

Appendix C

Development of Water and Sediment Quality Benchmarks

SCIENCE INTEGRITY KNOWLEDGE

APPENDIX C

DEVELOPMENT OF WATER AND SEDIMENT QUALITY BENCHMARKS FOR APPLICATION IN AQUATIC EFFECTS MONITORING AT THE MARY RIVER PROJECT

June 26, 2014

Prepared For: Oliver Curran

Director Sustainable Development

Baffinland Iron Ore

2275 Upper Middle Road East Suite 300

Oakville ON L6H 0C0

DEVELOPMENT OF WATER AND SEDIMENT QUALITY BENCHMARKS FOR APPLICATION IN AQUATIC EFFECTS MONITORING AT THE MARY RIVER PROJECT

Table of Contents

		Page
C- 10 INT	RODUCTION	1
C- 2.0 SED	DIMENT EVALUATION AND BENCHMARK DEVELOPMENT	2
	Selection of Substances for Benchmark Development	
	Baseline Data Evaluation	
C-2.2.1		
C-2.3	AEMP Benchmark Derivation for Sediments	
	RFACE WATER EVALUATION AND BENCHMARK DEVELOPMENT.	
	Selection of Substances for Benchmark Development: Lake Water and River/Str	
	16	
C-3.2 I	Baseline Surface Water Data Evaluation for Determining AEMP Benchmarks	21
C-3.2.1	Area Lakes (Camp Lake, Mary Lake, Sheardown Lake)	22
C-3.2.2	2 Area Rivers (Mary River, Camp Lake Tributary)	34
C-3.3	AMEP Benchmark Derivation for Surface Waters	
C- 4.0 REF	FERENCES	44
Table 2-1	Identification of Metals Naturally Elevated in Area, and Potentially Elevated	
	Result of Facility Releases	
Table 2-2	Number of Sediment Samples Collected in Each Water Body by Year	
Table 2-3	Number of Sediment Samples Greater Than Detection Limit by Water Body	6
Table 2-4	Baseline Statistical Calculations for Area-Wide Sediment Data Relative to	
T 11 0 5	Available Sediment Quality Guidelines (µg/g)	9
Table 2-5	Comparison of Area-Specific Baseline Calculations to Overall Baseline Calculations, and Relevant Sediment Quality Guidelines (97.5 th percentiles, Area) (mg/kg; dw)	
Table 3-1	Identification of Metals/Metalloids Naturally Elevated in Area Water, Regul under MMER and/or Potentially Elevated as a Result of Facility Releases or	ated
T 11 22	Having Existing Water Quality Guidelines under CCME	
Table 3-2	Selection of General Parameters and Nutrients for Benchmark Development	
T 11 2 2	Exploratory Data Analysis	19
Table 3-3	List of Metals, Nutrients and Other Parameters Selected for Benchmark	0.1
Table 2 4	Development or Exploratory Data Analysis	
Table 3-4	Summary of Trend Analysis of Area Lakes (Knight Piésold, 2014)	
Table 3-5	Statistical Model Results indicating effects of Pseudoreplication	
Table 3-6	Number of Water Samples Collected in Area Lakes by Year	44

FINAL REPORT

Table 3-7	Summary of Camp Lake Surface Water Analytical Data (Total Metals; 2006 to 2013)
Table 3-8	Summary of Mary Lake Surface Water Analytical Data (Total Metals; 2006 to 2013)
Table 3-9	Summary of Sheardown Lake Surface Water Analytical Data (Total Metals; 2006 to 2013)
Table 3-10	Summary of Analysis of Area Rivers (Knight Piésold, 2014)
Table 3-11	Number of Water Samples Collected in Area Rivers by Year
Table 3-12	Summary of Mary River Surface Water Analytical Data (Total Metals; 2005 to 2013)
Table 3-13	Summary of Camp Lake Tributary Surface Water Analytical Data (Total Metals; 2005 to 2013)
Table 3-14	Water Quality Guidelines Selected for Chemicals Carried Forward for Benchmark Development
Table 3-15	Comparison of 97.5 th Percentile Concentrations in Area Lakes to Water Quality Guidelines and Selection of AEMP Benchmarks
Table 3-16	Comparison of 97.5 th Percentile Concentrations in Area Rivers to Water Quality Guidelines and Selection of AEMP Benchmarks
	List of Figures
Figure 2-1	Log10 Histograms of Area-Wide Sediment Data (N=52), by Metal of Interest 5
Figure 2-2	Box and Whisker Plots of Metal Concentrations by Area (Solid line represents 95 th percentile of area-wide data; dotted lines represent ISQG/LEL and PEL/SEL sediment quality guidelines, respectively)
Figure 2-3	Temporal Trend Analysis for Sheardown Lake NW (n = 25) for Various Parameters (mean +/- std error)
Figure 2-4	Approach for Selecting AEMP Benchmarks
Figure 3-1	Total Metals (mg/L) Compared Between Various Sheardown Lake Sampling Locations (Nearshore (NS), Northwest (NW) and Southeast (SE)); T = total; Non-detectable values replaced with detection limit
Figure 3-2	Dissolved Metals (mg/L) Compared Between Various Sheardown Lake Sampling Locations (Nearshore (NS), Northwest (NW) and Southeast (SE)); D = Dissolved; Non-detectable values replaced with detection limit

DEVELOPMENT OF WATER AND SEDIMENT QUALITY BENCHMARKS FOR APPLICATION IN AQUATIC EFFECTS MONITORING AT THE MARY RIVER PROJECT

C- 1.0 INTRODUCTION

As part of the Aquatic Effects Monitoring Program (AEMP) for the Mary River Project in Nunavut, Baffinland Iron Mines Corporation (Baffinland) requires development of benchmarks for comparison of surface water and sediment chemistry data which will be collected under the Core Receiving Environment Monitoring Program (CREMP).

Since the mine site occurs within an area of metals enrichment, generic water quality and sediment quality guidelines established for all areas within Canada may naturally be exceeded near the mine site. Therefore, the selection of appropriate benchmarks must consider established water and sediment quality guidelines, such as those developed by the Canadian Council of Ministers of the Environment (CCME), as well as site-specific natural enrichment, and other factors (such as Exposure Toxicity Modifying Factors (ETMF) including pH, water hardness, dissolved organic carbon, etc.), in the selection or development of final benchmarks for monitoring data comparison (CCME, 2003; 2007).

The assessment of surface water and sediment quality data over the life of the project will be ongoing, and the recommended benchmarks of comparison throughout this process may change, as more data become available. For example, a generic water quality guideline established as a benchmark early on in the life of the mine may require updating over time to a Site Specific Water Quality Guideline, based on consideration of published literature and standardized protocols (CCME, 2007), or site specific toxicity tests conducted to further understand ETMF or resident species toxicity. In addition, sediment data will be collected in 2014 prior to minerelated discharge and is expected to be integrated into the baseline data, and will likely result in modifications to the suggested AEMP sediment benchmarks presented herein. The iterative, cyclical nature of modification of benchmarks under an AEMP is well established (MacDonald et al., 2009).

Section 5 of the AEMP outlines the proposed approach for development of the benchmarks. Briefly, the process involves the following steps:

- Determine, using the Final Environmental Impact Statement (FEIS), which substances are present at naturally elevated concentrations, and/or those that could be released at elevated concentrations as a result of mining activities, into the future;
- Evaluate baseline data, and determine a statistical metric of baseline levels which is considered representative of background for any naturally occurring substances (metals/metalloids);
- Evaluate CCME sediment and surface water quality guidelines, where available, or other relevant guidelines from other regulatory jurisdictions (such as Ontario or British Columbia), where appropriate. Appropriate guidelines could include Site-Specific Water

Quality Guidelines (SSWQGI) developed using CCME protocols, and data from the Mary River area, or from other northern Mine sites, where data are appropriate;

• Select the higher of either baseline or regulatory or SSWQGl as the benchmark for adoption in the AEMP.

This appendix outlines the benchmark selection process, and evaluation of data.

C- 2.0 SEDIMENT EVALUATION AND BENCHMARK DEVELOPMENT

C-2.1 Selection of Substances for Benchmark Development

Based on the baseline data collected between 2005 and 2013, and the outcomes of the FEIS, the following substances have the potential to be either naturally elevated in the environment, or elevated as a result of future mine site activities (see Table 2-1).

Table 2-1	Identification of Metals Naturally Elevated in Area, and Potentially									
Elevated as a Result of Facility Releases										
Substance	Sediment	Sediment								
	Naturally Enriched in Area, Relative to	Potential to be Elevated Due to								
	Sediment Quality Guidelines ^a	Mine Site Releases ^b								
Arsenic	No	Yes								
Cadmium	Yes	Yes								
Chromium	Yes	Negligible								
Copper	Yes	Negligible								
Iron	Yes	Yes								
Lead	No	Negligible								
Manganese	Yes	Not determined								
Mercury	No	Not determined								
Nickel	Yes	Yes								
Phosphorus	Yes	Not determined								
Selenium	NGA	Not determined								
Zinc	No	Negligible								
Notoge		1								

Notes:

NGA = no guideline available

Bolded and shaded chemicals were carried forward for benchmark development based on natural enrichment, relative to guidelines, and consideration of future site contributions.

Bolded substances were carried forward as CCME sediment quality guidelines are available for these parameters.

Based on the information presented in Table 2-1, all bolded substances require benchmark development (*i.e.*, arsenic, cadmium, chromium, copper, iron, manganese, nickel and phosphorus). Three additional substances have CCME sediment quality guidelines, and were also included in the sediment chemistry assessment process (*i.e.*, lead, mercury and zinc).

^a Determination based on baseline 97.5th percentile of all samples, relative to CCME sediment quality guidelines (ISQG) or Ontario sediment quality guidelines (LEL), where available

^b Final FEIS, Volume 7; SWSQ-17-3; page 170; nickel concentrations were not predicted to exceed the PEL

C-2.2 Baseline Data Evaluation

Baseline sediment data were received from Knight Piésold. Data treatment conducted in the Baseline Integrity Review (Knight Piésold, 2014) involved the following steps:

- Removing all duplicate samples, to avoid "double counting" of data;
- All samples which were non-detect were assumed to equal the detection limit for statistical calculations; and
- Review of sediment quality laboratory detection limits.

The review of detection limits indicated that most were well below the relevant sediment quality guidelines, and that MDLs did not change meaningfully over the sampling years. The MDL reported for mercury is very close to the CSQG/ISQG, and the MDL for cadmium is 0.1 mg/kg less than the CSQG/ISQG. In both cases, increased resolution of detection limits in the future would be helpful in evaluating trends in the data over time, relative to guidelines and baseline.

C-2.2.1 Sediment Data Evaluation for Determining AEMP Benchmarks

Following completion of the data treatment steps present above, a detailed assessment of sediment chemistry was undertaken (Knight Piésold, 2014). Sediment data are available from 2005 through 2013, for various stations. The samples were all analyzed using a similar digest and analytical methodology, and hence are comparable. In addition, while the early sediment samples are all grab samples (ponar), more recent samples from some areas have included core samples (top 2 cm). Assessment of the data from these two approaches was conducted under the Baseline Integrity Review (Knight Piésold, 2014) and concluded the data are comparable, and therefore data from both sampling approaches were included in the data analysis.

A detailed evaluation of sediments was undertaken relative to depositional characteristics of sampling locations, to explore the relationships between depositional characteristics (such as Total Organic Carbon (TOC) (e.g., high TOC represents a higher propensity to accumulate metals) and presence of sand (% sand; e.g., high sand content would represent lower potential for accumulation of metals, due to lower binding potential), and metal concentrations. This analysis is presented within the Baseline Integrity Report (Knight Piésold, 2014; Appendix B). It concluded that all sediment sampling locations with TOC concentrations < 60% (0.6) and sand content of > 80% or those stations wherein sand alone was > 90% (irrespective of TOC) do not represent depositional zones, and these stations should no longer be included as potential monitoring stations. As such, these stations should be removed from the baseline chemistry calculations. Removal of these stations is justified since stations exhibiting these characteristics have a low potential to accumulate metals, and hence, will have a low likelihood of exhibiting substantial changes in chemistry in the future. In addition, including the data from these stations in the overall baseline percentile calculations results in considerable variability in the data, which would limit the potential to find statistically significant change over time, relative to future sediment monitoring and the current assessment framework (outlined in AEMP main report Figure 5.1).

