plans to update the quarterly reporting requirements outlined in the QAQC WRF Monitoring Program to move towards annual reporting. Baffinland plans to continue reporting on waste rock placement as part of its annual reports. Baffinland will submit proposed revisions to the management plan as part of the NWB-QIA Annual Reports for Operations.

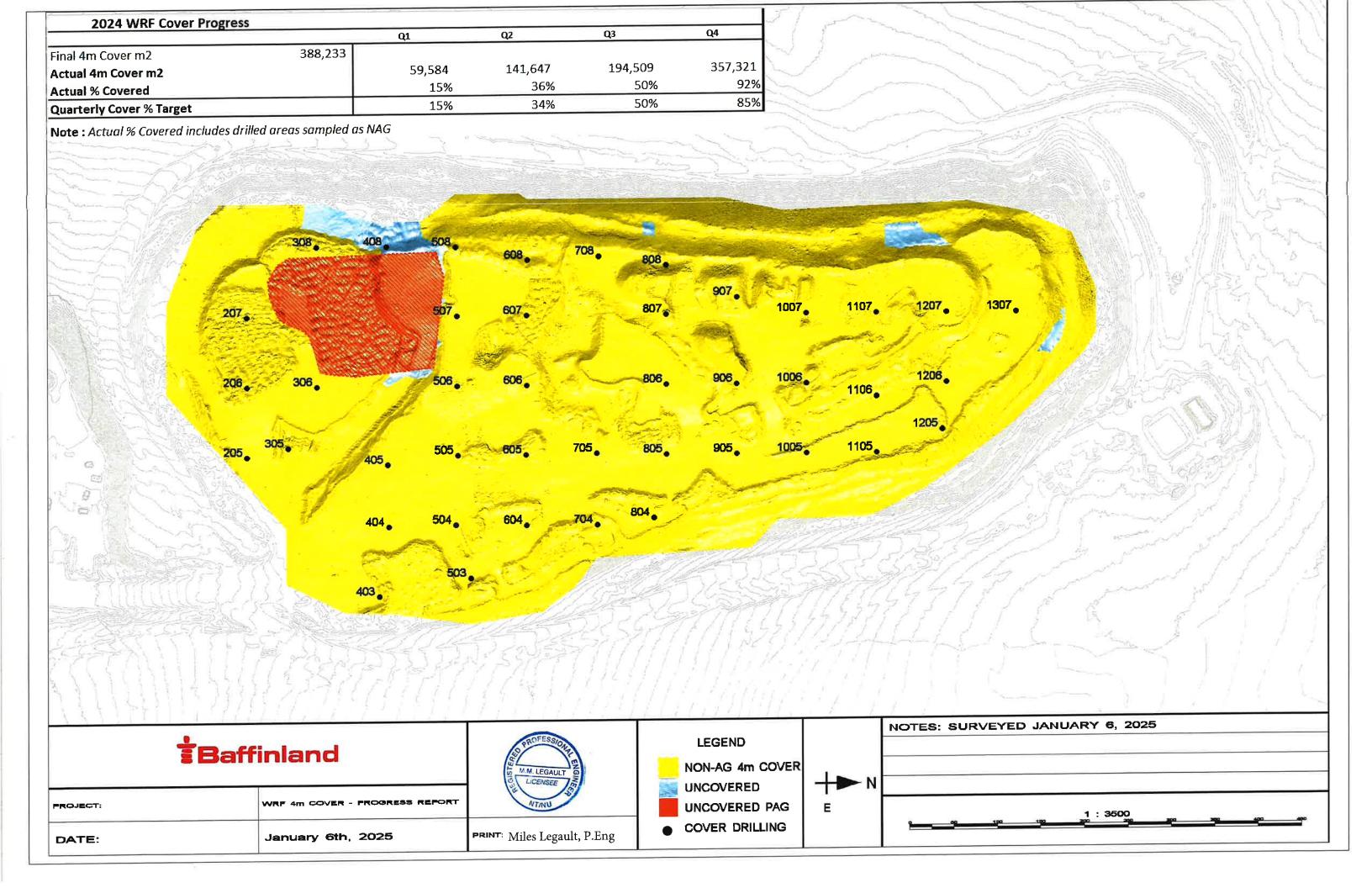
References

Baffinland Iron Mines Corporation, 2024. Phase I Waste Rock Management Plan.

BAF-PH1-830-P16-0029, Rev 4.1. Issued April 2, 2024, 378 pages.

Baffinland Iron Mines Corporation, 2024. Waste Rock Facility QAQC Monitoring Plan.

BAF-PH1-340-P16-0004, Rev 2. Issued March 25, 2024, 29 pages.


WSP, 2025. Waste Rock Facility Drilling and Sampling Campaign, Cover Requirement Evaluation. CA0044106.3476-003-TM-Rev0. Issued January 30, 2025, 15 pages.

