

APPENDIX 6-C

Hydrology Baseline

AGNICO EAGLE MINES: MEADOWBANK DIVISION - WHALE TAIL PIT PROJECT

2015 Hydrology Baseline Report

Submitted to:

Agnico Eagle Mines Limited Ryan Vanengen Environment Superintendent

Report Number: Doc 037-1524321.1300 Ver 1

Distribution:

1 copy: Agnico Eagle Mines Limited 1 copy: Golder Associates Ltd.

Table of Contents

1.0	INTRO	DUCTION	1
	1.1	Physical Setting	1
	1.2	Hydrology Baseline Study Area	1
2.0	METHO	DDS	
	2.1	Data Sources	
	2.2	Watersheds and Drainage Patterns	
	2.3	Hydrometry	
	2.3.1	Continuous Hydrometric Stations	
	2.3.1	Manual Hydrometric Stations	
		•	
	2.4	Lake Shoreline Surveys	
	2.5	Water Balance Model	
3.0	RESUL	TS	
	3.1	Watersheds and Drainage Patterns	10
	3.2	Hydrometry	15
	3.2.1	Continuous Hydrometric Stations	15
	3.2.1.1	Lake A5	15
	3.2.1.2	Lake A15	16
	3.2.1.3	Lake A17 (Whale Tail Lake)	18
	3.2.1.4	Lake A18	19
	3.2.1.5	Lake A69	21
	3.2.1.6	Lake C8	22
	3.2.1.7	Lake C38 (Nemo Lake)	23
	3.2.1.8	Lake DS1	25
	3.2.1.9	Water Yields	26
	3.2.2	Manual Hydrometric Stations	27
	3.3	Lake Shoreline Surveys	29
	3.3.1	Lake A12	
	3.3.2	Lake A15	

	3.3.3	Lake A16 (Mammoth Lake)	35
	3.3.4	Lake A17 (Whale Tail Lake)	37
	3.3.5	Lake A18	39
	3.3.6	Lake A45	41
	3.3.7	Lake A69	43
	3.3.8	Lake A72	45
	3.3.9	Lake A76	47
	3.4	Water Balance Model	50
	3.4.1	Lake A5	50
	3.4.2	Lake A15	54
	3.4.3	Lake A17 (Whale Tail Lake)	57
	3.4.4	Lake A18	60
	3.4.5	Lake A69	63
	3.4.6	Lake C8	66
	3.4.7	Lake C38 (Nemo Lake)	69
	3.4.8	Lake DS1	72
4.0	CONCL	USION	75
5.0	REFERI	ENCES	77
TAB	SLES		
	_	oreline Transect Parameters Description	9
Tabl	e 3-1: Ch	aracteristics of Watersheds in the Hydrology Baseline Study Area	10
Tabl	e 3-2: Su	rveys at Lake A5 Hydrometric Station, 2015	15
Tabl	e 3-3: Su	rveys at Lake A15 Hydrometric Station, 2015	17
Tabl	e 3-4: Su	rveys at Lake A17 (Whale Tail Lake) Hydrometric Station, 2015	18
Tabl	e 3-5: Su	rveys at Lake A18 Hydrometric Station, 2015	20
Tabl	e 3-6: Su	rveys at Lake A69 and Outlet Hydrometric Station, 2015	21
Tabl	e 3-7: Su	rveys at Lake C8 Hydrometric Station, 2015	23
Tabl	e 3-8: Su	rveys at Lake C38 (Nemo Lake) Hydrometric Station, 2015	24
Tabl	e 3-9: Su	rveys at Lake DS1 and Outlet Hydrometric Station, 2015	25
Tabl	e 3-10: W	ater Yield Values for the Continuous Stations over the Period of Record in 2015	27
Tahl	e 3-11· M	anual Hydrometric Measurements	27

Table 3-12: Lake A12 Shoreline Description	30
Table 3-13: Lake A15 Shoreline Description	33
Table 3-14: Lake A16 (Mammoth Lake) Shoreline Description	36
Table 3-15: Lake A17 (Whale Tail Lake) Shoreline Description	38
Table 3-16: Lake A18 Shoreline Description	40
Table 3-17: Lake A45 Shoreline Description	42
Table 3-18: Lake A69 Shoreline Description	44
Table 3-19: Lake A72 Shoreline Description	46
Table 3-20: Lake A76 Shoreline Description	49
Table 3-21: Monthly Mean Discharges at the Lake A5 Outlet	51
Table 3-22: Peak and Low Flow Discharges at the Lake A5 Outlet	51
Table 3-23: Monthly Mean Stages at the Lake A5 Outlet	52
Table 3-24: Peak and Low Flow Stages at the Lake A5 Outlet	52
Table 3-25: Monthly Mean Discharges at the Lake A15 Outlet	54
Table 3-26: Peak and Low Flow Discharges at the Lake A15 Outlet	54
Table 3-27: Monthly Mean Stages at the Lake A15 Outlet	55
Table 3-28: Peak and Low Flow Stages at the Lake A15 Outlet	55
Table 3-29: Monthly Mean Discharges at the Lake A17 (Whale Tail Lake) Outlet	57
Table 3-30: Peak and Low Flow Discharges at the Lake A17 (Whale Tail Lake) Outlet	57
Table 3-31: Monthly Mean Stages at the Lake A17 (Whale Tail Lake) Outlet	58
Table 3-32: Peak and Low Flow Stages at the Lake A17 (Whale Tail Lake) Outlet	58
Table 3-33: Monthly Mean Discharges at the Lake A18 Outlet	60
Table 3-34: Peak and Low Flow Discharges at the Lake A18 Outlet	60
Table 3-35: Monthly Mean Stages at the Lake A18 Outlet	61
Table 3-36: Peak and Low Flow Stages at the Lake A18 Outlet	61
Table 3-37: Monthly Mean Discharges at the Lake A69 Outlet	63
Table 3-38: Peak and Low Flow Discharges at the Lake A69 Outlet	63
Table 3-39: Monthly Mean Stages at the Lake A69 Outlet	64
Table 3-40: Peak and Low Flow Stages at the Lake A69 Outlet	64
Table 3-41: Monthly Mean Discharges at the Lake C8 Outlet	66
Table 3-42: Peak and Low Flow Discharges at the Lake C8 Outlet	66
Table 3-43: Monthly Mean Stages at the Lake C8 Outlet	67
Table 3-44: Peak and Low Flow Stages at the Lake C8 Outlet	67

Table 3-45: Monthly Mean Discharges at the Lake C38 (Nemo Lake) Outlet	69
Table 3-46: Peak and Low Flow Discharges at the Lake C38 (Nemo Lake) Outlet	69
Table 3-47: Monthly Mean Stages at the Lake C38 (Nemo Lake) Outlet	70
Table 3-48: Peak and Low Flow Stages at the Lake C38 (Nemo Lake) Outlet	70
Table 3-49: Monthly Mean Discharges at the Lake DS1 Outlet	72
Table 3-50: Peak and Low Flow Discharges at the Lake DS1 Outlet	72
Table 3-51: Monthly Mean Stages at the Lake DS1 Outlet	73
Table 3-52: Peak and Low Flow Stages at the Lake DS1 Outlet	73
FIGURES	
Figure 1-1: Project Location	2
Figure 1-2: Hydrology Baseline Study Area	3
Figure 2-1: Lake Shoreline Surveys	7
Figure 3-1: Watersheds and Drainage Patterns (Northwest)	11
Figure 3-2: Watersheds and Drainage Patterns (Northeast)	12
Figure 3-3: Watersheds and Drainage Patterns (Southwest)	13
Figure 3-4: Watersheds and Drainage Patterns (Southeast)	14
Figure 3-5: Hydrograph for Lake A5 in 2015	16
Figure 3-6: Hydrograph for Lake A15 in 2015	17
Figure 3-7: Hydrograph for Lake A17 (Whale Tail Lake) in 2015	19
Figure 3-8: Hydrograph for Lake A18 in 2015	20
Figure 3-9: Hydrograph for Lake A69 in 2015	22
Figure 3-10: Hydrograph for Lake C8 in 2015	23
Figure 3-11: Hydrograph for Lake C38 (Nemo Lake) in 2015	24
Figure 3-12: Hydrograph for Lake DS1 in 2015	26
Figure 3-13: Lake A12 Main and Secondary Outlet Channel Cross-Sections, 2015	30
Figure 3-14: Lake A12 Shoreline Slopes (Based on available DEM data [PhotoSat 2015])	31
Figure 3-15: Cross-section Profiles of the Surveyed Transects, Lake A12	32
Figure 3-16: Lake A15 Outlet Channel Cross-Section, 2015	33
Figure 3-17: Lake A15 Shoreline Slope (Based on available DEM data [PhotoSat 2015])	34
Figure 3-18: Cross-section Profiles of the Surveyed Transects, Lake A15	35
Figure 3-19: Lake A16 (Mammoth Lake) Outlet Channel Cross-Section, 2015	36
Figure 3-20: Lake A16 (Mammoth Lake) Shoreline Slope (Based on available DEM data [PhotoSat 2015])	37

Figure 3-21: Lake A17 Outlet Channel Cross-Section, 2015	38
Figure 3-22: Lake A17 (Whale Tail Lake) Shoreline Slope (Based on available DEM data [PhotoSat 2015])	39
Figure 3-23: Lake A18 Outlet Channel Cross-Section, 2015	40
Figure 3-24: Lake A18 Shoreline Slope (Based on available DEM data [PhotoSat 2015])	41
Figure 3-25: Lake A45 Outlet Channel Cross-Section, 2015	42
Figure 3-26: Lake A45 Shoreline Slope (Based on available DEM data [PhotoSat 2015])	43
Figure 3-27: Lake A69 Outlet Channel Cross-Section, 2015	44
Figure 3-28: Lake A69 Shoreline Slope (Based on available DEM data [PhotoSat 2015])	45
Figure 3-29: Lake A72 Outlet Channel Cross-Section, 2015	46
Figure 3-30: Lake A72 Shoreline Slope (Based on available DEM data [PhotoSat 2015])	47
Figure 3-31: Lake A76 Main and Secondary Outlet Channel Cross-Sections, 2015	48
Figure 3-32: Lake A76 Shoreline Slope (Based on available DEM data [PhotoSat 2015])	49
Figure 3-33: Cross-section Profiles of the Surveyed Transects, Lake A76	50
Figure 3-34: Derived Flow Regimes at Lake A5	53
Figure 3-35: Derived Stage Regimes at Lake A5	53
Figure 3-36: Derived Flow Regimes at Lake A15	56
Figure 3-37: Derived Stage Regimes at Lake A15	56
Figure 3-38: Derived Flow Regimes at Lake A17 (Whale Tail Lake)	59
Figure 3-39: Derived Stage Regimes at Lake A17 (Whale Tail Lake)	59
Figure 3-40: Derived Flow Regimes at Lake A18	62
Figure 3-41: Derived Stage Regimes at Lake A18	62
Figure 3-42: Derived Flow Regimes at Lake A69	65
Figure 3-43: Derived Stage Regimes at Lake A69	65
Figure 3-44: Derived Flow Regimes at Lake C8.	68
Figure 3-45: Derived Stage Regimes at Lake C8.	68
Figure 3-46: Derived Flow Regimes at Lake C38 (Nemo Lake)	71
Figure 3-47: Derived Stage Regimes at Lake C38 (Nemo Lake)	71
Figure 3-48: Derived Flow Regimes at Lake DS1	74
Figure 3-49: Derived Stage Regimes at Lake DS1	74

APPENDICES

APPENDIX A

Hydrometric Stations

APPENDIX B

Shoreline Baseline Characterization

APPENDIX C

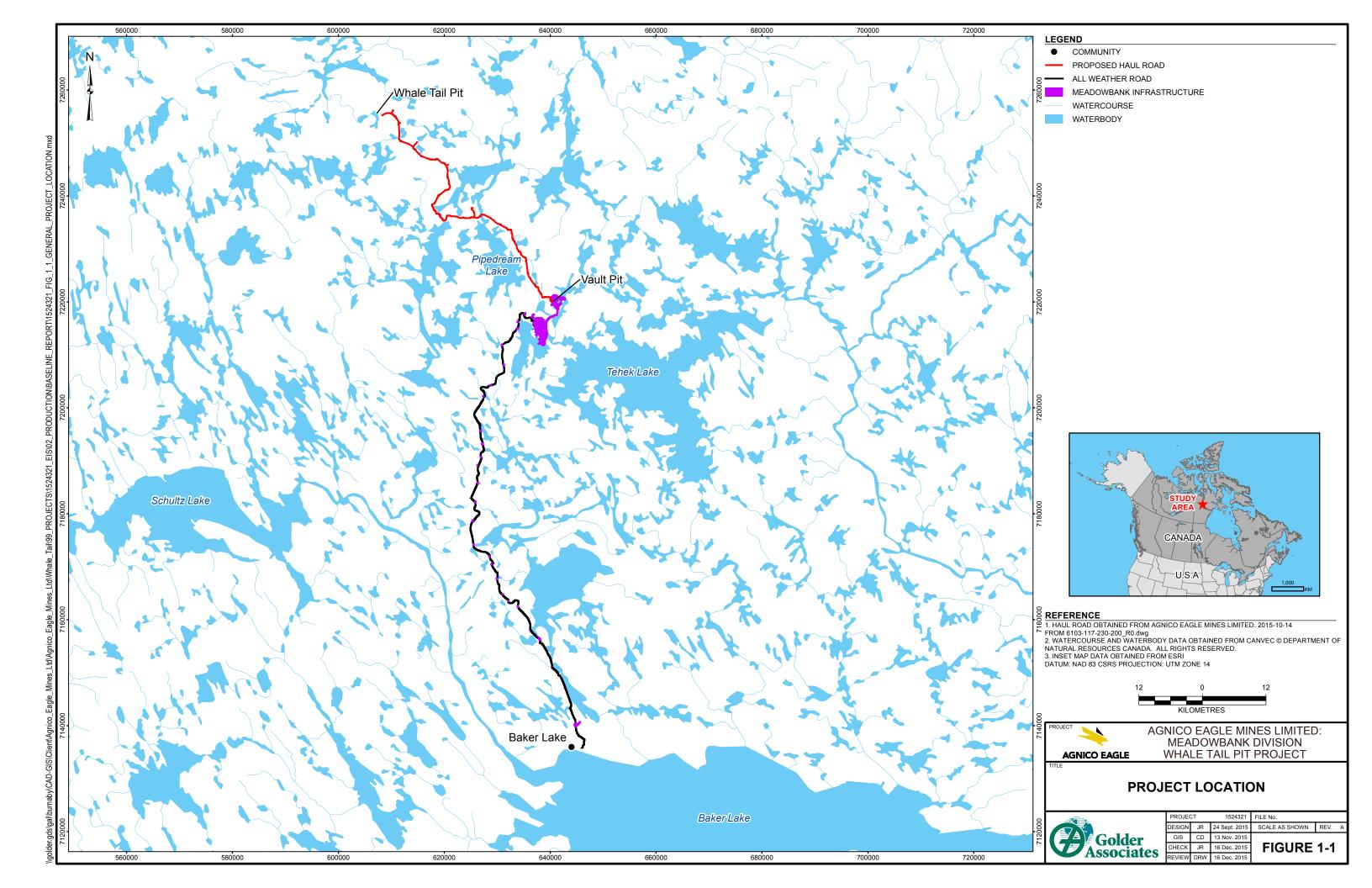
Water Balance Model

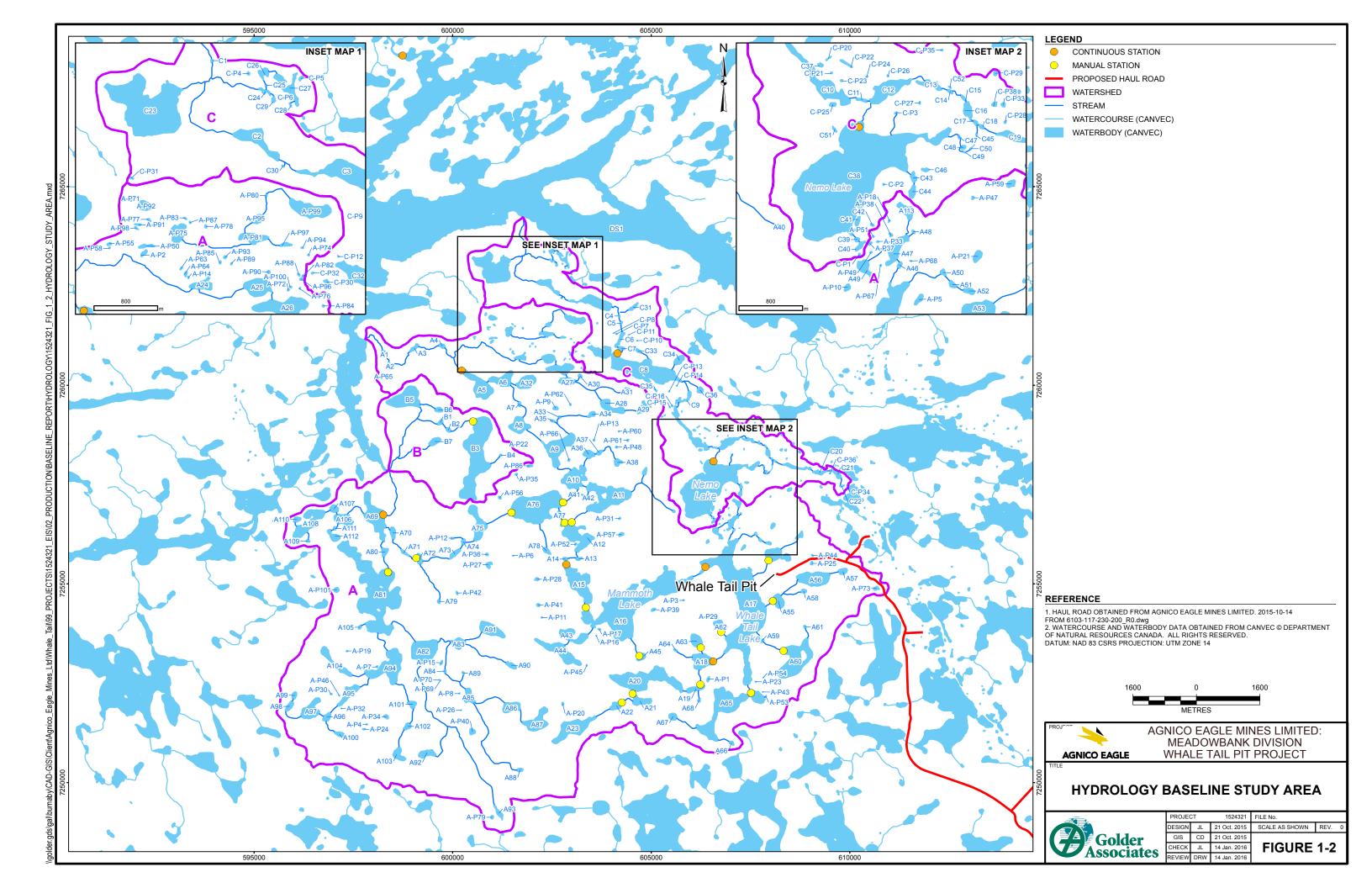
1.0 INTRODUCTION

Agnico Eagle Mines Limited: Meadowbank Division (Agnico Eagle) is proposing to develop Whale Tail Pit, a satellite deposit on the Amaruq property, in continuation of mine operations and milling of the Meadowbank Mine. The Amaruq Exploration property is a 408 square kilometre (km²) site located on Inuit Owned Land approximately 150 kilometres (km) north of the hamlet of Baker Lake and approximately 50 km northwest of the Meadowbank Mine in the Kivalliq region of Nunavut (Figure 1-1). The property was acquired by Agnico Eagle in April 2013 subject to a mineral exploration agreement with Nunavut Tunngavik Incorporated.

The Meadowbank Mine is an approved mining operation and Agnico Eagle is looking to extend the life of the mine by constructing and operating Whale Tail Pit and Haul Road (referred to in this document as the Project), which is located on the Amaruq Exploration property. As an amendment to the existing operations at the Meadowbank mine, it is subject to an environmental review established by Article 12, Part 5 of the *Nunavut Land Claims Agreement* (NLCA). Baseline data have been collected in support of the Environmental Review to document existing conditions and to provide the foundation for a qualitative and quantitative assessment of project operations and the extension of the mine development, to be evaluated in the Environmental Impact Statement (EIS) for the Project.

This report presents the results of a baseline hydrology study completed by Golder Associates Ltd. (Golder) for the area associated with the Project. Specifically, this report provides a review of existing hydrology conditions in watersheds potentially affected by the Project.


1.1 Physical Setting


The Project is located at the southern limit of the Northern Arctic terrestrial ecozone, which is one of the coldest and driest regions of Canada, with a Low Arctic ecoclimate. This ecozone extends over most of the non-mountainous areas of the Arctic Islands, northeastern portions of the Kivalliq region of Nunavut, western Baffin Island, and a portion of northern Québec.

1.2 Hydrology Baseline Study Area

The Project is located in the Meadowbank River, Quoich River, and Thelon River watersheds. The hydrology baseline study area (Hydrology BSA) for the Project is the area within which Project activities could potentially have direct or cumulative effects on aquatic biological receptors. The Hydrology BSA consists of the A, B, and C watersheds, and Lake DS1 (i.e., the receiving lake of the A, B, and C watersheds), the outlet of which marks the downstream boundary of the Hydrology BSA. The Hydrology BSA only considers the Whale Tail Pit portion of the Project; the Haul Road was assessed by others. Thus, the Hydrology BSA is solely located in the upper Meadowbank River watershed, which flows north into the Back River prior to draining into the Arctic Ocean. The Hydrology BSA is shown on Figure 1-2.

2.0 METHODS

2.1 Data Sources

This report is based on the following data sources:

- potential direct Project aquatic and terrestrial disturbances provided by Agnico Eagle;
- 1 metre (m) Digital Elevation Model (DEM) and 50 centimetre (cm) precision imagery, produced from stereo satellite photos acquired on 28 August 2015 (PhotoSat 2015);
- 1:20,000 scale spatial public watercourse and waterbody datasets (CanVec 2013);
- regional climate data (Government of Canada 2015);
- previous hydrology baseline information available for the Meadowbank Gold Project (AMEC 2003);
- hydrometric data collection by other disciplines and Agnico Eagle on-site in 2015; and
- four site-specific field visits from 28 to 31 May 2015, 8 to 15 June 2015, 4 to 9 August 2015, and 16 to 21 September 2015, respectively.

Inuit Qaujimajatuqangit was collected by field crews from local assistants during their participation in the 2015 field programs, as it was provided. Inuit Qaujimajatuqangit information was only recorded by field crews if permission was granted.

2.2 Watersheds and Drainage Patterns

Watersheds potentially affected by, or relevant to, future effect assessments of the Project, were delineated based on a review of available DEM data and imagery (PhotoSat 2015), and field observations in 2015 (Figure 1-2).

Lakes (i.e., waterbodies with one or several well-defined outlet channels) and ponds (i.e., waterbodies without defined outlet channels), relevant to this report and other environmental studies, were assigned an identifier under the following criteria:

- The downstream extent of the Hydrology BSA is a large lake, and was assigned an identifier of DS1.
- Three distinct watersheds within the Hydrology BSA were defined as:
 - the A watershed (i.e., where Whale Tail and Mammoth Lake are located);
 - the B watershed (i.e., located just north of the A watershed, and west of Nemo Lake); and
 - the C watershed (i.e., where Nemo Lake is located).
- The three distinct watersheds A, B and C each drain to Lake DS1.
- Within each watershed, lakes were assigned a unique alphanumeric identifier, comprised of the name of the watershed (e.g., A), and a unique numeric value. When possible, the unique numeric value was increased in the upstream direction (e.g., Lake A3 drains to Lake A2, which drains to Lake A1).

- Within each watershed, ponds (i.e. a waterbody without defined outlet channels which freezes to the bottom in winter) were assigned a unique alphanumeric identifier, comprised of the name of the watershed (e.g., A), followed by "-P", and a unique numeric value (e.g., A-P1).
- Lake outlets (i.e., streams) were assigned a unique alphanumeric identifier, comprised of the identifier of the upstream (i.e., source) lake, and of the identifier of the lake it is draining to, directly downstream. While this situation was not yet encountered, a prefix of "0" was proposed for cases where a stream does not originate from a lake. This convention is applied in the following examples:
 - Example: For a stream draining from Lake A2 to Lake A1, the stream is identified as Stream A2-A1.
 - Example: For a stream draining to Lake A1 without a source lake, the stream is identified as Stream 0-A1.

2.3 Hydrometry

Two types of hydrometric stations were installed in 2015, including continuous hydrometric stations (i.e., those equipped with data loggers) and manual hydrometric stations (i.e., those without data loggers, and primarily reliant on discrete discharge and water level measurements, and visual observations) (Figure 1-2). Photographs at each station are shown in Appendix A.

2.3.1 Continuous Hydrometric Stations

Six continuous hydrometric stations were installed during the second field visit, between 8 and 15 June 2015, at Lake A15, Lake A17 (Whale Tail Lake), Lake A18, Lake A69, Lake C38 (Nemo Lake), and Lake DS1. Two additional continuous hydrometric stations were installed during the third field visit between 4 and 9 August 2015 at Lake A5 and Lake C8. The locations of the continuous hydrometric stations are shown on Figure 1-2. These stations were equipped with water level loggers. Manual discharge and water level data measurements were also recorded at these stations during each field visit.

Hydrographs for all eight locations were derived using the following methods:

- Onset HOBO U20-001-04 Loggers were installed at each hydrometric station. Each data logger was programmed to record water pressure measurements at 10-minute intervals, and referenced to a local benchmark tied to the geodetic datum established by a mine surveyor.
- Two Onset HOBO U20-001-04 Loggers were installed on land at central locations to all eight sites to provide barometric pressure corrections.
- The data loggers were installed at the start of spring melt, as permitted by ice conditions and site access (excluding A5 and C8 which were installed in August).
- During each site visit, water surface elevations were surveyed using a high accuracy Real Time Kinematic (RTK) GPS Altus APS-3 system, and the pressure transducer readings were recorded during selected data logger downloads.
- Stream discharge measurements were performed during each site visit at stations with flowing water according to the Water Survey of Canada standard described by Terzi et al. (1981). Velocity and depth

measurements, which were used to calculate discharge, were collected using a Swoffer Model 2100TM or using a Marsh McBirney 2000 Flo-MateTM velocity meter and a top-setting wading rod.

- Data loggers at each station were downloaded during each site visit and pressure transducer readings corresponding to each discharge measurement were recorded.
- Data loggers were removed during the last site visit in September prior to freeze-up.
- A stage-discharge rating curve was derived for each station based on measured water surface elevations and discharges. This rating curve was applied to the continuous record of water surface elevations, as measured and recorded by the water level logger at each station, to derive a continuous record of discharges.

2.3.2 Manual Hydrometric Stations

Following the discharge and water level data collection methods described above, additional discrete discharge and water level measurements were also collected opportunistically at the following 16 locations:

Lake A12:

Lake A53:

Lake A72:

Lake A16;

Lake A55:

Lake A76;

Lake A19:

■ Lake A60;

Lake A81; and

Lake A21;

Lake A62;

Lake B3.

Lake A22;

Lake A63;

Lake A45;

Lake A65:

The locations of the manual hydrometric stations are shown on Figure 1-2.


2.4 Lake Shoreline Surveys

A 2015 field survey program was completed to collect geomorphological field data to characterize baseline conditions of the lake shorelines and outlet channels potentially affected by the Project (Figure 2-1). The lake shorelines were surveyed between 16 and 21 September 2015 at those lakes where baseline water levels nearest to the proposed mine operations, including: Lake A12, Lake A15, Lake A16 (Mammoth Lake), Lake A17 (Whale Tail Lake), Lake A48, Lake A45, Lake A69, Lake A72 and Lake A76.. The shorelines were accessed on foot, or by helicopter, depending on the site visit opportunity.

The methods used in the field surveys were as follows:

- For each surveyed lake, shore-normal transects were surveyed to represent typical sections of shoreline with similar slope, soil, and wave exposure.
- Lakeshore survey locations were determined based on information available from the hydrology program field trips, Project information provided by Agnico Eagle, and topographical information for the area at the time of planning (CanVec 2013).

- At each transect, a shore-normal topographic profile was surveyed using a SOKKIA GNSS GSR 2700ISX (Global Navigation Satellite System) with RTK capabilities to provide accurate position and elevation data. The transect profiles typically extended from below the existing water level to above the high water level, estimated based on visual observation while on-site.
- Lake outlet channel cross-sections were also surveyed to provide typical channel geometry data.
- Additional data for the surveyed lakes were derived using GIS software and spatial baseline data (CanVec 2013).
- A more detailed lake shoreline description was prepared based on the field reconnaissance and satellite imagery provided by Agnico Eagle (PhotoSat 2015).
- The digital elevation data provided by Agnico Eagle (PhotoSat 2015) was used within GIS software to derive a terrain slope dataset.
- Photographic documentation was carried out simultaneously with the field surveys for each homogeneous section of the shoreline. Representative photographs are presented in Appendix B.
- Shoreline sections were delineated in the field based on the visually observable characteristics of aspect, wave exposure (a combination of prevailing wind and fetch length), slope gradient, and terrain and sediment types (gradation and origin). Ice thrust effects (e.g., ice-push berms at the shoreline) were considered as evidence of thermal erosion at existing water level elevations.

The shoreline parameters measured for the lakeshore characterization at each transect were: bank features (elevations, bank height, bank slope), bank materials, and exposure characteristics such as shore orientation and fetch length. A more detailed description of the parameters used in shoreline transect characterization is presented in Table 2-1.

Table 2-1: Shoreline Transect Parameters Description

Parameter	Description					
Length	The total length of the surveyed transect					
Elevations	Maximum and minimum surveyed elevations					
Bank materials	The following materials classes have been used for characterization: - Fines and organics; - Sand; - Gravel; - Cobbles; - Boulders; and - Bedrock. A combination of 2 or more materials may be found at a particular transect location.					
Bank height	The average bank height at the transect location					
Bank slope	The average bank slope at the transect location, classified for the purposes of this study in the following 3 classes: - <10% as flat to shallow; - 10% to 30% as moderate; and - >30% as steep.					
Shoreline geometry	The general shape of the shoreline at the survey location, classified as: - Coves or bays; - Irregular or straight; and - Headland or islands.					
Shoreline orientation	The general exposure of the shoreline, in geographic degrees similar to wind direction.					
Fetch length	The length of open water perpendicular to the shoreline over which the wind blows generating waves.					

2.5 Water Balance Model

A water balance model was developed for the BSA to assess mean characteristics and natural variability of discharge and water levels of lake outlets in the baseline area.

The water balance model was developed using the GoldSim software with a 1-hour time step and input data for the period of 1950 to 2015. Model output results were obtained for all years, with the exception of years with meteorological input data gaps, including years 1951, 1979, 1993, and 2010, which were not modeled. The basic water balance elements for each modeled lake reservoir considered rainfall and snowmelt runoff, lake evaporation, changes in lake storage, and outflow to downstream basins.

The model was calibrated using runoff coefficients for land surfaces, lake outlet stage-discharge rating curves, and degree-day models for snowmelt and formation of ice in outlet channels. Runoff coefficients for land surfaces account for water losses to ground infiltration and summer evapotranspiration. The runoff coefficients were calibrated to the calculated annual water yield of hydrometric stations with available data for most of the 2015 open water season (i.e., stations with a period of record of 97 days or greater). Lake outlet stage-discharge rating curves and degree-day models were calibrated to site-specific data.

The calibrated model was used to generate daily time series datasets of lake stages and lake outlet discharges for the BSA. Frequency analyses were completed for key sites to provide a historical baseline of lake stage and lake outlet discharge regimes.

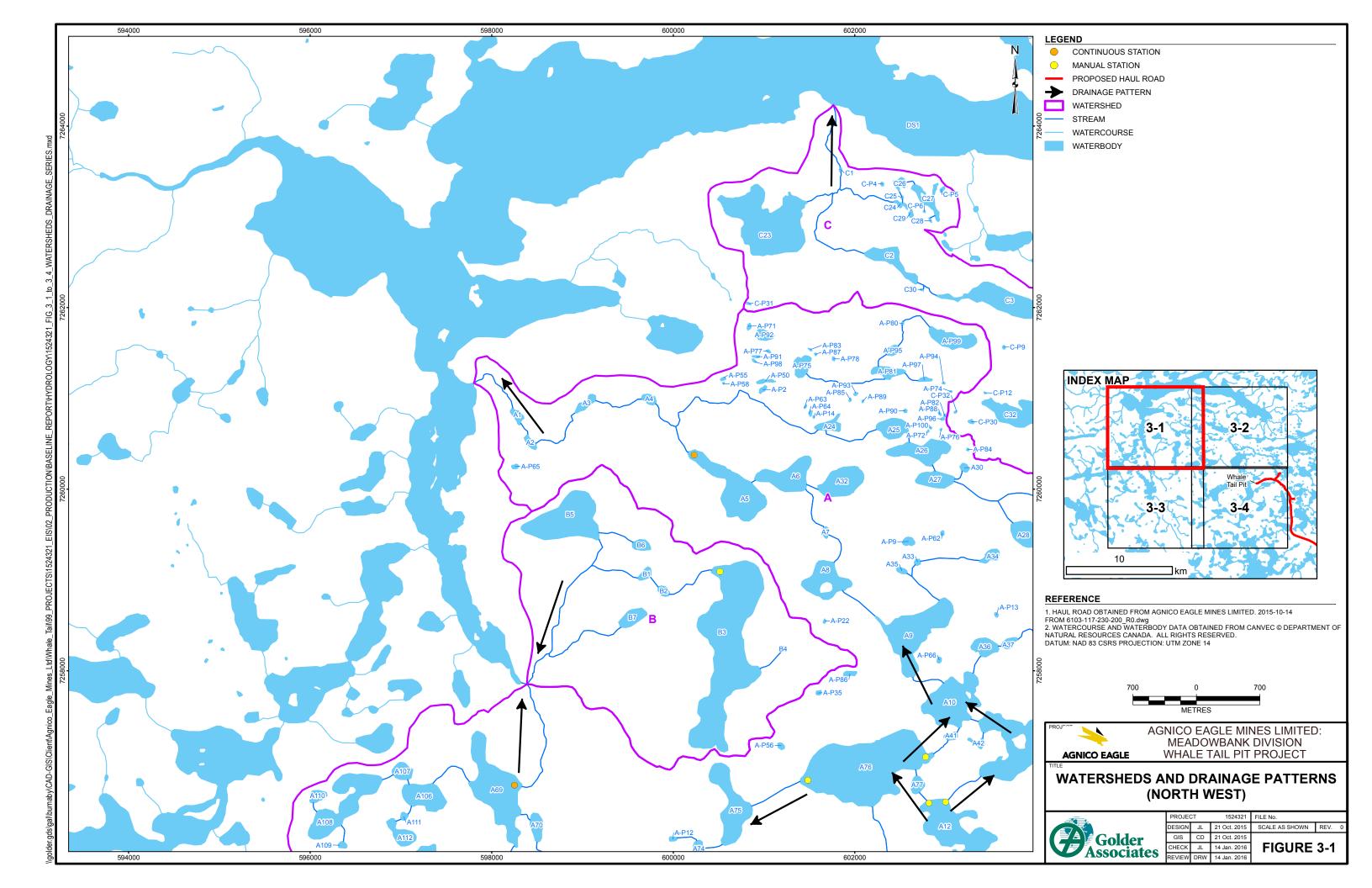
Further details on the water balance model, including input data, model structure, calibration, and preliminary validation, are presented in Appendix C.

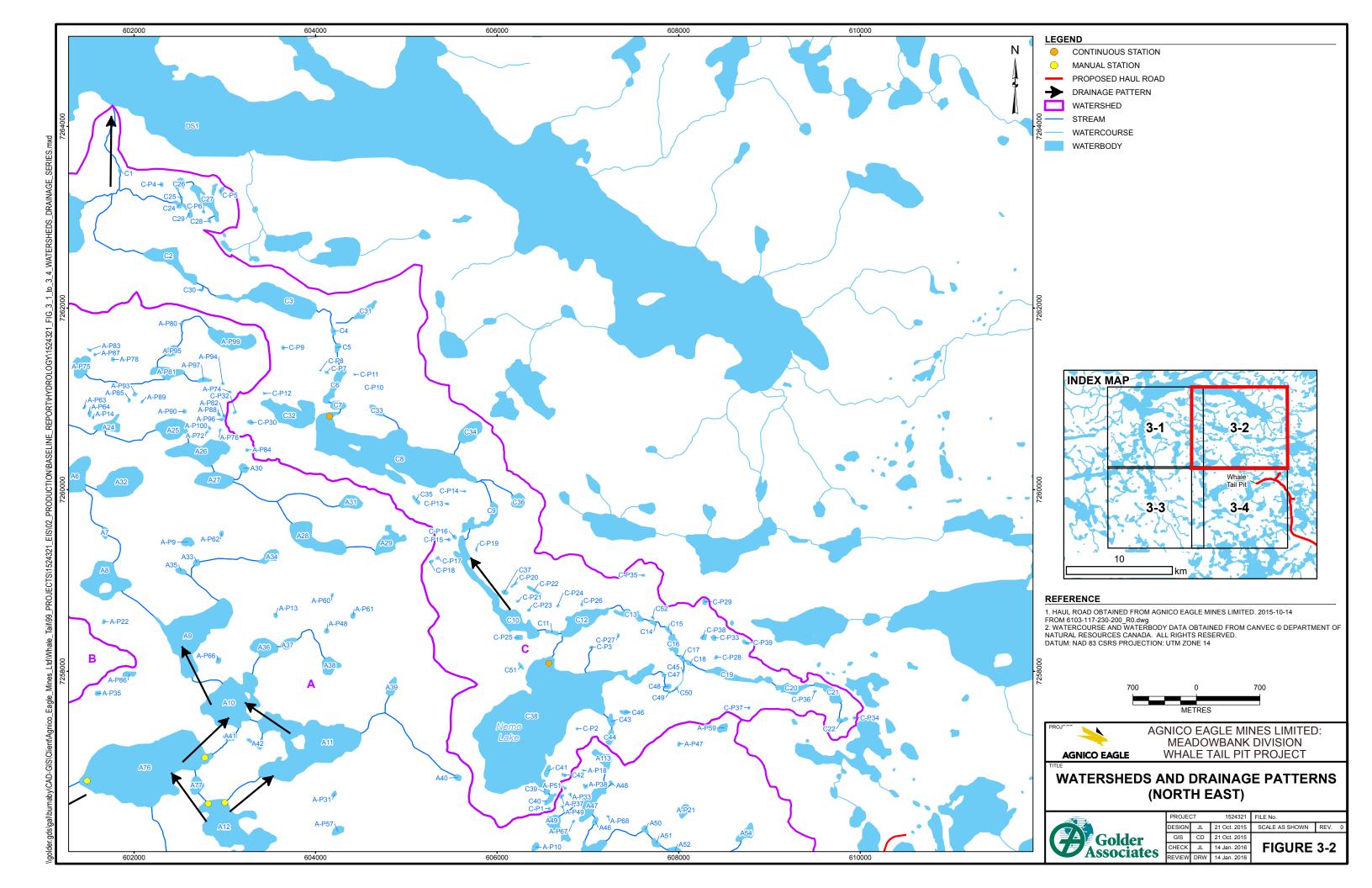
3.0 RESULTS

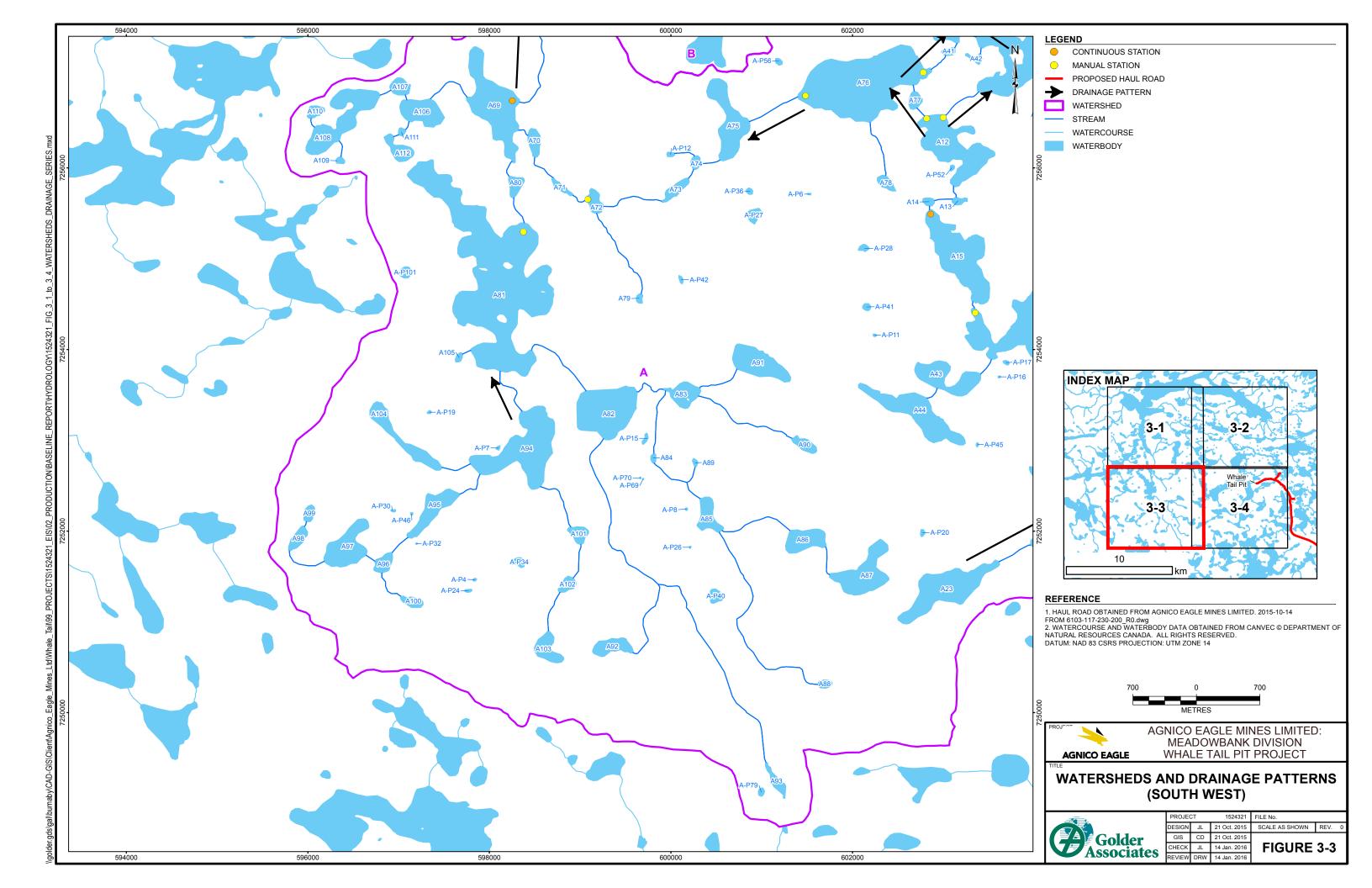
3.1 Watersheds and Drainage Patterns

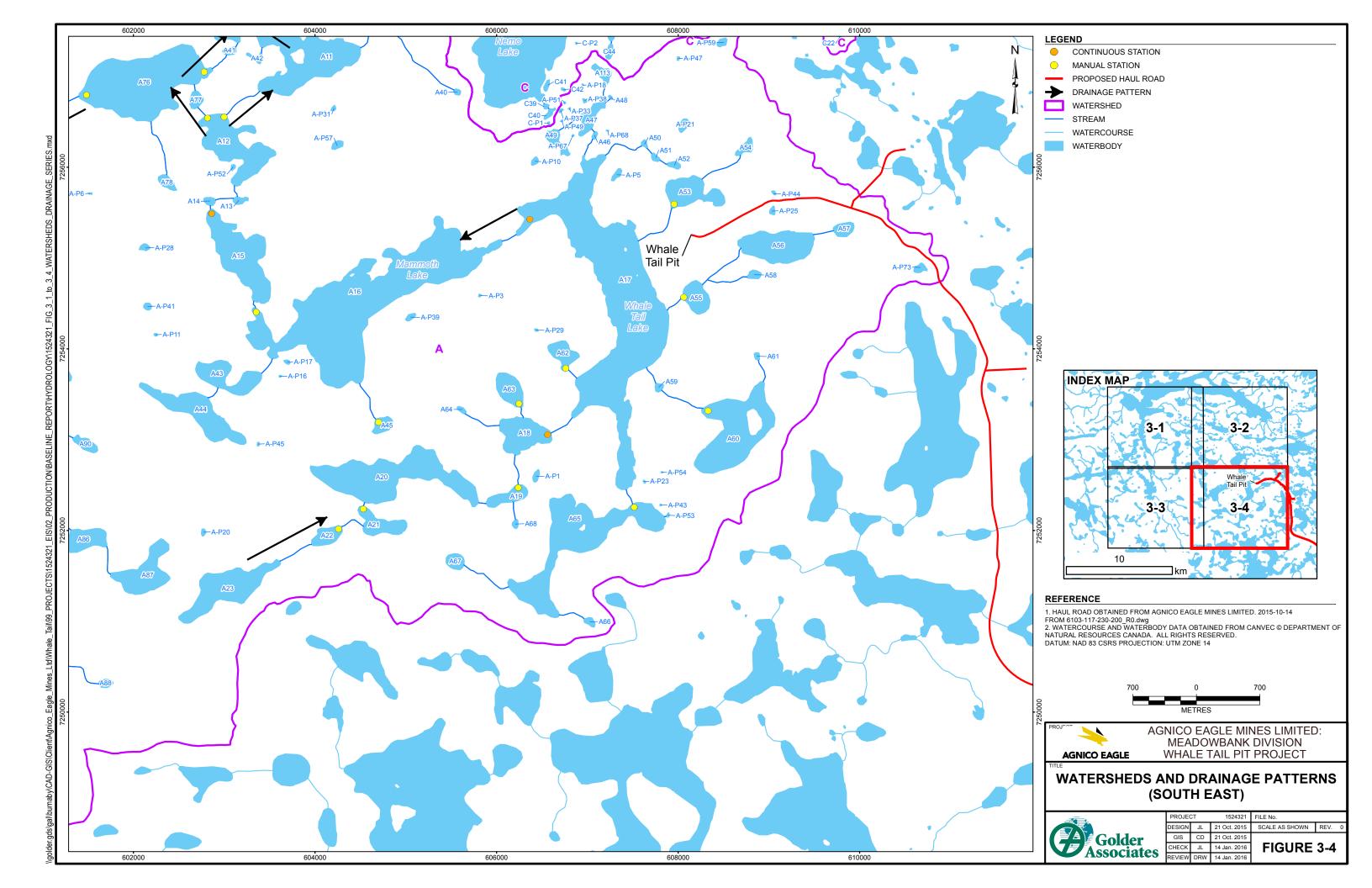
Watersheds within the Hydrology BSA comprise an extensive network of lakes, ponds, and interconnecting streams (Figure 1-2).

Characteristics of the A, B, and C watersheds are summarized in Table 3-1. As an example the A watershed has a drainage area of 110 km², and lake water surface fraction (i.e., the ratio of lake area to land area) of 16%. Watersheds and general drainage patterns are shown in Figure 3-1 to Figure 3-4.


It should be noted that the boundary separating the A watershed from the C watershed just north of Lake A113 is associated with a degree of uncertainty due to the local flat topography. Field observations noted discharge from Lake A113 both to the north (i.e., within the C watershed) and to the south (i.e., within the A watershed). Based on visual observations, Lake A113 is thought to drain primarily to the south (i.e., within the A watershed) and Lake A113 was included in the A watershed.


Table 3-1: Characteristics of Watersheds in the Hydrology Baseline Study Area


Watershed	Land Surface Area (km²)	Lake Surface Area (km²) (km²)		Lake Water Surface Fraction
A	95.6	14.8	110	0.155
В	5.95	1.19	7.14	0.200
С	14.4	3.24	17.6	0.226


km² = square kilometre

3.2 Hydrometry

3.2.1 Continuous Hydrometric Stations

As stated in Section 2.3.1, continuous hydrometric stations were installed at Lake A5, Lake A15, Lake A17 (Whale Tail Lake), Lake A18, Lake A69, Lake C8, Lake C38 (Nemo Lake), and Lake DS1. Hydrographs for all eight locations and field survey results are summarized below. In addition, Appendix A includes factsheets describing the location of each hydrometric station and the equipment installed (when applicable); photographs; measured stage-discharge data; derived stage-discharge rating curve based on data collected in 2015; tabulated mean daily discharge and water level data; manual discharge measurement data; and related calculation sheets for each station.

3.2.1.1 Lake A5

The Lake A5 hydrometric station was visited twice in 2015, and a continuous hydrograph was derived for the period of 6 August to 17 September 2015, based on continuous logger data. Details of each site visit are provided in Table 3-2. The hydrographs for Lake A5 are presented in Figure 3-5. The water surface elevation of the lake was also captured by the DEM dataset (PhotoSat 2015) and was added to the table and figure.

It should be noted that the DEM elevation (PhotoSat 2015) is approximately 25 cm higher than the derived water surface elevation. This difference in elevation falls within the accuracy of the DEM data of \pm 30 cm (PhotoSat 2015).

Table 3-2: Surveys at Lake A5 Hydrometric Station, 2015

Date	Activities	Lake	Lake Water Surface Elevation (masl)	Outlet	Discharge (m³/s)
6 Aug	Measured discharge and water surface elevation, and installed data logger.	✓	132.30	✓	0.434
28 Aug	From DEM (PhotoSat 2015)	✓	132.50	-	-
17 Sep	Measured discharge and water surface elevation. Removed and downloaded data logger.	√	132.16	√	0.112

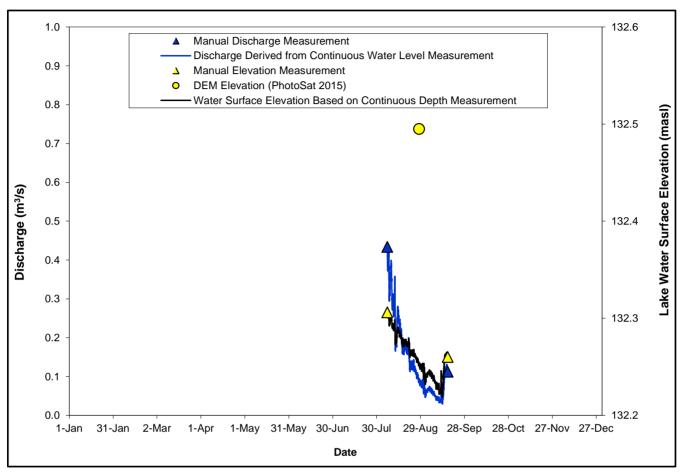


Figure 3-5: Hydrograph for Lake A5 in 2015

3.2.1.2 Lake A15

The Lake A15 hydrometric station was visited six times in 2015, and a continuous hydrograph was derived for the period of 13 June to 18 September 2015, based on continuous logger data. Details of each site visit are provided in Table 3-3. The hydrographs for Lake A15 are presented in Figure 3-6. The water surface elevation of the lake was also captured by the DEM dataset (PhotoSat 2015) and was added to the table and figure.