The retained depositional stations were examined, and Log10 histograms of the dataset suggest that the data are largely log normally distributed (Figure 2-1), with the exception of cadmium, and mercury (not shown) due to the large number of non-detects, and phosphorus (which has a smaller number of samples, relative to other parameters).

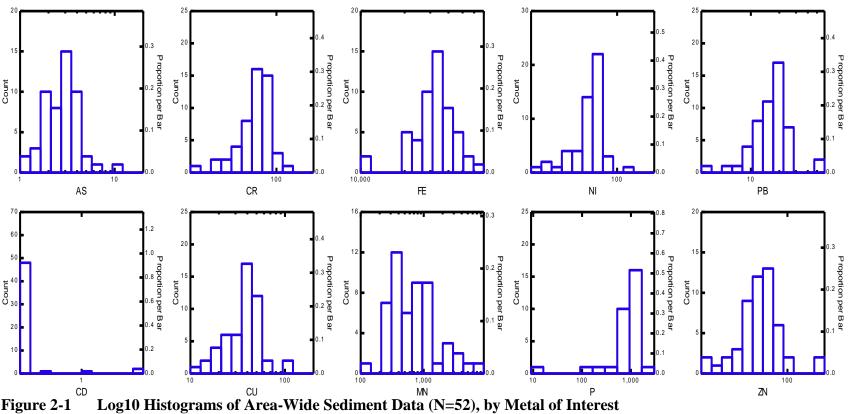

In addition, Table 2-2 provides a summary of the number of sediment samples per year in each lake and depositional tributary area, and total number of samples for the entire area, relative to baseline metric development.

Table 2-	2 Numb	Number of Sediment Samples Collected in Each Water Body by Year								
Year	Camp	Mary Lake	Sheardown Lake	Sheardown Lake SE	Tributaries of					
	Lake		NW		Sheardown Lake					
2005	0	0	0	0	0					
2006	0	1	0	0	0					
2007	5	4	7	4	0					
2008	0	0	7	0	3					
2009	0	0	0	0	0					
2010	0	0	0	0	0					
2011	0	0	2	0	0					
2012	2	1	4	1	1					
2013	2	0	5	1	1					
Total	9	6	25	6	5					

As can be seen in Table 2-2, there are limited samples in some of the area lakes. For the parameters of interest, Table 2-3 presents the total number of samples per lake, and the number of samples greater than the detection limit.

The data were evaluated using two approaches, based on the dataset as a whole (N=52), and also on an area-by-area basis, to determine if area-wide benchmarks could be established, or whether there were differences between lakes which would suggest a need for lake-specific AEMP benchmarks for selected lakes. With respect to possible approaches that can be taken to estimate background, guidance is available for soils and groundwater data from a variety of different regulatory jurisdictions, and is appropriate to apply to sediments. Ontario Ministry of Environment recommends that the 97.5th percent of baseline data be used (OMOE, 2011), whereas BC MOE (2005) suggests using a 95th percentile. US EPA suggests a 95th percentile for non-parametric datasets, or a 95th percentile Upper Prediction Limit (UPL) for datasets that are normally distributed (Singh and Singh, 2010). In several of these cases, consideration of potential outliers is suggested. With respect to other mining projects, the 95th percentile has been used as a baseline metric in the Meadowbank AEMP program (Agnico-Eagle, CREMP Design, 2012), whereas the maximum baseline value (or assessment against the range of baseline data) has been suggested in some other programs (Gahcho Kue Project; Golder, 2012).

Table 2-3	Fable 2-3 Number of Sediment Samples Greater Than Detection Limit by Water Body									
Metal	Camp Lake		Mary Lake		Shear	Sheardown Lake NW		rdown Lake SE	Tributaries of Sheardown Lake	
	N	Samples > DL	N	Samples > DL	N	Samples > DL	N	Samples > DL	N	Samples > DL
As	9	9	6	6	25	25	6	6	5	5
Cd	9	1	6	0	25	0	6	5	5	3
Cr	9	9	6	6	25	25	6	6	5	5
Co	9	9	6	6	25	25	6	6	5	5
Cu	9	9	6	6	25	25	6	6	5	5
Fe	9	9	6	6	25	25	6	6	5	5
Hg	9	0	6	0	25	0	6	0	5	0
Mn	9	9	6	6	25	25	6	6	5	5
Ni	9	9	6	6	25	22	6	6	5	5
P	5	5	5	5	14	14	4	4	3	3
Pb	9	9	6	6	25	25	6	6	5	5
Zn	9	9	6	6	25	25	6	6	5	5

Notes:

N = number of samples ND = not detected

> = greater than

FINAL REPORT

Using the entire dataset (N=52) various statistical metrics were calculated to represent possible upper end of normal for the dataset (95th percentile and 97.5th percentile). UPLs were not explored at this time, as additional data collection is being recommended (see below) in light of the small number of samples available for several area lakes.

Sediment quality guidelines were also identified for comparison to baseline metrics. The CCME (2014) have sediment quality guidelines for only a limited number of metals. Where CCME guidelines were lacking, sediment quality guidelines from jurisdictions such as the British Columbia Ministry of Environment (Nagpal et al., 2006) and the Ontario Ministry of the Environment (OMOE, 2008) were reviewed and considered. Many of the British Columbia sediment guidelines are based on CCME values. Guidelines from US EPA (2014) were also reviewed and considered, and several of the guidelines draw on the Ontario guidelines. Where available, both low effect level guidelines [such as ISQGs (Interim Sediment Quality Guidelines) from CCME, and LEL (Lower Effect Level) from Ontario] are presented, as well as effect-level guidelines [such as PELs (Probable Effect Level) from CCME, and SEL (Severe Effect Level)]. It is critical to note the following with respect to the use of these generic benchmarks as comparison points for sediment data:

- Concentrations which are less than the more conservative guidelines (such as the ISQG from the CCME or LEL from Ontario) indicate that toxicity is not expected in the environment;
- Concentrations which are greater than the ISQG or LEL, suggest toxicity is possible;
- Concentrations which are greater than the PEL or SEL, suggest toxicity may be present, but is not certain, due to the number of possible modifying factors affecting toxicity.

Metals are naturally occurring substances, and in the vicinity of mining areas, it is commonplace that some metals may be present in elevated concentrations, relative to these guidelines. There are many site specific factors which play a significant role in modifying toxicity of metals in sediments which are not accounted for in these generic guidelines, most notable, site specific bioavailability of the metal/metalloid. Therefore, conclusions with respect to adverse effects need to be drawn based on site specific considerations and data, as opposed to comparisons to benchmarks alone. In general, CCME (2002) recommends that assessment of potential for adverse effects in biota related to sediment contamination involve the use of sediment quality guidelines, as well as other assessment tools, such as data on natural background concentrations of substances of interest, biological assessments (such as benthic community assessments), and/or other toxicity data (such as site-specific testing), as needed.

Table 2-4 presents the minimum, maximum, median, mean, 95th percentile and the 97.5th percentile for the compiled baseline sediment data for the entire region, relative to available sediment quality guidelines, for the metals/metalloids identified in Table 2-1.

Following this, an area by area assessment of data was conducted, to investigate potential differences between lakes, with respect to metals concentrations, relative to the 95th percentile of

FINAL REPORT

the entire dataset. Figure 2-2 illustrates box and whisker plots of the lake data (and tributaries of Sheardown Lake), with number of samples (represented by open circles on the figures).

	Baseline Stat Guidelines (µ		lculation	s for Are	a-Wide S	Sediment	Data Rela	tive to Av	ailable S	Sediment	Quality	7
Jurisdiction and Statistical Metric	Type of Guideline	Нд	As	Cd	Cr	Си	Fe	Mn	Ni	P	Pb	Zn
CCME	ISQG	0.17	5.9	0.6	37.3	35.7	NGA	NGA	NGA	NGA	35	123
	PEL	0.486	17	3.5	90	197	NGA	NGA	NGA	NGA	91.3	315
Ontario Sediment	LEL	0.2	6	0.6	26	16	20000	460	16	600	31	120
Quality Guidelines	SEL	2	33	10	110	110	40000	1100	75	2000	250	820
US EPA Sediment Quality Guidelines	Screening	0.18	9.8	0.99	43.4	31.6	20000	460	22	NGA	35.8	121
% of Samples De	etected	0	100	18	100	100	100	100	100	100	100	100
Minimum		<0.1	1	<0.5	23	10	10,100	128	23	100	3	22
Maximum		<0.1	10.5	1.9	124	107	62,300	8,030	119	2700	52	171
Mean		NC	3.0	0.6	69	40	32,900	1,085	60	1042	18	65
Median		NC	2.3	0.5	72	40	33,100	649	64	1000	18	62
95 th Percentile		NC	5.2	0.8	96	61	48,955	3,769	77	1550	26	100
97.5 th Percentile		NC	6.0	1.7	98	87	52,200	4,452	84	1875	44	152

Note:

NC = not calculated because < 5% of samples were detected; All metals had N = 52, with the exception of P, where N = 31

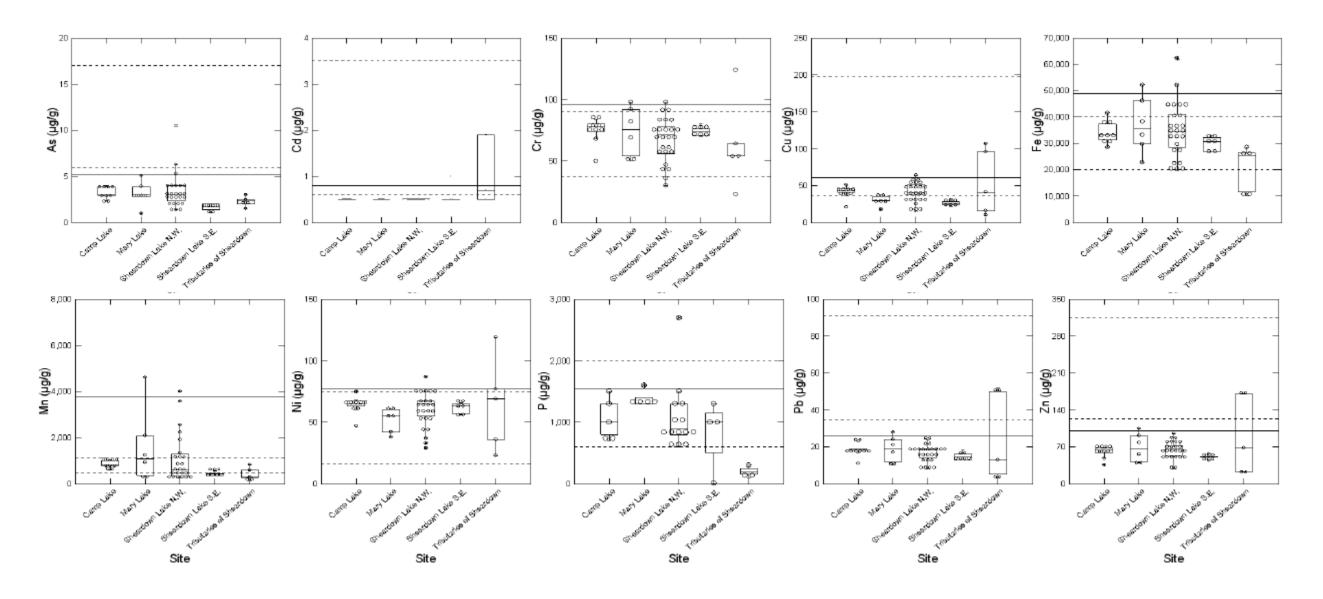


Figure 2-2 Box and Whisker Plots of Metal Concentrations by Area (Solid line represents 95th percentile of area-wide data; dotted lines represent ISQG/LEL and PEL/SEL sediment quality guidelines, respectively)

FINAL REPORT

Median values are represented within each box as the central line, with the 25th and 75th percentiles of the data being represented by the lower and upper parts of the box. Upper and lower "whiskers" extend from the box, and represent the maximum data point within 1.5 interquartile range from the top (or bottom) of the box. Potential outliers are noted as symbols beyond the whiskers. Dotted lines in the figures represent CCME or Ontario ISQG/LEL and PEL/SEL guidelines. The solid line represents the 95th percentile of the area wide sediment data, for each metal.

