

### **REPORT**

# Human Health and Ecological Risk Assessment

Whale Tail Pit - Expansion Project

Submitted to:

**Agnico Eagle Mines Limited** 

Prepared by:

**Golder Associates Ltd.** 



# **Table of Contents**

| 1.0 | INTR  | DDUCTION                                          | 1  |
|-----|-------|---------------------------------------------------|----|
|     | 1.1   | Valued Components                                 | 2  |
|     | 1.2   | Spatial and Temporal Boundaries                   | 4  |
|     | 1.3   | Pathway Analysis                                  | 4  |
|     | 1.4   | Incorporation of Inuit Qaujimajatuqangit Feedback | 6  |
| 2.0 | EXIST | TING ENVIRONMENT AND BASELINE                     | 7  |
| 3.0 | EFFE  | CTS ASSESSMENT FOR HUMAN HEALTH                   | 8  |
|     | 3.1   | Conceptual Site Model                             | 8  |
|     | 3.2   | Air Quality                                       | 10 |
|     | 3.2.1 | Problem Formulation                               | 10 |
|     | 3.2.2 | Toxicity Assessment                               | 12 |
|     | 3.2.3 | Exposure Assessment                               | 13 |
|     | 3.2.4 | Risk Characterization                             | 14 |
|     | 3.3   | Soil Quality                                      | 15 |
|     | 3.3.1 | Problem Formulation                               | 15 |
|     | 3.4   | Country Foods Quality                             | 15 |
|     | 3.5   | Water Quality                                     | 15 |
|     | 3.5.1 | Problem Formulation                               | 15 |
|     | 3.5.2 | Toxicity Assessment                               | 19 |
|     | 3.5.3 | Exposure Assessment                               | 19 |
|     | 3.5.4 | Risk Characterization                             | 22 |
|     | 3.6   | Fish Tissue Quality                               | 26 |
|     | 3.6.1 | Problem Formulation                               | 26 |
|     | 3.6.2 | Toxicity Assessment                               | 26 |
|     | 3.6.3 | Exposure Assessment                               | 26 |
|     | 3.6.4 | Risk Characterization                             | 36 |



| 4.0  | EFFE  | ECTS ASSESSMENT FOR WILDLIFE                | 42 |
|------|-------|---------------------------------------------|----|
|      | 4.1   | Conceptual Site Model                       | 42 |
|      | 4.2   | Air Quality                                 | 44 |
|      | 4.3   | Soil Quality                                | 44 |
|      | 4.3.1 | Problem Formulation                         | 44 |
|      | 4.4   | Prey Quality                                | 44 |
|      | 4.5   | Water and Fish Quality                      | 44 |
|      | 4.5.1 | Problem Formulation                         | 44 |
| 5.0  | EFFE  | ECTS ASSESSMENT FOR AQUATIC LIFE            | 46 |
|      | 5.1   | Problem Formulation                         | 46 |
|      | 5.1.1 | Receptors                                   | 46 |
|      | 5.1.2 | Exposure Pathways                           | 46 |
|      | 5.1.3 | Chemicals of Potential Concern              | 47 |
|      | 5.1.4 | Conceptual Site Model                       | 50 |
|      | 5.2   | Exposure Assessment and Toxicity Assessment | 52 |
|      | 5.2.1 | Exposure Assessment                         | 52 |
|      | 5.2.2 | Toxicity Assessment                         | 54 |
|      | 5.3   | Risk Characterization                       | 56 |
|      | 5.3.1 | Fluoride, Iron, Lithium and Strontium       | 56 |
|      | 5.3.2 | Aluminum, Arsenic, and Chromium             | 58 |
| 6.0  | RESII | DUAL IMPACT CLASSIFICATION                  | 59 |
|      | 6.1   | Aluminum                                    | 59 |
|      | 6.2   | Chromium                                    | 59 |
| 7.0  | CUMU  | ULATIVE EFFECTS ASSESSMENT                  | 62 |
| 8.0  | UNCE  | ERTAINTY                                    | 62 |
| 9.0  | MONI  | ITORING AND FOLLOW-UP                       | 64 |
| 10.0 | CLOS  | SURE                                        | 65 |
| 11.0 | REFE  | ERENCES                                     | 66 |



### **TABLES**

| Table 1: Human Health and Ecological Risk Assessment: Approved Project vs Expansion Project  Comparison                      | 1  |
|------------------------------------------------------------------------------------------------------------------------------|----|
| Table 1.1-1: Valued Components and Rationale for Selection – Human Health                                                    | 3  |
| Table 1.1-2: Valued Components – Wildlife                                                                                    | 3  |
| Table 1.1-3: Valued Components and Rationale for Selection – Aquatic Life                                                    | 4  |
| Table 1.3-1: Measurement Indicators and Pathways for the Human Health and Ecological Risk Assessment                         | 4  |
| Table 1.3-2: Phases Modelled for Environmental Quality Predictions                                                           | 6  |
| Table 3.2-1: Human Health Receptor Location Descriptions for Air Quality                                                     | 10 |
| Table 3.2-2: Chemicals of Potential Concern for Air Quality                                                                  | 12 |
| Table 3.2-3: Selected Toxicity Reference Values for Chemicals of Potential Concern Evaluated in the Air Quality Assessment   | 13 |
| Table 3.2-4: Exposure Assumptions for Air Quality                                                                            | 13 |
| Table 3.2-5: Exposure Assessment for Air Quality                                                                             | 14 |
| Table 3.2-6: Risk Characterization for Air Quality                                                                           | 14 |
| Table 3.5-1: Human Health Receptor Location Descriptions for Water Quality                                                   | 16 |
| Table 3.5-2: Chemicals of Potential Concern for Water Quality                                                                | 17 |
| Table 3.5-3: Selected Toxicity Reference Values for Chemicals of Potential Concern Evaluated in the Water Quality Assessment | 19 |
| Table 3.5-4: Exposure Assumptions for Water Quality                                                                          | 19 |
| Table 3.5-5: Exposure Assessment for Water Quality                                                                           | 20 |
| Table 3.5-6: Risk Characterization for Water Quality                                                                         | 23 |
| Table 3.6-1: Site-Specific Water-to-Fish Bioconcentration Factors                                                            | 26 |
| Table 3.6-2: Predicted Fish Tissue Concentrations for the Approved Project                                                   | 26 |
| Table 3.6-3: Predicted Fish Tissue Concentrations for the Expansion Project                                                  | 28 |
| Table 3.6-4: Exposure Assessment for Fish Tissue Quality for Approved Project                                                | 31 |
| Table 3.6-5: Exposure Assessment for Fish Tissue Quality for the Expansion Project                                           | 33 |
| Table 3.6-6: Risk Characterization for Fish Tissue Quality for the Approved Project                                          | 36 |
| Table 3.6-7: Risk Characterization for Fish Tissue Quality for the Expansion Project                                         | 39 |
| Table 4.5-1: Chemicals of Potential Concern for Water Quality for Wildlife Receptors                                         | 45 |
| Table 5.1-1: Chemicals of Potential Concern in Surface Waters during Operations                                              | 48 |



| Table 5.1-2: Chemicals of Potential Concern in Surface Waters during Closure (Approved Project) and Closure - Pit Flooding (Expansion)                  | 49 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 5.1-3: Chemicals of Potential Concern in Surface Waters during Post-Closure Year 1 (Approved Project) and Closure Maintenance (Expansion Project) | 49 |
| Table 5.1-4: Chemicals of Potential Concern in Surface Waters during Long-Term Post-Closure (Approved Project) and Post-Closure (Expansion Project)     | 50 |
| Table 5.2-1: Exposure Concentrations for Surface Water during Operations                                                                                | 52 |
| Table 5.2-2: Exposure Concentrations for Surface Water during Closure (Approved Project) and Closure - Pit Flooding (Expansion Project)                 | 52 |
| Table 5.2-3: Exposure Concentrations for Surface Water during Post-Closure Year 1 (Approved Project) and Closure Maintenance (Expansion Project)        | 53 |
| Table 5.2-4: Exposure Concentrations for Surface Water during Long-Term Post-Closure (Approved Project) and Post-Closure (Expansion Project)            | 53 |
| Table 5.2-5: Toxicity Benchmarks for Chemicals of Potential Concern in Surface Water                                                                    | 56 |
| Table 5.3-1: Hazard Quotients for Surface Water during Operations                                                                                       | 57 |
| Table 3-B-2: Hazard Quotients for Surface Water during Closure (Approved Project) Closure Pit Flooding (Expansion Project)                              | 57 |
| Table 5.3-3: Hazard Quotients for Surface Water during Post-Closure Year 1 (Approved Project) and Closure Maintenance (Expansion Project)               | 58 |
| Table 5.3-4: Hazard Quotients for Surface Water during Long-Term Post-Closure (Approved Project) and Post-Closure (Expansion Project)                   | 58 |
| Table 6.1-1: Residual Impact Assessment for Aquatic Life for Aluminum                                                                                   | 60 |
| Table 6.1-2: Residual Impact Assessment for Aquatic Life for Chromium                                                                                   | 61 |
| Table 8-1: Uncertainties in the Human Health and Ecological Risk Assessment                                                                             | 62 |
| FIGURES                                                                                                                                                 |    |
| Figure 3.1-1: Conceptual Site Model for the Project – Human Health                                                                                      | 9  |
| Figure 3.1-2: Human Health Receptor Locations for Air Quality                                                                                           | 11 |
| Figure 4.1-1: Conceptual Site Model for the Project – Wildlife                                                                                          | 43 |
| Figure 5.1-1: Conceptual Site Model for the Project – Aquatic Life                                                                                      | 51 |



### **APPENDICES**

### Attachment A

Baseline Conditions for Soil and Vegetation

### Annex A-1

Laboratory Certificates of Analyses

### Annex A-2

Results of the Soil and Sediment Program

### **Attachment B**

Screening Tables

### Annex B-1

Air Quality

### Annex B-2

Soil Quality

### Annex B-3

Water Quality

### 1.0 INTRODUCTION

This report was prepared by Golder Associates Ltd. (Golder), on behalf of Agnico Eagle Mines Limited – Meadowbank Division (Agnico Eagle), to summarize the potential risks to human health and the environment as a result of the impacts of the expansion of Whale Tail Pit, development of the IVR Pit, and underground operations (Expansion Project or Project). The Expansion Project is presented in the form of an Addendum to the Whale Tail Pit Project (Approved Project).

This Human Health and Ecological Risk Assessment (HHERA) addresses the requirements of the EIS Guidelines for the Meadowbank Mine (NIRB 2004) in terms of assessing potential risks to human health, wildlife, and aquatic life as a result of changes to environmental quality from the predicted emissions and discharges from the Project. Changes to environmental quality include direct effects to air quality and water quality, and indirect effects to soil quality, vegetation quality, and traditional food quality including fish and wild game, such as caribou.

The HHERA follows the principles of risk assessment frameworks from such agencies as Health Canada (e.g., Health Canada 2012), Canadian Council of Ministers of the Environment (CCME 1996, 1997), and United States Environmental Protection Agency (U.S. EPA 1989).

A summary of the key changes to the assessment of the HHERA for the Expansion Project compared to the FEIS developed for the Approved Project is provided in Table 1.