Table 3-3: Surveys at Lake A15 Hydrometric Station, 2015

Date	Activities	Lake	Lake Water Surface Elevation (masl)	Outlet	Discharge (m³/s)
30 May	None - Lake A15 and outlet frozen.	-	-	-	Frozen
8 Jun	None - Lake A15 and outlet frozen.	-	-	-	Frozen
13 Jun	Installed data logger. Measured water surface elevation.	✓	152.06	-	Trickle (Ice Present)
15 Jun	Measured discharge and water surface elevation.	✓	152.09	✓	5.68
4 Aug	Measured discharge and water surface elevation, and downloaded data logger.	✓	151.65	✓	0.233
28 Aug	From DEM (PhotoSat 2015)	✓	151.46	-	-
18 Sep	Measured discharge and water surface elevation; removed and downloaded data logger.	√	151.43	-	Not measurable

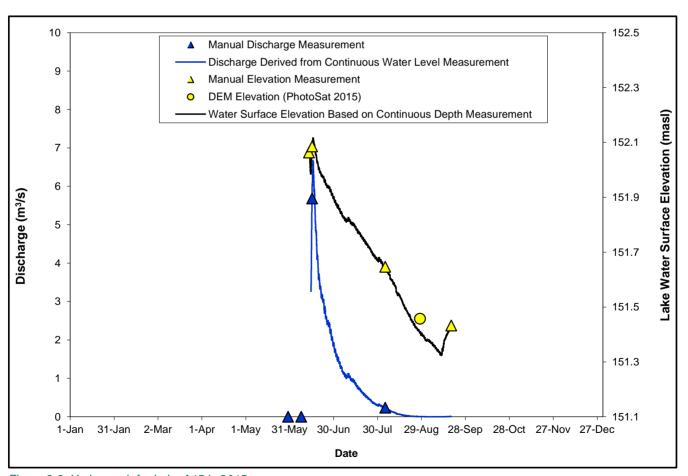


Figure 3-6: Hydrograph for Lake A15 in 2015

3.2.1.3 Lake A17 (Whale Tail Lake)

The Lake A17 (Whale Tail Lake) hydrometric station was visited six times in 2015, and a continuous hydrograph was derived for the period of 12 June to 16 September 2015, based on continuous logger data. Details of each site visit are provided in Table 3-4. The hydrographs for Lake A17 and Outlet are presented in Figure 3-7. The water surface elevation of the lake was also captured by the DEM dataset (PhotoSat 2015) and was added to the table and figure.

Table 3-4: Surveys at Lake A17 (Whale Tail Lake) Hydrometric Station, 2015

Date	Activities	Lake	Lake Water Surface Elevation (masl)	Outlet	Discharge (m³/s)
30 May	None - Lake A17 and outlet are frozen.	-	-	-	Frozen
8 Jun	None - Lake A17 and outlet are frozen.	-	-	-	Frozen
12 Jun	Installed data logger. Measured water surface elevation.	✓	153.11	-	Frozen
14 Jun	Measured discharge and water surface elevation.	✓	153.38	✓	4.23
7 Aug	Measured discharge and water surface elevation, and downloaded data logger.	✓	152.65	✓	0.190
28 Aug	From DEM (PhotoSat 2015)	✓	152.50	-	-
16 Sep	Measured discharge and water surface elevation; removed and downloaded data logger.	✓	152.46	✓	0.012

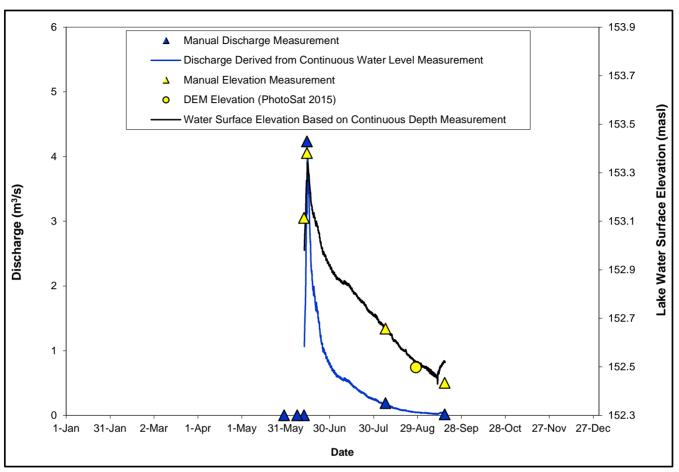


Figure 3-7: Hydrograph for Lake A17 (Whale Tail Lake) in 2015

3.2.1.4 Lake A18

The Lake A18 hydrometric station was visited six times in 2015, and a continuous hydrograph was derived for the period of 11 June to 16 September 2015, based on continuous logger data. Details of each site visit are provided in Table 3-5. The hydrographs for Lake A18 and Outlet are presented in Figure 3-8. The water surface elevation of the lake was also captured by the DEM dataset (PhotoSat 2015) and was added to the table and figure.

It should be noted that the DEM elevation (PhotoSat 2015) is approximately 8 cm higher than the derived water surface elevation. This difference in elevation falls within the accuracy of the DEM data of \pm 30 cm (PhotoSat 2015).

Table 3-5: Surveys at Lake A18 Hydrometric Station, 2015

Date	Activities	Lake	Lake Water Surface Elevation (masl)	Outlet	Discharge (m³/s)
30 May	None - Lake A18 and outlet are frozen.	-	-	-	Frozen
8 Jun	None - Lake A18 and outlet are frozen.	-	-	-	Frozen
11 Jun	Installed data logger. Measured water surface elevation.	✓	154.16	-	Frozen
14 Jun	Measured discharge and water surface elevation.	✓	154.22	✓	2.48
4 Aug	Measured discharge and water surface elevation, and downloaded data logger.	✓	153.89	✓	0.129
28 Aug	From DEM (PhotoSat 2015)	✓	153.86	-	-
16 Sep	Measured discharge and water surface elevation; removed and downloaded data logger.	√	153.81	√	0.004

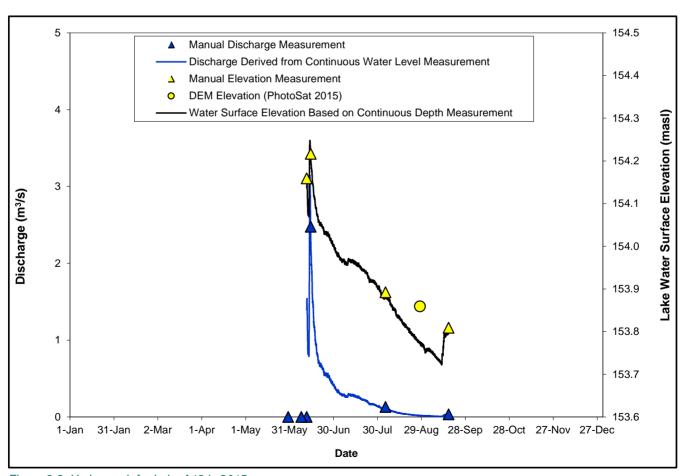


Figure 3-8: Hydrograph for Lake A18 in 2015

3.2.1.5 Lake A69

The Lake A69 hydrometric station was visited six times in 2015, and a continuous hydrograph was derived for the period of 11 June to 16 September 2015, based on continuous logger data. Details of each site visit are provided in Table 3-6. The hydrographs for Lake A69 are presented in Figure 3-9. The water surface elevation of the lake was also captured by the DEM dataset (PhotoSat 2015) and was added to the table and figure.

Table 3-6: Surveys at Lake A69 and Outlet Hydrometric Station, 2015

Date	Activities / Data Source	Lake	Lake Water Surface Elevation (masl)	Outflow	Discharge (m³/s)
30 May	None - Lake A69 and outlet are frozen.	-	-	-	Frozen
8 Jun	None - Lake A69 and outlet are frozen.	-	-	-	Frozen
11 Jun	Installed data logger. Measured discharge and water surface elevation.	✓	112.47	✓	3.00
15 Jun	Measured discharge and water surface elevation.	✓	112.60	✓	6.73
4 Aug	Measured discharge and water surface elevation, and downloaded data logger.	✓	112.21	✓	0.398
28 Aug	From DEM (PhotoSat 2015)	✓	112.21	-	-
16 Sep	Measured discharge and water surface elevation; removed and downloaded data logger.	√	112.17	✓	0.206

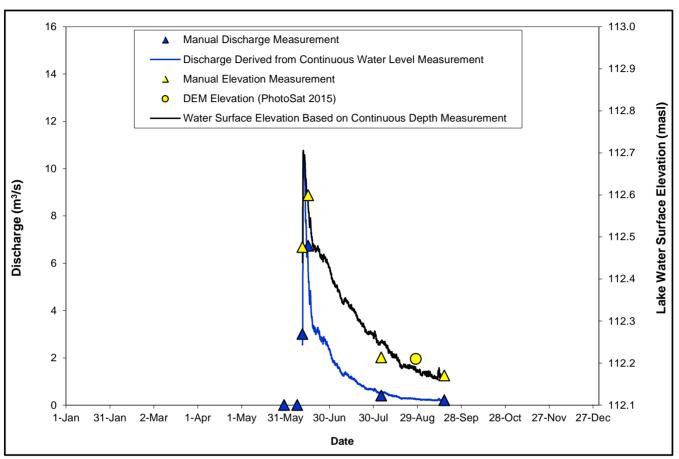


Figure 3-9: Hydrograph for Lake A69 in 2015

3.2.1.6 Lake C8

The Lake C8 hydrometric station was visited twice in 2015, and a continuous hydrograph was derived for the period of 8 August to 16 September 2015, based on continuous logger data. Details of each site visit are provided in Table 3-7. The hydrographs for Lake C8 are presented in Figure 3-10. The water surface elevation of the lake was also captured by the DEM dataset (PhotoSat 2015) and was added to the table and figure.

It should be noted that the DEM elevation (PhotoSat 2015) is approximately 25 cm lower than the derived water surface elevation. This difference in elevation falls within the accuracy of the DEM data of \pm 30 cm (PhotoSat 2015).

Table 3-7: Surveys at Lake C8 Hydrometric Station, 2015

Date	Activities	Lake	Lake Water Surface Elevation (masl)	Outlet	Discharge (m³/s)
8 Aug	Measured discharge and water surface elevation, and installed data logger.	✓	139.02	✓	0.087
28 Aug	From DEM (PhotoSat 2015)	✓	138.74	-	-
16 Sep	Measured discharge and water surface elevation; removed and downloaded data logger.	√	139.02	✓	0.101

masl = metres above sea level, m³/s = cubic metres per second

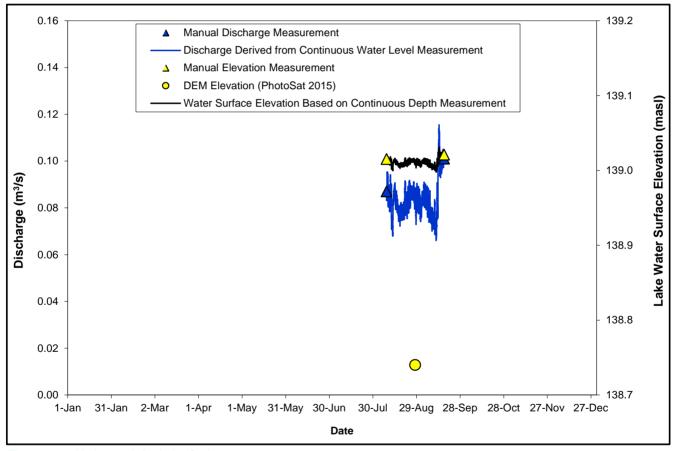


Figure 3-10: Hydrograph for Lake C8 in 2015

3.2.1.7 Lake C38 (Nemo Lake)

The Lake C38 (Nemo Lake) hydrometric station was visited six times in 2015, and a continuous hydrograph was derived for the period of 13 June to 17 September 2015, based on continuous logger data. Details of each site visit are provided in Table 3-8. The hydrographs for Lake C38 (Nemo Lake) are presented in Figure 3-11. The water surface elevation of the lake was also captured by the DEM dataset (PhotoSat 2015) and was added to the table and figure.

Table 3-8: Surveys at Lake C38 (Nemo Lake) Hydrometric Station, 2015

Date	Activities	Lake	Lake Water Surface Elevation (masl)	Outlet	Discharge (m³/s)
30 May	None - Lake C38 and outlet are frozen.	-	-	-	Frozen
8 Jun	None - Lake C38 and outlet are frozen.	-	-	-	Frozen
13 Jun	Installed data logger. Measured water surface elevation.		155.99	-	Frozen
14 Jun	Measured discharge and water surface elevation.	✓	156.01	✓	0.046
4 Aug	Measured discharge and water surface elevation, and downloaded data logger.		155.85	✓	0.019
28 Aug	From DEM (PhotoSat 2015)		155.70	-	-
17 Sep	Measured discharge and water surface elevation; removed and downloaded data logger.	√	155.69	✓	0.007

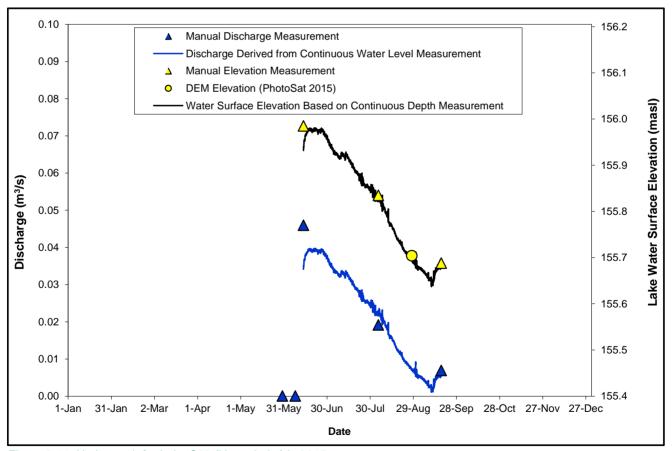


Figure 3-11: Hydrograph for Lake C38 (Nemo Lake) in 2015

3.2.1.8 Lake DS1

The Lake DS1 hydrometric station was visited three times in 2015, and a continuous hydrograph was derived for the period of 12 June to 16 September 2015, based on continuous logger data. Details of each site visit are provided in Table 3-9. The hydrographs for Lake DS1 are presented in Figure 3-12.

No discharge was measured on 12 June 2015 due to unsafe wading conditions. The estimate provided was based on velocity measurements along wadeable sections near the banks, and estimated wetted width. DEM data did not extend to the Lake DS1 hydrometric station.

Table 3-9: Surveys at Lake DS1 and Outlet Hydrometric Station, 2015

Date	Activities	Lake	Lake Water Surface Elevation (masl)	Outlet	Discharge (m³/s)
12 Jun	Installed data logger. Measured water surface elevation and estimated discharge due to unsafe wading conditions.	√	99.66	-	-
5 Aug	Measured discharge and water surface elevation, and downloaded data logger.		99.47	✓	12.3
16 Sep	Measured discharge and water surface elevation; removed and downloaded data logger.		99.21	✓	4.82

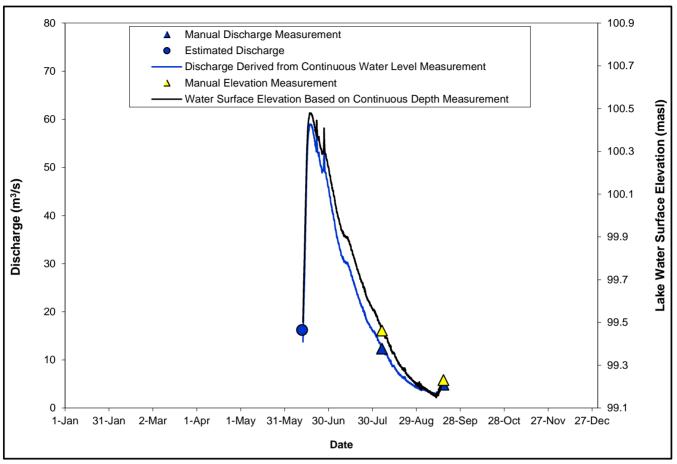


Figure 3-12: Hydrograph for Lake DS1 in 2015

3.2.1.9 Water Yields

Water yields for the open water season were calculated based on derived daily discharge values for stations with continuous hydrographs, and are presented in Table 3-10.

Derived water yields for lakes with similar periods of record (i.e., with 97 and 98 days of record) varied between 52.3 mm (Lake C38 [Nemo Lake]) and 267 mm (Lake A18). The lower water yields at Lake A17 and Lake C38 may be attributed to proportions of ineffective areas in the watersheds, and the potential for shallow subsurface flow to convey water outside of the assumed drainage boundaries. Tributaries of Lake A17 (Whale Tail Lake) and Lake C38 (Nemo Lake) were opportunistically observed to drain poorly, with ponded water.

Lake A5 and Lake 69 are both located downstream of Lake A76. As shown on the drainage pattern map (Figure 1-2), Lake A12 and Lake A76 each have two lake outlets. Based on field observations (with further information on the elevations of each lake outlet provided in Section 3.3), Lake A12 primarily drains to Lake A11, and its secondary outlet drains to Lake A77. Lake A76 primarily drains to Lake A41, and its secondary outlet to Lake A75. It was therefore assumed that Lake A76 only drained to Lake A41 during periods of record for water yields derived for Lake A5 and Lake A69.

Table 3-10: Water Yield Values for the Continuous Stations over the Period of Record in 2015

Sub-Watershed	Watershed Area (km²)	Hydrograph Period and Duration (number of days)	Runoff Volume (m³)	Water Yield (mm)
Lake A5	57.6 ^a	6 August to 16 September 2015 (42)	518,000	9.0 ^{a,c}
Lake A15	40.8	13 June to 18 September 2015 (98)	7,880,000	193
Lake A17 (Whale Tail Lake)	28.1	12 June to 16 September 2015 (97)	4,290,000	152
Lake A18	8.89	11 June to 15 September 2015 (97)	2,380,000	267
Lake A69	43.4 ^b	11 June to 16 September 2015 (98)	11,400,000	276 ^b
Lake C8	11.8	8 August to 16 September 2015 (40)	283,000	24.0 ^c
Lake C38 (Nemo Lake)	3.54	13 June to 17 September 2015 (97)	185,000	52.3
Lake DS1	897.6	12 June to 16 September 2015 (97)	179,000,000	199.2

a inclusive of the Lake A76 sub-watershed (i.e., over the period of the record, it was assumed that all runoff from Lake A76 drained to Lake A41)

3.2.2 Manual Hydrometric Stations

Manual hydrometric measurements are summarized in Table 3-11.

Table 3-11: Manual Hydrometric Measurements

Lake Name	Date	Discharge (m³/s)	Water Level (masl)	Comment
	06-Aug-15	0.316	148.82	northeast outlet of Lake A12
Lake A12-A11	28-Aug-15	-	148.61	PhotoSat 2015
	18-Sep-15	(a)	148.73	northeast outlet of Lake A12
	06-Aug-15	0.133	148.82	northwest outlet of Lake A12
Lake A12-A77	28-Aug-15	-	148.61	PhotoSat 2015
	18-Sep-15	(a)	148.73	northwest outlet of Lake A12
	13-Jun-15	2.07	152.61	
Lake A16	28-Aug-15	-	152.24	PhotoSat 2015
	18-Sep-15	-	152.09	
Lake A19	08-Aug-15	(a)	154.69	
Lake A19	28-Aug-15	-	154.62	PhotoSat 2015
Lake A21	06-Aug-15	0.015	157.77	Water level measured on 8 August 2015
Lake AZ I	28-Aug-15	-	154.63	PhotoSat 2015
Lake A22	08-Aug-15	(a)	154.92	
Lake AZZ	28-Aug-15	-	154.79	PhotoSat 2015
Lake A45	28-Aug-15	-	156.27	PhotoSat 2015
Lake A45	19-Sep-15	(a)	156.42	
	12-Jul-15	0.048	-	Measured by Agnico Eagle
Lake A53	7-Aug-15	0.005	161.655	
	28-Aug-15	-	161.73	PhotoSat 2015

b exclusive of the Lake A76 sub-watershed (i.e., over the period of the record, it was assumed that all runoff from Lake A76 drained to Lake A41)

^c late open-water season flows only; does not include freshet km² = square kilometres; m³ = cubic metres; mm = millimetres

Table 3-11: Manual Hydrometric Measurements (continued)

Lake Name	Date	Discharge (m ³ /s)	Water Level (masl)	Comment
	12-Jul-15	0.110	-	Measured by Agnico Eagle
Laka AFF	07-Aug-15	0.020	155.00	
Lake A55	28-Aug-15	-	155.01	PhotoSat 2015
	17-Sep-15	0.042	154.97	
	12-Jul-15	0.077	170.67	Measured by Agnico Eagle; discharge measured downstream of Lake A26
Lake A60	09-Aug-15	0.004	170.51	
	28-Aug-15	-	170.44	PhotoSat 2015
	17-Sep-15	0.002	-	
	12-Jul-15	-	-	Sheet flow observed by Agnico Eagle
Lake A62	08-Aug-15	0	155.29	
	28-Aug-15	-	155.41	PhotoSat 2015
	08-Aug-15	(a)	154.41	
Lake A63	28-Aug-15	-	154.45	PhotoSat 2015
	12-Jul-15	-	-	Observed flow by Agnico Eagle
Lake A65	09-Aug-15	(a)	154.38	
	28-Aug-15	-	154.79	PhotoSat 2015
	28-Aug-15	-	117.36	PhotoSat 2015
Lake A72	18-Sep-15	0.117	117.39	
	06-Aug-15	0.079	147.69	East outlet of Lake A76; water level measured on 5 August 2015
Lake A76-A41	28-Aug-15	-	147.56	PhotoSat 2015
	18-Sep-15	(a)	147.48	East outlet of Lake A76
	12-Jul-15	(a)	-	Measured by Agnico Eagle
Lake A76-A75	06-Aug-15	(a)	147.69	West outlet of Lake A76; water level measured on 5 August 2015
	28-Aug-15	-	147.56	PhotoSat 2015
	18-Sep-15	(a)	147.48	West outlet of Lake A76
	12-Jul-15	1.09	119.92	Measured by Agnico Eagle
Lake A81	08-Aug-15	0.124	119.86	
	28-Aug-15	-	119.31	PhotoSat 2015
	12-Jul-15	0	-	Measured by Agnico Eagle
Lake B3	08-Aug-15	0.036	-	
	28-Aug-15	-	161.73	PhotoSat 2015

masl = metres above sea level, m³/s = cubic metres per second, (a) = discharge too low to measure, - = not available

3.3 Lake Shoreline Surveys

Shorelines were surveyed at those lakes where baseline water levels are anticipated to be affected by mine operations, including: Lake A12, Lake A15, Lake A16 (Mammoth Lake), Lake A17 (Whale Tail Lake), Lake A18, Lake A45, Lake A69, Lake A72 and Lake A76 (Figure 2-1; Appendix B). The shorelines were accessed on foot, or by helicopter, depending on the site visit opportunity. The surveys were completed using the methods described in Section 2.4.

The majority of the shorelines surveyed exhibit a consistent terrain type related to shorelines that have developed in morainal material. These morainal shorelines were observed at all lakes visited during the field survey. Limited areas of bedrock and shallowly sloped sandy shorelines were also observed. As a general characteristic for the surveyed shorelines, the predominant materials are boulder gardens mixed with cobble with very limited soils or organic materials on top. The outlet channels exhibit the same characteristics for streambed materials, which results in interstitial flow through large boulders or below the surface and likely close to the bedrock, making flow difficult to observe and measure.

3.3.1 Lake A12

The survey of Lake A12 focused on the lake shoreline and outlet channel. Lake A12 has a surface area of approximately 28.9 ha, and drains into Lake A11 through a main outlet at average and below average water levels. At water levels above average, Lake A12 has a secondary outlet that drains into Lake A77. The proportion of flow to each outlet may also be influenced by outlet channel ice conditions during freshet. Section 3.1 provides further details on the drainage patterns.

The field surveys at Lake A12 included: outlet channel cross-section, outlet channel water surface slope, lake shore normal transects and existing and ordinary high lake water levels.

Both outlet channel cross-sections were surveyed. The main outlet channel is approximately 35 m wide and the secondary outlet channel is approximately 40 m wide (Figure 3-13). The outlet channels are similar, with a poorly defined channel, mainly comprised of a boulder field. The water flows mostly through the boulders for almost the entire width of the main outlet channels. Further downstream, the flow becomes entirely subsurface and is only visible at times through the boulders. No flowing water was observed in the secondary outlet channel at the time of visit.

The slope of the water surface in the main outlet channel could not be measured during the survey because no water was observed and the flow was determined to be interstitial flow (through the boulders and below the surface).

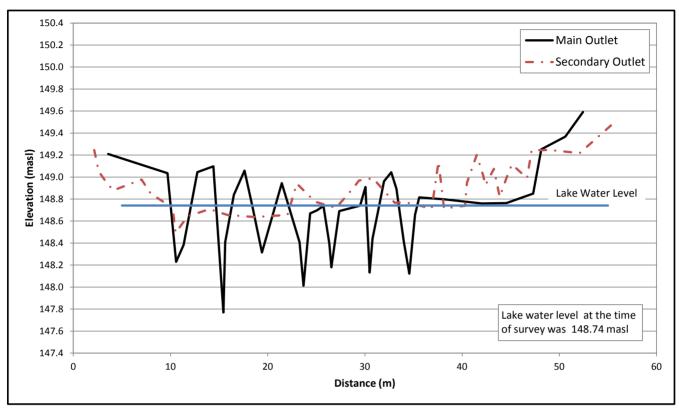


Figure 3-13: Lake A12 Main and Secondary Outlet Channel Cross-Sections, 2015

The water surface elevation at Lake A12 at the time of survey (i.e., 18 September 2015) was measured as 148.74 masl, and the ordinary high water level was estimated at 149.01 masl. A more detailed description of the lake shoreline is presented in Table 3-12, and is based on the field reconnaissance and satellite imagery provided by Agnico Eagle (PhotoSat 2015). Terrain slopes calculated for the Lake A12 shoreline are shown in Figure 3-14.

Table 3-12: Lake A12 Shoreline Description

Criteria	Description				
Bank materials	terials The majority of the shoreline is composed of large boulders and cobble. Bedrock is present as well on the northwest shore in a shallow area.				
Typical bank slopes	Most of the shoreline has shallow slopes, typically less than 5% gradient. Several small sections on the west shoreline have higher slopes between 10% and 30% gradient. The bedrock shore from the northwest is abrupt with slope gradients greater than 100%.				
Typical shoreline geometry	Mostly irregular shoreline with several smaller and shallow bays.				
Fetch	Maximum fetch length was estimated in GIS at approximately 0.85 km, on a northwest – southeast direction.				

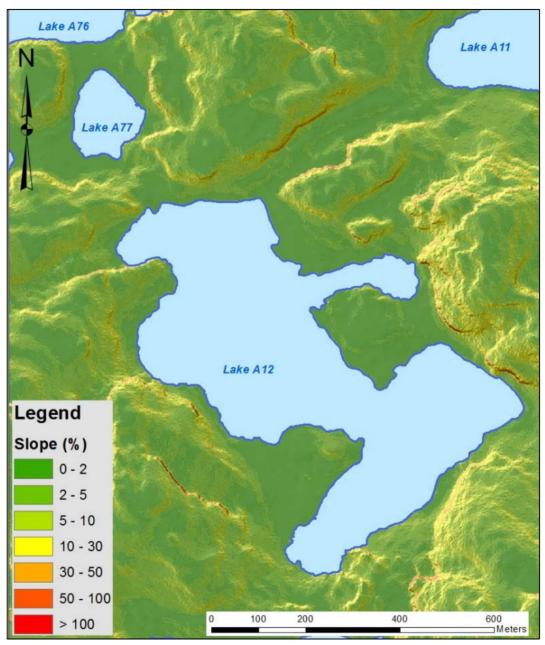


Figure 3-14: Lake A12 Shoreline Slopes (Based on available DEM data [PhotoSat 2015])

Two shore-normal transects were surveyed, one closer to the lake inlet (South Transect), and a second one closer to the lake outlet (North Transect) (Figure 3-15). At both locations, the shoreline is composed of boulders intercalated (cobble inserted between boulders) with cobble. The terrain slopes are similar, at typically less than 5% gradient.

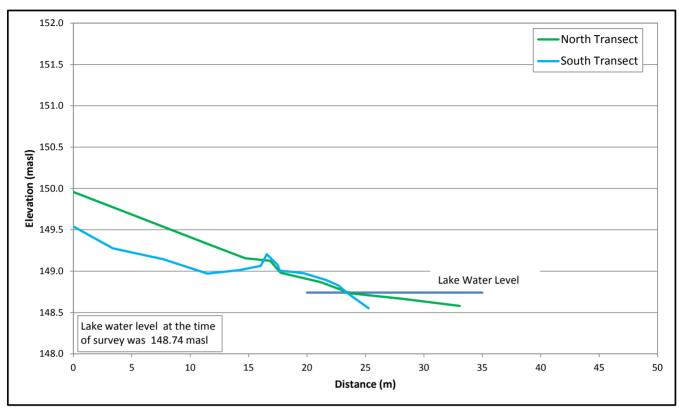


Figure 3-15: Cross-section Profiles of the Surveyed Transects, Lake A12

3.3.2 Lake A15

The survey of Lake A15 focused on the lake shoreline and outlet channel. Lake A15 has a surface area of approximately 33.3 ha, and drains into Lake A14. The Lake A15 field surveys included: outlet channel cross-section, outlet channel water surface slope, lake shore normal transects and existing and ordinary high lake water levels.

The outlet channel is approximately 50 m wide (Figure 3-16), with a poorly defined channel that is mainly comprised of large boulders. The water flows through or under the boulders for almost the entire width of the channel. The slope of the water surface in the channel could not be measured because no water was observed and the flow was determined to be through the boulders and below the surface.

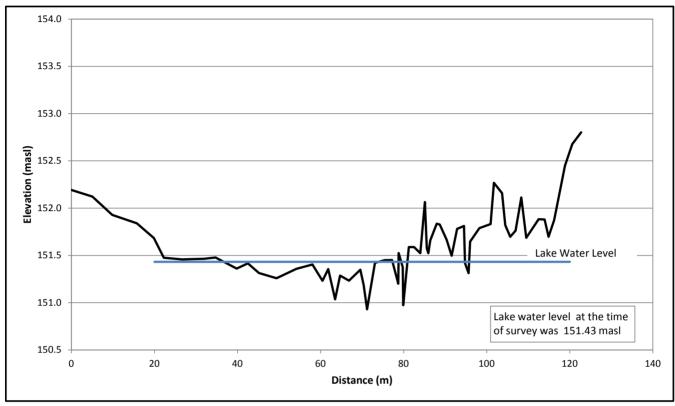


Figure 3-16: Lake A15 Outlet Channel Cross-Section, 2015

The water surface elevation at Lake A15 at the time of survey (i.e., 18 September 2015) was measured as 151.43 masl, and the ordinary high water level was estimated as 151.71 masl. A more detailed description of the lake shoreline is presented in Table 3-13, and is based on the field reconnaissance and satellite imagery provided by Agnico Eagle (PhotoSat 2015). Terrain slopes calculated for the Lake A15 shoreline are shown in Figure 3-17.

Table 3-13: Lake A15 Shoreline Description

Criteria	Description					
Bank materials	Almost the entire shoreline is composed of large boulders and coble.					
Typical bank slopes	Most of the shoreline has shallow slopes, typically less than 5% gradient. Only two sr sections on the west shoreline have slopes between 10% and 30% gradient.					
Typical shoreline geometry	Mostly straight shoreline with several smaller bays.					
Fetch	Maximum fetch length was estimated in GIS at approximately 1.2 km, on an approximate north – south direction.					

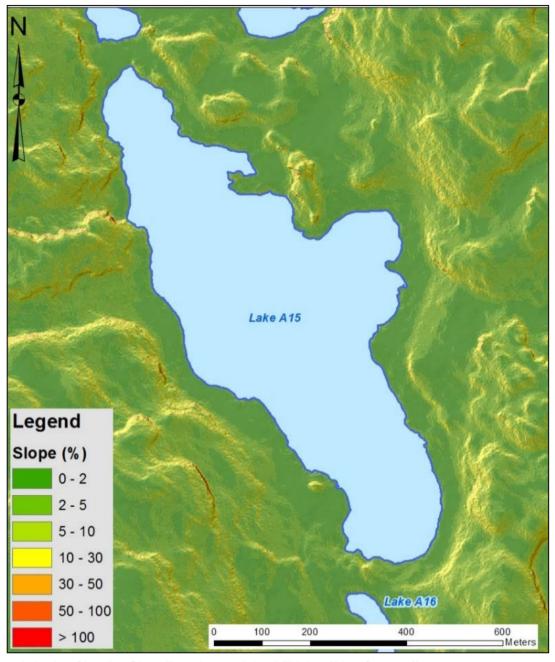


Figure 3-17: Lake A15 Shoreline Slope (Based on available DEM data [PhotoSat 2015])

Two shore-normal transects were surveyed, one closer to the lake inlet (South Transect), and a second one closer to the lake outlet (North Transect). For both locations the shoreline is composed of boulders intercalated with cobble. The terrain slopes are similar, at typically less than 5% gradient (Figure 3-18).

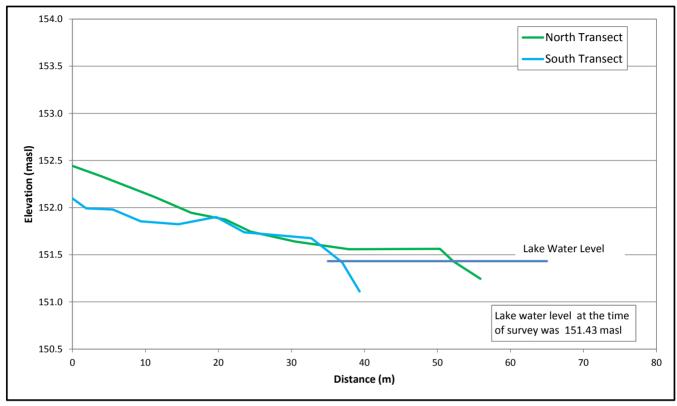


Figure 3-18: Cross-section Profiles of the Surveyed Transects, Lake A15

3.3.3 Lake A16 (Mammoth Lake)

The survey of Lake A16 (Mammoth Lake) focused on the lake outlet channel. Lake A16 has a surface area of approximately 148 ha, and drains into Lake A15. At this location, the field surveys included: outlet channel cross-section, outlet channel water surface slope, and existing and ordinary high lake water levels.

The outlet channel is approximately 45 m wide (Figure 3-19), with a poorly defined channel that is mainly comprised of large boulders. The water flows through or under the boulders for almost the entire length of the channel. A secondary channel was observed to the west of the main channel and it appears to function only during the high water levels, with the flow mostly through boulders and below surface. The slope of the water surface in the channel could not be measured because no water was observed. It was determined that the flow was through the boulders and below the surface.

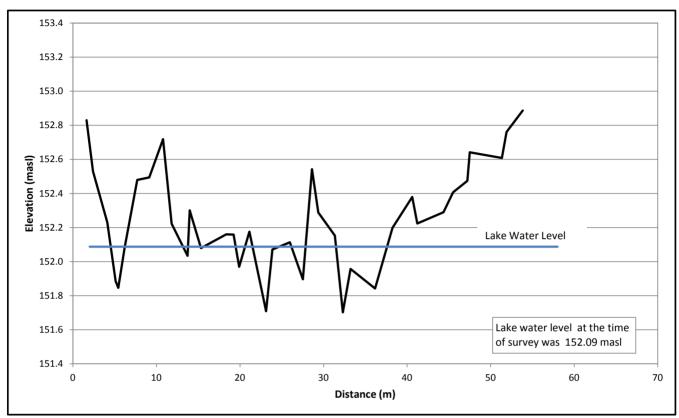


Figure 3-19: Lake A16 (Mammoth Lake) Outlet Channel Cross-Section, 2015

The water surface elevation at Lake A16 at the time of survey (i.e., 18 September 2015) was measured as 152.09 masl, and the ordinary high water level was estimated as 152.49 masl. A more detailed description of the lake shoreline is presented in Table 3-14, and is based on the field reconnaissance and satellite imagery provided by Agnico Eagle (PhotoSat 2015). Terrain slopes calculated for the Lake A16 shoreline are shown in Figure 3-20.

Table 3-14: Lake A16 (Mammoth Lake) Shoreline Description

Criteria	Description
Bank materials	Mostly large boulders and cobble with very limited vegetation.
Typical bank slopes	Most of the shoreline has shallow slopes, typically less than 2%. Only the northeast and southeast shoreline show some sections with slopes between 5% and 10%.
Typical shoreline geometry	Mostly straight shoreline with sections with smaller bays.
Fetch	Maximum fetch length was estimated in GIS at approximately 2.8 km, on a southwest – northeast direction.

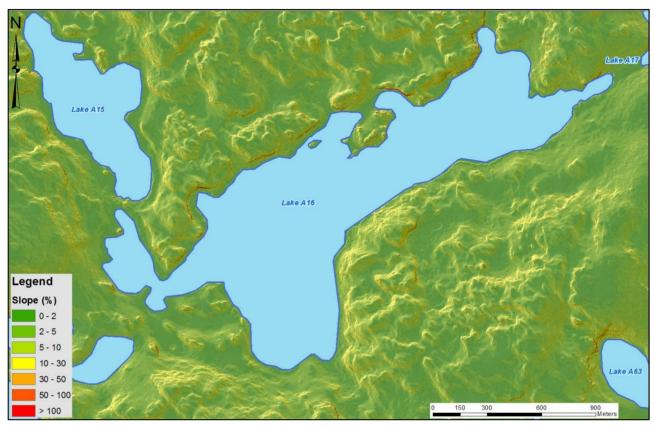


Figure 3-20: Lake A16 (Mammoth Lake) Shoreline Slope (Based on available DEM data [PhotoSat 2015])

3.3.4 Lake A17 (Whale Tail Lake)

The survey of Lake A17 focused on the lake outlet channel. Lake A17 has a surface area of approximately 166 ha, and drains into Lake A16 (Mammoth Lake). The Lake A17 field surveys included: outlet channel cross-section, outlet channel water surface slope, and existing and ordinary high lake water levels.

The outlet channel is approximately 60 m wide (Figure 3-21), with a poorly defined channel that is mainly comprised of boulders. The water flows through or under the boulders for almost the entire length of the channel. The slope of the water surface in the channel was measured and indicated a typical gradient of 0.18%.

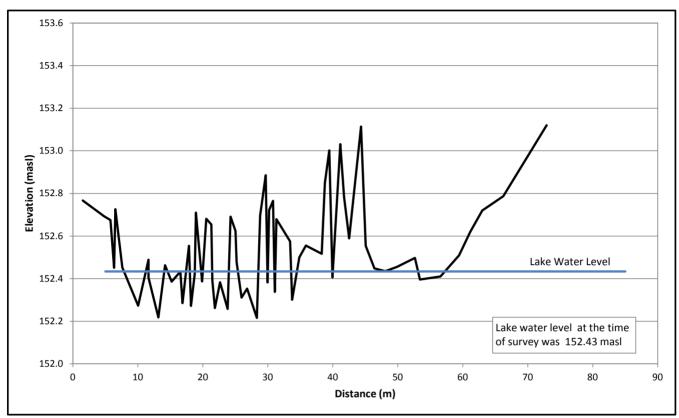


Figure 3-21: Lake A17 Outlet Channel Cross-Section, 2015

The water surface elevation at Lake A17 at the time of survey (i.e., 16 September 2015) was measured as 152.43 masl, and the ordinary high water level was estimated as 153.38 masl. A more detailed description of the lake shoreline is presented in Table 3-15, and is based on the field reconnaissance and satellite imagery provided by Agnico Eagle (PhotoSat 2015). Terrain slopes calculated for the Lake A17 shoreline are shown in Figure 3-22.

Table 3-15: Lake A17 (Whale Tail Lake) Shoreline Description

Criteria	Description					
Bank materials	Mostly boulders and cobble with limited vegetation. Vegetation along the shoreline is present only at the inlet from the smaller Lake A62, A59, A55, A53, A50, and A46.					
Typical bank slopes	Most of the shoreline has shallow slopes, typically less than 2%. Only the northeast and southeast shorelines include some sections with slopes between 5% and 10%.					
Typical shoreline geometry	Relatively straight shoreline with little sections with small and narrow bays.					
Fetch	Maximum fetch length was estimated in GIS at approximately 2.3 km, on an approximate north – south direction.					

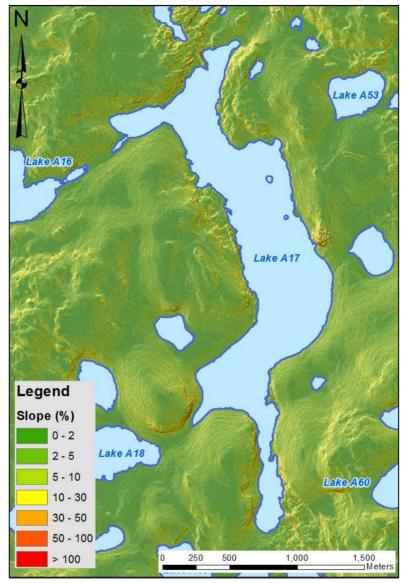


Figure 3-22: Lake A17 (Whale Tail Lake) Shoreline Slope (Based on available DEM data [PhotoSat 2015])

3.3.5 Lake A18

The survey of Lake A18 focused on the lake outlet channel. Lake A18 has a surface area of approximately 15.8 ha, and drains into Lake A17 (Whale Tail Lake). At this location, the field surveys included: outlet channel cross-section, outlet channel water surface slope, and existing and ordinary high lake water levels.

The outlet channel is approximately 45 m wide (Figure 3-23), with a poorly defined channel mainly comprised of boulders. The water flows through or under the boulders for almost the entire length of the channel. The slope of the water surface in the channel was measured and indicated a typical gradient of 0.42%.

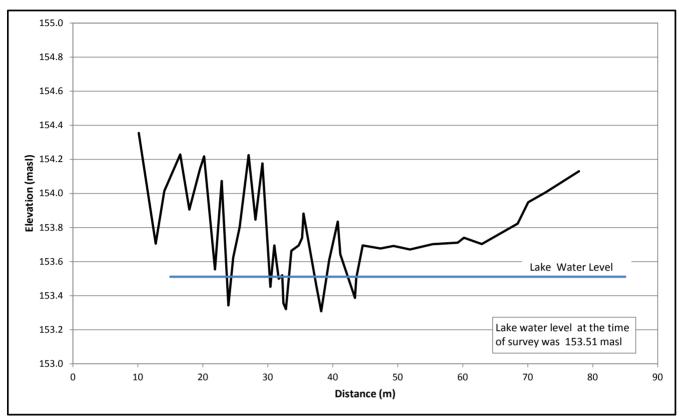


Figure 3-23: Lake A18 Outlet Channel Cross-Section, 2015

The water surface elevation at Lake A18 at the time of survey (i.e., 16 September 2015) was measured as 153.71 masl, and the ordinary high water level was estimated as 153.97 masl. A more detailed description of the lake shoreline is presented in Table 3-16, and is based on the field reconnaissance and satellite imagery provided by Agnico Eagle (PhotoSat 2015). Terrain slopes calculated for the Lake A18 shoreline are shown in Figure 3-24.

Table 3-16: Lake A18 Shoreline Description

able of the Lance Act of the Common Decomposition					
Criteria	Description				
Bank materials	Mostly boulders and cobble with limited vegetation. The northeast shoreline and the inlet channel from Lake A63 have vegetation.				
Typical bank slopes	Most of the shoreline has shallow slopes, typically less than 2%. Only the northeast and southeast shorelines show some sections with slopes between 5% and 10%.				
Typical shoreline geometry	Irregular shoreline with little sections with small bays.				
Fetch	Maximum fetch length was estimated in GIS at approximately 0.6 km, on an east-west direction.				

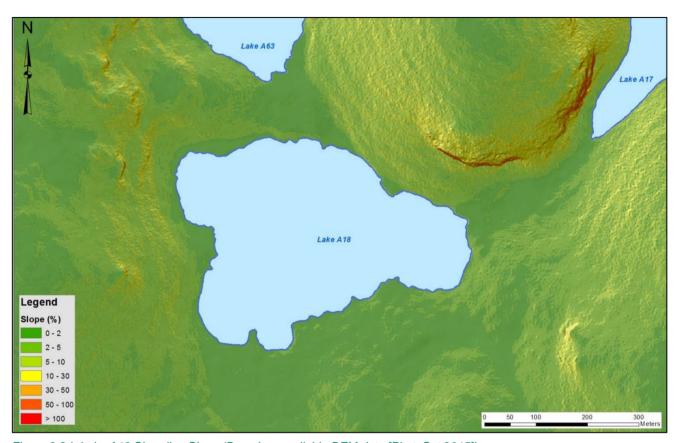


Figure 3-24: Lake A18 Shoreline Slope (Based on available DEM data [PhotoSat 2015])

3.3.6 Lake A45

The survey of Lake A45 focused on the lake outlet channel. Lake A45 has a surface area of approximately 2.9 ha, and drains into Lake A16. The Lake A45 field surveys included outlet channel cross-section, outlet channel water surface slope, and existing and ordinary high lake water levels.

The lake outlet channel is approximately 35 m wide, poorly defined and composed of a boulder garden. Its banks have organic materials with vegetation on top of the boulders Figure 3-25. The slope of the water surface in the outlet channel could not be measured because no water was observed and the flow was determined to be through the boulders and below the surface.

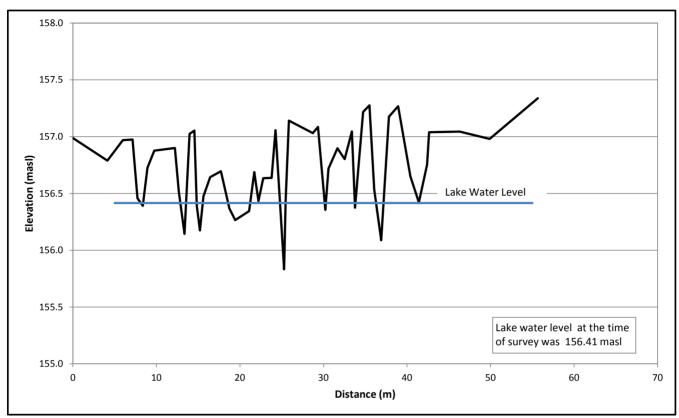


Figure 3-25: Lake A45 Outlet Channel Cross-Section, 2015

The water surface elevation at Lake A45 at the time of survey (i.e., 19 September 2015) was measured as 156.42 masl, and the ordinary high water level was estimated as 156.50 masl. A more detailed description of the lake shoreline is presented in Table 3-17, and is based on the field reconnaissance and satellite imagery provided by Agnico Eagle (PhotoSat 2015). Terrain slopes calculated for the Lake A45 shoreline are shown in Figure 3-26.

Table 3-17: Lake A45 Shoreline Description

Criteria	Description					
Bank materials	ne majority of the shoreline is made of large boulders and cobble.					
Typical bank slopes	Most of the shoreline has shallow slopes, typically less than 5%.					
Typical shoreline geometry	Relatively straight shoreline with small and shallow bays.					
Fetch	Maximum fetch length was estimated in GIS at approximately 0.26 km, on an approximate northeast – southwest direction.					

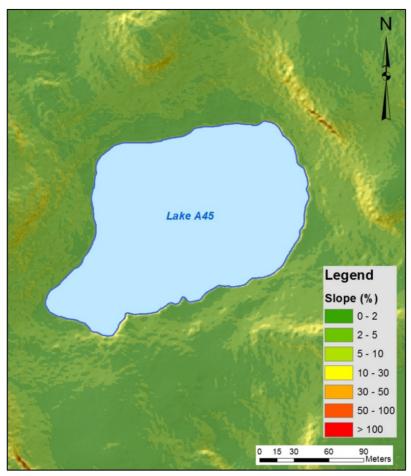


Figure 3-26: Lake A45 Shoreline Slope (Based on available DEM data [PhotoSat 2015])

3.3.7 Lake A69

The survey of Lake A69 focused on the lake outlet channel. Lake A69 has a surface area of approximately 31.8 ha, and drains into Lake DS1. At this location, the field surveys included outlet channel cross-section, and outlet channel water surface slope.

The lake outlet channel is approximately 35 m wide, well defined with mostly cobble and some boulders as streambed materials and with soils and organics on both banks Figure 3-27. The water surface slope in the outlet channel was estimated from the PhotoSat (2015) elevation data as 0.85%.

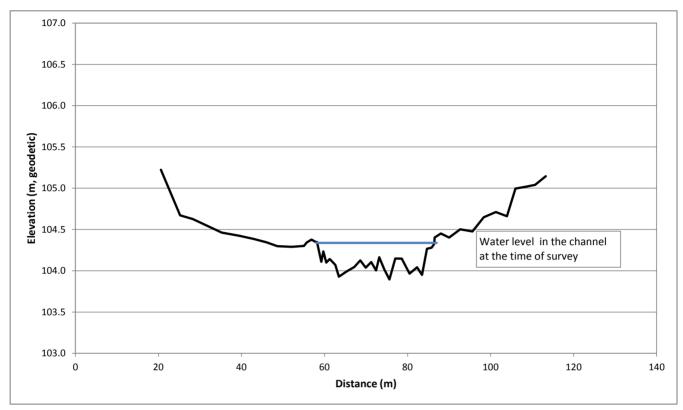


Figure 3-27: Lake A69 Outlet Channel Cross-Section, 2015

A more detailed description of the lake shoreline is presented in Table 3-18, and is based on the field reconnaissance and satellite imagery provided by Agnico Eagle (PhotoSat 2015). Terrain slopes calculated for the Lake A69 shoreline are partially shown in Figure 3-28 based on available DEM data (PhotoSat 2015) (i.e., only partial DEM data were available for Lake A69).

Table 3-18: Lake A69 Shoreline Description

Criteria	Description				
Bank materials	A mix of sand and gravel intercalated with smaller sections of cobble and boulders. Soils and vegetation are present on top of the bank, above the typical high water level elevation.				
Typical bank slopes	Most of the shoreline has shallow slopes, typically less than 5%.				
Typical shoreline geometry	Irregular shoreline with small and shallow bays.				
Fetch	Maximum fetch length was estimated in GIS at approximately 1.3 km, on an approximate north – south direction.				

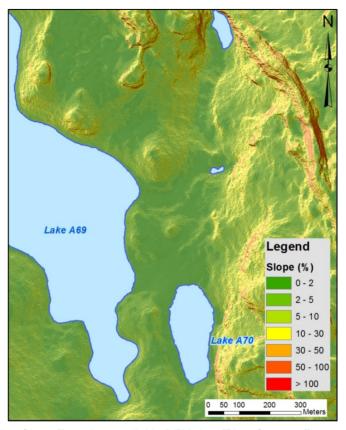


Figure 3-28: Lake A69 Shoreline Slope (Based on available DEM data [PhotoSat 2015])

3.3.8 Lake A72

The survey of Lake A72 focused on the lake outlet channel. Lake A72 has a surface area of approximately 3.2 ha, and drains into Lake A71. At this location, the field surveys included outlet channel cross-section, and outlet channel water surface slope.