These box and whisker plots clearly indicate that while there are similarities between some lakes for some metals (e.g., arsenic concentrations in Camp Lake, Mary Lake and, to a lesser extent, the Tributaries of Sheardown Lake), there are also large differences in some cases (e.g., iron and manganese in Sheardown Lake SE and Tributaries of Sheardown are very different from other lakes). Tributaries of Sheardown Lake appear to have some elevated values for cadmium, chromium, copper, lead, nickel, and zinc, relative to other area lakes. While Sheardown Lake NW has adequate sampling to be confident that baseline has been adequately characterized (n = 25), the small number of samples in Camp Lake (n = 9), Mary Lake (n = 6), Sheardown Lake SE (n = 6) and Tributaries of Sheardown Lake (n = 5), limit the understanding of baseline metals levels in these specific lakes.

In order to investigate whether there has been site-related influence over time, a visual temporal trend evaluation was conducted on Sheardown Lake NW, since it had adequate sampling size to conduct this type of analysis. Figure 2-3 illustrates the temporal trends for various metals/metalloids within this basin (mean +/- standard error).

Based on Figure 2-3, there are apparent upward trends in the data related to Cr, Ni and Cu, but less pronounced differences with respect to Pb and Zn, or other parameters. Data are too limited for P to examine trends, and statistical significance tests were not conducted at this time. Further data collection in 2014 will assist in evaluating whether data in this basin are trending upwards, or within natural variability. These trends will be discussed further below, relative to the selection of AEMP benchmarks.

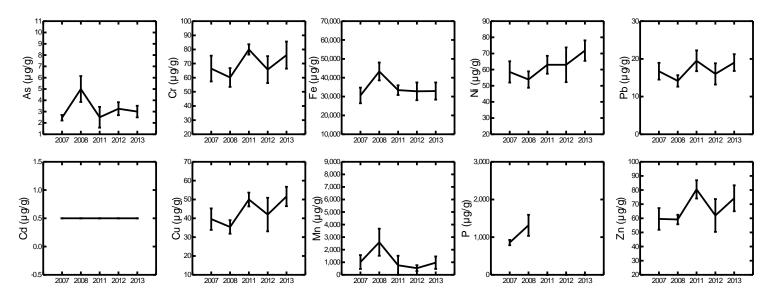


Figure 2-3 Temporal Trend Analysis for Sheardown Lake NW (n = 25) for Various Parameters (mean +/- std error)

C-2.3 AEMP Benchmark Derivation for Sediments

Based on the available data, final AEMP benchmarks were not derived at this time, as several of the lakes would benefit from an increased database to confirm adequate characterization of baseline (Camp Lake, Mary Lake, Tributaries of Sheardown Lake, Sheardown Lake SE). Therefore, the current proposed approach is to select an Interim AEMP sediment benchmark, which will be finalized once more sediment data are collected in the 2014 season.

The approach for selecting sediment AEMP benchmarks is outlined in Figure 2-4:

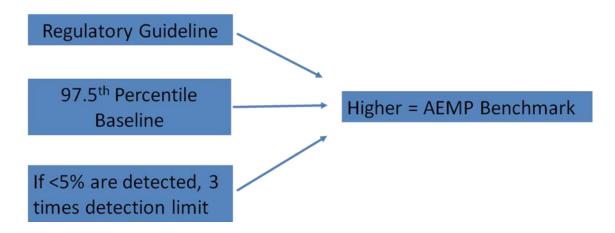


Figure 2-4 Approach for Selecting AEMP Benchmarks

For the AEMP benchmark, the 97.5th percentile was selected to represent the upper estimate "normal" or baseline concentration levels. Comparisons to the baseline range should be made in the overall exploratory data analysis stage (EDA) within Step 1 of the Assessment Approach and Response Framework (Section 5 of the AEMP; Baffinland, 2014), to provide added perspective on monitoring data. Based on the Assessment Approach and Response Framework established for Mary River Project, the 97.5th percentile is considered to represent a reasonable Interim AEMP benchmark, when coupled with other Exploratory Data Analysis aspects of Step 1 of the framework, and the Low Action management responses, which occur if change is detected in Step 1, and the monitoring data are < AEMP benchmark (see AEMP main report; Figure 5.1).

Table 2-5 presents the 97.5th percentile of each metal/metalloid within each area (lake), compared to the relevant sediment quality guidelines and area-wide 95th and 97.5th percentile calculations. As noted in Table 2-5, the Tributaries of Sheardown Lake appear to have some of the higher 97.5th percentile values, which suggest some potential influence, or natural enrichment

in this area. Data are too limited to conduct a temporal analysis of concentrations. In light of the elevations within this lake, area-wide calculations (95th and 97.5th percentiles) are presented in Table 2-5 without the data from Tributaries of Sheardown Lake.

Proposed area-wide Interim AEMP benchmarks are also presented in Table 2-5, based on the higher of either 97.5th percentile of baseline, or sediment quality guidelines. In the case of Hg, Pb and Zn, the selected benchmark is the sediment quality guideline, as area-wide data were less than or equal to this value. The selection of the guideline at this time for these substances appears reasonable. Further sediment characterization in area lakes in 2014 may result in changes to this decision. In the case of As, Cr, Cu, Fe, Mn, Ni and P, the suggested area-wide Interim AEMP benchmark is the 97.5th percentile of baseline. The use of the area-wide percentiles as an interim benchmark appears reasonable, based on comparisons to both the existing guidelines, and characterization data for the lakes. As discussed earlier, further data collection will assist in better understanding baseline within the lakes, and will assist in final AEMP benchmark development. With respect to the temporal analysis conducted for Sheardown Lake NW, Cr, Cu, and Ni showed some increased trends over time in this basin (see Figure 2-3). Based on the 97.5th percentile calculations presented in Table 2.5 for this basin, these trends are not considered to substantially influence the outcome of the recommended interim AEMP benchmark. This issue will be re-assessed with 2014 data, for final benchmark development. For Cd, the data are largely non-detect, at an MDL of 0.5 mg/kg. The ISQG is 0.6 mg/kg, and due to the close proximity of the MDL to the ISQG, the 3 times MDL approach was applied for AEMP benchmark development.

Based on this analysis of the available data, the following are recommended:

- Additional sediment sampling should be conducted in all lakes (including Sheardown Lake NW), focusing on depositional areas, as per the analysis outlined in the CREMP to gather more data to characterize baseline prior to commencement of mining operations;
- 2014 data will be evaluated for temporal trends, and to determine whether lakes can be aggregated for some or all metals of interest with respect to AEMP benchmark development.

Final AEMP benchmarks will be established following analysis of the 2014 data.

FINAL REPORT

Table 2-5					ne Calcula s, by Area		overall Base	eline Cal	culation	s, and Rel	levant Sed	liment
Jurisdiction Guideline d Metric		Hg	As	Cd	Cr	Cu	Fe Fe	Mn	Ni	P	Pb	Zn
CCME	ISQG	0.17	5.9	0.6	37.3	35.7	NGA	NGA	NGA	NGA	35	123
(2014)	PEL	0.486	17	3.5	90	197	NGA	NGA	NGA	NGA	91.3	315
Ontario (OMOE, 2008)	LEL	0.2	6	0.6	26	16	20000	460	16	600	31	120
2000)	SEL	2	33	10	110	110	40000	1100	75	2000	250	820
US EPA (2014)	Screening	0.18	9.8	0.99	43.4	31.6	20000	460	22	NGA	35.8	121
				97.5 th 9	6iles of Eac	h Lake Are	a (sample size	e)				
Tributaries o	f Sheardown	0.1	2.95	1.9	118	106	28,370	809	115	295	52	171
Mary Lake (6)	0.1	4.95	0.5	97	38	51,463	4,305	61	1580	28	103
Camp Lake ((9)	0.1	4	0.5	83	50	40,920	1,057	74	1480	23	69
Sheardown I	Lake NW (25)	0.1	7.95	0.5	96	60	56,240	5,612	81	2310	24	92
Sheardown I	Lake SE (6)	0.1	2.0	0.9	80	32	32,988	547	66	1278	18	57
95 th %ile of A Data (47) ^a	Area-Wide	NC	5.2	0.5	93	56	50,430	3,874	76	1565	24	91
97.5 th %ile (Data (47) ^a	of Area-Wide	NC	6.2	0.5	97	58	52,200	4,530	77	1958	24	94
	terim AEMP	0.17 ^A	6.2 ^B	1.5 ^C	97 ^B	58 ^B	52,200 ^B	4,530 ^B	77 ^B	1958 ^B	35 ^A	123 ^A

Notes:

NC = not calculated as all values < MDL

A = guideline is based on sediment quality guideline
B = guideline is based on 97.5th%ile of baseline data
C= guideline is based on 3 times MDL, the 97.5th%ile is equal to the MDL
Mercury was not detected in any samples; mercury detection limit is used to represent the 95th and 97.5th percentiles.

^{a=} Tributaries of Sheardown Lake data are not included in interim benchmark development due to elevated results in this area.

C- 3.0 SURFACE WATER EVALUATION AND BENCHMARK DEVELOPMENT

C-3.1 Selection of Substances for Benchmark Development: Lake Water and River/Streams

Based on the baseline data collected between 2005 and 2013, and the outcomes of the FEIS, substances having the potential to be either naturally elevated in the environment, or elevated as a result of future mine site activities in lake water were identified (see Table 3-1). In addition, metals regulated or which may be potentially regulated under MMER for base metal mines (as a result of the current re-evaluation of the MMER regulations) also were identified in Table 3-1. Any metal which was identified as being either naturally enriched, potentially elevated due to mine site released or regulated / potentially regulated under MMER were selected for benchmark development. The metals for which benchmarks will be developed in area surface waters are highlighted in Table 3-1.

In addition to metals, and regulated parameters, other substances, such as nutrients, major ions and conventional parameters are also important to include in benchmark development. Table 3-2 presents some of the nutrients, ions and conventional parameters for which analytical data are available and identifies those carried forward for benchmark development. In some cases, development of benchmarks was not considered necessary, and where appropriate, exploratory data analysis of the parameter is being recommended to assess trends, relative to baseline or reference. If change is noted in these parameters, benchmarks will be developed accordingly. All substances with AEMP benchmarks will also undergo exploratory data analysis (including statistical analysis) as part of the Assessment Approach and Monitoring Framework (AEMP main report Figure 5.1).