Table 1: Human Health and Ecological Risk Assessment: Approved Project vs Expansion Project Comparison

| Section of EIS                                      | Approved Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Expansion Project                                                                                                                                                                                                                                                                         |  |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1.1<br>Valued<br>Components                         | <ul> <li>Review of</li> <li>Whale Tail Pit Project IQ Baseline Report (Volume 7, Appendix 7-A, Agnico Eagle 2016a);</li> <li>Meadowbank Mine Baseline Traditional Knowledge Report (Cumberland 2005a);</li> <li>Proposed All-weather Exploration Road from the Meadowbank Mine to the Project Site-Baseline Traditional Knowledge Report (Agnico Eagle 2014a);</li> <li>Community Consultations/Public Information Meeting Summary Reports for 2014 and 2015 (NIRB 2014, 2015).</li> </ul> | <ul> <li>Whale Tail Pit Open House. Naujaat<br/>(Agnico Eagle 2016b)</li> <li>Whale Tail Pit Amendment July 10-13<br/>Community Consultation Notes (Agnico<br/>Eagle 2018a)</li> </ul>                                                                                                    |  |
| 2.0<br>Existing<br>Environment<br>and Baseline      | Baseline data were adopted from other disciplines:  Air Quality  Water Quality                                                                                                                                                                                                                                                                                                                                                                                                             | No new baseline data specifically for the HHERA                                                                                                                                                                                                                                           |  |
| 3.0<br>Effects<br>Assessment<br>for Human<br>Health | Effects to human health included consideration of changes to:      Air Quality     Soil Quality     Country Foods Quality     Water Quality     Fish Tissue Quality                                                                                                                                                                                                                                                                                                                        | No new primary pathways identified New activities such as underground mining, additional open pit, overall water management, have been added to the primary pathways that were assessed in the Approved Project. Results of the effects assessment were updated for the Expansion Project |  |

| Section of EIS                                      | Approved Project                                                                                                                                                 | Expansion Project                                                                                                                                                                                                                                                           |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.0<br>Effects<br>Assessment<br>for Wildlife        | Effects to wildlife health included consideration of changes to:  • Air Quality  • Soil Quality  • Country Foods Quality  • Water Quality  • Fish Tissue Quality | Unchanged                                                                                                                                                                                                                                                                   |
| 5.0<br>Effects<br>Assessment<br>for Aquatic<br>Life | Effects to aquatic health included consideration of changes to Water Quality                                                                                     | No new primary pathways identified<br>Results of the effects assessment were<br>updated for the Expansion Project                                                                                                                                                           |
| 6.0<br>Residual<br>Impact<br>Classification         | Residual impacts were identified for:  • Aquatic Life: Aluminum and chromium                                                                                     | Residual impacts were identified for:  • Human Health: 1-hour NO <sub>2</sub> , arsenic in water quality and fish tissue quality  • Aquatic Life: Aluminum, arsenic and chromium                                                                                            |
| 7.0<br>Cumulative<br>Effects<br>Assessment          | Cumulative effects were addressed under the air quality and water quality disciplines.                                                                           | Unchanged                                                                                                                                                                                                                                                                   |
| 8.0<br>Uncertainty                                  | Uncertainties were quantified for human health, wildlife and aquatic life, resulting in an overall overestimation of potential exposure and risk.                | Unchanged                                                                                                                                                                                                                                                                   |
| 9.0<br>Monitoring<br>and Follow-up                  | No additional requirements for monitoring and follow-up were identified for human health                                                                         | Unchanged Recommendations for monitoring of air quality and water/fish tissue quality (arsenic) under the Atmospheric Environment and Water Quality sections of the EIS were recommended for the Approved Project and continue to be recommended for the Expansion Project. |

## 1.1 Valued Components

In broad terms, changes to environmental quality as predicted by other disciplines were quantitatively evaluated for each of the valued components (VCs) described below for human health (Table 1.1-1), wildlife (Table 1.1-2), and aquatic life (Table 1.1-3).



Table 1.1-1: Valued Components and Rationale for Selection – Human Health

|                   | Valued Component |           | Rationale for Selection                                                                                                                |  |  |
|-------------------|------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                   | Workers          | Inuit     | Inuit may be employed at the mine and reside at the accommodations provided at Whale Tail Pit                                          |  |  |
| Health and Safety |                  | Non-Inuit | Non-Inuit may be employed at the mine and reside at the accommodations provided at Whale Tail Pit                                      |  |  |
|                   | Public           | Inuit     | Inuit are known to reside in Baker Lake and use the lands around Whale Tail Pit for hunting, gathering, and other traditional purposes |  |  |
|                   |                  | Non-Inuit | Non-Inuit are known to reside in Baker Lake and may use the area around Whale Tail Pit for recreational purposes.                      |  |  |

While the health of workers was initially identified as a VC for human health, worker health was not quantitatively evaluated in the human health risk assessment (HHRA). It was considered that worker health and safety would comply with all applicable occupational health and safety requirements. Additionally, potable water will be supplied from Nemo Lake, which is not proposed to undergo Project-related changes to water quality. As a result, only members of the public were retained in the HHRA.

Table 1.1-2: Valued Components - Wildlife

| Valued Component  | Species Identified                                                                                           | Receptor Evaluated in HHERA                   |
|-------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Ungulates         | Barren-ground caribou, muskox                                                                                | Barren-ground caribou                         |
| Predatory Mammals | Grizzly bear, wolverine, Arctic wolf                                                                         | Wolverine                                     |
| Raptors           | Peregrine falcon, gyrfalcon, rough-legged hawk, shorteared owl, snowy owl                                    | Peregrine falcon                              |
| Water Birds       | Common loon, red-throated loon, pacific loon, yellow-billed loon, Canada goose, snow goose, long-tailed duck | Common loon, Canada goose                     |
| Upland Birds      | Lapland longspur, horned lark, savanna sparrow, rock ptarmigan, red-necked phalarope, semipalmated sandpiper | Rock ptarmigan, semipalmated sandpiper        |
| Small Mammals     | Arctic hare, Arctic ground squirrel (Sik Sik), collared lemming, northern red-backed vole                    | Arctic hare, Arctic ground squirrel (Sik Sik) |

Note: Species of concern (national, territorial or Committee on Status of Endangered Wildlife in Canada [COSEWIC] status) are indicated with underlined text.

Receptor characteristics (including established body weights, food ingestion rates, and other key factors) are not available for all of the species identified as VCs. As a result, representative species for which receptor characteristics are available were selected for assessment in the HHERA, and only one receptor was selected to represent each feeding guild.

Table 1.1-3: Valued Components and Rationale for Selection – Aquatic Life

| Valued Component                                                                       | Rationale for Selection                                                                                                                                                                                                                                                     |  |  |  |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Fish (Arctic Char, Arctic<br>Grayling <sup>(a)</sup> , Lake Trout, Round<br>Whitefish) | <ul> <li>Fish are an important food source for the residents of Baker Lake and fishing activities occur year round</li> <li>Fish are a prey item for piscivorous wildlife</li> <li>Several forage and sport fish species were identified in the Project area</li> </ul>     |  |  |  |
| Aquatic Invertebrates                                                                  | Includes planktonic and benthic invertebrates; benthic invertebrates play a vital role in nutrient cycling and the breakdown of detritus in the aquatic environment; important food source for fish; sensitive to contamination; various species identified in Project area |  |  |  |
| Aquatic Plants and Algae                                                               | Important food source for fish; aquatic plants provide habitat to other aquatic organisms; various species identified in the Project area                                                                                                                                   |  |  |  |

(a) The Arctic Grayling is classified as a sensitive species in the Northwest Territories.

### 1.2 Spatial and Temporal Boundaries

The spatial and temporal boundaries as defined by air quality and water quality were adopted for the HHERA (Volume 4, Section 4.1.2.2 and Volume 6, Section 6.1.2.1.2 of the FEIS Addendum; Agnico Eagle 2018b).

### 1.3 Pathway Analysis

The evaluation of Project effects on human health, wildlife and aquatic life considers the changes to measurement indicators and associated pathways (Table 1.3-1).

Table 1.3-1: Measurement Indicators and Pathways for the Human Health and Ecological Risk Assessment

| Measurement<br>Indicator    | Associated Primary Pathway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Changes to Air<br>Quality   | <ul> <li>Fugitive dust sources and deposition of dust (including from blasting during mining) can change water and sediment quality, which may affect the health of terrestrial life, aquatic life, human food and water sources including country foods</li> <li>Air emission of sulphur dioxide, nitrogen oxides, and particulates may change water and sediment quality, which may affect the health of terrestrial life, aquatic life, human food and water sources including country foods</li> <li>Project activities will result in air emissions, which may cause changes in air concentrations and, as a result, soil concentrations, which may affect the health of terrestrial life</li> <li>Project vehicles along the haul road will result in air emissions, which may cause changes in air concentrations and as a result, soil concentrations which may affect the health of terrestrial life</li> <li>Fuel combustion will result in air emissions, which may contribute to territorial and national greenhouse gas emissions, which may directly affect human health</li> <li>Changes in air concentrations may also result in alterations to soil concentrations, which may affect human food and water sources including country foods</li> </ul> |
| Changes to<br>Water Quality | <ul> <li>Project footprint, which will physically alter watershed areas and drainage patterns, rates, and quantities of diverted non-contact water to new watersheds, may change downstream flows, water levels, channel/bank stability in streams and may affect water and sediment quality, which may affect the health of terrestrial life, aquatic life, human food and water sources including country foods</li> <li>Dewatering of lakes may change flows, water levels, channel/bank stability, and water quality (e.g., suspended sediments, nutrients, metals) in receiving and downstream waterbodies, which may affect the health of terrestrial, aquatic life, human food and water sources including country foods</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Measurement<br>Indicator | Associated Primary Pathway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                          | <ul> <li>Release of mine wastewater (including sewage) may cause changes to surface water quality and sediment quality (i.e., nutrient and metal concentrations), which may affect the health of terrestrial, aquatic life, human food and water sources including country foods</li> <li>Water quality in flooded pits may be higher than objectives and reconnection of drainages may affect downstream water and sediment quality, which may affect the health of terrestrial, aquatic life, human food and water sources including country foods</li> </ul> |  |  |  |
| Changes to Noise         | <ul> <li>Sensory disturbance (i.e., noise) can directly affect human health</li> <li>Sensory disturbance (i.e., noise) can indirectly affect human health by affecting migration patterns of wildlife populations (e.g., caribou) and subsequently human food sources including country foods</li> </ul>                                                                                                                                                                                                                                                        |  |  |  |

Previous risk assessments have been completed at the Meadowbank Mine in 2006 and 2014 (Wilson Scientific Consulting Inc. 2006; Azimuth 2006; Agnico Eagle 2012, 2015a, b), which have assessed the potential risks to human health and wildlife as a result of changes to soil quality (metals) due to dust deposition from the ongoing Meadowbank operations and have been considered herein, where applicable.

As indicated in Volume 7, Section 7.3 of the Approved Project (Agnico Eagle 2016c), the FEIS for the Meadowbank Mine (Cumberland 2005) predicted that the construction of the mine would result in temporary nuisance effects on people's quality of life, as related to dust, noise, changes in air quality and visual disturbances. This prediction was related to construction of infrastructure at the mine (e.g., fuel tank farm, lay down and warehouse facilities, transportation of infrastructure construction equipment) and the road, and was considered to be of low significance given mitigation and the duration of effects. The Approved and Expansion Project will use existing infrastructure at the Meadowbank Mine, and on-site construction activities of the Expansion Project are expected to be similar or less than those generated for the Meadowbank Mine. Additionally, as indicated in Volume 4, Section 4.4.3 of the FEIS Addendum (Agnico Eagle 2018b, noise levels will either decay to ambient noise levels or be compliant with AER Directive 038 Criteria at the local study area boundary during construction and operations, with the exception of blasting, which will comply with NPC-119. While members of the public may potentially pass through the Project area on-route to traditional or cultural sites or access other important traditional areas, the public is expected to be primarily outside the local study area (LSA), with limited exposure to noise over ambient levels or the AER Directive 038 Criteria. Based on the wildlife assessment (Volume 5, Section 5.5.4.1; Agnico Eagle 2018b) noise impacts will have a moderate effect on wildlife over the medium-term but are reversible at closure. Based on the results of the noise assessment and wildlife assessment, noise was considered a secondary pathway in the HHERA for both human health and wildlife and was not assessed further.