The lake outlet channel is approximately 15 m wide, well defined with mostly sand and fines as streambed materials, and with soils and organics on both banks Figure 3-29. The measured water surface slope was 0.03%.

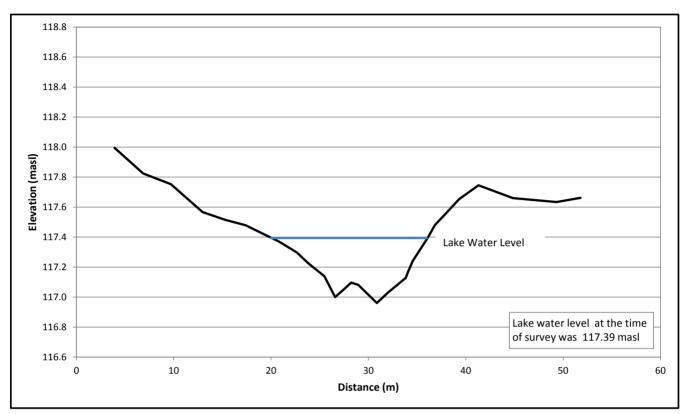


Figure 3-29: Lake A72 Outlet Channel Cross-Section, 2015

A more detailed description of the lake shoreline is presented in Table 3-19, and is based on the field reconnaissance and satellite imagery provided by Agnico Eagle (PhotoSat 2015). Terrain slopes calculated for the Lake A72 shoreline are shown in Figure 3-30.

Table 3-19: Lake A72 Shoreline Description

Criteria	Description					
Bank materials	Mostly sand and fines with vegetation on top. The inlet channel from upstream Lake A7 is comprised of boulders and cobble.					
Typical bank slopes	Most of the shoreline has shallow slopes, typically less than 2%.					
Typical shoreline geometry	Relatively straight shoreline with small sections of small and shallow bays.					
Fetch	Maximum fetch length was estimated in GIS at approximately 0.3 km, on an approximate north – south direction.					

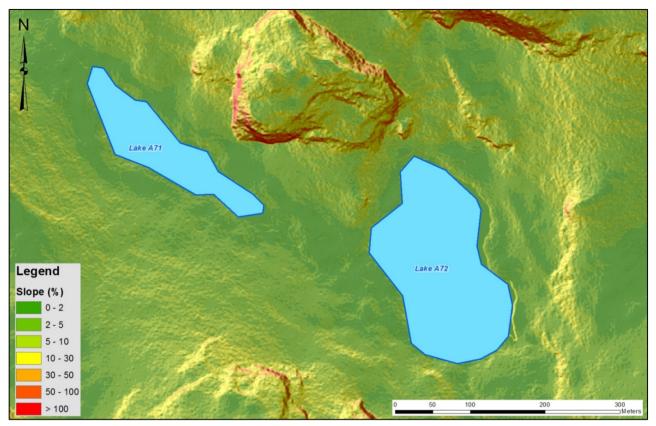


Figure 3-30: Lake A72 Shoreline Slope (Based on available DEM data [PhotoSat 2015])

3.3.9 Lake A76

The survey of Lake A76 focused on the lake shoreline and outlet channel. Lake A76 has a surface area of approximately 71 ha, and drains into Lake A10 through a main outlet at average and below average water levels. At water levels above average, Lake A12 has a secondary outlet that drains into Lake A75. Section 3.1 provides further details regarding these drainage patterns. The Lake A76 field surveys included: outlet channel cross-section, outlet channel water surface slope, lake shore normal transects and existing and ordinary high lake water levels.

The cross-section data for the main outlet was obtained from the RTK survey, and the cross-section data for the secondary channel was obtained from the PhotoSat (2015) elevation data. The main outlet channel is approximately 55 m wide and flows east, and the secondary outlet channel is approximately 35 m wide and flows west (Figure 3-31). The main outlet channel comprises a boulder garden with the majority of the flow through the boulders or below the surface. Further downstream, the flow becomes almost entirely subsurface with only higher flows reaching the surface. During the site visit, the flow was below the surface and no discharge measurement was possible.

The secondary channel flows west and is located at the opposite side of the lake. The channel was visually surveyed. The channel is a boulder garden with very large boulders. No signs of flow (neither low nor high flows) were visible and it was assumed that the flow occurs only at high lake water levels and only below the surface.

This may be confirmed by additional investigations during the high water season. The secondary channel is approximately 580 m long to Lake A75. It should be noted that the profile shown on Figure 3-31 is based on available DEM data (PhotoSat 2015), representative of the top of boulders rather than the actually channel bed.

The slope of the water surface in the main outlet channel could not be measured because no water was observed and the flow was determined to be through the boulders and below the surface. The next lake downstream along the main outlet channel is Lake A41, with the water surface elevation measured as 146.36 masl.

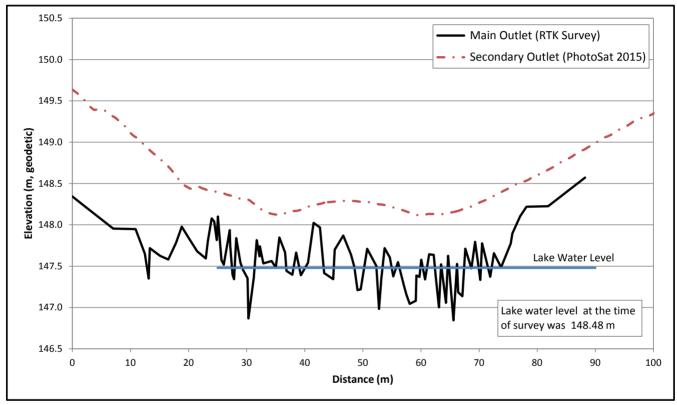


Figure 3-31: Lake A76 Main and Secondary Outlet Channel Cross-Sections, 2015

The water surface elevation at Lake A76 at the time of survey (i.e., 18 September 2015) was measured as 147.48 masl, and the ordinary high water level was estimated as 147.70 masl. A more detailed description of the lake shoreline is presented in Table 3-20, and is based on the field reconnaissance and satellite imagery provided by Agnico Eagle (PhotoSat 2015). Terrain slopes calculated for the Lake A76 shoreline are shown in Figure 3-32.

Table 3-20: Lake A76 Shoreline Description

Criteria	Description
Bank materials	The majority of the shoreline is comprised of large boulders and cobble. Limited areas at the west part of the lake have sections with organic materials on top of the boulders and cobble. Small sections of bedrock are found at the main outlet, on the east side of the lake.
Typical bank slopes	Most of the shoreline has shallow slopes, typically less than 5% gradient. Several small sections on the west shoreline have higher slopes between 10% and 30% gradient. The bedrock shore from the east side is abrupt with slope gradients greater than 100% and near-vertical at some locations (limited visibility on Figure 3-32 due to figure scale).
Typical shoreline geometry	Mostly straight shoreline.
Fetch	Maximum fetch length was estimated in GIS at approximately 1.4 km, on a northeast – southwest direction.

Two shore-normal transects were surveyed on the south shoreline, one closer to the lake inlet (East Transect), and a second one closer to the secondary outlet (West Transect) (Figure 3-33). At both locations, the shoreline is composed of boulders intercalated with cobble. The terrain slopes at the transects are similar, typically less than 5% gradient.

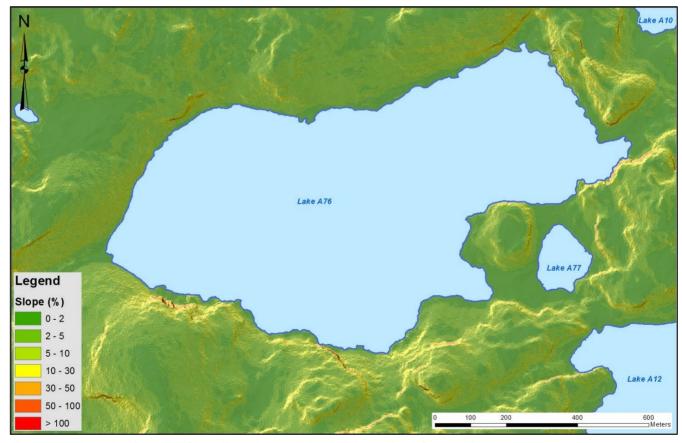


Figure 3-32: Lake A76 Shoreline Slope (Based on available DEM data [PhotoSat 2015])

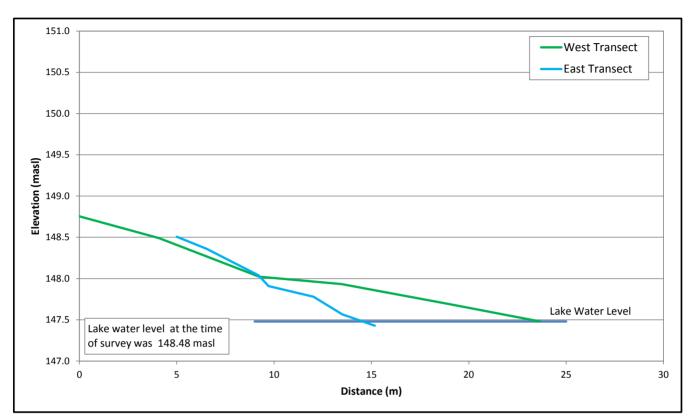


Figure 3-33: Cross-section Profiles of the Surveyed Transects, Lake A76

3.4 Water Balance Model

Frequency analyses of the hydrology model results (floods and droughts) were completed for key lakes in the Hydrology BSA to provide a basis for environmental impact assessment and engineering design. The following parameters were examined:

- maximum and mean daily outflow volumes for open water months, and corresponding stages;
- annual 7-day and 14-day flood discharges, and corresponding stages; and
- annual 30-day, 60-day, and 90-day low flow discharges for the period of July, August, and September, and corresponding stages.

While results are available at all modeled lakes (Appendix B), results are only presented herein at key locations, including Lake A5, Lake A15, Lake A17 (Whale Tail Lake), Lake A18, Lake A69, Lake C8, Lake C38, and Lake DS1.

3.4.1 Lake A5

Results for Lake A5 are presented in Table 3-21 (monthly mean discharges), Table 3-22 (peak and low flow discharges), Table 3-23 (monthly mean stages), and Table 3-24 (peak and low flow stages). Results are summarized in Figure 3-34 (flow regimes) and Figure 3-35 (stage regimes).

Table 3-21: Monthly Mean Discharges at the Lake A5 Outlet

Condition	Return	Monthly Mean Discharge (m³/d)					
	Period (years)	May	June	July	August	September	October
	100	56,200	271,000	148,000	84,700	108,000	55,100
	50	44,700	254,000	128,000	77,100	97,800	49,900
Wet	20	30,300	228,000	102,000	66,200	82,700	42,500
	10	20,200	205,000	82,900	56,900	70,300	36,200
	5	10,800	177,000	64,300	46,400	56,500	29,100
Median	2	122	128,000	41,100	29,000	34,400	17,400
	5	0	84,400	30,100	15,800	18,800	8,680
	10	0	65,500	27,600	10,900	13,400	5,420
Dry	20	0	52,400	26,500	7,800	10,200	3,410
	50	0	40,600	25,900	5,350	7,750	1,820
	100	0	34,400	25,800	4,220	6,700	1,090

m³/d= cubic metres per day.

Table 3-22: Peak and Low Flow Discharges at the Lake A5 Outlet

Condition	Return Period (years)	Peak Daily Q (m³/s)	7-Day Mean Peak Q (m³/d)	14-Day Mean Peak Q (m³/d)	30-Day Low Flow Q (m³/d)	60-Day Low Flow Q (m³/d)	90-Day Low Flow Q (m³/d)
	100	15.8	828,000	566,000	65,400	70,400	84,700
	50	13.8	757,000	521,000	57,200	65,100	78,500
Wet	20	11.3	655,000	456,000	46,700	57,200	69,600
	10	9.5	570,000	401,000	38,900	50,500	61,900
	5	7.73	474,000	338,000	31,200	42,500	53,100
Median	2	5.27	315,000	233,000	20,100	28,600	38,100
	5	3.59	197,000	153,000	12,300	17,100	26,200
	10	2.91	154,000	122,000	9,120	12,400	21,500
Dry	20	2.42	127,000	102,000	6,810	9,190	18,500
	50	1.94	106,000	86,700	4,500	6,460	16,000
	100	1.65	96,900	79,400	3,110	5,100	14,800

Q= discharge; m³/s= cubic metres per second; m³/d= cubic metres per day.

Table 3-23: Monthly Mean Stages at the Lake A5 Outlet

Condition	Return	Monthly Mean Stage (m)					
	Period (years)	May	June	July	August	September	October
	100	0.368	0.571	0.482	0.413	0.442	0.366
	50	0.345	0.561	0.463	0.402	0.430	0.356
Wet	20	0.309	0.544	0.435	0.385	0.410	0.340
	10	0.276	0.529	0.410	0.369	0.392	0.325
	5	0.232	0.507	0.382	0.349	0.368	0.306
Median	2	0.066	0.463	0.337	0.306	0.321	0.265
	5	-	0.412	0.309	0.258	0.271	0.218
	10	-	0.384	0.301	0.232	0.246	0.191
Dry	20	-	0.361	0.298	0.212	0.228	0.168
	50	-	0.336	0.296	0.190	0.211	0.141
	100	-	0.321	0.296	0.178	0.203	0.122

m= metres.

Table 3-24: Peak and Low Flow Stages at the Lake A5 Outlet

Condition	Return Period (years)	Peak Daily Stage (m)	7-Day Mean Peak Stage (m)	14-Day Mean Peak Stage (m)	30-Day Low Flow Stage (m)	60-Day Low Flow Q Stage (m)	90-Day Low Flow Stage (m)
	100	0.899	0.781	0.702	0.384	0.392	0.413
	50	0.865	0.762	0.686	0.370	0.383	0.404
Wet	20	0.818	0.732	0.661	0.349	0.370	0.391
	10	0.779	0.704	0.638	0.332	0.357	0.378
	5	0.736	0.668	0.608	0.312	0.340	0.362
Median	2	0.661	0.596	0.548	0.276	0.304	0.330
	5	0.594	0.523	0.487	0.240	0.264	0.297
	10	0.560	0.488	0.457	0.221	0.241	0.281
Dry	20	0.531	0.462	0.435	0.204	0.221	0.269
	50	0.500	0.439	0.415	0.181	0.201	0.259
	100	0.477	0.428	0.405	0.164	0.188	0.253

m= metres.

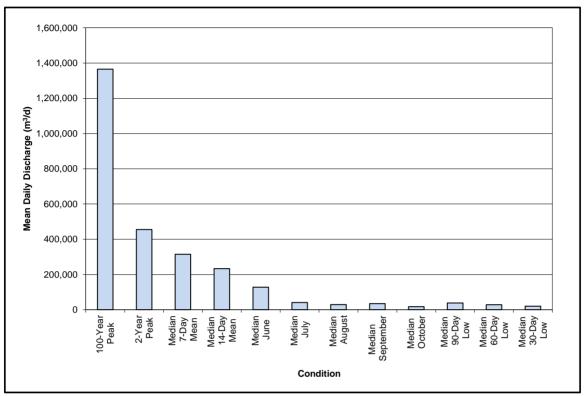


Figure 3-34: Derived Flow Regimes at Lake A5

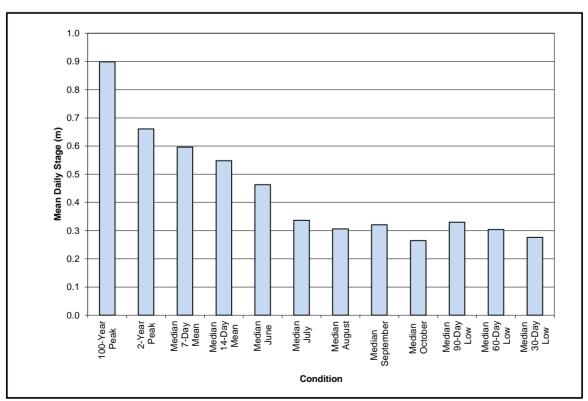


Figure 3-35: Derived Stage Regimes at Lake A5

3.4.2 Lake A15

Results for Lake A15 are presented in Table 3-25 (monthly mean discharges), Table 3-26 (peak and low flow discharges), Table 3-27 (monthly mean stages), and Table 3-28 (peak and low flow stages). Results are summarized in Figure 3-36 (flow regimes) and Figure 3-37 (stage regimes).

Table 3-25: Monthly Mean Discharges at the Lake A15 Outlet

O a malitia m	Return	Monthly Mean Discharge (m³/d)						
Condition	Period (years)	May	June	July	August	September	October	
	100	29,700	201,000	127,000	65,700	85,100	44,800	
	50	23,200	188,000	109,000	59,500	76,700	40,600	
Wet	20	15,300	169,000	86,400	50,800	64,700	34,700	
	10	9,940	152,000	69,700	43,400	54,800	29,600	
	5	5,120	132,000	53,800	35,200	43,900	23,900	
Median	2	0	95,400	34,500	21,800	26,400	14,300	
	5	0	62,800	25,900	11,900	14,000	7,030	
	10	0	48,400	24,100	8,390	9,630	4,290	
Dry	20	0	38,400	23,300	6,240	7,070	2,580	
	50	0	29,200	23,000	4,570	5,130	1,220	
	100	0	24,300	22,800	3,830	4,290	583	

m³/d= cubic metres per day.

Table 3-26: Peak and Low Flow Discharges at the Lake A15 Outlet

Condition	Return Period (years)	Peak Daily Q (m³/s)	7-Day Mean Peak Q (m³/d)	14-Day Mean Peak Q (m³/d)	30-Day Low Flow Q (m³/d)	60-Day Low Flow Q (m³/d)	90-Day Low Flow Q (m³/d)
	100	9.37	593,000	414,000	51,800	54,600	68,300
	50	8.51	541,000	380,000	45,300	50,500	63,200
Wet	20	7.29	467,000	332,000	37,000	44,400	55,800
	10	6.26	405,000	291,000	30,800	39,200	49,500
	5	5.11	334,000	245,000	24,700	33,000	42,400
Median	2	3.22	218,000	168,000	16,000	22,200	30,300
	5	1.82	131,000	110,000	9,840	13,300	20,900
	10	1.32	98,700	88,000	7,320	9,530	17,300
Dry	20	1.01	78,900	74,500	5,500	7,040	15,100
	50	0.77	63,300	63,700	3,690	4,890	13,200
	100	0.66	56,200	58,700	2,590	3,810	12,400

Q= discharge; m³/s= cubic metres per second; m³/d= cubic metres per day.

Table 3-27: Monthly Mean Stages at the Lake A15 Outlet

O a malisti a m	Return	Monthly Mean Stage (m)						
Condition	Period (years)	May	June	July	August	September	October	
	100	0.485	0.731	0.663	0.575	0.608	0.530	
	50	0.460	0.721	0.641	0.563	0.595	0.519	
Wet	20	0.421	0.704	0.610	0.544	0.573	0.502	
	10	0.384	0.689	0.583	0.526	0.553	0.485	
	5	0.333	0.668	0.551	0.503	0.528	0.463	
Median	2	-	0.623	0.501	0.454	0.473	0.415	
	5	-	0.570	0.471	0.399	0.413	0.356	
	10	-	0.539	0.464	0.370	0.381	0.320	
Dry	20	-	0.513	0.461	0.347	0.357	0.287	
	50	-	0.483	0.459	0.325	0.333	0.245	
	100	-	0.465	0.458	0.313	0.320	0.209	

m= metres.

Table 3-28: Peak and Low Flow Stages at the Lake A15 Outlet

Condition	Return Period (years)	Peak Daily Stage (m)	7-Day Mean Peak Stage (m)	14-Day Mean Peak Stage (m)	30-Day Low Flow Stage (m)	60-Day Low Flow Q Stage (m)	90-Day Low Flow Stage (m)
	100	0.986	0.922	0.854	0.547	0.553	0.580
	50	0.966	0.904	0.838	0.531	0.544	0.570
Wet	20	0.934	0.876	0.814	0.509	0.529	0.555
	10	0.904	0.850	0.792	0.489	0.515	0.541
	5	0.866	0.815	0.763	0.466	0.496	0.524
Median	2	0.784	0.744	0.704	0.425	0.456	0.487
	5	0.694	0.667	0.642	0.383	0.408	0.450
	10	0.647	0.628	0.612	0.359	0.380	0.432
Dry	20	0.611	0.598	0.591	0.338	0.356	0.420
	50	0.576	0.571	0.571	0.310	0.329	0.408
	100	0.557	0.556	0.561	0.287	0.312	0.402

m= metres.

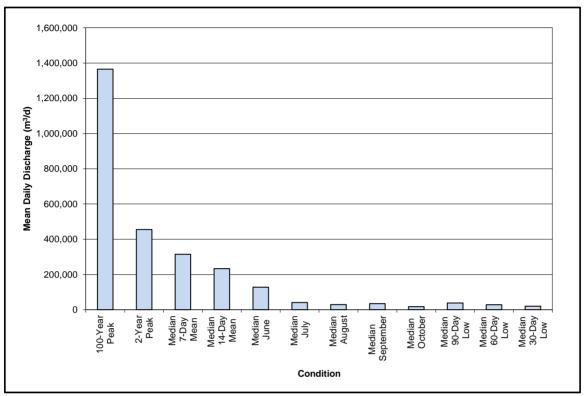


Figure 3-36: Derived Flow Regimes at Lake A15

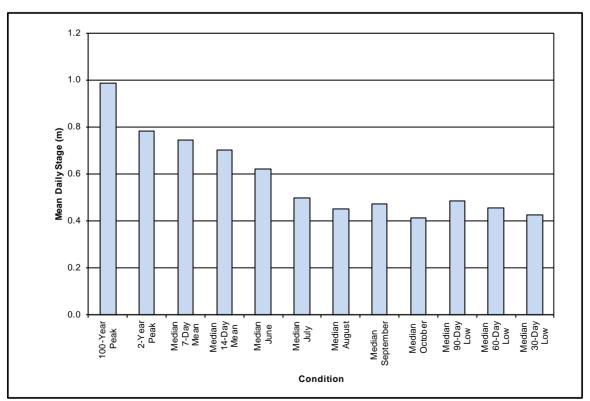


Figure 3-37: Derived Stage Regimes at Lake A15

3.4.3 Lake A17 (Whale Tail Lake)

Results for Lake A17 (Whale Tail Lake) are presented in Table 3-29 (monthly mean discharges), Table 3-30 (peak and low flow discharges), Table 3-31 (monthly mean stages), and Table 3-32 (peak and low flow stages). Results are summarized in Figure 3-38 (flow regimes) and Figure 3-39 (stage regimes).

Table 3-29: Monthly Mean Discharges at the Lake A17 (Whale Tail Lake) Outlet

Condition	Return	Monthly Mean Discharge (m³/d)						
Condition	Period (years)	Мау	June	July	August	September	October	
	100	14,400	122,000	75,200	39,500	56,700	30,200	
	50	11,100	114,000	63,700	35,600	49,500	26,900	
Wet	20	7,070	102,000	50,200	29,900	40,100	22,300	
	10	4,420	92,300	41,100	25,200	33,100	18,500	
	5	2,140	80,200	32,600	19,900	25,900	14,300	
Median	2	0	57,800	21,600	11,400	15,400	8,090	
	5	0	37,700	14,600	5,280	7,810	4,100	
	10	0	28,700	11,900	3,090	4,660	2,780	
Dry	20	0	22,400	9,980	1,780	2,360	2,030	
	50	0	16,600	8,140	784	59	1,450	
	100	0	13,400	7,050	343	0	1,200	

m³/d= cubic metres per day.

Table 3-30: Peak and Low Flow Discharges at the Lake A17 (Whale Tail Lake) Outlet

Condition	Return Period (years)	Peak Daily Q (m³/s)	7-Day Mean Peak Q (m³/d)	14-Day Mean Peak Q (m³/d)	30-Day Low Flow Q (m³/d)	60-Day Low Flow Q (m³/d)	90-Day Low Flow Q (m³/d)
	100	6.17	355,000	250,000	31,100	32,100	40,800
	50	5.58	324,000	230,000	26,500	29,500	37,700
Wet	20	4.74	281,000	202,000	20,900	25,700	33,200
	10	4.04	245,000	177,000	16,900	22,500	29,300
	5	3.26	203,000	150,000	13,000	18,600	24,900
Median	2	2.01	134,000	104,000	7,790	11,900	17,400
	5	1.10	81,700	68,600	4,280	6,320	11,500
	10	0.78	62,000	55,200	2,880	4,020	9,210
Dry	20	0.59	49,700	46,900	1,890	2,480	7,750
	50	0.44	39,900	40,200	906	1,150	6,550
	100	0.38	35,400	37,100	320	489	5,980

Q= discharge; m³/s= cubic metres per second; m³/d= cubic metres per day.

Table 3-31: Monthly Mean Stages at the Lake A17 (Whale Tail Lake) Outlet

O a m aliti a m	Return	Monthly Mean Stage (m)							
Condition	Period (years)	May	June	July	August	September	October		
	100	0.458	0.847	0.737	0.612	0.679	0.566		
	50	0.424	0.831	0.702	0.594	0.653	0.548		
Wet	20	0.373	0.804	0.656	0.565	0.615	0.519		
	10	0.326	0.782	0.619	0.538	0.582	0.492		
	5	0.264	0.751	0.579	0.502	0.542	0.457		
Median	2	-	0.683	0.514	0.428	0.466	0.387		
	5	-	0.604	0.459	0.343	0.384	0.319		
	10	-	0.558	0.433	0.294	0.331	0.285		
Dry	20	-	0.520	0.412	0.250	0.272	0.260		
	50	-	0.477	0.388	0.198	0.094	0.236		
	100	-	0.448	0.372	0.156	-	0.224		

m= metres.

Table 3-32: Peak and Low Flow Stages at the Lake A17 (Whale Tail Lake) Outlet

Condition	Return Period (years)	Peak Daily Stage (m)	7-Day Mean Peak Stage (m)	14-Day Mean Peak Stage (m)	30-Day Low Flow Stage (m)	60-Day Low Flow Q Stage (m)	90-Day Low Flow Stage (m)
	100	1.296	1.152	1.042	0.571	0.576	0.618
	50	1.259	1.122	1.017	0.545	0.563	0.604
Wet	20	1.201	1.077	0.979	0.509	0.541	0.582
	10	1.147	1.035	0.943	0.479	0.520	0.561
	5	1.078	0.981	0.899	0.444	0.493	0.536
Median	2	0.938	0.870	0.809	0.383	0.433	0.483
	5	0.788	0.755	0.717	0.323	0.361	0.429
	10	0.714	0.697	0.674	0.288	0.317	0.402
Dry	20	0.659	0.654	0.643	0.255	0.276	0.383
	50	0.606	0.614	0.615	0.206	0.221	0.365
	100	0.579	0.593	0.601	0.153	0.173	0.355

m= metres.

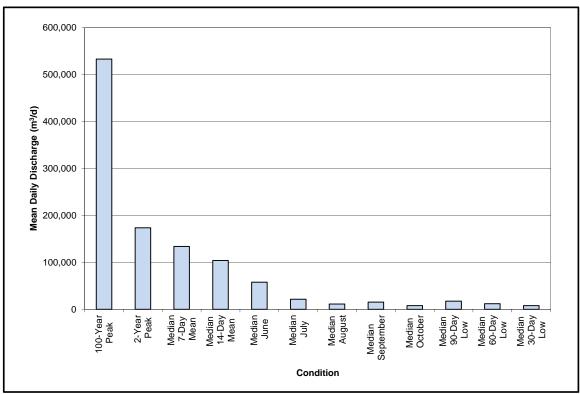


Figure 3-38: Derived Flow Regimes at Lake A17 (Whale Tail Lake)

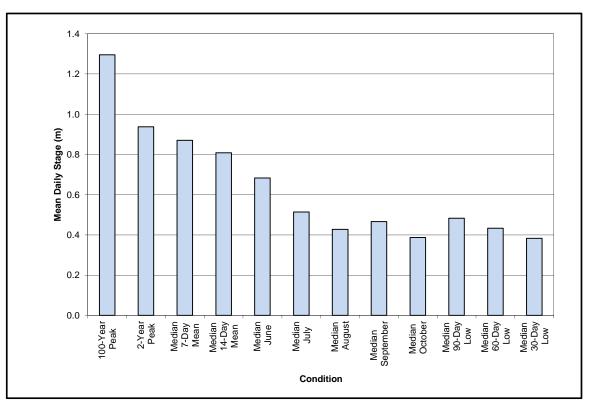


Figure 3-39: Derived Stage Regimes at Lake A17 (Whale Tail Lake)

3.4.4 Lake A18

Results for Lake A18 are presented in Table 3-33 (monthly mean discharges), Table 3-34 (peak and low flow discharges), Table 3-35 (monthly mean stages), and Table 3-36 (peak and low flow stages). Results are summarized in Figure 3-40 (flow regimes) and Figure 3-41 (stage regimes).

Table 3-33: Monthly Mean Discharges at the Lake A18 Outlet

Condition	Return	Monthly Mean Discharge (m³/d)						
Condition	Period (years)	May	June	July	August	September	October	
	100	12,200	57,000	32,600	23,000	24,900	13,700	
	50	9,870	53,500	28,300	20,200	22,700	11,600	
Wet	20	6,910	48,200	22,700	16,600	19,500	9,080	
	10	4,760	43,500	18,700	13,700	16,700	7,300	
	5	2,700	38,100	14,600	10,700	13,600	5,580	
Median	2	190	28,400	8,930	6,220	8,310	3,230	
	5	0	20,100	5,150	2,870	4,160	0	
	10	0	16,700	3,720	1,440	2,540	0	
Dry	20	0	14,300	2,750	388	1,510	0	
	50	0	12,100	1,840	0	662	0	
	100	0	11,100	1,330	0	261	0	

m³/d= cubic metres per day.

Table 3-34: Peak and Low Flow Discharges at the Lake A18 Outlet

Condition	Return Period (years)	Peak Daily Q (m³/s)	7-Day Mean Peak Q (m³/d)	14-Day Mean Peak Q (m³/d)	30-Day Low Flow Q (m³/d)	60-Day Low Flow Q (m³/d)	90-Day Low Flow Q (m³/d)
	100	3.38	146,000	112,000	12,000	16,700	18,400
	50	2.92	135,000	103,000	10,500	15,200	17,200
Wet	20	2.36	119,000	91,400	8,570	13,000	15,300
	10	1.97	106,000	81,200	7,090	11,200	13,700
	5	1.61	90,300	69,700	5,560	9,160	11,800
Median	2	1.11	64,400	50,700	3,300	5,840	8,490
	5	0.81	44,600	36,300	1,650	3,130	5,680
	10	0.70	37,100	30,900	953	1,920	4,500
Dry	20	0.63	32,300	27,600	446	997	3,710
	50	0.57	28,500	25,000	0	42	3,020
	100	0.54	26,700	23,800	0	0	2,670

Q= discharge; m³/s= cubic metres per second; m³/d= cubic metres per day.

Table 3-35: Monthly Mean Stages at the Lake A18 Outlet

Conditio:	Return	Monthly Mean Stage (m)							
Condition	Period (years)	May	June	July	August	September	October		
	100	0.405	0.549	0.492	0.459	0.466	0.415		
	50	0.389	0.543	0.478	0.448	0.458	0.401		
Wet	20	0.362	0.531	0.458	0.431	0.444	0.382		
	10	0.336	0.521	0.441	0.415	0.431	0.366		
	5	0.301	0.507	0.420	0.395	0.414	0.347		
Median	2	0.178	0.479	0.381	0.355	0.376	0.312		
	5	-	0.447	0.342	0.304	0.328	-		
	10	-	0.431	0.320	0.266	0.297	-		
Dry	20	-	0.418	0.302	0.205	0.268	-		
	50	-	0.405	0.279	-	0.228	-		
	100	-	0.398	0.262	-	0.190	-		

m= metres.

Table 3-36: Peak and Low Flow Stages at the Lake A18 Outlet

Condition	Return Period (years)	Peak Daily Stage (m)	7-Day Mean Peak Stage (m)	14-Day Mean Peak Stage (m)	30-Day Low Flow Stage (m)	60-Day Low Flow Q Stage (m)	90-Day Low Flow Stage (m)
	100	0.759	0.662	0.628	0.404	0.431	0.439
	50	0.737	0.651	0.617	0.393	0.423	0.434
Wet	20	0.707	0.635	0.603	0.378	0.410	0.424
	10	0.682	0.621	0.589	0.364	0.398	0.415
	5	0.655	0.602	0.572	0.347	0.383	0.403
Median	2	0.609	0.563	0.537	0.313	0.350	0.377
Dry	5	0.572	0.523	0.503	0.273	0.310	0.348
	10	0.555	0.505	0.487	0.245	0.281	0.333
	20	0.544	0.491	0.476	0.211	0.247	0.320
	50	0.533	0.479	0.467	-	0.132	0.308
	100	0.527	0.473	0.462	-	-	0.300

m= metres.

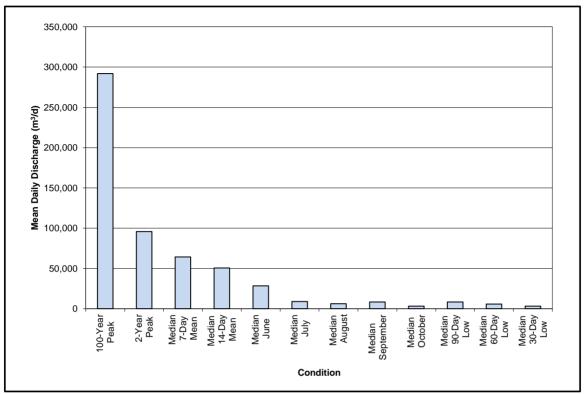


Figure 3-40: Derived Flow Regimes at Lake A18

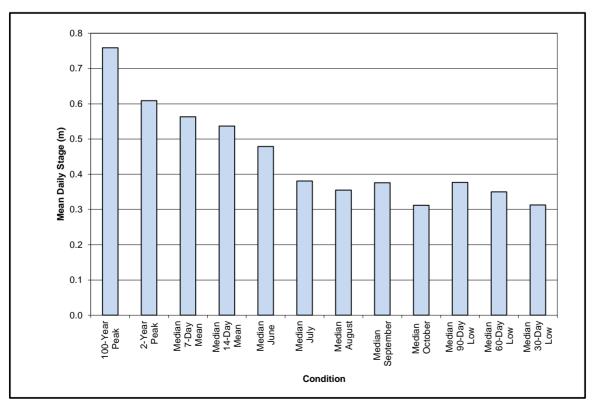


Figure 3-41: Derived Stage Regimes at Lake A18

3.4.5 Lake A69

Results for Lake A69 are presented in Table 3-37 (monthly mean discharges), Table 3-38 (peak and low flow discharges), Table 3-39 (monthly mean stages), and Table 3-40 (peak and low flow stages). Results are summarized in Figure 3-42 (flow regimes) and Figure 3-43 (stage regimes).

Table 3-37: Monthly Mean Discharges at the Lake A69 Outlet

Condition	Return Period (years)	Monthly Mean Discharge (m³/d)							
		May	June	July	August	September	October		
	100	65,000	285,000	182,000	109,000	129,000	69,300		
	50	53,300	269,000	159,000	99,700	118,000	59,400		
Wet	20	38,000	245,000	127,000	86,600	102,000	46,900		
	10	26,600	224,000	103,000	75,200	87,700	38,000		
	5	15,600	199,000	78,900	61,900	71,900	29,300		
Median	2	1,570	151,000	46,600	38,300	44,900	17,200		
	5	0	107,000	29,800	18,500	23,800	8,940		
Dry	10	0	86,700	25,500	10,200	15,500	5,620		
	20	0	72,200	23,500	4,580	10,200	3,240		
	50	0	58,600	22,300	0	5,910	883		
	100	0	51,200	21,900	0	3,840	0		

m³/d= cubic metres per day.

Table 3-38: Peak and Low Flow Discharges at the Lake A69 Outlet

Condition	Return Period (years)	Peak Daily Q (m³/s)	7-Day Mean Peak Q (m³/d)	14-Day Mean Peak Q (m³/d)	30-Day Low Flow Q (m³/d)	60-Day Low Flow Q (m³/d)	90-Day Low Flow Q (m³/d)
	100	14.5	710,000	571,000	65,100	86,000	99,100
	50	13.3	659,000	529,000	57,900	79,600	92,500
Wet	20	11.6	584,000	468,000	48,200	70,100	82,800
	10	10.1	521,000	417,000	40,700	61,800	74,400
	5	8.58	448,000	359,000	32,700	52,000	64,600
Median	2	6.15	327,000	264,000	20,500	34,400	47,300
	5	4.51	233,000	192,000	11,300	19,300	32,700
	10	3.95	196,000	165,000	7,400	12,900	26,600
Dry	20	3.64	174,000	149,000	4,500	8,540	22,600
	50	3.41	155,000	136,000	1,550	4,650	19,000
	100	3.31	146,463	129,974	0	2,655	17,263

Q= discharge; m³/s= cubic metres per second; m³/d= cubic metres per day.

Table 3-39: Monthly Mean Stages at the Lake A69 Outlet

Condition	Return Period (years)	Monthly Mean Stage (m)							
		May	June	July	August	September	October		
	100	0.383	0.580	0.511	0.443	0.464	0.390		
	50	0.362	0.570	0.492	0.432	0.453	0.374		
Wet	20	0.330	0.556	0.462	0.415	0.435	0.350		
	10	0.298	0.542	0.436	0.399	0.417	0.330		
	5	0.257	0.524	0.404	0.378	0.394	0.306		
Median	2	0.135	0.485	0.349	0.330	0.345	0.264		
	5	-	0.441	0.308	0.269	0.289	0.220		
	10	-	0.415	0.295	0.228	0.256	0.193		
Dry	20	-	0.395	0.288	0.182	0.228	0.165		
	50	-	0.372	0.284	-	0.196	0.115		
	100	-	0.358	0.282	-	0.173	-		

m= metres.

Table 3-40: Peak and Low Flow Stages at the Lake A69 Outlet

Condition	Return Period (years)	Peak Daily Stage (m)	7-Day Mean Peak Stage (m)	14-Day Mean Peak Stage (m)	30-Day Low Flow Stage (m)	60-Day Low Flow Q Stage (m)	90-Day Low Flow Stage (m)
	100	0.877	0.748	0.704	0.383	0.414	0.431
	50	0.857	0.733	0.689	0.371	0.405	0.423
Wet	20	0.824	0.709	0.666	0.352	0.391	0.410
	10	0.793	0.686	0.645	0.336	0.378	0.398
	5	0.758	0.658	0.618	0.316	0.360	0.382
Median	2	0.690	0.602	0.567	0.277	0.321	0.350
Dry	5	0.633	0.548	0.519	0.235	0.273	0.316
	10	0.610	0.522	0.497	0.208	0.244	0.298
	20	0.596	0.505	0.483	0.181	0.217	0.285
	50	0.585	0.489	0.471	0.135	0.183	0.271
	100	0.580	0.481	0.465	-	0.156	0.264

m = metres.

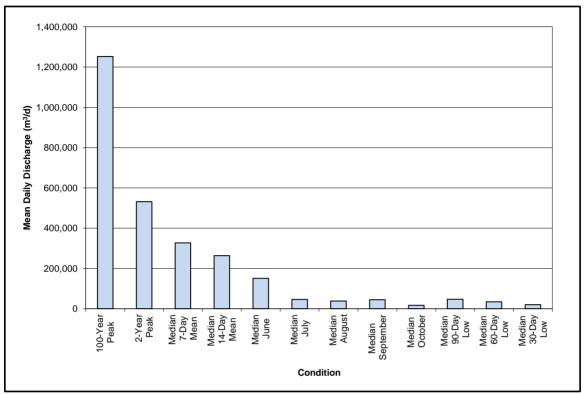


Figure 3-42: Derived Flow Regimes at Lake A69

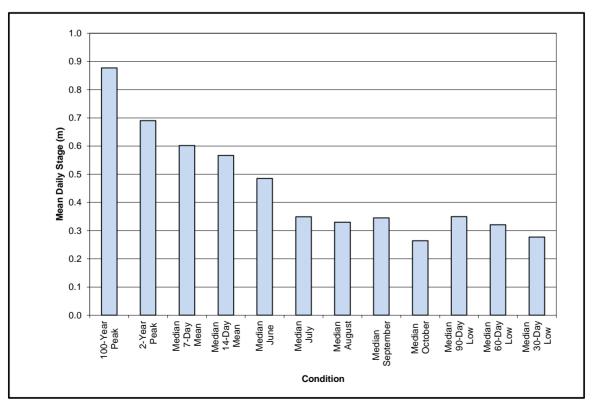


Figure 3-43: Derived Stage Regimes at Lake A69

3.4.6 Lake C8

Results for Lake C8 are presented in Table 3-41 (monthly mean discharges), Table 3-42 (peak and low flow discharges), Table 3-43 (monthly mean stages), and Table 3-44 (peak and low flow stages). Results are summarized in Figure 3-44 (flow regimes) and Figure 3-45 (stage regimes).

Table 3-41: Monthly Mean Discharges at the Lake C8 Outlet

0 1111	Return	Monthly Mean Discharge (m³/d)						
Condition	Period (years)	May	June	July	August	September	October	
	100	22,500	56,400	22,200	20,600	24,100	13,500	
	50	18,200	53,300	19,700	19,000	22,200	11,900	
Wet	20	12,600	48,600	16,400	16,600	19,400	9,690	
	10	8,610	44,300	13,800	14,400	17,000	8,040	
	5	4,810	39,100	11,200	11,900	14,200	6,350	
Median	2	241	29,100	7,180	7,420	9,240	3,870	
	5	0	19,400	4,240	3,560	5,150	2,070	
	10	0	14,800	3,030	1,910	3,460	1,320	
Dry	20	0	11,300	2,170	784	2,340	770	
	50	0	7,920	1,320	0	1,370	218	
	100	0	6,000	831	0	890	0	

m³/d= cubic metres per day.

Table 3-42: Peak and Low Flow Discharges at the Lake C8 Outlet

Condition	Return Period (years)	Peak Daily Q (m³/s)	7-Day Mean Peak Q (m³/d)	14-Day Mean Peak Q (m³/d)	30-Day Low Flow Q (m³/d)	60-Day Low Flow Q (m³/d)	90-Day Low Flow Q (m³/d)
	100	5.33	202,000	120,000	11,600	16,100	17,600
	50	4.80	190,000	113,000	10,600	14,900	16,300
Wet	20	4.09	170,000	101,000	9,130	13,100	14,500
	10	3.53	154,000	91,300	7,870	11,600	13,000
	5	2.94	134,000	79,700	6,420	9,740	11,300
Median	2	2.09	99,500	59,300	3,950	6,410	8,290
	5	1.60	69,700	42,200	1,980	3,520	5,690
	10	1.45	57,100	35,000	1,210	2,280	4,460
Dry	20	1.38	48,500	30,200	711	1,420	3,500
	50	1.33	40,900	26,100	296	648	2,490
	100	1.31	37,000	24,000	98	249	1,850

Q= discharge; m³/s= cubic metres per second; m³/d= cubic metres per day.

Table 3-43: Monthly Mean Stages at the Lake C8 Outlet

Condition	Return	Monthly Mean Stage (m)						
Condition	Period (years)	May	June	July	August	September	October	
	100	0.457	0.548	0.456	0.449	0.463	0.413	
	50	0.438	0.542	0.445	0.442	0.456	0.403	
Wet	20	0.408	0.532	0.430	0.431	0.444	0.387	
	10	0.378	0.523	0.415	0.419	0.433	0.373	
	5	0.337	0.510	0.398	0.403	0.417	0.356	
Median	2	0.187	0.481	0.365	0.367	0.384	0.323	
	5	-	0.444	0.329	0.318	0.342	0.285	
	10	-	0.421	0.308	0.281	0.316	0.261	
Dry	20	-	0.399	0.288	0.236	0.292	0.235	
	50	-	0.372	0.261	-	0.263	0.183	
	100	-	0.352	0.238	-	0.242	-	

m= metres.

Table 3-44: Peak and Low Flow Stages at the Lake C8 Outlet

Condition	Return Period (years)	Peak Daily Stage (m)	7-Day Mean Peak Stage (m)	14-Day Mean Peak Stage (m)	30-Day Low Flow Stage (m)	60-Day Low Flow Q Stage (m)	90-Day Low Flow Stage (m)
	100	0.830	0.705	0.636	0.401	0.428	0.436
	50	0.813	0.697	0.629	0.394	0.421	0.429
Wet	20	0.788	0.682	0.615	0.383	0.411	0.419
	10	0.765	0.669	0.603	0.372	0.401	0.410
	5	0.738	0.650	0.587	0.357	0.388	0.399
Median	2	0.690	0.613	0.554	0.324	0.357	0.375
	5	0.654	0.572	0.518	0.283	0.317	0.349
	10	0.642	0.550	0.499	0.257	0.291	0.332
Dry	20	0.636	0.532	0.485	0.231	0.265	0.317
	50	0.631	0.515	0.471	0.194	0.227	0.296
	100	0.629	0.504	0.463	0.156	0.188	0.279

m= metres.

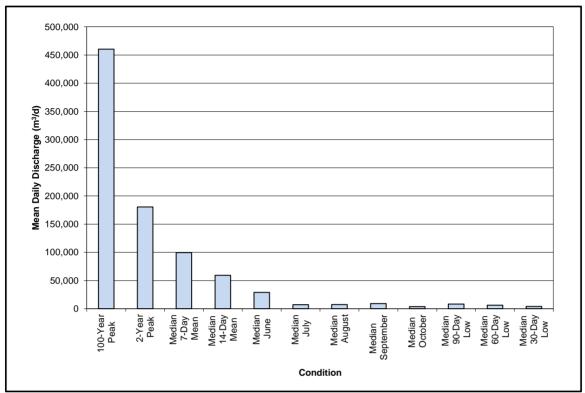


Figure 3-44: Derived Flow Regimes at Lake C8

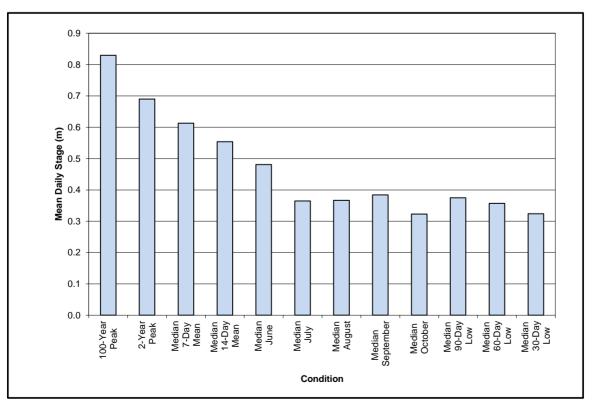


Figure 3-45: Derived Stage Regimes at Lake C8

3.4.7 Lake C38 (Nemo Lake)

Results for Lake C38 (Nemo Lake) are presented in Table 3-45 (monthly mean discharges), Table 3-46 (peak and low flow discharges), Table 3-47 (monthly mean stages), and Table 3-48 (peak and low flow stages). Results are summarized in Figure 3-46 (flow regimes) and Figure 3-47 (stage regimes).

Table 3-45: Monthly Mean Discharges at the Lake C38 (Nemo Lake) Outlet

Condition	Return	Monthly Mean Discharge (m³/d)							
Condition	Period (years)	May	June	July	August	September	October		
	100	396	4,380	5,330	4,100	3,800	2,520		
	50	305	4,140	4,960	3,820	3,560	2,340		
Wet	20	199	3,780	4,430	3,410	3,190	2,080		
	10	131	3,450	3,990	3,060	2,880	1,850		
	5	72	3,050	3,490	2,650	2,510	1,580		
Median	2	3	2,270	2,650	1,920	1,840	1,070		
	5	0	1,470	1,910	1,250	1,210	621		
	10	0	1,050	1,570	929	898	421		
Dry	20	0	692	1,300	672	645	280		
	50	0	288	1,020	393	368	151		
	100	0	17	847	215	188	82		

m³/d= cubic metres per day.

Table 3-46: Peak and Low Flow Discharges at the Lake C38 (Nemo Lake) Outlet

Condition	Return Period (years)	Peak Daily Q (m³/s)	7-Day Mean Peak Q (m³/d)	14-Day Mean Peak Q (m³/d)	30-Day Low Flow Q (m³/d)	60-Day Low Flow Q (m³/d)	90-Day Low Flow Q (m³/d)
	100	0.075	6,380	6,200	3,560	3,870	4,310
	50	0.072	6,050	5,880	3,340	3,610	4,030
Wet	20	0.066	5,570	5,400	3,000	3,240	3,610
	10	0.061	5,150	4,990	2,700	2,920	3,260
	5	0.055	4,650	4,500	2,350	2,550	2,860
Median	2	0.044	3,730	3,610	1,700	1,870	2,150
	5	0.034	2,850	2,760	1,070	1,240	1,510
	10	0.029	2,410	2,330	743	921	1,200
Dry	20	0.025	2,060	1,990	481	670	953
	50	0.020	1,670	1,620	190	396	690
	100	0.017	1,410	1,370	0	219	523

Q= discharge; m³/s= cubic metres per second; m³/d= cubic metres per day.

Table 3-47: Monthly Mean Stages at the Lake C38 (Nemo Lake) Outlet

O a maliti a m	Return	Monthly Mean Stage (m)						
Condition	Period (years)	May	June	July	August	September	October	
	100	0.041	0.447	0.543	0.418	0.388	0.258	
	50	0.032	0.422	0.506	0.390	0.364	0.239	
Wet	20	0.021	0.386	0.452	0.348	0.326	0.213	
	10	0.014	0.352	0.407	0.313	0.294	0.190	
	5	0.007	0.312	0.356	0.271	0.257	0.162	
Median	2	0.000	0.232	0.271	0.197	0.189	0.110	
	5	-	0.151	0.196	0.128	0.124	0.064	
	10	-	0.108	0.161	0.096	0.092	0.043	
Dry	20	-	0.071	0.133	0.069	0.066	0.029	
	50	-	0.030	0.105	0.041	0.038	0.016	
	100	-	0.002	0.087	0.022	0.020	0.009	

m= metres.

Table 3-48: Peak and Low Flow Stages at the Lake C38 (Nemo Lake) Outlet

Condition	Return Period (years)	Peak Daily Stage (m)	7-Day Mean Peak Stage (m)	14-Day Mean Peak Stage (m)	30-Day Low Flow Stage (m)	60-Day Low Flow Q Stage (m)	90-Day Low Flow Stage (m)
	100	0.660	0.649	0.631	0.364	0.395	0.440
	50	0.633	0.616	0.599	0.341	0.369	0.411
Wet	20	0.581	0.567	0.550	0.307	0.331	0.369
	10	0.537	0.525	0.509	0.276	0.298	0.333
	5	0.485	0.474	0.459	0.241	0.261	0.292
Median	2	0.388	0.381	0.369	0.174	0.192	0.220
	5	0.300	0.291	0.282	0.110	0.127	0.155
	10	0.256	0.247	0.238	0.077	0.095	0.123
Dry	20	0.221	0.211	0.204	0.050	0.069	0.098
	50	0.177	0.171	0.166	0.020	0.041	0.071
	100	0.151	0.145	0.141	-	0.023	0.054

m= metres.

