

TABLE 5.1

AGNICO EAGLE MINES LTD. MEADOWBANK DIVISION WHALE TAIL PIT

UPDATED SCOPING LEVEL OPEN PIT SLOPE DESIGN (REVISED) SUMMARY OF OPEN PIT SLOPE RECOMMENDATIONS

Print Apr/29/16 10:29:46

							Bench Config	gurations				Inter-Ramp Slop	e Configurations		Overall Slope Angle	
Pit Design	Dominant	Nominal Pit Wall Dip	Total Slope Height	Dominant	Design Bench	Potential Kinematic	Design	Base Bench	Potential			Inter-Ramp Angle (IRA)	9	Max.	Expected OSA	
Sector	Domain (See Note 1 & 2)	Direction (See Note 3)	(See Note 3)	Potential Failure Mode	Face Angle (BFA)	Back-Break Angle (See Note 4)	Bench Width	Width (See Note 5)	Kinematic Back-Break (m)	Bench Height (m)	From Design Bench Configuration Achievable Based on LE Kinematics Achievable Based on LE (See Note 6) Inter-Ramp Slope Height Performance Based on Precedent Practice		Comments			
East-South	Greywacke & Ultramafics (SL)	300	135	Toppling	75	N/A	10	10	0	21	53	Yes	Yes (10 m Depressurized)	100	FoS > 1.3	- Toppling failure on Joint Set A may locally limit the achievable bench and inter-ramp geometry Several faults are expected to intersect the pit wall in this sector. The reduced rock mass quality associated with the faults may result in local bench-scale failures.
East	Greywacke, Altered Ultramafics, Ultramafics (SL)	240	135	None	75	N/A	10	10	0	21	53	Yes	Yes (10 m Depressurized)	100	FoS > 1.3	- The RQD corridor faults are expected to intersect the pit wall in this sector. The reduced rock mass quality associated with the fault may result in local bench-scale failures.
East-North	Altered Ultramafics & Ultramafics (NL)	110	125	Planar (Wedge)	65	60	11.8	9.5	2.3	21	44	Yes	Yes	100	FoS > 1.3	- Planar failures on Joint Set A are expected to limit the achievable bench face angle. Benches designed to maintain a 9.5 m effective bench width based on the expected back-break angle. - The Ultramafics compose the majority of the pit slope in this sector and a fault is believed to exist within this unit. The reduced rock mass quality associated with the Ultramafics and the fault may result in local bench-scale failures. -The RQD Corridor faults are expected to run sub-parallel and just behind the pit wall in this sector. The faults may result in local bench-scale failures.
Central-North	Ultramafics (NL), Altered Ultramafics & Greywacke	155	155	Planar (Wedge)	65	55	14.4	9.5	4.9	21	41	Yes	Yes	100	FoS > 1.3	- Planar failures on Joint Set A are expected to limit the achievable bench face angle. Benches designed to maintain a 9.5 m effective bench width based on the expected back-break angle. - The Ultramafics compose the majority of the pit slope in this sector and a fault is believed to exist within this unit. The reduced rock mass quality associated with the Ultramafics and the fault may result in local bench-scale failures. - The RQD Corridor faults are expected to run sub-parallel and just behind the pit wall in this sector. The faults may result in local bench-scale failures.
Central-South	Greywacke, Ultramafics (SL) & Chert	315	155	Planar (Wedge) & Toppling	75	70	11.5	9.5	2.0	21	51	Yes	Yes (10 m Depressurized)	100	FoS > 1.3	- Planar failures on Joint Set B are expected to limit the achievable bench face angle. Benches designed to maintain a 9.5 m effective bench width based on the expected back-break angle. - Toppling failure on Joint Set B' may locally limit the achievable bench geometry. - Several faults are expected to intersect the pit wall in this sector. The reduced rock mass quality associated with the faults may result in local bench-scale failures.
West-North	Altered Ultramafics, Ultramafics (NL) & Greywacke	145	120	Planar (Wedge)	65	55	14.4	9.5	4.9	21	41	Yes	Yes	100	FoS > 1.3	- Planar failures on Joint Set A are expected to limit the achievable bench face angle. Benches designed to maintain a 9.5 m effective bench width based on the expected back-break angle. - The Ultramafics compose the majority of the pit slope in this sector. The reduced rock mass quality associated with the Ultramafics may result in local bench-scale failures. - The RQD Corridor faults are expected to intersect or run sub-parallel and just behind the pit wall in this sector. The faults may result in local bench-scale failures.
West	Greywacke, Altered Ultramafics, Ultramafics (NL)	85	120	None	75	N/A	10	10	0	21	53	Yes	Yes (10 m Depressurized)	100	FoS > 1.3	The Ultramafics compose a large portion of the pit slope in this sector. The reduced rock mass quality associated with the Ultramafics may result in local bench-scale failures.
West-South	Greywacke, Ultramafics (SL), Chert	335	130	Toppling	75	N/A	10	10	0	21	53	Yes	Yes (10 m Depressurized)	100	FoS > 1.3	- Toppling failure on Joint Set A may locally limit the achievable bench face angle The RQD Corridor faults are expected to intersect the pit wall in this sector. The faults may result in local bench-scale failures.

|L.11\01\00622\03\A\Report\Report 3 Rev 0 Updated Open Pit Scoping Study\Tables\Table 5.1 and Figure 5.2 - Pit Slope Recommendations (Oct 30),xisx|Table 5.1 - Pit Recommendations

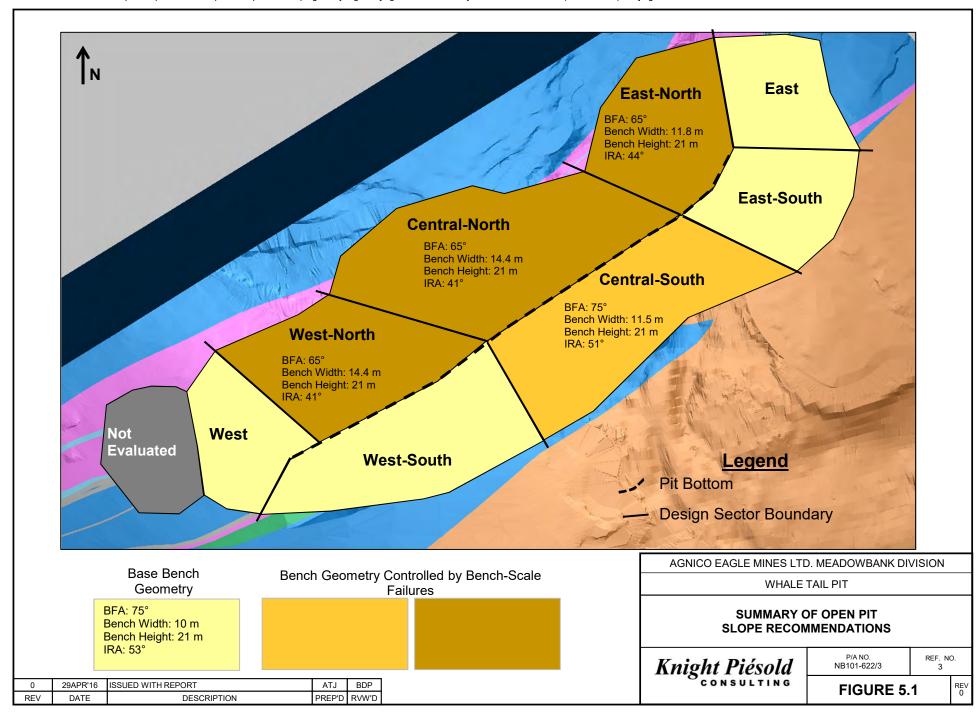
- NOTES:

 1. THE ULTRAMAFICS (NORTH LIMB (NL) AND SOUTH LIMB (SL)) IS A WEAKER UNIT OF VARIABLE ROCK MASS QUALITY AND IS EXPECTED TO BE SUSCEPTIBLE TO RAVELLING. FOR EXPOSURES OF 40 m OR MORE OF THIS DOMAIN, ADDITIONAL BENCH WIDTH MAY BE REQUIRED.

 2. DOMINANT PIT WALL DOMAINS BASED ON LITHOLOGY MODEL PROVIDED BY AEM (SEPT 29, 2015). GREYWACKE DOMAIN INCLUDES THE GREYWACKE, MUDSTONE AND MAFIC VOLCANIC LITHOLOGIES.

 3. TOTAL SLOPE HEIGHT AND WALL ORIENTATIONS BASED ON PIT DESIGN PROVIDED BY AEM (SEPT 30, 2015). SLOPE HEIGHT MEASURED FROM THE TOE OF THE SLOPE IN THE DEEPEST PORTION OF THE SECTOR TO THE CREST WHERE INTERSECTED BY THE TOPOGRAPHY.

 4. BENCH FACE ANGLE RECOMMENDATIONS BASED ON THE RESULTS OF KINEMATIC ANALYSES. THE POTENTIAL KINEMATIC BACK-BREAK ANGLE FOR THE WEST-NORTH SECTOR IS BASED ON HIGHEVEL PLANAR FAILURE ANALYSES USING ROCESTORS WITH NO KINEMATIC CONTROLS, THE MAXIMUM ACHIEVABLE INTER-RAMP ANGLE HAS BEEN INTERSECTED BY THE TOPOGRAPHY.


 5. THE BASE BENCH WIDTH HAS BEEN INTERSECTED BY THE TOPOGRAPHY.

 6. WERE NOTED, TO ACHIEVE THE INTER-RAMP CONFIGURATION, 10 m OF SLOPE DEPRESSURIZATION (MEASURED PERPENDICULAR TO THE PIT FACE) IS REQUIRED WHEN THE ULTRAMAFICS ARE EXPOSED IN THE PIT WALL AND ARE WITHIN UNFROZEN GROUND.

 7. ACHIEVEAGL OVERALL SLOPE ANGLE EVALUATED USING HOUSEON FOR THE DEEPEST SECTORS AS BEEN INFERRED FROM THESE ANALYSES.

 8. OVERBURDEN TO BE SET BACK 10 m FROM PIT SLOPE CREST TO ALLOW SUFFICIENT SPACE FOR THE INSTALLMENT OF SEDIMENT CONTROL BERM AND THE COLLECTION OF ANY MOBILIZED MATERIAL.

0 29APR'16 ISSUED WITH REPORT NB101-622/3-3
REV DATE DESCRIPTION

The achievable slope geometry varies from sector to sector. Some of the issues that are expected to influence the open pit wall performance for the Whale Tail Pit include:

- Planar failures involving the foliation (Joint Set A) are expected to limit the achievable bench
 face angle in the East-North, Central-North and West-North sectors. The design BFA has been
 reduced and the design bench width increased to manage these failures. In the Central-North
 and West-North sectors, where the foliation is relatively shallow dipping, this has resulted in an
 IRA of 41°.
- Planar failures involving a dominant structural orientation (Joint Set B) are expected to limit the
 achievable bench face angle in the Central-South sector. The design BFA has been reduced and
 the design bench width increased to manage these failures.
- Toppling failure involving the foliation may locally limit the achievable slope geometry in the East-South and West-South sectors.
- The Ultramafics are of variable and locally reduced rock mass quality. The Ultramafics are expected to be susceptible to ravelling and the bench width may need to be increased within significant exposures of this unit (e.g. exposures of greater than 40 m, or more than two benches in height).
- Limited depressurization may be necessary to achieve the recommended inter-ramp slope
 configuration in the Central-South sector. The slope in this sector is likely within talik and
 increased groundwater recharge is expected. Limited depressurisation may also be necessary in
 other sectors with significant exposures of Ultramafics (i.e. the East-South, East, West and
 West-South sectors) if this unit is within unfrozen ground. Depressurisation of the slope in these
 sectors is expected to be less important than depressurisation of the slope in the Central-South
 sector.
- The achievable slope geometry is sensitive to the strength of the foliation (Joint Set A) and the strike of the slope.

The above considerations underscore the importance of maintaining flexibility in the mine plan to ensure that production delays and/or adjustments to the slope geometry can be accommodated. This is expected to be particularly true for the East-North, Central-North, West-North and Central-South sectors.

5.5 PRECEDENT PRACTICE


Pit slope stability and performance depends on a variety of site-specific factors (geological structure, alteration rock strength, groundwater conditions, discontinuity characteristics and orientation, pit geometry, blasting practices, stress conditions, climatic conditions and time), which makes it difficult to provide direct comparisons with other operations. However, it is still valuable to review both the successes and wall performance issues encountered at other open pit operations in order to recognize opportunities and potential constraints for the proposed open pit development.

A summary plot of pit depth vs. slope angles achieved in various operations is illustrated on Figure 5.2. The plot includes the inferred extension to the Lutton, Hoek & Bray Stability Line up to a slope height of 1000 m (Lutton, 1970; Hoek and Bray, 1981; Sjoberg, 1996; Read and Stacey, 2009). This plot is most relevant for deep open pits (e.g. depths > 400 m) but is still a useful point of comparison for shallower open pits, such as the proposed Whale Tail Pit. The proposed

slope geometries for all sectors plot on or below the FoS 1.3 curve. This result suggests that the recommended slopes are reasonable and achievable from a precedent practice perspective.

It is important to note that most open pit operations have encountered some form of slope instability and that it is likely that some areas of the pit slopes in the Whale Tail Pit will require modifications to the slope geometry in response to instabilities. As such, mine plans should remain flexible.

REV

1. ORIGINAL DATA POINTS AFTER LUTTON (1970), HOEK AND BRAY (1981), AND SJOBERG (1996).

2. ADDITIONAL DATA FROM KNIGHT PIÉSOLD PROJECTS AND OTHERS ALSO INCLUDED.

0	29APR'16	ISSUED WITH REPORT	ATJ	BDP

DESCRIPTION

AGNICO EAGLE MINES LTD. MEADOWBANK DIVISION

WHALE TAIL PIT

SLOPE HEIGHT VERSUS SLOPE ANGLE PRECEDENTS FOR HARD ROCK SLOPES

Knight Piésold

P/A NO. REF. NO. NB101-622/3 3

FIGURE 5.2

DATE

PREP'D RVW'D

6 - OPERATIONAL CONSIDERATIONS

6.1 GENERAL

The proposed pit slope design is influenced by several operational considerations including those discussed below.

6.2 OPERATIONAL CONSIDERATIONS

6.2.1 Blasting Practices

Slope instabilities at open pit mines are often triggered by the progressive deterioration of the bench face. Such deterioration starts with the detachment of small rock blocks (key blocks), which are defined by rock mass discontinuities. Under these circumstances, the preservation of rock mass integrity during mining is important for the development of the steepest possible pit slopes. Low damage controlled blasting methods will facilitate steeper final pit slopes.

The application of good controlled blasting practices is recommended for the development of all inter-ramp slopes and will be important within zones of reduced rock mass quality. Blasting practices that employ smaller diameter blast holes and closer spacing is recommended, especially along the final pit walls. Trial blasts are recommended wherever there is a substantial change in rock mass conditions.

Bench crest and face scaling should be conducted after blasting when equipment access is available to these areas. Rock fall cleanup should be performed as much as possible throughout the mine life.

6.2.2 Pit Dewatering and Slope Depressurization

A portion of the proposed Whale Tail open pit is expected to be located within talik (Figure 4.3). The phreatic surface that will develop behind the pit walls should be monitored over the course of the mine life and depressurization implemented on an as-needed basis. Any depressurisation activities are expected to focus on the Central-South sector but may be required in other areas on a case-by-case basis.

Surface water diversion measures should be implemented to limit inflows to the open pits, especially during the spring thaw.

6.2.3 Permafrost

Excavation of the open pits will result in the local thawing of the permafrost in the vicinity of the pit slopes. Subsequent freezing and thawing within this active layer can be expected to result in damage to the near-surface rock mass and will likely result in ravelling and/or bench-scale failures. The catch benches should be cleaned in the fall to accommodate increased ravelling during the spring thaw.

AEM's experience at the Meadowbank Mine suggests that ravelling and/or bench-scale failures associated with freezing and thawing will primarily be a concern for slopes excavated within talik.

6.2.4 Slope Monitoring Program

A proactive slope monitoring program is recommended for all stages of pit development. The monitoring program should include geotechnical and tension crack mapping, as well as a suitable surface displacement monitoring program.

The slope monitoring program should also consider critical structural features, recognized instabilities, cracks along haul ramps etc.

Sufficient staffing resources should be allocated to collect, process and interpret the geotechnical monitoring data on a regular basis. The timely identification of accelerated movements from surface displacement monitoring and tension cracks will be important to managing any instability. The status of highwall stability should be compiled and discussed regularly with operations personnel. These reports will also help mine engineering staff to optimize final pit slopes and improve the effectiveness of the controlled blasting program.

7 - SUMMARY

7.1 CONCLUSIONS

Pit slope design recommendations for the proposed Whale Tail Pit have been provided in terms of achievable bench face, inter-ramp and overall slope angles.