To complete the effects assessment for the measurement indicators identified above, the following environmental media were assessed with respect to potential changes to environmental quality that may have an effect on human health, wildlife and aquatic life:

- air quality, which was predicted for receptor locations in the LSA by the air quality discipline;
- soil quality, which was calculated based upon predicted deposition rates;
- country food quality, which was calculated based upon changes to soil (and vegetation) quality;
- water quality, which was predicted for waterbodies in the LSA by the water quality discipline; and



fish tissue quality, which was calculated based upon changes to water quality.

Although changes to sediment quality were identified in the pathways analysis table above (Table 1.3-1), sediment quality was not assessed in the HHERA as changes to sediment quality were assessed qualitatively and no significant changes were identified (Volume 6, Section 6.2; Agnico Eagle 2018b).

Predicted changes to environmental media were assessed (modeled) by other disciplines for one or more phases of the Project as appropriate (Table 1.3-2).

Table 1.3-2: Phases Modelled for Environmental Quality Predictions

| Environmental Medium                 | Project Phases |            |                                     |              |
|--------------------------------------|----------------|------------|-------------------------------------|--------------|
|                                      | Construction   | Operations | Closure (pit flooding, maintenance) | Post-Closure |
| Air quality                          | 0              | •          | _                                   | 0            |
| Soil quality <sup>(a)</sup>          | 0              | •          | _                                   | 0            |
| Country foods quality <sup>(a)</sup> | 0              | •          | _                                   | 0            |
| Water quality <sup>(b)</sup>         | 0              | •          | •                                   | •            |
| Fish quality <sup>(c)</sup>          | 0              | •          | •                                   | •            |

<sup>(</sup>a) Potential changes to soil quality and country foods quality were calculated in the HHERA using predicted concentrations of metals in dustfall modelled by air quality.

Mitigation measures were incorporated into the predictive modelling for changes to air quality and surface water quality. The mitigation measures are described in detail in the relevant sections of the FEIS Addendum. No additional mitigation measures were considered in the HHERA.

## 1.4 Incorporation of Inuit Qaujimajatuqangit Feedback

Additional IQ and concerns related to human health or ecological risk were provided by community members since the FEIS submission was made in 2016 for the Approved Project. This assessment considers review of community consultation notes from Agnico Eagle (2018a, 2018c), NIRB and NWB (2017), and NIRB (2017).

The following comments and concerns have been raised by community members related to potential contamination of food sources, drinking water and effects on human health:

- The potential contamination of food sources that Chesterfield Inlet residents rely on (e.g., whales and seals) because of an oil spill in the marine environment (Agnico Eagle 2017, 2018a).
- The potential human health effects associated with road dust (NIRB and NWB 2017).
- The potential contamination of caribou meat because of the effects of mine operations, dust and dust suppressants on caribou habitat and their food sources, which may affect human health (NIRB and NWB 2017, NIRB 2017); specifically concerns were raised about gastrointestinal issues experienced by community members every year in the spring which is believed to potentially be linked to caribou ingesting chemicals used



<sup>(</sup>b) Potential changes to water quality varied from water body to water body; therefore, each water body was assessed individually in the effects assessment.

<sup>(</sup>c) Potential changes to fish tissue quality were calculated in the HHERA using predicted changes to water quality.

<sup>— =</sup> Phase not considered; ○ = Phase considered, but not assessed; • = Phase assessed.

in dust suppressants (Agnico Eagle 2018c). It was requested that studies are conducted to determine the effects of mining activities on caribou health (NIRB and NWB 2017; NIRB 2017).

The safety of drinking water taken from lakes near the camps used during operations (NIRB and NWB 2017) and at closure, specifically confidence in the water quality in the pits, including after the dike is breached (NIRB 2017).

Potential contamination of food sources, such as whales and seals, due to an oil spill in the marine environment is addressed in the Marine Environment Environmental Summary (Appendix 3-A; Agnico Eagle 2018b). Table 3.A-3 indicates that the Shipping Management Plan, Spill Contingency Plan and Emergency Response Plan Volume 8, Appendix 8-D.5 of the Approved Project FEIS outlines measures for spill prevention and response, pollution prevention, and personnel training and competence. The Approved Project also stated that all vessels will have a Shipboard Oil Pollution Emergency Plan (SOPEP) or a Shipboard Marine Pollution Emergency Plan in accordance with MARPOL 73/78, Annex I, IMO Res. MEPC. 78(43) and that each ship has an Emergency Response Team consisting of competent and trained personnel responsible to deal with emergency situations including fire, explosions, and oil spills Therefore, no further assessment within the HHERA was required.

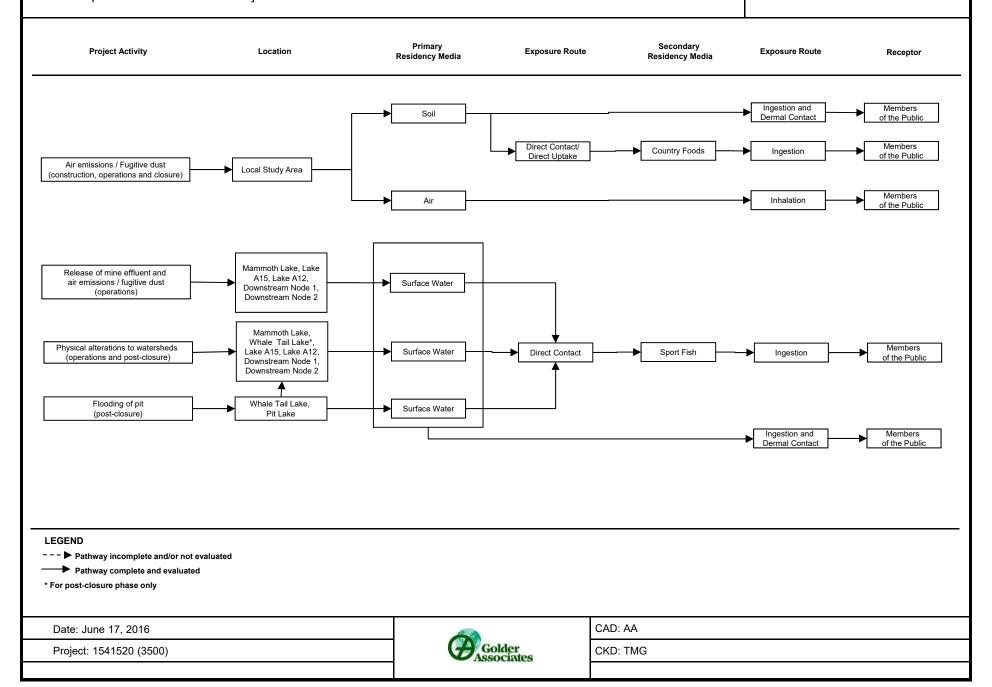
Regarding the potential for human health effects related to road dust and drinking water, these two concerns are evaluated within the HHERA.

Regarding the potential effects to caribou meat due to the use of dust suppressants, this issue was addressed in the Atmospheric Environment FEIS Addendum (Volume 4; Agnico Eagle 2018b). Section 4.3.1.4 Mitigation and Monitoring (Agnico Eagle 2018b) indicated that dust suppressants are being applied in key areas that were identified by community members. Additionally, in Section 4.3.7.1 Dust Mitigation (Agnico Eagle 2018b), it is stated that the use of chemical dust suppressants was initially considered but is not being recommended for the Project. While the human health and ecological effects of these dust suppressants are predicted to be low, they are not native to the Kivalliq region and their long-term effects on Arctic ecosystems has not been evaluated. Chemical suppressants can run off mine and road surfaces during spring melt and during precipitation events with the potential to affect soil or water quality. Therefore, no further assessment within the HHERA was required.

### 2.0 EXISTING ENVIRONMENT AND BASELINE

The existing environment and baseline conditions, relevant to the HHERA were summarized by other disciplines in the Volumes 4 through 6 of the FEIS Addendum (Agnico Eagle 2018b), with the exception of soil and vegetation quality beyond the Project footprint, provided in Attachment A.

### 3.0 EFFECTS ASSESSMENT FOR HUMAN HEALTH


### 3.1 Conceptual Site Model

A conceptual site model (CSM; Figure 3.1-1) was developed for human health based upon the primary pathways identified above (Table 1.3-1). The exposure pathways between Project activities, intermediate residency media (i.e., the aspects of the environment that that may experience a change in quality due to Project activities/emissions), and receptors are shown to be either complete or incomplete. Where pathways are incomplete, quantitative assessment was not carried out given that environmental quality was not anticipated to change as a result of the Project. Complete pathways on the figure indicate that a change to environmental quality was predicted and a quantitative assessment of the potential effects to human health was carried out. A brief summary of the complete exposure pathways are provided below for Inuit and non-Inuit members of the public:

- inhalation of air;
- incidental ingestion and dermal contact with soil;
- ingestion and dermal contact with surface water; and
- consumption of country foods (e.g., caribou, fish).

It is noted that lake water would not be used by the camps during operations and at closure as a drinking water source unless it was treated prior to consumption. The assessment carried out in the HHERA considers that lake water could be consumed without prior treatment by members of the public throughout the life of the Project, and considers that untreated water from the flooded pits could be used by members of the public in the post-closure phases.





### 3.2 Air Quality

### 3.2.1 Problem Formulation

Problem formulation consists of identification of receptors, pathways, and chemicals of potential concern (COPCs).