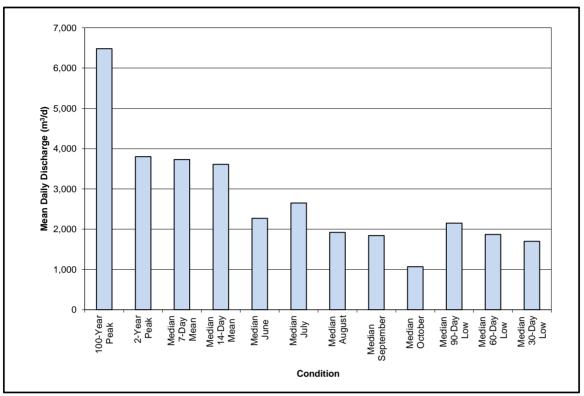


Figure 3-46: Derived Flow Regimes at Lake C38 (Nemo Lake)

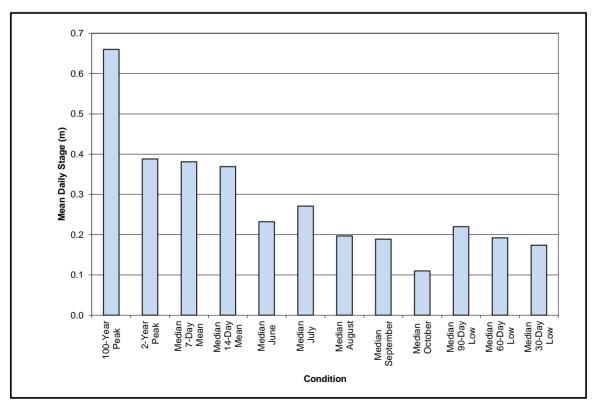


Figure 3-47: Derived Stage Regimes at Lake C38 (Nemo Lake)

3.4.8 Lake DS1

Results for Lake DS1 are presented in Table 3-49 (monthly mean discharges), Table 3-50 (peak and low flow discharges), Table 3-51 (monthly mean stages), and Table 3-52 (peak and low flow stages). Results are summarized in Figure 3-48 (flow regimes) and Figure 3-49 (stage regimes).

Table 3-49: Monthly Mean Discharges at the Lake DS1 Outlet

0 1111	Return	Monthly Mean Discharge (m³/d)							
Condition	Period (years)	May	June	July	August	September	October		
	100	329,000	3,510,000	5,120,000	1,890,000	2,280,000	1,980,000		
	50	224,000	3,230,000	4,390,000	1,720,000	2,100,000	1,810,000		
Wet	20	130,000	2,810,000	3,500,000	1,480,000	1,830,000	1,560,000		
	10	82,800	2,450,000	2,860,000	1,270,000	1,600,000	1,360,000		
	5	48,500	2,040,000	2,250,000	1,020,000	1,330,000	1,140,000		
Median	2	15,800	1,320,000	1,390,000	604,000	874,000	780,000		
	5	1,090	716,000	816,000	266,000	485,000	491,000		
	10	0	436,000	584,000	130,000	306,000	363,000		
Dry	20	0	221,000	419,000	42,300	169,000	266,000		
	50	0	0	256,000	0	24,400	165,000		
	100	0	0	158,000	0	0	103,000		

m³/d= cubic metres per day.

Table 3-50: Peak and Low Flow Discharges at the Lake DS1 Outlet

Condition	Return Period (years)	Peak Daily Q (m³/s)	7-Day Mean Peak Q (m³/d)	14-Day Mean Peak Q (m³/d)	30-Day Low Flow Q (m³/d)	60-Day Low Flow Q (m³/d)	90-Day Low Flow Q (m³/d)
	100	80.8	6,870,000	6,540,000	1,640,000	1,720,000	2,340,000
	50	73.6	6,260,000	5,960,000	1,410,000	1,570,000	2,150,000
Wet	20	63.8	5,420,000	5,160,000	1,120,000	1,350,000	1,880,000
	10	56.0	4,750,000	4,530,000	906,000	1,160,000	1,660,000
	5	47.6	4,050,000	3,850,000	693,000	956,000	1,420,000
Median	2	34.7	2,950,000	2,810,000	388,000	623,000	1,010,000
	5	24.8	2,100,000	2,010,000	174,000	353,000	686,000
	10	20.5	1,740,000	1,660,000	86,100	233,000	540,000
Dry	20	17.3	1,470,000	1,410,000	22,800	142,000	431,000
	50	14.0	1,190,000	1,140,000	0	48,100	317,000
	100	12.0	1,020,000	984,000	0	0	246,000

Q= discharge; m³/s= cubic metres per second; m³/d= cubic metres per day.

Table 3-51: Monthly Mean Stages at the Lake DS1 Outlet

O a malisti a m	Return	Monthly Mean Stage (m)							
Condition	Period (years)	May	June	July	August	September	October		
	100	0.193	1.122	1.485	0.708	0.814	0.733		
	50	0.145	1.054	1.324	0.660	0.766	0.686		
Wet	20	0.097	0.951	1.119	0.590	0.691	0.614		
	10	0.069	0.859	0.963	0.527	0.626	0.554		
	5	0.047	0.749	0.806	0.448	0.545	0.486		
Median	2	0.020	0.542	0.563	0.303	0.399	0.367		
	5	0.003	0.344	0.379	0.165	0.258	0.260		
	10	-	0.238	0.296	0.097	0.183	0.208		
Dry	20	-	0.144	0.231	0.042	0.118	0.165		
	50	-	-	0.160	-	0.028	0.116		
	100	-	-	0.112	-	-	0.081		

m= metres.

Table 3-52: Peak and Low Flow Stages at the Lake DS1 Outlet

Condition	Return Period (years)	Peak Daily Stage (m)	7-Day Mean Peak Stage (m)	14-Day Mean Peak Stage (m)	30-Day Low Flow Stage (m)	60-Day Low Flow Q Stage (m)	90-Day Low Flow Stage (m)
	100	1.869	1.847	1.781	0.637	0.660	0.830
	50	1.744	1.724	1.662	0.569	0.617	0.779
Wet	20	1.568	1.549	1.493	0.480	0.551	0.705
	10	1.424	1.404	1.356	0.410	0.493	0.643
	5	1.262	1.247	1.201	0.336	0.427	0.572
Median	2	0.998	0.986	0.951	0.218	0.310	0.444
	5	0.777	0.766	0.741	0.120	0.203	0.333
	10	0.675	0.666	0.643	0.071	0.149	0.279
Dry	20	0.595	0.587	0.569	0.027	0.103	0.236
	50	0.508	0.502	0.486	-	0.046	0.188
	100	0.453	0.448	0.436	-	-	0.156

m= metres.

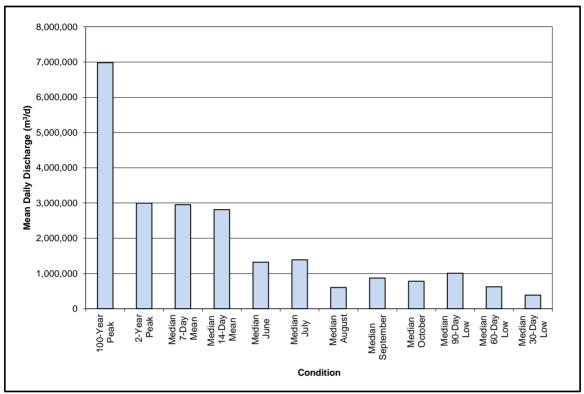


Figure 3-48: Derived Flow Regimes at Lake DS1

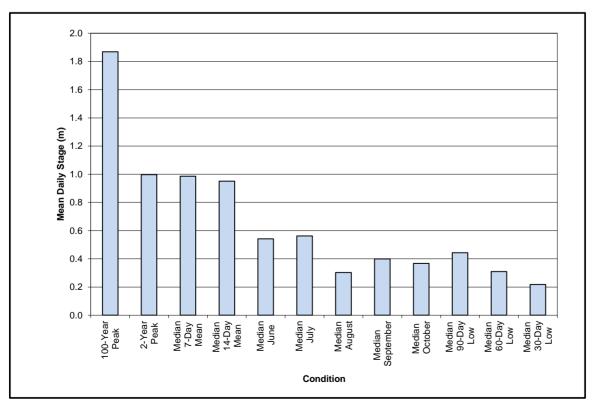


Figure 3-49: Derived Stage Regimes at Lake DS1

4.0 CONCLUSION

This study provides a review of existing hydrology conditions in watersheds potentially affected by the Project, based on available Project information. The Study included characterization of local watersheds and drainage patterns, flow regimes, and lake shoreline and outlet channel geomorphology, based on a review of available desktop data and four field visits in 2015 spanning from early June (during frozen conditions), to July, August and finishing in September, and is intended to provide a basis for future impact assessments of the Project.

Three distinct watersheds within the Hydrology BSA were defined as the A watershed (i.e., where Whale Tail and Mammoth Lake are located), the B watershed (i.e., located just north of the A watershed, and west of Nemo Lake), and the C watershed (i.e., where Nemo Lake is located); these three watersheds each drain into Lake DS1. Drainage patterns were initially defined based on a desktop exercise and refined and/or validated on the ground. In general, ground-truthed drainage patterns were in agreement with those derived from the desktop exercise, with the exception of Lake A12 and Lake A76, which were found to discharge through two lake outlets. Lake A12 was found to discharge northward to Lake A77, and eastward to Lake A11. Lake A76 was found to discharge westward to Lake A75, and eastward to Lake A41. The proportion of flow through each outlet of Lake A12 and Lake A76 was only assessed during low flow conditions, and may vary during high flow conditions. Derived water yields for lakes with similar periods of record (i.e., with 97 and 98 days of record) varied between 52 mm (i.e., Lake C38 [Nemo Lake]) and 267 mm (Lake A18). The lower water yields at Lake A17 and Lake C38 may be attributed to proportions of ineffective areas in the watersheds, and the potential for shallow subsurface flow to convey water outside of the assumed drainage boundaries.

The majority of the shorelines surveyed exhibit a consistent terrain type related to shorelines that have developed in morainal material. These morainal shorelines were observed at all lakes visited during the field survey. Limited areas of bedrock and shallowly sloped sandy shorelines were also observed. As a general characteristic for the surveyed shorelines, the predominant materials are boulder gardens mixed with cobble with very limited soils or organic materials on top. The outlet channels exhibit the same characteristics for streambed materials, which results in interstitial flow through large boulders or below the surface likely close to the bedrock, making flow difficult to observe and measure.

YA.

Report Signature Page

GOLDER ASSOCIATES LTD.

Jordan Larkins, E.I.T. (Alberta) Water Resources Engineer

Dan Ciobotaru, P.Geo. (B.C.) Hydrology Specialist

THE ASSOCIATION OF PROFESSIONAL ENGINEERS, GEOLOGISTS and GEOPPHYSICISTS OF THE NORTHWEST TERRITORIES PERMIT NUMBER P 049

PROFESSION N.P. SCHMIDT OF LICENSEE

Nathan Schmidt, Ph.D., P.Eng.
Principal, Senior Water Resources Engineer

Julien Lacrampe, P.Eng. (Alberta) Water Resources Engineer

5.0 REFERENCES

- AMEC Earth & Environmental Ltd (AMEC). 2003. Meadowbank Gold Project Baseline Hydrology Report. Submitted to Cumberland Resources Ltd., October 2013.
- CanVec, Department of Natural Resources (CanVec). 2013. Watercourses and Waterbody data.
- Government of Canada. 2015. Historical Climate Data. Available online from: http://climate.weather.gc.ca/index_e.html
- PhotoSat Information Ltd. (PhotoSat). 2015. PhotoSat Stereo Satellite Elevation Mapping Project Report. Reference No. 3631.
- Terzi, R.A. (1981), Hydrometric Field Manual Measurement of Streamflow, Environment Canada, Inland Waters Directorate, Water Resources Branch, Ottawa.

APPENDIX A

Hydrometric Stations

Table of Contents

A1.0 LAKE	E A5 & OUTLET (STREAM A5-A4)	1
A2.0 LAKE	E A12 & NORTHWEST OUTLET (STREAM A12-A11)	8
A3.0 LAKE	E A12 & NORTHEAST OUTLET (STREAM A12-A77)	10
A4.0 LAKE	E A15 & OUTLET (STREAM A15-A14)	12
A5.0 LAKE	E A16 (MAMMOTH LAKE) & OUTLET (STREAM A16-A15)	18
A6.0 LAKE	E A17 (WHALE TAIL LAKE) & OUTLET (STREAM A17-A16)	20
A7.0 LAKE	E A18 & OUTLET (STREAM A18-A17)	27
A8.0 LAKE	E A19 & OUTLET (STREAM A19-A18)	32
A9.0 LAKE	E A21 & OUTLET (STREAM A21-A20)	35
A10.0	LAKE A22 & OUTLET (STREAM A22-A21)	37
A11.0	LAKE A45 & OUTLET (STREAM A45-A16)	38
A12.0	LAKE A53 & OUTLET (STREAM A53-A17)	39
A13.0	LAKE A55 & OUTLET (STREAM A55-A17)	42
A14.0	LAKE A60 & OUTLET (STREAM A60-A59)	46
A15.0	LAKE A62 & OUTLET (STREAM A62-A17)	50
A16.0	LAKE A63 & OUTLET (STREAM A63-A18)	51
A17.0	LAKE A69 & OUTLET (STREAM A69-DS1)	52
A18.0	LAKE A72 & OUTLET (STREAM A72-D71)	60
A19.0	LAKE A76 & EAST OUTLET (STREAM A76-A11)	62
A20.0	LAKE A76 & WEST OUTLET (STREAM A76-A75)	64
A21.0	LAKE A81 & OUTLET (STREAM A81-A80)	65
A22.0	LAKE B3 & OUTLET (STREAM B3-B2)	70
A23.0	LAKE C8 & OUTLET (STREAM C8-C7)	72
A24.0	LAKE C38 (NEMO LAKE) & OUTLET (STREAM C38-C12)	78
A25.0	LAKE DS1 & OUTLET (STREAM DS1)	85

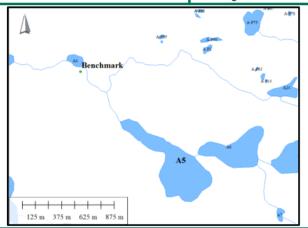

FIGURES

Figure 1: 2015 Stage-Discharge Rating Curve (Lake A5)	2
Figure 2: 2015 Stage-Discharge Rating Curve (Lake A15)	13
Figure 3: 2015 Stage-Discharge Rating Curve (Lake A17)	21
Figure 4: 2015 Stage-Discharge Rating Curve (Lake A18)	28
Figure 5: 2015 Stage-Discharge Rating Curve (Lake A69)	53
Figure 6: 2015 Stage-Discharge Rating Curve (Lake C8)	73
Figure 7: 2015 Stage-Discharge Rating Curve (Lake C38)	79
Figure 8: 2015 Stage-Discharge Rating Curve (Lake DS1)	86

A1.0 LAKE A5 & OUTLET (STREAM A5-A4)

Parameter	Value	Note				
Drainage Area (km²)	57.6	Based on DEM (PhotoSat 2015)				
Bankfull Width (m)	65	Measured in the field, based on vegetation				
Max. Bankfull Depth (m)	0.4	Measured in the field, based on vegetation				
Wetted Width (m)	59.0	Measured in the field on 6 August 2015				
Max. Wetted Depth (m)	0.26	Measured in the field on 6 August 2015				
Channel Length (km)	0.70	Measured from CanVec data				
Outlet Channel Slope (m/m)	0.026	Average slope, measured in the field				
Bed Material	Boulders, cobbles					
Bank Material	Boulders, cobbles, org	ganics				
Bank Vegetation	Grass					
Benchmark Coordinates	599782 m E, 7260885 m N, 129.77 masl	NAD83 Zone 14				
Logger/ Staff Gauge Coordinates	598325 m E, 7256756 m N					
Comment	Poorly defined boulde discharge calculation	r channel. Sub-surface flow present. Cross-sectional data are available in sheets.				

Lake A5: Benchmark location.

6 August 2015. View looking east at Lake A5 and staff gauge.

6 August 2015. View from watercourse at Lake A5 (southeast).

6 August 2015. Downstream view of the watercourse (northwest).

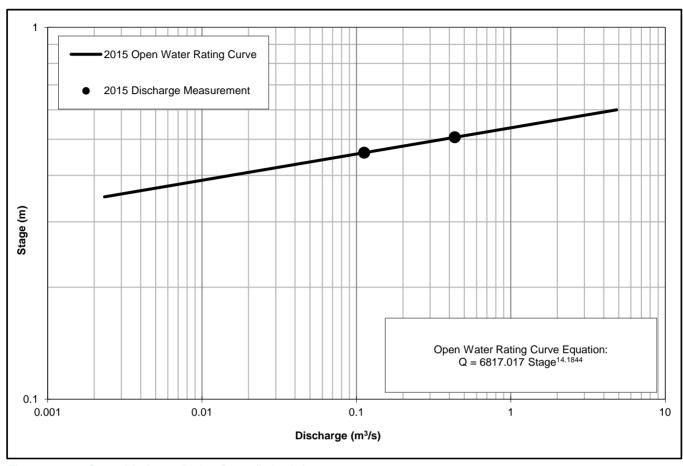


Figure 1: 2015 Stage-Discharge Rating Curve (Lake A5)

Lake A5 - 2015

MEAN DAILY DISCHARGE (m³/s)

DATE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
1	-	-	-	-	-	-	-	-	0.06	-	-	-
2	-	-	-	-	-	-	-	-	0.06	-	-	-
3	-	-	-	-	-	-	-	-	0.07	-	-	-
4	-	-	-	-	-	-	-	-	0.07	-	-	-
5	-	-	-	-	-	-	-	-	0.06	-	-	-
6	-	-	-	-	-	-	-	0.39 P	0.06	-	-	-
7	-	-	-	-	-	-	-	0.38	0.06	-	-	-
8	-	-	-	-	-	-	-	0.35	0.05	-	-	-
9	-	-	-	-	-	-	-	0.34	0.04	-	-	-
10	-	-	-	-	-	-	-	0.28	0.04	-	-	-
11	-	-	-	-	-	-	-	0.28	0.04	-	-	-
12	-	-	-	-	-	-	-	0.19	0.05	-	-	-
13	-	-	-	-	-	-	-	0.25	0.05	-	-	-
14	-	-	-	-	-	-	-	0.24	0.09	-	-	-
15	-	-	-	-	-	-	-	0.22	0.12	-	-	-
16	-	-	-	-	-	-	-	0.19	0.12 P	-	-	-
17	-	-	-	-	-	-	-	0.18	-	-	-	-
18	-	-	-	-	-	-	-	0.18	-	-	-	-
19	-	-	-	-	-	-	-	0.17	-	-	-	-
20	-	-	-	-	-	-	-	0.17	-	-	-	-
21	-	-	-	-	-	-	-	0.15	-	-	-	-
22	-	-	-	-	-	-	-	0.13	-	-	-	-
23	-	-	-	-	-	-	-	0.13	-	-	-	-
24	-	-	-	-	-	-	-	0.13	-	-	-	-
25	-	-	-	-	-	-	-	0.12	-	-	-	-
26	-	-	-	-	-	-	-	0.10	-	-	-	-
27	-	-	-	-	-	-	-	0.10	-	-	-	-
28	-	-	-	-	-	-	-	0.09	-	-	-	-
29	-	-	-	-	-	-	-	0.08	-	-	-	-
30	-	-	-	-	-	-	-	0.08	-	-	-	-
31	-	-	-	-	-	-	-	0.07	-	-	-	-
MIN	-	-	-	-	-	-	-	0.072	0.036	-	-	-
MEAN	-	-	-	-	-	-	-	0.191	0.064	-	-	-
MAX	-	-	-	-	-	-	-	0.393	0.119	-	-	-

NOTES: P - PARTIAL DAILY AVERAGE

Water Yield (m³) = 518,371 429,907 88,464 Water Yield (mm) = 9.0 83% 17%

Lake A5 - 2015

MEAN DAILY WATER SURFACE ELEVATION (masl) BASED ON BENCHMARK ELEVATION 129.77 masl

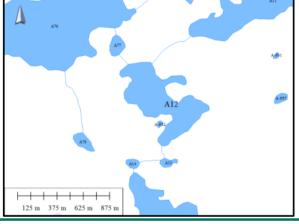
DATE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
1	-	-	-	-	-	-	-	-	132.238	-	-	-
2	-	-	-	-	-	-	-	-	132.241	-	-	-
3	-	-	-	-	-	-	-	-	132.243	-	-	-
4	-	-	-	-	-	-	-	-	132.244	-	-	-
5	-	-	-	-	-	-	-	-	132.242	-	-	-
6	-	-	-	-	-	-	-	132.302 P	132.240	-	-	-
7	-	-	-	-	-	-	-	132.301	132.238	-	-	-
8	-	-	-	-	-	-	-	132.298	132.232	-	-	-
9	-	-	-	-	-	-	-	132.297	132.230	-	-	-
10	-	-	-	-	-	-	-	132.291	132.229	-	-	-
11	-	-	-	-	-	-	-	132.290	132.224	-	-	-
12	-	-	-	-	-	-	-	132.277	132.232	-	-	-
13	-	-	-	-	-	-	-	132.286	132.231	-	-	-
14	-	-	-	-	-	-	-	132.285	132.254	-	-	-
15	-	-	-	-	-	-	-	132.282	132.261	-	-	-
16	-	-	-	-	-	-	-	132.277	132.262 P	-	-	-
17	-	-	-	-	-	-	-	132.275	-	-	-	-
18	-	-	-	-	-	-	-	132.275	-	-	-	-
19	-	-	-	-	-	-	-	132.274	-	-	-	-
20	-	-	-	-	-	-	-	132.273	-	-	-	-
21	-	-	-	-	-	-	-	132.269	-	-	-	-
22	-	-	-	-	-	-	-	132.264	-	-	-	-
23	-	-	-	-	-	-	-	132.265	-	-	-	-
24	-	-	-	-	-	-	-	132.265	-	-	-	-
25	-	-	-	-	-	-	-	132.261	-	-	-	-
26	-	-	-	-	-	-	-	132.257	-	-	-	-
27	-	-	-	-	-	-	-	132.256	-	-	-	-
28	-	-	-	-	-	-	-	132.252	-	-	-	-
29	-	-	-	-	-	-	-	132.251	-	-	-	-
30	-	-	-	-	-	-	-	132.249	-	-	-	-
31	-	-	-	-	-	-	-	132.245	-	-	-	-
MIN	-	-	-	-	-	-	-	132.245	132.224	-	-	-
MEAN	-	-	-	-	-	-	-	132.274	132.240	-	-	-
MAX	-	-	-	-	-	-	-	132.302	132.262	-	-	-

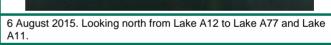
NOTES: P - PARTIAL DAILY AVERAGE

		OPEN WATER DISC	CHARGE CALC	ULATION SPREADS	HEET			
Project Name, Number:		Amarug - trip 2			Date		06-Aug-1	15
Waterbody:		A5			Start Time		9:45	
Crossing ID:		A5-A4			End Time		10:05	
Left Downstream Bank (LDB) UTM Location	-	Survey		Datalogger S	SN:		
East	600184	BM read			Transducer			
North	7260409	WL read			Meter Type/S		Marsh M	cBirnev
Elevation, Zone	14W	WL_Elev			Crew:	JRL & JN		
STATION	DISTANCE		\	/elocity	Optio			
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLE O		Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)		(m3/s)	(m2)
1	0.00	0.10	(11//3)	0.00	()	<u>'</u>	(1110/3)	0.180
2	1.50	0.14		0.06			0.011	0.084
3	2.70	0.00		0.00			0.000	0.000
4	3.70	0.00		0.00			0.000	0.032
5	4.50	0.08		0.12			0.011	0.090
6	6.00	0.04		0.12			0.009	0.098
7	7.50	0.09		0.13			0.003	0.143
8	9.00	0.09	+	0.23	1		0.031	0.060
9	10.20	0.00		0.00			0.000	0.000
10	11.10	0.00		0.00			0.000	0.099
11	12.00	0.00		0.00			0.006	0.099
12	13.00	0.00		0.03			0.000	0.000
13	13.50	0.00		0.00			0.000	0.000
13	13.70	0.00		0.00			0.000	0.015
15	15.00	0.15		0.10			0.011	0.202
16	15.70	0.00		0.26			0.042	0.000
17		0.00		0.00			0.000	
18	17.00							0.020
	17.20	0.20		0.10			0.015 0.008	0.169
19 20	18.50	0.06 0.00		0.11 0.00				0.030
20	19.50	0.00					0.000	0.000
	19.80			0.00			0.000	0.040
22	20.20	0.20		0.20			0.034	0.286
23	21.50	0.24		0.17			0.055	0.168
24	22.90	0.00		0.00			0.000	0.000
25	23.40	0.00		0.00			0.000	0.132
26	24.50	0.24	+	0.03			0.009	0.255
27	26.00	0.10 0.25	+	0.21			0.032	0.263
28	27.50		+	0.15			0.056	0.330
29	29.00	0.19	+	0.11			0.031	0.203
30 31	30.50 32.00	0.08	+	0.09			0.011	0.060
			+				0.000	0.000
32	32.30	0.00	+	0.00			0.000	0.012
33	32.50	0.12	1	0.05	-		0.002	0.018
34	32.80	0.00	+	0.00			0.000	0.000
35	33.10	0.00	+	0.00			0.000	0.040
36	33.50	0.20	1	0.03	-		0.006	0.345
37	35.00	0.26		0.00			0.000	0.140
38	35.70	0.14		0.04			0.007	0.198
39	37.50	0.08	1	0.06	-		0.033	0.484
40	49.60	0.00		0.00			0.000	0.000
NOTES:					RESULTS:	Q (m3/s)		0.434
						A(m2)		4.36
ĺ					1	B(m)	1	49.6

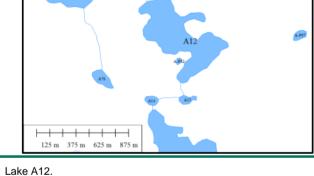
		OPEN WATE	R DISCHARGE CALCU	JLATION SPREADSHEET			
Project Name, N	umber:	1524321 - Amaruo			Date	16-Sep-	-15
Waterbody:		A5		<u> </u>	Start Time	12:45	
Crossing ID:		A5-A4			End Time	13:05	
	M Location		Survey		Datalogger SN:	1	
East	600182	BM_read			Transducer SN:	<u> </u>	
North	7260409	WL_read			Meter Type/SN:		
Elevation, Zone	14W	WL_Elev	,		Crew: JRL, DC	1	1
STATION	DISTANCE	DEDTU		Velocity 0.6/0.8 DEPTH	Optional ANGLE OF FLOW	0:	۸:
Start LDB	FROM LDB (m)	DEPTH (m)	0.2 DEPTH (m/s)	(m/s)	(°)	Qi (m3/s)	Ai (m2)
1	0.00	0.00	(111/5)	0	(*)	(1113/5)	0.030
2	0.50	0.00		0.02		0.001	0.030
3	1.00	0.00		0.02	+	0.000	0.000
4	1.00	0.15		0.01		0.001	0.105
5	1.70	0.15		0.01	1	0.001	0.001
6	1.71	0.00		0		0.000	0.000
7	1.71	0.10		0.06		0.001	0.025
8	1.96	0.10		0.06		0.001	0.001
9	1.97	0.00		0		0.000	0.000
10	1.97	0.08		0.02		0.000	0.024
11	2.27	0.08		0.02		0.000	0.000
12	2.28	0.00		0		0.000	0.000
13	2.28	0.13		0.16	1	0.006	0.078
14	2.88	0.13		0.16	1	0.006	0.001
15	2.89	0.00		0		0.000	0.000
16	2.89	0.06		0.15	1	0.002	0.021
17	3.24	0.06		0.15	_	0.002	0.000
18	3.25	0.00		0.00		0.000	0.000
19	3.25	0.10		0.01		0.000	0.040
20 21	3.65	0.10 0.00		0.01		0.000	0.000
22	3.65	0.00		0.00		0.000	0.000 0.018
23	3.65 3.85	0.00		0.00	_	0.000	0.060
24	4.45	0.18		0.15	+	0.000	0.060
25	5.45	0.02		0.06		0.007	0.119
26	6.85	0.07		0.03		0.007	0.063
27	8.65	0.00		0.00		0.000	0.000
28	8.65	0.00		0.00	1	0.000	0.064
29	9.45	0.16		0.03		0.004	0.153
30	10.35	0.18		0.05		0.009	0.216
31	11.55	0.18		0.03		0.006	0.176
32	12.45	0.21		0.07		0.014	0.105
33	13.45	0.00		0.00		0.000	0.000
34	13.45	0.20		0.08		0.006	0.150
35	14.20	0.20		0.08		0.006	0.001
36	14.21	0.00		0.00	_	0.000	0.000
37	14.21	0.10		0.15	1	0.003	0.040
38	14.61	0.10		0.15	1	0.003	0.000
39 40	14.62 14.62	0.00 0.08		0.00 0.11	+	0.000 0.002	0.000 0.032
	4= 00	0.00			1	0.002	0.032
41 42	15.02 15.03	0.08		0.11	+	0.002	0.000
43	15.03	0.07		0.08	+	0.000	0.000
44	15.23	0.07		0.08	+	0.000	0.000
45	15.24	0.00		0.00	1	0.000	0.000
46	15.24	0.12		0.02		0.001	0.108
47	16.14	0.12		0.02		0.001	0.001
48	16.15	0.00		0.00		0.000	0.000
49	16.15	0.12		0.03		0.001	0.048
50	16.55	0.12		0.03		0.001	0.000
51	16.55	0.00		0.00		0.000	0.040
52	17.35	0.10		0.02		0.002	0.110
53	18.45	0.10		0.06	1	0.006	0.040
54	19.25	0.00		0.00	1	0.000	0.035
55	19.95	0.10		0.01	1	0.001	0.030
56	20.55	0.00		0.00	1	0.000	0.000
57	20.55	0.08		0.02	1	0.000	0.040
58	21.05	0.08		0.02	+	0.000	0.000
59 60	21.06	0.00		0.00	+	0.000	0.000
60 61	21.06 21.56	0.06 0.06		0.07 0.07	+	0.001 0.001	0.030
וט	21.56	0.00	l	0.07		J 0.001	0.000

		OPEN WATE	R DISCHARGE CALCU	LATION SPREADSHEET							
Project Name, N	umber:	1524321 - Amaruo	Trip 3		Date		16-Sep-15				
Waterbody:		A5			Start Time		12:45				
Crossing ID:		A5-A4			End Time		13:05				
LDB U	TM Location		Survey		Datalogger	Datalogger SN:					
East	600182	BM_read			Transducer SN:						
North	7260409	WL_read			Meter Type/	SN:					
Elevation, Zone	14W	WL_Elev			Crew:	JRL, DC					
STATION	DISTANCE		V	elocity	Optio	onal					
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLÉ O	F FLOW	Qi	Ai			
LDB	(m)	(m)	(m/s)	(m/s)	(°)	(m3/s)	(m2)			
62	21.57	0.00		0.00			0.000	0.000			
NOTES:	Discharge measureme	ent was separated in	to sections that containe	ed flow. In some cases,	RESULTS:	Q (m3/s)	0.1	12			
				ore, the distance from LDB,		A(m2)	2.	11			
	A and B values are no	t applicable to this n	neasurement.			,,	 				
ı	RDB un-measurable le	ow flow area accoun	ting for ~5% of flow			B(m)	21	.6			




A2.0 LAKE A12 & NORTHWEST OUTLET (STREAM A12-A11)

Parameter	Value	Note				
Drainage Area (km²)	42.4	Based on DEM (PhotoSat 2015)				
Bankfull Width (m)	44	Measured in the field, based on vegetation				
Max. Bankfull Depth (m)	0.9	Measured in the field, based on vegetation and high water marks				
Wetted Width (m)	42.0	Measured in the field August 6, 2015				
Max. Wetted Depth (m)	0.31	Measured in the field August 6, 2015				
Channel Length (km)	0.50	Measured from CanVec data				
Outlet Channel Slope (m/m)	0.004	Average slope, based on DEM (PhotoSat 2015)				
Bed Material	Boulders, cobbles					
Bank Material	Boulders, cobbles, org	anics				
Bank Vegetation	Grass					
Benchmark Coordinates	N/A	NAD83 Zone 14				
Logger/ Staff Gauge Coordinates	N/A	NADOS ZUITE 14				
Comment	Poorly defined boulder discharge calculation s	channel. Sub surface flows present. Cross-sectional data are available in heets and Section 3.3.				


Lake A76

_ake A77

Lake A12

6 August 2015. Upstream view from the watercourse towards Lake A12 (southwest).

19 September 2015. Downstream view of the watercourse (northeast).

Lake A11

	0	PEN WATER DISCH	ARGE CALCULAT	TION SPREADSHEE	Т			
Project Name, Number:		Amaruq - Trip 2			Date		06-Aug-	15
Waterbody:		A12			Start Time		12:05	
Crossing ID:		A12-A11			End Time		12:40	
LDB UTM	Location		Survey		Datalogger S	N:		
East	603052	BM_read			Transducer S	N:		
North	7256600	WL_read			Meter Type/S	N:	Marsh M	lcBirney
Elevation, Zone	156, 14W	WL_Elev			Crew:	JRL & JN		
STATION	DISTANCE		V	'elocity	Optio	nal		
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLĖ O	F FLOW	Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)		(m3/s)	(m2)
1	0.00	0.00	` /	0.00	` '		,	0.114
2	1.20	0.19		0.00			0.000	0.148
3	2.00	0.18		0.02			0.004	0.353
4	3.50	0.29		0.02			0.008	0.358
5	4.80	0.26		0.00			0.000	0.442
6	6.50	0.26		0.00			0.000	0.195
7	8.00	0.00		0.00			0.000	0.044
8	8.40	0.22		0.06			0.013	0.176
9	10.00	0.00		0.00			0.000	0.038
10	11.90	0.04		0.23			0.009	0.002
11	12.00	0.00		0.00			0.000	0.027
12	12.60	0.09		0.02			0.001	0.018
13	13.00	0.00		0.00			0.000	0.117
14	14.30	0.18		0.00			0.000	0.180
15	15.50	0.12		0.16			0.016	0.030
16	16.00	0.00		0.00			0.000	0.600
17	22.00	0.20		0.09			0.059	0.050
18	22.50	0.00		0.00			0.000	0.078
19	23.00	0.31		0.00		•	0.000	1.785
20	31.50	0.11		0.02		•	0.011	0.083
21	33.00	0.00		0.00	·		0.000	0.162
22	35.70	0.12		0.36			0.194	0.378
23	42.00	0.00		0.00			0.000	0.000
NOTES:					RESULTS:	Q (m3/s)	0.3	316
						A(m2)	5.	38
						B(m)	42	2.0

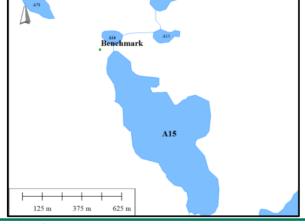
A3.0 LAKE A12 & NORTHEAST OUTLET (STREAM A12-A77)

Parameter	Value	Note
Drainage Area (km²)	42.4	Based on DEM (PhotoSat 2015)
Bankfull Width (m)	45	Measured in the field, based on vegetation
Max. Bankfull Depth (m)	0.45	Measured in the field, based on vegetation
Wetted Width (m)	16.8	Measured in the field on 6 August 2015
Max. Wetted Depth (m)	0.39	Measured in the field on 6 August 2015
Channel Length (km)	0.12	Measured from CanVec data
Outlet Channel Slope (m/m)	0.020	Average slope, based on DEM (PhotoSat 2015)
Bed Material	Boulders, cobbles	
Bank Material	Boulders, cobbles, org	anics
Bank Vegetation	Grass, bushes	
Benchmark Coordinates	N/A	NAD83 Zone 14
Logger/ Staff Gauge Coordinates	N/A	NADOS ZOTIE 14
Comment	Poorly defined braid-lik calculation sheets and	te boulder channels. Cross-sectional data are available in discharge Section 3.3.

Lake A12.

6 August 2015. Upstream view from Lake A76 to Lake A12 (south).

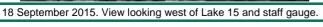
6 August 2015. Upstream view at Lake A12 to A77 outlet (south).



	0	PEN WATER DISCH	ARGE CALCULA	TION SPREADSHEE	Т			
Project Name, Number:		Amaruq - Trip 2			Date		06-Aug-	15
Waterbody:		A12			Start Time		11:20	
Crossing ID:		A12-A77			End Time		11:45	
LDB UTM L	ocation		Survey		Datalogger S	N:		
East	602772	BM_read			Transducer S	N:		
North	7256632	WL_read			Meter Type/S	N:	Marsh M	cBirney
Elevation, Zone	14W	WL_Elev			Crew:	JRL, JN		
STATION	DISTANCE		V	elocity	Optio	nal		
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLE O	F FLOW	Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)		(m3/s)	(m2)
1	1.60	0.00		0.00				0.011
2	1.90	0.07		0.13			0.003	0.074
3	2.30	0.30		0.18			0.030	0.203
4	3.00	0.28		0.27			0.064	0.235
5	4.00	0.19		0.02			0.003	0.099
6	4.60	0.14		0.10			0.007	0.052
7	5.00	0.12		0.02			0.003	0.120
8	7.00	0.00		0.00			0.000	0.000
9	7.01	0.00		0.00			0.000	0.000
10	10.00	0.00		0.00			0.000	0.002
11	10.01	0.36		0.11			0.010	0.176
12	10.50	0.36		0.11			0.010	0.002
13	10.51	0.12		0.11			0.003	0.047
14	10.90	0.12		0.04			0.001	0.001
15	10.91	0.00		0.00	, and the second		0.000	0.000
NOTES:		•		•	RESULTS:	Q (m3/s)	0.1	33
						A(m2)	1.	02
						B(m)	9	.3

A4.0 LAKE A15 & OUTLET (STREAM A15-A14)

Parameter	Value	Note				
Drainage Area (km²)	40.8	Based on DEM (PhotoSat 2015)				
Bankfull Width (m)	100	Measured in the field, based on vegetation				
Max. Bankfull Depth (m)	0.95	Measured in the field, based on vegetation				
Wetted Width (m)	87.7	Measured in the field on 15 June 2015				
Max. Wetted Depth (m)	0.55	Measured in the field on 15 June 2015				
Channel Length (km)	0.35	Measured from CanVec data				
Outlet Channel Slope (m/m)	0.002	Average slope, based on DEM (PhotoSat 2015)				
Bed Material	Boulders, cobbles					
Bank Material	Boulders, cobbles, org	ganics				
Bank Vegetation	Grass					
Benchmark Coordinates	603366 m E 7254484 m N, 153.67 masl	NAD83 Zone 14				
Logger/ Staff Gauge Coordinates	603151 m E 7255313 m N]				
Comment	Poorly defined boulder channel. During spring freshet, Lake A14 and Lake A15 have similar water elevations and may form one lake. Discharges were measured between Lake A14 and Lake A13. Cross-sectional data are available in discharge calculation sheets and Section 3.3.					



Lake A14: Benchmark location.

13 June 2015. View looking west of Lake A15 and staff gauge.

4 August 2015. Upstream view of the watercourse (west).

13 June 2015. Downstream view of the watercourse (east).

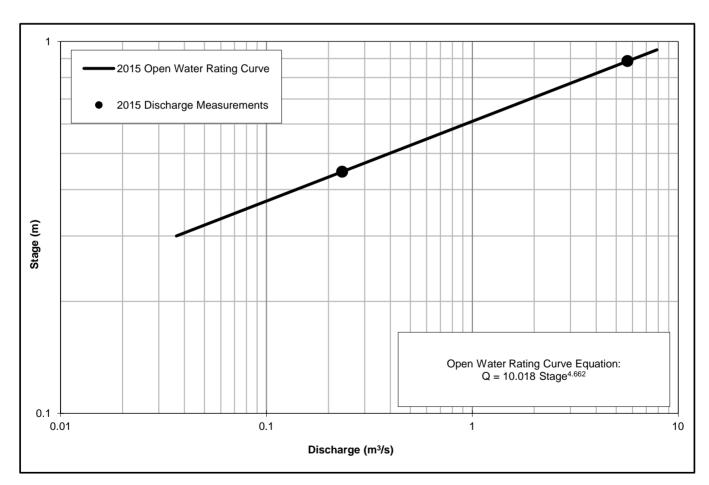


Figure 2: 2015 Stage-Discharge Rating Curve (Lake A15)

Lake A15 - 2015

MEAN DAILY DISCHARGE (m³/s)

DATE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	-	-	-	-	-	-	1.68	0.29	0.00	-	-	-
2	-	-	-	-	-	-	1.55	0.26	0.00	-	-	-
3	-	-	-	-	-	-	1.48	0.24	0.00	-	-	-
4	-	-	-	-	-	-	1.36	0.22	0.00	-	-	-
5	-	-	-	-	-	-	1.29	0.20	0.00	-	-	-
6	-	-	-	-	-	-	1.16	0.18	0.00	-	-	-
7	-	-	-	-	-	-	1.10	0.16	0.00	-	-	-
8	-	-	-	-	-	-	1.06	0.14	0.00	-	-	-
9	-	-	-	-	-	-	1.04	0.13	0.00	-	-	-
10	-	-	-	-	-	-	1.09	0.11	0.00	-	-	-
11	-	-	-	-	-	-	1.02	0.10	0.00	-	-	-
12	-	-	-	-	-	-	0.96	0.08	0.00	-	-	-
13	-	-	-	-	-	5.01 P	0.94	0.07	0.00	-	-	-
14	-	-	-	-	-	3.52	0.90	0.06	0.00	-	-	-
15	-	-	-	-	-	5.68	0.84	0.06	0.01	-	-	-
16	-	-	-	-	-	6.30	0.78	0.05	0.01	-	-	-
17	-	-	-	-	-	5.38	0.73	0.04	0.01	-	-	-
18	-	-	-	-	-	4.54	0.70	0.03	0.01 P	-	-	-
19	-	-	-	-	-	3.93	0.64	0.03	-	-	-	-
20	-	-	-	-	-	3.53	0.60	0.02	-	-	-	-
21	-	-	-	-	-	3.26	0.57	0.02	-	-	-	-
22	-	-	-	-	-	3.11	0.53	0.02	-	-	-	-
23	-	-	-	-	-	2.92	0.50	0.01	-	-	-	-
24	-	-	-	-	-	2.72	0.46	0.01	-	-	-	-
25	-	-	-	-	-	2.50	0.43	0.01	-	-	-	-
26	-	-	-	-	-	2.43	0.39	0.01	-	-	-	-
27	-	-	-	-	-	2.33	0.36	0.01	-	-	-	-
28	-	-	-	-	-	2.14	0.34	0.01	-	-	-	-
29	-	-	-	-	-	1.97	0.31	0.01	-	-	-	-
30	-	-	-	-	-	1.83	0.30	0.00	-	-	-	-
31	-	-	-	-	-	-	0.31	0.00	-	-	-	-
MIN	-	-	-	-	-	1.825	0.303	0.004	0.001	-	-	-
MEAN	-	-	-	-	-	3.506	0.821	0.083	0.003	-	-	-
MAX	-	-	-	-	-	6.296	1.685	0.286	0.010	-	-	-

NOTES: P - PARTIAL DAILY AVERAGE

Water Yield (m³) = 7,878,483 5,452,441 2,197,845 222,881 5,316 Water Yield (mm) = 193.1 69% 28% 3% 0.05%

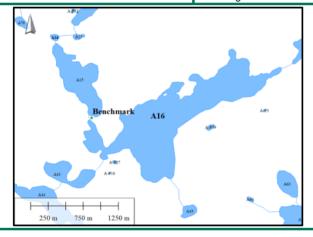
Lake A15 - 2015

MEAN DAILY WATER SURFACE ELEVATION (masl) BASED ON BENCHMARK ELEVATION 155.17 masl

DATE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	-	-	-	-	-	-	151.882	151.666	151.379	-	-	-
2	-	-	-	-	-	-	151.870	151.657	151.380	-	-	-
3	-	-	-	-	-	-	151.863	151.647	151.377	-	-	-
4	-	-	-	-	-	-	151.851	151.642	151.372	-	-	-
5	-	-	-	-	-	-	151.844	151.634	151.367	-	-	-
6	-	-	-	-	-	-	151.830	151.624	151.361	-	-	-
7	-	-	-	-	-	-	151.823	151.613	151.355	-	-	-
8	-	-	-	-	-	-	151.818	151.600	151.347	-	-	-
9	-	-	-	-	-	-	151.816	151.593	151.341	-	-	-
10	-	-	-	-	-	-	151.821	151.583	151.335	-	-	-
11	-	-	-	-	-	-	151.812	151.572	151.328	-	-	-
12	-	-	-	-	-	-	151.805	151.550	151.340	-	-	-
13	-	-	-	-	-	152.061 P	151.802	151.547	151.368	-	-	-
14	-	-	-	-	-	151.999	151.797	151.539	151.386	-	-	-
15	-	-	-	-	-	152.084	151.787	151.528	151.398	-	-	-
16	-	-	-	-	-	152.105	151.778	151.514	151.409	-	-	-
17	-	-	-	-	-	152.075	151.771	151.502	151.423	-	-	-
18	-	-	-	-	-	152.044	151.764	151.492	151.428 P	-	-	-
19	-	-	-	-	-	152.018	151.755	151.482	-	-	-	-
20	-	-	-	-	-	151.999	151.747	151.472	-	-	-	-
21	-	-	-	-	-	151.986	151.740	151.462	-	-	-	-
22	-	-	-	-	-	151.978	151.732	151.451	-	-	-	-
23	-	-	-	-	-	151.968	151.725	151.442	-	-	-	-
24	-	-	-	-	-	151.956	151.717	151.434	-	-	-	-
25	-	-	-	-	-	151.943	151.708	151.425	-	-	-	-
26	-	-	-	-	-	151.938	151.697	151.419	-	-	-	-
27	-	-	-	-	-	151.931	151.690	151.413	-	-	-	-
28	-	-	-	-	-	151.918	151.683	151.405	-	-	-	-
29	-	-	-	-	-	151.905	151.676	151.400	-	-	-	-
30	-	-	-	-	-	151.894	151.672	151.395	-	-	-	-
31	-	-	-	-	-	-	151.675	151.385	-	-	-	-
MIN	-	_	_	<u>-</u>	_	151.894	151.672	151.385	151.328	_	_	_
MEAN	-	_	_	-	-	151.983	151.773	151.519	151.372	_	-	_
MAX	_	_	_	_	_	152.105	151.882	151.666	151.428	_	_	_
1717 1/1						102.100	101.002	101.000	101.720			

NOTES: P - PARTIAL DAILY AVERAGE

	0	PEN WATER DISCH	IARGE CALCULAT	TION SPREADSHEE	Т			
Project Name, Number:		1524321 - Amaruq	Date		15-Jun-1	5		
Waterbody:		A15			Start Time		14:10	
Crossing ID:		A14-A13			End Time		1520	
LDB UTM L	ocation	Survey		Datalogger Si	N:			
East	603046	BM_read			Transducer S			
North	7255689	WL read			Meter Type/S		Swoffer	
Elevation, Zone	14W	WL Elev			Crew:	CJ, JRL		
STATION	DISTANCE	***E_E.IO*		'elocity	Optio			
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLE O		Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)		(m3/s)	(m2)
1	0.00	0.00	(11/5)	0.00	(1)		(1113/3)	0.036
2				0.00			0.028	0.036
3	0.60	0.12 0.24						
4	1.70 3.25	0.24		0.10 0.03			0.032	0.341 0.320
							0.009	
5	4.85	0.20		0.01			0.003	0.566
6	8.75	0.09		0.04			0.011	0.341
7	10.95	0.22		0.00			0.000	0.851
8	15.55	0.15		0.25			0.111	0.156
9	16.85	0.09		0.16			0.023	0.314
10	18.75	0.24		0.09			0.029	0.136
11	19.55	0.10		0.17			0.015	0.145
12	20.55	0.19		0.07			0.015	0.202
13	21.85	0.12		0.12			0.017	0.175
14	22.85	0.23		0.23			0.071	0.408
15	24.55	0.25		0.13			0.057	0.621
16	26.35	0.44		0.08			0.062	0.544
17	28.05	0.20		0.09			0.026	0.264
18	29.25	0.24		0.08			0.030	0.527
19	31.20	0.30		0.34			0.186	0.476
20	32.90	0.26		0.36			0.220	0.990
21	35.90	0.40		0.06			0.058	0.657
22	37.70	0.33		0.20			0.139	0.696
23	40.10	0.25		0.46			0.270	0.518
24	42.40	0.20		0.36			0.119	0.215
25	43.40	0.23		0.30			0.090	0.248
26	45.00	0.08		0.45			0.049	0.280
27	46.10	0.43		0.23			0.168	1.024
28	48.40	0.46		0.21			0.164	0.440
29	49.50	0.34		0.37			0.157	0.553
30	50.90	0.45		0.37			0.241	0.563
31	52.40	0.30		0.25	1		0.101	0.510
32	53.60	0.55		0.56			0.755	1.628
33	57.30	0.33		0.33			0.283	0.510
34	58.80	0.35		0.65	1		0.432	0.713
35	61.10	0.33		0.68			0.376	0.576
36	62.90	0.27		0.30	1		0.266	1.155
37	65.90	0.40		0.35	1		0.350	0.720
38	67.90	0.40		0.26	1		0.330	0.720
39	69.40	0.32		0.26	1		0.146	0.333
40	70.60	0.16		0.32	1		0.012	0.130
41	71.60	0.10		0.32			0.036	0.130
			-		ond ma!-	ohonno!		
42	75.85	0.00	-	0.00	end main		0.000	0.000
43	76.00	0.00		0.00	start side	criannei	0.000	0.028
44	76.80	0.07		0.25			0.025	0.221
45	78.90	0.14		0.48			0.155	0.275
46	81.40	0.08		0.46			0.155	0.325
47	87.30	0.03		0.42			0.040	0.006
48	87.70	0.00		0.00	4		0.000	0.000
NOTES:	1				RESULTS:	Q (m3/s)		S80
	1					A(m2)	20	.35
	1					B(m)	87	7.7



		PEN WATER DISCI	HARGE CALCULA	TION SPREADSHEE	Τ			
Project Name, Number	r:	Amaruq - trip 2	Date		04-Aug-15			
Waterbody:		A15			Start Time		11:45	
Crossing ID:		A14-A13			End Time		12:10	
LDB UTN	I Location		Survey		Datalogger S			
East	6030112	BM_read			Transducer S	N:		
North	7255650	WL_read	WL_read			Meter Type/SN:		
Elevation, Zone	14W	WL_Elev			Crew:	JRL, JN		
STATION	DISTANCE		V	/elocity	Optio	nal		
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLE O	F FLOW	Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)		(m3/s)	(m2)
1	0.00	0.00		0.00				0.885
2	35.40	0.05		0.00			0.000	0.015
3	35.50	0.25		0.06			0.002	0.013
4	35.60	0.00		0.00			0.000	0.000
5	36.10	0.00		0.00			0.000	0.000
6	36.10	0.20		0.00			0.000	0.020
7	36.20	0.20		0.00			0.000	0.000
8	36.20	0.00		0.00			0.000	0.000
9	36.80	0.00		0.00			0.000	0.020
10	37.00	0.20		0.06			0.002	0.020
11	37.20	0.00		0.00			0.000	0.000
12	37.90	0.00		0.00			0.000	0.009
13	38.00	0.17		0.04			0.004	0.185
14	39.00	0.20		0.04			0.008	0.210
15	40.00	0.22		0.07			0.015	0.170
16	41.00	0.12		0.04			0.003	0.012
17	41.20	0.00		0.00			0.000	0.000
18	41.70	0.00		0.00			0.000	0.024
19	42.00	0.16		0.01			0.001	0.140
20	43.00	0.12		0.10			0.009	0.030
21	43.50	0.00		0.00			0.000	0.000
22	44.40	0.00		0.00			0.000	0.105
23	45.00	0.35		0.05			0.007	0.035
24	45.20	0.00		0.00			0.000	0.000
25	46.80	0.00		0.00			0.000	0.021
26	47.00	0.21		0.06			0.003	0.021
27	47.20	0.00		0.00			0.000	0.000
28	47.50	0.00		0.00			0.000	0.053
29	48.00	0.21		0.10			0.016	0.305
30	49.00	0.40		0.05			0.020	0.345
31	50.00	0.29		0.05			0.015	0.375
32	51.00	0.46		0.11	 		0.051	0.380
33	52.00	0.30		0.14			0.032	0.075
34	52.50	0.00		0.00	_		0.000	0.000
35	53.60	0.00		0.00			0.000	0.076
36	54.00	0.38		0.10	_		0.011	0.043
37	54.20	0.05		0.14	_		0.004	0.144
38	55.00	0.31		0.03			0.008	0.300
39	56.00	0.29		0.05			0.015	0.180
40	57.00	0.07		0.11			0.005	0.010
41	57.30	0.00		0.00	+		0.000	0.000
42	58.00	0.00		0.00	+		0.000	0.003
43	58.10	0.06		0.06	+		0.000	0.072
44	58.90	0.12		0.09	+		0.005	0.006
45	59.00	0.00		0.00	+		0.000	0.000
46	59.01	0.05		0.00	+		0.000	0.650
47	85.01	0.00		0.00	DEGIU TO	0 (0()	0.000	0.000
NOTES:	First and last row app	proximated. Depth <	ocm.		RESULTS:	Q (m3/s)		233
	1					A(m2)		95
	1				1	B(m)	85	5.0

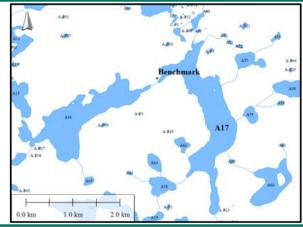
A5.0 LAKE A16 (MAMMOTH LAKE) & OUTLET (STREAM A16-A15)

Parameter	Value	Note				
Drainage Area (km²)	38.7	Based on DEM (PhotoSat 2015)				
Bankfull Width (m)	45	Measured in the field, based on vegetation				
Max. Bankfull Depth (m)	0.95	Measured in the field, based on vegetation				
Wetted Width (m)	39.3	Measured in the field on 13 June 2015				
Max. Wetted Depth (m)	0.48	Measured in the field on 13 June 2015				
Channel Length (km)	0.07	Measured from CanVec data				
Outlet Channel Slope (m/m)	0.009	Average slope, measured in the field				
Bed Material	Boulders, cobbles	Boulders, cobbles				
Bank Material	Boulders, cobbles, org	ganics				
Bank Vegetation	Grass					
Benchmark Coordinates	602765 m E, 7255549 m N, 155.17 masl	NAD83 Zone 14				
Logger/ Staff Gauge Coordinates	N/A	1				
Comment	•	Poorly defined boulder channel. Subsurface flow present. Cross-sectional data are available in discharge calculation sheets and Section 3.3.				