Appendices

- Appendix A: WRF 4 m Cover Progress Drawing
- Appendix B: In-pit Material Identification
- Appendix C: WRF Non-AG Cover Placement Verification Testing Results
- Appendix D: Quarterly TARP Audit

Appendix A: WRF 4 m Cover Progress Drawing

Appendix B: In-Pit Material Identification

In-pit Material Identification								
Dig Block ID	Material	Tonnes	Sulphur %					
N1 440 001 800	Non-AG	23532	0.06					
N1 440 001 810	Non-AG	18444	0.04					
N1 440 001 900	AG	36252	0.68					
N1 440 003 810	Non-AG	212	0.03					
N1 440 003 900	AG	6360	0.23					
N1 440 004 900	Non-AG	1272	0.25					
N1 440 005 800	Non-AG	212	0.04					
N1 440 007 810	Non-AG	37312	0.13					
N1 450 004 900	AG	5300	0.21					
N1 450 011 810	Non-AG	6784	0.11					
N1 450 011 900	AG	6148	0.24					
N1 450 013 810	Non-AG	424	0.07					
N1 450 015 800	Non-AG	95188	0.05					
N1 450 019 810	Non-AG	42188	0.04					
N1 450 019 900	AG	45792	0.20					
N1 460 018 810	Non-AG	2756	0.16					
N1 460 018 900	AG	636	0.16					
N1 460 031 810	Non-AG	13144	0.02					
N1 460 033 810	Non-AG	90524	0.02					
N1 460 033 811	Non-AG	10812	0.04					
N1 460 033 900	AG	212	0.43					
N2 640 113 800	Non-AG	32860	0.05					
N2 640 113 900	AG	55968	0.57					
N2 640 115_800	Non-AG	93280	0.02					
N2 650 113_800	Non-AG	86920	0.01					

Appendix C: WRF Non-AG Cover Placement Verification Testing Results

Q4 QAQC Sampling Results with Modified Sobek

		Recyd Wt.	Dry Wt.	Moisture	S	Paste pH	FIZZ RATING	NP			Ratio
Hole ID	ALS ID	kg	kg	%	%	Unity	Unity	tCaCO ₃ /1kt	tCaCO _a /1kt	tCaCO ₃ /1kt	(NP:MPA)
604	G955064	2,71	2,4	11,45	0,011	8,2	1	7	0,3	7	22,4
405	G955065	6,06	5,74	5,28	0,036	8,6	1	8	0.9	7	8,53
605	G955066	3,3	2,91	11,8	0,034	8,8	1	8	1,3	7	6,4
503	G955067	5,2	4,91	5,58	0,03	8,2	1	8	0,9	7	8,53
1307	G955068	5,04	4,81	4,56	0,01	8,3	1	9	0,3	9	28,8
404	G955069	7,63	7,25	4,98	0,023	8,9	- 1	11	0,6	10	17,6
504	G955070	6,84	6,38	6.73	0,047	8,3	1 1	12	1,3	11	9,6
705	G955071	5,37	4,52	15,85	0,016	9	1 1	8	0,6		12,8
403	G955072	5,35	4,9	8.41	0,026	8,4	1	20	0,9	19	21,33
505	G955073	4,48	4,24	5,36	0,02	8,7	1	10	0,6	9	16
804	G955074	4,92	3,82	22,4	0,09	8,8	1	8	2,8	5	2,84
305	G955075	4,4	3,6	18.2	0,119	8,5	1	9	3,8	5	2,4
1105	G955076	5,15	4,6	10,7	0,015	8,3	2	46	0,3	46	147,2

Q4 QAQC Sampling Results

		Recvd Wt.	Dry Wt.	Moisture	S	Paste pH
Hole ID	ALS ID	kg	kg	%	%	Unity
306	M506028	12.41	11.87	4.35	0.17	8.1
806	M506029	8.78	8.1	7.74	0.024	8.6
704	M506030	6.74	6.22	7.72	0.045	8.9
607	M506031	8.93	7.54	15.55	0.026	8.2
506	M506032	10.67	9.98	6.47	0.033	8.2
206	M506033	10.19	9.85	3.34	0.022	8.7
308	M506034	9.5	8.99	5.37	0.06	8.4
207	M506035	7.83	7.67	2.04	0.056	8.9
606	M506036	8.86	8.5	4.06	0.024	8.9
507	M506037	9.25	8.94	3.35	0.019	8.8

Appendix D: Quarterly TARP Audit

	Weekly Waste D	01-Oct	31-Dec		
Project Activity	Objectives Performance Indicators Monitoring Program		Monitoring Program	Status	Response
Material Classification	Lindaring dood. attodio	Chemical characteristics and categorization of dig blocks	Quarterly Audit of Dig Blocks	Not Required	No action required.
Material Classification	Ensuring accurate material categorization	Chemical characteristics and	Quarterly Total Sulfur vs ABA confirmation testwork, and SFE analysis	Not Required	No action required.
Execution Control	Adherence to WRMP	Dump Compliance	Quarterly Reporting and Planning	100% of loads within allowed PAG dumping locations	No action required.
Execution Control	Adherence to WRMP	Lift Thickness. Cover thickness.	Quarterly Reporting and Planning	Lift thickness, Cover thickness 100% compliant	No action required