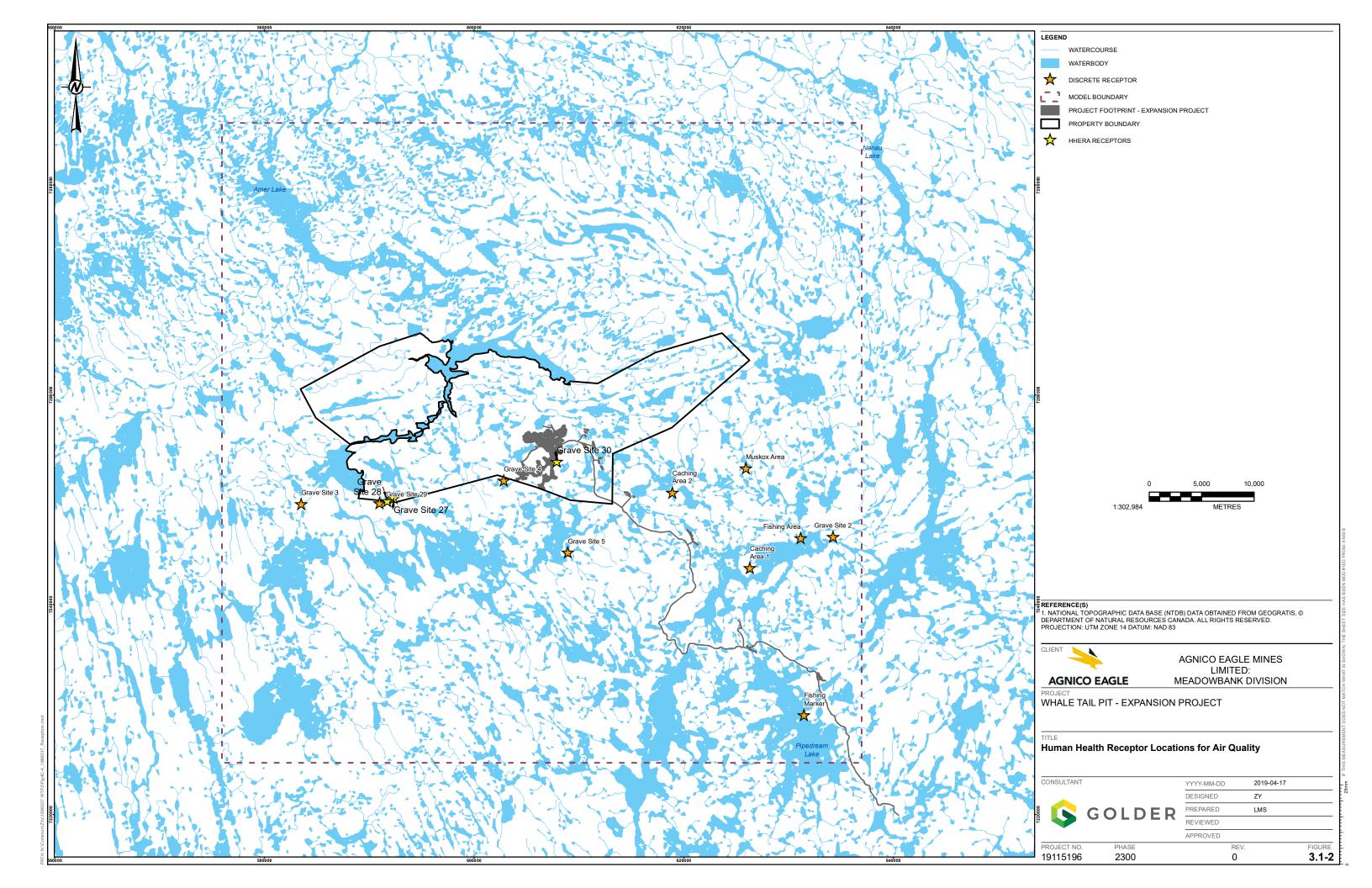

Effects on human health were evaluated based on the traditional use of the area. Locations that were identified as part of the IQ Baseline Study (Agnico Eagle 2014) were identified as human receptor locations for the purposes of predicting changes to air quality. No additional human receptor locations were identified in community consultation notes from Agnico Eagle (2018a,c), NIRB and NWB (2017), and NIRB (2017). Sixteen receptor locations were identified (Table 3.2-1; Figure 3.1-2). Please note that several of these locations are within the Project boundary (marked with an asterisk [\*] in Table 3.2-1), and therefore there would be no access to these locations by members of the public during the construction, operations, and closure phases of the Project.

Table 3.2-1: Human Health Receptor Location Descriptions for Air Quality

| Receptor Name  | Description                                                                                                                                             |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Grave Site 2   | Grave site near Nutipilik Lake, southeast of Whale Tail Pit                                                                                             |
| Grave Site 3   | Grave site west of Whale Tail Pit                                                                                                                       |
| Grave Site 4   | Grave site west of Whale Tail Pit                                                                                                                       |
| Grave Site 5   | Grave site south of Whale Tail Pit                                                                                                                      |
| Grave Site 27* | Grave site west of Whale Tail Pit                                                                                                                       |
| Grave Site 28* | Grave site west of Whale Tail Pit                                                                                                                       |
| Grave Site 29* | Grave site west of Whale Tail Pit                                                                                                                       |
| Grave Site 30* | Grave site within secondary disturbance area of Whale Tail Pit                                                                                          |
| Fishing Marker | Fishing area on Pipedream Lake, southeast of Whale Tail Pit, near proposed haul road to Meadowbank Mine                                                 |
| Muskox         | Muskox hunting area, east of Whale Tail Pit                                                                                                             |
| Muskox 2*      | Muskox hunting area, south of Whale Tail Pit                                                                                                            |
| To Iglu*       | Location along winter travel route to Iglujaalik (Garry Lake), Chantrey Inlet, Gjoa Haven, Hanninajuaq (Middle Back River), northeast of Whale Tail Pit |
| Fishing Area   | Fishing area on Nutipilik Lake, identified camping area, southeast of Whale Tail Pit                                                                    |
| Caching Area   | Caching area near Nutipilik Lake, southeast of Whale Tail Pit                                                                                           |
| Track*         | Tracking area (foxes and wolves), east of Whale Tail Pit                                                                                                |
| Caching        | Caching area near Tahinajuk Lake, east of Whale Tail Pit                                                                                                |

Note: The receptor locations marked with an asterisk (\*) indicate locations that are within of the Project boundary and therefore there is no access for members of the public during the construction, operations, and closure phases of the Project. Therefore, all other locations are locations that can be accessed by members of the public during all phases of the Project.





Predicted concentrations for chemicals in air (i.e., criteria air contaminants and metals) were compared to the health-based thresholds for the relevant averaging period (i.e., 1-hour, 24-hour and annual) from Government of Nunavut Department of Environment (NDOE 2011). If a threshold was not available from NDOE, the most conservative (i.e., protective) of the available health-based thresholds was selected from the following agencies:

- CCME (CCME 1999a);
- Ontario Ministry of the Environment, Conservation and Parks (MECP 2018);
- Agency for Toxic Substances and Disease Registry (ATSDR 2018);
- California Environmental Protection Agency (CalEPA 2016);
- World Health Organization (WHO 2000, 2005); and
- Texas Commission on Environmental Quality (TCEQ 2018).

Additionally, comparison to baseline concentrations (where available) plus 10% was completed. If predicted concentrations for chemicals in air were greater than the available health-based thresholds and baseline concentrations plus 10% (where available), the chemical was identified as a COPC (Attachment 3-B-1).

Based upon the screening process outlined above, the following COPCs (Table 3.2-2) were identified:

Table 3.2-2: Chemicals of Potential Concern for Air Quality

| Averaging Period | Chemical          | Location      | Approved Project –<br>Maximum Concentration<br>plus Background (µg/m³) | Expansion Project –<br>Maximum Concentration<br>plus Background (µg/m³) |
|------------------|-------------------|---------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 1-hour           | NO <sub>2</sub>   | Grave Site 30 |                                                                        | 452                                                                     |
| 24-hour          | Arsenic           | Grave Site 30 | 0.0175                                                                 | 0.0193                                                                  |
| 24-hour          | Iron              | Grave Site 4  | 5.68                                                                   | 5.26                                                                    |
| 24-hour          | Iron              | Grave Site 30 | 12.0                                                                   | 13.2                                                                    |
| 24-hour          | Iron              | Muskox 2      | 4.63                                                                   | 4.46                                                                    |
| 24-hour          | Manganese         | Grave Site 30 | 0.124                                                                  | 0.137                                                                   |
| Annual           | PM <sub>2.5</sub> | Grave Site 30 | 8.87                                                                   | 10.3                                                                    |

 $\mu g/m^3$  = micrograms per cubic metre; -- = an exceedance was not identified for the Approved Project.

All locations shown in Table 3.2-2 are within the Project footprint. It is noted that  $NO_2$  was not identified as a COPC for the Approved Project given that its predicted concentration plus background was 177  $\mu$ g/m³, which was less than its health-based threshold of 400  $\mu$ g/m³. No locations outside the Project footprint exceeded their respective air quality screening values.

### 3.2.2 Toxicity Assessment

The toxicity assessment involves the determination of the dose to which a receptor can be exposed without experiencing adverse health effects (i.e., dose-response analysis); this dose is called the toxicity reference value



(TRV). Toxicity reference values for the inhalation pathway (i.e., reference concentrations or RfCs) were compiled from the following agencies:

- Ontario Ministry of the Environment, Conservation and Parks (MECP 2018);
- Health Canada (Health Canada 2012);
- United States Environmental Protection Agency's (U.S. EPA's) Integrated Risk Information System (IRIS) (U.S. EPA 2018a);
- CalEPA (CalEPA 2016);
- ATSDR (ATSDR 2018);
- WHO (WHO 2000, 2005); and
- Netherlands National Institute of Public Health and the Environment (RIVM 2001).

The most protective of the available RfCs were selected for use in the assessment (Table 3.2-3).

Table 3.2-3: Selected Toxicity Reference Values for Chemicals of Potential Concern Evaluated in the Air Quality
Assessment

| СОРС      | Selected RfC (mg/m³) | Endpoint                                           | Source         |
|-----------|----------------------|----------------------------------------------------|----------------|
| Arsenic   | 0.00003              | Neurobehavioural development in children           | CalEPA 2016    |
| Iron      | 0.004                | Health                                             | MECP 2018      |
| Manganese | 0.00005              | Impairment of neurobehavioural function in workers | U.S. EPA 2018a |

COPC = chemical of potential concern; RfC = reference concentration; mg/m³ = milligrams per cubic metre.

There are no TRVs for PM<sub>2.5</sub> or NO<sub>2</sub>, therefore the selected annual screening threshold (8.8  $\mu$ g/m³) and 1-hour screening threshold (400  $\mu$ g/m³), respectively, were adopted as the TRVs for the assessment of the predicted concentrations.

### 3.2.3 Exposure Assessment

Exposure assessment was completed considering the predicted 24-hour and annual concentrations and the amount of time members of the public could spend at the receptor locations with identified COPCs (Table 3.2-4). No further adjustment for exposure was made for the assessment of predicted 1-hour concentrations.

Table 3.2-4: Exposure Assumptions for Air Quality

| Exposure Parameter | Grave Sites 4 and 30                                                                                                              | Muskox 2                                                     |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Exposure time      | 1.5 hours per day                                                                                                                 | 24 hours per day                                             |
| Exposure frequency | 10 days per year                                                                                                                  | 14 days per year                                             |
| Rationale          | Assumed people stop to visit a grave site each time they pass through the area, assuming five round-trips to Back River each year | Assumed a two-week hunting trip or up to seven weekend trips |



Considering the assumptions described above (Table 3.2-4) and the approach to calculating inhalation exposure described by Health Canada (2010), exposure doses were calculated for each location and COPC (Table 3.2-5).

Table 3.2-5: Exposure Assessment for Air Quality

| Averaging Period | Chemical          | Location      | Approved Project –<br>Exposure Dose<br>(µg/m³) | Expansion Project –<br>Exposure Dose<br>(µg/m³) |
|------------------|-------------------|---------------|------------------------------------------------|-------------------------------------------------|
| 1-hour           | NO <sub>2</sub>   | Grave Site 30 |                                                | 4.5E+02                                         |
| 24-hour          | Arsenic           | Grave Site 30 | 3.0E-07                                        | 3.3E-08                                         |
| 24-hour          | Iron              | Grave Site 4  | 9.7E-06                                        | 9.0E-06                                         |
| 24-hour          | Iron              | Grave Site 30 | 2.1E-05                                        | 2.3E-05                                         |
| 24-hour          | Iron              | Muskox 2      | 1.8E-04                                        | 1.7E-04                                         |
| 24-hour          | Manganese         | Grave Site 30 | 2.1E-07                                        | 2.4E-07                                         |
| Annual           | PM <sub>2.5</sub> | Grave Site 30 | 1.5E-05                                        | 1.8E-05                                         |

 $\mu$ g/m³ = micrograms per cubic metre; -- = not identified as a COPC for the Approved Project.

#### 3.2.4 Risk Characterization

Using the approach described by Health Canada (2010) to calculate hazard quotients (HQs) for air contaminants and using a target HQ of 0.2 (a target HQ of 1 is used for the 1-hour averaging period), HQs were calculated for each location and COPC (Table 3.2-6).

Table 3.2-6: Risk Characterization for Air Quality

| Averaging Period | COPC              | Location      | Approved Project –<br>Hazard Quotient | Expansion Project –<br>Hazard Quotient |
|------------------|-------------------|---------------|---------------------------------------|----------------------------------------|
| 1-hour           | NO <sub>2</sub>   | Grave Site 30 |                                       | 1.1                                    |
| 24-hour          | Arsenic           | Grave Site 30 | 0.001                                 | 0.001                                  |
| 24-hour          | Iron              | Grave Site 4  | 0.002                                 | 0.002                                  |
| 24-hour          | Iron              | Grave Site 30 | 0.005                                 | 0.006                                  |
| 24-hour          | Iron              | Muskox 2      | 0.04                                  | 0.04                                   |
| 24-hour          | Manganese         | Grave Site 30 | 0.004                                 | 0.005                                  |
| Annual           | PM <sub>2.5</sub> | Grave Site 30 | 0.002                                 | 0.002                                  |

Shaded and bold text = hazard quotient > 1; COPC = chemical of potential concern; -- = not identified as a COPC for the Approved Project.