18 September 2015. View looking southeast towards Lake A16 and outlet.

13 June 2015. Upstream view of the watercourse (south).

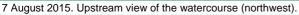
18 September 2015. Downstream view from watercourse towards Lake A15 (northeast).



	OPEN WATER DISCHARGE CALCULATION SPREADSHEET							
Project Name, Number:		154321			Date		13-Jun-1	5
Waterbody:		A16	Start Time		1245			
Crossing ID:		A16-A15	End Time		1305			
LDB UTM Lo	ocation		Survey		Datalogger Si	N:		
East	6023386	BM_read			Transducer SN:			
North	7254474	WL_read			Meter Type/S	N:	Swoffer	
Elevation, Zone	14W	WL_Elev			Crew:	CJ, JRL		
STATION	DISTANCE		V	elocity elocity	Optio	nal		
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLĖ OI	F FLOW	Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)		(m3/s)	(m2)
1	0.00	0.00	, ,	0.00	` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `		, ,	0.052
2	0.80	0.13		0.05			0.006	0.225
3	1.80	0.32		0.20			0.256	1.645
4	8.80	0.15		0.11			0.067	0.220
5	9.90	0.25		0.22			0.099	0.638
6	12.40	0.26		0.40			0.182	0.210
7	13.40	0.16		0.15			0.029	0.196
8	14.80	0.12		0.42			0.055	0.124
9	15.60	0.19		0.55			0.157	0.297
10	17.80	0.08		0.40			0.054	0.222
11	19.00	0.29		0.00			0.000	0.308
12	20.40	0.15		0.35			0.118	0.496
13	23.50	0.17		0.40			0.221	0.561
14	26.90	0.16		0.36			0.282	1.408
15	33.30	0.28		0.40			0.423	0.236
16	34.45	0.13		0.42			0.055	0.157
17	35.30	0.24		0.30			0.031	0.000
18	35.30	0.09		0.11			0.007	0.188
19	36.80	0.16		0.05			0.028	0.440
20	42.30	0.00		0.00			0.000	0.000
NOTES:					RESULTS:	Q (m3/s)	2.0	70
						A(m2)	7.	62
						B(m)	42	2.3

A6.0 LAKE A17 (WHALE TAIL LAKE) & OUTLET (STREAM A17-A16)

Parameter	Value	Note				
Drainage Area (km²)	28.1	Based on DEM (PhotoSat 2015)				
Bankfull Width (m)	75	Measured in the field, based on vegetation				
Max. Bankfull Depth (m)	0.80	Measured in the field, based on vegetation				
Wetted Width (m)	75.3	Measured in the field on 14 June 2015				
Max. Wetted Depth (m)	0.80	Measured in the field on 14 June 2015				
Channel Length (km)	0.50	Measured from CanVec data				
Outlet Channel Slope (m/m)	0.002	Average slope, measured with DEM				
Bed Material	Boulders, cobbles					
Bank Material	Boulders, cobbles, org	anics				
Bank Vegetation	Grass					
Benchmark Coordinates	606209 m E, 7255347 m N, 156.35 masl	NAD83 Zone 14				
Logger/ Staff Gauge Coordinates	606646 m E, 7255513 m N					
Comment		Poorly defined boulder channel. Cross-sectional data are available in discharge calculation sheets and Section 3.3.				



14 June 2015. View looking north at Lake A17.

14 June 2015. Downstream view of the watercourse (southwest).

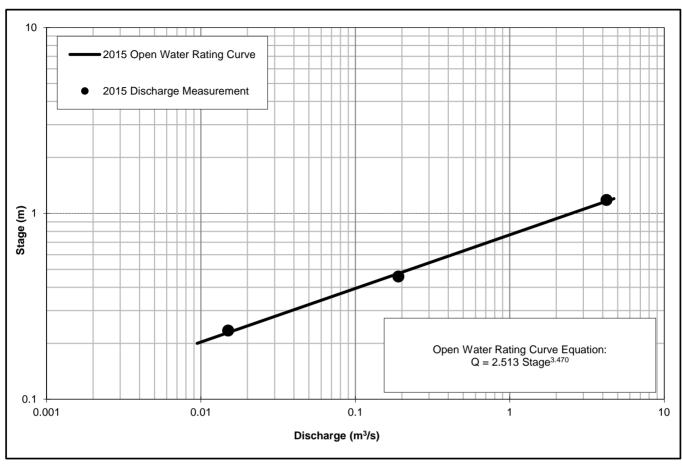


Figure 3: 2015 Stage-Discharge Rating Curve (Lake A17)

Lake A17 - 2015

MEAN DAILY DISCHARGE (m³/s)

DATE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	-	-	-	-	-	-	0.72	0.23	0.04	-	-	-
2	_	-	<u>-</u>	_	_	-	0.69	0.21	0.04	_	-	_
3	_	-	<u>-</u>	_	_	-	0.66	0.20	0.04	_	-	_
4	_	-	-	-	-	-	0.62	0.19	0.04	-	-	_
5	-	-	-	-	-	-	0.61	0.18	0.03	-	-	_
6	-	-	-	-	-	-	0.59	0.17	0.03	-	-	-
7	-	-	-	-	-	-	0.58	0.16	0.03	-	-	-
8	-	-	-	-	-	-	0.56	0.16	0.03	-	-	-
9	-	-	-	-	-	-	0.55	0.15	0.03	-	-	-
10	-	-	-	-	-	-	0.56	0.14	0.02	-	-	-
11	-	-	-	-	-	-	0.54	0.13	0.02	-	-	-
12	-	-	-	-	-	1.26 P	0.53	0.11	0.03	-	-	-
13	-	-	-	-	-	2.04	0.52	0.11	0.04	-	-	-
14	-	-	-	-	-	3.47	0.49	0.11	0.04	-	-	-
15	-	-	-	-	-	3.56	0.46	0.10	0.05	-	-	-
16	-	-	-	-	-	2.82	0.44	0.09	0.05 P	-	-	-
17	-	-	-	-	-	2.26	0.43	0.08	-	-	-	-
18	-	-	-	-	-	1.98	0.41	0.08	-	-	-	-
19	-	-	-	-	-	1.88	0.39	0.08	-	-	-	-
20	-	-	-	-	-	1.67	0.38	0.08	-	-	-	-
21	-	-	-	-	-	1.62	0.36	0.07	-	-	-	-
22	-	-	-	-	-	1.45	0.35	0.07	-	-	-	-
23	-	-	-	-	-	1.26	0.34	0.06	-	-	-	-
24	-	-	-	-	-	1.12	0.32	0.06	-	-	-	-
25	-	-	-	-	-	1.02	0.30	0.06	-	-	-	-
26	-	-	-	-	-	0.98	0.28	0.05	-	-	-	-
27	-	-	-	-	-	0.91	0.27	0.05	-	-	-	-
28	-	-	-	-	-	0.86	0.26	0.05	-	-	-	-
29	-	-	-	-	-	0.81	0.25	0.05	-	-	-	-
30	-	-	-	-	-	0.77	0.25	0.04	-	-	-	-
31	-	-	-	-	-	-	0.24	0.04	-	-	-	-
MIN	-	-	-	-	-	0.768	0.241	0.042	0.023	-	-	-
MEAN	-	-	-	-	-	1.671	0.450	0.108	0.035	-	-	-
MAX	-	-	-	-	-	3.563	0.723	0.226	0.049	-	-	-

NOTES: P - PARTIAL DAILY AVERAGE

Water Yield (m³) = 4,285,347 2,742,373 1,205,254 289,947 47,773 Water Yield (mm) = 152.3 64% 28% 7% 1%

Lake A17 - 2015

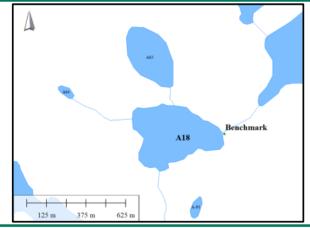
MEAN DAILY WATER SURFACE ELEVATION (masl) BASED ON BENCHMARK ELEVATION 156.35 masl

DATE	1441	EED	MAD	4.00				4110	055	007	NOV	DEO
DATE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	-	-	-	-	-	-	152.898	152.699	152.502	-	-	-
2	-	-	-	-	-	-	152.888	152.688	152.500	-	-	-
3	-	-	-	-	-	-	152.880	152.681	152.498	-	-	-
4	-	-	-	-	-	-	152.869	152.676	152.493	-	-	-
5	-	-	-	-	-	-	152.863	152.670	152.489	-	-	-
6	-	-	-	-	-	-	152.860	152.663	152.483	-	-	-
7	-	-	-	-	-	-	152.854	152.656	152.479	-	-	-
8	-	-	-	-	-	-	152.848	152.650	152.472	-	-	-
9	-	-	-	-	-	-	152.846	152.640	152.467	-	-	-
10	-	-	-	-	-	-	152.848	152.634	152.463	-	-	-
11	-	-	-	-	-	-	152.843	152.626	152.457	-	-	-
12	-	-	-	-	-	153.018 P	152.840	152.611	152.479	-	-	-
13	-	-	-	-	-	153.138	152.834	152.608	152.498	-	-	-
14	-	-	-	-	-	153.296	152.825	152.602	152.508	-	-	-
15	-	-	-	-	-	153.305	152.815	152.595	152.517	-	-	-
16	-	-	-	-	-	153.233	152.806	152.585	152.522 P	-	-	-
17	-	-	-	-	-	153.169	152.801	152.577	-	-	-	-
18	-	-	-	-	-	153.133	152.793	152.572	-	-	-	-
19	-	-	-	-	-	153.119	152.784	152.568	-	-	-	-
20	_	-	-	-	_	153.089	152.778	152.566	-	-	_	_
21	_	_	_	-	_	153.081	152.771	152.557	-	-	_	_
22	_	_	_	-	_	153.054	152.767	152.549	-	-	_	_
23	_	_	_	_	_	153.020	152.761	152.544	_	_	_	_
24	_	_	_	_	_	152.992	152.752	152.538	-	_	_	_
25	_	_	_	_	_	152.970	152.739	152.533	_	_	_	_
26	_	_	_	_	_	152.962	152.731	152.527	_	_	_	_
27	_	_	_	_	_	152.947	152.726	152.522	_	_	_	_
28	_	_	_	_	_	152.933	152.722	152.518	_	_	_	_
			_			152.933	152.722		_		_	
29	-	-	-	-	-			152.517	-	-	-	-
30	-	-	-	-	-	152.911	152.712	152.513	-	-	-	-
31	-	-	-	-	-	-	152.709	152.508	-	-	-	-
						450.00-	450 50-	450 50-	4=0.4==			
MIN	-	-	-	-	-	152.922	152.709	152.508	152.457	-	-	-
MEAN	-	-	-	-	-	153.060	152.803	152.593	152.489	-	-	-
MAX	-	-	-	-	-	153.305	152.898	152.699	152.522	-	-	-

NOTES: P - PARTIAL DAILY AVERAGE

	0	PEN WATER DISCH	HARGE CALCULA	TION SPREADSHEE	т			
Project Name, Number	:	Amaruq - 154321			Date		14-Jun-15	
Waterbody:		A17			Start Time		1538	
Crossing ID:		A17-A16			End Time		1613	
LDB UTM	Location				Datalogger SI	N:		
East	606273	BM_read			Transducer S	N:		
North	7255251	WL_read			Meter Type/S	N:	Swoffer	
Elevation, Zone	14W	WL_Elev			Crew:	CJ, JRL		
STATION	DISTANCE		V	/elocity	Optio	nal		
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLĖ OI		Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)		(m3/s)	(m2)
1	2.50	0.00	, ,	0.00			,	0.018
2	3.00	0.07		0.01			0.000	0.063
3	3.60	0.14		0.01			0.001	0.171
4	4.50	0.24		0.10			0.023	0.300
5	5.50	0.36		0.14			0.050	0.370
6	6.50	0.38		0.11			0.063	0.830
7	8.50	0.45		0.22			0.149	0.325
8	9.50	0.20		0.24			0.048	0.335
9	10.50	0.47		0.18			0.085	0.485
10	11.50	0.50		0.27			0.135	0.485
11	12.50	0.47		0.26			0.122	0.475
12	13.50	0.48		0.22			0.106	0.485
13	14.50	0.49		0.30			0.147	0.465
14	15.50	0.44		0.38			0.167	0.450
15	16.50	0.46		0.28			0.129	0.530
16	17.50	0.60		0.34			0.204	0.620
17	18.50	0.64		0.26			0.166	0.685
18	19.50	0.73		0.31			0.226	0.720
19	20.50	0.71		0.35			0.249	0.685
20	21.50	0.66		0.36			0.238	0.705
21	22.50	0.75		0.31			0.233	0.745
22	23.50	0.74		0.31			0.229	0.720
23	24.50	0.70		0.31			0.217	0.715
24	25.50	0.73		0.41			0.299	0.715
25	26.50	0.70		0.33			0.231	0.665
26	27.50	0.63		0.45			0.284	0.615
27	28.50	0.60		0.38			0.228	0.585
28	29.50	0.57		0.36			0.205	0.555
29	30.50	0.54		0.00			0.000	0.135
30	31.00	0.00		0.00			0.000	0.000
NOTES:	000	0.00	1	0.00	RESULTS:	Q (m3/s)		233
1.0.20.						A(m2)		.65
						B(m)		3.5
					1	_ D(111)	20	

	0	PEN WATER DISCH	IARGE CALCULAT	TION SPREADSHEE	Т			
Project Name, Number:		Amaruq - Trip 2			Date		07-Aug-15	
Waterbody:		A17 (Whale Tail La	ake)		Start Time		8:35	
Crossing ID:		A17-A15	,		End Time		8:55	
LDB UTM L	ocation		Survey		Datalogger S	N:		
East	606301	BM read			Transducer S	N:		
North	7255289	WL_read			Meter Type/S	N:	Marsh M	lcBirney
Elevation, Zone	14W	WL Elev			Crew:	JRL, JN	•	•
STATION	DISTANCE		V	elocity	Optio	nal		
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLE O		Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)		(m3/s)	(m2)
1	0.00	0.05	(/	0.00			(/	0.240
2	3.00	0.11		0.01			0.003	0.364
3	5.80	0.15		0.01			0.005	0.624
4	9.00	0.24		0.01			0.007	0.870
5	12.00	0.34		0.00			0.000	0.810
6	15.00	0.20		0.00			0.000	0.528
7	17.40	0.24		0.01			0.007	0.576
8	21.00	0.08		0.00			0.000	0.120
9	24.00	0.00		0.00			0.000	0.065
10	25.30	0.10		0.00			0.000	0.323
11	27.00	0.28		0.01			0.007	0.555
12	30.00	0.09		0.00			0.000	0.451
13	32.65	0.25		0.00			0.000	0.504
14	34.75	0.23		0.00			0.000	0.570
15	36.75	0.34		0.01			0.009	1.500
16	39.75	0.66		0.02			0.040	1.845
17	42.75	0.57		0.01			0.017	1.470
18	45.75	0.41		0.05			0.062	1.440
19	48.75	0.55		0.01			0.017	1.335
20	51.75	0.34		0.00			0.000	0.810
21	54.75	0.20		0.03			0.018	0.450
22	57.75	0.10		0.00			0.000	0.450
23	62.25	0.10		0.00			0.000	3.113
NOTES:					RESULTS:	Q (m3/s)	0.1	90
						A(m2)	19	.01
						B(m)	62	2.3



	0	PEN WATER DISCH	ARGE CALCULAT	TION SPREADSHEE	Т			
Project Name, Numbe	r:	1524321 - Amaruq	Trip 3		Date		16-Sep-1	5
Waterbody:		A17	•		Start Time	17:00		
Crossing ID:		A17-A16			End Time		17:25	
	// Location		Survey		Datalogger S	N:		
East	606189	BM_read			Transducer S	N:		
North	7255256	WL_read			Meter Type/S	N:		
Elevation, Zone	14W	WL_Elev			Crew:	JRL, DC		
STATION	DISTANCE		V	elocity	Optio	nal		
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLĖ O	F FLOW	Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)		(m3/s)	(m2)
1	0.00	0.00	` '	0.00	`			0.012
2	0.30	0.08		0.04			0.001	0.013
3	0.50	0.05		0.05			0.001	0.005
4	0.70	0.00		0.00			0.000	0.002
5	0.90	0.02		0.02			0.000	0.001
6	1.00	0.00		0.00			0.000	0.000
7	1.00	0.05		0.10			0.001	0.020
8	1.40	0.05		0.10			0.001	0.000
9	1.41	0.00		0.00			0.000	0.000
10	1.41	0.06		0.09			0.001	0.030
11	1.91	0.06		0.09			0.001	0.000
12	1.92	0.00		0.00			0.000	0.000
13	1.92	0.06		0.04			0.000	0.018
14	2.22	0.06		0.04			0.000	0.000
15	2.23	0.00		0.00			0.000	0.000
16	2.23	0.10		0.09			0.001	0.030
17	2.53	0.10		0.09			0.001	0.000
18	2.54	0.00		0.00			0.000	0.000
19	2.54	0.10		0.06			0.001	0.040
20	2.94	0.10		0.06			0.001	0.001
21	2.95	0.00	-	0.00			0.000	0.000
NOTES:		ent was separated int			RESULTS:	Q (m3/s)	0.0	12
	some cases, sections					A(m2)	0.	17
	Therefore, the distant measurement.	ce from LDB, A and B	values are not app	olicable to this				
	20-40% of flow not m	easurable between bo	oulders.			B(m)	3	.0

A7.0 LAKE A18 & OUTLET (STREAM A18-A17)

Parameter	Value	Note			
Drainage Area (km²)	8.9	Based on DEM (PhotoSat 2015)			
Bankfull Width (m)	45	Measured in the field, based on vegetation			
Max. Bankfull Depth (m)	0.6	Measured in the field, based on vegetation			
Wetted Width (m)	50	Measured in the field on 14 June 2015			
Max. Wetted Depth (m)	0.56	Measured in the field on 14 June 2015			
Channel Length (km)	0.35	Measured from Canvec data			
Outlet Channel Slope (m/m)	0.004	Average slope, measured in the field			
Bed Material	Boulders, cobbles				
Bank Material	Boulders, cobbles, org	ganics			
Bank Vegetation	Grass, bushes				
Benchmark Coordinates	606615 m E, 7253064 m N, 154.60 masl	NAD83 Zone 14			
Logger/ Staff Gauge Coordinates	606599 m E, 7253067 m N				
Comment	Poorly defined boulder channel. Cross-sectional data are available in discharge calculation sheets and Section 3.3.				

17 September 2015. View looking east at Lake A18.

7 August 2015. Upstream view of the watercourse and Lake (southwest).

16 September 2015. Downstream view of the watercourse (north).

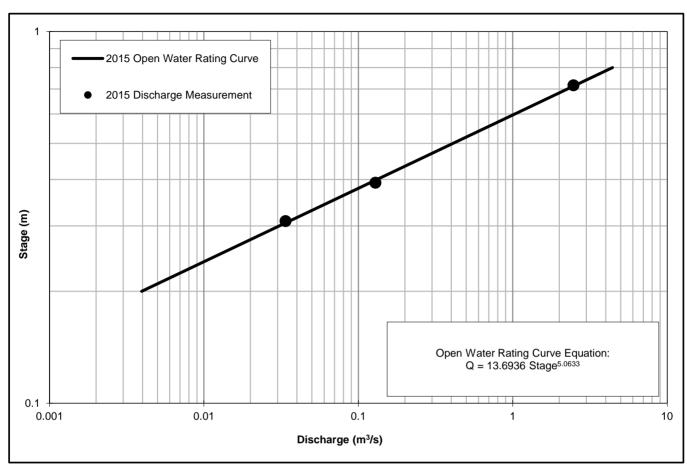


Figure 4: 2015 Stage-Discharge Rating Curve (Lake A18)

Lake A18 - 2015

MEAN DAILY DISCHARGE (m³/s)

DATE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
1	-	-	-	-	-	-	0.36	0.11	0.01	-	-	-
2	-	-	-	-	-	-	0.34	0.10	0.01	-	-	-
3	-	-	-	-	-	-	0.33	0.10	0.01	-	-	-
4	-	-	-	-	-	-	0.30	0.10	0.01	-	-	-
5	-	-	-	-	-	-	0.29	0.10	0.01	-	-	-
6	-	-	-	-	-	-	0.29	0.10	0.01	-	-	-
7	-	-	-	-	-	-	0.28	0.09	0.01	-	-	-
8	-	-	-	-	-	-	0.27	0.08	0.01	-	-	-
9	-	-	-	-	-	-	0.27	0.07	0.01	-	-	-
10	-	-	-	-	-	-	0.29	0.07	0.01	-	-	-
11	-	-	-	-	-	1.45 P	0.29	0.06	0.01	-	-	-
12	-	-	-	-	-	0.92	0.28	0.06	0.01	-	-	-
13	-	-	-	-	-	2.18	0.28	0.05	0.02	-	-	-
14	-	-	-	-	-	2.25	0.27	0.05	0.03	-	-	-
15	-	-	-	-	-	1.62	0.27	0.05	0.03 P	-	-	-
16	-	-	-	-	-	1.24	0.26	0.04	-	-	-	-
17	-	-	-	-	-	1.01	0.25	0.04	-	-	-	-
18	-	-	-	-	-	0.85	0.24	0.04	-	-	-	-
19	-	-	-	-	-	0.74	0.23	0.04	-	-	-	-
20	-	-	-	-	-	0.68	0.22	0.03	-	-	-	-
21	-	-	-	-	-	0.67	0.22	0.03	-	-	-	-
22	-	-	-	-	-	0.63	0.21	0.03	-	-	-	-
23	-	-	-	-	-	0.57	0.19	0.03	-	-	-	-
24	-	-	-	-	-	0.56	0.17	0.02	-	-	-	-
25	-	-	-	-	-	0.54	0.17	0.02	-	-	-	-
26	-	-	-	-	-	0.53	0.17	0.02	-	-	-	-
27	-	-	-	-	-	0.49	0.16	0.02	-	-	-	-
28	-	-	-	-	-	0.46	0.16	0.02	-	-	-	-
29	-	-	-	-	-	0.43	0.14	0.02	-	-	-	-
30	-	-	-	-	-	0.40	0.14	0.02	-	-	-	-
31	-	-	-	-	-	-	0.13	0.01	-	-	-	-
MIN	-	-	-	-	-	0.398	0.130	0.014	0.008	-	-	-
MEAN	-	-	-	-	-	0.911	0.240	0.052	0.015	-	-	-
MAX	-	-	-	-	-	2.249	0.362	0.115	0.029	-	-	-

NOTES: P - PARTIAL DAILY AVERAGE

Water Yield (m³) = 2,376,562 1,574,018 643,735 139,983 18,826 Water Yield (mm) = 267.2 66% 27% 6% 1%

Lake A18 - 2015

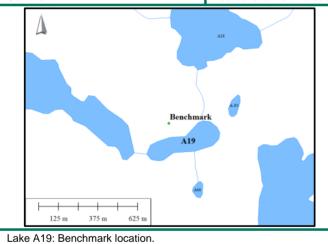
MEAN DAILY WATER SURFACE ELEVATION (masl) BASED ON BENCHMARK ELEVATION 154.60 masl

DATE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	-	-	-	-	-	-	153.988	153.889	153.757	-	-	-
2	-	-	-	-	-	-	153.981	153.882	153.758	-	-	-
3	-	-	-	-	-	-	153.978	153.880	153.757	-	-	-
4	-	-	-	-	-	-	153.970	153.880	153.753	-	-	-
5	-	-	-	-	-	-	153.967	153.880	153.751	-	-	-
6	-	-	-	-	-	-	153.967	153.876	153.747	-	-	-
7	-	-	-	-	-	-	153.963	153.869	153.742	-	-	-
8	-	-	-	-	-	-	153.959	153.861	153.738	-	-	-
9	-	-	-	-	-	-	153.961	153.854	153.734	-	-	-
10	-	-	-	-	-	-	153.968	153.852	153.731	-	-	-
11	-	-	-	-	-	154.142 P	153.966	153.844	153.727	-	-	-
12	-	-	-	-	-	154.086	153.965	153.837	153.751	-	-	-
13	-	-	-	-	-	154.183	153.964	153.834	153.787	-	-	-
14	-	-	-	-	-	154.199	153.962	153.829	153.793	-	-	-
15	-	-	-	-	-	154.155	153.959	153.825	153.797 P	-	-	-
16	-	-	-	-	-	154.122	153.957	153.819	-	-	-	-
17	-	-	-	-	-	154.098	153.954	153.815	-	-	-	-
18	-	-	-	-	-	154.078	153.949	153.812	-	-	-	-
19	-	-	-	-	-	154.062	153.945	153.808	-	-	-	-
20	-	-	-	-	-	154.053	153.944	153.803	-	-	-	-
21	-	-	-	-	-	154.051	153.941	153.798	-	-	-	-
22	-	-	-	-	-	154.045	153.937	153.794	-	-	-	-
23	-	-	-	-	-	154.034	153.930	153.791	-	-	-	-
24	-	-	-	-	-	154.031	153.920	153.786	-	-	-	-
25	-	-	-	-	-	154.029	153.919	153.782	-	-	-	-
26	-	-	-	-	-	154.027	153.919	153.778	-	-	-	-
27	-	-	-	-	-	154.018	153.916	153.775	-	-	-	-
28	-	-	-	-	-	154.011	153.913	153.772	-	-	-	-
29	-	-	-	-	-	154.005	153.907	153.768	-	-	-	-
30	-	-	-	-	-	153.997	153.904	153.765	-	-	-	-
31	-	-	-	-	-	-	153.898	153.755	-	-	-	-
MIN	-	-	-	-	-	153.997	153.898	153.755	153.727	-	-	-
MEAN	-	-	-	-	-	154.067	153.947	153.823	153.755	-	-	-
MAX	-	-	-	-	-	154.199	153.988	153.889	153.797	-	-	-

NOTES: P - PARTIAL DAILY AVERAGE

	0	PEN WATER DISCH	HARGE CALCULAT	TION SPREADSHEE	Т			
Project Name, Numbe	r:	Amaruq - 154321			Date		14-Jun-15	
Waterbody:		A18			Start Time		1148	
Crossing ID:		A18-A17			End Time		1213	
LDB UTN	/ Location		Survey		Datalogger S	N:		
East	606650	BM read			Transducer S			
North	7253107	WL_read			Meter Type/S	N:	Swoffer	
Elevation, Zone	14W	WL_Elev			Crew:	CJ, JRL	•	
STATION	DISTANCE		V	elocity	Optio	nal		
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLE O		Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)		(m3/s)	(m2)
1	3.00	0.00	` ′	0.00			, ,	0.072
2	3.60	0.24		0.20			0.055	0.519
3	5.30	0.37		0.12			0.062	0.309
4	6.40	0.19		0.10			0.034	0.442
5	8.85	0.17		0.08			0.027	0.256
6	10.40	0.16		0.23			0.056	0.263
7	11.90	0.19		0.34			0.126	0.648
8	14.30	0.35		0.65			0.489	0.599
9	16.20	0.28		0.44			0.253	0.649
10	18.40	0.31		0.50			0.357	0.768
11	20.80	0.33		0.16			0.092	0.302
12	21.90	0.22		0.41			0.153	0.621
13	24.20	0.32		0.30			0.163	0.308
14	25.30	0.24		0.10			0.037	0.340
15	27.30	0.10		0.37			0.085	0.533
16	29.90	0.31		0.21			0.153	0.536
17	32.00	0.20		0.16			0.077	0.581
18	34.70	0.23		0.19			0.098	0.450
19	36.50	0.27		0.14			0.089	0.725
20	39.40	0.23		0.10			0.054	0.387
21	41.20	0.20		0.04			0.011	0.185
22	42.20	0.17		0.01			0.003	0.196
23	44.50	0.00		0.00			0.000	0.000
NOTES:					RESULTS:	Q (m3/s)	2.4	175
						A(m2)	9.	69
						B(m)	41	1.5

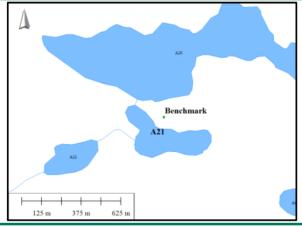
	0	PEN WATER DISCH	IARGE CALCULAT	TION SPREADSHEE	T			
Project Name, Numbe	r:	Amaruq - trip 2			Date		04-Aug-15	
Waterbody:		A18			Start Time		13:20	
Crossing ID:		A18-A17			End Time		13:45	
	// Location		Survey		Datalogger S	N:		
East	606637	BM_read			Transducer S	N:		
North	7253084	WL_read			Meter Type/S	N:	Marsh M	cBirney
Elevation, Zone	14W	WL_Elev			Crew:	JRL, JN		
STATION	DISTANCE		V	elocity	Optio	nal		
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLĖ OI	F FLOW	Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)		(m3/s)	(m2)
1	0.00	0.00	, ,	0.00	` '		` /	0.000
2	3.00	0.00		0.00			0.000	0.018
3	4.20	0.03		0.00			0.000	0.033
4	5.30	0.03		0.00			0.000	0.198
5	7.10	0.19		0.08			0.015	0.019
6	7.30	0		0.00			0.000	0.055
7	8.40	0.1		0.00			0.000	0.125
8	10.90	0		0.00			0.000	0.006
9	11.00	0.12		0.12			0.013	0.255
10	12.70	0.18		0.02			0.005	0.112
11	13.50	0.1		0.04			0.007	0.336
12	16.30	0.14		0.08			0.020	0.091
13	17.00	0.12		0.21			0.014	0.046
14	17.40	0.11		0.07			0.007	0.158
15	18.90	0.1		0.07			0.009	0.132
16	20.00	0.14		0.03			0.006	0.221
17	21.70	0.12		0.11			0.030	0.280
18	24.50	0.08		0.03			0.004	0.020
19	25.00	0		0.00			0.000	0.000
20	37.00	0.00		0.00			0.000	0.000
NOTES:		•	•		RESULTS:	Q (m3/s)	0.1	29
						A(m2)	2.	10
						B(m)	37	



Drainet Name North				TION SPREADSHEE	Date		16 00- 1	E
Project Name, Number	er:	1524321 - Amaruq T	пр 3				16-Sep-15	
Naterbody:		A18	Start Time		16:10			
Crossing ID:		A18-A17			End Time		16:20	
LDB UTM Location		Survey			Datalogger S			
East	606635	BM_read			Transducer S			
North	7253081	WL_read			Meter Type/S	N:		
Elevation, Zone	14W	WL_Elev			Crew:	JRL, DC		
STATION	DISTANCE		V	elocity elocity	Optio	nal		
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLE O	F FLOW	Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)		(m3/s)	(m2)
1	0.00	0.03		0.01				0.00
2	0.30	0.03		0.01			0.000	0.00
3	0.31	0.00		0.00			0.000	0.00
4	0.31	0.01		0.02			0.000	0.00
5	0.81	0.01		0.02			0.000	0.00
6	0.82	0.00		0.00			0.000	0.00
7	0.82	0.10		0.02			0.001	0.08
8	1.67	0.10		0.02			0.001	0.00
9	1.68	0.00		0.00			0.000	0.00
10	1.68	0.12		0.02			0.001	0.09
11	2.48	0.12		0.02			0.001	0.00
12	2.49	0.00		0.00			0.000	0.00
NOTES:	Discharge measurem	ent was separated into	sections that cor	ntained flow. In	RESULTS:	Q (m3/s)	0.0	04
		were estimated as ar				A(m2)	0.	20

A8.0 LAKE A19 & OUTLET (STREAM A19-A18)

Parameter	Value	Note			
Drainage Area (km²)	7.4	Based on DEM (PhotoSat 2015)			
Bankfull Width (m)	N/A				
Max. Bankfull Depth (m)	N/A				
Wetted Width (m)	0	Observed no flow in field 8 August 2015			
Max. Wetted Depth (m)	0	Observed no flow in field 8 August 2015			
Channel Length (km)	0.35	Measured from CanVec data			
Outlet Channel Slope (m/m)	0.004	Not measured in the field or covered by DEM			
Bed Material	Boulders, cobbles				
Bank Material	Boulders, cobbles, org	anics			
Bank Vegetation	Grass				
606023 m E, Benchmark Coordinates 7252491 m N, 157.51 masl		NAD83 Zone 14			
Logger/ Staff Gauge Coordinates	N/A				
Comment	Boulder channel. No observed flow in August 2015.				



8 August 2015. Looking northwest at Lake A18.

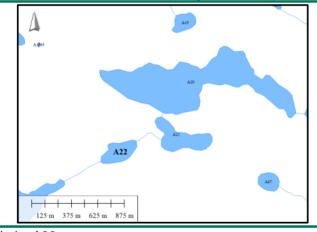
A9.0 LAKE A21 & OUTLET (STREAM A21-A20)

Parameter	Value	Note			
Drainage Area (km²)	5.1	Based on DEM (PhotoSat 2015)			
Bankfull Width (m)	20	Measured in the field, based on vegetation			
Max. Bankfull Depth (m)	0.45	Measured in the field, based on vegetation			
Wetted Width (m)	17.3	Measured in the field 3 August 2015			
Max. Wetted Depth (m)	0.32	Measured in the field 3 August 2015			
Channel Length (km)	0.05	Measured from CanVec data			
Outlet Channel Slope (m/m)	0.001	Average slope, measured in the field			
Bed Material	Boulders, cobbles				
Bank Material	Boulders, cobbles, or	rganics			
Bank Vegetation	Grass				
Benchmark Coordinates	604715 m E, 7252196 m N, 155.95 masl	NAD83 Zone 14			
Logger/ Staff Gauge Coordinates	N/A				
Comment	Poorly defined boulde sheets.	oorly defined boulder channel. Cross-sectional data are available in discharge calculation neets.			

Lake A21: Benchmark location.

8 August 2015. Downstream view of the watercourse (north).

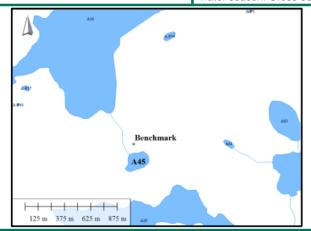
8 August 2015. View looking east of the watercourse.



	C	PEN WATER DISCH	ARGE CALCULA	TION SPREADSHEE	Т			
Project Name, Number: Amaruq - trip 2			Date		06-Aug-15			
Waterbody:		A21			Start Time		14:00	
Crossing ID:		A21-A20			End Time		14:25	
LDB UTI	/I Location		Survey		Datalogger S	N:		
East	604557	BM_read			Transducer S	SN:		
North	7252299	WL_read			Meter Type/S	N:	Marsh M	cBirney
Elevation, Zone	14W	WL_Elev			Crew:	JRL, JN		
STATION	DISTANCE		V	elocity	Optio	nal		
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLE O	F FLOW	Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°))	(m3/s)	(m2)
1	0.00	0.00		0.00				0.048
2	0.40	0.24		0.00			0.000	0.042
3	0.70	0.04		0.00			0.000	0.041
4	1.60	0.05		0.01			0.001	0.096
5	2.80	0.11		0.02			0.002	0.017
6	3.10	0.00		0.00			0.000	0.000
7	9.30	0.00		0.00			0.000	0.015
8	9.60	0.10		0.00			0.000	0.120
9	10.80	0.10		0.00			0.000	0.100
10	12.80	0.00		0.00			0.000	0.000
11	13.50	0.00		0.00			0.000	0.076
12	14.30	0.19		0.02		<u> </u>	0.003	0.255
13	15.30	0.32		0.02			0.010	0.580
14	17.30	0.26		0.00		·	0.000	0.001
15	17.29	0.00		0.00	, and the second		0.000	0.000
NOTES:					RESULTS:	Q (m3/s)	0.0	15
						A(m2)	1.	39
						B(m)	17	' .3

A10.0 LAKE A22 & OUTLET (STREAM A22-A21)

Parameter	Value	Note		
Drainage Area (km²)	4.0	Based on DEM (PhotoSat 2015)		
Bankfull Width (m)	N/A	Measured in the field, based on vegetation		
Max. Bankfull Depth (m)	N/A	Measured in the field, based on vegetation		
Wetted Width (m)	0	Observed in the field 3 August 2015		
Max. Wetted Depth (m)	0	Observed in the field 3 August 2015		
Channel Length (km)	0.3	Measured from CanVec data		
Outlet Channel Slope (m/m)	0.001	Not measured in the field or covered by DEM		
Bed Material	Boulders, cobbles			
Bank Material	Boulders, cobbles,	organics		
Bank Vegetation	Grass			
Benchmark Coordinates	N/A	NAD02 7 44		
Logger/ Staff Gauge Coordinates	N/A	NAD83 Zone 14		
Comment	Poorly defined boulder channel. No observed flow in August 2015.			



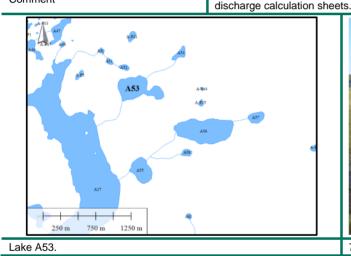
Lake A22.

A11.0 LAKE A45 & OUTLET (STREAM A45-A16)

Parameter	Value	Note			
Drainage Area (km²)	0.2	Based on DEM (PhotoSat 2015)			
Bankfull Width (m)	35	Measured in the field, based on vegetation			
Max. Bankfull Depth (m)	N/A	Not measureable; deep boulder garden			
Wetted Width (m)	0	Observed no surface flow in field 8 August 2015			
Max. Wetted Depth (m)	0	Observed no surface flow in field 8 August 2015			
Channel Length (km)	0.45	Measured from CanVec data			
Outlet Channel Slope (m/m)	0.009	Average slope, measured in the field			
Bed Material	Boulders, cobbles				
Bank Material	Boulders, cobbles, or	rganics			
Bank Vegetation	Grass				
Benchmark Coordinates	604716 m E, 7253325 m N, 159.66 masl	NAD83 Zone 14			
Logger/ Staff Gauge Coordinates	N/A				
Comment		Deep boulder garden channel with predominantly subsurface flows especially later in the open water season. Cross-sectional data are available in Section 3.3.			

Lake A45: Benchmark location.

19 September 2015. View looking north towards Lake A45 (right) and outlet.



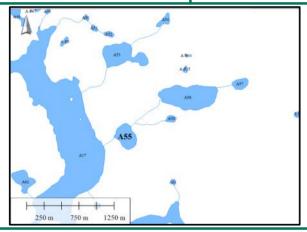
8 August 2015. Upstream view of outlet to Lake A45 (southeast).

A12.0 LAKE A53 & OUTLET (STREAM A53-A17)

Parameter	Value	Note			
Drainage Area (km²)	1.3	Based on DEM (PhotoSat 2015)			
Bankfull Width (m)	N/A	Poorly defined channel, no visible bankfull dimensions			
Max. Bankfull Depth (m)	N/A	Poorly defined channel, no visible bankfull dimensions			
Wetted Width (m)	3.5	Measured in the field on 6 August 2015			
Max. Wetted Depth (m)	0.16	Measured in the field on 6 August 2015			
Channel Length (km)	0.60	Measured from CanVec data			
Outlet Channel Slope (m/m)	0.017	Average slope, measured in the field			
Bed Material	Cobbles, sand, silt, o	organics			
Bank Material	Grass, sand, silt, org	ganics			
Bank Vegetation	Grass				
Benchmark Coordinates	N/A	NAD92 Zono 44			
Logger/ Staff Gauge Coordinates	N/A	NAD83 Zone 14			
Comment	Well defined channe	nnel, with a high width to depth ratio. Cross-sectional data are available in			

7 August 2015. Upstream view of the watercourse (north).

	0	PEN WATER DISCHA	RGE CALCULA	TION SPREADSHEE	T			
Project Name, Number:	: 1524321 - Amaruq			Date		12-Jul-15		
Waterbody:		A53			Start Time		11:30	
Crossing ID:		A53-A17			End Time			
LDB UTM I	_ocation		Survey		Datalogger Si	N:		
East	607754	BM_read			Transducer S	N:		
North	725526	WL_read			Meter Type/S	N:	Swoffer	
Elevation, Zone	14W	WL_Elev			Crew:	AEM: RV, F	RD, JM	
STATION	DISTANCE		V	elocity	Optio	nal		
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLĖ OI	F FLOW	Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)		(m3/s)	(m2)
1	0.00	0.00	, ,	0.00	`,			0.008
2	0.20	0.08		0.35			0.005	0.018
3	0.40	0.10		0.33			0.007	0.021
4	0.60	0.11		0.33			0.007	0.031
5	0.80	0.20		0.70			0.028	0.037
6	1.00	0.17		0.01			0.000	0.016
7	1.10	0.15		0.00			0.000	0.015
8	1.20	0.14		0.02			0.000	0.028
9	1.40	0.14		0.00			0.000	0.025
10	1.75	0.00		0.00			0.000	0.000
NOTES:					RESULTS:	Q (m3/s)	0.0	48
						A(m2)	0.	20
						B(m)	1.	8


OPEN WATER DISCHARGE CALCULATION SPREADSHEET								
Project Name, Number:	oject Name, Number: Amarug - Trip 2				Date		07-Aug-15	
Waterbody:		A53			Start Time		9:00	
Crossing ID:		A53-A17			End Time		9:20	
LDB UTM I	_ocation		Survey		Datalogger S	N:		
East	607914	BM_read			Transducer S	N:		
North	7255484	WL_read			Meter Type/S	N:	Marsh M	cBirney
Elevation, Zone	14W	WL_Elev			Crew:	JRL, JN		
STATION	DISTANCE		V	elocity	Optio	nal		
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLE O	F FLOW	Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)		(m3/s)	(m2)
1	0.00	0.08		0.00				0.090
2	1.00	0.10		0.00			0.000	0.132
3	2.10	0.14		0.01			0.001	0.030
4	2.30	0.16		0.04			0.001	0.032
5	2.50	0.16		0.04			0.002	0.042
6	2.80	0.12		0.03			0.001	0.022
7	3.00	0.10		0.02			0.001	0.027
8	3.30	0.08		0.00			0.000	0.008
9	3.50	0.00		0.00			0.000	0.000
NOTES:				<u> </u>	RESULTS:	Q (m3/s)	0.0	05
						A(m2)	0.3	38
						B(m)	3.	.5

A13.0 LAKE A55 & OUTLET (STREAM A55-A17)

Parameter	Value	Note			
Drainage Area (km²)	4.2	Based on DEM (PhotoSat 2015)			
Bankfull Width (m)	15	No visible bankfull dimensions			
Max. Bankfull Depth (m)	0.3	No visible bankfull dimensions			
Wetted Width (m)	8.9	Measured in the field 7 August 2015			
Max. Wetted Depth (m)	0.14	Measured in the field 7 August 2015			
Channel Length (km)	0.23	Measured from CanVec data			
Outlet Channel Slope (m/m)	0.011	Average slope, measured in the field			
Bed Material	Boulders, cobbles				
Bank Material	Boulders, cobbles, or	ganics			
Bank Vegetation	Grass				
Benchmark Coordinates	N/A	NAD92 7000 44			
Logger/ Staff Gauge Coordinates	N/A	NAD83 Zone 14			
Comment	Well defined channel.	Well defined channel. Cross-sectional data are available in discharge calculation sheets.			

Lake A55.

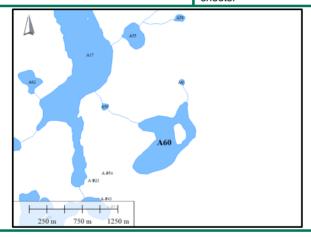
17 September 2015. Aerial view looking north towards Lake A55 (right) and Lake A17 (Whale Tail Lake) (left)

17 September 2015. Upstream view of the watercourse and Lake A55 (northeast).

17 September 2015. Downstream view of the watercourse (southwest).

	0	PEN WATER DISCH	IARGE CALCULAT	TION SPREADSHEE	T			
Project Name, Numbe	er:	1524321 - Amarug			Date		12-Jul-15	
Waterbody:		A55			Start Time		11:00	
Crossing ID:		A55-A17			End Time		11:10	
LDB UTN	M Location		Survey		Datalogger S	N:		
East	607990	BM_read			Transducer S	N:		
North	7254505	WL_read			Meter Type/S	N:	Swoffer	
Elevation, Zone	14W	WL_Elev			Crew:	AEM: RV, L	.G	
STATION	DISTANCE		V	elocity	Optio	nal		
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLE O	F FLOW	Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)		(m3/s)	(m2)
1	0.00	0.00		0.00				0.030
2	0.50	0.12		0.01			0.000	0.063
3	1.00	0.13		0.00			0.000	0.063
4	1.50	0.12		0.00			0.000	0.06
5	2.00	0.14		0.19			0.013	0.070
6	2.50	0.14		0.19			0.013	0.068
7	3.00	0.13		0.20			0.013	0.068
8	3.50	0.14		0.27			0.019	0.070
9	4.00	0.14		0.24			0.017	0.066
10	4.50	0.13		0.36			0.023	0.05
11	5.00	0.08		0.28			0.011	0.020
12	5.50	0.00		0.00			0.000	0.000
NOTES:					RESULTS:	Q (m3/s)	0.1	10
						A(m2)	0.	63
						B(m)	5	.5

	0	PEN WATER DISCH	ARGE CALCULA	TION SPREADSHEE	I			
Project Name, Number: Amaruq - Trip 2				Date		Date		15
Waterbody:		A55			Start Time		15:30	
Crossing ID:		A55-A17			End Time		15:50	
LDB UTI	M Location		Survey		Datalogger S	N:		
East	608009	BM_read			Transducer S	N:		
North	7254529	WL_read			Meter Type/S	N:	Marsh M	cBirney
Elevation, Zone	14W	WL_Elev			Crew:	JRL, JN		
STATION	DISTANCE		V	elocity	Optio	nal		
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLĖ O	F FLOW	Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)		(m3/s)	(m2)
1	0.60	0.00		0.00				0.017
2	0.90	0.11		0.00			0.000	0.038
3	1.20	0.14		0.05			0.003	0.081
4	1.80	0.13		0.06			0.004	0.020
5	2.10	0.00		0.00			0.000	0.012
6	2.30	0.12		0.06			0.005	0.143
7	3.60	0.10		0.02			0.002	0.099
8	4.50	0.12		0.05			0.004	0.060
9	5.00	0.12		0.00			0.000	0.070
10	5.70	0.08		0.01			0.002	0.152
11	9.50	0.00		0.00			0.000	0.000
NOTES:				<u> </u>	RESULTS:	Q (m3/s)	0.0	20
						A(m2)	0.	69
						B(m)	8.	9



	0	PEN WATER DISCH	ARGE CALCULA	TION SPREADSHEE	<u>T</u>			
Project Name, Number	r:	1524321 - Amaruq Trip 3			Date		17-Sep-15	
Waterbody:		A55			Start Time		15:00	
Crossing ID:		A55-A17			End Time		15:10	
LDB UTW	l Location		Survey		Datalogger S	N:		
East	607986	BM_read	_		Transducer S	SN:		
North	7254508	WL_read			Meter Type/S	N:		
Elevation, Zone	14W	WL_Elev			Crew:	JRL, DC		
STATION	DISTANCE		V	elocity	Optio	nal		
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLĖ O	F FLOW	Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)		(m3/s)	(m2)
1	0.00	0.00		0.00				0.008
2	0.20	0.08		0.20			0.003	0.020
3	0.40	0.12		0.08			0.002	0.020
4	0.60	0.08		0.29			0.005	0.014
5	0.80	0.06		0.27			0.003	0.012
6	1.00	0.06		0.18			0.002	0.016
7	1.20	0.10		0.25			0.005	0.022
8	1.40	0.12		0.16			0.005	0.021
9	1.75	0.00		0.00			0.000	0.000
10	2.10	0.00		0.00			0.000	0.008
11	2.30	0.08		0.35			0.007	0.018
12	2.60	0.04		0.21			0.003	0.020
13	3.00	0.06		0.24			0.006	0.015
14	3.50	0.00		0.00			0.000	0.000
NOTES:					RESULTS:	Q (m3/s)	0.0)42
						A(m2)	0.	19
						B(m)	3.	.5

A14.0 LAKE A60 & OUTLET (STREAM A60-A59)

Parameter	Value	Note			
Drainage Area (km²)	2.1	Based on DEM (PhotoSat 2015)			
Bankfull Width (m)	30	Measured in the field, based on vegetation			
Max. Bankfull Depth (m)	0.45	Measured in the field			
Wetted Width (m)	20.4	Measured in the field on 8 August 2015			
Max. Wetted Depth (m)	0.23	Measured in the field on 8 August 2015			
Channel Length (km)	0.50	Measured from CanVec data			
Outlet Channel Slope (m/m)	0.040	Average slope, measured in the field			
Bed Material	Boulders, cobbles				
Bank Material	Boulders, cobbles, c	organics			
Bank Vegetation	Grass				
Benchmark Coordinates	N/A	NAD92 Zono 44			
Logger/ Staff Gauge Coordinates	N/A	NAD83 Zone 14			
Comment	Poorly defined bould sheets.	ed boulder channel. Cross-sectional data are available in discharge calculation			

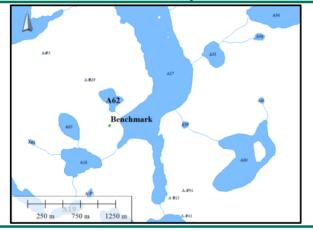
Lake A60.