The provided pit slope design recommendations are based upon the geological, structural, geomechanical and hydrogeological data available as of September 2015, as well as the September 30, 2015 open pit design provided by AEM. The completed stability analyses and a review of practices at other operations suggest that the recommended geometries are reasonable and appropriate. To achieve these slope angles, the design assumes that controlled blasting and geotechnical monitoring will be undertaken, along with an on-going commitment to geomechanical data collection and analysis. Maintaining flexibility in the mine plan will be important to accommodate any slope stability issues.

8 - REFERENCES

- AEM, 2014. *Preliminary Structural Interpretation and Possible Exploration Implications*. PowerPoint Presentation provided by Patrice Barbe on February 18, 2015.
- AEM, 2015a. Amaruq Project Whale Tail Zone Overview: Typical Rocks from Whale Tail Zone Drillholes. PowerPoint Presentation provided by Patrice Barbe on February 11, 2015.
- AEM, 2015b. Whale Tail Deposit Main Structural Features. PowerPoint Presentation provided by Patrice Barbeon February 17, 2015.
- Bewick, R.P., Kaiser, P.K. and Valley, B., 2011. *Interpretation of Triaxial Testing Data for Estimation of the Hoek-Brown Strength Parameter m_i.* Centre of Excellence in Mining Innovation, Sudbury, ON, Canada. Presented at 45th US Rock Mechanics/Geomechanics Symposium, San Francisco, CA, June 26-20, 2011. American Rock Mechanics Association 11-347.
- Bieniawski, Z.T., 1989. Engineering Rock Mass Classifications. New York: Wiley.
- Dassault Systèmes, 2014. Geovia Surpac User Manual Version 6.6. Vancouver, British Columbia.
- GEO-SLOPE International Ltd., 2012. Stability Modeling with SLOPE/W An Engineering Methodology. Calgary, Alberta.
- Goodman, R.E., 1980. Introduction to Rock Mechanics. Wiley, New York.
- Hoek, E. & Bray, J.W., 1981. *Rock Slope Engineering*. 3rd Edition. London: The Institution of Mining and Metallurgy.
- Hoek, E., Wood, D. and Sha, S., 1992. *A modified Hoek-Brown criterion for jointed rock masses*. Rock Characterization. Proceedings of ISRM Symposium EUROCK'92 (ed. J. Hudson), Chester, UK, pp. 209-213. British Geotechnical Society, London.
- Hoek, E., Kaiser, P.K. and Bawden. W.F., 1995. *Support of underground excavations in hard rock*. Rotterdam: Balkema.
- Hoek, E., Carranza-Torres, C. and Corkum, B., 2002. *Hoek-Brown Failure Criterion 2002 Edition*. NARMS-TAC 2002: Mining and Tunneling Innovation and Opportunity, 1, 267–273.
- Hoek, E., 2012. *Blast Damage Factor D.* Technical note for RocNews Winter 2012 Issue. Rocscience, Toronto, Ontario.
- Knight Piésold Ltd. (KP), 2015a. 6108-REP-001_RA 2015 Geomechanical and Hydrogeological Site Investigation Summary. North Bay, Ontario. Ref. No. NB101-622/3-1, Rev 0.
- Knight Piésold Ltd. (KP), 2015b. Memorandum to: Serge Ouellet. Re: Agnico Eagle Mines Ltd.: Meadowbank Division - Whale Tail Pit - Groundwater Inflow Assessment. October 20. Vancouver, British Columbia. Ref. No. VA15-03274.
- Knight Piésold Ltd. (KP), 2015c. Letter to: Serge Ouellet, AEM. Re: Agnico Eagle Mines Ltd.: Meadowbank Division - Whale Tail Pit Permafrost and Talik Characterization. October 22. Vancouver, British Columbia. Ref. No. VA15-03249.
- Lutton, R.J., 1970. *Rock slope chart from empirical design*. Trans. Society of Mining Engineers, 247, 160-162.

- Mine Health and Safety Act, 2011. Consolidation of Mine Health and Safety Regulations. Government of Northwest Territories and Nunavut. R-125-95, Section 1.137.
- Natural Resources Canada, 2010. *Seismic Hazard Map.* 2010 National Building Code of Canada. Government of Canada, Ottawa, Ontario.
- Read, J. and Stacey, P., 2009. Guidelines for Open Pit Slope Design. Australia: CSIRO Publishing.
- Ritchie, A. M., 1963. *Evaluation of Rock Fall and its Control.* Highway Research Record 17, Highway Research Board, NRC, Washington, DC.
- Rocscience Inc., 2012. DIPS User's Guide. Toronto, Ontario.
- Rocscience Inc., 2014. RocPlane User's Guide. Toronto, Ontario.
- Sjoberg, J., 1996. *Large Scale Slope Stability in Open Pit A Review*. Division of Rock Mechanics Lulea University of Technology, S-97187.
- Wyllie, D.C. and Mah, C.W., 2004. *Rock Slope Engineering Civil and Mining, 4th Edition.* London: Taylor & Francis.

9 - CERTIFICATION

This report was prepared and reviewed by the undersigned.

Prepared:

Adam Jackson, EIT Geological Engineering

Reviewed:

Ben Peacock, P.Eng. Senior Engineer

Reviewed:

Robert A. Mercer, Ph.D., P.Eng. Managing Principal, North Bay

DATE:

Signature

PERMIT NUMBER: P 547

The Association of Professional Engineers, Geologists and Geophysicists of NWT/NU

This report was prepared by Knight Piésold Ltd. for the account of AGNICO EAGLE MINES LTD. MEADOWBANK DIVISION. Report content reflects Knight Piésold's best judgement based on the information available at the time of preparation. Any use a third party makes of this report, or any reliance on or decisions made based on it is the responsibility of such third parties. Knight Piésold Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. Any reproductions of this report are uncontrolled and might not be the most recent revision.

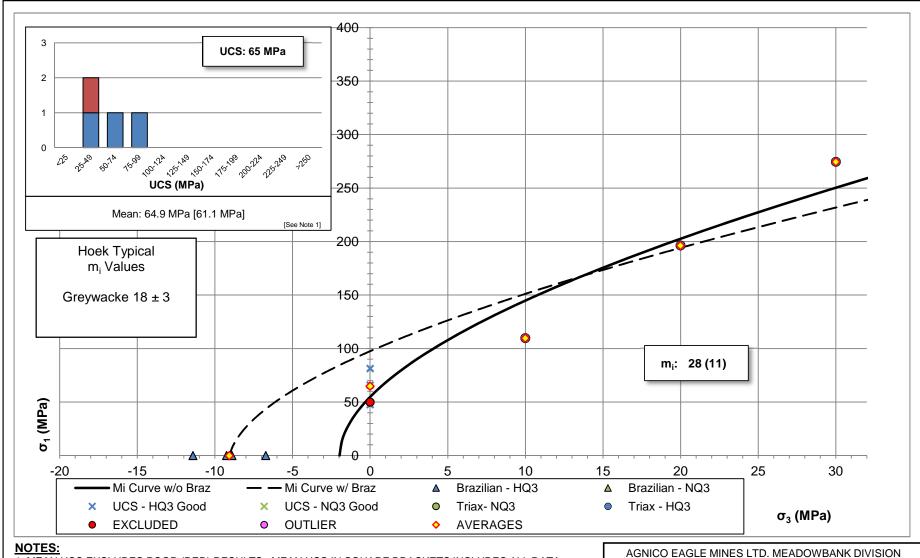
Approval that this document adheres to Knight Piésold Quality Systems:

AGNICO EAGLE MINES LTD. MEADOWBANK DIVISION WHALE TAIL PIT

The following appendices were previously issued with the KP Report NB101-622/3-2 Rev 1 entitled "6108-MEM-001_R0 Updated Scoping Level Open Pit Slope Design", dated December 11, 2015.

APPENDIX A

LAB TESTING RESULTS


Appendix A1 UCS and Triaxial Results by Rock Type
Appendix A2 Direct Shear Results by Rock Type

APPENDIX A1

UCS AND TRIAXIAL RESULTS BY ROCK TYPE

(Pages A1-1 to A1-4)

- 1. MEAN UCS EXCLUDES POOR (RED) RESULTS. MEAN UCS IN SQUARE BRACKETS INCLUDES ALL DATA.
- 2. m, DETERMINED USING AVERÀGE RESULTS (EX. BRAZILIANS) EXCLUDING OUTLYING RESULTS.
- 3. m, INSIDE BRACKETS INCLUDES BRAZILIAN AVERAGE.

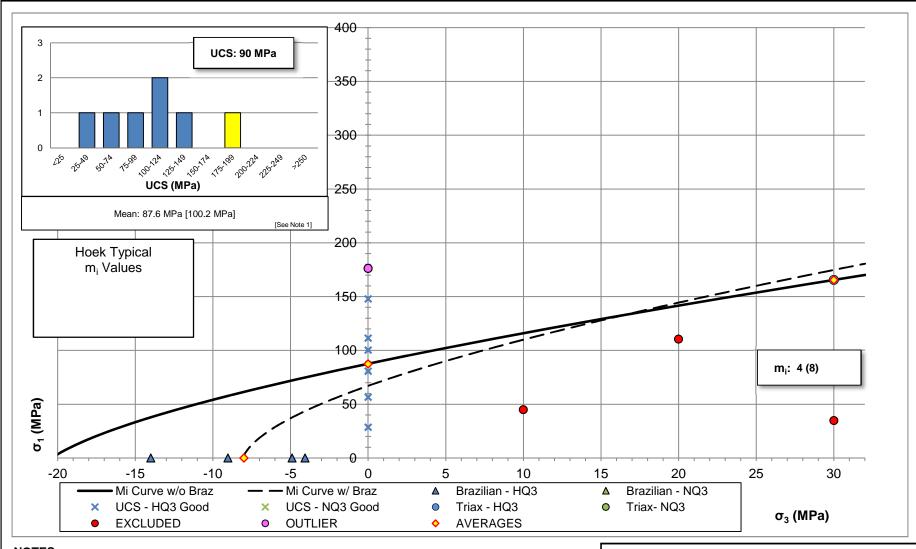
DESCRIPTION

ISSUED WITH REPORT

27NOV'15

DATE

0 REV


4. LAB TESTING COMPLETED BY AMEC (OCT 1, 2015). 5. THE RESULTS OF THE BRAZILIAN TESTS HAVE BEEN REDUCED TO 70% OF THEIR ORIGINAL VALUE (BEWICK ET. AL., 2011).

7/-	VVE BEE	N KED	UCED TO 70% OF THEIR ORIGINAL VALUE	GREYV	VACKE	
				Knight Piésold	P/A NO. NB101-622/3	REF. NO.
	ATJ	BDP		CONSULTING	FIGURE A	REV
	PREP'D	RVW'D				0

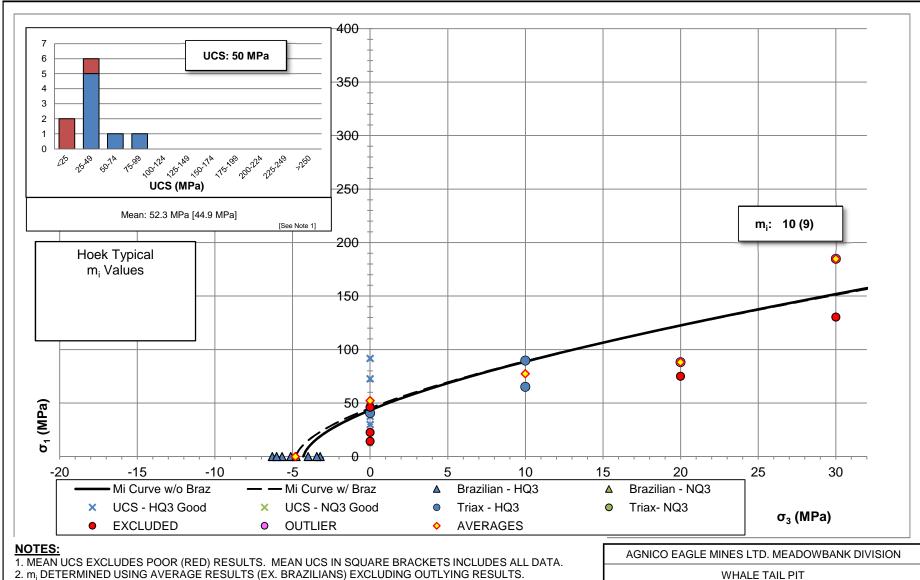
WHALE TAIL PIT

TRIAXIAL AND UCS RESULTS FOR

6108-MEM-001 R0 A1-1 of 4

- 1. MEAN UCS EXCLUDES OUTLYING (YELLOW) RESULTS AND POOR (RED) RESULTS. MEAN UCS IN SQUARE BRACKETS INCLUDES ALL DATA.
- 2. m, DETERMINED USING AVERAGE RESULTS (EX. BRAZILIANS) EXCLUDING OUTLYING RESULTS.
- 3. m, INSIDE BRACKETS INCLUDES BRAZILIAN AVERAGE.
- 4. LAB TESTING COMPLETED BY AMEC (OCT 1, 2015).
- 5. THE RESULTS OF THE BRAZILIAN TESTS HAVE BEEN REDUCED TO 70% OF THEIR ORIGINAL VALUE (BEWICK ET. AL., 2011).

0	27NOV'15	ISSUED WITH REPORT	ATJ	BDP
REV	DATE	DESCRIPTION	PREP'D	RVW'D


AGNICO EAGLE MINES LTD. MEADOWBANK DIVISION

WHALE TAIL PIT

TRIAXIAL AND UCS RESULTS FOR ALTERED ULTRAMAFICS

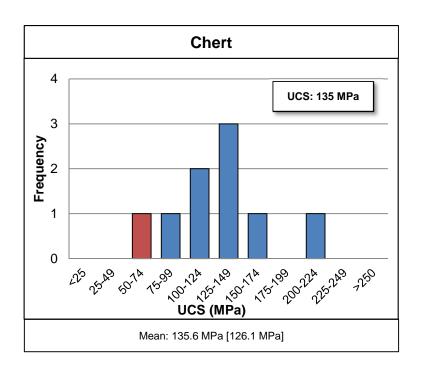
Knight Piésold
CONSULTING
P/A NO.
NB101-622/3
PFIGURE A1.2
REF. NO.
2
FIGURE A1.2

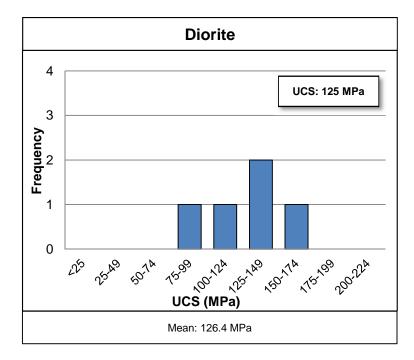
6108-MEM-001_R0 A1-2 of 4

- 3. m, INSIDE BRACKETS INCLUDES BRAZILIAN AVERAGE.
- 4. LAB TESTING COMPLETED BY AMEC (OCT 1, 2015).
- 5. THE RESULTS OF THE BRAZILIAN TESTS HAVE BÉEN REDUCED TO 70% OF THEIR ORIGINAL VALUE (BEWICK ET. AL., 2011).

0	27NOV'15	5 ISSUED WITH REPORT		BDP
REV	DATE	DESCRIPTION	PREP'D	RVW'D

AGNICO EAGLE MINES LTD. MEADOWBANK DIVISION


WHALE TAIL PIT


TRIAXIAL AND UCS RESULTS FOR ULTRAMAFICS

Knight Piésold P/A NO. NB101-622/3 REF. NO. 2

FIGURE A1.3

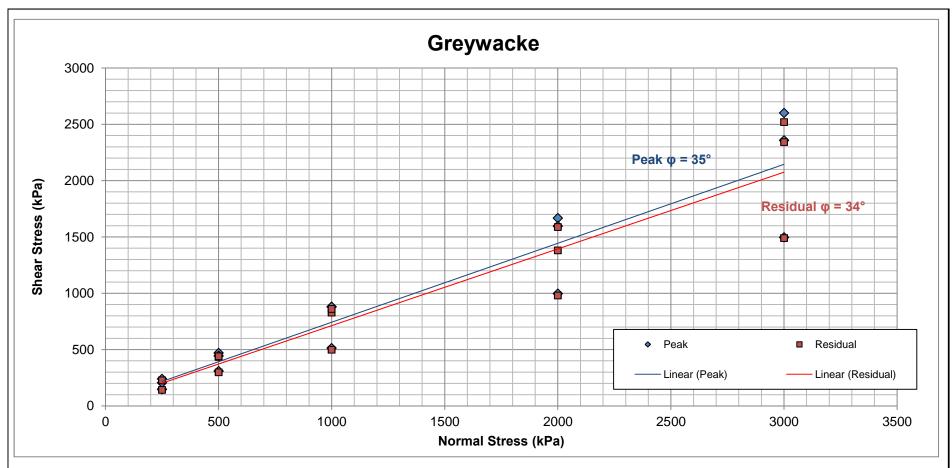
6108-MEM-001_R0 A1-3 of 4

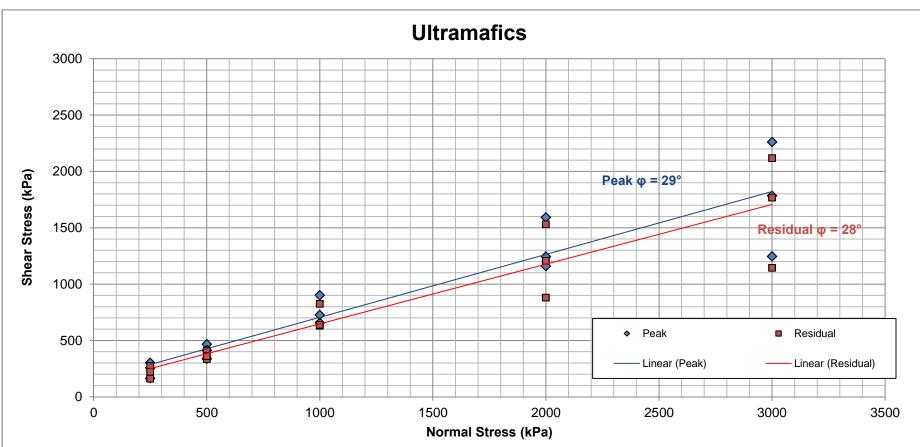
1. MEAN UCS EXCLUDES POOR (RED) RESULTS. MEAN UCS IN SQUARE BRACKETS INCLUDES ALL DATA. 2. LAB TESTING COMPLETED BY AMEC (OCT 1, 2015).