All HQs for the 24-hour and annual averaging periods were less than the target HQ of 0.2; therefore, health risks due to members of the public are considered to be negligible for these COPCs. However, at Grave Site 30, the predicted 1-hour maximum concentration of NO<sub>2</sub> resulted in an HQ of 1.1, which is slightly greater than its target HQ of 1. However, given that this location is within the Project boundary and access to members of the public would be restricted, NO<sub>2</sub> was not retained as for further evaluation in the residual effects classification given that exposure to members of the public is not expected to occur.



### 3.3 Soil Quality

#### 3.3.1 Problem Formulation

Changes to soil quality as a result of the Approved and Expansion Project were predicted using wet and dry particulate deposition rates for the non-volatile parameters (i.e., metals) predicted to be present in emissions. In brief, particulate deposition rates were predicted as part of the air quality modeling and methods described in the Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities (U.S. EPA 2005a) were used to predict incremental changes to soil quality. The incremental changes to soil quality were then added to the measured baseline soil quality data as described in Section 2.0 to predict the changes to soil quality as a result of the Approved and Expansion Project.

Predicted concentrations of chemicals in soil were screened against the CCME Canadian Soil Quality Guidelines for the Protection of Environment and Human Health (CCME 1999b) for residential land use and the U.S. EPA Regional Screening Levels (U.S. EPA 2018b) for residential soils. If predicted concentrations for chemicals in soil were greater than the screening values and maximum baseline concentrations plus 10%, the chemical was identified as a COPC.

All concentrations in soil met their respective screening values and/or baseline plus 10% (Attachment 3-B-2) with the exception of sodium for the Expansion Project, which was greater than its baseline concentration +10% (no screening values are available for sodium). Sodium is naturally occurring and is present in the earth's crust at a concentration of 2.83% by weight (HSDB 2007); as a result, sodium was not retained as a COPC and therefore no COPCs were retained in soil and no residual impacts due to changes to soil quality were identified.

Previous risk assessments completed at the Meadowbank Mine in 2006 and 2014 (Wilson Scientific Consulting Inc. 2006; Azimuth Consulting Group Inc. 2006; Agnico Eagle 2012; Agnico Eagle 2015a; Agnico Eagle 2015b) concluded that no significant changes to soil quality, and subsequent changes to vegetation and country food quality, would be expected due to the atmospheric emissions from the Meadowbank Mine (i.e., risks would be negligible). Therefore, given that Project emissions are expected to be lower than those from the Meadowbank Mine, potential changes to soil quality (and vegetation and country food quality) and risks to human health and wildlife would be similarly negligible. These conclusions support the effects assessments for human health with respect to atmospheric pathways to soils and country foods.

### 3.4 Country Foods Quality

Given that no COPCs were identified in soil (Section 3.3), concentrations of chemicals in country foods (i.e., plants and animals consumed by people) were not anticipated to change in country foods. As a result, country foods were not assessed further with respect to potential human health effects and no residual impacts due to changes to country food quality were identified.

# 3.5 Water Quality

#### 3.5.1 Problem Formulation

Effects on human health were evaluated based on the traditional use of the area and the waterbodies expected to be affected by discharges from the Approved Project including the two alternatives assessed in the Expansion Project. Locations that were identified by the water quality effects assessment (Volume 6, Section 6.2; Agnico Eagle 2018b) were assessed in the HHERA, with the exceptions of the Whale Tail Waste Rock Storage Facility and Whale



Tail Attenuation Pond, which were not considered to be aquatic habitat nor used by people for traditional or non-traditional purposes. Seven receiving waterbodies were identified (Table 3.5-1.

Table 3.5-1: Human Health Receptor Location Descriptions for Water Quality

| Receptor Name                 | Description                                                                                                  | Project Phase(s)                                                 |
|-------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Mammoth Lake                  | Lake located downstream from Whale Tail Lake                                                                 | Operations, Closure (pit flooding, maintenance) and Post-Closure |
| Lake A15                      | Lake located downstream from Mammoth Lake                                                                    | Operations, Closure (pit flooding, maintenance) and Post-Closure |
| Lake A12                      | Lake located downstream from Lake A15                                                                        | Operations, Closure (pit flooding, maintenance) and Post-Closure |
| Lake A76                      | Lake located downstream from Lake A12                                                                        | Operations, Closure (pit flooding, maintenance) and Post-Closure |
| Downstream Node 1             | Stream located at the end of downstream path 1 (west and north direction)                                    | Operations, Post-Closure                                         |
| Downstream Node 2             | Stream located at the end of downstream path 2 (east and north direction)                                    | Operations, Post-Closure                                         |
| Whale Tail Lake (North Basin) | Northern portion of Whale Tail Lake (Approved Project only)                                                  | Post-Closure                                                     |
| Whale Tail Lake (South Basin) | Southern portion of Whale Tail Lake (Expansion Project only)                                                 | Post-Closure                                                     |
| Flooded Pit                   | The open pit that will be allowed to flood once the mine is closed                                           | Closure                                                          |
| IVR Pit                       | Secondary pit that will be allowed to flood once the mine is closed                                          | Closure                                                          |
| Lake D1 or D5                 | Mitigation option being considered is discharge of treated effluent to Lake D1 or Lake D5 in the D watershed |                                                                  |

Predicted total concentrations for chemicals in water (i.e., metals) were compared to relevant health-based guidelines to identify COPCs. This initial screening step was reported in Volume 6, Section 6.4, and included comparison to the Canadian Drinking Water Quality Guidelines from Health Canada (Health Canada 2014), as well as the CCME Canadian Water Quality Guidelines for the Protection of Aquatic Life (CCME 1999b) for the purposes of assessing potential effects to aquatic life (Section 5.0). Additionally, comparison to maximum baseline concentrations (where available) plus 10% was completed as part of the screening step (Attachment 3-B-3). If predicted concentrations for chemicals in water were greater than screening values and baseline concentrations plus 10%, the chemical was identified as a COPC.

Predictions were provided for several water quality parameters (e.g., acidity), nutrients (e.g., total ammonia, phosphorus), and inorganics (e.g., calcium) for which health-based guidelines are not available nor have been developed. These parameters and substances are not considered to be directly toxic to human health and were therefore not considered in the water quality screening.



Some parameters did not have screening values; if predicted concentrations were within 10% of maximum baseline concentrations, these parameters were not retained for further assessment. Otherwise, if the parameter could be associated with health effects or it is uncertain, a second tier of screening was completed as part of the HHERA. For substances without guidelines, the U.S. EPA Regional Screening Levels for tap water adjusted to a target HQ of 0.2 were used for comparison purposes (U.S. EPA 2018b).

Based upon the screening process outlined above, the following COPCs are identified in Table 3.5-2. Note that the concentrations for closure (maintenance) is equivalent to post-closure (Year 1) for the Approved Project, and that post-closure is equivalent to long-term for the Approved Project.

Table 3.5-2: Chemicals of Potential Concern for Water Quality

| Chemical | Location(s)     | Project Phase(s)       | Approved Project –<br>Concentration (µg/L) | Expansion Project –<br>Concentration (µg/L) | Guideline<br>(µg/L) |
|----------|-----------------|------------------------|--------------------------------------------|---------------------------------------------|---------------------|
| Arsenic  | Mammoth Lake    | Operations             | 18                                         | 19                                          | 10 (MAC)            |
|          |                 | Closure (pit flooding) | 20                                         | 17                                          |                     |
|          |                 | Closure (maintenance)  |                                            | 25                                          |                     |
|          |                 | Post-Closure           |                                            | 21                                          |                     |
|          | Lake A15        | Operations             | 16                                         | 14                                          |                     |
|          |                 | Closure (pit flooding) | 17                                         | 13                                          |                     |
|          |                 | Closure (maintenance)  |                                            | 21                                          |                     |
|          |                 | Post-Closure           |                                            | 18                                          |                     |
|          | Lake A12        | Operations             | 15                                         | 13                                          |                     |
|          |                 | Closure (pit flooding) | 15                                         | 12                                          |                     |
|          |                 | Closure (maintenance)  |                                            | 20                                          |                     |
|          |                 | Post-Closure           |                                            | 17                                          |                     |
|          | Lake A76        | Closure (maintenance)  |                                            | 17                                          |                     |
|          |                 | Post-Closure           |                                            | 16                                          |                     |
|          | DS Node 2       | Closure (maintenance)  |                                            | 11                                          |                     |
|          |                 | Post-Closure           |                                            | 11                                          |                     |
|          | Whale Tail Lake | Operations             |                                            | 26                                          |                     |
|          | South Basin     | Closure (pit flooding) |                                            | 26                                          |                     |
|          | Whale Tail Pit  | Closure (maintenance)  |                                            | 30                                          |                     |
|          |                 | Post-Closure           |                                            | 22                                          |                     |
|          | IVR Pit         | Closure (maintenance)  |                                            | 13                                          |                     |
|          |                 | Post-Closure           |                                            | 12                                          |                     |



| Chemical  | Location(s)     | Project Phase(s)       | Approved Project –<br>Concentration (µg/L) | Expansion Project –<br>Concentration (µg/L) | Guideline<br>(µg/L) |
|-----------|-----------------|------------------------|--------------------------------------------|---------------------------------------------|---------------------|
| Manganese | Mammoth Lake    | Operations             | 74                                         | 132                                         | 50 (AO)             |
|           |                 | Closure (pit flooding) | 121                                        | 85                                          |                     |
|           |                 | Closure (maintenance)  |                                            | 89                                          |                     |
|           |                 | Post-Closure           |                                            | 70                                          |                     |
|           | Lake A15        | Operations             | 65                                         | 101                                         |                     |
|           |                 | Closure (pit flooding) | 96                                         | 67                                          |                     |
|           |                 | Closure (maintenance)  | 53                                         | 76                                          |                     |
|           |                 | Post-Closure           |                                            | 60                                          |                     |
|           | Lake A12        | Operations             | 61                                         | 89                                          |                     |
|           |                 | Closure (pit flooding) | 85                                         | 63                                          |                     |
|           |                 | Closure (maintenance)  | 54                                         | 74                                          |                     |
|           |                 | Post-Closure           |                                            | 58                                          |                     |
|           | Lake A76        | Operations             |                                            | 58                                          |                     |
|           |                 | Closure (maintenance)  |                                            | 62                                          |                     |
|           |                 | Post-Closure           |                                            | 53                                          |                     |
|           | Whale Tail Lake | Operations             |                                            | 131                                         |                     |
|           | South Basin     | Closure (pit flooding) |                                            | 131                                         |                     |
|           | Whale Tail Pit  | Closure (maintenance)  | 51                                         | 109                                         |                     |
|           |                 | Post-Closure           | 51                                         | 74                                          |                     |

μg/L = microgram per litre; AO = Aesthetic Objective (Health Canada 2017); MAC = Maximum Acceptable Concentration (Health Canada 2017); -- = not identified as a COPC for the Approved Project.

Although the concentration of aluminum was greater than its Health Canada drinking water quality guideline for the Approved Project, it did not exceed its screening value for the Expansion Project. Additionally, the value for aluminum is based upon an operational guideline for water treatment. However, a health-based guideline of  $4,000 \, \mu g/L$  is available from the U.S. EPA (2018b). As a result, aluminum was not retained as a COPC for the human health effects assessment.