8 August 2015. Upstream view of the watercourse and Lake A60 (east).

17 September 2015. Downstream view of the watercourse (west).

	0	PEN WATER DISCH	ARGE CALCULAT	ION SPREADSHEE	Т			
Project Name, Number:		1524321 - Amaruq		Date	12-Jul-15			
Waterbody:		A60			Start Time	-		
Crossing ID:		A60-A59			End Time		-	
LDB UTM I	_ocation		Survey		Datalogger S	N:		
East	608264	BM_read			Transducer SN:			
North	72537278	WL_read			Meter Type/S	Meter Type/SN: Swoff		
Elevation, Zone	14W	WL_Elev			Crew:	Crew: AEM: RV, LG		
STATION	DISTANCE		V	elocity	Optio	nal		
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLĖ O	F FLOW	Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)		(m3/s)	(m2)
1	0.00	0.000	` '	0.00	` '		,	0.016
2	0.20	0.155		0.15			0.005	0.031
3	0.40	0.150		0.12			0.004	0.030
4	0.60	0.150		0.23			0.007	0.030
5	0.80	0.150		0.19			0.006	0.030
6	1.00	0.150		0.31			0.007	0.016
7	1.10	0.160		0.25			0.004	0.016
8	1.20	0.160		0.27			0.006	0.032
9	1.40	0.160		0.29			0.009	0.034
10	1.60	0.175		0.29			0.010	0.033
11	1.80	0.150		0.30			0.009	0.024
12	2.00	0.090		0.21			0.004	0.018
13	2.20	0.090		0.07			0.001	0.020
14	2.40	0.110		0.00			0.000	0.025
15	2.60	0.135		0.13			0.004	0.025
16	2.80	0.115		0.06			0.001	0.020
17	3.00	0.080		0.04		•	0.000	0.004
18	3.10	0.000		0.00			0.000	0.000
NOTES:		•			RESULTS:	Q (m3/s)	0.0	77
						A(m2)	0.	40
						B(m)	3	.1

	0	PEN WATER DISCH	ARGE CALCULA	TION SPREADSHEE	<u>T</u>			
Project Name, Number	r:	Amaruq - Trip 2			Date	09-Aug-15		
Waterbody:		A60			Start Time		8:20	
Crossing ID:		A60-A59	End Time		8:40			
LDB UTN	I Location		Survey		Datalogger Si	N:		
East	608143	BM_read			Transducer S	N:		
North	7253354	WL_read			Meter Type/S	N:	Marsh M	cBirney
Elevation, Zone	14W	WL_Elev			Crew:	JRL, JN		
STATION	DISTANCE		V	elocity	Optio	nal		
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLĖ OI	F FLOW	Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)		(m3/s)	(m2)
1	1.40	0.00		0.00	`,			0.014
2	1.60	0.14		0.04			0.001	0.022
3	1.80	0.08		0.04			0.001	0.018
4	2.00	0.10		0.00			0.000	0.015
5	2.20	0.05		0.06			0.001	0.009
6	2.40	0.04		0.05			0.000	0.004
7	2.60	0.00		0.00			0.000	0.000
8	2.95	0.00		0.00			0.000	0.017
9	3.10	0.23		0.01			0.000	0.040
10	3.30	0.17		0.02			0.001	0.026
11	3.50	0.09		0.03			0.001	0.023
12	3.70	0.14		0.00			0.000	0.007
13	3.80	0.00		0.00		•	0.000	0.000
NOTES:		<u> </u>			RESULTS:	Q (m3/s)	0.0	004
						A(m2)	0.:	20
						B(m)	2	.4



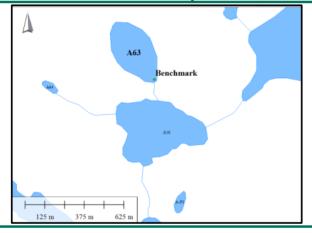
	0	PEN WATER DISCHA	RGE CALCULAT	TION SPREADSHEE	Т			
Project Name, Number:		1524321 - Amaruq T	Date	17-Sep-15				
Waterbody:		A60	•		Start Time		9:20	
Crossing ID:		A60-A59			End Time		9:25	
BM UTM Lo	ocation		Datalogger S	N:				
East	608143	BM_read			Transducer S	N:		
North	7253354	WL_read			Meter Type/S	N:		
Elevation, Zone	14W	WL_Elev			Crew:	JRL, DC		
STATION	DISTANCE		V	elocity	Optio	nal		
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLĖ O	F FLOW	Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)	(°)		(m2)
1	0.00	0.00		0.00				0.006
2	0.20	0.06		0.02			0.000	0.014
3	0.40	0.08		0.02			0.000	0.014
4	0.60	0.06		0.02			0.000	0.022
5	0.80	0.16		0.03			0.001	0.026
6	1.00	0.10		0.01			0.000	0.023
7	1.20	0.13		0.01			0.000	0.031
8	1.40	0.18		0.00			0.000	0.022
9	1.60	0.04		0.02			0.000	0.004
10	1.80	0.00		0.00			0.000	0.000
NOTES:		•			RESULTS:	Q (m3/s)	0.0	02
						A(m2)	0.	16
						B(m)	1.	8

A15.0 LAKE A62 & OUTLET (STREAM A62-A17)

Parameter	Value	Note				
Drainage Area (km²)	0.7	Measured with DEM				
Bankfull Width (m)	N/A	No defined channel				
Max. Bankfull Depth (m)	N/A	No defined channel				
Wetted Width (m)	0	Observed no flow in the field 7 August 2015				
Max. Wetted Depth (m)	0	Observed no flow in the field 7 August 2015				
Channel Length (km)	0.13	Measured from CanVec data				
Outlet Channel Slope (m/m)	0.020	Average slope, measured in the field				
Bed Material	Boulders, cobbles, gras	SS .				
Bank Material	Boulders, cobbles, orga	anics				
Bank Vegetation	Grass					
Benchmark Coordinates	606719 m E, 7253561 m N, 165.43 masl	NAD83 Zone 14				
Logger/ Staff Gauge Coordinates	N/A					
Comment	No defined channel. No flow in August 2015.					

Lake A62: Benchmark location.

7 August 2015. View looking upstream towards Lake A62 (northwest).



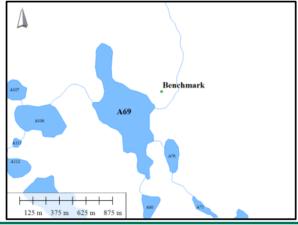
7 August 2015. View looking southeast towards Lake A17 (Whale Tail Lake) from the watercourse.

A16.0 LAKE A63 & OUTLET (STREAM A63-A18)

Parameter	Value	Note				
Drainage Area (km²)	0.5	Based on DEM (PhotoSat 2015)				
Bankfull Width (m)	N/A	Not measured				
Max. Bankfull Depth (m)	N/A	Not measured				
Wetted Width (m)	0	Observed no surface flow in the field 7 August 2015				
Max. Wetted Depth (m)	0	Observed no surface flow in the field 7 August 2015				
Channel Length (km)	0.14	Measured from CanVec data				
Outlet Channel Slope (m/m)	0.005	Average slope, measured in the field				
Bed Material	Boulders, cobbles					
Bank Material	Boulders, cobbles, orga	anics				
Bank Vegetation	Grass					
Benchmark Coordinates	606276 m E, 7253375 m N, 155.24 masl	NAD83 Zone 14				
Logger/ Staff Gauge Coordinates	N/A					
Comment	Poorly defined boulder channel. No observed surface flow in August 2015.					

Lake A63.

7 August 2015. Looking west towards Lake A63 (right) and Lake A18 (left). The channel had no surface flow at the time of this photo.



17 September 2015. View looking east at Lake A18 and A19

A17.0 LAKE A69 & OUTLET (STREAM A69-DS1)

Parameter	Value	Note					
Drainage Area (km²)	41.4	Based on DEM (PhotoSat 2015)					
Bankfull Width (m)	30 to 60	Measured in the field, based on vegetation					
Max. Bankfull Depth (m)	1.0	Measured in the field, based on vegetation					
Wetted Width (m)	47.5	Measured in the field on 11 June 2015					
Max. Wetted Depth (m)	0.98	Measured in the field on 11 June 2015					
Channel Length (km)	1.35	Measured from CanVec data					
Outlet Channel Slope (m/m)	0.0085	Average slope, measured with DEM					
Bed Material	Boulders, cobbles						
Bank Material	Boulders, cobbles, org	ganics					
Bank Vegetation	Grass						
Benchmark Coordinates	598399 m E, 7256880 m N, 115.62 masl	NAD83 Zone 14					
Logger/ Staff Gauge Coordinates	N/A						
Comment	Well defined boulder of and Section 3.3.	channel. Cross-sectional data are available in discharge calculation sheets					

Lake A69: Benchmark location.

11 June 2015. View looking west at Lake A69.

11 June 2015. West view of Lake A69.

11 June 2015. Upstream view of the watercourse (west).

5 August 2015. Looking south towards right downstream bank.

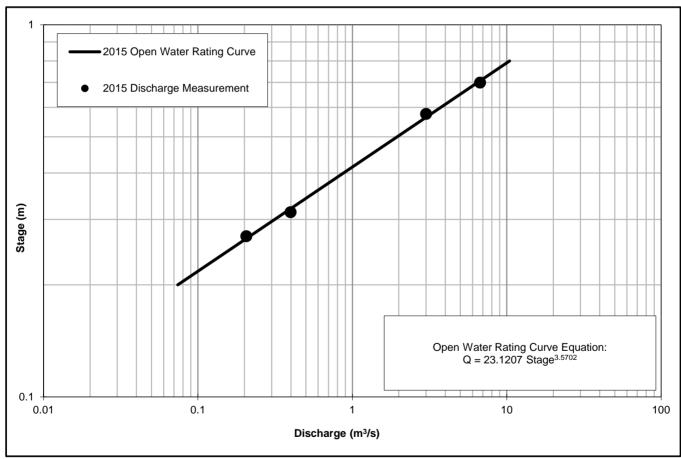


Figure 5: 2015 Stage-Discharge Rating Curve (Lake A69)

Lake A69 - 2015

MEAN DAILY WATER DISCHARGE (m³/s)

DATE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
1	-	-	-	-	-	-	2.03	0.56	0.23	-	-	-
2	-	-	-	-	-	-	1.86	0.53	0.24	-	-	-
3	-	-	-	-	-	-	1.80	0.53	0.23	-	-	-
4	-	-	-	-	-	-	1.72	0.55	0.23	-	-	-
5	-	-	-	-	-	-	1.66	0.54	0.23	-	-	-
6	-	-	-	-	-	-	1.58	0.53	0.23	-	-	-
7	-	-	-	-	-	-	1.44	0.51	0.22	-	-	-
8	-	-	-	-	-	-	1.33	0.48	0.21	-	-	-
9	-	-	-	-	-	-	1.26	0.44	0.21	-	-	-
10	-	-	-	-	-	-	1.34	0.42	0.20	-	-	-
11	-	-	-	-	-	4.96 P	1.33	0.40	0.20	-	-	-
12	-	-	-	-	-	10.12	1.28	0.38	0.24	-	-	-
13	-	-	-	-	-	8.76	1.19	0.38	0.22	-	-	-
14	-	-	-	-	-	6.82	1.18	0.38	0.20	-	-	-
15	-	-	-	-	-	5.83	1.14	0.35	0.20	-	-	-
16	-	-	-	-	-	4.59	1.11	0.33	0.21 P	-	-	-
17	-	-	-	-	-	4.13	1.06	0.29	-	-	-	-
18	-	-	-	-	-	3.44	0.99	0.28	-	-	-	-
19	-	-	-	-	-	3.23	0.91	0.29	-	-	-	-
20	-	-	-	-	-	3.13	0.89	0.29	-	-	-	-
21	-	-	-	-	-	3.14	0.85	0.28	-	-	-	-
22	-	-	-	-	-	3.14	0.82	0.28	-	-	-	-
23	-	-	-	-	-	2.91	0.79	0.28	-	-	-	-
24	-	-	-	-	-	2.81	0.73	0.28	-	-	-	-
25	-	-	-	-	-	2.73	0.68	0.28	-	-	-	-
26	-	-	-	-	-	2.78	0.67	0.27	-	-	-	-
27	-	-	-	-	-	2.66	0.68	0.27	-	-	-	-
28	-	-	-	-	-	2.57	0.68	0.25	-	-	-	-
29	-	-	-	-	-	2.41	0.67	0.25	-	-	-	-
30	-	-	-	-	-	2.25	0.64	0.25	-	-	-	-
31	-	-	-	-	-	-	0.64	0.23	-	-	-	-
MIN	-	-	-	-	-	2.25	0.64	0.23	0.20	-	-	-
MEAN	-	-	-	-	-	4.12	1.13	0.37	0.22	-	-	-
MAX	-	-	-	-	-	10.12	2.03	0.56	0.24	-	-	-

NOTES: P - PARTIAL DAILY AVERAGE

Water Yield (m³) = 11,424,733 7,119,611 3,017,150 985,455 302,517 Water Yield (mm) = 276.1 62% 26% 9% 3%

Lake A69 - 2015

MEAN DAILY WATER SURFACE ELEVATION (masl) BASED ON BENCHMARK ELEVATION 115.62 masl

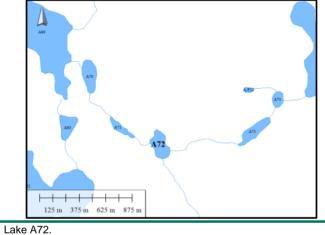
DATE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	-	-	-	-	-	-	112.406	112.253	112.174	-	-	-
2	-	-	-	-	-	-	112.394	112.248	112.178	-	-	-
3	-	-	-	-	-	-	112.389	112.247	112.176	-	-	-
4	-	-	-	-	-	-	112.383	112.251	112.176	-	-	-
5	-	-	-	-	-	-	112.378	112.250	112.175	-	-	-
6	-	-	-	-	-	-	112.372	112.248	112.174	-	-	-
7	-	-	-	-	-	-	112.359	112.243	112.171	-	-	-
8	-	-	-	-	-	-	112.349	112.237	112.167	-	-	-
9	-	-	-	-	-	-	112.343	112.229	112.167	-	-	-
10	-	-	-	-	-	-	112.350	112.226	112.166	-	-	-
11	-	-	-	-	-	112.537 P	112.349	112.221	112.164	-	-	-
12	-	-	-	-	-	112.693	112.344	112.216	112.179	-	-	-
13	-	-	-	-	-	112.661	112.336	112.217	112.171	-	-	-
14	-	-	-	-	-	112.610	112.335	112.216	112.165	-	-	-
15	_	-	-	-	-	112.579	112.330	112.210	112.166	-	-	-
16	-	-	-	-	-	112.536	112.327	112.205	112.167 P	-	-	-
17	-	-	-	-	-	112.517	112.322	112.194	-	-	-	-
18	_	-	_	-	-	112.486	112.314	112.190	-	-	-	-
19	_	-	_	-	-	112.476	112.304	112.193	-	_	_	_
20	_	-	_	-	-	112.471	112.301	112.193	-	_	_	_
21	_	-	_	-	-	112.471	112.296	112.192	-	_	_	_
22	_	_	_	_	_	112.472	112.292	112.192	_	_	-	_
23	_	_	_	_	-	112.460	112.289	112.192	_	_	_	_
24	_	_	_	_	_	112.454	112.279	112.191	_	_	_	_
25	_	_	_	_	_	112.450	112.273	112.191	_	_	_	_
26	_	_	_	_	_	112.453	112.271	112.189	_	_	_	_
27	_	_	_	_	_	112.446	112.272	112.187	_	_	_	_
28	_	_	_		_	112.441	112.272	112.182	_	_	_	
	_				_	112.431	112.272	112.181				
29	-	-	-	-	-				-	-	-	-
30	-	-	-	-	-	112.420	112.266	112.181	-	-	-	-
31	-	-	-	-	-	-	112.266	112.174	-	-	-	-
						440 400	440.005	440 :=:	440.404			
MIN	-	-	-	-	-	112.420	112.266	112.174	112.164	-	-	-
MEAN	-	-	-	-	-	112.498	112.324	112.211	112.171	-	-	-
MAX	-	-	-	-	-	112.693	112.406	112.253	112.179	-	-	-

NOTES: P - PARTIAL DAILY AVERAGE

	0	PEN WATER DISCH	IARGE CALCULA	TION SPREADSHEE	Т			
Project Name, Number	:	Amaruq - 154321			Date	11-Jun-15		
Waterbody:		A69		Start Time	1148			
Crossing ID:		A69-DS1			End Time		1213	
LDB UTM	Location		Survey		Datalogger S	N:		
East	598584	BM read			Transducer S			
North	7257210	WL_read			Meter Type/S	eter Type/SN: Swoffe		
Elevation, Zone	14W	WL_Elev			Crew:	CJ, JRL		
STATION	DISTANCE		V	elocity	Optio	nal		
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLĖ O	F FLOW	Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)		(m3/s)	(m2)
1	0.70	0.00	` ′	0.00	`		, ,	0.154
2	2.10	0.22		0.25			0.077	0.294
3	3.50	0.20		0.15			0.045	0.440
4	5.10	0.35		0.20			0.151	0.851
5	7.80	0.28		0.60			0.336	0.358
6	9.10	0.27		0.64			0.233	0.350
7	10.50	0.23		0.45			0.145	0.385
8	11.90	0.32		0.34			0.152	0.392
9	13.30	0.24		0.10			0.037	0.442
10	15.00	0.28		0.60			0.235	0.286
11	16.10	0.24		0.28			0.084	0.455
12	17.50	0.41		0.24			0.138	0.574
13	18.90	0.41		0.45			0.258	0.469
14	20.30	0.26		0.14			0.051	0.364
15	21.70	0.26		0.50			0.182	0.406
16	23.10	0.32		0.53			0.237	0.413
17	24.50	0.27		0.50			0.189	0.441
18	25.90	0.36		0.70			0.353	0.329
19	27.30	0.11		0.70			0.100	0.126
20	28.50	0.10		0.00			0.000	0.020
21	28.90	0.00		0.00			0.000	0.000
NOTES:			•		RESULTS:	Q (m3/s)	3.0	04
						A(m2)	7.	55
						B(m)	28	3.2

	0	PEN WATER DISCHA	ARGE CALCULA	TION SPREADSHEE	Т			
Project Name, Number:		Amaruq - 154321			Date		15-Jun-1	5
Waterbody:		A69			Start Time		1040	
Crossing ID:		A69-DS1			End Time		1106	
LDB UTM I	Location				Datalogger S	N:		
East	598497	BM_read			Transducer S	N:		
North	7256995	WL_read			Meter Type/S	N:	Swoffer	
Elevation, Zone	14W	WL_Elev			Crew:	CJ, JRL		
STATION	DISTANCE		V	elocity	Optio	nal		
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLĖ O	F FLOW	Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)		(m3/s)	(m2)
1	3.10	0.00	` ′	0.00	`		,	0.098
2	4.60	0.13		0.10			0.048	0.767
3	10.50	0.13		0.16			0.067	0.083
4	11.00	0.20		0.37			0.052	0.162
5	11.90	0.16		0.40			0.051	0.130
6	12.60	0.21		0.77			0.081	0.074
7	12.90	0.28		0.57			0.080	0.235
8	13.60	0.39		0.56			0.126	0.155
9	14.05	0.30		0.88			0.323	0.530
10	16.05	0.23		0.69			0.286	0.440
11	17.65	0.32		0.94			0.526	0.637
12	19.55	0.35		1.15			0.785	0.774
13	21.55	0.42		0.96			0.814	0.714
14	23.55	0.29		0.35			0.178	0.428
15	25.05	0.28		0.93			0.326	0.195
16	26.05	0.11		0.27			0.027	0.148
17	26.85	0.26		0.81			0.211	0.198
18	28.05	0.07		0.00			0.000	0.132
19	29.25	0.15		0.85			0.223	0.564
20	31.55	0.34		0.31			0.221	0.561
21	33.45	0.25		0.72			0.450	0.542
22	36.55	0.10		0.45			0.113	0.295
23	38.45	0.21		0.20			0.084	0.462
24	40.55	0.23		0.58			0.260	0.387
25	42.35	0.20		0.42			0.143	0.384
26	43.95	0.28		0.52			0.262	0.570
27	45.95	0.29		0.52			0.309	0.535
28	48.05	0.22		0.61			0.242	0.285
29	49.55	0.16		0.49			0.098	0.125
30	50.55	0.09		0.49			0.119	0.682
31	54.95	0.22		0.22			0.230	0.561
32	60.05	0.00		0.00			0.000	0.000
NOTES:			•		RESULTS:	Q (m3/s)	6.7	32
						A(m2)	11	.85
						B(m)		7.0

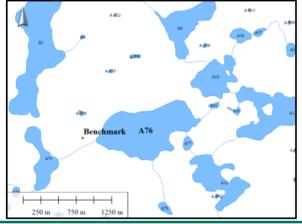
OPEN WATER DISCHARGE CALCULATION SPREADSHEET								
Project Name, Number:		Amaruq - trip 2			Date		04-Aug-	15
Waterbody:		A69			Start Time		9:20	
Crossing ID:		A69-DS1			End Time		9:45	
LDB UTM L			Survey		Datalogger S			
East	598452	BM_read			Transducer S			
North	7256756	WL_read			Meter Type/S		Marsh M	lcBirney
Elevation, Zone	14W	WL_Elev			Crew:	JRL, JN		
STATION	DISTANCE			elocity	Optio			
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLÉ O		Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)		(m3/s)	(m2)
1	0.00	0.00		0.00				0.025
2	1.00	0.05		0.00			0.000	0.050
3	2.00	0.05		0.00			0.000	0.025
4	2.50	0.05		0.08			0.003	0.075
5	3.50	0.10		0.12			0.012	0.050
6	4.50	0.00		0.00			0.000	0.090
7	5.50	0.18		0.15			0.027	0.190
8	6.50	0.20		0.11			0.022	0.200
9	7.50	0.20		0.22			0.044	0.245
10	8.50	0.29		0.00			0.000	0.073
11	9.00	0.00		0.00			0.000	0.000
12	9.40	0.00		0.00			0.000	0.013
13	9.50	0.25		0.16			0.022	0.270
14	10.50	0.29		0.09			0.026	0.295
15	11.50	0.30		0.09			0.027	0.270
16	12.50	0.24		0.10			0.023	0.234
17	13.40	0.28		0.10			0.028	0.281
18	14.50	0.23		0.05			0.012	0.245
19	15.50	0.26		0.04			0.010	0.245
20	16.50	0.23		0.04			0.009	0.280
21	17.50	0.33		0.03			0.010	0.320
22	18.50	0.31		0.02			0.006	0.250
23	19.50	0.19		0.06			0.011	0.165
24	20.50	0.14		0.15			0.021	0.095
25	21.50	0.05		0.14			0.007	0.125
26	22.50	0.20		0.15			0.030	0.160
27	23.50	0.12		0.12			0.014	0.120
28	24.50	0.12		0.11			0.013	0.085
29	25.50	0.05		0.14			0.007	0.050
30	26.50	0.05		0.11			0.006	0.065
31	27.50	0.08		0.07			0.006	0.065
32	28.50	0.05		0.00			0.000	0.008
33	28.80	0.00		0.00			0.000	0.021
34	29.50	0.06		0.04			0.001	0.015
35	30.00	0.00		0.00			0.000	0.000
36	35.00	0.00		0.00			0.000	0.000
NOTES:					RESULTS:	Q (m3/s)		398
						A(m2)		70
						B(m)	35	5.0



	0	PEN WATER DISCH	HARGE CALCULAT	TION SPREADSHEE	Т			
Project Name, Number:		1524321 - Amaruq	Trip 3		Date		16-Sep-	15
Waterbody:		A69			Start Time		9:30	
Crossing ID:		A69-DS1			End Time		9:50	
LDB UTM L	ocation		Survey		Datalogger SI	N:		
East	598438	BM_read			Transducer S	N:		
North	7256752	WL_read			Meter Type/SI	N:		
Elevation, Zone	14W	WL_Elev			Crew:	JRL, DC		
STATION	DISTANCE		V	elocity	Option	nal		
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLĖ OF	FLOW	Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)		(m3/s)	(m2)
1	0.00	0.00	, ,	0.000	, ,		,	0.060
2	2.00	0.06		0.070			0.006	0.070
3	3.00	0.08		0.079			0.006	0.095
4	4.00	0.11		0.073			0.008	0.085
5	5.00	0.06		0.101			0.006	0.075
6	6.00	0.09		0.070			0.006	0.120
7	7.00	0.15		0.061			0.009	0.155
8	8.00	0.16		0.076			0.012	0.185
9	9.00	0.21		0.052			0.011	0.195
10	10.00	0.18		0.046			0.008	0.165
11	11.00	0.15		0.073			0.011	0.150
12	12.00	0.15		0.101			0.015	0.200
13	13.00	0.25		0.061			0.009	0.025
14	13.20	0.00		0.000			0.000	0.000
15	13.21	0.00		0.000			0.000	0.100
16	14.21	0.20		0.021			0.004	0.190
17	15.21	0.18		0.055			0.010	0.190
18	16.21	0.20		0.061			0.012	0.190
19	17.21	0.18		0.061			0.011	0.210
20	18.21	0.24		0.034			0.008	0.205
21	19.21	0.17		0.058			0.010	0.175
22	20.21	0.18		0.070			0.013	0.165
23	21.21	0.15		0.055			0.008	0.175
24	22.21	0.20		0.052			0.010	0.190
25	23.21	0.18		0.049			0.005	0.009
26	23.31	0.00		0.000			0.000	0.000
27	23.32	0.00		0.000			0.000	0.027
28	23.62	0.18		0.073			0.004	0.027
29	23.92	0.00		0.000			0.000	0.000
30	23.93	0.00		0.000			0.000	0.020
31	24.73	0.05		0.046			0.002	0.020
32	25.53	0.00		0.000			0.000	0.000
NOTES:					RESULTS:	Q (m3/s)	0.2	206
					-	A(m2)	3.	47
						B(m)	25	5.5

A18.0 LAKE A72 & OUTLET (STREAM A72-D71)

Parameter	Value	Note
Drainage Area (km²)	7.1	Based on DEM (PhotoSat 2015)
Bankfull Width (m)	15	Measured in the field, based on vegetation
Max. Bankfull Depth (m)	0.75	Measured in the field, based on vegetation
Wetted Width (m)	14.2	Measured in the field on 11 June 2015
Max. Wetted Depth (m)	0.40	Measured in the field on 11 June 2015
Channel Length (km)	0.19	Measured from CanVec data
Outlet Channel Slope (m/m)	0.003	Average slope, measured in the field 18 September 2015
Bed Material	Sand, silt, organics	
Bank Material	Sand, silt, organics	
Bank Vegetation	Grass	
Benchmark Coordinates	N/A	NADO2 Zono 14
Logger/ Staff Gauge Coordinates	N/A	NAD83 Zone 14
Comment	Well defined channel.	Cross-sectional data are available in discharge calculation sheets.



	0	PEN WATER DISCH	ARGE CALCULAT	TION SPREADSHEE	Т			
Project Name, Number:		1524321 - Amaruq	Trip 3		Date		18-Sep-1	15
Waterbody:		A72			Start Time		14:30	
Crossing ID:		A72-A71			End Time		14:50	
LDB UTM L	ocation		Survey		Datalogger SI	N:		
East	598988	BM_read			Transducer S	N:		
North	7255622	WL_read			Meter Type/SI	N:		
Elevation, Zone	14W	WL_Elev			Crew:	JRL, DC		
STATION	DISTANCE		V	elocity	Option	nal		
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLĖ OF	FLOW	Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)		(m3/s)	(m2)
1	0.00	0.00	` ′	0.00	(/			0.112
2	1.60	0.14		0.00			0.000	0.111
3	2.20	0.23		0.03			0.003	0.068
4	2.50	0.22		0.04			0.003	0.065
5	2.80	0.21		0.03			0.002	0.068
6	3.10	0.24		0.02			0.001	0.072
7	3.40	0.24		0.04			0.003	0.071
8	3.70	0.23		0.03			0.002	0.072
9	4.00	0.25		0.02			0.002	0.086
10	4.30	0.32		0.03			0.003	0.101
11	4.60	0.35		0.03			0.003	0.083
12	4.90	0.20		0.01			0.001	0.089
13	5.20	0.39		0.03			0.004	0.113
14	5.50	0.36		0.04			0.004	0.108
15	5.80	0.36		0.05			0.005	0.097
16	6.10	0.29		0.05			0.004	0.087
17	6.40	0.29		0.06			0.005	0.083
18	6.70	0.26		0.05			0.004	0.084
19	7.00	0.30		0.03			0.003	0.090
20	7.30	0.30		0.02			0.002	0.096
21	7.60	0.34		0.05			0.006	0.148
22	8.00	0.40		0.04			0.006	0.156
23	8.40	0.38		0.01			0.002	0.150
24	8.80	0.37		0.04			0.006	0.150
25	9.20	0.38		0.03			0.005	0.152
26	9.60	0.38		0.04			0.006	0.144
27	10.00	0.34		0.04			0.005	0.136
28	10.40	0.34		0.04			0.005	0.140
29	10.80	0.36		0.04			0.006	0.136
30	11.20	0.32		0.02			0.003	0.124
31	11.60	0.30		0.05			0.006	0.104
32	12.00	0.22		0.04			0.004	0.092
33	12.40	0.24		0.02			0.002	0.072
34	12.80	0.12		0.03			0.001	0.042
35	13.20	0.09		0.03			0.001	0.030
36	13.60	0.06		0.01			0.000	0.018
37	14.20	0.00		0.00			0.000	0.000
NOTES:					RESULTS:	Q (m3/s)	0.1	17
						A(m2)	3.	55
						B(m)	14	.2

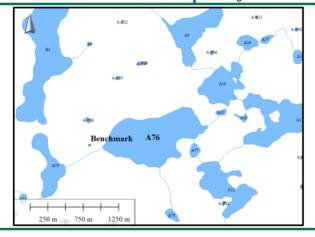
A19.0 LAKE A76 & EAST OUTLET (STREAM A76-A11)

Parameter	Value	Note		
Drainage Area (km²)	2.9	Based on DEM (PhotoSat 2015)		
Bankfull Width (m)	65	Measured in the field, based on vegetation		
Max. Bankfull Depth (m)	1.0	Measured in the field, based on vegetation		
Wetted Width (m)	60.0	Measured in the field 6 August 2015		
Max. Wetted Depth (m)	0.31	Measured in the field 6 August 2015		
Channel Length (km)	0.28	Measured from CanVec data		
Outlet Channel Slope (m/m)	0.0035	Average slope, measured in the field		
Bed Material	Boulders, cobbles			
Bank Material	Boulders, cobbles, orga	anics		
Bank Vegetation	Grass			
Benchmark Coordinates	601213 m E, 7256820 m N, 154.00 masl	NAD83 Zone 14		
Logger/ Staff Gauge Coordinates	N/A			
Comment		s-sectional data are available in discharge calculation sheets and Section or more photos relating to Lake A76.		

Lake A76: Benchmark location.

6 August 2015. Downstream view of the watercourse (northeast).

19 September 2015. Upstream view of the watercourse and Lake A76 (southwest)



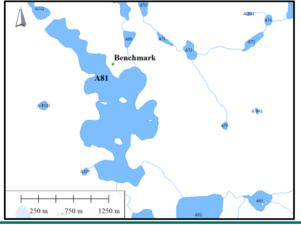
	0	PEN WATER DISCH	IARGE CALCULAT	ION SPREADSHEE	Т			
Project Name, Numbe	r:	Amaruq - Trip 2			Date		06-Aug-	15
Waterbody:		A76			Start Time		1:15	
Crossing ID:		A76-A41			End Time		1:45	
	M Location		Survey		Datalogger SI	N:		
East	602921	BM read			Transducer S			
North	7257158	WL read			Meter Type/S		Marsh M	lcBirnev
Elevation, Zone	14W	WL Elev			Crew:	JRL, JN		
STATION	DISTANCE		V	elocity	Optio			
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLE OF		Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)		(m3/s)	(m2)
1	0.00	0.00	(111/0)	0.00	· · · · · · · · · · · · · · · · · · ·		(1110/0)	0.051
2	0.60	0.17		0.00			0.000	0.243
3	1.50	0.37		0.00			0.000	0.123
4	2.00	0.12		0.00			0.000	0.036
5	2.60	0.00		0.00	1		0.000	0.000
6	3.40	0.00		0.00			0.000	0.027
7	4.00	0.09		0.00			0.000	0.014
8	4.30	0.00		0.00			0.000	0.000
9	6.00	0.00		0.00			0.000	0.007
10	6.10	0.15		0.00			0.000	0.030
11	6.50	0.00		0.00			0.000	0.000
12	6.90	0.00		0.00			0.000	0.012
13	7.00	0.24		0.00			0.000	0.495
14	8.50	0.42		0.00			0.000	0.750
15	10.00	0.58		0.02			0.017	0.855
16	11.50	0.56		0.02			0.011	0.112
17	11.90	0.00		0.00			0.000	0.000
18	12.70	0.00		0.00			0.000	0.074
19	13.00	0.49		0.00			0.000	0.264
20	13.60	0.39		0.03			0.012	0.560
21	15.00	0.41		0.01			0.006	1.029
22	16.70	0.80		0.01			0.012	0.722
23	18.00	0.31		0.02			0.009	0.330
24	19.50	0.13		0.00			0.000	0.323
25	21.00	0.30		0.00			0.000	0.488
26	22.50	0.35		0.01			0.005	0.503
27	24.00	0.32		0.01			0.005	0.360
28	25.50	0.16		0.01			0.001	0.008
29	25.60	0.00		0.00			0.000	0.000
30	26.90	0.00		0.00			0.000	0.064
31	27.70	0.16		0.01			0.001	0.232
32	28.50	0.42		0.00			0.000	0.380
33	29.60	0.27		0.00			0.000	0.054
34	30.00	0.00		0.00			0.000	0.000
NOTES:	15 m of no/low depth	wetted width on RDE	3 & LDB	_	RESULTS:	Q (m3/s)	0.0	79
						A(m2)		14
						B(m)	30).0

A20.0 LAKE A76 & WEST OUTLET (STREAM A76-A75)

Parameter	Value	Note
Drainage Area (km²)	2.9	Based on DEM (PhotoSat 2015)
Bankfull Width (m)	35	Measured in the field, based on vegetation
Max. Bankfull Depth (m)	N/A	Measured in the field, based on vegetation
Wetted Width (m)	N/A	Observed no surface flow in the field 5 August 2015
Max. Wetted Depth (m)	0	Observed no surface flow in the field 5 August 2015
Channel Length (km)	0.58	Measured from CanVec data
Outlet Channel Slope (m/m)	0.017	Average slope, measured in the field
Bed Material	Boulders, cobbles	
Bank Material	Boulders, cobbles, org	anics
Bank Vegetation	Grass	
Benchmark Coordinates	601213 m E, 7256820 m N, 154.00 masl	NAD83 Zone 14
Logger/ Staff Gauge Coordinates	N/A	
Comment	•	e visible flow through boulders but not measureable. See Section 3.3 and ross-sections, and Stream A12 for more photos relating to Lake A76.

Lake A76: Benchmark location.

6 August 2015. Downstream view of watercourse (west). No visible flow through channel at time of photo.



17 September 2015. View looking west towards Lake A76 and watercourse.

A21.0 LAKE A81 & OUTLET (STREAM A81-A80)

Parameter	Value	Note
Drainage Area (km²)	30.1	Based on DEM (PhotoSat 2015)
Bankfull Width (m)	50	Measured in the field, based on vegetation
Max. Bankfull Depth (m)	0.5	Measured in the field, based on vegetation
Wetted Width (m)	48.7	Measured in the field 8 August 2015
Max. Wetted Depth (m)	0.42	Measured in the field 8 August 2015
Channel Length (km)	0.30	Measured from CanVec data
Outlet Channel Slope (m/m)	0.011	Average slope, based on DEM (PhotoSat 2015)
Bed Material	Boulders, cobbles	
Bank Material	Boulders, cobbles, org	panics
Bank Vegetation	Grass	
Benchmark Coordinates	598067 m E, 7255436 m N, 129.65 masl	NAD83 Zone 14
Logger/ Staff Gauge Coordinates	N/A	1
Comment	Poorly defined boulde	r channel. See discharge sheets for cross-sections.

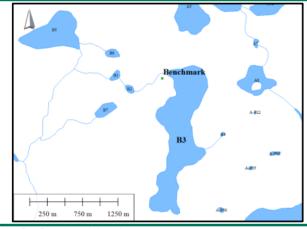
8 August 2015. Downstream view of the watercourse (north).

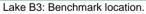
17 September 2015. View looking east at Lake A81 and watercourse.

1		0	PEN WATER DISCHA	RGE CALCULA	TION SPREADSHEE	Т		
Waterbody:	Project Name, Number:		1524321 - Amarug			Date	12-Jul-1	5
Crossing ID: LDB UTM Location S98366 BM, read Survey Datalogged SN: Transducer SN: Sworler Transducer SN: Sworler STATION DISTANCE WIL Flew Crow Amount of the property of the p								-
Data								
East	I DR UTM	Location	7.0.7.00	Survey				
North			BM_read	- Cui voy			+	
Elevation, Zone 14W							Swoffer	
STATION DISTANCE State FROM LDB (m)								
Start			VVL_LIEV	V	/olooity		LO, ND	
LDB			DEDTU				O:	Ai
1								
2 0.550 0.00 0.00 0.00 0.00 0.00 0.00 0.				(m/s)		(°)	(m3/s)	(m2)
3							0.000	0.000
1.50							_	0.013
5 2.00 0.03 0.15 0.002 7 3.00 0.20 0.40 0.040 8 3.50 0.00 0.00 0.00 9 4.00 0.12 0.39 0.023 10 4.50 0.10 0.41 0.021 11 5.50 0.17 0.14 0.012 12 5.50 0.12 0.62 0.037 13 6.00 0.05 0.25 0.006 14 6.50 0.21 0.044 0.048 15 7.00 0.10 0.37 0.019 16 7.50 0.19 0.10 0.37 0.019 17 8.00 0.28 0.44 0.062 18 8.50 0.20 0.41 0.062 19 9.00 0.45 0.12 0.027 20 9.50 0.24 0.26 0.031 21 10.00 0.18 0.42 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.030</td></t<>								0.030
6 2.50 0.03 0.15 0.002 7 3.00 0.20 0.40 0.040 8 3.50 0.00 0.00 0.000 9 4.400 0.12 0.39 0.023 10 4.50 0.10 0.41 0.021 11 5.50 0.17 0.14 0.012 12 5.50 0.12 0.62 0.037 13 6.00 0.05 0.25 0.006 14 6.50 0.21 0.44 0.046 15 7.50 0.10 0.37 0.019 16 7.50 0.19 0.10 0.00 17 8.00 0.28 0.44 0.062 18 8.50 0.20 0.41 0.041 19 9.00 0.45 0.12 0.027 21 10.00 0.18 0.42 0.03 21 10.00 0.18 0.42 0.03								0.025
7 3.00 0.20 0.40 0.40 0.000 0.								0.015
8 3.50 0.00 0.00 0.00 0.00 0.00 0.000 9 9 4.00 0.12 0.39 0.023 10 4.50 0.10 1.2 0.39 0.023 110 4.50 0.10 0.117 0.41 0.41 0.021 111 5.00 0.17 1 0.14 0.14 0.012 12 5.50 0.12 0.62 0.025 0.006 114 6.50 0.12 0.62 0.025 0.006 114 6.50 0.21 0.44 0.044 0.046 115 7.00 0.10 0.37 0.019 115 7.00 0.10 0.37 0.019 115 7.00 0.10 0.37 0.019 115 7.00 0.10 0.37 0.019 117 8.00 0.28 0.44 0.046 16 7.50 0.19 0.10 0.000 17 8.85 0.044 0.045 119 9.00 0.45 0.45 0.022 0.022 0.041 0.041 0.041 119 9.00 0.45 0.022 0.041 0.041 0.041 119 9.00 0.045 0.022 0.041 0.041 0.041 119 9.00 0.045 0.022 0.023 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.023 0.022 0.022 0.023 0.022 0.022 0.023 0.022 0.022 0.022 0.022 0.023 0.022 0.0							_	0.058
9 4.00 0.12 0.39 0.23 0.22 11 1	·							0.050
10							_	0.030
11						1	_	0.055
12							-	0.068
13								0.073
14							_	0.043
15							_	0.065
16	14	6.50	0.21		0.44		0.046	0.078
17								0.071
18	16	7.50	0.19		0.10		0.009	0.116
19	17	8.00	0.28		0.44		0.062	0.120
20	18	8.50	0.20		0.41		0.041	0.163
21 10.00 0.18 0.42 0.038 22 10.50 0.22 0.37 0.041 23 11.00 0.18 0.05 0.005 24 11.50 0.22 0.25 0.028 25 12.00 0.20 0.002 0.000 26 12.50 0.20 0.00 0.000 27 13.00 0.22 0.28 0.031 28 13.50 0.14 0.02 0.00 0.001 29 14.00 0.15 0.00 0.006 0.000 31 15.00 0.18 0.27 0.024 32 15.50 0.12 0.12 0.024 32 15.50 0.12 0.12 0.024 32 15.50 0.12 0.12 0.024 32 15.50 0.17 0.85 0.032 34 16.50 0.17 0.85 0.055 35 17.00 <td< td=""><td>19</td><td>9.00</td><td>0.45</td><td></td><td>0.12</td><td></td><td>0.027</td><td>0.173</td></td<>	19	9.00	0.45		0.12		0.027	0.173
21 10.00 0.18 0.42 0.038 22 10.50 0.22 0.37 0.041 23 11.00 0.18 0.05 0.005 24 11.50 0.22 0.25 0.028 25 12.00 0.20 0.002 0.000 26 12.50 0.20 0.00 0.000 27 13.00 0.22 0.28 0.031 28 13.50 0.14 0.02 0.00 0.001 29 14.00 0.15 0.00 0.006 0.000 31 15.00 0.18 0.27 0.024 32 15.50 0.12 0.12 0.024 32 15.50 0.12 0.12 0.024 32 15.50 0.12 0.12 0.024 32 15.50 0.17 0.85 0.032 34 16.50 0.17 0.85 0.055 35 17.00 <td< td=""><td>20</td><td>9.50</td><td>0.24</td><td></td><td>0.26</td><td></td><td>0.031</td><td>0.105</td></td<>	20	9.50	0.24		0.26		0.031	0.105
22								0.100
23								0.100
24 11.50 0.22 0.25 0.028 25 12.00 0.20 0.002 0.002 26 12.50 0.20 0.00 0.000 27 13.00 0.22 0.28 0.031 28 13.50 0.14 0.02 0.001 29 14.00 0.15 0.00 0.000 30 14.50 0.20 0.06 0.006 31 15.00 0.18 0.27 0.024 32 15.50 0.12 0.12 0.12 33 16.00 0.15 0.43 0.032 34 16.50 0.17 0.65 0.055 35 17.00 0.00 0.00 0.00 36 17.50 0.00 0.00 0.00 37 18.00 0.00 0.00 0.00 38 18.50 0.00 0.00 0.00 37 18.00 0.00 0.00 0.00<							_	0.100
25							_	0.105
26 12.50 0.20 0.00 0.00 27 13.00 0.22 0.28 0.031 28 13.50 0.14 0.02 0.001 29 14.00 0.15 0.00 0.006 30 14.50 0.20 0.06 0.006 31 15.00 0.18 0.27 0.024 32 15.50 0.12 0.12 0.12 0.007 33 16.00 0.15 0.43 0.032 0.032 34 16.50 0.17 0.65 0.055 0.055 0.055 35 17.00 0.00 0.00 0.00 0.000 0.000 37 18.00 0.00 0.00 0.00 0.000 0.000 38 18.50 0.00 0.00 0.00 0.000 0.000 39 19.00 0.10 0.00 0.00 0.000 0.000 40 19.50 0.30 0.57								0.100
27							_	0.105
28 13.50 0.14 0.02 0.001 0.001 29 14.00 0.15 0.00 0.006 0.006 30 14.50 0.20 0.06 0.006 0.006 31 15.00 0.18 0.27 0.024 0.024 32 15.50 0.12 0.12 0.12 0.007 33 16.00 0.15 0.43 0.032 34 16.50 0.17 0.65 0.055 35 17.00 0.00 0.00 0.00 36 17.50 0.00 0.00 0.00 37 18.00 0.00 0.00 0.00 38 18.50 0.00 0.00 0.00 39 19.00 0.10 0.00 0.00 40 19.50 0.30 0.57 0.086 41 20.00 0.15 0.12 0.00 42 20.50 0.08 0.23 0.00								0.090
29 14.00 0.15 0.00 0.06 30 14.50 0.20 0.06 0.024 31 15.00 0.18 0.27 0.024 32 15.50 0.12 0.12 0.012 33 16.00 0.15 0.43 0.032 34 16.50 0.17 0.65 0.055 35 17.00 0.00 0.00 0.00 36 17.50 0.00 0.00 0.00 37 18.00 0.00 0.00 0.00 38 18.50 0.00 0.00 0.00 39 19.00 0.10 0.00 0.00 40 19.50 0.30 0.57 0.00 41 20.00 0.15 0.12 0.009 42 20.50 0.08 0.23 0.00 43 21.00 0.16 0.71 0.00 44 21.50 0.00 0.00 0.00								0.030
30						+		0.073
31							_	0.000
32							_	0.095
33 16.00 0.15 0.43 0.032 0.055 34 16.50 0.17 0.65 0.055 0.055 35 17.00 0.00 0.00 0.000 0.000 36 17.50 0.00 0.00 0.000 0.000 37 18.00 0.00 0.00 0.000 0.000 38 18.50 0.00 0.00 0.00 0.000 39 19.00 0.10 0.00 0.00 0.000 40 19.50 0.30 0.57 0.086 0.086 41 20.00 0.15 0.12 0.009 0.009 42 20.50 0.08 0.23 0.000 0.000 43 21.00 0.16 0.71 0.000 0.000 44 21.50 0.00 0.00 0.000 0.000 45 22.00 0.00 0.00 0.000 0.000 46 22.50 0.00 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td>0.075</td>						+		0.075
34 16.50 0.17 0.65 0.005 0.005 35 17.00 0.00 0.00 0.00 0.000 36 17.50 0.00 0.00 0.00 0.000 37 18.00 0.00 0.00 0.000 0.000 38 18.50 0.00 0.00 0.000 0.000 39 19.00 0.10 0.00 0.000 0.000 40 19.50 0.30 0.57 0.086 0.086 41 20.00 0.15 0.12 0.009 0.008 42 20.50 0.08 0.23 0.000 0.000 0.000 43 21.00 0.16 0.71 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001							_	
35 17.00 0.00 0.00 0.00 0.000				-			_	0.080
36 17.50 0.00 0.00 0.00 0.000				+			_	0.043
37 18.00 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.023 0.001 0.000						 	_	0.000
38 18.50 0.00 0.00 0.00						 		0.000
39 19.00 0.10 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.006 0.000 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.000 0.00						 		0.000
40 19.50 0.30 0.57 0.086 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.000 0.00								0.025
41 20.00 0.15 0.12 0.009 0.000 42 20.50 0.08 0.23 0.000 0.000 43 21.00 0.16 0.71 0.000 0.000 44 21.50 0.00 0.00 0.00 0.000 45 22.00 0.00 0.00 0.00 0.000 0.000 46 22.50 0.00 0.00 0.00 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000						1	_	0.100
42 20.50 0.08 0.23 0.000 0.000 43 21.00 0.16 0.71 0.000 0.000 44 21.50 0.00 0.00 0.000 0.000 45 22.00 0.00 0.00 0.000 0.000 46 22.50 0.00 0.00 0.00 0.000 0.000 47 23.00 0.15 0.41 0.031 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>0.113</td></t<>						1		0.113
43 21.00 0.16 0.71 0.000 0.000 44 21.50 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000						1		0.058
44 21.50 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.00							-	0.060
45 22.00 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.000 0.00								0.040
46 22.50 0.00 0.00 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.000 0.00							-	0.000
47 23.00 0.15 0.41 0.031 0.015 48 23.50 0.15 0.22 0.017 0.0017 49 24.00 0.00 0.00 0.00 0.000 0.000 50 24.50 0.10 0.33 0.017 0.017 0.017 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.000</td>								0.000
48 23.50 0.15 0.22 0.017 0.0017 49 24.00 0.00 0.000 0.000 0.000 50 24.50 0.10 0.33 0.017 0.017 51 25.00 0.05 0.01 0.000 0.000 0.000 52 25.50 0.00 0.00 0.00 0.005 0.005 53 26.00 0.12 0.08 0.005 0.005 54 26.50 0.00 0.00 0.00 0.000							-	0.038
49 24.00 0.00 0.00 0.000 50 24.50 0.10 0.33 0.017 0.001 51 25.00 0.05 0.01 0.000 0.000 52 25.50 0.00 0.00 0.00 0.000 0.000 53 26.00 0.12 0.08 0.005 0.005 54 26.50 0.00 0.00 0.00 0.000							-	0.075
50 24.50 0.10 0.33 0.017 0 51 25.00 0.05 0.01 0.000 0 52 25.50 0.00 0.00 0.000 0 53 26.00 0.12 0.08 0.005 0 54 26.50 0.00 0.00 0.000 0							0.017	0.038
51 25.00 0.05 0.01 0.000 0 52 25.50 0.00 0.00 0.000 0 53 26.00 0.12 0.08 0.005 0 54 26.50 0.00 0.00 0.00 0.000 0	49	24.00	0.00		0.00		0.000	0.025
52 25.50 0.00 0.00 0.000 0.000 0.000 0.000 0.005 0.005 0.005 0.005 0.000 0.00	50	24.50	0.10		0.33		0.017	0.038
52 25.50 0.00 0.00 0.000 0.000 0.000 0.000 0.005 0.005 0.005 0.005 0.000 0.00								0.013
53 26.00 0.12 0.08 0.005 0 54 26.50 0.00 0.00 0.00 0 0								0.030
54 26.50 0.00 0.00 0.00 0.000								0.030
							-	0.040
ן טו. ו עו. עו. און עו. און די טוי. או	55	27.00	0.16		0.39		0.031	0.085
								0.083
							_	0.038