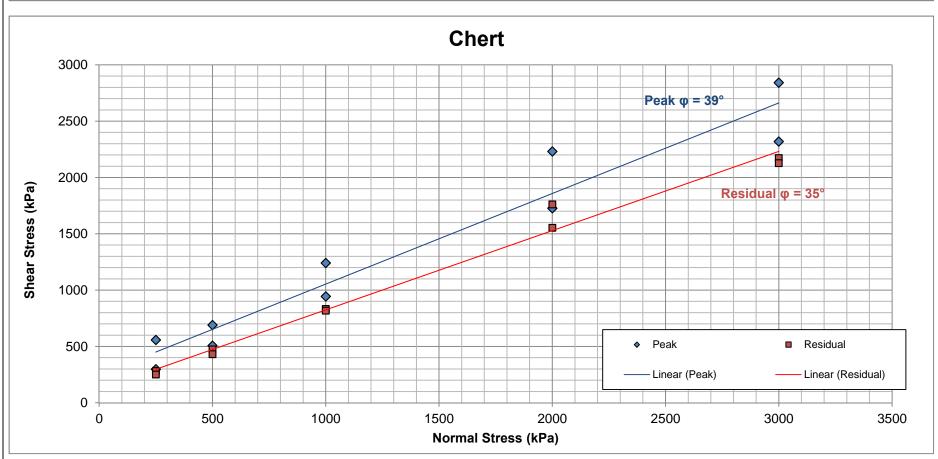
AGNICO EAGLE MINES LTD. MEADOWBANK DIVISION							
WHALE TAIL PIT							
UCS RESULTS FOR CHERT AND DIORITE							
Knight Piésold P/A NO. NB101-622/3 REF. NO. 2							
CONSULTING	FIGURE A1	.4	REV 0				

 0
 27NOV'15
 ISSUED WITH REPORT
 ATJ
 BDP

 REV
 DATE
 DESCRIPTION
 PREP'D
 RVW'D


6108-MEM-001_R0 A1-4 of 4




APPENDIX A2

DIRECT SHEAR RESULTS BY ROCK TYPE

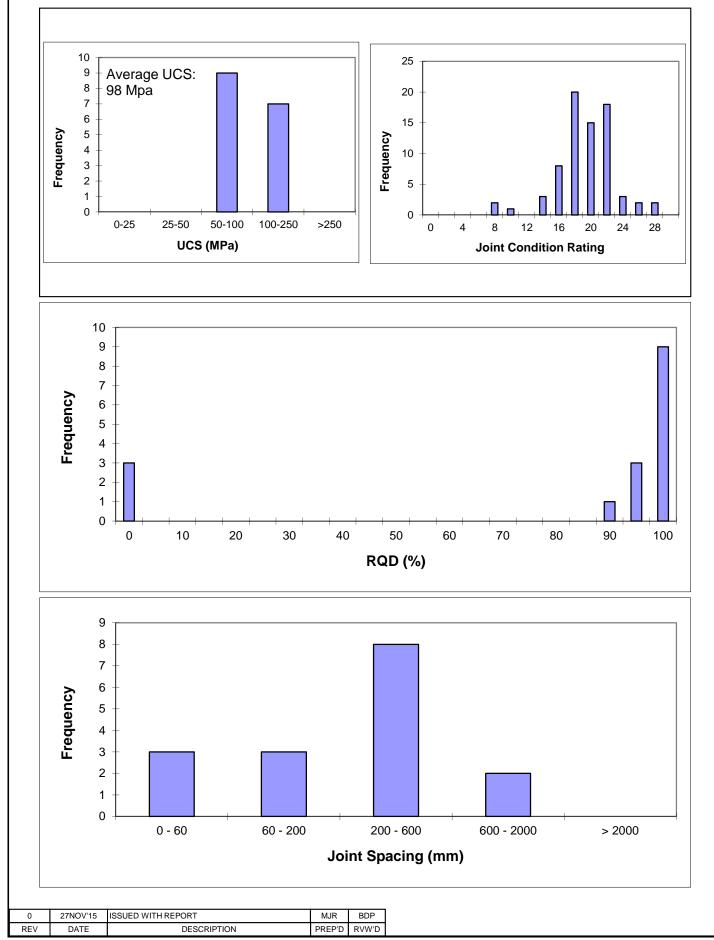
(Page A2-1)

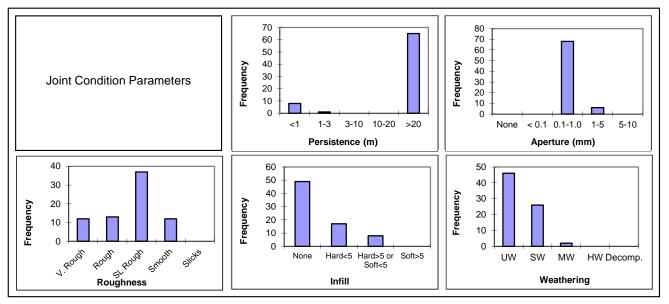
AGNICO EAGLE MINES LTD. MEADOWBANK DIVISION $\frac{\textbf{NOTES:}}{\textbf{1. LAB TESTING COMPLETED BY AMEC (OCT 1, 2015)}}.$ WHALE TAIL PIT **DIRECT SHEAR RESULTS** BY ROCK TYPE P/A NO. NB101-622/3 REF. NO. Knight Piésold 27NOV'15 ISSUED WITH REPORT BDP ATJ 0 FIGURE A2.1 REV DATE DESCRIPTION PREP'D RVW'D

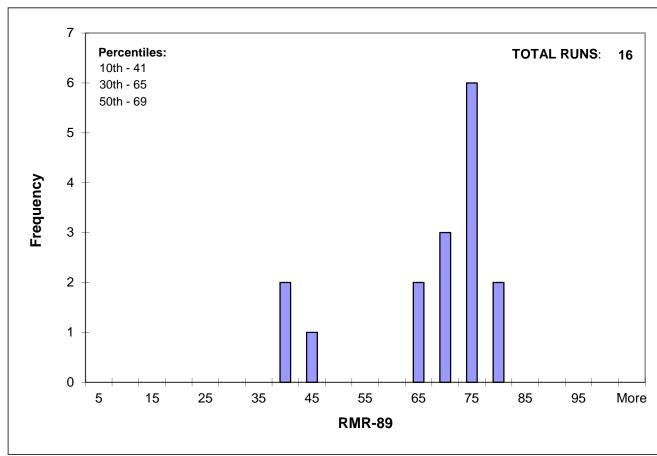
APPENDIX B

RMR HISTOGRAMS BY ROCK TYPE

Appendix B1 RMR Histograms by Rock Type

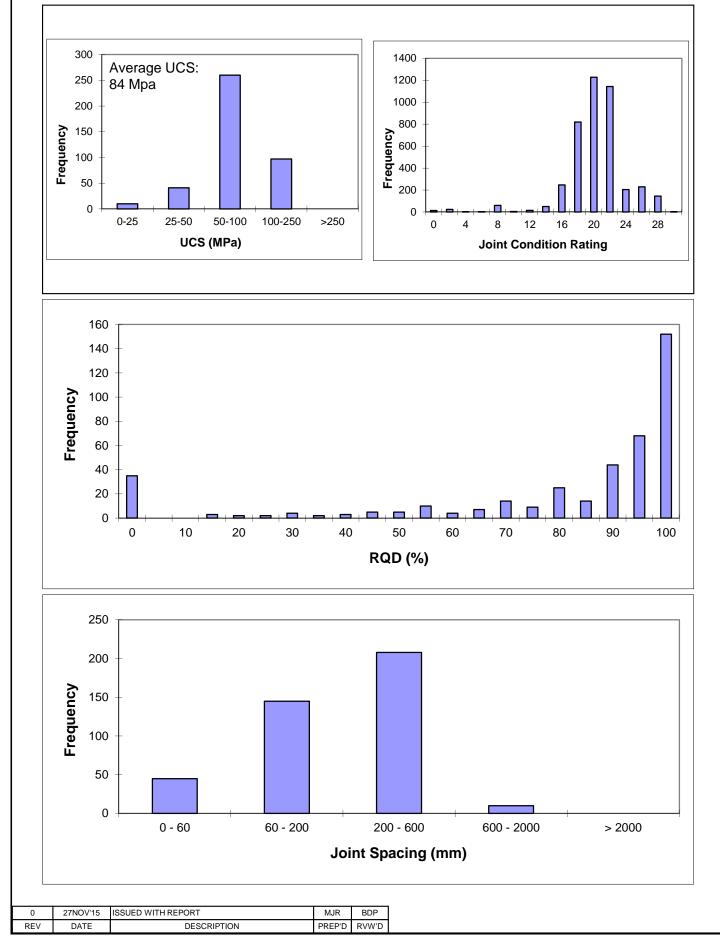

Appendix B2 RMR Histograms by Length by Rock Type

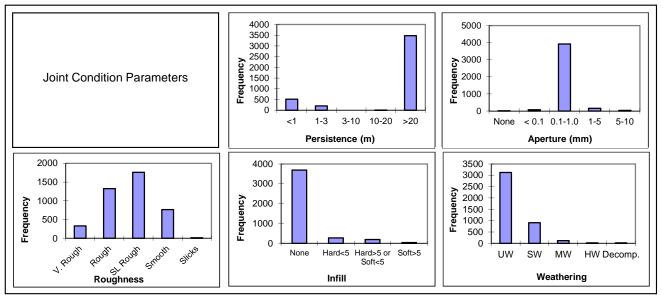



APPENDIX B1

RMR HISTOGRAMS BY ROCK TYPE

(Pages B1-1 to B1-6)


- 1. BINS INCLUDE PREVIOUS RANGE (I.E., BIN 60 INCLUDES VALUES FROM 55-60).
 2. RQD, RMR89, JOINT SPACING, AND UCS ARE RUN
- 2. RQD, RMR89, JOINT SPACING, AND UCS ARE RUN BASED PARAMETERS WHILE JOINT CONDITION RATING AND PARAMETERS ARE BASED ON INDIVIDUAL DISCONTINUITIES WITHIN A LOGGING RUN.
- 3. MINIMUM RMR VALUE OF EACH RUN DISPLAYED.

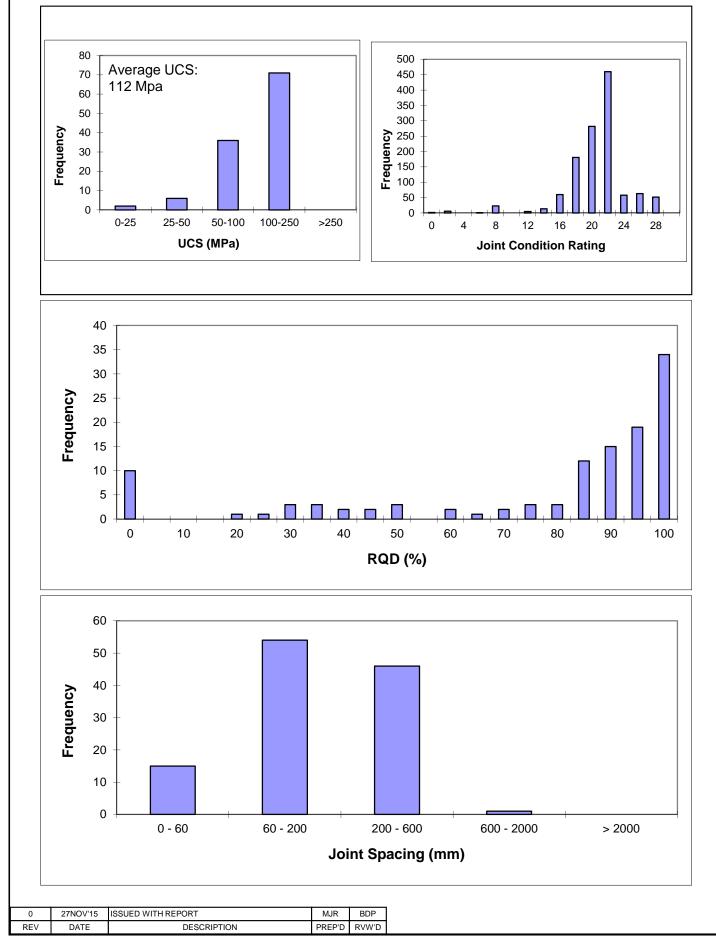

AGNICO EAGLE MINES LTD. MEADOWBANK DIVISION
WHALE TAIL PIT

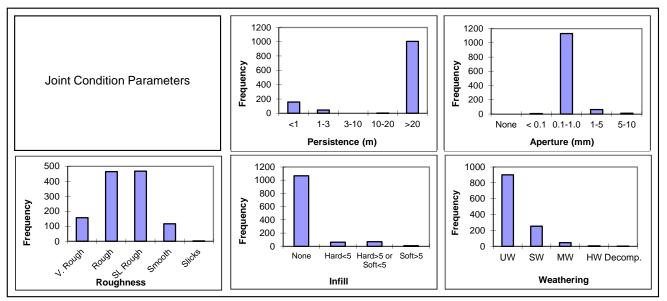
RMR89 PARAMETER HISTOGRAMS FOR DIORITE (I2)

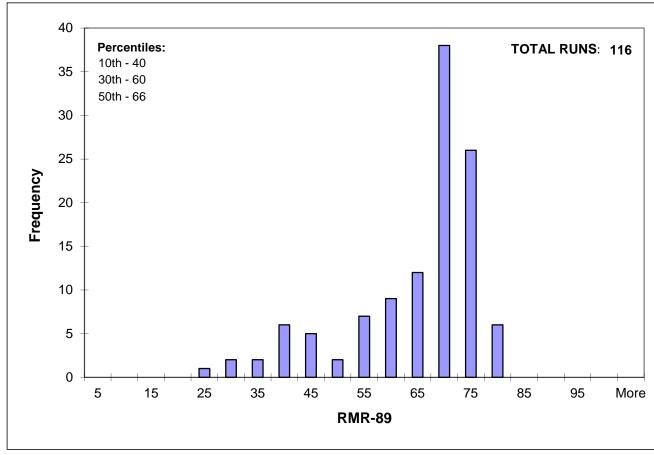
Knight Piésold
CONSULTING
P/A NO. NB101-622/3 REF. NO. 2
FIGURE B1.1

6108-MEM-001_R0 B1-1 of 6

- 1. BINS INCLUDE PREVIOUS RANGE (I.E., BIN 60 INCLUDES VALUES FROM 55-60).
 2. RQD, RMR89, JOINT SPACING, AND UCS ARE RUN
- 2. RQD, RMR89, JOINT SPACING, AND UCS ARE RUN BASED PARAMETERS WHILE JOINT CONDITION RATING AND PARAMETERS ARE BASED ON INDIVIDUAL DISCONTINUITIES WITHIN A LOGGING RUN.
- 3. MINIMUM RMR VALUE OF EACH RUN DISPLAYED.