Table 3-1			urally Elevated in Are		
	O		ality Guidelines under	·	
Substance	Naturally Enriched in Area,	Regulated or Potential to be	Potential to be Elevated Due to	CCME PAL?	
	Relative to WQG ^a	Regulated Under MMER	Mine Site Releases ^a		
Aluminum	Yes	Potential	Yes ^b	Yes	
Antimony	No	No	No	No	
Arsenic	No	Yes	Yes	Yes	
Barium	No	No	No	No	
Beryllium	No	No	No	No	
Bismuth	No	No	No	No	
Boron	No	No	No	Yes	
Cadmium	No	No	Yes ^b	Yes	
Calcium	No	No	No	No	
Chromium	Yes	No	Yes	Yes	
Cobalt	No	No	Yes	No	
Copper	Yes	Yes	Yes ^b	Yes	
Iron	Yes	Potential	Yes	Yes	
Lead	No	Yes	Yes ^b	Yes	
Lithium	No	No	No	No	
Manganese	No	No	No	No	
Magnesium	No	No	No	No	
Mercury ^e	No	Fish tissue only	No ^c	Yes	
Molybdenum	No	No	No	Yes	
Nickel	No	Yes	No	Yes	
Phosphorus d	No	No	Yes	Yes d	
Potassium	No	No	No	No	
Selenium ^e	No	Potential	No ^c	Yes	
Silver	No	No	Yes	Yes	
Sodium	No	No	No	No	
Strontium	No	No	No	No	
Thallium	No	No	Yes ^b	Yes	
Tin	No	No	No	No	

Table 3-1 Identification of Metals/Metalloids Naturally Elevated in Area Water, Regulated under MMER and/or Potentially Elevated as a Result of Facility Releases or Having Existing Water Quality Guidelines under CCME								
Substance	Naturally Enriched in Area, Relative to WQG ^a Resulted Or Relative to WQG ^a Resulted Under MMER Potential to be Elevated Due to Mine Site Releases a MMER							
Titanium	No	No	No	No				
Uranium ^e	No	No	No	Yes				
Vanadium	No	No	Yes ^b	Yes				
Zinc	No	Yes	Yes	Yes				

Notes:

Bolded cell = indicates chemicals was identified as being either naturally enriched, potentially elevated due to mine site released and / or regulated / potentially regulated under MMER, or there was a CCME freshwater quality guideline available Shaded cell = indicates chemicals was carried forward for benchmark development

WQG = water quality guideline; CCME PAL = Canadian Council of Ministers of the Environment, Canadian Water Quality Guidelines for the Protection of Aquatic Life

- a. Determination based on Final FEIS, Volume 7; re-screened such that metals > 0.5 Hazard Quotient are listed above
- b. These metals could potentially become elevated in receiving environments if dusting events were significant, as a result of dust runoff into aquatic receiving environments, based on Final FEIS, Volume 7. Therefore, these metals are included as potential Chemicals of Potential Concern (COPCs) requiring benchmark development.
- c. The FEIS had identified potentially elevated mercury and selenium in both the baseline water quality and geochemical source terms attributable to laboratory detection limits. Subsequent testing of both metals at lower detection limits has confirmed that these metals are not expected to be elevated in either the baseline or in the mine effluent.
- d. Total Phosphorus is inconsistent in area water courses, and hence, an alternative benchmark approach was developed (related to chlorophyll a) to evaluate potential for nutrient enrichment (see CREMP report)
- e Mercury, selenium and uranium are not considered to become potentially elevated as a result of mine site releases, and therefore have not been included for AEMP benchmark development. Mercury will be monitored in mine effluent as part of the EEM Program, and a fish tissue study can be triggered under Part 2, Section 9c of the MMER if mercury in the effluent is found to exceed $0.1~\mu g/L$.

Table 3-2 Selection of General Parameters and	CCME	Included for	Included for	rk Development or Exploratory Data Analysis Comments
Nutrients	PAL?	Benchmark	Exploratory Data	Comments
ivativents	IAL:	Development Development	Analysis	
pН	Yes	No	Yes	Exposure Toxicity Modifying Factor
Dissolved oxygen	Yes	No	Yes	Exposure Tomery From Ting Fuetor
Conductivity	No	No	No	
Turbidity	Yes	No	Yes	
Hardness	No	No	Yes	Exposure Toxicity Modifying Factor
Total Dissolved Solids	No	No	Yes	TDS will be evaluated for statistical change
Total Suspended Solids (TSS)	Yes	No	Yes	TSS is considered to be a potential concern if storm water management is not implemented. It is carried forward for exploratory data analysis in light of this concern
Alkalinity	No	No	Yes	Exposure Toxicity Modifying Factor
Bromide (Br-)	No	No	No	
Chloride (Cl-)	Yes	Yes	Yes	Some chloride release has occurred related to exploration drilling activities (near stream environments), therefore it is being included for benchmark development
Sulphate (SO ₄ ²⁻)	No	Yes	Yes	Can be associated with mining activities; recent BC MOE guideline available for sulphate (Meays and Nordin, 2013)
Ammonia (NH ₃ +NH ₄ ⁺)	Yes	Yes	Yes	Can be associated with mining activities; benchmark available
Nitrite (NO ₂ ⁻)	Yes	Yes	Yes	Can be associated with mining activities; benchmark available
Nitrate (NO ₃ ⁻)	Yes	Yes	Yes	Can be associated with mining activities; benchmark available
Magnesium	No	No	Yes	Associated with hardness and TDS; will be monitored for change
Phosphorus	Yes	No	Yes	Due to variability in natural waters, phosphorus will be included for Exploratory data Analysis; monitoring for eutrophication will be done using Chlorophyll a.
Potassium	No	No	Yes	
Total Organic Carbon (TOC)	No	No	Yes	Exposure Toxicity Modifying Factor
Dissolved Organic Carbon (DOC)	No	No	Yes	Exposure Toxicity Modifying Factor

Table 3-2 Selection of (Table 3-2 Selection of General Parameters and Nutrients for Benchmark Development or Exploratory Data Analysis						
General Parameters and Nutrients	CCME PAL?	Included for Benchmark Development	Included for Exploratory Data Analysis	Comments			
Total Kjeldahl Nitrogen (TKN)	No	No	No	Assessment of monitoring data for Total ammonia, nitrite, nitrate and Chlorophyll a should provide adequate evaluation tools			
Phenols	Yes	No	No	Not anticipated to be associated with facility releases			

Notes:

Bolded text = selected for Exploratory Data Analysis only

Shaded text = selected for benchmark development (which will also include Exploratory Data Analysis as part of the Assessment Framework)

Based on the review of the metals, nutrients and general parameters selected for evaluation are provided in Table 3-3.

Table 3-3	List of Metals, Nutrients and Other Parameters Selected for Benchmark									
	Development or Exploratory Data Analysis									
Selecte	d For Benchmark Development	Selected for Exploratory Data Analysis								
Aluminum	Vanadium	pН								
Arsenic	Zinc	Hardness								
Cadmium		Total Dissolved Solids								
Chromium		Total Suspended Solids (TSS)/Turbidity								
Copper		Alkalinity								
Cobalt	Ammonia (NH ₃ +NH ₄₎	Magnesium								
Iron	Chloride	Phosphorus								
Lead	Nitrite (NO ₂)	Potassium								
Nickel	Nitrate (NO3-)	Total Organic Carbon (TOC)								
Silver	Sulphate	Dissolved Organic Carbon (DOC)								
Thallium		Dissolved oxygen								

Metals/non-metals and other key parameters not selected for benchmark develop will still undergo some degree of trend analysis within Step 1 of the Exploratory Data Analysis. If increasing trends are noticed, benchmark development will be undertaken.

C-3.2 Baseline Surface Water Data Evaluation for Determining AEMP Benchmarks

Baseline water quality data were received from Knight Piésold. Data treatment conducted in the Baseline Integrity Review (Knight Piésold, 2014) involved the following steps:

- Removing all duplicate samples, to avoid "double counting" of data;
- All samples which were non-detect were assumed to equal the detection limit for statistical calculations; and
- Where detection limits were elevated compared to later sampling events, they were substituted with lower detection limits (see Baseline Integrity Report; Knight Piésold, 2014).

Following completion of the data treatment steps present above, a detailed assessment of surface water quality was undertaken (CREMP Main Report and Appendix B; Knight Piésold, 2014). This detailed assessment included Camp Lake, Mary Lake and Sheardown Lake NW in addition to Mary River and Camp Lake Tributary. For Sheardown Lake, Knight Piésold (2014) focused their evaluation on the northwest basin since it is the closest to project activities, its tributary is important to juvenile char and it has been the most studied mainly due to treated sewage effluent discharges. The following sections provide a summary of trends observed in lakes and rivers, respectively in addition to how the data were treated for AMEP benchmark development.

C-3.2.1 Area Lakes (Camp Lake, Mary Lake, Sheardown Lake)

General water quality parameters in Camp Lake, Mary Lake and Sheardown Lake NW and SE were reported to be similar with all lakes being slightly alkaline (median pH values >7.5) and soft, with hardness being mainly carbonate hardness. A summary of the trends observed in Camp Lake, Mary Lake and Sheardown Lake NW and SE by Knight Piésold is provided in Table 3-4. For additional details, please refer to the CREMP Main Report and Appendix B (Knight Piésold, 2014).

Table 3-4	Summary of Ti	end Analysis of Ar	ea Lakes (Knight Piés	old, 2014)	
Trend			Lakes		
	Camp Lake	Mary Lake	Sheardown Lake NW	Sheardown Lake SE	
Distinct depth trends	Not observed, suggest lake completely mixed; utilization of both depth and shallow sites to calculate benchmarks deemed appropriate	Not observed, suggest lake completely mixed; utilization of both depth and shallow sites to calculate benchmarks deemed appropriate	Al slightly elevated in deeper samples, suggest lake completely mixed; aggregation of depth and shallow sites appropriate for all parameters except Al	Not observed, suggest lake completely mixed; utilization of both depth and shallow sites to calculate benchmarks deemed appropriate	
Geographic trends between discrete sampling sites	Not observed	Slightly elevated concentrations of Al, Cl, Cu, Cr, Fe, hardness and Ni observed at inlet; elevated As concentrations observed at outlet	Little variability	Cu, Fe and Ni (slightly elevated concentrations at DL0-02-4)	
Distinct inter annual trends	Chloride and Cr (2011 to 2013 concentrations elevated compared early data)	Fe (2013 data slightly lower concentration than previous years), Cd (detection limits decreased over course of sampling), Ni (elevated during 2007 winter)	Cd and Fe (decrease in detection limits over years)	Cu and Ni (early data from 2007-2008 elevated compared to more recent data)	
Parameters consistently below MDL	As, Cd, nitrate,	As (except for outlet sites), Cd, nitrate,	As, Cd, Cl, nitrate, Fe	As, Cd, nitrate	
Elevated parameters	Cu (outliers)	Al, Cu, Cr	Cu	Al, Cu	
Parameters do not show seasonal trends	Cl, Cd, As, Fe, nitrate	Cd, Cu, Cr, nitrate	As, Cd, Cl, Cr, Cu, nitrate, Fe	As, Cd, nitrate, Cr and Cu.	

Table 3-4											
Trend		Lakes									
	Camp Lake	Mary Lake	Sheardown Lake NW	Sheardown Lake SE							
Parameters with maximum concentrations during summer	Al, nitrate	Al, Fe		Al (and fall), Fe							
Parameters with maximum concentrations during fall	Cr	As	Al								
Parameters with maximum concentrations during spring	No sampling	No sampling	No sampling	No sampling							
Parameters with maximum concentrations during winter	Cu (and summer), Ni (and summer)	Cl, Ni, Cd	Ni	Cl, Ni							

As reported in Table 3-4, with the exception of aluminum in Sheardown Lake NW, distinct depth trends were not observed for Camp Lake, Mary Lake or Sheardown Lake SE and lakes were considered to be completely mixed (Knight Piésold, 2014). This implies that combining the shallow and deep datasets would be appropriate (with the exception of aluminum in Sheardown Lake), except that it constitutes pseudoreplication, since the shallow and deep samples were collected on the same day at the same site. In light of this, Knight Piésold ran a small statistical simulation in order to assess the effects of possible pseudoreplication on the estimation of the standard deviation and 95th percentile.

The statistical model assumes the data is generated in 2 steps:

- 1) Sample data from a normal distribution with a mean of zero and standard deviation of 1: x
- 2) Add replication error by adding a random error from a normal distribution with mean 0 and standard deviation of 0.1: y = x + e

In order to consider the data with and without pseudoreplicates, two datasets were created:

- 1) No pseudo replicates (sample size = n)
- 2) 3 pseudoreplicates (sample size = 3*n)

In order to test the effects of pseudoreplication, the possible effects of adding both the deep and shallow data on the calculation of standard deviation and the empirical 95th percentile were investigated. The 95th percentile indicates the value below which 95% of the observations in a group occur. Empirical 95th percentiles are indicates the value below which 95% of the observations in a group occur and is calculated using the actual recorded data. Table 1 indicates that the effects of pseudoreplication are small, even at small sample sizes; however, the empirical

95th percentile calculation has some drift with respect to the expected outcome (1.653) at small sample sizes.