No guidelines are available for bismuth, but concentrations of this substance greater than baseline + 10% were predicted for all waterbodies with the exception of Mammoth Lake for the operations, closure, and post-closure phases of the Project. Bismuth is most commonly used an ingredient in over-the-counter preparations for gastrointestinal distress (e.g., Pepto-Bismol®). A probable lethal dose of between 0.5 and 5 grams per kilogram body weight has been identified (Gosselin et al. 1976; as summarized in HSDB 2002). Bismuth was identified at a maximum concentration of 0.033 µg/L. At this concentration, assuming an adult consumes 1.5 L/day (Health



Canada 2010), the total daily dose would be 1E-09 grams per kilogram body weight, which is orders of magnitude less than the probable lethal dose. Therefore, bismuth was not considered further as a COPC.

### 3.5.2 Toxicity Assessment

Toxicity reference values (termed reference doses or RfDs for non-carcinogenic substances and slope factors or SFs for carcinogenic substances) were compiled from the following agencies:

- Health Canada (Health Canada 2012);
- U.S. EPA's IRIS (U.S. EPA 2018a);
- CalEPA (CalEPA 2016);
- Agency for Toxic Substances and Disease Registry (ATSDR 2018); and
- Netherlands National Institute of Public Health and the Environment (RIVM 2001; 2009).

The most protective of the available TRVs were selected for use in the assessment (Table 3.5-3).

Table 3.5-3: Selected Toxicity Reference Values for Chemicals of Potential Concern Evaluated in the Water Quality
Assessment

| СОРС      | Selected TRV                                           | Endpoint                              | Source                               |
|-----------|--------------------------------------------------------|---------------------------------------|--------------------------------------|
| Arsenic   | RfD: 0.0003 mg/kg-d<br>SF: 1.8 (mg/kg-d) <sup>-1</sup> | RfD: Skin lesions<br>RfD: Skin cancer | U.S. EPA 2018a<br>Health Canada 2012 |
| Manganese | RfD (adult): 0.156 mg/kg-d                             | Parkinsonian-like neurotoxicity       | Health Canada 2012                   |

COPC = chemical of potential concern; mg/kg-d = milligram per kilogram body weight per day; (mg/kg-d)<sup>-1</sup> = cancer incidence per milligram per kilogram body weight per day; RfD = oral reference dose; SF = oral slope factor; TRV = toxicity reference value.

### 3.5.3 Exposure Assessment

The exposure assessment was completed considering the amount of time members of the public could rely on surface water as a potable water source at the locations with identified COPCs (Table 3.5-4).

Table 3.5-4: Exposure Assumptions for Water Quality

| Exposure Parameter     | Potable Water Scenario                                                                                                                                                                                                                                                                             | Rationale/Source                                                                                                                                                                                                                                                       |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water consumption rate | 1.5 litres per day                                                                                                                                                                                                                                                                                 | Health Canada 2010                                                                                                                                                                                                                                                     |
| Exposure frequency     | 14 days per year                                                                                                                                                                                                                                                                                   | Assume a two-week hunting trip each year throughout the life of the Project                                                                                                                                                                                            |
| Exposure duration      | Phase-dependent: Approved Project: Construction/Operation – 5 years Closure – 2 years Post-Closure (early) – 10 years Post-Closure (late) – 43 years Expansion Project: Construction/Operation – 5 years Closure (pit flooding) – 15 years Closure (maintenance) – 9 years Post-Closure – 31 years | No predictions were available for the Construction Phase, therefore predictions for Operations were conservatively adopted for Construction. Long-term predictions were assumed to represent the remainder of the adult life stage (total adult life stage = 60 years) |

Considering the assumptions described above (Table 3.5-4) and the approach to calculating water consumption exposure described by Health Canada (2010), exposure doses were calculated for each location and COPC (Table 3.5-5). Exposure doses were calculated for adults given this is the age group most likely to be on extended hunting trips in the area, during which they may rely on nearby lakes for their potable water.

Table 3.5-5: Exposure Assessment for Water Quality

| COPC             | Location(s)     | Project Phase(s)       | Approved Project -<br>Exposure Dose<br>(mg/kg-d) | Expansion Project -<br>Exposure Dose<br>(mg/kg-d) |
|------------------|-----------------|------------------------|--------------------------------------------------|---------------------------------------------------|
| Non-cancer Endpo | pints           |                        |                                                  |                                                   |
| Arsenic          | Mammoth Lake    | Operations             | 1.5E-05                                          | 1.5E-05                                           |
|                  |                 | Closure (pit flooding) | 1.6E-05                                          | 1.4E-05                                           |
|                  |                 | Closure (maintenance)  |                                                  | 2.0E-05                                           |
|                  |                 | Post-Closure           |                                                  | 1.7E-05                                           |
|                  | Lake A15        | Operations             | 1.3E-05                                          | 1.1E-05                                           |
|                  |                 | Closure (pit flooding) | 1.4E-05                                          | 1.1E-05                                           |
|                  |                 | Closure (maintenance)  |                                                  | 1.7E-05                                           |
|                  |                 | Post-Closure           |                                                  | 1.5E-05                                           |
|                  | Lake A12        | Operations             | 1.2E-05                                          | 1.1E-05                                           |
|                  |                 | Closure (pit flooding) | 1.2E-05                                          | 9.8E-06                                           |
|                  |                 | Closure (maintenance)  |                                                  | 1.6E-05                                           |
|                  |                 | Post-Closure           |                                                  | 1.4E-05                                           |
|                  | Lake A76        | Closure (maintenance)  |                                                  | 1.4E-05                                           |
|                  |                 | Post-Closure           |                                                  | 1.3E-05                                           |
|                  | DS Node 2       | Closure (maintenance)  |                                                  | 9.0E-06                                           |
|                  |                 | Post-Closure           |                                                  | 9.0E-06                                           |
|                  | Whale Tail Lake | Operations             |                                                  | 2.1E-05                                           |
|                  | South Basin     | Closure (pit flooding) |                                                  | 2.1E-05                                           |
|                  | Whale Tail Pit  | Closure (maintenance)  |                                                  | 2.4E-05                                           |
|                  |                 | Post-Closure           |                                                  | 1.8E-05                                           |
|                  | IVR Pit         | Closure (maintenance)  |                                                  | 1.1E-05                                           |
|                  |                 | Post-Closure           |                                                  | 9.8E-06                                           |
| Manganese        | Mammoth Lake    | Operations             | 6.0E-05                                          | 1.1E-04                                           |

| COPC         | Location(s)          | Project Phase(s)       | Approved Project -<br>Exposure Dose<br>(mg/kg-d) | Expansion Project -<br>Exposure Dose<br>(mg/kg-d) |
|--------------|----------------------|------------------------|--------------------------------------------------|---------------------------------------------------|
|              |                      | Closure (pit flooding) | 9.8E-05                                          | 6.9E-05                                           |
|              |                      | Closure (maintenance)  |                                                  | 7.2E-05                                           |
|              |                      | Post-Closure           |                                                  | 5.7E-05                                           |
|              | Lake A15             | Operations             | 5.3E-05                                          | 8.2E-05                                           |
|              |                      | Closure (pit flooding) | 7.8E-05                                          | 5.5E-05                                           |
|              |                      | Closure (maintenance)  |                                                  | 6.2E-05                                           |
|              |                      | Post-Closure           |                                                  | 4.9E-05                                           |
|              | Lake A12             | Operations             |                                                  | 7.2E-05                                           |
|              |                      | Closure (pit flooding) |                                                  | 5.1E-05                                           |
|              |                      | Closure (maintenance)  |                                                  | 6.0E-05                                           |
|              |                      | Post-Closure           |                                                  | 4.7E-05                                           |
|              | Lake A76             | Operations             |                                                  | 4.7E-05                                           |
|              |                      | Closure (maintenance)  |                                                  | 5.0E-05                                           |
|              |                      | Post-Closure           |                                                  | 4.3E-05                                           |
|              | Whale Tail Lake      | Operations             |                                                  | 1.1E-04                                           |
|              | South Basin          | Closure (pit flooding) |                                                  | 1.1E-04                                           |
|              | Whale Tail Pit       | Closure (maintenance)  |                                                  | 8.9E-05                                           |
|              |                      | Post-Closure           |                                                  | 6.0E-05                                           |
| Cancer Endpo | pints <sup>(a)</sup> |                        | •                                                | •                                                 |
| Arsenic      | Mammoth Lake         | Operations             | 9.2E-07                                          | 9.7E-07                                           |
|              |                      | Closure (pit flooding) | 4.1E-07                                          | 2.6E-06                                           |
|              |                      | Closure (maintenance)  | 8.6E-07                                          | 2.3E-06                                           |
|              |                      | Post-Closure           | 1.2E-06                                          | 6.6E-06                                           |
|              | Lake A15             | Operations             | 8.1E-07                                          | 7.1E-07                                           |
|              |                      | Closure (pit flooding) | 3.5E-07                                          | 2.0E-06                                           |
|              |                      | Closure (maintenance)  | 8.4E-07                                          | 1.9E-06                                           |
|              |                      | Post-Closure           | 1.1E-06                                          | 5.7E-06                                           |
|              | Lake A12             | Operations             | 7.6E-07                                          | 6.6E-07                                           |



| COPC | Location(s)                    | Project Phase(s)       | Approved Project -<br>Exposure Dose<br>(mg/kg-d) | Expansion Project -<br>Exposure Dose<br>(mg/kg-d) |
|------|--------------------------------|------------------------|--------------------------------------------------|---------------------------------------------------|
|      |                                | Closure (pit flooding) | 3.1E-07                                          | 1.8E-06                                           |
|      |                                | Closure (maintenance)  | 8.2E-07                                          | 1.8E-06                                           |
|      |                                | Post-Closure           | 1.0E-06                                          | 5.0E-06                                           |
|      | Lake A76                       | Operations             |                                                  | 4.6E-07                                           |
|      |                                | Closure (pit flooding) |                                                  | 1.4E-06                                           |
|      |                                | Closure (maintenance)  |                                                  | 1.6E-06                                           |
|      |                                | Post-Closure           |                                                  | 5.0E-06                                           |
|      | DS Node 2                      | Operations             |                                                  | 3.6E-07                                           |
|      |                                | Closure (pit flooding) |                                                  | 7.6E-07                                           |
|      |                                | Closure (maintenance)  |                                                  | 1.0E-06                                           |
|      |                                | Post-Closure           |                                                  | 3.5E-06                                           |
|      | Whale Tail Lake<br>South Basin | Operations             |                                                  | 1.3E-06                                           |
|      |                                | Closure (pit flooding) |                                                  | 4.0E-06                                           |
|      |                                | Closure (maintenance)  |                                                  | 1.5E-08                                           |
|      |                                | Post-Closure           |                                                  | 5.0E-08                                           |
|      | Whale Tail Pit                 | Closure (maintenance)  |                                                  | 2.7E-06                                           |
|      |                                | Post-Closure           |                                                  | 6.9E-06                                           |
|      | IVR Pit                        | Closure (maintenance)  |                                                  | 1.2E-06                                           |
|      |                                | Post-Closure           |                                                  | 3.5E-06                                           |

<sup>-- =</sup> not retained as a COPC; COPC = chemical of potential concern; mg/kg-d = milligrams per kilogram body weight per day.

### 3.5.4 Risk Characterization

Using the approach described by Health Canada (2010) to calculate health risks for contaminated water and using a target HQ of 0.2 and target incremental lifetime cancer risk (ILCR) of 3E-05 (or 1 in 100,000), HQs and ILCRs were calculated for each location and COPC (Table 3.5-6). It is noted that an alternate target ILCR was used for the drinking water pathway to be consistent with the estimated cancer risk levels associated with arsenic exposure at the Canadian Guideline for Drinking Water Quality (CGDWQ; Health Canada 2006) for arsenic which ranges from 3 to 39 in 100,000 at the MAC of 10  $\mu$ g/L and 8 to 97 in 100,000 at a concentration of 25  $\mu$ g/L (consistent with the SSWQO). Therefore, it was considered reasonable to adopt a target ILCR that is consistent with the MAC to ensure that risks due to the Project do not exceed those considered acceptable for the Canadian population.