AGNICO EAGLE MINES LTD. MEADOWBANK DIVISION
WHALE TAIL PIT


RMR89 PARAMETER HISTOGRAMS FOR GREYWACKE (S3, S6 & V3)

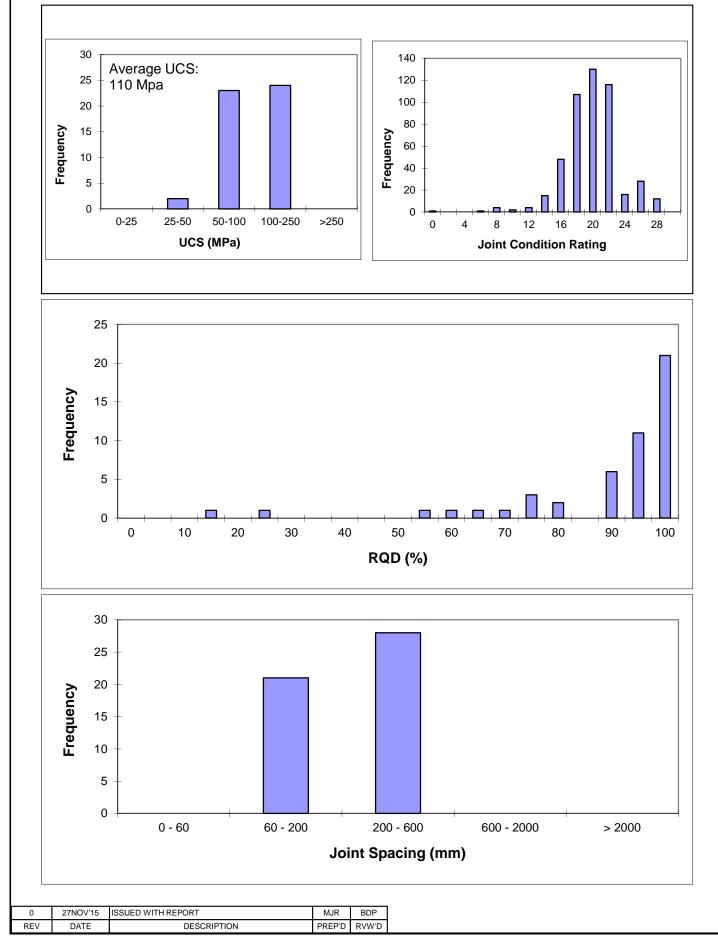

Knight Piésold

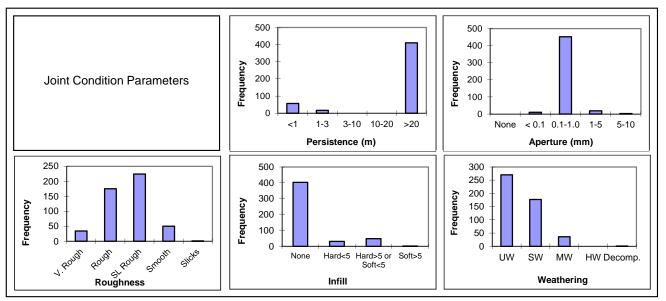
P/A NO. NB101-622/3 REF. NO. 2 FIGURE B1.2

6108-MEM-001_R0 B1-2 of 6

- 1. BINS INCLUDE PREVIOUS RANGE (I.E., BIN 60 INCLUDES VALUES FROM 55-60).
 2. RQD, RMR89, JOINT SPACING, AND UCS ARE RUN
- 2. RQD, RMR89, JOINT SPACING, AND UCS ARE RUN BASED PARAMETERS WHILE JOINT CONDITION RATING AND PARAMETERS ARE BASED ON INDIVIDUAL DISCONTINUITIES WITHIN A LOGGING RUN.
- 3. MINIMUM RMR VALUE OF EACH RUN DISPLAYED.

AGNICO EAGLE MINES LTD. MEADOWBANK DIVISION
WHALE TAIL PIT


RMR89 PARAMETER HISTOGRAMS FOR
CHERT (S10, S10E, S10mSi & S10sSi)


Knight Piésold

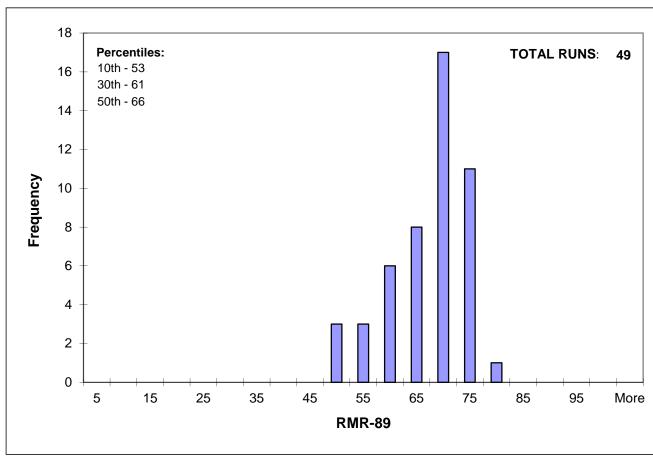
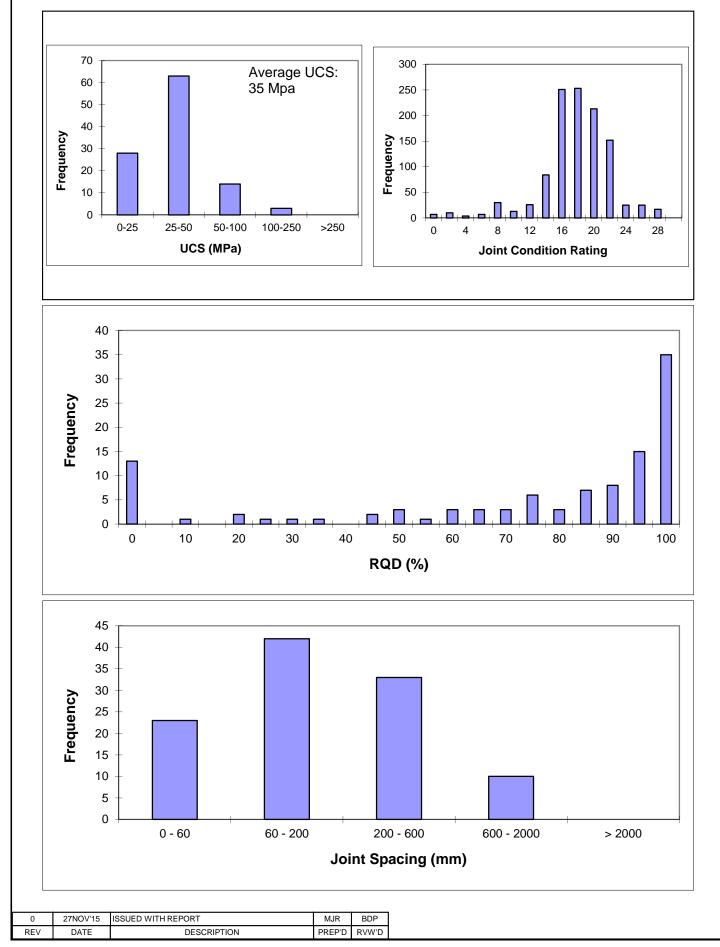

P/A NO. NB101-622/3 REF. NO. 2

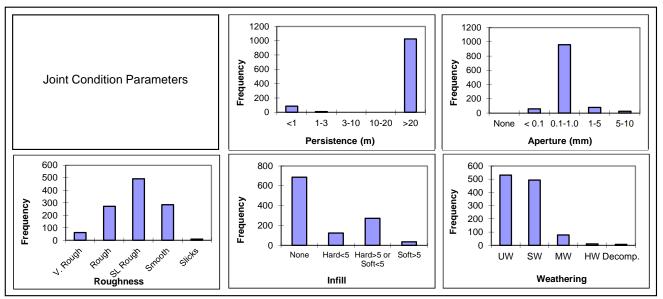
FIGURE B1.3

6108-MEM-001_R0 B1-3 of 6

- 1. BINS INCLUDE PREVIOUS RANGE (I.E., BIN 60 INCLUDES VALUES FROM 55-60).
 2. RQD, RMR89, JOINT SPACING, AND UCS ARE RUN
- BASED PARAMETERS WHILE JOINT CONDITION RATING AND PARAMETERS ARE BASED ON INDIVIDUAL DISCONTINUITIES WITHIN A LOGGING RUN.
- 3. MINIMUM RMR VALUE OF EACH RUN DISPLAYED.

AGNICO EAGLE MINES LTD. MEADOWBANK DIVISION
WHALE TAIL PIT


RMR89 PARAMETER HISTOGRAMS FOR
ALTERED ULTRAMAFICS (V3F & V4Amph)


Knight Piésold

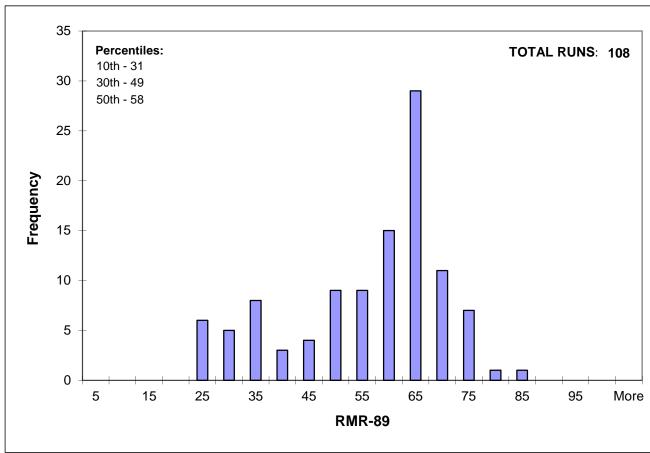
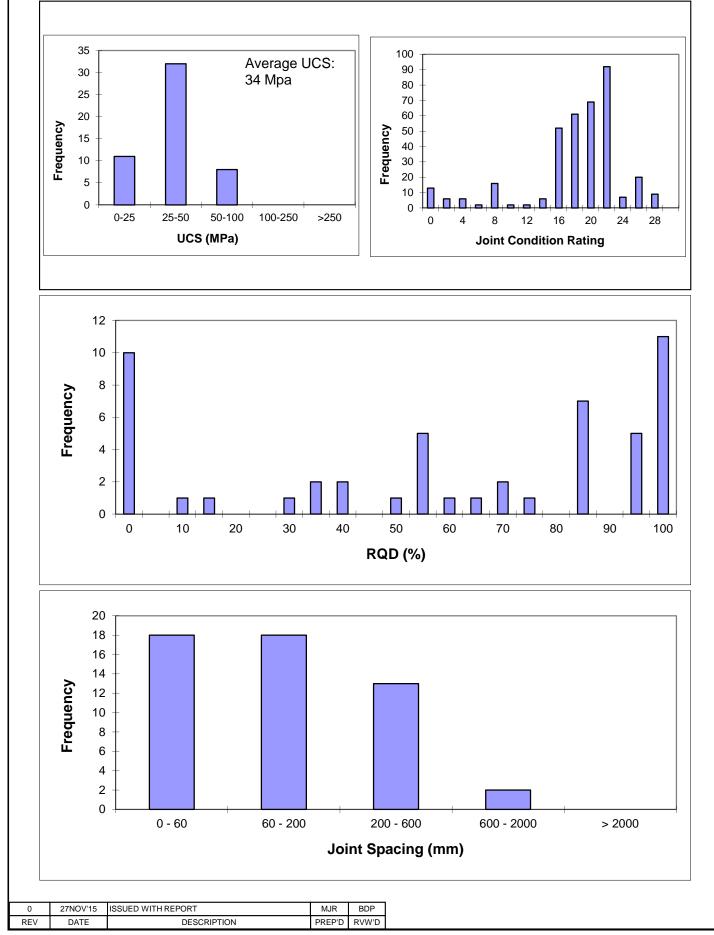

P/A NO. NB101-622/3 REF. NO. 2

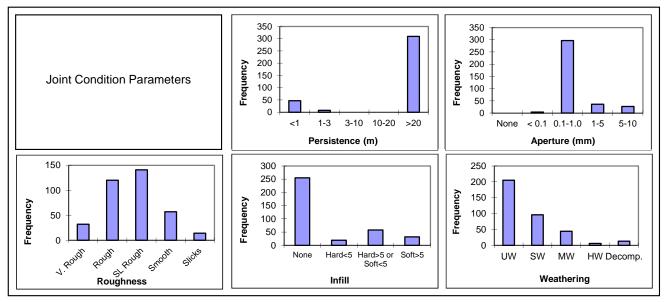
FIGURE B1.4

6108-MEM-001_R0 B1-4 of 6

- 1. BINS INCLUDE PREVIOUS RANGE (I.E., BIN 60 INCLUDES VALUES FROM 55-60).
 2. RQD, RMR89, JOINT SPACING, AND UCS ARE RUN
- 2. RQD, RMR89, JOINT SPACING, AND UCS ARE RUN BASED PARAMETERS WHILE JOINT CONDITION RATING AND PARAMETERS ARE BASED ON INDIVIDUAL DISCONTINUITIES WITHIN A LOGGING RUN.
- 3. MINIMUM RMR VALUE OF EACH RUN DISPLAYED.

AGNICO EAGLE MINES LTD. MEADOWBANK DIVISION
WHALE TAIL PIT


RMR89 PARAMETER HISTOGRAMS FOR ULTRAMFICS - NORTH LIMB (V4A)


Knight Piésold

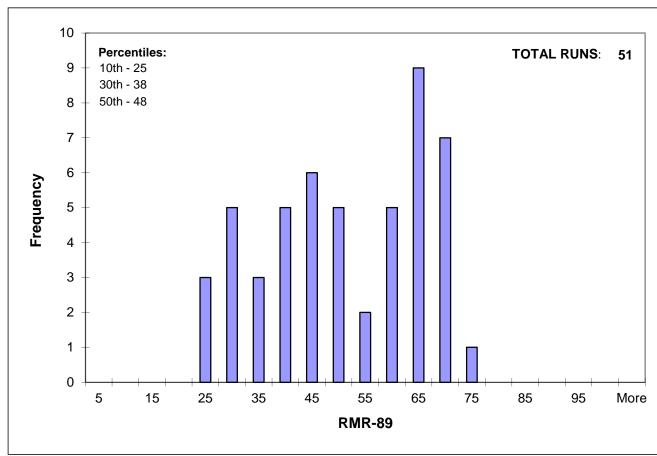

P/A NO. REF. NO. NB101-622/3 2

FIGURE B1.5

6108-MEM-001_R0 B1-5 of 6

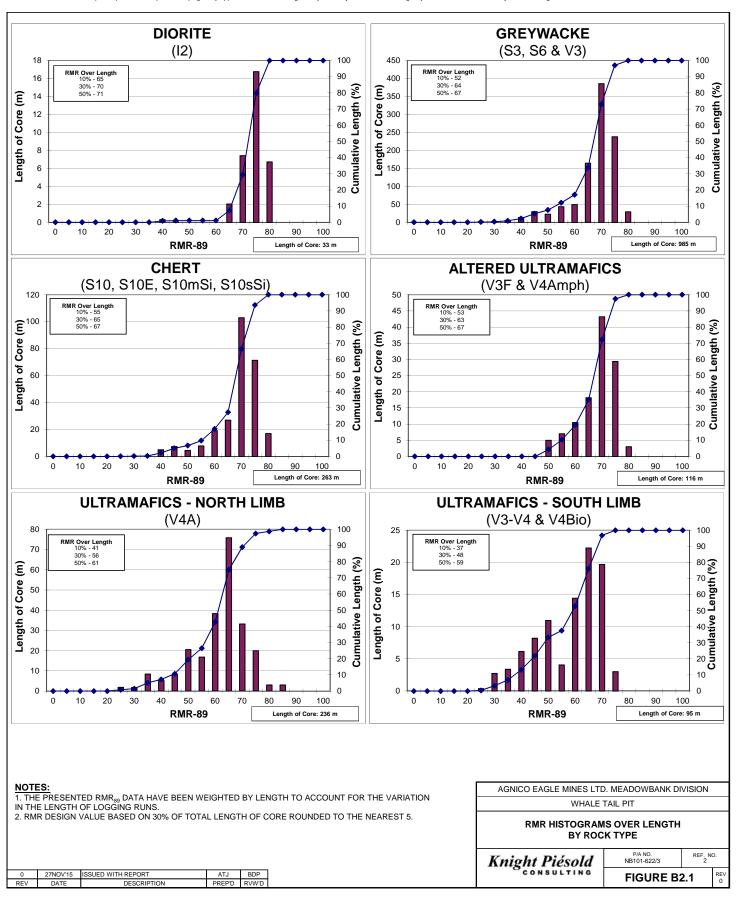
- 1. BINS INCLUDE PREVIOUS RANGE (I.E., BIN 60 INCLUDES VALUES FROM 55-60).
 2. RQD, RMR89, JOINT SPACING, AND UCS ARE RUN
- 2. RQD, RMR89, JOINT SPACING, AND UCS ARE RUN BASED PARAMETERS WHILE JOINT CONDITION RATING AND PARAMETERS ARE BASED ON INDIVIDUAL DISCONTINUITIES WITHIN A LOGGING RUN.
- 3. MINIMUM RMR VALUE OF EACH RUN DISPLAYED.