Table 3-5	Statistical Model Resul	ts indicating effe	cts of Pseudoreplic	eation
Sample Size	Data	Mean	Standard	Empirical 95 th
			Deviation	Percentile
5	No pseudoreplicates	-0.00715	0.946	1.00
	Pseudoreplicates	-0.00787	0.877	1.2
10	No pseudoreplicates	-0.017	0.98	1.26
	Pseudoreplicates	-0.017	0.94	1.50
25	No pseudoreplicates	0.0067	0.99	1.65
	Pseudoreplicates	0.0056	0.98	1.62
100	No pseudoreplicates	0.0018	1.00	1.60
	Pseudoreplicates	0.0017	1.00	1.63

Note:

- 1. Based on 1000 simulations.
- 2. Mean should equal 0 and 95th percentile for normal distribution should equal 1.653

As such, surface and deep water samples for the lakes were combined for determining the AEMP benchmarks, for all lakes and chemicals with the exception of aluminum in Sheardown Lake, which was evaluated separately for surface and deep samples.

The number of water samples collected per year (shallow and deep combined) for each lake is provided in Table 3-6. In addition to Sheardown Lake NW, sample numbers are included for both Sheardown Lake SE and the Sheardown Lake near shore sampling programs, as these samples characterize the SE basin, and nearshore areas of the lakes.

Table 3-	le 3-6 Number of Water Samples Collected in Area Lakes by Year									
Year	Camp	Camp Mary Lake Sheardown Lake		Sheardown Lake SE	Sheardown Lake					
	Lake		NW		Near Shore					
2006	3	8	4	4	0					
2007	18	24	26	16	0					
2008	8	12	22	14	18					
2009	0	0	0	0	0					
2010	0	0	0	0	0					
2011	4	4	20	2	12					
2012	6	2	16	4	4					
2013	13	21	23	6	8					
Total	52	71	111	46	42					

Note: not all parameters or chemicals were analyzed for in each sample and as such, total number of samples for a specific parameter or chemical may be less than the values presented here

As can be seen in Tables 3-6, there are a reasonable number of samples obtained from each of the area lakes. As such, Camp Lake, Mary Lake and Sheardown Lake were evaluated separately for the purpose of AEMP development.

To determine if data for Sheardown Lake NW, SE and near shore could be combined, a comparison of select total and dissolved metal concentrations between the various Sheardown Lake sampling locations was conducted. The box and whisker plots in Figures 3-1 and 3-2

respectively show the comparisons of total and dissolved metal concentrations between various Sheardown Lake sampling locations (*i.e.*, nearshore, northwest and southeast). In the box and whisker plots, non-detectable values were replaced with detection limits.

Based on the comparisons in Figures 3-1 and 3-2, it was determined that the data for the various areas of Sheardown Lake were similar enough that they could be combined and assessed as a single water body.

Therefore for the purpose of AEMP benchmark development, Camp Lake, Mary Lake and Sheardown Lake (near shore, northwest and southeast data combined) were evaluated separately.

A summary of data for Camp Lake, Mary Lake and Sheardown Lake are provided in Tables 3-7 to 3-9 respectively.

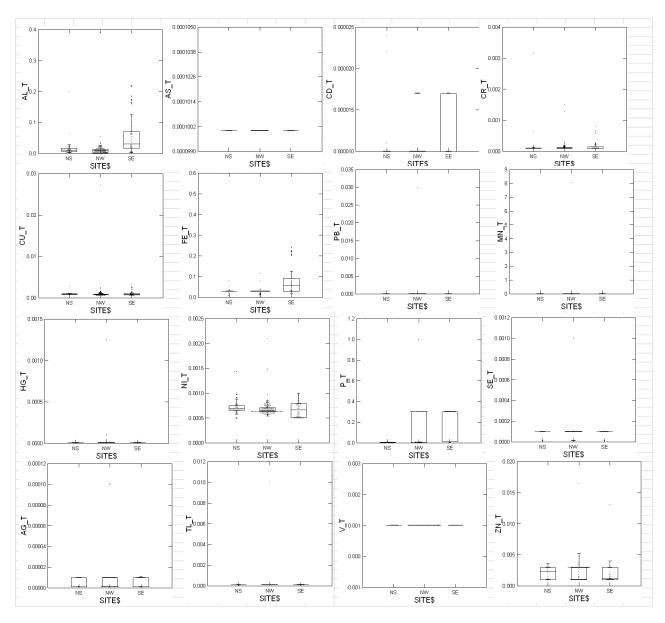


Figure 3-1 Total Metals (mg/L) Compared Between Various Sheardown Lake Sampling Locations (Nearshore (NS), Northwest (NW) and Southeast (SE)); T = total; Nondetectable values replaced with detection limit

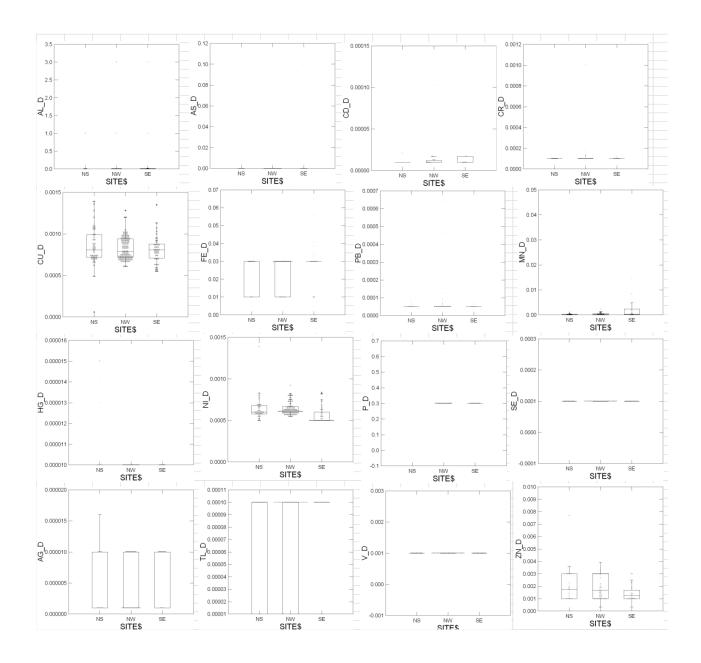


Figure 3-2 Dissolved Metals (mg/L) Compared Between Various Sheardown Lake Sampling Locations (Nearshore (NS), Northwest (NW) and Southeast (SE)); D = Dissolved; Non-detectable values replaced with detection limit

Table 3-7	Sum 2006			p Lake Su	rface Wat	er Analyti	cal Data (Total Met	als;
Parameter	Units	N	% Detect	Min ^b	Max^{c}	Median d	95 th %ILE ^d	97.5 th %ILE ^d	Mean ^d
Metals ^a	•		•	•				•	•
Aluminium	mg/L	52	92	< 0.001	0.0379	0.00615	0.0192	0.0260	0.00801
Arsenic	mg/L	52	0 ^e	< 0.0001	< 0.0001	NC	NC	NC	NC
Cadmium	mg/L	52	4 ^e	< 0.00001	0.000042	NC	NC	NC	NC
Chromium	mg/L	52	4 ^e	< 0.0001	0.00014 ^g	NC	NC	NC	NC
Chromium +3	mg/L	19	0e	< 0.001	< 0.005	NC	NC	NC	NC
Chromium +6	mg/L	15	0e	< 0.001	< 0.005	NC	NC	NC	NC
Cobalt	mg/L	52	0 ^e	< 0.0001	< 0.0002	NC	NC	NC	NC
Copper	mg/L	49	100	0.00072	0.019	0.00092	0.00389	0.0113	0.00169
Iron	mg/L	52	23	< 0.003	0.057	0.03	0.0343	0.0421	0.0238
Lead	mg/L	49	20	< 0.00005	0.000429	0.00005	0.0002	0.000334	0.000074
Nickel	mg/L	49	100	0.00054	0.00114	0.00066	0.00081	0.000914	0.000672
Silver	mg/L	52	O ^e	< 0.000001	< 0.00001	NC	NC	NC	NC
Thallium	mg/L	49	0 ^e	< 0.000001	< 0.0001	NC	NC	NC	NC
Vanadium	mg/L	52	0 ^e	< 0.001	< 0.001	NC	NC	NC	NC
Zinc	mg/L	49	18	< 0.001	0.0049	0.003	0.0032	0.0037	0.0022
Water Qualit	y Parame	eters							
Chloride (Cl ⁻)	mg/L	52	27	<1	4	1	4	4	2.02
Ammonia (NH ³ +NH ⁴)	mg N/L	52	92	< 0.02	1.41	0.02	0.560	0.84	0.101
Nitrite (NO ₂ -)	mg N/L	52	12	< 0.002	0.012 ^e	0.005	0.1	0.1	0.012
Nitrate (NO ₃)	mg N/L	52	0e	<0.1	< 0.1	NC	NC	NC	NC
Sulphate (SO ₄ ²⁻)	mg/L	52	62	<1	3 ^e	2	3	3	2.0
Major Toxici		ying F	actors for	Guideline D	evelopment				
pН	-	52	NA	6.8	8.3	7.5	8.3	8.3	7.6
Hardness	mg/L ^f	52	NA	50	77.1	59.7	69.5	73.4	59.4
Temperatur e	°C	36	NA	0.9	9.0	7.1	8.7	8.9	6.2

Notes:

NC = not calculated; NA = not applicable; %ILE = percentile

a. Total metals unless otherwise noted

b. Minimum values is the lowest of all detected values or the lowest detection limit, whichever is less

c. Maximum values is the maximum detected value or, if no detected values were reported, indicates the maximum detection limit reported

d. For calculation of these summary statistics, non-detect values were replaced with the value of the detection limit e. Less than 5% of samples were detected, therefore a median, 95th percentile, 97th percentile and mean were not calculated f. mg/L as CaCO₃

Table 3-7	7 Summary of Camp Lake Surface Water Analytical Data (Total Metals; 2006 to 2013)								
Parameter	Units	N	% Detect	Min ^b	Max ^c	Median d	95 th %ILE ^d	97.5 th %ILE ^d	Mean d

g. Maximum detected value is less than highest detection limit. Maximum value selected is the highest detected value.

Table 3-8		Summary of Mary Lake Surface Water Analytical Data (Total Metals; 2006 to 2013)										
Parameter	Unit s	N	% Detect	Min^b	Max ^c	Median d	95th %ILE ^d	97.5th %ILE ^d	Mean ^d			
Metals ^a												
Aluminium	mg/L	71	100	0.00284	0.191	0.0387	0.114	0.137	0.0473			
Arsenic	mg/L	71	10	0.0001	0.00039	0.0001	0.00015	0.000178	0.00010			
Cadmium	mg/L	71	6	< 0.00001	0.00024	0.00001	0.000017	0.000023	0.00001			
Chromium	mg/L	71	25	0.00012 ^g	0.00043 ^h	0.0005	0.001	0.001	0.00047			
Chromium +3	mg/L	20	10	< 0.005	0.005	0.005	0.005	0.005	0.005			
Chromium +6	mg/L	21	10	< 0.001	0.001	0.001	0.001	0.001	0.001			
Cobalt	mg/L	71	3 ^e	< 0.0001	0.0001 ^h	NC	NC	NC	NC			
Copper	mg/L	65	100	0.00054	0.00429	0.00079	0.00147	0.00239	0.00094 9			
Iron	mg/L	71	82	< 0.01	0.25	0.052	0.135	0.173	0.0619			
Lead	mg/L	63	73	<0.00005	0.000149	0.00006	0.00013	0.00013	0.00006 8			
Nickel	mg/L	63	51	< 0.0005	0.0009	0.0005	0.00077	0.00080	0.00055			
Silver	mg/L	69	3 ^e	<0.00000	0.000001 h	NC	NC	NC	NC			
Thallium	mg/L	63	3 ^e	<0.00000	0.000001 h	NC	NC	NC	NC			
Vanadium	mg/L	71	11	< 0.001	0.0035	0.001	0.001	0.00146	0.00105			
Zinc	mg/L	63	14	< 0.001	0.003	0.0015	0.003	0.003	0.0020			
Water Quality I	Paramete	ers										
Chloride (Cl ⁻)	mg/L	71	65	<1	14	2	8	13	3.2			
Ammonia (NH ₃ +NH ₄)	mg N/L	71	97	< 0.02	0.38	0.05	0.25	0.32	0.087			
Nitrite (NO ₂ -)	mg N/L	71	27	< 0.002	0.1	0.005	0.055	0.1	0.0096			
Nitrate (NO ₃)	mg N/L	71	6	< 0.1	0.14	0.1	0.1	0.11	0.10			
Sulphate (SO ₄ ²⁻)	mg/L	64	80	<1	8	3	5	7	2.7			
Major Toxicity	Modifyii	ng Fact	ors for G	uideline De	velopment	1	T	T	T			
pН	-	71	NA	6.7	8.3	7.4	8.2	8.2	7.4			
Hardness	mg/L	71	NA	24.9	137	39.5	129	130.5	49.4			
Temperature	°C	52	NA	0.6	14.1	7.4	12.9	13.6	6.9			