	0	PEN WATER DISCH	ARGE CALCULAT	TION SPREADSHEE	T			
Project Name, Number	er:	1524321 - Amaruq	24321 - Amaruq			Date		5
Waterbody:		A81			Start Time			
Crossing ID:		A81-A80			End Time			
LDB UTI	VI Location		Survey		Datalogger S	N:		
East	598366	BM_read			Transducer S	SN:		
North	7255457	WL_read			Meter Type/S	N:	Swoffer	
Elevation, Zone	14W	WL_Elev			Crew:	AEM: RV, L	G, RD	
STATION	DISTANCE		V	elocity	Optio	nal		
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLĖ O	F FLOW	Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°))	(m3/s)	(m2)
58	28.50	0.00		0.00			0.000	0.000
59	29.00	0.00		0.00			0.000	0.000
60	29.50	0.00		0.00			0.000	0.000
61	30.00	0.00		0.00			0.000	0.020
62	30.50	0.08		0.22			0.044	0.180
63	31.00	0.00		0.00			0.000	0.000
64	31.50	0.10		0.15			0.008	0.025
65	32.00	0.00		0.00			0.000	0.000
66	33.00	0.08		0.10			0.136	1.320
67	34.00	0.00		0.00			0.000	0.000
68	35.00	0.00		0.00			0.000	0.000
NOTES:			•		RESULTS:	Q (m3/s)	1.0	088
						A(m2)	5.	04
						B(m)	35	5.0

		ODEN WATER D	ISCHARGE CAL	CULATION SPREA	Dentet		
Project Name, Number:		Amaruq - Trip 2	ISCHARGE CAL	CULATION SPREA	Date	08-Aug-15	
Waterbody:		Allialuq - Trip 2			Start Time	11:51	
Crossing ID:		A81-A80			End Time	12:20	
LDB UTM L	ocation	A01-A00	Survey		Datalogger SN:	12.20	
East	598343	BM read	Julyey		Transducer SN:		
North	7255414	WL read			Meter Type/SN:	Marsh McB	irnev
Elevation, Zone	14W	WL Elev			Crew: JL, Laren (wild	•	
STATION	DISTANCE		V	elocity	Optional	1	1
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLE OF FLOW	Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)	(m3/s)	(m2)
1	0.00	0.00	, ,	0.00	, ,	` '	0.000
2	2.50	0.00		0.00		0.000	0.006
3	2.60	0.12		0.13		0.002	0.006
4	2.70	0.00		0.00		0.000	0.000
5	5.60	0.00		0.00		0.000	0.002
6	5.70	0.04		0.10		0.000	0.002
7	5.80	0.00		0.00		0.000	0.000
<u>8</u> 9	6.70 6.90	0.00		0.00 0.08		0.000 0.000	0.003 0.001
10	7.00	0.03		0.08		0.000	0.001
11	7.30	0.00		0.00		0.000	0.000
12	7.40	0.00		0.00	 	0.000	0.002
13	7.60	0.04		0.00		0.000	0.004
14	7.70	0.00		0.00		0.000	0.002
15	7.80	0.04		0.08		0.000	0.001
16	7.85	0.00		0.00		0.000	0.000
17	10.20	0.00		0.00		0.000	0.003
18	10.40	0.03		0.12		0.001	0.036
19	11.00	0.09		0.01		0.001	0.057
20	11.60	0.10		0.11		0.012	0.165
21	13.10	0.12		0.16		0.017	0.018
22	13.40	0.00		0.00		0.000	0.004
23	13.80	0.02		0.02		0.000	0.022
24 25	14.20	0.09		0.09		0.002	0.000
26	14.20 15.20	0.00 0.02		0.00 0.09		0.000 0.001	0.010 0.003
27	15.50	0.02		0.09		0.000	0.003
28	15.80	0.00		0.00		0.000	0.010
29	16.00	0.10		0.00		0.000	0.063
30	16.70	0.08		0.10		0.004	0.008
31	16.90	0.00		0.00		0.000	0.000
32	18.50	0.00		0.00		0.000	0.004
33	18.70	0.04		0.22		0.004	0.096
34	19.50	0.20		0.06		0.009	0.080
35	20.20	0.03		0.17		0.003	0.009
36	20.80	0.00		0.00		0.000	0.000
37	21.90	0.00		0.00		0.000	0.006
38	22.10	0.06		0.10		0.002	0.040
39 40	22.60 22.70	0.10 0.00	+	0.05 0.00		0.002 0.000	0.005 0.000
41	26.50	0.00		0.00		0.000	0.000
42	27.50	0.06		0.05		0.000	0.035
43	28.20	0.04		0.22		0.000	0.006
44	28.50	0.00		0.00		0.000	0.000
45	28.80	0.00		0.00		0.000	0.003
46	28.90	0.06		0.10		0.001	0.006
47	29.10	0.00		0.00		0.000	0.000
48	31.70	0.00		0.00		0.000	0.006
49	31.80	0.12		0.01		0.000	0.018
50	32.10	0.00		0.00		0.000	0.000
51	32.50	0.00		0.00		0.000	0.004
52	32.60	0.08		0.16		0.009	0.098
53	33.90	0.07		0.01		0.001	0.084
54 55	35.10	0.07	+	0.17		0.011	0.042
<u>55</u> 56	35.70 36.40	0.07 0.07	+	0.01 0.18	 	0.000 0.009	0.049 0.036
57	36.40	0.07	+	0.18		0.009	0.036
58	37.20	0.02		0.00	 	0.000	0.018
59	45.20	0.04		0.06		0.018	0.015
60		0.00		0.00			
60	45.70	0.00		0.00		0.000	0.000



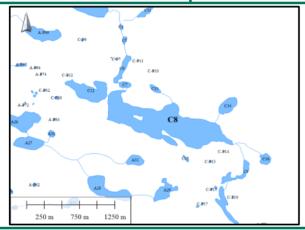

		_	SCHARGE CAL	CULATION SPREA					
Project Name, Numb	per:	Amaruq - Trip 2			Date		08-Aug-15		
Waterbody:		A81			Start Time		11:51		
Crossing ID:		A81-A80			End Time		12:20		
LDB UTN	/I Location		Survey		Datalogger S	SN:			
East	598343	43 BM_read			Transducer	SN:			
North	7255414	WL_read			Meter Type/S	SN:	Marsh McBi	rney	
Elevation, Zone	14W	WL_Elev			Crew:	JL, Laren (wild	dlife monitor took notes)		
STATION	DISTANCE		V	elocity	Op	tional			
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLĖ	OF FLOW	Qi	Ai	
LDB	(m)	(m)	(m/s)	(m/s)		(°)	(m3/s)	(m2)	
NOTES:					RESULTS:	Q (m3/s)	0.1	24	
						A(m2)	1.4	49	
						B(m)	B(m) 45.7		

A22.0 LAKE B3 & OUTLET (STREAM B3-B2)

Parameter	Value	Note				
Drainage Area (km²)	2.8	Based on DEM (PhotoSat 2015)				
Bankfull Width (m)	15	Measured in the field, based on vegetation				
Max. Bankfull Depth (m)	0.3	Measured in the field, based on vegetation				
Wetted Width (m)	12.8	Measured in the field 8 August 2015				
Max. Wetted Depth (m)	0.25	Measured in the field 8 August 2015				
Channel Length (km)	0.38	Measured from CanVec data				
Outlet Channel Slope (m/m)	0.007	Average slope, based on DEM (PhotoSat 2015)				
Bed Material	Boulders, cobbles, wit	h some gravel, sand				
Bank Material	Boulders, cobbles, org	ganics				
Bank Vegetation	Grass					
Benchmark Coordinates	600357 m E, 7259028 m N, 144.86 masl	NAD83 Zone 14				
Logger/ Staff Gauge Coordinates	N/A	1				
Comment	Poorly defined, braided bouldery channel, Cross-section					

8 August 2015. Upstream view of the Lake B3 outlet (east).

8 August 2015. Downstream view of the Lake B3 outlet (west).



	0	PEN WATER DISCH	IARGE CALCULA	TION SPREADSHEE	Т			
Project Name, Number:		Amaruq - trip 2			Date		08-Aug-1	15
Waterbody:		B3			Start Time		7:45	
Crossing ID:		B3-B2			End Time		8:05	
LDB UTM L	ocation		Survey		Datalogger S	N:		
East	600126	BM_read			Transducer S	N:		
North	7258966	WL_read			Meter Type/S	N:	Marsh M	cBirney
Elevation, Zone	14W	WL_Elev			Crew:	JRL, JN		
STATION	DISTANCE		V	elocity	Optio	nal		
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLĖ OI	F FLOW	Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)		(m3/s)	(m2)
1	0.00	0.00	` '	0.00	` '		,	0.135
2	1.50	0.18		0.04			0.006	0.009
3	1.60	0.00		0.00			0.000	0.000
4	2.00	0.00		0.00			0.000	0.008
5	2.10	0.15		0.03			0.001	0.023
6	2.40	0.00		0.00			0.000	0.000
7	3.10	0.00		0.00			0.000	0.011
8	3.30	0.11		0.04			0.001	0.054
9	3.70	0.16		0.03			0.002	0.068
10	4.20	0.11		0.09			0.006	0.092
11	5.00	0.12		0.06			0.005	0.058
12	5.50	0.11		0.02			0.001	0.098
13	6.20	0.17		0.03			0.003	0.026
14	6.50	0.00		0.00			0.000	0.000
15	7.80	0.00		0.00			0.000	0.008
16	7.90	0.16		0.05			0.003	0.087
17	8.50	0.13		0.02			0.001	0.058
18	9.00	0.10		0.02			0.001	0.058
19	9.50	0.13		0.09			0.004	0.013
20	9.70	0.00		0.00			0.000	0.000
21	11.10	0.00		0.00			0.000	0.012
22	11.20	0.24		0.01			0.001	0.048
23	11.60	0.00		0.00			0.000	0.000
24	12.60	0.00		0.00			0.000	0.008
25	12.70	0.16		0.03			0.000	0.008
26	12.80	0.00		0.00			0.000	0.000
NOTES:					RESULTS:	Q (m3/s)	0.0	36
						A(m2)	0.	88
						B(m)	12	2.8

A23.0 LAKE C8 & OUTLET (STREAM C8-C7)

Parameter	Value	Note				
Drainage Area (km²)	11.2	Based on DEM (PhotoSat 2015)				
Bankfull Width (m)	30	Measured in the field, based on vegetation				
Max. Bankfull Depth (m)	0.3	Measured in the field, based on vegetation				
Wetted Width (m)	16.6	Measured in the field on 8 August 2015				
Max. Wetted Depth (m)	0.14	Measured in the field on 8 August 2015				
Channel Length (km)	0.05	Measured from CanVec data				
Outlet Channel Slope (m/m)	0.005	Average slope, measured in the field				
Bed Material	Cobbles, gravel, san	nd .				
Bank Material	Boulders, cobbles, o	rganics				
Bank Vegetation	Grass					
Benchmark Coordinates	604219 m E, 7260840 m N	NAD83 Zone 14				
Logger/ Staff Gauge Coordinates	N/A					
Comment	Well defined channe	I. Cross-sectional data are available in discharge calculation sheets.				

Lake C8.

8 August 2015. Southwest view of Lake C8 flowing into C7.

8 August 2015. View looking south at Lake C8.

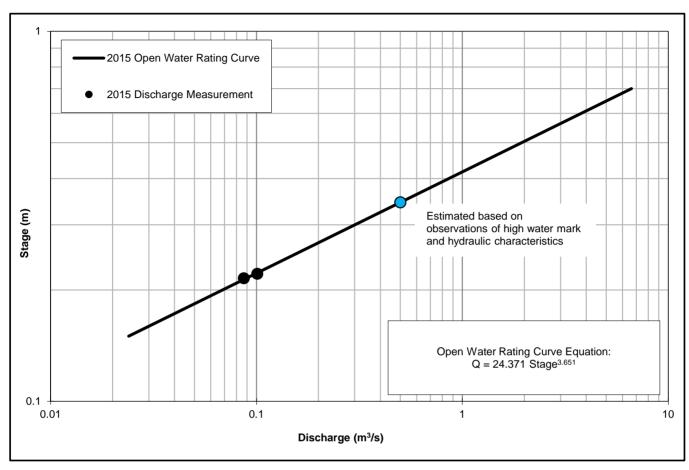


Figure 6: 2015 Stage-Discharge Rating Curve (Lake C8)

Lake C8 - 2015

MEAN DAILY DISCHARGE (m³/s)

DATE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
1	-	-	-	-	-	-	-	-	0.08	-	-	-
2	-	-	-	-	-	-	-	-	0.08	-	-	-
3	-	-	-	-	-	-	-	-	0.09	-	-	-
4	-	-	-	-	-	-	-	-	0.09	-	-	-
5	-	-	-	-	-	-	-	-	0.08	-	-	-
6	-	-	-	-	-	-	-	-	0.08	-	-	-
7	-	-	-	-	-	-	-	-	0.08	-	-	-
8	-	-	-	-	-	-	-	0.09 P	0.08	-	-	-
9	-	-	-	-	-	-	-	0.09	0.08	-	-	-
10	-	-	-	-	-	-	-	0.08	0.08	-	-	-
11	-	-	-	-	-	-	-	0.09	0.07	-	-	-
12	-	-	-	-	-	-	-	0.07	0.08	-	-	-
13	-	-	-	-	-	-	-	0.08	0.08	-	-	-
14	-	-	-	-	-	-	-	0.09	0.08	-	-	-
15	-	-	-	-	-	-	-	0.08	0.08	-	-	-
16	-	-	-	-	-	-	-	0.08	0.08 P	-	-	-
17	-	-	-	-	-	-	-	0.08	-	-	-	-
18	-	-	-	-	-	-	-	0.08	-	-	-	-
19	-	-	-	-	-	-	-	0.08	-	-	-	-
20	-	-	-	-	-	-	-	0.08	-	-	-	-
21	-	-	-	-	-	-	-	0.08	-	-	-	-
22	-	-	-	-	-	-	-	0.08	-	-	-	-
23	-	-	-	-	-	-	-	0.08	-	-	-	-
24	-	-	-	-	-	-	-	0.09	-	-	-	-
25	-	-	-	-	-	-	-	0.09	-	-	-	-
26	-	-	-	-	-	-	-	0.09	-	-	-	-
27	-	-	-	-	-	-	-	0.09	-	-	-	-
28	-	-	-	-	-	-	-	0.08	-	-	-	-
29	-	-	-	-	-	-	-	0.08	-	-	-	-
30	-	-	-	-	-	-	-	0.08	-	-	-	-
31	-	-	-	-	-	-	-	0.08	-	-	-	-
MIN	-	-	-	-	-	-	-	0.073	0.072	-	-	-
MEAN	-	-	-	-	-	-	-	0.083	0.080	-	-	-
MAX	-	-	-	-	-	-	-	0.089	0.086	-	-	-

NOTES: P - PARTIAL DAILY AVERAGE

Water Yield (m³) = 282,794 Water Yield (mm) = 24.0 171,934 110,860 61% 39%

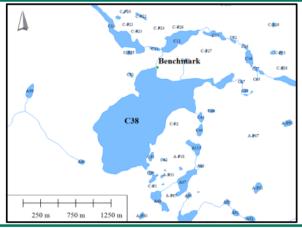
Lake C8 - 2015

MEAN DAILY WATER SURFACE ELEVATION (masl)

1	_			APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
	-	-	-	-	-	-	-	-	139.008	-	-	-
2	-	-	-	-	-	-	-	-	139.012	-	-	-
3	-	-	-	-	-	-	-	-	139.013	-	-	-
4	-	-	-	-	-	-	-	-	139.012	-	-	-
5	-	-	-	-	-	-	-	-	139.011	-	-	-
6	-	-	-	-	-	-	-	-	139.010	-	-	-
7	-	-	-	-	-	-	-	-	139.009	-	-	-
8	-	-	-	-	-	-	-	139.014 P	139.006	-	-	-
9	-	-	-	-	-	-	-	139.015	139.005	-	-	-
10	-	-	-	-	-	-	-	139.012	139.005	-	-	-
11	-	-	-	-	-	-	-	139.012	139.003	-	-	-
12	-	-	-	-	-	-	-	139.004	139.009	-	-	-
13	-	-	-	-	-	-	-	139.012	139.025	-	-	-
14	-	-	-	-	-	-	-	139.013	139.020	-	-	-
15	-	-	-	-	-	-	-	139.011	139.021	-	-	-
16	-	-	-	-	-	-	-	139.008	139.022 P	-	-	-
17	-	-	-	-	-	-	-	139.007	-	-	-	-
18	-	-	-	-	-	-	-	139.008	-	-	-	-
19	-	-	-	-	-	-	-	139.007	-	-	-	-
20	-	-	-	-	-	-	-	139.009	-	-	-	-
21	-	-	-	-	-	-	-	139.011	-	-	-	-
22	-	-	-	-	-	-	-	139.010	-	-	-	-
23	-	-	-	-	-	-	-	139.011	-	-	-	-
24	-	-	-	-	-	-	-	139.013	-	-	-	-
25	-	-	-	-	-	-	-	139.013	-	-	-	-
26	-	-	-	-	-	-	-	139.013	-	-	-	-
27	-	-	-	-	-	-	-	139.013	-	-	-	-
28	-	-	-	-	-	-	-	139.010	-	-	-	-
29	-	-	-	-	-	-	-	139.011	-	-	-	-
30	-	-	-	-	-	-	-	139.011	-	-	-	-
31	-	-	-	-	-	-	-	139.010	-	-	-	-
								400.00	400.000			
MIN	-	-	-	-	-	-	-	139.004	139.003	-	-	-
MEAN	-	-	-	-	-	-	-	139.011	139.012	-	-	-
MAX	-	-	-	-	-	-	-	139.015	139.025	-	-	-

NOTES: P - PARTIAL DAILY AVERAGE

		PEN WATER DISCHA	ARGE CALCULA	IION SPREADSHEE			22.4	
Project Name, Number:		Amaruq - Trip 2			Date		08-Aug-1	15
Waterbody:		C8			Start Time		9:45	
Crossing ID:		C8-C7			End Time		10:00	
LDB UTM			Survey		Datalogger S			
East	604259	BM_read			Transducer S	N:		
North	7260865	WL_read			Meter Type/S	N:	Marsh M	cBirney
Elevation, Zone	14W	WL_Elev			Crew:	JRL, JN		
STATION	DISTANCE		V	elocity elocity	Optio	nal		
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLÉ OI	F FLOW	Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)		(m3/s)	(m2)
1	0.40	0.00	, ,	0.00	` '		,	0.002
2	0.50	0.04		0.00			0.000	0.028
3	1.20	0.04		0.00			0.000	0.066
4	2.40	0.07		0.01			0.001	0.065
5	3.40	0.06		0.05			0.003	0.084
6	4.60	0.08		0.06			0.006	0.132
7	5.80	0.14		0.08			0.013	0.150
8	7.00	0.11		0.07			0.009	0.138
9	8.20	0.12		0.08			0.012	0.144
10	9.40	0.12		0.07			0.010	0.144
11	10.60	0.12		0.04			0.006	0.108
12	11.80	0.06		0.07			0.005	0.096
13	13.00	0.10		0.05			0.006	0.102
14	14.20	0.07		0.05		•	0.004	0.114
15	15.40	0.12		0.08			0.012	0.108
16	16.60	0.06		0.01			0.000	0.012
17	17.00	0.00		0.00			0.000	0.000
NOTES:					RESULTS:	Q (m3/s)	0.0	87
						A(m2)	1.	49
	1					B(m)	16	6



Project Name, Number		1524321 - Amarug		TION SPREADSHEET	Date		16-Sep-	1.5
	I.	C8	TIIP 3		Start Time			13
Waterbody:							11:40	
Crossing ID:		C8-C7			End Time		11:50	
	/ Location		Survey		Datalogger S			
East	604255	BM_read			Transducer S			
North	7260877	WL_read			Meter Type/SN:			
Elevation, Zone	14W	WL_Elev			Crew:	JRL, DC		
STATION	DISTANCE			elocity	Optio			
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLE O		Qi (m3/s)	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)	(°)		(m2)
1	0.00	0.00		0				0.100
2	2.00	0.10		0.02			0.003	0.08
3	3.00	0.06		0.06			0.004	0.09
4	4.00	0.12		0.1			0.012	0.13
5	5.00	0.15		0.07			0.011	0.13
6	6.00	0.12		0.07			0.008	0.14
7	7.00	0.17		0.05			0.009	0.18
8	8.00	0.19		0.02			0.004	0.19
9	9.00	0.20		0.04			0.008	0.18
10	10.00	0.16		0.06			0.010	0.16
11	11.00	0.16		0.04			0.006	0.15
12	12.00	0.14		0.07			0.010	0.13
13	13.00	0.12		0.07			0.008	0.12
14	14.00	0.13		0.05				0.11
15	15.00	0.10		0.03			0.002	0.03
16	15.60	0.00		0			0.000	0.00
NOTES:		•	•		RESULTS:	Q (m3/s)	0.1	01
						A(m2)	1.	95
						B(m)	15	6

A24.0 LAKE C38 (NEMO LAKE) & OUTLET (STREAM C38-C12)

Parameter	Value	Note			
Drainage Area (km²)	3.5	Based on DEM (PhotoSat 2015)			
Bankfull Width (m)	3	Measured in the field, based on vegetation			
Max. Bankfull Depth (m)	0.2	Measured in the field, based on vegetation			
Wetted Width (m)	1.4	Measured in the field 4 August 2015			
Max. Wetted Depth (m)	0.12	Measured in the field 4 August 2015			
Channel Length (km)	0.22	Measured from CanVec data			
Outlet Channel Slope (m/m)	0.024	Average slope, measured in the field			
Bed Material	Boulders, cobble, gra	vel			
Bank Material	Boulders, cobbles, or	ganics			
Bank Vegetation	Grass				
Benchmark Coordinates	606646 m E, 7258165 m N, 157.42 masl	NAD83 Zone 14			
Logger/ Staff Gauge Coordinates	606615 m E, 7258148 m N				
Comment	Poorly defined boulde available in discharge	der channel with some well-defined portions. Cross-sectional data are ge calculation sheets.			

Lake C38: Benchmark location.

14 June 2015. View from outlet looking south at Lake C38.

17 September 2015. Upstream view of the watercourse and Lake C38 (south)

4 August 2015. Upstream view of the watercourse and Lake C38 (south).

4 August 2015. Downstream view of the watercourse (north).

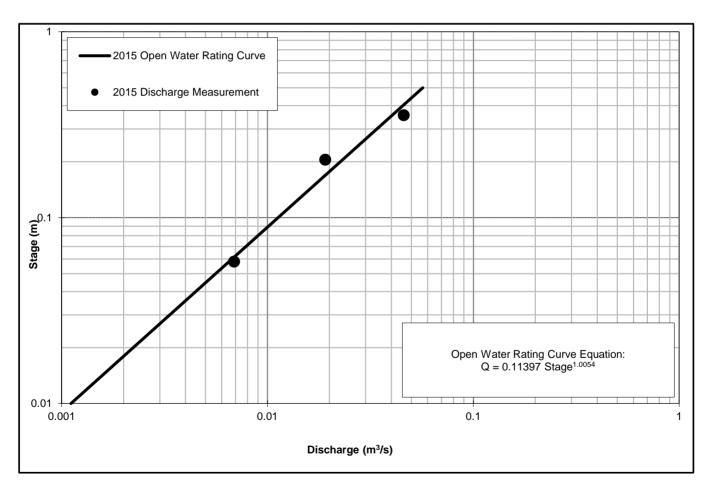


Figure 7: 2015 Stage-Discharge Rating Curve (Lake C38)

Lake C38 (Nemo Lake) - 2015 MEAN DAILY DISCHARGE (m³/s)

DATE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	-	-	-	_	_	-	0.04	0.02	0.01	-	-	-
2	-	-	-	_	-	_	0.04	0.02	0.01	-	_	-
3	_	-	-	_	_	_	0.03	0.02	0.01	-	_	_
4	-	-	-	_	-	_	0.03	0.02	0.00	-	_	-
5	-	-	-	-	-	-	0.03	0.02	0.00	-	-	-
6	-	-	-	-	-	-	0.03	0.02	0.00	-	-	-
7	-	-	-	-	-	-	0.03	0.02	0.00	-	-	-
8	-	-	-	-	-	-	0.03	0.02	0.00	-	-	-
9	-	-	-	-	-	-	0.03	0.02	0.00	-	-	-
10	-	-	-	-	-	-	0.03	0.02	0.00	-	-	-
11	-	-	-	-	-	-	0.03	0.02	0.00	-	-	-
12	-	-	-	-	-	-	0.03	0.02	0.00	-	-	-
13	-	-	-	-	-	0.04	0.03	0.02	0.00	-	-	-
14	-	-	-	-	-	0.04	0.03	0.02	0.01	-	-	-
15	-	-	-	-	-	0.04	0.03	0.01	0.01	-	-	-
16	-	-	-	-	-	0.04	0.03	0.01	0.01	-	-	-
17	-	-	-	-	-	0.04	0.03	0.01	0.01	-	-	-
18	-	-	-	-	-	0.04	0.03	0.01	-	-	-	-
19	-	-	-	-	-	0.04	0.03	0.01	-	-	-	-
20	-	-	-	-	-	0.04	0.03	0.01	-	-	-	-
21	-	-	-	-	-	0.04	0.03	0.01	-	-	-	-
22	-	-	-	-	-	0.04	0.03	0.01	-	-	-	-
23	-	-	-	-	-	0.04	0.03	0.01	-	-	-	-
24	-	-	-	-	-	0.04	0.03	0.01	-	-	-	-
25	-	-	-	-	-	0.04	0.03	0.01	-	-	-	-
26	-	-	-	-	-	0.04	0.03	0.01	-	-	-	-
27	-	-	-	-	-	0.04	0.03	0.01	-	-	-	-
28	-	-	-	-	-	0.04	0.03	0.01	-	-	-	-
29	-	-	-	-	-	0.04	0.02	0.01	-	-	-	-
30	-	-	-	-	-	0.04	0.02	0.01	-	-	-	-
31	-	-	-	-	-	-	0.02	0.01	-	-	-	-
MIN	-	-	-	-	-	0.035	0.025	0.006	0.002	-	-	-
MEAN	-	-	-	-	-	0.038	0.030	0.014	0.004	-	-	-
MAX	-	-	-	-	-	0.039	0.036	0.024	0.006	-	-	-

NOTES: P - PARTIAL DAILY AVERAGE

Water Yield (m³) = 185,489 59,834 81,074 38,325 6,256 Water Yield (mm) = 52.3 32% 44% 21% 3%

Lake C38 (Nemo Lake) - 2015

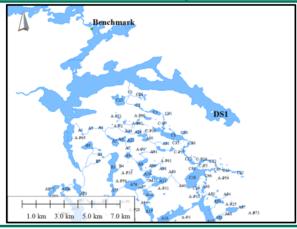
MEAN DAILY WATER SURFACE ELEVATION (masl) BASED ON BENCHMARK ELEVATION 157.42 masl

DATE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	-	-	-	-	-	-	155.949	155.841	155.677	-	-	-
2	-	-	-	-	-	-	155.942	155.833	155.677	-	-	-
3	-	-	-	-	-	-	155.938	155.827	155.675	-	-	-
4	-	-	-	-	-	-	155.930	155.827	155.672	-	-	-
5	-	-	-	-	-	-	155.928	155.828	155.669	-	-	-
6	-	-	-	-	-	-	155.925	155.821	155.664	-	-	-
7	-	-	-	-	-	-	155.921	155.815	155.661	-	-	-
8	-	-	-	-	-	-	155.917	155.808	155.657	-	-	-
9	-	-	-	-	-	-	155.918	155.800	155.654	-	-	-
10	-	-	-	-	-	-	155.924	155.794	155.650	-	-	-
11	-	-	-	-	-	-	155.922	155.787	155.647	-	-	-
12	-	-	-	-	-	-	155.918	155.773	155.660	-	-	-
13	-	-	-	-	-	155.940 P	155.923	155.772	155.671	-	-	-
14	-	-	-	-	-	155.957	155.917	155.765	155.676	-	-	-
15	-	-	-	-	-	155.967	155.911	155.760	155.679	-	-	-
16	-	-	-	-	-	155.973	155.906	155.750	155.683	-	-	-
17	-	-	-	-	-	155.977	155.901	155.743	155.684 P	-	-	-
18	-	-	-	-	-	155.977	155.895	155.738	-	-	-	-
19	-	-	-	-	-	155.976	155.888	155.734	-	-	-	-
20	-	-	-	-	-	155.976	155.885	155.730	-	-	-	-
21	-	-	-	-	-	155.978	155.881	155.723	-	-	-	-
22	-	-	-	-	-	155.977	155.876	155.716	-	-	-	-
23	-	-	-	-	-	155.973	155.873	155.712	-	-	-	-
24	-	-	-	-	-	155.974	155.866	155.709	-	-	-	-
25	-	-	-	-	-	155.974	155.860	155.705	-	-	-	-
26	-	-	-	-	-	155.977	155.856	155.700	-	-	-	-
27	-	-	-	-	-	155.972	155.855	155.696	-	-	-	-
28	-	-	-	-	-	155.966	155.853	155.692	-	-	-	-
29	-	-	-	-	-	155.962	155.849	155.691	-	-	-	-
30	-	-	-	-	-	155.956	155.847	155.690	-	-	-	-
31	-	-	-	-	-	-	155.847	155.683	-	-	-	-
MIN	-	-	-	-	-	155.940	155.847	155.683	155.647	-	-	-
MEAN	-	-	-	-	-	155.969	155.898	155.757	155.668	-	-	-
MAX	-	-	-	-	-	155.978	155.949	155.841	155.684	-	-	-

NOTES: P - PARTIAL DAILY AVERAGE

	0	PEN WATER DISCH	ARGE CALCULAT	TION SPREADSHEE	T			
Project Name, Numbe	r:	1524321 - Amaruq			Date		14-Jun-1	5
Waterbody:		C38			Start Time		13:00	
Crossing ID:		C38-C12			End Time		13:30	
LDB UTN	I Location		Survey		Datalogger S	N:		
East	606634	BM_read			Transducer S	SN:		
North	7258188	WL_read Meter Type/SN:		Swoffer				
Elevation, Zone	14W	WL_Elev			Crew:	* * * * * * * * * * * * * * * * * * * *		
STATION	DISTANCE		V	elocity	Optio	nal		
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLĖ O	F FLOW	Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°))	(m3/s)	(m2)
1	1.40	0.00		0.00				0.016
2	1.60	0.16		0.23			0.007	0.026
3	1.80	0.10		0.38			0.008	0.018
4	2.00	0.08		0.40			0.006	0.017
5	2.20	0.09		0.05			0.001	0.034
6	2.60	0.08		0.30			0.007	0.014
7	2.80	0.06		0.20			0.003	0.018
8	3.05	0.08		0.30			0.005	0.014
9	3.20	0.10		0.30			0.005	0.021
10	3.40	0.11		0.03			0.001	0.024
11	3.60	0.13		0.09			0.002	0.024
12	3.80	0.11		0.00			0.000	0.022
13	4.00	0.11		0.01			0.000	0.017
14	4.30	0.00		0.00			0.000	0.000
NOTES:				•	RESULTS:	Q (m3/s)	0.0)46
						A(m2)	0.	26
					B(m)	2	.9	

	0	PEN WATER DISCHA	RGE CALCULA	TION SPREADSHEE	Т			
Project Name, Number:		Amaruq - trip 2	Date		04-Aug-15			
Waterbody:		C38			Start Time		16:45	
Crossing ID:		C38-C12			End Time		17:00	
LDB UTM L	ocation		Survey		Datalogger S	N:		
East	606635	BM_read			Transducer SN:			
North	7258187	WL_read			Meter Type/SN:		Marsh M	cBirney
Elevation, Zone	14W	WL_Elev			Crew:	JRL, JN		
STATION	DISTANCE		V	elocity elocity	Optio	nal		
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLE O	F FLOW	Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)		(m3/s)	(m2)
1	0.00	0.00		0.00				0.003
2	0.15	0.04		0.00			0.000	0.011
3	0.30	0.10		0.17			0.003	0.022
4	0.50	0.12		0.02			0.000	0.015
5	0.70	0.03		0.00			0.000	0.000
6	0.71	0.00		0.00			0.000	0.010
7	0.90	0.10		0.36			0.005	0.010
8	1.00	0.10		0.36			0.005	0.020
9	1.20	0.10		0.36			0.004	0.001
10	1.21	0.09		0.07			0.001	0.017
11	1.40	0.09		0.07			0.001	0.000
12	1.41	0.00		0.00			0.000	0.000
NOTES:			•		RESULTS:	Q (m3/s)	0.0	19
						A(m2)	0.	11
						B(m)	1.	4



Drainat Nama Number		PEN WATER DISCHA					17 Can 1	E
Project Name, Number	:	1524321 - Amaruq T	rip 3		Date		17-Sep-15	
Waterbody:		C38			Start Time		9:20	
Crossing ID:		C38-C12			End Time		9:25	
LDB UTM	Location		Survey		Datalogger S	N:		
East	606634	BM_read			Transducer S	N:		
North	7258188	WL_read			Meter Type/SN:			
Elevation, Zone	14W	WL_Elev			Crew:	JRL, DC		
STATION	DISTANCE		V	elocity	Optional			
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLE OF FLOW		Qi	Ai
LDB	(m)	(m)	(m/s) (m/s)		(°)		(m3/s)	(m2)
1	0.00	0.00		0.00				0.002
2	0.20	0.02		0.11			0.001	0.006
3	0.50	0.02		0.12			0.001	0.006
4	0.80	0.02		0.12			0.001	0.007
5	1.00	0.05		0.17			0.003	0.012
6	1.40	0.01		0.15			0.001	0.009
7	1.70	0.05		0.13			0.002	0.007
8	2.00	0.00		0.00			0.000	0.000
NOTES:					RESULTS:	Q (m3/s)	0.007	
					A(m2)		0.0	05
						B(m)	2.	.0

A25.0 LAKE DS1 & OUTLET (STREAM DS1)

Parameter	Value	Note					
Drainage Area (km²)	898	Based on DEM (PhotoSat 2015)					
Bankfull Width (m)	77	Measured in the field, based on vegetation					
Max. Bankfull Depth (m)	1.4	Measured in the field, based on vegetation					
Wetted Width (m)	45.5	Measured in the field 5 August 2015					
Max. Wetted Depth (m)	0.74	Measured in the field 5 August 2015					
Channel Length (km)	0.10	Measured from CanVec data					
Outlet Channel Slope (m/m)	0.006	Average slope, measured in the field					
Bed Material	Boulders, cobbles	Boulders, cobbles					
Bank Material	Boulders, cobbles, org	Boulders, cobbles, organics					
Bank Vegetation	Grass						
Benchmark Coordinates	599092 m E, 7268034 m N, 107.31 masl	NAD83 Zone 14					
Logger/ Staff Gauge Coordinates	599253 m E, 7268300 m N						
Comment	Well defined boulder c	Well defined boulder channel. Cross-sectional data are available in discharge calculation sheets.					

Lake DS1: Benchmark location.

12 June 2015. View looking east at Lake DS1 and staff gauge.

16 September 2015. View looking south east at Lake DS1 and outlet.

5 August 2015. Looking north-west at the watercourse.

5 August 2015. Looking north at the watercourse.

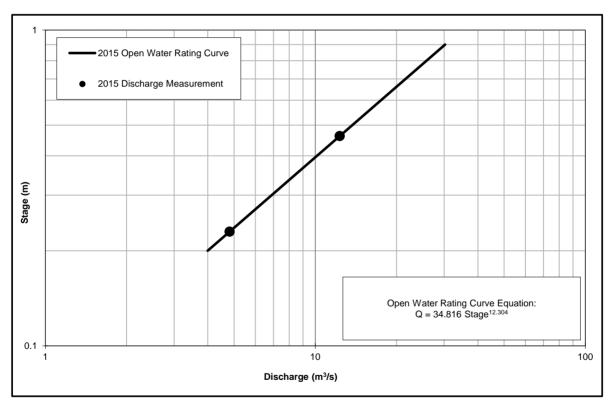


Figure 8: 2015 Stage-Discharge Rating Curve (Lake DS1)

Lake DS1 - 2015

MEAN DAILY DISCHARGE (m³/s)

DATE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	_	-	-	-	-	-	43.03	15.09	3.96	-	-	-
2	_	-	-	-	-	-	41.25	14.46	3.88	_	_	-
3	_	-	-	-	-	-	39.73	13.75	3.81	-	-	-
4	_	-	-	-	-	-	37.94	13.23	3.67	-	-	-
5	_	-	-	-	-	-	36.10	12.65	3.54	-	-	-
6	_	-	-	-	-	-	34.74	12.12	3.41	-	-	-
7	_	_	-	-	_	-	33.49	11.52	3.32	-	-	-
8	_	_	-	-	_	-	32.25	11.12	3.17	-	-	-
9	_	_	-	-	_	-	31.35	10.68	3.07	-	-	-
10	_	_	-	-	_	-	30.68	10.03	2.99	-	_	-
11	_	_	-	-	_	-	30.33	9.57	2.89	-	-	-
12	_	_	-	-	_	15.99 P	30.14	8.88	3.04	-	-	-
13	_	_	-	-	-	24.84	29.74	8.73	3.31	-	-	-
14	_	-	-	-	-	38.71	28.90	8.29	3.83	-	-	-
15	_	-	-	-	-	51.45	27.87	7.83	4.41	-	-	-
16	_	-	-	-	-	57.22	26.89	7.36	4.82 P	-	-	-
17	_	-	-	-	-	58.86	25.93	7.00	_	-	-	-
18	_	-	-	-	-	58.67	24.91	6.73	-	_	-	-
19	_	-	-	-	-	57.53	23.87	6.42	-	_	_	-
20	_	-	-	-	-	55.81	23.02	6.28	_	-		-
21	_	-	-	-	-	54.29	22.12	6.08	-	_	_	-
22	_	-	-	-	-	54.06	21.29	5.64	-	_	_	-
23	_	-	-	-	-	52.48	20.62	5.40	-	_	_	-
24	-	-	-	-	-	50.73	19.84	5.20	-	-	-	-
25	-	-	-	-	-	49.52	18.82	5.03	-	-	-	-
26	-	-	-	-	-	50.07	18.00	4.79	-	-	-	-
27	-	-	-	-	-	50.95	17.50	4.59	-	-	-	-
28	-	-	-	-	-	48.21	16.93	4.42	-	-	-	-
29	-	-	-	-	-	46.60	16.44	4.32	-	-	-	-
30	-	-	-	-	-	44.89	15.97	4.24	-	-	-	-
31	-	-	-	-	-	-	15.66	4.14	-	-	-	-
MIN	-	-	-	-	-	15.988	15.661	4.140	2.888	-	-	-
MEAN	-	-	-	-	-	48.468	26.947	8.245	3.570	-	-	-
MAX	-	-	-	-	-	58.864	43.030	15.093	4.821	-	-	-

NOTES: P - PARTIAL DAILY AVERAGE

Water Yield (m³) = 178,758,458 79,565,618 72,173,563 22,083,501 4,935,776 Water Yield (mm) = 199.2 45% 40% 12% 3%

Lake DS1 - 2015

MEAN DAILY WATER SURFACE ELEVATION (m) BASED ON BENCHMARK ELEVATION 107.31 masl

DATE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	-	-	-	-	-	-	100.170	99.537	99.199	-	-	-
2	-	-	-	-	-	-	100.134	99.520	99.196	-	-	-
3	-	-	-	-	-	-	100.102	99.501	99.193	-	-	-
4	-	-	-	-	-	-	100.065	99.487	99.188	-	-	-
5	-	-	-	-	-	-	100.027	99.471	99.183	-	-	-
6	-	-	-	-	-	-	99.998	99.456	99.178	-	-	-
7	-	-	-	-	-	-	99.971	99.439	99.174	-	-	-
8	-	-	-	-	-	-	99.944	99.428	99.168	-	-	-
9	-	-	-	-	-	-	99.925	99.415	99.164	-	-	-
10	-	-	-	-	-	-	99.910	99.397	99.161	-	-	-
11	-	-	-	-	-	-	99.902	99.383	99.157	-	-	-
12	-	-	-	-	-	99.560 P	99.898	99.362	99.163	-	-	-
13	-	-	-	-	-	99.776	99.889	99.357	99.174	-	-	-
14	-	-	-	-	-	100.080	99.870	99.344	99.194	-	-	-
15	-	-	-	-	-	100.336	99.847	99.330	99.215	-	-	-
16	-	-	-	-	-	100.446	99.825	99.315	99.230 P	-	-	-
17	-	-	-	-	-	100.477	99.803	99.303	-	-	-	-
18	-	-	-	-	-	100.473	99.779	99.295	-	-	-	-
19	-	-	-	-	-	100.452	99.755	99.285	-	-	-	-
20	-	-	-	-	-	100.419	99.735	99.280	-	-	-	-
21	-	-	-	-	-	100.390	99.713	99.273	-	-	-	-
22	-	-	-	-	-	100.386	99.694	99.259	-	-	-	-
23	-	-	-	-	-	100.356	99.677	99.250	-	-	-	-
24	-	-	-	-	-	100.322	99.658	99.243	-	-	-	-
25	-	-	-	-	-	100.299	99.633	99.237	-	-	-	-
26	-	-	-	-	-	100.309	99.612	99.229	-	-	-	-
27	-	-	-	-	-	100.326	99.599	99.222	-	-	-	-
28	-	-	-	-	-	100.273	99.585	99.216	-	-	-	-
29	-	-	-	-	-	100.241	99.572	99.212	-	-	-	-
30	-	-	-	-	-	100.207	99.560	99.209	-	-	-	-
31	-	-	-	-	-	-	99.552	99.205	-	-	-	-
MIN	-	-	-	-	-	99.560	99.552	99.205	99.157	-	-	-
MEAN	-	-	-	-	-	100.265	99.820	99.337	99.184	-	-	-
MAX	-	-	-	-	-	100.477	100.170	99.537	99.230	-	-	-

NOTES: P - PARTIAL DAILY AVERAGE

Project Name, Number		Amaruq - Trip 2		TION SPREADSHEE	Date		05-Aug-1	15
Waterbody:	#I •	DS1		Start Time		13:10	13	
Crossing ID:		D31			End Time		13:45	
	M Location		Cumran		Datalogger S	NI.	13.43	
East	599152	BM read	Survey		Transducer S			
North	7268331	WL read			Meter Type/S		Marsh M	oDirno.
Elevation, Zone	14W	WL_read WL Elev			Crew:	JRL, JN	Marsh M	сыттеу
STATION	DISTANCE	WL_Elev		/_l:			1	1
		DEDTU		elocity 0.6/0.8 DEPTH	Optio ANGLE O		0:	۸:
Start	FROM LDB	DEPTH	0.2 DEPTH				Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)		(m3/s)	(m2)
1	0.00	0.00		0.00				1.000
2	8.00	0.25		0.25			0.297	0.293
3	9.50	0.14		0.44			0.092	0.33
4	11.00	0.30		0.50			0.225	0.48
5	12.50	0.35		0.65			0.341	0.57
6	14.00	0.42		0.80			0.504	0.76
7	15.50	0.60		1.06			0.954	0.91
8	17.00	0.62		0.87			0.809	0.95
9	18.50	0.65		0.95			0.926	0.96
10	20.00	0.64		0.87			0.835	0.94
11	21.50	0.62		0.95			0.884	0.99
12	23.00	0.70		1.00			1.050	1.08
13	24.50	0.74		1.00			1.110	0.96
14	26.00	0.54		1.08			0.875	0.88
15	27.50	0.64		1.00			0.960	0.81
16	29.00	0.44		0.85	1		0.561	0.63
17	30.50	0.40		0.80			0.480	0.69
18	32.00	0.53		0.50			0.331	0.47
19	33.00	0.41		0.60			0.308	0.66
20	34.50	0.47		0.51			0.360	0.61
21	36.00	0.35		0.55			0.300	0.37
22	37.50	0.35		0.40			0.289	0.37
22	37.50			0.40			0.090	0.15
		0.05						
24	40.50	0.04		0.12			0.016	0.10
25	45.50	0.00		0.00			0.000	0.00
NOTES:					RESULTS:	Q (m3/s)		313
						A(m2)		.72
	1					B(m)	45	.5

	0	PEN WATER DISCH	IARGE CALCULA	TION SPREADSHEE	Т			
Project Name, Numbe	r:	1524321 - Amaruq	Trip 3	Date	16-Sep-15			
Waterbody:		DS1		Start Time	14:10			
Crossing ID:					End Time		14:35	
LDB UTN	/I Location		Survey	Datalogger S	N:			
East	599158	BM_read			Transducer S	SN:		
North	7268338	WL_read			Meter Type/S	N:		
Elevation, Zone	14W	WL_Elev			Crew:	JRL, DC		
STATION	DISTANCE		V	elocity	Optio	nal		
Start	FROM LDB	DEPTH	0.2 DEPTH	0.6/0.8 DEPTH	ANGLĖ O	F FLOW	Qi	Ai
LDB	(m)	(m)	(m/s)	(m/s)	(°)		(m3/s)	(m2)
1	0.00	0.00	, ,	0.00	`		· · · · · ·	0.110
2	1.00	0.22		0.34			0.075	0.250
3	2.00	0.28		0.37			0.104	0.270
4	3.00	0.26		0.59			0.153	0.320
5	4.00	0.38		0.56			0.213	0.375
6	5.00	0.37		0.71			0.263	0.350
7	6.00	0.33		0.43			0.142	0.370
8	7.00	0.41		0.60			0.246	0.435
9	8.00	0.46		0.61			0.281	0.470
10	9.00	0.48		0.60			0.288	0.530
11	10.00	0.58		0.61			0.354	0.590
12	11.00	0.60		0.70			0.420	0.605
13	12.00	0.61		0.75			0.458	0.585
14	13.00	0.56		0.56			0.314	0.570
15	14.00	0.58		0.58			0.336	0.540
16	15.00	0.50		0.50			0.250	0.460
17	16.00	0.42		0.42			0.176	0.440
18	17.00	0.46		0.46			0.212	0.440
19	18.00	0.42		0.42			0.176	0.405
20	19.00	0.39		0.39			0.152	0.350
21	20.00	0.31		0.31			0.096	0.270
22	21.00	0.23		0.23			0.053	0.215
23	22.00	0.20		0.20			0.040	0.155
24	23.00	0.11		0.11			0.012	0.105
25	24.00	0.10		0.10			0.008	0.030
26	24.60	0.00		0.00			0.000	0.000
NOTES:				RESULTS: Q (m3/s) 4.82		321		
						A(m2)	9.	24
					1	B(m)	24	l.6

APPENDIX B

Shoreline Baseline Characterization

B1.0 LAKE A12

Figure B-1: Shoreline with boulders (looking southwest)

Figure B-2: Lake A12 main outlet channel with boulder gardens (looking northeast)

Figure B-3: Lake A12 main outlet towards Lake A11, mostly subsurface (looking northeast)

Figure B-4: Shoreline at the lake outlet with shallow and bouldery beach (looking west)

B2.0 LAKE A15

Figure B-5: Shoreline with boulder garden beaches (looking south)

Figure B-6: Eastern shoreline with boulder garden beaches (looking north)

Figure B-7: Lake A15 outlet channel, right bank looking downstream

Figure B-8: Shoreline with boulder gardens at the lake inlet (looking north)

B3.0 LAKE A16 (MAMMOTH LAKE)

Figure B-9: Lake A16 outlet channel, left bank looking upstream

Figure B-10: Lake A16 outlet channel, large boulders with the flow through the boulders, looking downstream

Figure B-11: Lake A16 outlet channel, with boulder gardens, view towards right bank

Figure B-12: Shallow shoreline extending into the lake with large boulders as the main material (looking south)

B4.0 LAKE A17 (WHALE TAIL LAKE)

Figure B-13: Shallow shoreline with gravel and cobble beach inserted with large boulders (looking northeast)

Figure B-14: Shallow shoreline with gravel and cobble beach inserted with large boulders (looking south)

Figure B-15: Lake A17 (Whale Tail Lake) outlet channel looking upstream

Figure B-16: Lake A17 (Whale Tail Lake) outlet channel aerial view looking upstream

B5.0 LAKE A18

Figure B-17: Lake A18 outlet channel with a boulder garden, looking downstream

Figure B-18: Lake A18 outlet channel with a boulder garden, looking upstream

Figure B-19: Shoreline with boulder materials partially covered by soils and organics (looking north)

Figure B-20: Lake A18 left bank floodplain (looking south)

B6.0 LAKE A45

Figure B-21: Lake A45 outlet channel looking upstream from the left bank

Figure B-22: Shoreline with large boulders relatively shallow (looking south)

Figure B-23: Shoreline with boulder garden at the lake outlet (looking north)

Figure B-24: Aerial view of Lake A45 outlet channel looking downstream. Undefined channel with boulder garden (looking north)

B7.0 LAKE A72

Figure B-25: Lake A72 Outlet channel, right bank looking upstream

Figure B-26: Lake A72 Outlet channel, left bank looking upstream

Figure B-27: Lake A72 Outlet channel view towards left bank at the cross section location

Figure B-28: Lake A72 Outlet channel view downstream

B8.0 LAKE A69

Figure B-29: Shoreline with large boulders (looking north)

Figure B-30: Shoreline with boulders in the shallow area (looking southeast)

Figure B-31: Shallow shoreline with larger boulders (looking west)

Figure B-32: Lakebed shoreline with gravel and cobble at the lake outlet

B9.0 LAKE A76

Figure B-33:Shoreline with large boulders and bedrock outcrop above the high water mark (looking northwest)

Figure B-34: Shoreline with boulder gardens (looking east)

Figure B-35: Shallow shoreline with cobble and boulders covered with soils and vegetation (south shore)

Figure B-36: Lake A76 main outlet channel looking upstream. Boulder gardens with shallow areas

APPENDIX BShoreline Baseline Characterization

Figure B-37: Lake A76 main outlet channel looking downstream. Boulder gardens with shallow areas and with the majority of the flow subsurface

Figure B-38: Lake A76 secondary outlet channel looking towards the right bank. Boulder gardens with no visible flow across the entire channel

APPENDIX C

Water Balance Model

Table of Contents

INTROD	DUCTION	1
MODEL	STRUCTURE	1
C2.1	Meteorological Data	4
C2.2	Watershed Characteristics	5
C2.2.1	Land and Lake Areas	5
C2.2.2	Outlet Rating Curves	6
C2.3	Ice Effects on Lake Outlets	8
C2.3.1	Observations of Ice Formation and Degradation	8
C2.3.2	Method and Results	9
C2.4	Snowmelt	12
C2.4.1	Observations of Snowmelt	12
C2.4.2	Method	12
C2.5		
C2.5.1		
C2.5.2	Results	14
_ES		
C-1: Lo	cal Watershed, Lake, Tributary, and Land Areas of Modeled Lakes (km²)	5
C-2: Ou	tlet Stage-Discharge Rating Curves	7
C-3: Ice	Effect Ratio Parameters	10
e C-4: Ca	librated Runoff Coefficients	15
RES		
e C-1: So	chematic of Typical Lake Reservoir Model	2
e C-2: W	ater Balance Model Flowchart	3
e C-3: St	age-Discharge Rating Curves for Lake A76	8
e C-4: Ic	e Degradation Period: Ice Effect Ratios and Cumulative Degree-Days	11
e C-5: Ic	e Formation Period: Ice Effect Ratios and Cumulative Degree-Days	11
e C-6: 20	015 Modeled Snowpack	13
	MODEL C2.1 C2.2 C2.2.1 C2.2.2 C2.3 C2.3.1 C2.3.2 C2.4 C2.4.1 C2.4.2 C2.5 C2.5.1 C2.5.2 LES C-1: Local C-2: Outle C-3: Iceal C-4: Calcal C-4: Icaa C-4: Icaa C-4: Icaa C-5: Icaa C-5	MODEL STRUCTURE C2.1 Meteorological Data

APPENDIX C MODEL CALIBRATION

Figure C-7: Comparison of Modeled and Measured Discharge at Lake A5 in 2015	16
Figure C-8: Comparison of Modeled and Measured Lake Water Surface Elevation at Lake A5 in 2015	16
Figure C-9: Comparison of Modeled and Measured Discharge at Lake A15 in 2015	17
Figure C-10: Comparison of Modeled and Measured Lake Water Surface Elevation at Lake A15 in 2015	17
Figure C-11: Comparison of Modeled and Measured Discharge at Lake A17 in 2015	18
Figure C-12: Comparison of Modeled and Measured Lake Water Surface Elevation at Lake A17 in 2015	18
Figure C-13: Comparison of Modeled and Measured Discharge at Lake A18 in 2015	19
Figure C-14: Comparison of Modeled and Measured Lake Water Surface Elevation at Lake A18 in 2015	19
Figure C-15: Comparison of Modeled and Measured Discharge at Lake A69 in 2015	20
Figure C-16: Comparison of Modeled and Measured Lake Water Surface Elevation at Lake A69 in 2015	20
Figure C-17: Comparison of Modeled and Measured Discharge at Lake C8 in 2015	21
Figure C-18: Comparison of Modeled and Measured Lake Water Surface Elevation at Lake C8 in 2015	21
Figure C-19: Comparison of Modeled and Measured Discharge at Lake C38 in 2015	22
Figure C-20: Comparison of Modeled and Measured Lake Water Surface Elevation at Lake C38 in 2015	22
Figure C-21: Comparison of Modeled and Measured Discharge at Lake DS1 in 2015	23
Figure C-22: Comparison of Modeled and Measured Lake Water Surface Elevation at Lake DS1 in 2015	23
Figure C-23: Comparison of Modeled and Measured Water Yields in 2015	24

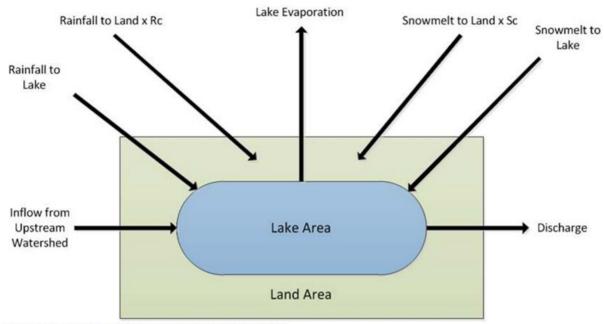
 $https://capws.golder.com/sites/p1524321 amaruqwhaletailbaselineandeis/baseline/p1300 \ hydrology/reporting/baseline/1524321_hydrology_appendixc.docx$

C1.0 INTRODUCTION

A water balance model was developed for the baseline study area (BSA) to assess mean characteristics and natural variability of discharge and water levels of lake outlets in the baseline area. This appendix describes the water balance model including input data, model structure, calibration, preliminary validation, and results.