AGNICO EAGLE MINES LTD. MEADOWBANK DIVISION
WHALE TAIL PIT

RMR89 PARAMETER HISTOGRAMS FOR ULTRAMAFICS - SOUTH LIMB (V3-V4 & V4Bio)

Knight Piésold

P/A NO. NB101-622/3 REF. NO. PIGURE B1.6


6108-MEM-001_R0 B1-6 of 6

APPENDIX B2

RMR HISTOGRAMS BY LENGTH BY ROCK TYPE

(Page B2-1)

APPENDIX C

INTRODUCTION TO HOEK-BROWN CRITERION

(Pages C-1 to C-2)

APPENDIX C

1 - INTRODUCTION TO THE HOEK-BROWN FAILURE CRITERION

1.1 GENERAL

The achievable overall slope angle for a large open pit is often limited by the possibility for deep-seated circular failure through the rock mass. The likelihood of this type of failure depends on the strength of the rock mass. The strength of the rock mass is most commonly estimated through the application of the Hoek-Brown failure criterion (Hoek, et. al., 2002). In this case, the strength of a rock mass is a function of the intact strength, the characteristics of the discontinuities that bound the intact blocks and the amount of disturbance the rock mass has been subjected to through a combination of excavation and stress change. The Hoek-Brown failure criterion can be written as:

$$\sigma_{1} = \sigma_{3} + \sigma_{ci} \left(m_{b} \frac{\sigma_{3}}{\sigma_{ci}} + s \right)^{a} \tag{1}$$

Where:

 σ_1 and σ_3 are the maximum and minimum stresses, respectively

m_b, s, and a are rock mass constants

 σ_{ci} is the unconfined compressive strength of the intact rock

Each of the required input parameters are described in the following sections.

1.2 INPUT VALUES

The Hoek-Brown constant, m_b , is for the rock mass and is a reduced value of the Hoek-Brown constant, m_i , for the intact rock. The reduction is based on the Geological Strength Index, GSI, of the rock mass and the disturbance factor, D. This relation is described below:

$$m_b = m_i \exp\left(\frac{GSI - 100}{28 - 14D}\right) \tag{2}$$

Following Hoek *et. al.* (2002), the Hoek-Brown constant for the intact rock, m_i, has been selected from standard values for the different rock types encountered. The remaining rock mass constants are determined from the following equations:

$$s = \exp\left(\frac{GSI - 100}{9 - 3D}\right) \tag{3}$$

$$a = \frac{1}{2} + \frac{1}{6} \left(e^{-\frac{GSI}{15}} - e^{-\frac{20}{3}} \right) \tag{4}$$

1.3 INTACT ROCK STRENGTH

The strength of the intact rock (σ_{ci}) is represented by Unconfined Compression Strength (UCS) values taken from lab testing results.

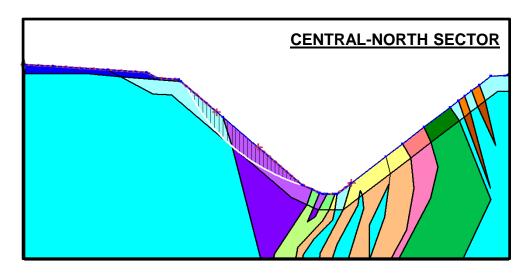
1.4 ROCK MASS QUALITY

The Geological Strength Index (GSI) was initially based on the RMR rating system and was introduced by Hoek et al. (1995) to overcome issues with the RMR values for very poor quality rock masses. For better quality rock masses (GSI>25), the value of GSI can be estimated from Bieniawski's RMR₈₉ rock mass classification system using the following equation:

$$GSI = RMR_{89} - 5 \tag{5}$$

This relation assumes a groundwater rating set to 15 (dry) and the adjustment for joint orientation is set to 0 (very favourable).

1.5 DISTURBANCE FACTOR


To account for rock mass disturbance associated with heavy production blasting and vertical stress relief, Hoek et. al. (2002) recommends downgrading the utilized rock mass strengths to disturbed values. Experience suggests that a disturbance factor of 0.7 may be achievable with the application of "controlled blasting" practices, while a value of 1.0 is appropriate for conventional "production blasting". Recent KP practice suggests that "controlled production blasting" is expected to be between these extremes and consistent with a disturbance factor of 0.85.

APPENDIX F2

LIMIT-EQUILIBRIUM ANALYSES - OVERALL SLOPE RESULTS SUMMARY

(Page F2-1)

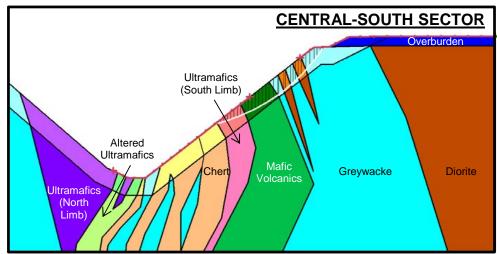
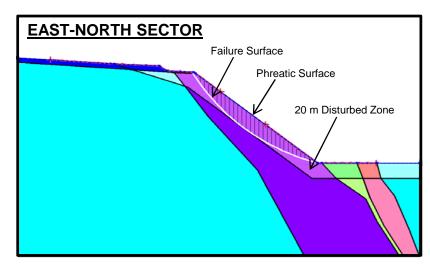


TABLE F2.1

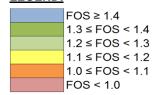
AGNICO EAGLE MINES LTD. MEADOWBANK DIVISION WHALE TAIL PIT

UPDATED SCOPING LEVEL OPEN PIT SLOPE DESIGN LIMIT EQUILIBRIUM ANALYSES - OVERALL SLOPE RESULTS SUMMARY

Print Dec/09/15 13:44:46


Conton	Model	Overall Slope Angle (°)			
Sector	Height ^[3] (m)	_		49	
Central-North	160		1.6		
Central-South	165			2.9	
East-North	130	1.8			

I:\1\01\00622\03\A\Report\Report 2 Rev 1 Updated Scoping Study\Appendices\F - L-E Analyses\[F2 - OSA LE Results.xlsx]OS FoS Matrix - Static


NOTES:

- 1. MODELS WERE CONSTRUCTED USING SLOPE/W (GEO-SLOPE, 2012) BASED ON THE PIT DESIGN PROVIDED BY AEM (SEP. 30, 2015) AND THE GEOLOGICAL MODELS PROVIDED BY AEM (SEP. 29, 2015). MODELS USE A SIMPLIFIED GEOMETRY.
- 2. SLOPE CONSERVATIVELY ASSUMED TO BE FULLY SATURATED.
- 3. MODEL HEIGHTS ARE BASED ARE MEASURED FROM THE TOE OF THE SLOPE TO THE TOP OF THE OVERBURDEN. DUE TO THE SIMPLIFIED MODEL GEOMETRY, THE MODEL HEIGHT MAY SLIGHTLY EXCEED THE HEIGHT OF THE ACTUAL PIT WALL.
- 4. ROCK MASS STRENGTH DERIVED USING HOEK-BROWN FAILURE CRITERION (HOEK, ET. Al., 2002).
- 5. MODELS INCORPORATE A 20 m BLAST DISTURBANCE ZONE PERPENDICULAR TO THE PIT FACE (D=0.85 FOR ALL DOMAINS EXCEPT THE ULTRAMAFICS WHERE D=0.7 DUE TO LOWER ROCK MASS QUALITY).
- 6. TARGET FOS IS 1.3.
- 7. CRITICAL SLIP SURFACE FOR EACH MODEL IS DISPLAYED AND REPORTED. ALL MODELS EXCEEDED THE TARGET FACTOR OF SAFETY OF 1.3.

1	11DEC'15	CLARIFICATION OF NOTE 3	ATJ	BDP
0	27NOV'15	ISSUED WITH REPORT NB101-622/3-2	ATJ	BDP
REV	DATE	DESCRIPTION	PREP'D	RVW'D

6108-MEM-001_R0

APPENDIX D

KINEMATIC ANALYSES - RESULTS SUMMARY

(Pages D-1 to D-49)

TABLE D.1

AGNICO EAGLE MINES LTD. MEADOWBANK DIVISION WHALE TAIL PIT

UPDATED SCOPING LEVEL OPEN PIT SLOPE DESIGN SUMMARY OF KINEMATIC ANALYSES

Kinematic Failure Mode Planar Toppling Wedge Bench Fac Structura nsitivity Sector Achievab Comments Dip Joint Set Significance Joint Set / Joint Set Effect Overall Max IRA Joint Set / Joint Set oint Effect Overall Overall Max BFA Max RFA Max IRA Joint Sets / Structures Max BFA Max IRA Angle RFΔ Set 1 Set 2 Overall Major 55 The achievable bench geometry is not expected to be controlled by structure. No Limit 75 9.5 21 300 None Toppling Toppling failure on JSA may locally limit the achievable slope geometry. GP-Fault Major Moderate The achievable bench geometry is not 240 JSD Minor 75 9.5 21 East None No Limit Moderat None expected to be controlled by structure. - BFA controlled by planar failures East Major Major 55 No Contro involving dominant joint set (JSA). Wedge failures involving JSA and JSD are essentially planar failures with a release feature. Achievable slope geometry is sensitive to friction angle and the strike of the vs. RQD5 Fault RQD7 Fault Major Planar & 9.5 21 110 60 60 Wedge Potential for planar or wedge failures involving the RQD5 and RQD7 Faults may locally limit the achievable slope ROD5 Fault Major 50 vs. ROD7 Fault 2 Major 50 Major Major - RQD5 and RQD7 Faults run subparallel and just behind the pit wall in th - BFA controlled by planar failures Major involving dominant joint set (JSA). Wedge failures involving JSA and JSD are essentially planar failures with a release feature.
- Achievable slope geometry is sensitive 155 55 55 9.5 21 41 Central-B (Wedge) Wedge o friction angle and the strike of the **RQD4** Fault Major Major vs. RQD4 Fault 3 Major Major Major slope.
- RQD4 Fault runs sub-parallel and just behind the pit wall in this sector. JSB Maior JSB' No Control Moderate Maior Wedge failures involving JSB and JSD are essentially planar failures with a 315 JSD 9.5 21 - Toppling failure on JSB' may locally Major Central-A VS. Maior Toppling & South (Planar) limit achievable slope geometry.
- Achievable slope geometry is sensitiv GP Fault JSC Moderate Major No Control Major Major to friction angle and the strike of the - BFA controlled by planar failures involving dominant joint set (JSA). Wedge failures involving JSA and JSD JSB JSD Major Major Minor Major No Control VS. Major Major are essentially planar failures with a release feature. - Achievable slope geometry is sensitiv Planar & 145 55 55 9.5 21 to friction angle and the strike of the Wedge **RQD4** Fault Major JSE Moderate vs. RQD4 Fault - Potential for planar or wedge failures Major volving RQD4 Fault may locally limit the achievable slope geometry. - RQD4 Fault runs sub-parallel and just behind the pit wall in this sector - BFA may be controlled by wedge failures involving dominant joint set.

- Achievable slope geometry is sensitive JSA Major JSD Minor JSD 2 Major Minor No Control 9.5 21 (Wedge) to the strike of the slope. JSA BFA may be controlled by planar and Major Moderate edge failures involving dominant joint West-South 335 JSE Minor Major 50 50 JSD JSE Major Toppling No Limit 75 9.5 21 set.
- Toppling failure on JSA may locally Toppling: JSB' Major No Control limit the achievable slope geometry.

1\01\00622\03\A\Report\Report 2 Rev 0 Updated Scoping Study\Appendices\D - Kinematic Analyses\[D.1 - High Level Kinematics Analyses - Results Summary (Oct 27, 2015).xlsx]Table - Kinematic Summary

NOTES:

1. ONLY POTENTIAL MAJOR PLANAR OR WEDGE FAILURES INVOLVING A JOINT SET WERE CONSIDERED WHEN EVALUATING THE ACHIEVABLE BENCH GEOMETRY.

2. RESULTS IN RED TEXT INDICATE FAILURE MODES POSSIBLY INFLUENCING BOTH THE IRA AND THE BFA. PLANAR AND WEDGE FAILURE MODES WERE CONSIDERED WHEN EVALUATING THE ACHIEVABLE INTER-RAMP CONFIGURATION.

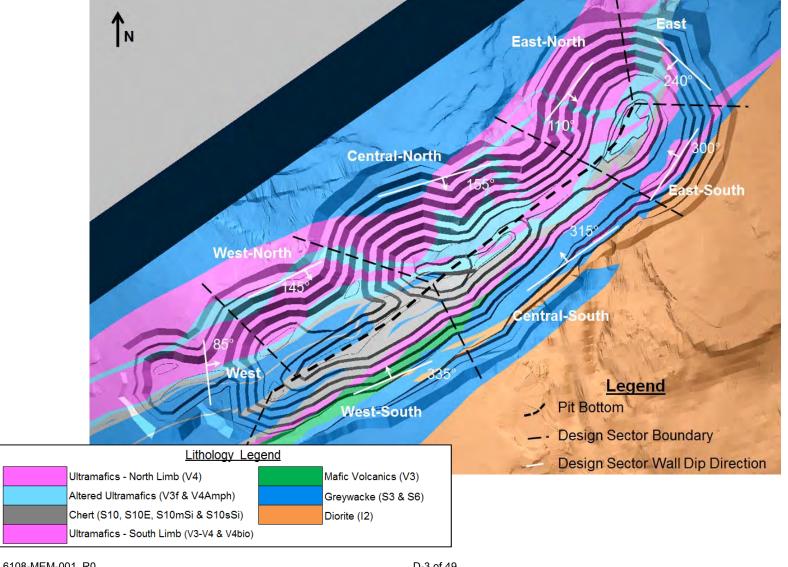
3. WEDGE FAILURES IN GREEN TEXT IDENTIFY WEDGES THAT ARE ESSENTIALLY A PLANAR FAILURE WITH A STEEPLY DIPPING RELEASE FEATURE (JSD). IN THESE CASES, THE MAXIMUM BFA FOR THAT SECTOR HAS BEEN SELECTED BASED ON THE RESULTS OF THE PLANAR FAILURES.

0	27NOV15	ISSUED WITH REPORT NB101-622/3-2	ATJ	BDP	1
REV	DATE	DESCRIPTION	PREP'D	RVW'D	

N/A MINOR:

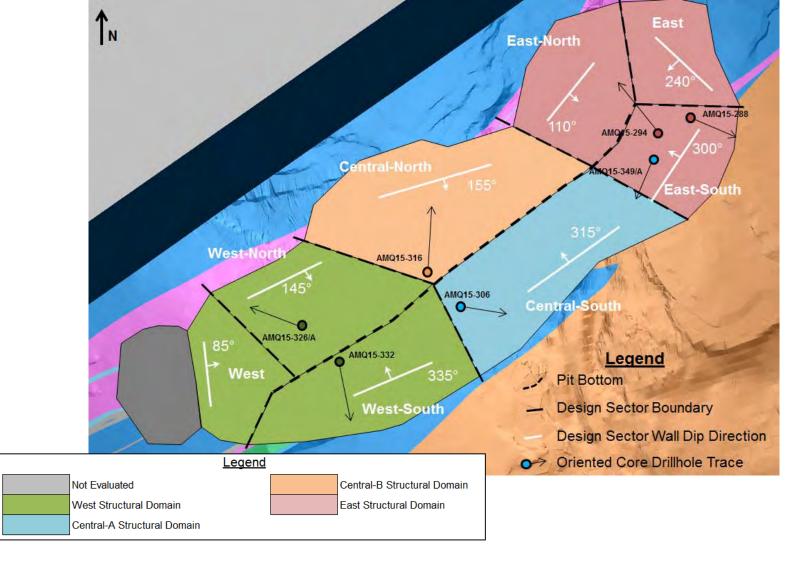
MODERATE: MAJOR:

Overall Set Significance


Set 1 Significance

Kinematic Analyses Whale Tail Open Pit

Updated Scoping Level Open Pit Slope Design


6108-MEM-001_R0 D-2 of 49

Design Sectors - Showing Pit Wall Lithology

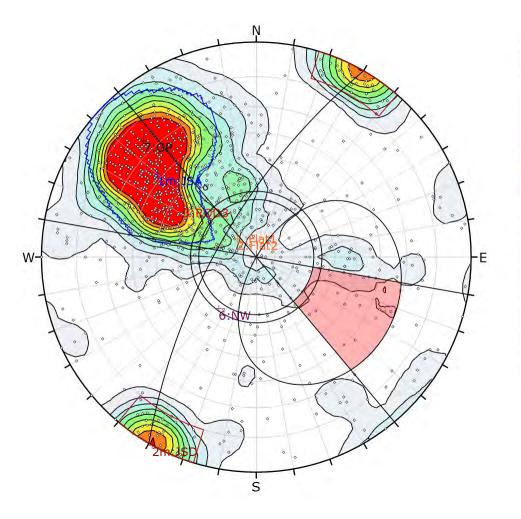
6108-MEM-001 R0 D-3 of 49

Design Sectors - Showing Structural Domains

6108-MEM-001_R0 D-4 of 49

Orientation Data Sets by Design Sector

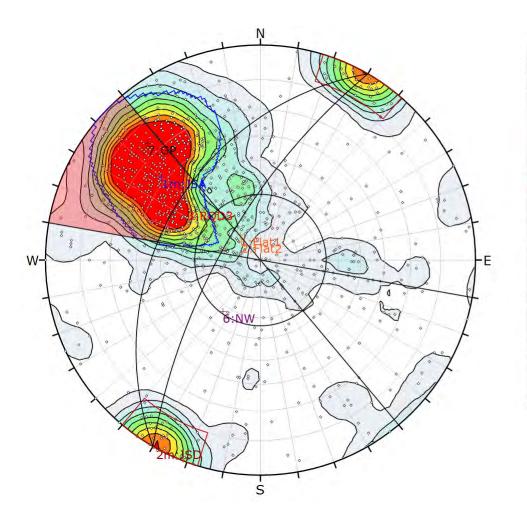
	Approximate			Large-Scale Structures			
Design Sector	Average Pit Wall Dip Direction (°)	Structural Domain	Drillhole Data (Depth Interval)	Fault Name	Dip (°)	Dip Direction (°)	
	300			GP	74	136	
				NW	33	36	
East - South				Flat1	17	141	
				Flat2	14	134	
				RQD3	45	125	
		East	- AMQ15-288 (0-150 m) - AMQ15-294 (1-175 m)	RQD3	45	125	
East	240			RQD5	47	138	
East	240			GP	74	136	
				NW	33	36	
East - North	110			RQD5	47	138	
Last - North	110			RQD7	51	132	
Central - North	155	Central - B	AMQ15-316 (0-EOH)	RQD4	50	145	
				RQD2	45	135	
				Flat1	17	141	
Central - South	315	Central - A	- AMQ15-306 (0-EOH)	Flat2	14	134	
Central - South	315	Central - A	- AMQ15-349/349A (0-175 m)	RQD3	45	125	
				NW	33	36	
				GP	74	136	
West - South	335			RQD2	45	135	
West	85	West	- AMQ15-332 (0-150 m) - AMQ15-326/326A (0 - 100 m)	RQD1	44	167	
West - North	145			RQD4	50	145	


6108-MEM-001_R0 D-5 of 49

Presentation Structure

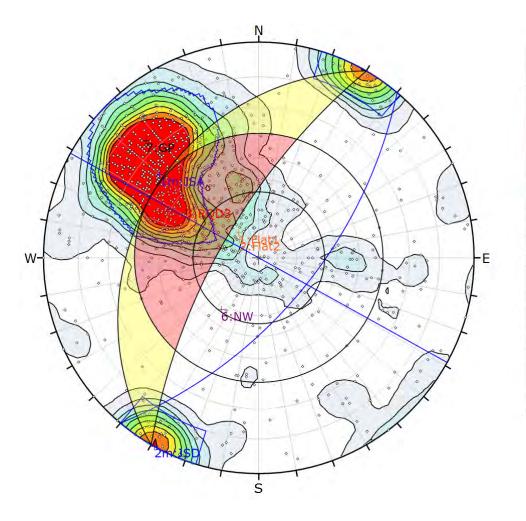
- Presentation contains the supporting kinematic analysis plots for the three failure modes for each design sector.
- Number convention:
 - 1: Planar analysis
 - 1.1: BFA reduced to meet target cumulative frequency
 - 1.2: Check on potential limits to inter-ramp angle
 - 2: Topping analysis
 - 3.1: Wedge analysis (Foliation vs JSD)
 - 3.1.1: BFA reduced to meet target cumulative frequency
 - 3.2: Wedge analysis (Mean joint set planes and fault planes)

6108-MEM-001_R0 D-6 of 49


1. East-South: Planar

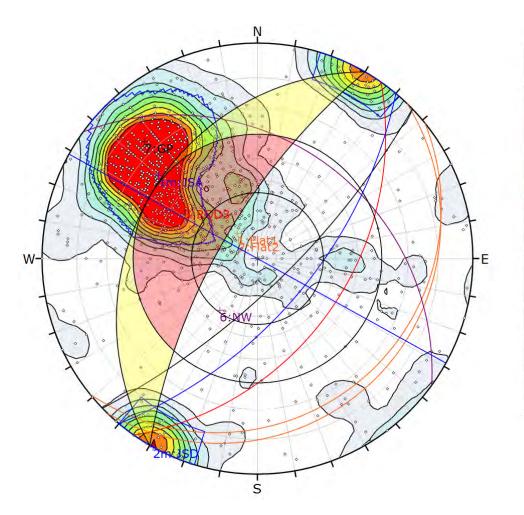
Symbol Feature									
♦ Pole Vectors									
Color		Density Concentrations							
		0.00 - 0.50							
		0.	50	-	1.00				
			00	3	1.50				
			50		2.00				
			00		2.50				
			50		3.00				
			00	-	3.50				
		-	50		4.00				
		4.	00	1	4.50				
Maximum Densi	h	9.07%	_	<					
Contour Da	•	Pole Vectors							
Contour Distribution	n	Fisher							
Counting Circle Siz	ze	1.0%							
Kinematic Analysis	Pla	nar Slid	ing						
Slope Dip	70	1122300							
Slope Dip Direction	30	0							
Friction Angle	30	o							
Lateral Limits	20	0							
			Cri	tical	Total	%			
Planar	Slidir	ng (All)	2	23	1003	2.29%			
Plot Mod	ie	Pole Vectors							
Vector Cour	nt	1003 (1003 Entries)							
Hemisphe	re	Lower							
Projection	n	Equal Angle							

6108-MEM-001_R0 D-7 of 49


2. East-South: Toppling

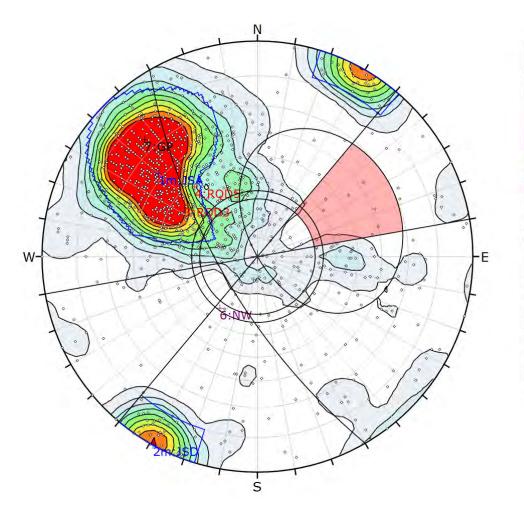
symbol Feature									
♦ Pole Vectors									
Color		Densi	ty Co	ncer	ntrations				
		0.00 - 0.50							
	0.50 - 1.00								
	1.00 - 1.50								
			50		2.00				
			00	9	2.50				
			50	4	3.00				
			00		3.50				
			50 00		4.00				
_			50	<	4,30				
Maximum Densi	tv	9.07%							
Contour Da		Pole Vectors							
Contour Distribution		n Fisher							
Counting Circle Size	ze	1.0%							
Kinematic Analysis	Flex	lexural Toppling							
Slope Dip	70	0							
Slope Dip Direction	300)							
Friction Angle	309								
Lateral Limits	209	•							
			Crit	ical	Total	%			
Flexural To	opplin	g (All)	31	19	1003	31.80%			
Flexural Topp	ling (Set 1)	30)6	488	62.70%			
Plot Mod	de	Pole Vectors							
Vector Cour	nt	1003 (1003 Entries)							
Hemisphe	re	Lower							
Projection	on	Equal Angle							

6108-MEM-001_R0 D-8 of 49


3.1 East-South: Wedge JSA vs JSD

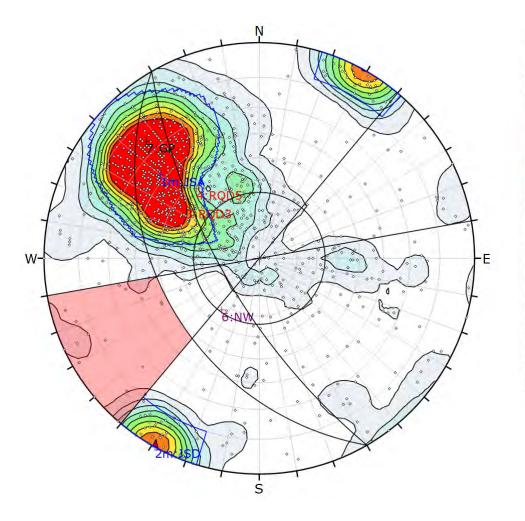
Symbol	Feature									
٠	Pole Vectors									
a	Critical Interse	ction								
Colo			Density Concentrations							
			0.	00	-6-	0.50				
		0.50 - 1,00								
			1.	00	3	1.50				
			1.	50	-	2.00				
			2.	00	3					
				50	4	3.00				
				00	-	3.50				
			-	50	-	4.00				
				00	-	4.50				
		_	4.	50	<					
М	aximum Densi	ty	9.079	ó						
	Contour Data			Pole Vectors						
Cont	our Distributio	on	Fisher							
Cou	nting Circle Siz	ze	1.0%							
Kinen	natic Analysis	Wed	dge Sli	ding						
	Slope Dip	70		-						
Slope	Dip Direction	300								
F	riction Angle	30°								
				Cri	tical	Total	%			
	We	dge S	liding	- 0	0	36112	0.00%			
	Plot Mod	de	Pole V	ecto	rs					
	Vector Cour	nt	1003 (1003 Entries)							
In	tersection Mod	de	All Set Planes							
Inte	Intersections Count				36112					
	Hemisphe	re	Lower							
	Projection			Equal Angle						

6108-MEM-001_R0 D-9 of 49


3.2 East-South: Wedge User and Mean Set Planes

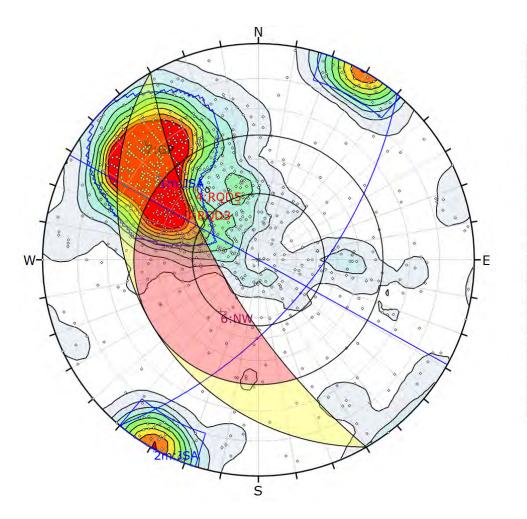
Symbol F	eature									
• F	ole Vectors									
a (Critical Interse	ction	1							
Color		Density Concentrations								
			0.	00	16	0.50				
			0.	0.50 - 1.00						
			_	00	7	1.50				
				50		2.00				
				00		2.50				
				50		3.00				
			-	00	-	3.50				
			-	50	-	4.00				
				00		4.50				
				50	<					
Max	imum Densi	ty	9.079	6						
Contour I		ur Data Pole Vectors								
Contou	ır Distributio	ion Fisher								
Count	ing Circle Siz	ze	1.0%							
Kinema	tic Analysis	W	edge Sli	ding						
	Slope Dip	70	0							
Slope Di	p Direction	30								
Fric	tion Angle	30	0							
			-	Cri	tical	Total	0/0			
	We	dge	Sliding	: D	0	36112	0.00%			
	Plot Mod	le	Pole V	ecto	rs					
	Vector Cou	nt	1003	(100	3 Entr	ries)				
Inter	section Mod	le	All Set Planes							
Interse	ections Cou	nt	36112							
	Hemisphe	re	Lower							
	Projection				Equal Angle					

6108-MEM-001_R0 D-10 of 49


1. East: Planar

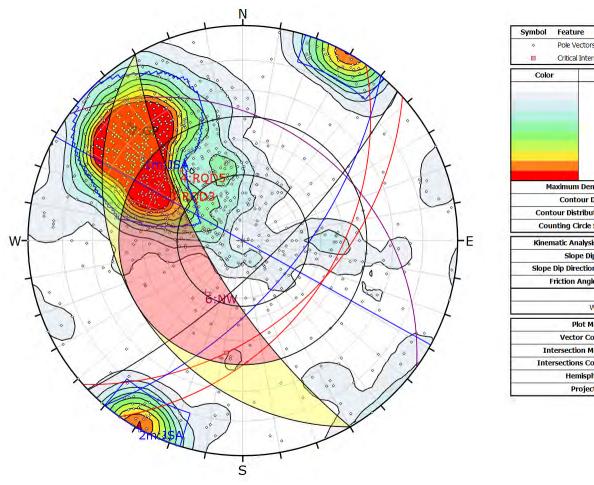
Symbol Feature									
 Pole Vectors 									
Color	Dens	Density Concentrations							
	0	0.00 - 0.50							
	0	.50	2	1.00					
		.00		1.50					
	_	.50		2.00					
		.00		2.50					
	_	.50		3.00					
		.00		3.50					
		.50		4.00					
		.00		4.50					
Manaharana Danash	_	.50	<						
Maximum Densit	200	Pole Vectors							
12310300 200									
Contour Distributio		Fisher							
Counting Circle Siz	e 1.0%	lanar Silding							
Kinematic Analysis	Planar Slic								
Slope Dip	70								
Slope Dip Direction	240								
Friction Angle	30°								
Lateral Limits	20°								
		Crit	tical	Total	%				
Planar 9	Sliding (All)	- 1	0	1003	1.00%				
Plot Mod	e Pole \	Pole Vectors							
Vector Coun	t 1003	1003 (1003 Entries)							
Hemispher	e Lowe	Lower							
Projectio	n Foual	Equal Angle							

6108-MEM-001_R0 D-11 of 49


2. East: Toppling

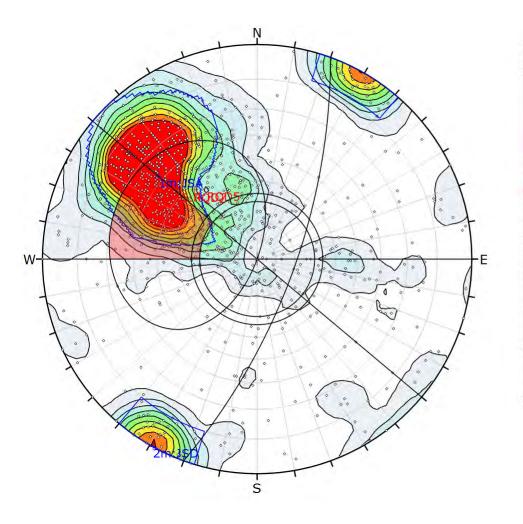
Symbol Feature									
 Pole Vectors 									
Color	Density Concentrations								
	0.	0.50							
	0.	50	-	1.00					
	1.	00	19	1.50					
	_	50		2.00					
		.00		2.50					
	_	50		3.00					
		.00		3.50					
		50		4.00					
		.00	-	4.50					
	_	50	<						
Maximum Density	9.079	6							
Contour Data	Pole \	Pole Vectors							
Contour Distribution	Fisher	Fisher							
Counting Circle Size	1.0%	1.0%							
Kinematic Analysis	Flexural T	oppli	ng						
Slope Dip	70								
Slope Dip Direction	240								
Friction Angle	30°								
Lateral Limits	20°								
		Cri	itical	Total	%				
Flexural Top	pling (All)	L.	19	1003	1.89%				
Plot Mode	Pole \	Pole Vectors							
Vector Count	t 1003	1003 (1003 Entries)							
Hemisphere	Lowe	Lower							
Projection	Foual	Equal Angle							

6108-MEM-001_R0 D-12 of 49


3.1 East: Wedge JSA vs JSD

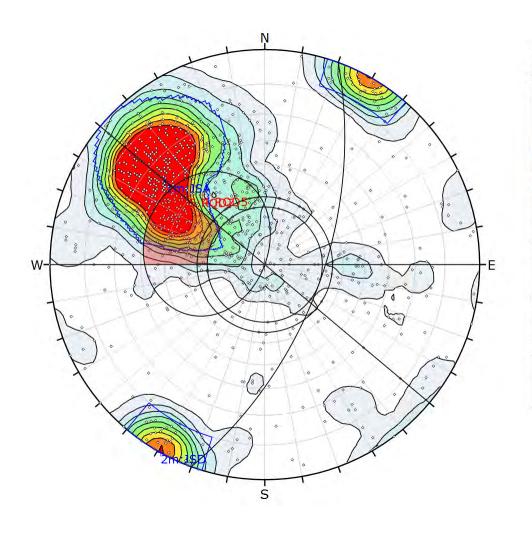
Symbol Feature									
 Pole Vectors 									
 Critical Interse 	ction								
Color	Densi	Density Concentrations							
	0.	0.00 - 0.50							
		50 -	1.00						
		00 -	1.50						
		50 -	2.00						
		00 -	2.50						
	-	50 - 00 -	3.00						
			4.00						
		50 - 00 -	4.50						
		50 <	4.50						
Maximum Densi									
Contour Dat	ta Pole V	ectors							
Contour Distribution	n Fisher	Fisher							
Counting Circle Siz	e 1.0%								
Kinematic Analysis	Wedge Sli	ding							
Slope Dip	70	0							
Slope Dip Direction	240								
Friction Angle	30°								
	1	Critical	Total	%					
We	dge Sliding	0	36112	0.00%					
Plot Mod	le Pole V	ectors							
Vector Cour	it 1003	1003 (1003 Entries)							
Intersection Mod	le All Set	All Set Planes							
Intersections Cour	it 36112	36112							
Hemispher	e Lower	Lower							
Projection	n Equal	Equal Angle							