<sup>(</sup>a) Note that cancer exposure for all project phases was evaluated, even if arsenic did not exceed its benchmark for that phase given that carcinogenic risks are additive over the life of the Project.

Table 3.5-6: Risk Characterization for Water Quality

| COPC          | Location(s)             | Project Phase(s)       | Approved Project –<br>Estimated Risks | Expansion Project -<br>Estimated Risks |
|---------------|-------------------------|------------------------|---------------------------------------|----------------------------------------|
| Non-cancer En | dpoints – Hazard Quotie | nts                    |                                       |                                        |
| Arsenic       | Mammoth Lake            | Operations             | 0.05                                  | 0.05                                   |
|               |                         | Closure (pit flooding) | 0.05                                  | 0.05                                   |
|               |                         | Closure (maintenance)  |                                       | 0.07                                   |
|               |                         | Post-Closure           |                                       | 0.06                                   |
|               | Lake A15                | Operations             | 0.04                                  | 0.04                                   |
|               |                         | Closure (pit flooding) | 0.05                                  | 0.04                                   |
|               |                         | Closure (maintenance)  |                                       | 0.06                                   |
|               |                         | Post-Closure           |                                       | 0.05                                   |
|               | Lake A12                | Operations             | 0.04                                  | 0.04                                   |
|               |                         | Closure (pit flooding) | 0.04                                  | 0.03                                   |
|               |                         | Closure (maintenance)  |                                       | 0.05                                   |
|               |                         | Post-Closure           |                                       | 0.05                                   |
|               | Lake A76                | Closure (maintenance)  |                                       | 0.05                                   |
|               |                         | Post-Closure           |                                       | 0.04                                   |
|               | DS Node 2               | Closure (maintenance)  |                                       | 0.03                                   |
|               |                         | Post-Closure           |                                       | 0.03                                   |
|               | Whale Tail Lake         | Operations             |                                       | 0.07                                   |
|               | South Basin             | Closure (pit flooding) |                                       | 0.07                                   |
|               | Whale Tail Pit          | Closure (maintenance)  |                                       | 0.08                                   |
|               |                         | Post-Closure           |                                       | 0.06                                   |
|               | IVR Pit                 | Closure (maintenance)  |                                       | 0.04                                   |
|               |                         | Post-Closure           |                                       | 0.03                                   |
| Manganese     | Mammoth Lake            | Operations             | 0.0004                                | 0.0007                                 |
|               |                         | Closure (pit flooding) | 0.0006                                | 0.0004                                 |
|               |                         | Closure (maintenance)  |                                       | 0.0005                                 |
|               |                         | Post-Closure           |                                       | 0.0004                                 |
|               | Lake A15                | Operations             | 0.0003                                | 0.0005                                 |



| COPC         | Location(s)                              | Project Phase(s)       | Approved Project –<br>Estimated Risks | Expansion Project -<br>Estimated Risks |
|--------------|------------------------------------------|------------------------|---------------------------------------|----------------------------------------|
|              |                                          | Closure (pit flooding) | 0.0005                                | 0.0003                                 |
|              |                                          | Closure (maintenance)  |                                       | 0.0004                                 |
|              |                                          | Post-Closure           |                                       | 0.0003                                 |
|              | Lake A12                                 | Operations             |                                       | 0.0005                                 |
|              |                                          | Closure (pit flooding) |                                       | 0.0003                                 |
|              |                                          | Closure (maintenance)  |                                       | 0.0004                                 |
|              |                                          | Post-Closure           |                                       | 0.0003                                 |
|              | Lake A76                                 | Operations             |                                       | 0.0003                                 |
|              |                                          | Closure (maintenance)  |                                       | 0.0003                                 |
|              |                                          | Post-Closure           |                                       | 0.0003                                 |
|              | Whale Tail Lake                          | Operations             |                                       | 0.0007                                 |
|              | South Basin                              | Closure (pit flooding) |                                       | 0.0007                                 |
|              | Whale Tail Pit                           | Closure (maintenance)  |                                       | 0.0006                                 |
|              |                                          | Post-Closure           |                                       | 0.0004                                 |
| Cancer Endpo | pints <sup>(a)</sup> – Incremental Lifet | ime Cancer Risks       |                                       | •                                      |
| Arsenic      | Mammoth Lake                             | Operations             | 1.6E-06                               | 1.7E-06                                |
|              |                                          | Closure (pit flooding) | 7.3E-07                               | 4.7E-06                                |
|              |                                          | Closure (maintenance)  | 1.6E-06                               | 4.1E-06                                |
|              |                                          | Post-Closure           | 2.2E-06                               | 3.5E-06                                |
|              |                                          | Total ILCR             | 7E-06                                 | 2E-05                                  |
|              | Lake A15                                 | Operations             | 1.5E-06                               | 1.3E-06                                |
|              |                                          | Closure (pit flooding) | 6.2E-07                               | 3.6E-06                                |
|              |                                          | Closure (maintenance)  | 1.5E-06                               | 3.5E-06                                |
|              |                                          | Post-Closure           | 2.0E-06                               | 1.0E-05                                |
|              |                                          | Total ILCR             | 6E-06                                 | 2E-05                                  |
|              | Lake A12                                 | Operations             | 1.4E-06                               | 1.2E-06                                |
|              |                                          | Closure (pit flooding) | 5.5E-07                               | 3.3E-06                                |
|              |                                          | Closure (maintenance)  | 1.5E-06                               | 3.3E-06                                |



| COPC | Location(s)                    | Project Phase(s)       | Approved Project –<br>Estimated Risks | Expansion Project -<br>Estimated Risks |
|------|--------------------------------|------------------------|---------------------------------------|----------------------------------------|
|      |                                | Post-Closure           | 1.9E-06                               | 9.6E-06                                |
|      |                                | Total ILCR             | 6E-06                                 | 2E-05                                  |
|      | Lake A76                       | Operations             |                                       | 8.3E-07                                |
|      |                                | Closure (pit flooding) |                                       | 2.5E-06                                |
|      |                                | Closure (maintenance)  |                                       | 2.8E-06                                |
|      |                                | Post-Closure           |                                       | 9.1E-06                                |
|      |                                | Total ILCR             |                                       | 2E-05                                  |
|      | DS Node 2                      | Operations             |                                       | 6.4E-07                                |
|      |                                | Closure (pit flooding) |                                       | 1.4E-06                                |
|      |                                | Closure (maintenance)  |                                       | 1.8E-06                                |
|      |                                | Post-Closure           |                                       | 6.2E-06                                |
|      |                                | Total ILCR             |                                       | 1E-05                                  |
|      | Whale Tail Lake<br>South Basin | Operations             |                                       | 2.4E-06                                |
|      |                                | Closure (pit flooding) |                                       | 7.1E-06                                |
|      |                                | Closure (maintenance)  |                                       | 2.6E-08                                |
|      |                                | Post-Closure           |                                       | 9.1E-08                                |
|      |                                | Total ILCR             |                                       | 1E-05                                  |
|      | Whale Tail Pit                 | Closure (maintenance)  |                                       | 4.9E-06                                |
|      |                                | Post-Closure           |                                       | 1.2E-05                                |
|      |                                | Total ILCR             |                                       | 2E-05                                  |
|      | IVR Pit                        | Closure (maintenance)  |                                       | 2.1E-06                                |
|      |                                | Post-Closure           |                                       | 6.8E-06                                |
|      |                                | Total ILCR             |                                       | 9E-06                                  |

Shaded and bold text = HQ > 0.2 or ILCR > 3E-05; -- = not retained as a COPC; COPC = chemical of potential concern; ILCR = incremental lifetime cancer risk.

All calculated HQs were less than their target of 0.2, and all calculated ILCRs for arsenic were less than their target of 3x10<sup>-5</sup>. Therefore, non-carcinogenic and carcinogenic health risks are not expected for members of the public that may rely on any of the assessed waterbodies as their potable water supply should these receptors spend time



<sup>(</sup>a) Note that cancer exposure for all project phases was evaluated, even if arsenic did not exceed its benchmark for that phase given that carcinogenic risks are additive over the life of the Project.

in the area. As a result, water quality was not assessed further with respect to potential human health effects and no residual impacts due to changes to water quality were identified.

### 3.6 Fish Tissue Quality

### 3.6.1 Problem Formulation

Given that there were predicted changes to water quality (i.e., arsenic and manganese), changes to fish tissue quality of these COPCs may also be possible.

### 3.6.2 Toxicity Assessment

The same TRVs for arsenic and manganese used for water quality (Section 5.2) were used to assess potential risks due to changes in fish tissue quality.

### 3.6.3 Exposure Assessment

Changes to fish tissue quality for the Approved Project were predicted for the COPCs that were predicted to change in water (i.e., arsenic and manganese) using site-specific water-to-fish bioconcentration factors (BCFs) calculated for the Approved Project derived from the average baseline water and fish tissue concentrations (Table 3.6-1).

Table 3.6-1: Site-Specific Water-to-Fish Bioconcentration Factors

| СОРС      | Average Baseline Fish Tissue<br>Concentration<br>(mg/kg wet weight) | Average Baseline Water Quality Concentration (mg/L) | Site-Specific Water-to-Fish<br>Bioconcentration Factor<br>(L/kg) |
|-----------|---------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------|
| Arsenic   | 0.0322                                                              | 0.00026                                             | 124                                                              |
| Manganese | 0.139                                                               | 0.00307                                             | 45                                                               |

COPC = chemical of potential concern; mg/kg = milligram per kilogram; mg/L = milligrams per litre; L/kg = litres per kilogram

Using these site-specific BCFs, changes to fish tissue quality for each lake and phase of the Approved Project were predicted (Table 3.6-2).

Table 3.6-2: Predicted Fish Tissue Concentrations for the Approved Project

| COPC    | Location(s)  | Project Phase(s)        | Approved Project - Predicted<br>Fish Tissue Concentrations<br>(mg/kg wet weight) |
|---------|--------------|-------------------------|----------------------------------------------------------------------------------|
| Arsenic | Mammoth Lake | Construction/Operations | 2.23                                                                             |
|         |              | Closure                 | 2.48                                                                             |
|         |              | Post-Closure (early)    | 1.05                                                                             |
|         |              | Post-Closure (late)     | 0.35                                                                             |
|         | Lake A15     | Construction/Operations | 1.98                                                                             |
|         |              | Closure                 | 2.11                                                                             |
|         |              | Post-Closure (early)    | 1.03                                                                             |
|         |              | Post-Closure (late)     | 0.32                                                                             |

| COPC      | Location(s)           | Project Phase(s)        | Approved Project - Predicted<br>Fish Tissue Concentrations<br>(mg/kg wet weight) |
|-----------|-----------------------|-------------------------|----------------------------------------------------------------------------------|
|           | Lake A12              | Construction/Operations | 1.86                                                                             |
|           |                       | Closure                 | 1.86                                                                             |
|           |                       | Post-Closure (early)    | 1.00                                                                             |
|           |                       | Post-Closure (late)     | 0.30                                                                             |
|           | Lake A76              | Construction/Operations |                                                                                  |
|           |                       | Closure                 |                                                                                  |
|           |                       | Post-Closure (early)    |                                                                                  |
|           |                       | Post-Closure (late)     |                                                                                  |
|           | DS Node 2             | Post-Closure (early)    |                                                                                  |
|           |                       | Post-Closure (late)     |                                                                                  |
|           | Whale Tail Lake South | Construction/Operations |                                                                                  |
|           | Basin                 | Closure                 |                                                                                  |
|           |                       | Post-Closure (early)    |                                                                                  |
|           |                       | Post-Closure (late)     |                                                                                  |
|           | Whale Tail Pit        | Post-Closure (early)    |                                                                                  |
|           |                       | Post-Closure (late)     |                                                                                  |
|           | IVR Pit               | Post-Closure (early)    |                                                                                  |
|           |                       | Post-Closure (late)     |                                                                                  |
| Manganese | Mammoth Lake          | Operations              | 3.35                                                                             |
|           |                       | Closure                 | 5.48                                                                             |
|           |                       | Post-Closure (early)    |                                                                                  |
|           |                       | Post-Closure (late)     |                                                                                  |
|           | Lake A15              | Operations              | 2.94                                                                             |
|           |                       | Closure                 | 4.35                                                                             |
|           |                       | Post-Closure (early)    |                                                                                  |
|           |                       | Post-Closure (late)     |                                                                                  |
|           | Lake A12              | Operations              |                                                                                  |
|           |                       | Closure                 |                                                                                  |



| COPC | Location(s)                    | Project Phase(s)     | Approved Project - Predicted<br>Fish Tissue Concentrations<br>(mg/kg wet weight) |
|------|--------------------------------|----------------------|----------------------------------------------------------------------------------|
|      |                                | Post-Closure (early) |                                                                                  |
|      |                                | Post-Closure (late)  |                                                                                  |
|      | Lake A76                       | Operations           |                                                                                  |
|      |                                | Post-Closure (early) |                                                                                  |
|      |                                | Post-Closure (late)  |                                                                                  |
|      | Whale Tail Lake South<br>Basin | Operations           |                                                                                  |
|      | Dasiii                         | Closure              |                                                                                  |
|      | Whale Tail Pit                 | Post-Closure (early) |                                                                                  |
|      |                                | Post-Closure (late)  |                                                                                  |