The water balance model was developed using GoldSim software with a 1-hour time step and input data for the period of 1950 to 2015. Model output results were obtained for all years, with the exception of years with meteorological input data gaps, including years 1951, 1979, 1993, and 2010, which were not modeled. The basic water balance elements for each modeled lake reservoir considered rainfall and snowmelt runoff, lake evaporation, changes in lake storage, and outflow to downstream watersheds.

The model was calibrated using runoff coefficients for land surfaces, lake outlet stage-discharge rating curves, and degree-day models for snowmelt and formation of ice in outlet channels. Runoff coefficients for land surfaces account for water losses to storage and summer evapotranspiration. The runoff coefficients were calibrated to the calculated annual water yield of hydrometric stations with available data for most of the 2015 open water season (i.e., stations with a period of record of 97 days or greater). Lake outlet stage-discharge rating curves and degree-day models were calibrated to site-specific data.


The calibrated model was used to generate daily time series data sets of lake stages and lake outlet discharges for the BSA. Frequency analyses were completed for key sites to provide a derived historical baseline of lake stage and lake outlet discharge regimes.

C2.0 MODEL STRUCTURE

Each lake in the BSA with a surface area greater than 20 hectares (ha) was modeled as a reservoir as described in the schematic diagrams (Figure C-1; Figure C-2). Inflows to the reservoir consisted of inflows from upstream watersheds and local watershed rainfall and snowmelt, including a runoff coefficient to account for storage and evapotranspiration losses. Snow-water equivalents (SWE) were calculated based on a sublimation adjustment to account for snowpack losses, and snowmelt rates were calculated using a degree-day model. Outflows consisted of lake outlet discharges and evaporative losses. Modeled lakes accounted for differences between inputs and outputs by calculating corresponding changes in lake stages and storage volumes.

A key assumption of the model is that losses to deep groundwater and changes to shallow groundwater storage are not significant due to the local permafrost regime and the associated low connectivity of shallow and deep groundwater systems.

Rc = rainfall runoff coefficient; Sc = snowfall runoff coefficient

Figure C-1: Schematic of Typical Lake Reservoir Model

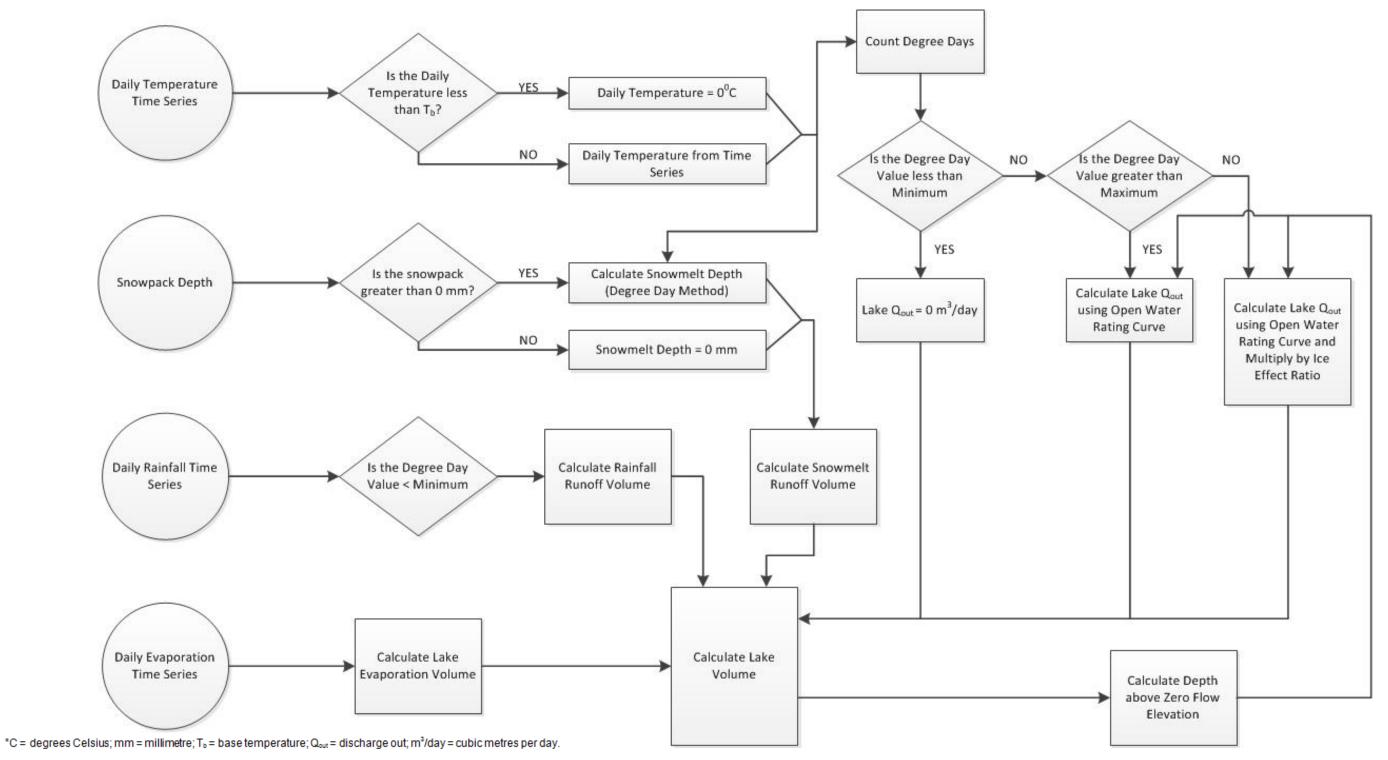


Figure C-2: Water Balance Model Flowchart

C2.1 Meteorological Data

Meteorological data were available from the Baker Lake A meteorological station (Station ID 2300500) operated by the Government of Canada (2015) from 1946 to 2015, and from the Meadowbank Gold Mine (Meadowbank) from 1997 to 2003 (AMEC 2003) and from 2013 to 2015 (provided by Agnico Eagle).

Meteorological data were based on the following datasets:

Temperature and precipitation from 1950 to 2013 were based on mean daily data available from Baker Lake A. Years with large data gaps (for the purpose of this model, defined as 20 or more days of missing data), including years 1946 to 1949, 1951, 1979, 1993, and 2010, were not considered in the model.

Temperature was based on mean daily temperature, spatially adjusted using the following equation (AMEC 2003):

Mean Daily Temperature (Local) = 1.01 * Mean Daily Temperature (Baker Lake) - 0.63

Precipitation was based on mean daily rainfall and mean daily (SWE) derived from the difference between daily precipitation and mean daily rainfall. Precipitation was adjusted for undercatch as follows (AMEC 2003):

Adjusted Rainfall = Rainfall * 1.15

Adjusted Snowfall = Snowfall * 1.55

Adjusted Precipitation = Precipitation * 1.38

Temperature and rainfall data were only partially available from 1997 to 2003 at Meadowbank (AMEC 2003), and were not considered in the model.

- Temperature and precipitation from 2014 to 2015 were based on mean daily data available from Meadowbank. While data were also available for Year 2013, Year 2013 contains large data gaps (with 159 days missing) and was not considered in the model. Temperature was based on mean daily temperature data. Precipitation is collected by a rain gauge and a canister. Snowfall collected in the canister is melted at room temperature and poured into the rain gauge, and both rainfall and snowfall are recorded as precipitation. As such, the precipitation record was split between rainfall and SWE based on concurrent mean daily temperature data. Rainfall was assumed when mean daily temperatures were greater than 0°C, and SWE was assumed when mean daily temperatures were equal to or less than 0°C. Recorded trace events were assigned a value of 0 millimetres (mm) of precipitation. The precipitation record includes "large" (i.e., defined, for the purpose of this section, as exceeding 10 days per month) data gaps in November 2014 (13 days missing), January (16 days missing) and June (14 days missing) 2015. Gaps were assigned a value of 0 mm. Precipitation was adjusted for undercatch using the adjustment factors presented above.
- Evaporation was based on mean monthly evaporation derived from previous baseline studies (AMEC 2003), and was applied as a constant daily value for each month.

C2.2 Watershed Characteristics

Watershed delineation and analysis were based on available DEM data (PhotoSat 2015), as discussed in Section 2.2.

C2.2.1 Land and Lake Areas

Seventy-four lakes with surface areas greater than 20 ha were modeled, including 54 lakes in the A watershed, four lakes in the B watershed, 15 lakes in the C watershed, and Lake DS1. Lake DS1 has a large and complex watershed and the lake was modeled using a lumped area for its tributaries, other than the A, B, and C watersheds, which were modeled explicitly. Local watershed, lake, tributary, and land areas are presented in Table C-1 for each modeled lake.

Table C-1: Local Watershed, Lake, Tributary, and Land Areas of Modeled Lakes (km²)

Name	Local Watershed	Lake	Tributary	Land	Name	Local Watershed	Lake	Tributary	Land
A10	0.578	0.230	0.00921	0.339	A63	0.480	0.0792	0	0.401
A103	0.692	0.0583	0	0.634	A65	3.28	0.589	0.0378	2.65
A104	1.44	0.108	0	1.33	A69	7.88	0.464	0.0313	7.38
A106	0.73	0.107	0.0820	0.541	A75	1.81	0.180	0.000553	1.63
A108	0.854	0.221	0.0241	0.609	A76	2.94	0.710	0.0471	2.18
A11	4.18	0.430	0.0385	3.71	A8	0.896	0.118	0.000992	0.777
A12	1.58	0.289	0.0211	1.27	A81	6.08	1.31	0.0191	4.75
A15	2.12	0.333	0.0114	1.77	A82	6.02	0.292	0.109	5.62
A16	7.45	1.48	0.00904	5.96	A83	2.98	0.0644	0.100	2.81
A17	6.14	1.66	0.0478	4.43	A85	2.64	0.0589	0.0111	2.57
A18	0.985	0.158	0.0111	0.816	A86	0.636	0.0878	0	0.548
A19	0.609	0.0553	0.00483	0.549	A87	1.04	0.176	0	0.860
A20	1.72	0.530	0	1.19	A9	2.21	0.278	0.049	1.88
A21	1.06	0.0874	0	0.972	A91	0.903	0.145	0	0.758
A22	0.730	0.0496	0	0.680	A94	2.33	0.366	0.0512	1.92
A23	3.31	0.273	0.00292	3.03	A95	3.75	0.0985	0.0649	3.59
A24	2.58	0.0266	0.162	2.39	A97	1.60	0.144	0.0471	1.41
A25	0.322	0.0574	0.00500	0.259	B1	0.388	0.0128	0.0108	0.364
A26	0.342	0.109	0.000609	0.232	В3	2.78	0.824	0.00262	1.96
A27	1.05	0.0576	0.00700	0.980	B5	1.26	0.282	0.0186	0.956
A28	0.791	0.102	0	0.690	B7	0.382	0.0388	0	0.343
A29	0.563	0.0492	0	0.514	C1	1.42	0.00116	0.0578	1.37
A31	0.204	0.0269	0	0.177	C10	1.84	0.134	0.0202	1.68
A32	0.721	0.117	0	0.604	C12	0.663	0.0743	0.000831	0.588
A36	1.45	0.0429	0.0451	1.36	C13	0.463	0.0173	0.00597	0.440

		•	
Table C-1: Local Watershed, Lake	Tuile	-£ N/ - - / /\	/
Table (-1 Tocal Watershed Take	I FINIITARY AND I AND AFDAS	Ut MUUUDIBU I SKEE IKM I	ICONTINUEDI
Table of Local Water Stick, Earc	, ilibutai v. alia Lalia Alcas	or modered Eakes (kill)	

Name	Local Watershed	Lake	Tributary	Land	Name	Local Watershed	Lake	Tributary	Land
A43	0.802	0.140	0.000864	0.661	C16	0.198	0.0170	0.00612	0.175
A44	2.30	0.229	0.000933	2.07	C19	0.611	0.0389	0.0101	0.562
A45	0.535	0.0295	0	0.505	C2	0.738	0.0707	0.000687	0.667
A47	1.23	0.0445	0.0359	1.15	C20	0.230	0.0232	0.00042	0.207
A49	0.252	0.0294	0.0048	0.218	C21	0.240	0.0268	0.00521	0.208
A5	1.24	0.234	0	1.01	C23	1.42	0.438	0	0.979
A53	1.34	0.141	0.0180	1.18	C3	2.61	0.200	0.0392	2.37
A55	1.37	0.0764	0.0111	1.28	C34	0.372	0.0406	0	0.332
A56	2.79	0.228	0.0427	2.52	C38	3.55	1.18	0.0451	2.32
A6	0.967	0.128	0.00633	0.832	C8	2.81	0.610	0.127	2.07
A60	2.11	0.427	0.00396	1.68	C9	0.222	0.0344	0	0.187
A62	0.737	0.0597	0.000867	0.676	DS1	766	24.2	115	627

C2.2.2 Outlet Rating Curves

Lake outlet stage-discharge rating curves were assigned for each modeled lake using one of the following five methods, with applicability as described:

- 1) Stage-discharge rating curves for lake outlets with available stage-discharge relationships for most of the 2015 open water season (i.e., for a period of record of 97 days or greater) were based on site-specific stage-discharge rating curves (Section 3.2.1; Appendix A). These include the lake outlets of Lake A15, Lake A17 (Whale Tail Lake), Lake A18, Lake A69, Lake C38 (Nemo Lake), and Lake DS1.
- 2) The stage-discharge rating curve for Lake A5 was based on the 2015 stage-discharge rating curve for Lake A69 which is similar to the stage-discharge rating curve of Lake A5 over the monitored period.
- 3) Lake A12 has two outlets. In the absence of site-specific stage-discharge data, both outlets were modeled using a single rating curve based on the stage-discharge rating curve of Lake A18. The outlet discharging to Lake A11 was assigned 60% of the discharge, and the remaining portion (40%) was assigned to discharge to Lake A77. These proportions were based on instantaneous discharge measurements from August 2015 (Section 3.2.2).
- 4) Lake A76 has two outlets which were modeled based on field observations using two separate stage-discharge rating curves to assign most of the discharge to Lake A41, while allowing discharge to Lake A75 at high flows. In the absence of continuous site-specific stage-discharge data at both outlets, the stage-discharge rating curve of the outlet discharging to Lake A41 is based on the stage-discharge rating curve of Lake A15. The stage-discharge rating curve of the outlet discharging to Lake A75 was assumed, and was calibrated to match measured water yields at Lake A69, located downstream of Lake A76. Stage-discharge rating curves of Lake A76 are presented in Figure C-3.

APPENDIX C MODEL CALIBRATION

5) Stage-discharge rating curves for other lakes (with the exception of upstream lakes and lakes from the C watershed) were based on the stage-discharge rating curve of the closest upstream lake with a site-specific stage-discharge rating curve (e.g., the stage-discharge rating curve of Lake A16 was based on that of Lake A17; the stage-discharge rating curve of Lake A12 was based on that of Lake A15). Stage-discharge of upstream lakes and lakes from the C watershed (other than Lake C38 [Nemo Lake]) were based on the stage-discharge rating curve of Lake A18.

The method used to develop rating curves at each modeled lake is summarized in Table C-2.

Table C-2: Outlet Stage-Discharge Rating Curves

Modeled Lake	Method Used to Develop Outlet Rating Curve				
Lake A5	Lake A69				
Lake A12-A11	Lake A15*0.6				
Lake A12-A77	Lake A15*0.4				
Lake A15	Lake A15				
Lake A17 (Whale Tail Lake)	Lake A17				
Lake A18	Lake A18				
Lake A69	Lake A69				
Lake A76-A41	Lake A15 (Figure C-3)				
Lake A76-A75	Assumed (Figure C-3)				
Lake C38	Lake C38				
Lake DS1	Lake DS1				
All other lakes	Stage-discharge rating curve from the closest upstream lake with a site-specific stage-discharge rating curve, or Lake A18 for upstream lakes and lakes from the C watershed				

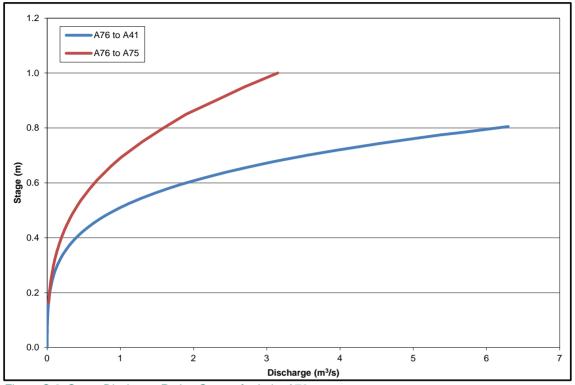


Figure C-3: Stage-Discharge Rating Curves for Lake A76

C2.3 Ice Effects on Lake Outlets

Based on field observations and general experience in the North, the opening of lake outlets during spring is generally a rapid process. This process is related to snowmelt runoff into the lake upstream of the outlet, as well as thaw of ice in the lake outlet. Flowing water provides additional thermal input, and melted or saturated snow on the outlet channel surface has a lower albedo and higher absorption of solar energy, which further accelerates melting. The change from frozen solid to fully open conditions has been observed to occur over a span of up to about four days. Lake outlets and borders are generally the first areas of open water during spring melt, while a floating ice cover may persist in the body of the lake for days or weeks after the outlet opens.

The formation of ice in winter constricts outflow channels and reduces lake discharge rates. The outlets for small lakes become constricted with ice and eventually freeze completely from approximately late October to early June each year.

A numerical relationship between lake outlet discharge and cumulative degree days was developed to account for ice effects during the freezing period in water balance modeling.

C2.3.1 Observations of Ice Formation and Degradation

Ice degradation was observed at several lake outlets during the 2015 baseline program, including outlets of Lake A15, Lake A17 (Whale Tail Lake), Lake A18, and Lake A69, as follows:

APPENDIX C MODEL CALIBRATION

- Outlets of Lake A18 and Lake A69 were both observed to start discharging on 10 June 2015, followed by the outlet of Lake A17 on 11 June 2015, and the outlet of Lake A15 on 12 June 2015. It was noted that outlets of Lake A15 and Lake A17 may have started discharging earlier under the ice.
- The outlet of Lake A69 was free of ice on 11 June 2015. This was followed by the outlets of Lake A17 and A18 on 14 June 2015, and Lake A15 on 15 June 2015.

Ice formation was also observed by Agnico Eagle and was described in previous baseline studies (AMEC 2003) as follows:

- full ice cover was observed on small lakes on 2 October 2015;
- partial ice cover was observed on large lakes (e.g., Lake A16 [Mammoth Lake]; Lake A17 [Whale Tail]) on 2 October 2015;
- full ice cover was observed on large lakes on 12 October 2015; and
- previous baseline studies report ongoing discharge to the end of October, and to the end of November at larger lakes (AMEC 2003).

Ice formation and degradation depends on local meteorological conditions, with natural variability from year to year, but is most strongly linked to air temperature. Solar radiation also contributes to ice degradation, but historical data was not available, and air temperature may serve as a partial proxy.

C2.3.2 Method and Results

A degree-day method was developed to simulate the effect of ice conditions on discharge at each lake outlet. Degree-days were added above a base temperature of 0 degrees Celsius (°C) based on daily mean temperatures, which typically begin to exceed 0°C in early June.

The effect of ice on discharge was quantified by the following ratio:

 $\label{eq:continuous} \mbox{Ice Effect Ratio} = \mbox{Q_{actual}} \, / \, \mbox{$Q_{predicted}$}$ where

Q_{actual} = Discharge measured at the outlet under ice conditions; and

Q_{predicted} = Discharge predicted using an open-water rating curve for the specific outlet.

Thus, an ice effect ratio of 0 implies a frozen outlet, with no discharge, while an ice effect ratio of 1 implies an open outlet, free of ice, and fully discharging.

Ice effect ratios were developed for all modeled lakes, with the exception of Lake DS1 which was assumed to flow continuously over the winter, as follows based on observations of ice formation and ice degradation summarized in Section C2.3.1:

For Lake A69, ice was assumed to start degrading when cumulative degree-days reach 7.8°Cd (i.e., corresponding to 10 June 2015), and the outlet was assumed to be free of ice when cumulative degree-

APPENDIX C MODEL CALIBRATION

- days reach 10.4°Cd (i.e., corresponding to 11 June 2015). This ice effect ratio is summarized in Table C-3 and shown on Figure C-4.
- For other lakes, ice was assumed to start degrading when cumulative degree-days reach 7.8°Cd (i.e., corresponding to 10 June 2015), and the outlet was assumed to be free of ice when cumulative degree-days reach 24.3°Cd (i.e., corresponding to 14 June 2015). This ice effect ratio is summarized in Table C-3 and shown on Figure C-4.
- lce was assumed to start forming once mean daily temperatures fall below 0°C, and outlets were assumed to be completely frozen at the end of October. As such, the ice effect ratio of 1 was assigned a negative degree day of 1°Cd, and the ice effect ratio of 0 was assigned a negative degree days of 270°Cd (corresponding to 31 October 2015), during the ice formation period. This ice effect ratio is summarized in Table C-3 and shown on Figure C-5.

Table C-3: Ice Effect Ratio Parameters

Parameter	Value
Outlet break-up - closed (Lake A69) (Ice effect ratio of 0)	7.8
Outlet break-up - open (Lake A69) (Ice effect ratio of 1)	10.4
Outlet break-up - closed (all other lakes) (Ice effect ratio of 0)	7.8
Outlet break-up – open (all other lakes) (Ice effect ratio of 1)	24.3
Outlet freeze-up – open (Ice effect ratio of 1)	1.0
Outlet freeze-up – closed (Ice effect ratio of 0)	270

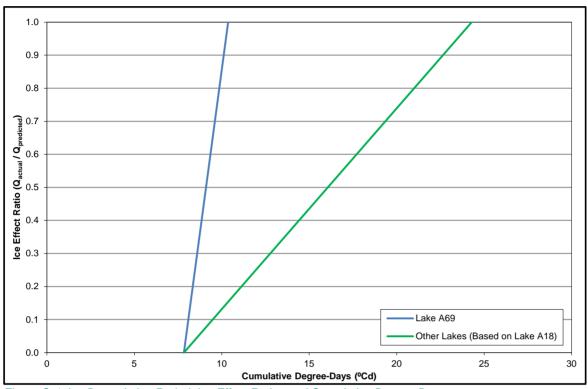


Figure C-4: Ice Degradation Period: Ice Effect Ratios and Cumulative Degree-Days

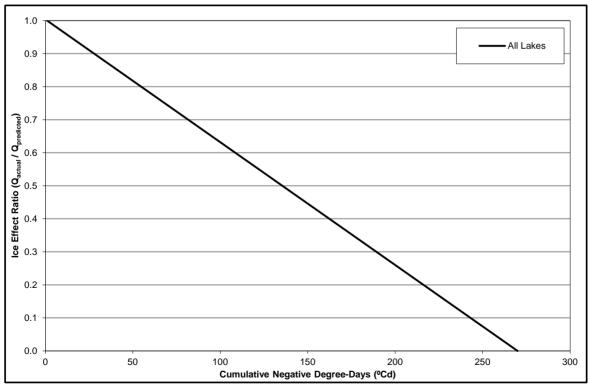


Figure C-5: Ice Formation Period: Ice Effect Ratios and Cumulative Degree-Days

C2.4 Snowmelt

Snowmelt is generated predominantly by the melting of the accumulated snowpack during the period of spring freshet. Based on experience, the spring freshet occurs over a period of several weeks and is a major contributor of overall annual precipitation and lake inflows in northern environments.

C2.4.1 Observations of Snowmelt

Snowmelt was observed during the first hydrometric field visit (from 8 to 15 June 2015). By 15 June 2015, most of the snow had melted, with any snow remaining largely located along steep slopes with lesser exposure to sunlight.

C2.4.2 Method

In the model, snowfall from the derived climate data accumulates as snowpack during fall and winter when temperatures are below freezing. A 26% reduction was applied to the modeled snowpack to represent sublimation losses based on previous baseline studies (AMEC 2003).

Snowmelt begins when the daily average temperature rises above the base temperature (T_b) . The snowmelt rate is determined by Equation 1.

Equation 1: Snowmelt Equation

Daily Snowmelt Runoff = $R_{cs} \times M_f \times (T - T_b)$

Where

R_{cs}= Snowmelt runoff coefficient (dimensionless);

 $M_f = Melt factor (mm/°C);$

T = Mean daily air temperature (°C); and

 T_b = Base temperature (°C).

For consistency with observed snowmelt, the melt factor was set at 4.0 millimetres per degree Celsius (mm/ $^{\circ}$ C) and the base temperature at -1.0 $^{\circ}$ C,. The snowmelt runoff coefficient R_{cs} was calibrated to expected freshet and annual watershed yields, and is further discussed in Section C2.5. These values resulted in a completely melted snowpack by 18 June 2015, consistent with field observations, and modeled peak discharges consistent with measured hydrographs, as shown in Section C2.5. Snowpack accumulation and melt are shown in Figure C-6 for the 2015 hydrological year (i.e., 1 October of the previous year to 30 September of the current year, as defined by previous baseline studies [AMEC 2003]).

A dispersed delay of 20 days was applied to the lumped tributaries of Lake DS1 to account for attenuations.

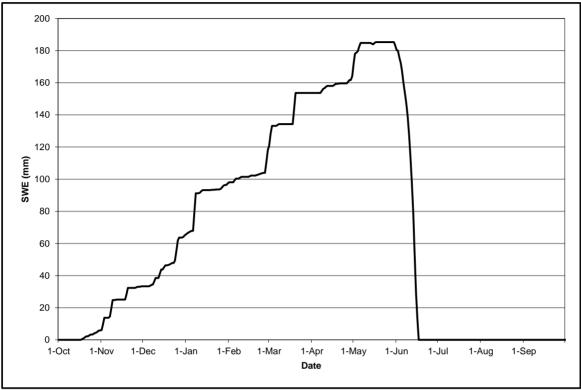


Figure C-6: 2015 Modeled Snowpack

C2.5 Model Calibration and Validation

Each modeled lake has a consistent structure and logic in the water balance. Physical characteristics of each modeled lake include local contributing lake and land areas, total discharge areas, and connectivity with other lakes.

The volume and timing of lake discharges are the predominant model outputs. The key calibration variables for the volume of water discharged are runoff coefficients, including rainfall and snowmelt runoff coefficients:

- Rainfall runoff coefficients were applied to rainfall runoff, separated by runoff on land and runoff on lake areas (i.e., direct runoff) to account for evapotranspiration and storage losses. Direct runoff coefficients were assigned a value of 1.0.
- Snowmelt runoff coefficients were applied to snowmelt runoff, separated by runoff on land and runoff on lake areas (i.e., direct runoff) to account for storage losses. Snowmelt runoff coefficients were considered separately from sublimation losses. Direct runoff coefficients were assigned a value of 1.0.

C2.5.1 Method

Rainfall and snowmelt runoff coefficients for land areas were calibrated to measured hydrographs and annual water yields. The snowmelt runoff coefficient primarily affects peak discharges, and was calibrated to measured hydrographs. The rainfall runoff coefficient was adjusted to reach measured annual water yields. There were three days of rainfall prior to peak discharges, which were considered during the calibration of the rainfall runoff coefficient.

The calibration process was as follows:

- Calibration: The model was run on a 1-hour time-step from 1950 to 2015 (exclusive of years 1951, 1979, 1993, and 2010) using the derived climate data set as input values. Both rainfall and snowmelt runoff coefficients were initially set to 1.0 and reduced incrementally to match the measured hydrograph and annual water yields at Lake A18 (i.e., the most upstream lake with a continuous data set).
 - Derived annual water yields of Lake A17 (Whale Tail Lake) and Lake C38 (Nemo Lake) (Section 3.2.1.9) were significantly lower than those derived for Lake A18, Lake A15, Lake A69, and Lake DS1, and runoff coefficients of these local watersheds and local tributaries were reduced from those applied for Lake A18. As noted in Section 3.2.1.9, this reduction may be related to a proportion of ineffective drainage area in both local watersheds. Tributaries of Lake A17 (Whale Tail Lake) and Lake C38 (Nemo Lake) were opportunistically observed to drain poorly, with ponded water, and the potential exists for shallow subsurface flow to convey water outside of the assumed watershed boundaries.
- Validation: Runoff coefficients applied to Lake A18 were applied to all modeled lakes (other than Lake A17 [Whale Tail Lake] and local tributaries, and Lake C38 [Nemo Lake] and tributaries), and were verified by comparing modeled hydrographs and annual water yields to measured continuous data sets.

C2.5.2 Results

Rainfall runoff coefficients were calibrated as 1.0 for lake areas, 0.35 for land areas of local watersheds of Lake A17 (Whale Tail Lake), Lake C38 (Nemo Lake), and their tributaries, and 0.70 for land areas of all other lakes. Snowmelt runoff coefficients were calibrated as 1.0 for lake areas, 0.50 for land areas of local watersheds of Lake A17 (Whale Tail Lake), Lake C38 (Nemo Lake), and their tributaries, and 1.0 for land areas of all other lakes. A snowmelt coefficient of 1.0 is consistent with frozen ground conditions and low evaporation during the melt period; however, it may indicate that additional precipitation may not have been captured by the local climate station, or that sublimation losses may be slightly overestimated. This may only be confirmed with additional monitoring data.

The calibrated runoff coefficients result in good agreement between modeled and measured discharges, water levels, and annual water yields. Uncertainties are discussed below:

- Lake A5 appears to be well estimated at low flows; however, additional field data during the high flow period are required to validate the timing and magnitude of the peaks, and improve its stage-discharge rating curve, which, is based on that of Lake A69 in the model. Thus, peak discharges generated by the model at Lake A5 are associated with a degree of uncertainty.
- The model appears to slightly overestimate lake surface elevations of Lake A15 at low flows. This may result from its stage-discharge rating curve, which was based on two discharge measurements at high and lower flows, and a discharge estimate during the low flow season in September, which was not measurable.
- Local watersheds and tributaries of Lake A17 (Whale Tail Lake), Lake C38 (Nemo Lake) and their tributaries were assumed to be poorly drained with proportions of ineffective areas, and the potential for shallow subsurface flow to convey water outside of the assumed watershed boundaries. While consistent

with opportunistic field observations, areas of potential ineffective flows could be refined with additional observations and specifically targeted with lower runoff coefficients to improve the model.

- Stage-discharge rating curves of Lake A12 and Lake A76 were based on assumptions and calibration of water yields at Lake A69. Both lakes are comprised of two lake outlets, and assumed rating curves could be improved, and further validated, with additional field measurements.
- Recession discharges and water levels at Lake A69 are associated with a degree of uncertainty related to the timing of snowmelt runoff of upstream lakes. Thus, the recession period may be improved with additional field data at upstream lakes. Peak and low flows appear to be well matched.
- Lake DS1 was modeled coarsely with lumped tributary areas (other than the A. B. and C watersheds, which were modelled explicitly) based on physical parameters derived from available desktop data. Due its large watershed, Lake DS1 hydrology is complex and cannot accurately be reproduced by this baseline model; however the model results are considered fit for the purpose of this baseline study. Annual water yields are reasonably matched which further validate calibrated parameters. Finer scale parameters such as the timing of peaks and response to rainfall events may not be accurately estimated and should be used with caution.

Resulting runoff coefficients are presented in Table C-4.

Measured discharge data are plotted along with model output for qualitative comparison in Figure C-7 (Lake A5), Figure C-9 (Lake A15), Figure C-11 (Lake A17 [Whale Tail Lake]), Figure C-13 (Lake A18), Figure C-15 (Lake A69), Figure C-17 (Lake C8), Figure C-19 (Lake C38 [Nemo Lake]), and Figure C-21 (Lake DS1).

Comparisons of measured and modeled lake water surface elevations are presented in Figure C-8 (Lake A5). Figure C-10 (Lake A15), Figure C-12 (Lake A17 [Whale Tail Lake]), Figure C-14 (Lake A18), Figure C-16 (Lake A69), Figure C-18 (Lake C8), Figure C-20 (Lake C38 [Nemo Lake]), and Figure C-22 (Lake DS1) over the discharge period.

Comparisons of measured and modeled annual water yields are presented in Figure C-23.

Table C-4: Calibrated Runoff Coefficients

Lake	Rainfall Runc	off Coefficient	Snowfall Runoff Coefficient		
Lake	Land	Lake (Direct)	Land	Lake (Direct)	
Lake A17 (Whale Tail Lake), Lake C38 (Nemo Lake)	0.35	1.0	0.50	1.0	
All other lakes	0.70	1.0	1.0	1.0	

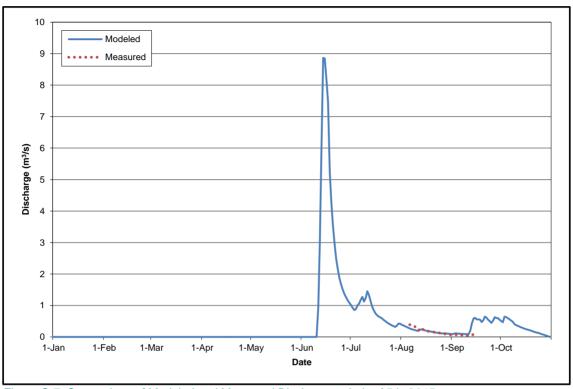


Figure C-7: Comparison of Modeled and Measured Discharge at Lake A5 in 2015

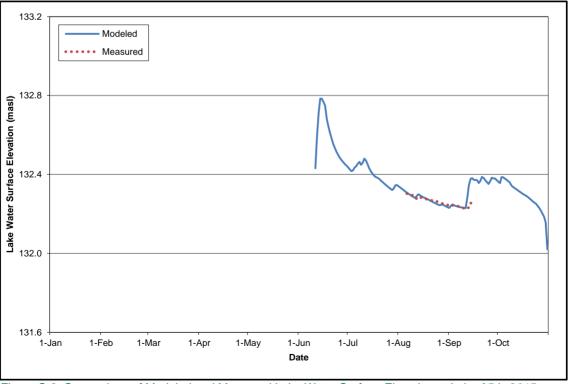


Figure C-8: Comparison of Modeled and Measured Lake Water Surface Elevation at Lake A5 in 2015

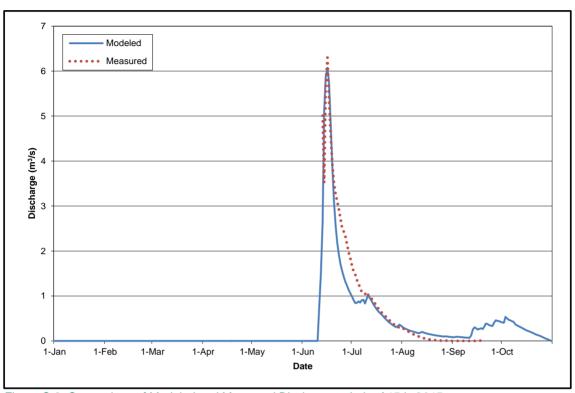


Figure C-9: Comparison of Modeled and Measured Discharge at Lake A15 in 2015

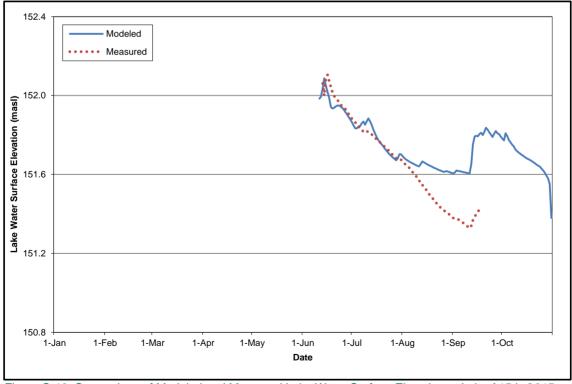


Figure C-10: Comparison of Modeled and Measured Lake Water Surface Elevation at Lake A15 in 2015

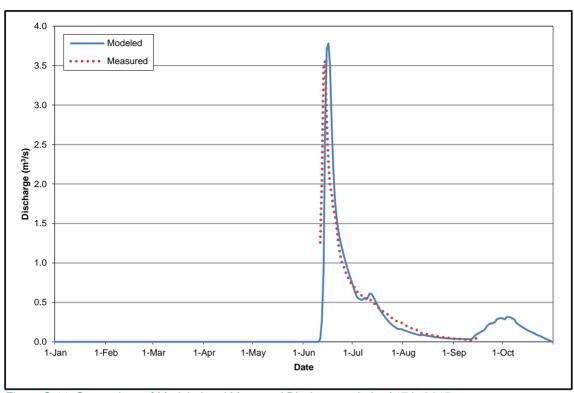


Figure C-11: Comparison of Modeled and Measured Discharge at Lake A17 in 2015

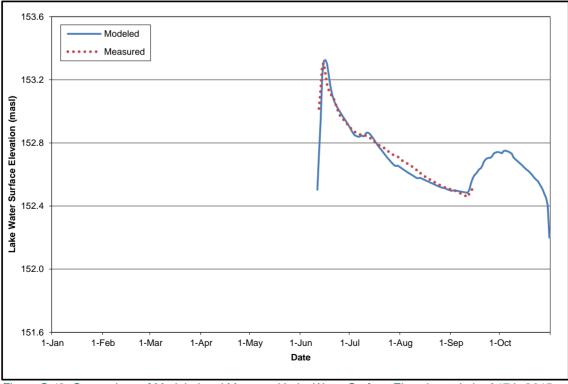


Figure C-12: Comparison of Modeled and Measured Lake Water Surface Elevation at Lake A17 in 2015

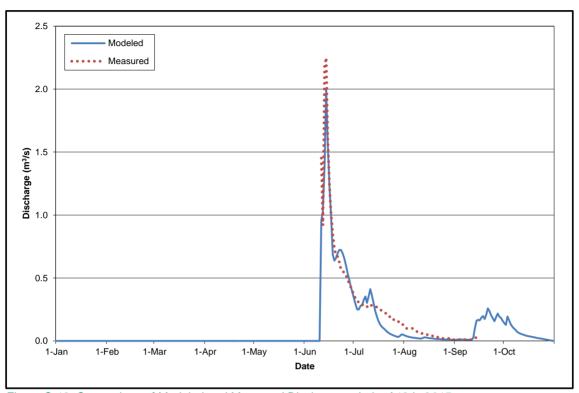


Figure C-13: Comparison of Modeled and Measured Discharge at Lake A18 in 2015

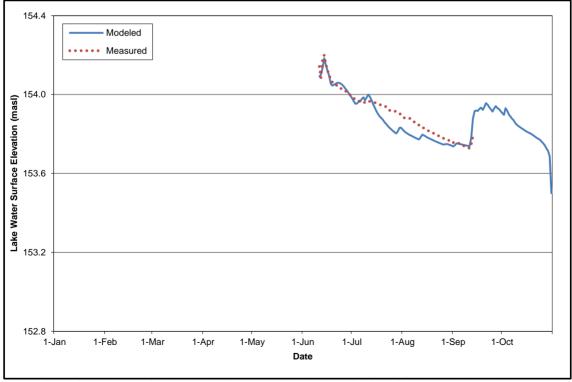


Figure C-14: Comparison of Modeled and Measured Lake Water Surface Elevation at Lake A18 in 2015

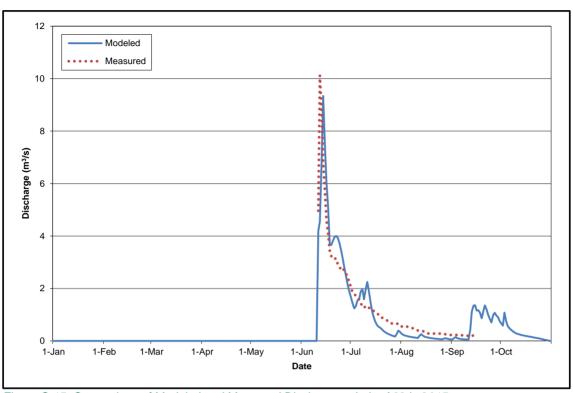


Figure C-15: Comparison of Modeled and Measured Discharge at Lake A69 in 2015

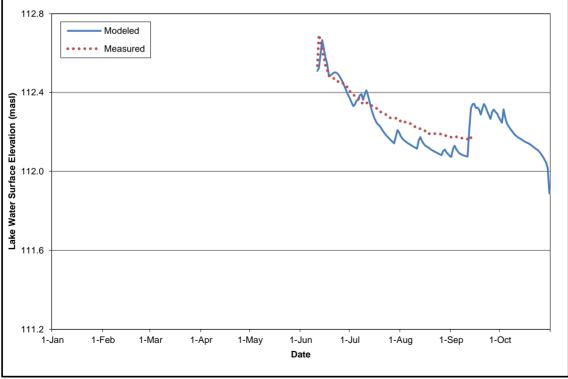


Figure C-16: Comparison of Modeled and Measured Lake Water Surface Elevation at Lake A69 in 2015

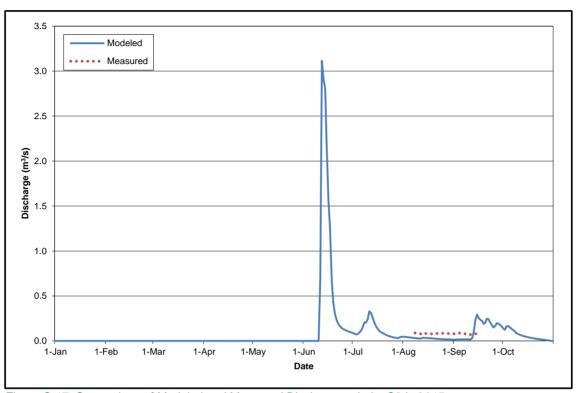


Figure C-17: Comparison of Modeled and Measured Discharge at Lake C8 in 2015

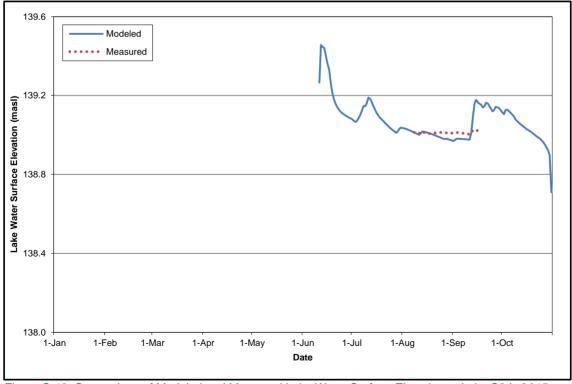


Figure C-18: Comparison of Modeled and Measured Lake Water Surface Elevation at Lake C8 in 2015

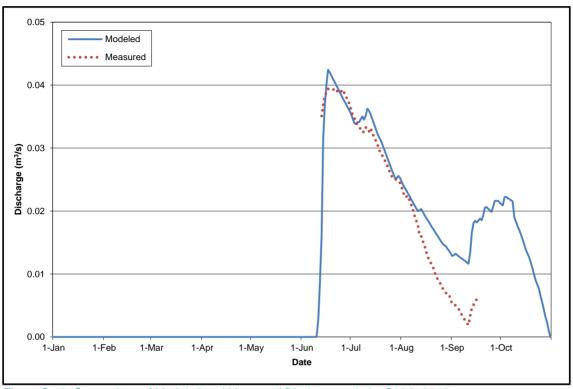


Figure C-19: Comparison of Modeled and Measured Discharge at Lake C38 in 2015



Figure C-20: Comparison of Modeled and Measured Lake Water Surface Elevation at Lake C38 in 2015

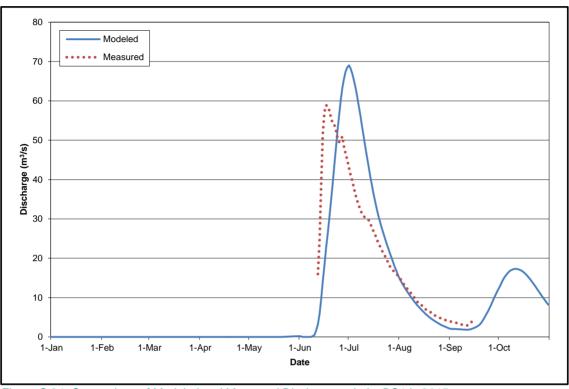


Figure C-21: Comparison of Modeled and Measured Discharge at Lake DS1 in 2015

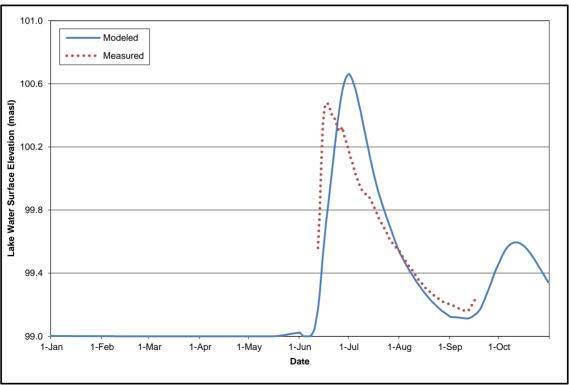


Figure C-22: Comparison of Modeled and Measured Lake Water Surface Elevation at Lake DS1 in 2015

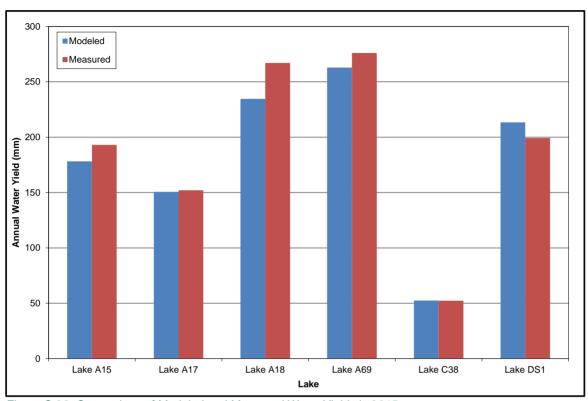


Figure C-23: Comparison of Modeled and Measured Water Yields in 2015

As a global, employee-owned organisation with over 50 years of experience, Golder Associates is driven by our purpose to engineer earth's development while preserving earth's integrity. We deliver solutions that help our clients achieve their sustainable development goals by providing a wide range of independent consulting, design and construction services in our specialist areas of earth, environment and energy.

For more information, visit golder.com

Africa + 27 11 254 4800
Asia + 86 21 6258 5522
Australasia + 61 3 8862 3500
Europe + 44 1628 851851
North America + 1 800 275 3281
South America + 56 2 2616 2000

solutions@golder.com www.golder.com

Golder Associates Ltd. 16820 107 Avenue Edmonton, Alberta, T5P 4C3 Canada T: +1 (780) 483 3499