6108-MEM-001_R0 D-13 of 49


3.2 East: Wedge User and Mean Set Planes

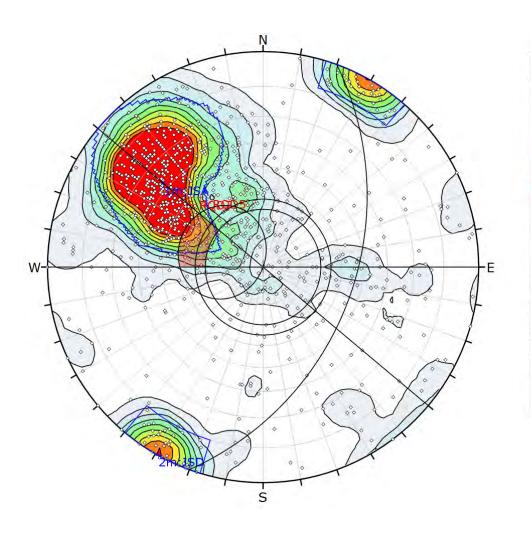
Symbol Feature									
♦ Pole Vector	S								
Critical Inter	sectio	n							
Color		Density Concentrations							
		0.	00	8	0.50				
		0.	50	-	1.00				
			00	1	1.50				
			50		2.00				
		-	00		2.50				
			50	12	3.00				
		5.0	35		3.50				
		1.5	50		4.00				
_			00 50	- <	4.50				
Maximum Der	eity	9.079		_					
2000 10112012012	e contra	-							
Contour I		Pole Vectors							
Contour Distribu	tion	Fisher							
Counting Circle	Size	1.0%							
Kinematic Analysi	s W	edge Sli	ding						
Slope Di	p 70)							
Slope Dip Directio	n 24	10							
Friction Angl	-)•							
			Crit	ical	Total	%			
- N	Vedge	Sliding	1		45	2.22%			
Plot M	ode	Pole V	ector	s					
Vector Co	ount	1003 (1003 Entries)							
Intersection M	User and Mean Set Planes								
Intersections Co	ount	45							
Hemispl	nere	Lower							
Projec	tion	Equal Angle							

6108-MEM-001_R0 D-14 of 49


1. East-North: Planar

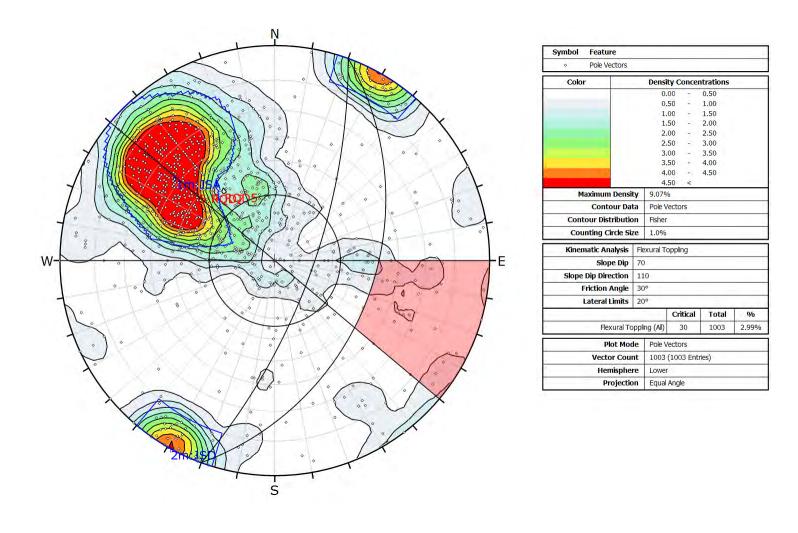
Symbol Feature									
⋄ Pole Vectors									
Color		Density Concentrations							
		0.	00	-	0.50				
			50	-	1.00				
	1.00 - 1.50								
		-	50		2.00				
			00		2.50				
		-	50 00		3.00				
		97.0	50		4.00				
		-	00		4.50				
1		4.	50	<					
Maximum Densi	ty	9.07%							
Contour Da	ta	Pole V	ector	S					
Contour Distribution	on	n Fisher							
Counting Circle Size	ze	1.0%							
Kinematic Analysis	Plai	anar Sliding							
Slope Dip	70	0							
Slope Dip Direction	110	10							
Friction Angle	309	0°							
Lateral Limits	209	0							
			Crit	tical	Total	%			
Planar	Slidin	ig (All)	22	27	1003	22.63%			
Planar Slid	ling (Set 1)	20	09	488	42.83%			
Plot Mod	de	Pole Vectors							
Vector Cour	nt	1003 (1003 Entries)							
Hemisphe	re	Lower							
Projection	on	Equal Angle							

6108-MEM-001_R0 D-15 of 49

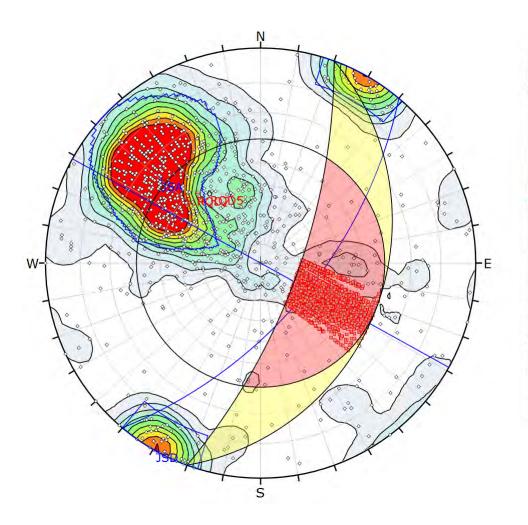

1.1 East-North: Planar

Symbol Feature									
 Pole Vectors 									
Color		Density Concentrations							
		0,	00	-	0.50				
				-	1.00				
			7.7	÷	1.50				
			7.7		2.00				
			00		2.50				
					3.00				
			00 50		3.50 4.00				
					4.50				
			200	<	4.50				
Maximum Densi	ty	9.07%							
Contour Da	ta	Pole Vectors							
Contour Distribution	n	Fisher							
Counting Circle Size	ze	1.0%							
Kinematic Analysis	Pla	lanar Sliding							
Slope Dip	60	ĺ.							
Slope Dip Direction	11	0							
Friction Angle	30	0							
Lateral Limits	20	0							
			Criti	cal	Total	9/0			
Planar	Slidii	ng (All)	15	3	1003	15.25%			
Planar Slid	ing ((Set 1)	13	8	488	28.28%			
Plot Mod	le.	Pole V	ectors						
Vector Cour	nt	1003 (1003 Entries)							
Hemisphe	re	Lower							
Projection	n	Equal Angle							

6108-MEM-001_R0 D-16 of 49

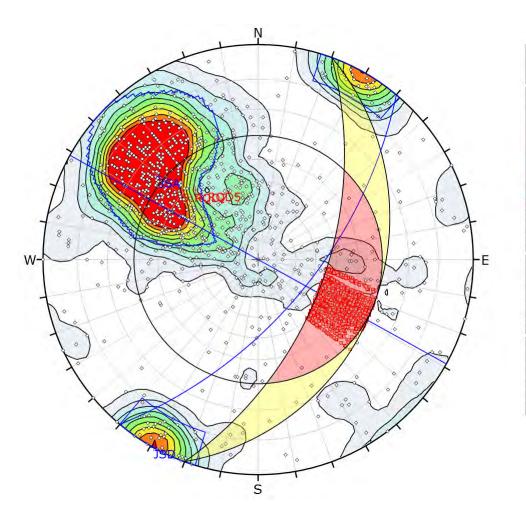

1.2 East-North: Planar Check on IRA

Symbol Feature									
♦ Pole Vectors									
Color	Density Concentrations								
	0.50 - 1.00								
	1.00 - 1.50 1.50 - 2.00								
					2.00				
		-	5.5		2.50				
			50		3.00				
			00		3.50 4.00				
			00		4.50				
			50	<	4.50				
Maximum Densi	ty	9.07%							
Contour Da	ta	Pole Vectors							
Contour Distribution	Fisher								
Counting Circle Size	Counting Circle Size			1.0%					
Kinematic Analysis	Pla	anar Sliding							
Slope Dip	44	l'							
Slope Dip Direction	11	0							
Friction Angle	30	0							
Lateral Limits	20	0							
			Cri	tical	Total	%			
Planar	Slidir	ng (All)	5	0	1003	4.99%			
Planar Slid	ing ((Set 1)	4	1	488	8.40%			
Plot Mod	le	Pole Vectors							
Vector Cour	nt	1003	(100	3 Ent	ries)				
Hemisphe	re	Lower							
Projection	on	Equal Angle							


6108-MEM-001_R0 D-17 of 49

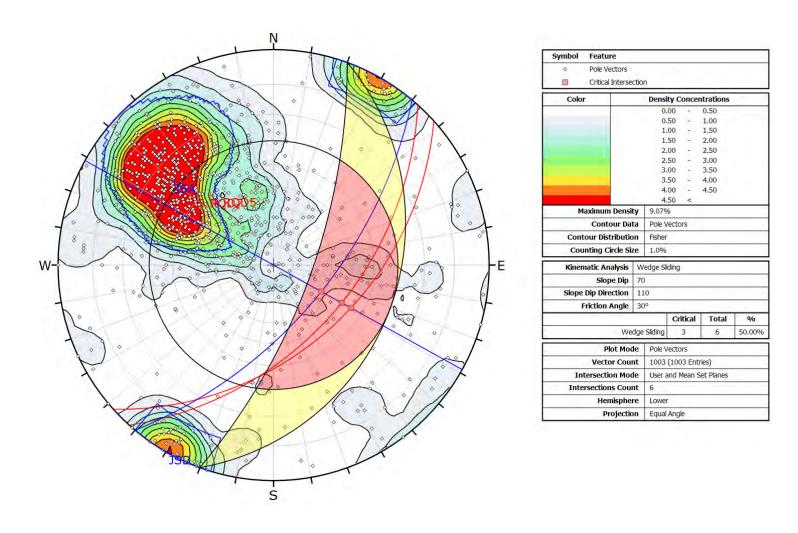
2. East-North: Toppling

6108-MEM-001_R0 D-18 of 49

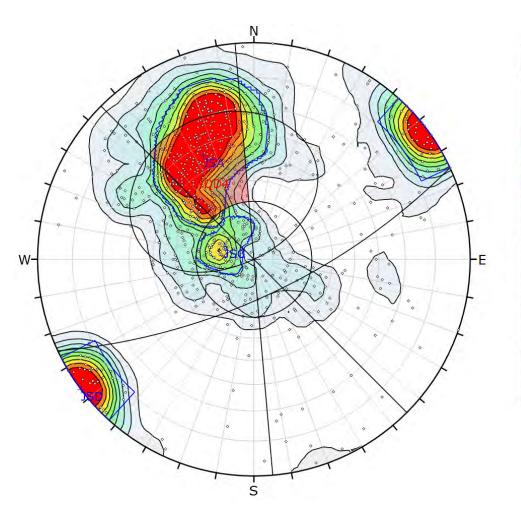

3.1 East-North: Wedge JSA vs JSD

Symbol	Feature										
0	Pole Vectors										
п	Critical Interse	ction	r .								
Color			Density Concentrations								
				00	14	0.50					
			0.	50	-	1.00					
				00	-	1.50					
			1.	50	345	2.00					
			2.	00	-	2.50					
			-	50		3.00					
				00		3.50					
				50		4.00					
				2.71		4.50					
			4.50 < 9.07%								
Maximum Density			19531745								
Contour Data			Pole Vectors								
Conto	Contour Distribution Counting Circle Size			Fisher							
Cour				1.0%							
Kinem	atic Analysis	We	edge Sli	ding							
	Slope Dip	70	/								
Slope I	Dip Direction	11	10								
Fi	riction Angle	30	0			,					
				Cri	tical	Total	%				
	We	dge	Sliding	24	854	36112	68.82%				
	Plot Mod	de	Pole V	ecto	rs						
	Vector Cour	nt	1003 (1003 Entries)								
Int	ersection Mod	de	Set 1 vs Set 2 Planes								
Inter	sections Cou	nt	36112	2							
	Hemisphe	re	Lower								
	Projection	on	Equal	Anale	2						

6108-MEM-001_R0 D-19 of 49

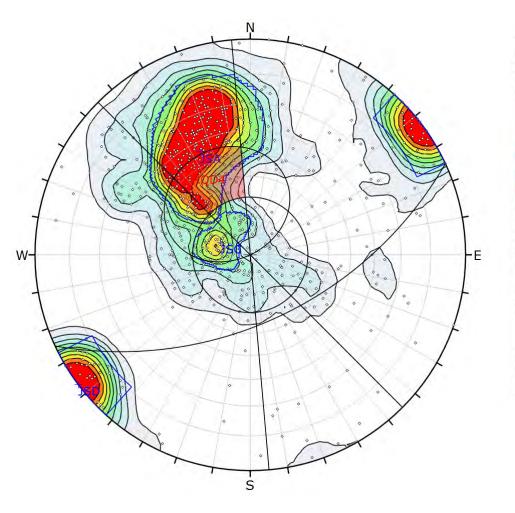

3.1.1 East-North: Wedge JSA vs JSD

Symbol	Feature									
0	Pole Vectors									
	Critical Interse	ctio	n							
Color			Densi	ty C	once	ntrations				
			0.	00	3	0.50				
				50	~	1.00				
				00 50	-	1.50				
					7	2.00				
				00	-	2.50				
				50 00	7	3.00				
				.50 .00		4.00				
					-	4.50				
					<					
Ma	Maximum Density Contour Data Contour Distribution			9.07%						
				Pole Vectors Fisher						
Conto										
Cour	nting Circle Si	ze	1.0%							
Kinem	atic Analysis	W	edge Sli	ding						
	Slope Dip	55	5							
Slope	Dip Direction	11	10							
F	riction Angle	30	0				-			
				Cri	itical	Total	%			
	We	dge	Sliding	10	166	36112	28.15%			
	Plot Mod	de	Pole Vectors							
	Vector Count		1003 (1003 Entries)							
Int	ersection Mod	de	Set 1 vs Set 2 Planes 36112							
Inter	sections Cou	nt								
	Hemisphe	re	Lower							
	Projection	n	Equal	Anal	e					


6108-MEM-001_R0 D-20 of 49

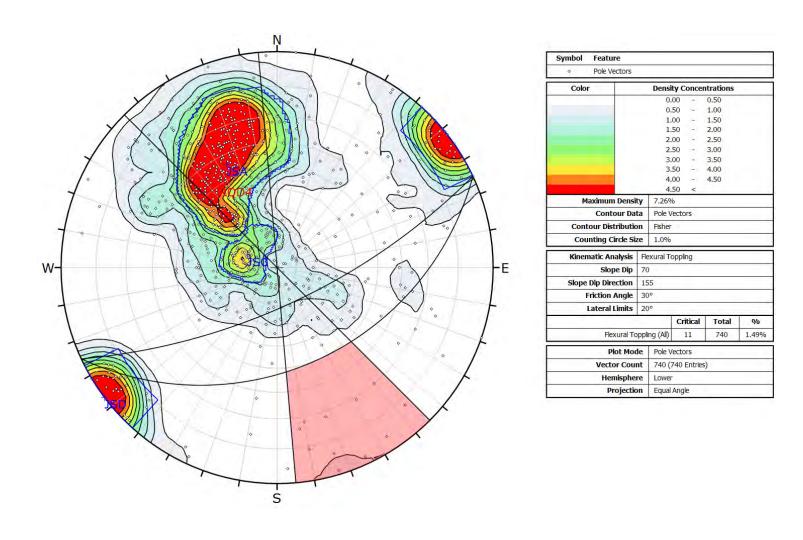
3.2 East-North: Wedge User and Mean Set Planes