NC = not calculated; NA = not applicable; % ILE = percentile

a. Total metals unless otherwise noted

b. Minimum values is the lowest of all detected values or the lowest detection limit, whichever is less

c. Maximum values is the maximum detected value or, if no detected values were reported, indicates the maximum detection limit reported

d. For calculation of these summary statistics, non-detect values were replaced with the value of the detection limit e. Less than 5% of samples were detected, therefore a median, 95th percentile, 97th percentile and mean were not calculated

Table 3-8	Summary of Mary Lake Surface Water Analytical Data (Total Metals;								
	2006 to 2013)								
	Unit		%			Median	95th	97.5th	
Parameter	S	N	Detect	Min^b	Max^{c}	d	$\%ILE^d$	$\%ILE^d$	Mean d

f. mg/L as CaCO₃

g. Lowest detected value is less than the lowest non-detected value. Minimum value selected is the lowest detected value. h. Maximum detected value is less than highest detection limit. Maximum value selected is the highest detected value.

Table 3-9 S	ummary	of She	ardown L	ake Surface V	Vater Analy	tical Data (T	Total Metals; 2006	to 2013)	
Parameter	Units	N	% Detect	Min ^b	Max ^c	Median ^d	95th %ILE ^d	97.5th %ILE ^d	Mean ^d
Metals ^a									
Aluminium (Shallow)	mg/L	91	92	0.0012 ^g	0.217	0.0092	0.0102	0.179	0.0223
Aluminum (Deep)	mg/L	90	91	0.001 ^g	0.39	0.0134	0.146	0.173	0.030
Arsenic	mg/L	199	10	< 0.0001	0.00012	0.0001	0.0001	0.0001	0.0001
Cadmium	mg/L	199	5	< 0.00001	0.000024	0.00001	0.00002	0.000017	0.00001
Chromium	mg/L	199	31	< 0.0001	0.00316	0.0001	0.0003	0.000641	0.0002
Chromium +3	mg/L	47	4 ^e	< 0.001	0.005	NC	NC	NC	NC
Chromium +6	mg/L	47	4 ^e	< 0.001	0.001	NC	NC	NC	NC
Cobalt	mg/L	199	10	< 0.0001	0.00034	0.0001	0.0001	0.0002	0.0001
Copper	mg/L	187	98	0.00046 ^g	0.0272	0.0009	0.0016	0.00243	0.0011
Iron	mg/L	199	46	0.002 ^g	0.598	0.03	0.116	0.211	0.0437
Lead	mg/L	191	33	< 0.00005	0.03	0.0001	0.0002	0.00026	0.0002
Nickel	mg/L	191	93	< 0.0005	0.0021	0.0007	0.0009	0.000973	0.0007
Silver	mg/L	187	10	< 0.000001	0.000011	0.00001	0.00001	0.0000104	0.000008
Thallium	mg/L	179	8	< 0.000001	0.0001	0.000100	0.0001	0.0001	0.00012
Vanadium	mg/L	187	8	< 0.001	0.001	0.001	0.001	0.001	0.001
Zinc	mg/L	179	26	< 0.001	0.0165	0.0022	0.00322	0.00391	0.00220
Water Quality Par	ameters								
Chloride (Cl ⁻)	mg/L	202	98	<1	7	3	4	5	2.8
Ammonia (NH ₃ +NH ₄)	mg N/L	201	45	< 0.02	0.99	0.02	0.26	0.44	0.060
Nitrite (NO ₂ -)	mg N/L	189	7	< 0.002	0.009	0.005	0.1	0.1	0.014
Nitrate (NO ₃)	mg N/L	201	1 ^e	<0.1	0.18	NC	NC	NC	NC
Sulphate (SO ₄ ²⁻)	mg/L	202	85	<1	5	3	4	5	2.7

Table 3-9 Summary of Sheardown Lake Surface Water Analytical Data (Total Metals; 2006 to 2013)										
Parameter	Units	N	% Detect	Min ^b	Max ^c	Median ^d	95th %ILE ^d	97.5th %ILE ^d	Mean ^d	
Major Toxicity Mo	Major Toxicity Modifying Factors for Guideline Development									
pН	-		NA	6.7	8.4	7.6	8.2	8.3	7.6	
Hardness	mg/L f		NA	0.5	82.2	60.5	76.7	77.9	58.5	
Temperature	°C	142	NA	1.1	14.4	8.0	10.8	11.9	7.3	

NC = not calculated; NA = not applicable; %ILE = percentile

- a. Total metals unless otherwise noted
- b. Minimum values is the lowest of all detected values or the lowest detection limit, whichever is less
- c. Maximum values is the maximum detected value or, if no detected values were reported, indicates the maximum detection limit reported
- d. For calculation of these summary statistics, non-detect values were replaced with the value of the detection limit
- e. Less than 5% of samples were detected, therefore a median, 95th percentile, 97th percentile and mean were not calculated
- f. mg/L as CaCO₃
- g. Lowest detected value is less than the lowest non-detected value. Minimum value selected is the lowest detected value.

C-3.2.2 Area Rivers (Mary River, Camp Lake Tributary)

Similar to the lakes, Mary River and the Camp Lake Tributary are slightly alkaline and are considered soft to moderately soft, with hardness being mainly carbonate hardness (Knight Piésold, 2014). The intense spring run-off acts to dilute seasonal input with lower metal concentration in spring and higher concentrations in summer. Nitrate, As and Cd concentrations are generally below the MDLs while chloride and Ni are generally above MDL but lower than guidelines. Mary River and the Camp Lake Tributary have slightly different trends for Al and Fe (Knight Piésold, 2014).

A summary of the trends observed in Mary River and the Camp Lake Tributary by Knight Piésold is provided in Table 3-10. For additional details, please refer to the CREMP Main Report and Appendix C (Knight Piésold, 2014). The number of water samples collected per year for Mary River and Camp Lake Tributary is provided in Table 3-11.

Table 3-10 Summary of Analysis of Area Rivers (Knight Piésold, 2014)								
Trend	Streams							
	Mary River	Camp Lake Tributary						
Distinct depth trends	NA	NA						
Geographic trends between discrete sampling sites	Cl (slightly lower upstream concentrations);	Fe, Cl, Ni (slightly elevated concentrations at L2-03 compared to other sites); Cu (lower concentrations at L2-03).						
Distinct inter annual trends	Nitrate (changes in MDL over time); Ni (early data elevated compared to more recent data)	Al (2012 and 2013 data slightly elevated compared to other years); Cr (2012 and 2013 data elevated compared to other years)						
Parameters consistently below MDL	As, Cd, nitrate	As, Cd, nitrate						
Elevated parameters	Al, Cu, Cr, Fe	Al (spring and summer outliers), Cu, Fe, Cr						
Parameters do not show seasonal trends	As, Cd, nitrate (MDL interference, but outliers occur in the fall), Ni, Cr	Fe, Ni, Cr						
Parameters with maximum concentrations during summer	Al, Cu (and fall), Fe	Cu (muted trend)						
Parameters with maximum concentrations during fall	Cl	CI						
Parameters with maximum concentrations during spring		Al						
Parameters with maximum concentrations during winter	No sampling	No sampling						

FINAL REPORT

Table 3-11 Number of Water Samples Collected in Area Rivers by Year								
Year	Mary River	Camp Lake Tributary						
2005	15	11						
2006	71	12						
2007	80	14						
2008	103	16						
2009	35	0						
2010	8	0						
2011	16	6						
2012	25	15						
2013	26	15						
Total	379	89						

Note: not all parameters or chemicals were analyzed for in each sample and as such, total number of samples for a specific parameter or chemical may be less than the values presented

The samples numbers for Mary River and Camp Lake Tributary are sufficiently large such that these rivers were evaluated separately for the purpose of AEMP development. A summary of data for Mary River and Camp Lake Tributary are provided in Tables 3-12 to 3-13 respectively.

Table 3-12		Summary of Mary River Surface Water Analytical Data (Total Metals; 2005 to 2013)										
			%			Median	95 th	97.5 th %ILE ^{d,i}	,			
Parameter	Units	N	Detect	Min ^b	Max ^c	d	%ILE ^d	%ILE ^{d,1}	Mean ^d			
Metals ^a	Metals ^a											
Aluminium	mg/L	381	100	0.0019	2.97	0.148	0.725	0.97	0.225			
Arsenic	mg/L	381	7	< 0.0001	0.00095	0.0001	0.00011	0.00013	0.0001			
Cadmium	mg/L	381	8	< 0.00001	0.00015	0.00001	0.000017	0.00002	0.00001			
Chromium	mg/L	380	38	< 0.0001	0.054	0.0001	0.002	0.0023	0.0007			
Chromium +3	mg/L	63	6	< 0.001	0.003 ^h	0.005	0.005	0.005	0.0041			
Chromium +6	mg/L	51	2	< 0.0001	0.0015 ^h	NCe	NC	NC	NC			
Cobalt	mg/L	376	24	< 0.0001	0.0006	0.0002	0.00031	0.0004	0.00018			
Copper	mg/L	270	97	0.00023 ^g	0.0044	0.0010	0.0022	0.0024	0.0012			
Iron	mg/L	381	90	< 0.01	2.2	0.14	0.64	0.874	0.213			
Lead	mg/L	223	78	< 0.00005	0.0013	0.00016	0.00056	0.00076	0.0002			
Nickel	mg/L	211	69	< 0.0005	0.0026	0.00063	0.0015	0.0018	0.00078			
Silver	mg/L	376	6	< 0.000001	0.0004	0.00001	0.0001	0.0001	0.000044			
Thallium	mg/L	279	6	<0.000001	0.0002	0.0001	0.0002	0.0002	0.00009			
Vanadium	mg/L	376	14	< 0.0009	0.0035	0.001	0.0016	0.002	0.0011			
Zinc	mg/L	236	44	< 0.00033	0.0167	0.0028	0.01	0.01	0.003			
Water Quality	y Paramet	ters										
Chloride (Cl ⁻)	mg/L	350	74	0.3^{g}	73	4	18	21.55	6.14			
Ammonia (NH ³ +NH ⁴)	mg N/L	330	44	< 0.02	1.03	0.02	0.40	0.60	0.07			
Nitrite (NO ₂ -)	mg N/L	330	31	< 0.002	0.05 ^h	0.005	0.06	0.06	0.01			
Nitrate (NO ₃)	mg N/L	387	7	< 0.05	0.36	0.1	0.11	0.14	0.102			
Sulphate (SO ₄ ²⁻)	mg/L	336	65	< 0.05	9	3	6.2	8	3.1			
Major Toxicit	y Modify	ing Fa	ctors for C	Guideline De	evelopment							
рН	-	339	NA	6.26	8.57	7.86	8.25	8.35	7.77			
Hardness	mg/L ^f	374	NA	4.4	891	52.2	108.7	121.4	57.41			
Temperature	°C	338	NA	-0.1	17.07	6.05	13.36	14.12	5.91			

NC = not calculated; NA = not applicable; %ILE = percentile

a. Total metals unless otherwise noted

b. Minimum values is the lowest of all detected values or the lowest detection limit, whichever is less

c. Maximum values is the maximum detected value or, if no detected values were reported, indicates the maximum detection limit reported

d. For calculation of these summary statistics, non-detect values were replaced with the value of the detection limit e. Less than 5% of samples were detected, therefore a median, 95th percentile, 97th percentile and mean were not calculated f. mg/L as CaCO₃

g. Lowest detected value is less than the lowest non-detected value. Minimum value selected is the lowest detected value.

h. Maximum detected value is less than highest detection limit. Maximum value selected is the highest detected value.

i. One sample (outlier) containing chemical concentrations orders of magnitude above other values was not included in the calculations for Mary River.

Table 3-13			ry of Ca 2005 to	_	Tributary	Surface V	Water Analyti	cal Data (T	Γotal
Parameter	Unit s	N	% Detect	Min ^b	Max ^c	Median d	95 th %ILE ^d	97.5^{th} % ILE^d	Mean ^d
Metals ^a									
Aluminum	mg/L	88	90	< 0.004	0.252	0.01	0.106	0.179	0.0247
Arsenic	mg/L	88	6	< 0.0001	0.00554	0.0001	0.0001	0.00012	0.00016
Cadmium	mg/L	88	1 ^e	< 0.00001	0.000096 ^h	NC	NC	NC	NC
Chromium	mg/L	88	36	0.000022 ^g	0.003	0.0001	0.000699	0.000856	0.00020
Chromium +3	mg/L	30	0	< 0.005	< 0.005	NC	NC	NC	NC
Chromium +6	mg/L	30	0	< 0.001	< 0.001	NC	NC	NC	NC
Cobalt	mg/L	87	2	< 0.0001	0.00013 ^h	NC	NC	NC	NC
Copper	mg/L	85	95	< 0.00001	0.00359	0.0016	0.00204	0.00222	0.00152
Iron	mg/L	88	75	< 0.0001	0.44	0.05	0.190	0.326	0.0684
Lead	mg/L	56	20	< 0.00005	0.00025 ^h	0.00005	0.000268	0.000333	0.000094
Nickel	mg/L	52	75	0.000202^{g}	0.00265	0.00077	0.00131	0.00168	0.00085
Silver	mg/L	87	0	< 0.000001	< 0.00001	NC	NC	NC	NC
Thallium	mg/L	71	14	< 0.000001	0.00909	0.0001	0.0002	0.0002	0.00021
Vanadium	mg/L	86	1	< 0.0009	0.001 ^h	NC	NC	NC	NC
Zinc	mg/L	61	21	< 0.00033	0.0104	0.003	0.0032	0.0035	0.00240
Water Quali	ty Param	eters							
Chloride (Cl ⁻)	mg/L	89	100	$0.2^{\rm g}$	121	2	17.8	23	6.06
Ammonia (NH ³ +NH ⁴)	mg N/L	86	52	< 0.02	0.8	0.02	0.475	0.60	0.087
Nitrite (NO ₂	mg N/L	86	15	0.002^{g}	0.014 ^h	0.005	0.06	0.095	0.015
Nitrate (NO ₃)	mg N/L	89	9	< 0.05	0.18	0.1	0.106	0.118	0.0961
Sulphate (SO ₄ ²⁻)	mg/L	88	73	< 0.5	8	3	5.7	6	2.8
Major Toxic	ity Modif	ying	Factors f	or Guidelin	e Developme	ent	,		
pН	-	84	NA	4.94	8.71	7.88	8.42	8.52	7.80
Hardness	mg/L ^f	87	NA	0.003	317	73.7	133.8	140	76.16
Temperature	°C	85	NA	-0.17	17.81	6.05	14.15	17.33	6.52

NC = not calculated; NA = not applicable; %ILE = percentile

a. Total metals unless otherwise noted

b. Minimum values is the lowest of all detected values or the lowest detection limit, whichever is less

c. Maximum values is the maximum detected value or, if no detected values were reported, indicates the maximum detection limit reported

d. For calculation of these summary statistics, non-detect values were replaced with the value of the detection limit e. Less than 5% of samples were detected, therefore a median, 95th percentile, 97th percentile and mean were not calculated f. mg/L as CaCO₃

g. Lowest detected value is less than the lowest non-detected value. Minimum value selected is the lowest detected value.

h. Maximum detected value is less than highest detection limit. Maximum value selected is the highest detected value.

C-3.3 AMEP Benchmark Derivation for Surface Waters

The focus of AEMP benchmark development was on Total Metals, since available Canadian water quality guidelines focus on Total Metals benchmarks, as opposed to dissolved metals data. Dissolved data will be assessed under the Assessment Approach and Response Framework in the Exploratory Data Analysis (Step 1 of Figure 5.1) to examine trends, and where deemed appropriate, based on assessment of both dissolved and total analyses, benchmarks will be considered for development if data are suggesting mine-related increases are occurring. Dissolved water quality guidelines are available for some parameters from the US EPA (http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm#altable), as well as British Columbia Ministry of Environment, and these guidelines would be considered as a first point of comparison, in conjunction with baseline levels, as well as SSWQG, where appropriate.

For the total metals, and other selected parameters, the process used to select the AEMP benchmark was similar to that presented for sediments, in Figure 2-4. Briefly, the higher of either the 97.5th percentile, the CCME PAL, or 3 times the method detection limit were chosen to represent the AEMP benchmark.

To develop AEMP benchmarks for water quality parameters, appropriate guidelines were identified from the CCME freshwater aquatic life guidelines (CCME, 2014). Modifications were required based on site specific parameters, such as hardness or pH, the 25%ile hardness and 25%ile pH values for the water body in question was used in order to calculate a protective guideline. For ammonia, the 75th percentile temperature and pH were used to calculate the guideline. Where parameters are trending up towards these AEMP benchmarks, site-specific values should be substituted for comparison purposes (in Low Action).

Where no CCME guideline was available for a substance of interest, a BC MOE (Ministry of the Environment) Approved or Working guideline for the water column were used, where available (Nagpal et al, 2006). The guidelines selected for use in developing the AEMP benchmarks are provided in Table 3-14.

Table 3-14 Water Quality Guidelines Selected for Chemicals Carried Forward for Benchmark Development								
Chemical	Freshwater Aquatic Life Guideline (mg/L)	Reference						
Aluminum (Al)	0.1 ^a	CCME, 1987						
Arsenic (As)	0.005	CCME, 1997						
Cadmium (Cd)	Camp Lake = 0.0001 ^b Mary Lake / Mary River = 0.00006 Sheardown Lake = 0.00009 Camp Lake Tributary = 0.00008	CCME, 2014						
Chromium III (Cr)	0.0089	CCME, 1997						
Chromium VI (Cr)	0.001	CCME, 1997						
Cobalt (Co)	0.004 ^e	BC MOE (Nagpal, 2004)						
Copper (Cu)	0.002 °	CCME, 1987						
Iron (Fe)	0.3	CCME, 1987						
Lead (Pb)	0.001 ^d	CCME, 1987						
Nickel (Ni)	0.025 ^f	CCME, 1987						
Silver (Ag)	0.0001	CCME, 1987						
Thallium (Tl)	0.0008	CCME, 1999						
Vanadium (V)	0.006 ^g	BCMOE (Nagpal et al., 2006)						
Zinc (Zn)	0.030	CCME, 1987						
Ammonia	Based on pH and temperature (look up table provided in CCME, on-line) h	CCME, 2011						
Chloride	120	CCME, 2012						
Nitrogen – Nitrite	0.060 NO ₂ – N (equivalent to 0.197 mg nitrite / L)	CCME, 2001						
Nitrogen – Nitrate	13	CCME, 1987						
Sulphate Notes:	218 ⁱ	BC MOE, (Meays and Nordin, 2013)						

- 25th percentile pH: Camp Lake 7.3; Mary Lake 6.9; Sheardown Lake 7.3; Camp Lake Tributary 7.7; Mary River 7.6 25th percentile hardness (as CaCO₃): Camp Lake 55.3; Mary Lake 33.2; Sheardown Lake 53.5; Camp Lake Tributary 41.0; Mary River 28.0
- a. pH Guideline of 0.1 mg/L selected since 25^{th} %ile pH in all lakes and rivers was ≥ 6.5
- b. Cadmium guideline based on 25% ile water hardness and following equation: \overline{CWQG} (mg/L) = $[10^{(0.83(log[hardness]) 2.46)}]$ /
- c. Copper guideline based on 25th%ile water hardness and following equation: $CWQG (mg/L) = [0.2 * e^{[0.8545[ln(hardness)]-1.465]}] / [0.2 * e^{[0.8545[ln(hardness)]-1.465]}]$
- d. Lead guideline based on $25^{\text{th}}\%$ ile water hardness and following equation: $CWQG (mg/L) = [e^{\{1.273[ln(\underline{hardness})\}-4.705\}}] / 1000$
- e. 30 day average; approved guideline
- f. Nickel guideline based on 25^{th} %ile water hardness and following equation: $CWQG (mg/L) = \lceil e^{\{0.76[\ln(\frac{\text{hardness}}{2})\}+1.06\}} \rceil / 1000$.
- g. Working guideline; reported as Ontario's water quality objective
- h. Based on pH and temperature (look up table provided in CCME, on-line); calculated based on 75% ile temperature data, to be conservative, and 75% ile pH of 7.5. These values equate to a pH of 8 and a temperature of 10 degrees C, in the summary table, which yields a guideline of 0.855 mg/L total ammonia-N.
- i. 30-day average (minimum of 5 evenly-spaced samples collected in 30 days); Approved guideline

FINAL REPORT

The selected water quality guidelines were then compared to baseline data to determine an AEMP benchmark for each of the selected chemicals. As per the sediment benchmark evaluation approach, a statistical representation of baseline concentrations was calculated to determine an upper estimate of natural concentrations. As per sediment AEMP benchmarks, the 97.5th percentile concentration was used as the statistical metric. A comparison of the selected water quality guidelines to the 97.5th percentile concentrations in each water body are provided in Tables 3-15 and 3-16 for area lakes and rivers, respectively, with the recommended parameter-specific AEMP benchmark. The basis of the recommended AEMP benchmark is identified in Tables 3-15 and 2-16 as follows:

- Method A: Water Quality Guideline was higher than 97.5%ile, and therefore was selected
- Method B: 97.5% ile was higher than the Water Quality Guideline, and therefore was selected; or
- <u>Method C</u>: Parameter has < 5% detected values, and either the Water Quality Guideline was selected (if available), or 3 * MDL was used to derive benchmark

If Method B was selected, additional assessment of the data was conducted to ensure the percentile calculations were not being driven by elevated detection limits, or other factors.

In most cases, the recommended AEMP benchmarks are consistent between lakes and rivers, with the vast majority of selected benchmarks being regulatory water quality guidelines. A summary table is presented (Table 3-17). Where natural concentrations varied, and exceeded available water quality guidelines, or < 5% of values were detected, recommended AEMP benchmarks varied (see Tables 3-15 and 3-16 and 3-17).

As discussed in the CREMP, some parameters have been shown to exhibit some changes in concentrations with season. For those parameters, Step 1 of the assessment framework should include an evaluation of seasonality trends relative to the AEMP benchmark and baseline. AEMP benchmarks may need to be re-visited for these compounds, and SSWQG can be considered.

Several water quality guidelines established by the CCME are currently under revision (i.e., lead and iron) or have been released in draft form for comments (silver). Once finalized, these revised benchmarks should be evaluated, using the benchmark selection process outlined, and AEMP benchmarks updated accordingly.