6108-MEM-001_R0 D-21 of 49

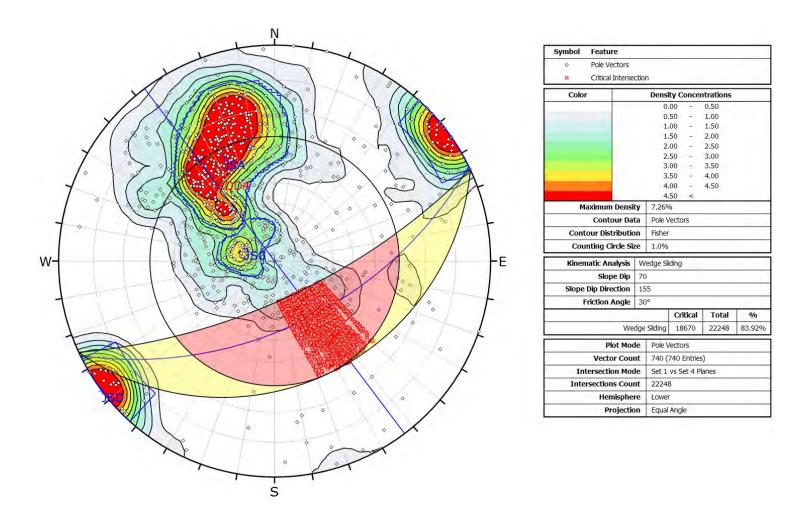

1. Central-North: Planar Analyses

Symbol Feature										
 Pole Vectors 										
Color		Density Concentrations								
		0.00 - 0.50								
	0.50 - 1.00 1.00 - 1.50									
		_	50		2.00					
		2.	2.0		2.50					
			50 00		3.00					
		-	50	-	3.50 4.00 4.50					
			7.5							
			50	<	1.50					
Maximum Densi	ity	7.26%								
Contour Da	ta	Pole Vectors								
Contour Distribution	on	Fisher								
Counting Circle Si	ting Circle Size			1.0%						
Kinematic Analysis	Pla	anar Sliding								
Slope Dip	70)								
Slope Dip Direction	15	55								
Friction Angle	30)°								
Lateral Limits	20	0								
			Cri	tical	Total	9/0				
Planar	Slidii	ng (All)	20	00	740	27.03%				
Planar Slic	ding (Set 1)	1	94	309	62.78%				
Plot Mo	de	Pole V	ecto	rs						
Vector Cou	nt	740 (740 Entries)								
Hemisphe	re	Lower								
Projection	on	Equal Angle								

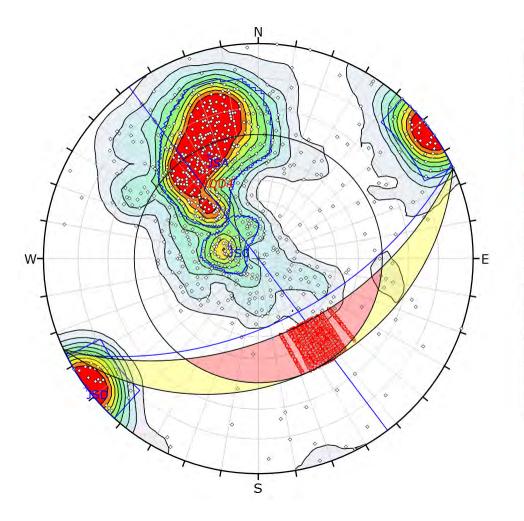
6108-MEM-001_R0 D-22 of 49


1.1 Central-North: Planar Analyses

Symbol Feature									
 Pole Vectors 									
Color	Density Concentrations								
		0.00 - 0.50							
		0.	50	-	1.00				
		_	00		1.50				
		-	50	=	2.00				
			00	-	2.50				
			50		3.00				
			.50		3.50				
					4.00				
		3.5	00 50	<	4.50				
Maximum Densi	ty	7.26%	_						
Contour Da	ta	Pole Vectors							
Contour Distribution	on	Fisher							
Counting Circle Size	ze	1.0%							
Kinematic Analysis	Plan	anar Sliding							
Slope Dip	55								
Slope Dip Direction	155								
Friction Angle	30°								
Lateral Limits	20°								
			Cri	tical	Total	%			
Planar	Slidin	ng (All) 82			740	11.08%			
Planar Slid	ling (S	(Set 1) 76 309 24.60							
Plot Mod	de	Pole V	ecto	rs					
Vector Cour	nt	740 (7	740	Entries	s)				
Hemisphe	re	Lower							
Projection	on	Equal Angle							

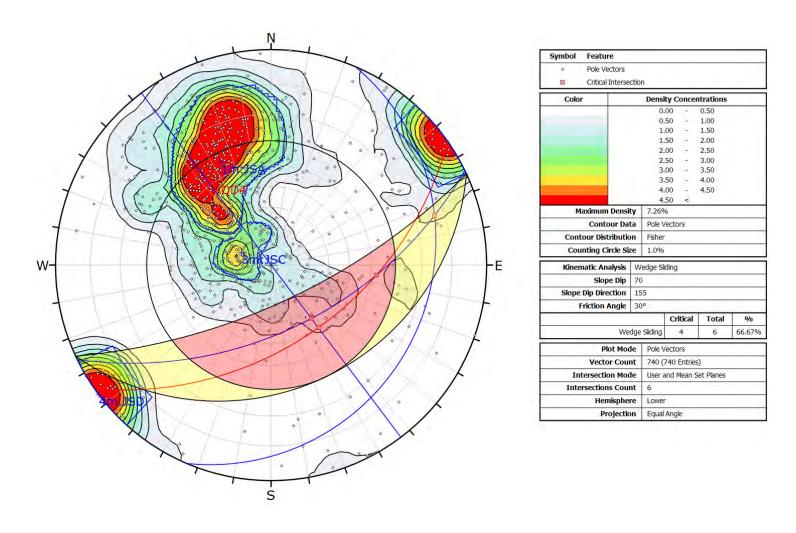

6108-MEM-001_R0 D-23 of 49

2. Central-North: Toppling Analyses

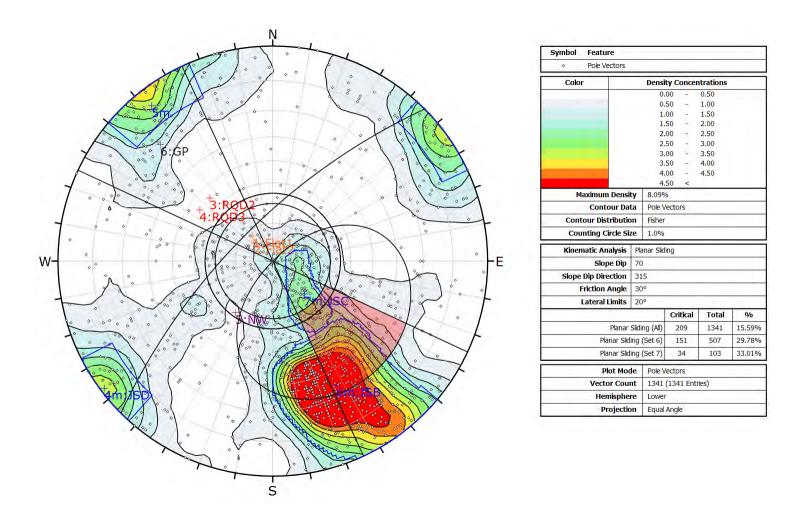

6108-MEM-001_R0 D-24 of 49

3.1 Central-North: Wedge Analyses JSA vs JSD

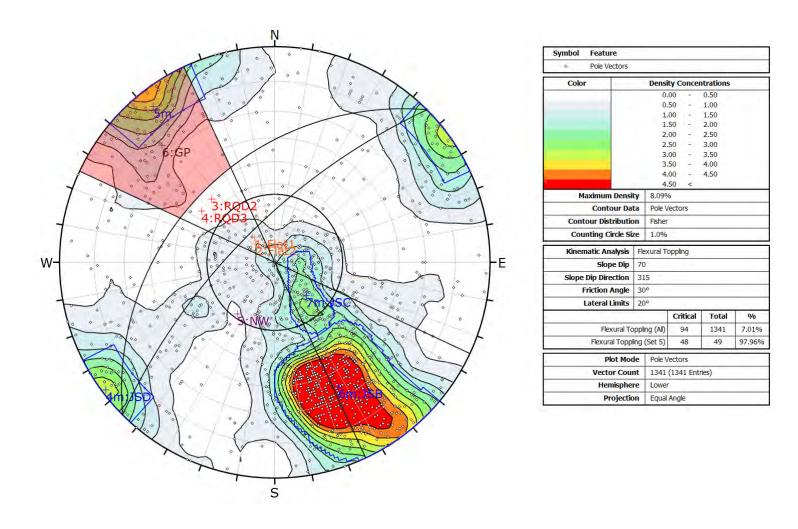
6108-MEM-001_R0 D-25 of 49


3.1.1 Central-North: Wedge Analyses JSA vs JSD

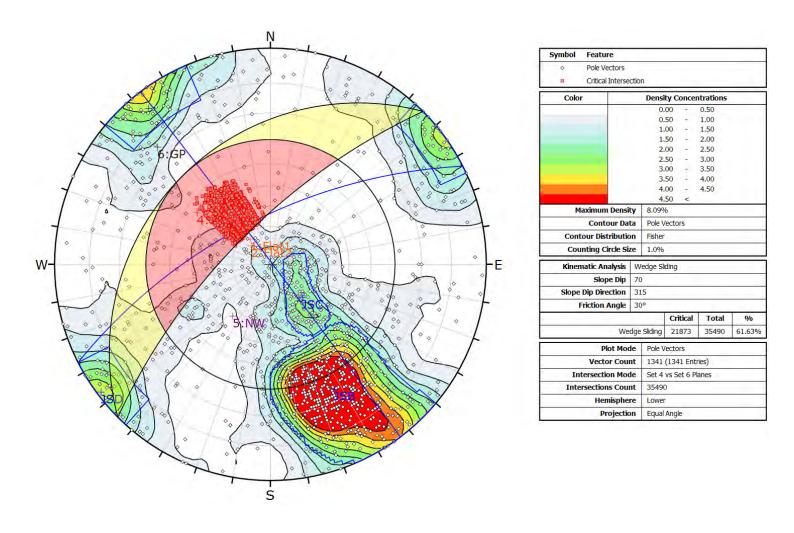
Symbol Feature	mbol Feature										
♦ Pole Vectors											
 Critical Interse 	ection	1									
Color		Density Concentrations									
		0.00 - 0.50									
	0.50 - 1.00										
	1.00 - 1.50										
		1.	50	-	2.00						
	2.00 - 2.50										
			50	-	3.00						
			.00 .50 .00		3.50						
					4.00						
					4.50						
	. 1	4.50 <									
Maximum Densi	ity	7.26%									
Contour Da	ta	Pole Vectors									
Contour Distribution	on	Fisher									
Counting Circle Si	ze	1,0%									
Kinematic Analysis	We	edge Sli	ding								
Slope Dip	50	0									
Slope Dip Direction	15	55									
Friction Angle	30										
			Cri	tical	Total	0/0					
We	edge	Sliding	57	48	22248	25.849					
Plot Mo	de	Pole V	ecto	rs							
Vector Cou	nt	740 (740 Entries)									
Intersection Mo	de	Set 1 vs Set 4 Planes									
Intersections Cou	nt	22248									
Hemisphe	re	Lower									
Projection	on	Equal Angle									


6108-MEM-001_R0 D-26 of 49

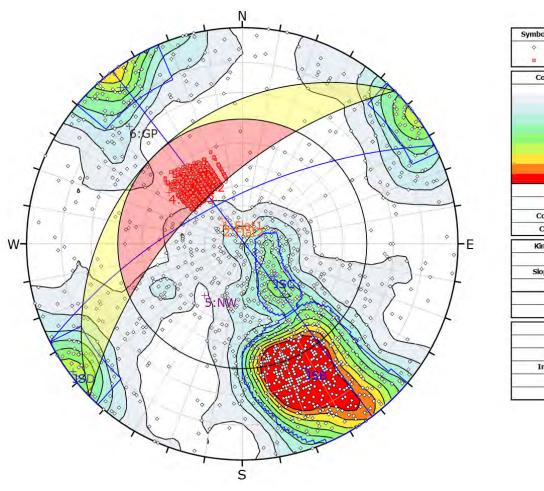
3.2 Central-North: Wedge Analyses User and Set Mean Planes


6108-MEM-001_R0 D-27 of 49

1. Central-South: Planar

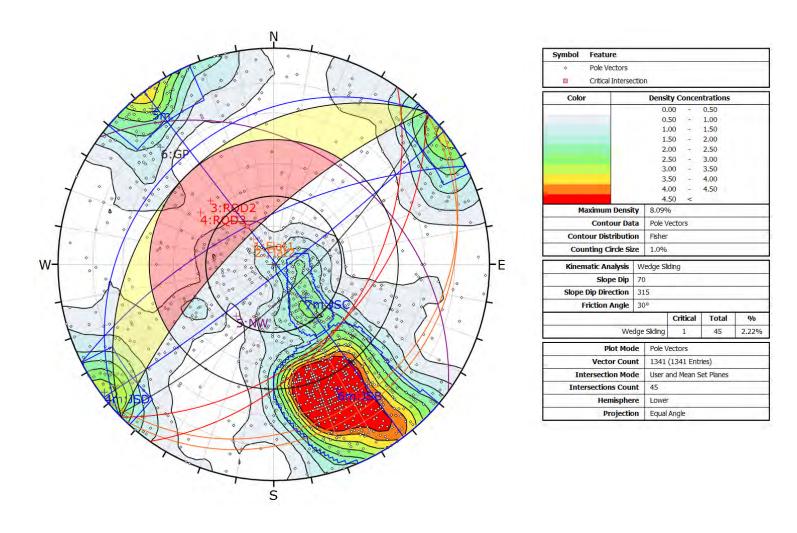

6108-MEM-001_R0 D-28 of 49

2. Central-South: Toppling

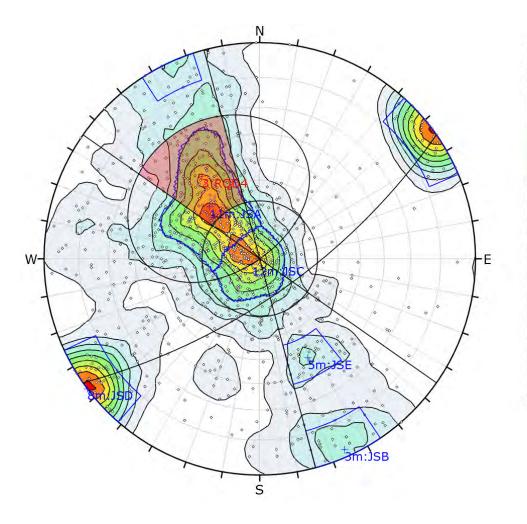

6108-MEM-001_R0 D-29 of 49

3.1 Central-South: Wedge JSB vs JSD

6108-MEM-001_R0 D-30 of 49


3.1.1 Central-South: Wedge JSB vs JSD

Symbol	Feature									
\langle	Pole Vectors									
a	Critical Interse	ction								
Color		Dens	Density Concentrations							
		(0.00		0.50					
		0.50 - 1.00								
			1.00	1						
			1.50		2.00					
			2.00		2.50					
			2.50	-						
			3.00	-	3.50					
			3.50		4.00 4.50					
			1.00							
		4,50 <								
Max	8.09	8.09%								
	Contour Data			Pole Vectors						
Conto	ur Distributio	n Fishe	Fisher							
Coun	ting Circle Siz	ze 1.09	1.0%							
Kinema	ntic Analysis	Wedge 9	Sliding							
	Slope Dip	60)							
Slope D	ip Direction	315	15							
Fri	iction Angle	30°								
			Cri	itical	Total	%				
	Wee	dge Sliding	11	650	35490	32.83%				
	ie Pole	Pole Vectors								
	nt 134:	1341 (1341 Entries)								
Inte	le Set	Set 4 vs Set 6 Planes								
Inters	ections Cour	nt 3549	90							
	Hemispher	re Low	er							
	Projectio	n Equa	Equal Angle							


6108-MEM-001_R0 D-31 of 49

3.2 Central-South: Wedge User and Mean Set Planes

6108-MEM-001_R0 D-32 of 49

1. West-North: Planar

Symbol Feature									
 Pole Vectors 									
Color	Density Concentrations								
		0.00 - 0.50							
	0.50 - 1.00								
		1.00		1.50					
		1.50		2.00					
		2.00		2.50					
		2.50 3.00	-	3.00					
		3.50		4.00					
		1.00		4.50					
		1.50	<	1.50					
Maximum Densi	ty 4.63	4.63% Pole Vectors							
Contour Da	ta Pole								
Contour Distribution	n Fish	Fisher 1.0%							
Counting Circle Size	ze 1.09								
Kinematic Analysis	Planar S	lanar Sliding							
Slope Dip	70)							
Slope Dip Direction	145	45							
Friction Angle	30°)°							
Lateral Limits	20°								
		Cri	tical	Total	%				
Planar	Sliding (All) 1	68	1033	16.26%				
Planar Slidir	ng (Set 11	(Set 11) 141 266 53.03							
Plot Mod	ie Pole	Vecto	rs						
Vector Cou	nt 103	3 (103	3 Entr	ries)					
Hemisphe	re Low	er							
Projection	n Equ	Equal Angle							

6108-MEM-001_R0 D-33 of 49