Table 3-15	Table 3-15 Comparison of 97.5 th Percentile Concentrations in Area Lakes to Water Quality Guidelines and Selection of AEMP Benchmarks									
Parameter	Units	Water Quality Guideline	Camp Lake	Mary Lake	Sheardown Lake	Selected AEMP Benchmark	Benchmark Method			
Metals ^a	•		•							
Aluminium	mg/L	0.1	0.026	0.137	0.179 (Shallow) 0.173 (Deep)	CL = 0.1 ML = 0.13; SDL shallow/deep = 0.179/0.173	A (CL), B (ML/SDL)			
Arsenic	mg/L	0.005	NC	0.00018	0.0001	0.005	A			
Cadmium	mg/L	0.0001 (CL) 0.00006 (ML) 0.00009 (SDL)	NC	0.000023	0.000017	0.0001 (CL) 0.00006 (ML) 0.00009 (SDL)	A			
Chromium	mg/L	NGA	NC	0.001	0.000641	0.0003 (CL) $(ML) = 0.0005^{\text{f}}$ (SDL) = 0.000642^{g}	B (ML/SDL), C (CL)			
Chromium +3	mg/L	0.0089	NC	0.005	NC	0.0089	A			
Chromium +6	mg/L	0.001	NC	0.001	NC	0.003 – 0.015 (CL) ^c 0.003 (ML/SDL) ^c	С			
Cobalt	mg/L	0.004	NC	NC	0.0002	0.004	A			
Copper	mg/L	0.002	0.0113	0.00239	0.00243	$(CL) = 0.004^{e}$ (ML) = 0.0024 (SDL) = 0.0024	В			
Iron	mg/L	0.3	0.0421	0.173	0.211	0.3	A			
Lead	mg/L	0.001	0.000334	0.00013	0.00026	0.001	A			
Nickel	mg/L	0.025	0.000941	0.00080	0.000973	0.025	A			
Silver	mg/L	0.0001	NC	NC	0.0000104	0.0001	A			
Thallium	mg/L	0.0008	NC	NC	0.0001	0.0008	A			
Vanadium	mg/L	0.006	NC	0.00146	0.001	0.006	A			
Zinc	mg/L	0.030	0.0037	0.003	0.00391	0.030	A			
Water Qual	ity Paramete	ers	•							
Chloride (Cl ⁻)	mg/L	120	4	13	5	120	A			
Ammonia (NH ₃ +NH ₄)	mg total ammonia- N/L	0.855 ^b	0.84	0.32	0.44	0.855	A			
Nitrite (NO ₂ ⁻)	mg N/L	0.060	0.1 ^d	0.1 ^d	0.1 ^d	0.060	A			

Table 3-15	Table 3-15 Comparison of 97.5 th Percentile Concentrations in Area Lakes to Water									
	Quality Guidelines and Selection of AEMP Benchmarks									
Parameter	ParameterUnitsWater QualityCamp LakeMary LakeSheardown LakeSelected AEMP BenchmarkBenchmark									
Nitrate (NO ₃)	mg N/L	13	NC	0.11	NC	13	A			
Sulphate	mg/L	218	3	7	5	218	A			

NGA = no guideline available; NC = Not Calculated; TBD = To Be Determined; Guideline still under development; CL = Camp Lake; ML = Mary Lake; SDL = Sheardown Lake

Method A = Water Quality Guideline from CCME/B.C. MOE; Method B = 97.5% ile of baseline; Method C = 3* MDL

- a. Total metals unless otherwise noted
- b. Assumes temperature at 10 degrees C, and pH of 8
- c. The 2013 detection limit for Cr^{6+} increased in 2013 from 0.001 to 0.005, hence this affects the 3* MDL calculation for the benchmark in Camp Lake. Efforts will be made to reduce this MDL in 2014, and comparisons to the lower of the 2 benchmarks would then be applied in Camp Lake. If detection limits improve, Method A (selection of the guideline) may be implemented.
- d. These values are elevated detection limits, and hence, the guideline has been selected as the AEMP benchmark
- e. The maximum value of 0.0113 mg/L copper was removed to calculate the 97.5^{th} percentile, as this value appears to be an outlier.
- f. An elevated detection limit of 0.001~mg/L was removed from the dataset and calculations, and the AEMP selected was the 97.5^{th} percentile, which is 0.0005~mg/L.
- g. Several detected values ranging from 0.00079 0.00316 mg/L Cr have been reported in the dataset for SDL, and hence, these values were considered to represent baseline, and were included in the 97.5^{th} percentile calculation.

Table 3-16 Comparison of 97.5 th Percentile Concentrations in Area Rivers to Water Quality Guidelines and Selection of AEMP Benchmarks									
Parameter	Units	Water Quality Guideline	Camp Lake Tributary	Mary River ^a	Selected AEMP Benchmark	Benchmar k Method			
Metals ^b									
Aluminum	mg/L	0.1	0.179	0.97	CLT = 0.179 MR = 0.966	В			
Arsenic	mg/L	0.005	0.00012	0.00013	0.005	A			
Cadmium	mg/L	0.00008 (CLT) 0.00006 (MR)	NC	0.00002	CLT = 0.00008 MR = 0.00006	A			
Chromium	mg/L	NGA	0.000856	0.0023	CLT = 0.000856 MR = 0.0023	В			
Chromium +3	mg/L	0.0089	NC	0.005	0.0089	A			
Chromium +6	mg/L	0.001	NC	NC	0.003°	С			
Cobalt	mg/L	0.004	NC	0.0004	0.004	A			
Copper	mg/L	0.002	0.00222	0.0024	CLT = 0.0022 MR = 0.0024	В			
Iron	mg/L	0.3	0.326	0.874	CLT = 0.326 MR = 0.874	В			
Lead	mg/L	0.001	0.000333	0.00076	0.001	A			
Nickel	mg/L	0.025	0.00168	0.0018	0.025	A			
Silver	mg/L	0.0001	NC	0.0001	0.0001	A			
Thallium	mg/L	0.0008	0.0002	0.0002	0.0008	A			
Vanadium	mg/L	0.006	NC	0.002	0.006	A			
Zinc	mg/L	0.030	0.0035	0.01	0.030	A			
Water Qualit	y Parameters	•			•				
Chloride (Cl ⁻)	mg/L	120	23	21.55	120	A			
Ammonia (NH ₃ +NH ₄)	mg total ammonia- N/L	0.855 ^d	0.60	0.60	0.855	A			
Nitrite (NO ₂	mg N/L	0.060	0.095°	0.06	0.060	A			
Nitrate (NO ₃)	mg N/L	13	0.118	0.14	13	A			
Sulphate	mg/L	218	6	8	218	A			

NGA = no guideline available; NC = Not Calculated; TBD = To Be Determined; Guideline still under development; MR = Mary River; CLT = Camp Lake Tributary

Method A = Water Quality Guideline from CCME/B.C. MOE; Method B = 97.5% ile of baseline; Method C = 3* MDL

a. One sample (outlier) containing chemical concentrations orders of magnitude above other values was not included in the calculations for Mary River.

b. Total metals unless otherwise noted

c. Efforts will be made to reduce this MDL in 2014, and comparisons to the higher of the Method A or C would then be applied as the AEMP benchmark

d. Assumes temperature at 10 degrees C, and pH of $8.0\,$

e. 97.5th percentile is being driven by elevated detection limit, therefore, the guideline was selected

C- 4.0 REFERENCES

- Agnico-Eagle, 2012. Core Receiving Environment Monitoring Program (CREMP): Design Document 2012 Meadowbank Mine. Prepared for Agnico-Eagle Mines Limited. Baker Lake, Nunavut. Prepared by: Azimuth Consulting Group Inc., Vancouver, B.C.
- CCME (Canadian Council of Ministers of the Environment), 2002. Canadian sediment quality guidelines for the protection of aquatic life: Introduction.
- CCME (Canadian Council of Ministers of the Environment). 2003. Canadian water quality guidelines for the protection of aquatic life: Guidance on the site-specific application of water quality guidelines in Canada: Procedures for deriving numerical water quality objectives. In: Canadian environmental quality guidelines, 1999. Winnipeg, MB.
- CCME (Canadian Council of Ministers of the Environment). 2007. Canadian water quality guidelines for the protection of aquatic life: Summary table. Updated December 2007. In: Canadian environmental quality guidelines, 1999. Winnipeg, MB.
- CCME (Canadian Council of Ministers of the Environment). 2014. Canadian Water Quality Guidelines for the Protection of Aquatic Life: Summary Table. http://ceqg-rcqe.ccme.ca/
- CCME, 1987. Water Quality for the Protection of Aquatic Life. Guidelines for Aluminium, Copper, Iron, Lead, Nickel, Silver, Zinc, and Nitrogen-Nitrate. Summary Table http://ceqg-rcqe.ccme.ca/
- CCME, 1997a. Sediment Quality for the Protection of Aquatic Life. Guidelines for Cadmium and Mercury. Summary Table http://ceqg-rcqe.ccme.ca/
- CCME, 1997b. Water Quality for the Protection of Aquatic Life. Guidelines for Arsenic, Chromium III, and Chromium VI. Summary Table http://ceqg-rcqe.ccme.ca/
- CCME, 1998. Sediment Quality for the Protection of Aquatic Life. Guidelines for Arsenic, Chromium, Copper, Lead and Zinc. Summary Table http://ceqg-rcqe.ccme.ca/
- CCME, 1999. Water Quality for the Protection of Aquatic Life. Guidelines for Thallium. Summary Table http://ceqg-rcqe.ccme.ca/
- CCME, 2001. Water Quality for the Protection of Aquatic Life. Guidelines for Nitrogen-Nitrite.Summary Table http://ceqg-rcqe.ccme.ca/
- CCME, 2011. Water Quality for the Protection of Aquatic Life. Guidelines for Ammonia. Summary Table http://ceqg-rcqe.ccme.ca/
- CCME, 2012. Water Quality for the Protection of Aquatic Life. Guidelines for Chloride. Summary Table http://ceqg-rcqe.ccme.ca/

- CCME, 2014. Water Quality for the Protection of Aquatic Life. Guidelines for Cadmium. Summary Table http://ceqg-rcqe.ccme.ca/
- Golder, 2012. Water Quality Objectives (WQO) and Sediment Quality Objectives (SQO) for the Proposed Gahcho Kue Project Recommendations. Technical Memorandum. September 14, 2012. To: Veronica Chisholm, De Beers Canada, Inc. From: Peter M. Chapman.
- Knight Piésold, 2014. Appendix B, AEMP. Water and Sediment Quality Review and CREMP Study Design. Knight Piésold Ltd. 1650 Main Street, North Bay, Ontario.,
- MacDonald. D.D., B. Zajdlik, and INAC Water Resources. 2009. Guidelines for Designing and Implementing Aquatic Effects Monitoring Programs for Development Projects in the Northwest Territories. Overview Report. Version 1, June 2009.
- Meays, C., and R. Nordin, 2013. Ambient Water Quality Guidelines for Sulphate. Technical Appendix Update. 2013. Ministry of Environment, Province of British Columbia. Water Protection & Sustainability Branch.

 http://www2.gov.bc.ca/assets/gov/topic/C61AC40F96CC4628C24A5C95F5E09E1F/sulphate-final-guideline-april-2013.pdf
- Nagpal, N.K. 2004. Technical Report Water Quality Guidelines for Cobalt. Water Protection Section. Water, Air and Climate Change Branch. Ministry of Water, Land and Air Protection, British Columbia.

 (http://www.env.gov.bc.ca/wat/wq/BCguidelines/cobalt/cobalt_tech.pdf)
- Nagpal, N.K., L. W. Pommen, L. G. Swain. 2006. A Compendium of Working Water Quality Guidelines for British Columbia (http://www.env.gov.bc.ca/wat/wq/BCguidelines/working.html#table1)
- OMOE, 2008. Guidelines for Identifying, Assessing and Managing Contaminated Sediments in Ontario: An Integrated Approach. May, 2008. R. Fletcher, P. Welsh, and T. Fletcher. Standards Development Branch. PIBS 6658e.
- OMOE (Ontario Ministry of Environment). 2011. Rationale for the development of soil and ground water standards for use at contaminated sites in Ontario. PIBS 7386e01. http://www.ene.gov.on.ca/stdprodconsume/groups/lr/@ene/@resources/documents/resource/stdprod_086518.pdf. Accessed January 28th, 2013.
- Singh and Singh 2010. ProUCL Version 4.1.00 Technical Guide (Draft), EPA/600/R-07/041
- US EPA, 2014. Freshwater Sediment Screening Benchmarks. Accessed in February, 2014. http://www.epa.gov/reg3hscd/risk/eco/btag/sbv/fwsed/screenbench.htm