COPC = chemical of potential concern; mg/kg = milligram per kilogram; -- = not identified as a COPC for the Approved Project

Changes to fish tissue quality for the Expansion Project for arsenic were assessed considering the toxicokinetics of arsenic. Williams et al. (2006) competed a review of 12 laboratory and field studies in which arsenic concentrations in water and fish tissue were measured. The four laboratory studies were used to generate BCFs and the 8 field studies were used to generate bioaccumulation factors (BAFs). Given that no significant differences were identified between the laboratory and field studies, the datasets were combined and used to generate a relationship between water concentration and BCF. Using whole body data from carp, channel catfish, bluegill and rainbow trout, a power function (where y = BCF in L/kg and x = water concentration in  $\mu$ g/L) with a  $r^2$  of 0.86 and level of significance of p < 0.0001 was derived:  $y = 67.1x^{-0.66}$ . This equation was used to determine fish tissue concentrations for each water body and each phase of the Project. Changes to fish tissue quality of manganese were assessed using the site-specific BCF for the Expansion Project. The predicted fish tissue concentrations for the Expansion Project are shown in Table 3.6-3 below.

Table 3.6-3: Predicted Fish Tissue Concentrations for the Expansion Project

| СОРС    | Location(s)  | Project Phase(s)        | Expansion Project - Predicted<br>Fish Tissue Concentrations<br>(mg/kg wet weight) |
|---------|--------------|-------------------------|-----------------------------------------------------------------------------------|
| Arsenic | Mammoth Lake | Construction/Operations | 1.83E-01                                                                          |
|         |              | Closure (pit flooding)  | 1.76E-01                                                                          |
|         |              | Closure (maintenance)   | 2.00E-01                                                                          |
|         |              | Post-Closure            | 1.89E-01                                                                          |
|         | Lake A15     | Construction/Operations | 1.65E-01                                                                          |
|         |              | Closure (pit flooding)  | 1.60E-01                                                                          |
|         |              | Closure (maintenance)   | 1.89E-01                                                                          |



| COPC      | Location(s)                 | Project Phase(s)        | Expansion Project - Predicted<br>Fish Tissue Concentrations<br>(mg/kg wet weight) |
|-----------|-----------------------------|-------------------------|-----------------------------------------------------------------------------------|
|           |                             | Post-Closure            | 1.79E-01                                                                          |
|           | Lake A12                    | Construction/Operations | 1.60E-01                                                                          |
|           |                             | Closure (pit flooding)  | 1.56E-01                                                                          |
|           |                             | Closure (maintenance)   | 1.86E-01                                                                          |
|           |                             | Post-Closure            | 1.76E-01                                                                          |
|           | Lake A76                    | Construction/Operations | 1.42E-01                                                                          |
|           |                             | Closure (pit flooding)  | 1.42E-01                                                                          |
|           |                             | Closure (maintenance)   | 1.76E-01                                                                          |
|           |                             | Post-Closure            | 1.72E-01                                                                          |
|           | DS Node 2                   | Construction/Operations | 1.30E-01                                                                          |
|           |                             | Closure (pit flooding)  | 1.16E-01                                                                          |
|           |                             | Closure (maintenance)   | 1.52E-01                                                                          |
|           |                             | Post-Closure            | 1.52E-01                                                                          |
|           | Whale Tail Lake South Basin | Construction/Operations | 2.03E-01                                                                          |
|           |                             | Closure (pit flooding)  | 2.03E-01                                                                          |
|           |                             | Closure (maintenance)   | 3.60E-02                                                                          |
|           |                             | Post-Closure            | 3.60E-02                                                                          |
|           | Whale Tail Pit              | Closure (maintenance)   | 2.13E-01                                                                          |
|           |                             | Post-Closure            | 1.92E-01                                                                          |
|           | IVR Pit                     | Closure (maintenance)   | 1.60E-01                                                                          |
|           |                             | Post-Closure            | 1.56E-01                                                                          |
| Manganese | Mammoth Lake                | Operations              | 5.98                                                                              |
|           |                             | Closure (pit flooding)  | 3.85                                                                              |
|           |                             | Closure (maintenance)   | 4.03                                                                              |
|           |                             | Post-Closure            | 3.17                                                                              |
|           | Lake A15                    | Operations              | 4.57                                                                              |
|           |                             | Closure (pit flooding)  | 3.03                                                                              |
|           |                             | Closure (maintenance)   | 3.44                                                                              |



| COPC | Location(s)                 | Project Phase(s)       | Expansion Project - Predicted<br>Fish Tissue Concentrations<br>(mg/kg wet weight) |
|------|-----------------------------|------------------------|-----------------------------------------------------------------------------------|
|      |                             | Post-Closure           | 2.72                                                                              |
|      | Lake A12                    | Operations             | 4.03                                                                              |
|      |                             | Closure (pit flooding) | 2.85                                                                              |
|      |                             | Closure (maintenance)  | 3.35                                                                              |
|      |                             | Post-Closure           | 2.63                                                                              |
|      | Lake A76                    | Operations             | 2.63                                                                              |
|      |                             | Closure (maintenance)  | 2.81                                                                              |
|      |                             | Post-Closure           | 2.40                                                                              |
|      | Whale Tail Lake South Basin | Operations             | 5.93                                                                              |
|      |                             | Closure (pit flooding) | 5.93                                                                              |
|      | Whale Tail Pit              | Closure (maintenance)  | 4.94                                                                              |
|      |                             | Post-Closure           | 3.35                                                                              |

Considering the assumptions described above for water quality (Table 3.5-4) and the approach to calculating food consumption exposure described by Health Canada (2010), exposure doses were calculated for each location and COPC (Table 3.6-4 for the Approved Project and Table 3.6-5 for the Expansion Project).



Table 3.6-4: Exposure Assessment for Fish Tissue Quality for Approved Project

| COPC              | Location(s)                 | Project Phase(s)     | Approved Project -<br>Exposure Dose |
|-------------------|-----------------------------|----------------------|-------------------------------------|
| Non-cancer Endpoi | nts                         |                      | (mg/kg-d)                           |
| Arsenic           | Mammoth Lake                | Operations           |                                     |
|                   |                             | Closure              | 2.7E-05                             |
|                   |                             | Post-Closure (early) | 3.0E-05                             |
|                   |                             | Post-Closure (late)  |                                     |
|                   | Lake A15                    | Operations           |                                     |
|                   |                             | Closure              | 2.4E-05                             |
|                   |                             | Post-Closure (early) | 2.5E-02                             |
|                   |                             | Post-Closure (late)  |                                     |
|                   | Lake A12                    | Operations           |                                     |
|                   |                             | Closure              | 2.2E-05                             |
|                   |                             | Post-Closure (early) | 2.2E-05                             |
|                   |                             | Post-Closure (late)  |                                     |
|                   | Lake A76                    | Post-Closure (early) |                                     |
|                   |                             | Post-Closure (late)  |                                     |
|                   | DS Node 2                   | Post-Closure (early) |                                     |
|                   |                             | Post-Closure (late)  |                                     |
|                   | Whale Tail Lake South Basin | Operations           |                                     |
|                   |                             | Closure              |                                     |
|                   | Whale Tail Pit              | Post-Closure (early) |                                     |
|                   |                             | Post-Closure (late)  |                                     |
|                   | IVR Pit                     | Post-Closure (early) |                                     |
|                   |                             | Post-Closure (late)  |                                     |
| Manganese         | Mammoth Lake                | Operations           |                                     |
|                   |                             | Closure              | 4.0E-04                             |
|                   |                             | Post-Closure (early) | 6.5E-04                             |
|                   |                             | Post-Closure (late)  |                                     |
|                   | Lake A15                    | Operations           |                                     |



| COPC                            | Location(s)                 | Project Phase(s)     | Approved Project -<br>Exposure Dose |
|---------------------------------|-----------------------------|----------------------|-------------------------------------|
|                                 |                             | Closure              | 3.5E-04                             |
|                                 |                             | Post-Closure (early) | 5.2E-04                             |
|                                 |                             | Post-Closure (late)  |                                     |
|                                 | Lake A12                    | Operations           |                                     |
|                                 |                             | Closure              |                                     |
|                                 |                             | Post-Closure (early) |                                     |
|                                 |                             | Post-Closure (late)  |                                     |
|                                 | Lake A76                    | Operations           |                                     |
|                                 |                             | Post-Closure (early) |                                     |
|                                 |                             | Post-Closure (late)  |                                     |
|                                 | Whale Tail Lake South Basin | Operations           |                                     |
|                                 |                             | Closure              |                                     |
|                                 | Whale Tail Pit              | Post-Closure (early) |                                     |
|                                 |                             | Post-Closure (late)  |                                     |
| Cancer Endpoints <sup>(a)</sup> |                             |                      |                                     |
| Arsenic                         | Mammoth Lake                | Operations           |                                     |
|                                 |                             | Closure              | 1.7E-06                             |
|                                 |                             | Post-Closure (early) | 7.4E-07                             |
|                                 |                             | Post-Closure (late)  | 1.6E-06                             |
|                                 | Lake A15                    | Operations           | 2.2E-06                             |
|                                 |                             | Closure              | 1.5E-06                             |
|                                 |                             | Post-Closure (early) | 6.3E-07                             |
|                                 |                             | Post-Closure (late)  | 1.5E-06                             |
|                                 | Lake A12                    | Operations           | 2.0E-06                             |
|                                 |                             | Closure              | 1.4E-06                             |
|                                 |                             | Post-Closure (early) | 5.5E-07                             |
|                                 |                             | Post-Closure (late)  | 1.5E-06                             |
|                                 | Lake A76                    | Operations           | 1.9E-06                             |



| COPC | Location(s)                 | Project Phase(s)     | Approved Project -<br>Exposure Dose |
|------|-----------------------------|----------------------|-------------------------------------|
|      |                             | Closure              |                                     |
|      |                             | Post-Closure (early) |                                     |
|      |                             | Post-Closure (late)  |                                     |
|      | DS Node 2                   | Operations           |                                     |
|      |                             | Closure              |                                     |
|      |                             | Post-Closure (early) |                                     |
|      |                             | Post-Closure (late)  |                                     |
|      | Whale Tail Lake South Basin | Operations           |                                     |
|      |                             | Closure              |                                     |
|      |                             | Post-Closure (early) |                                     |
|      |                             | Post-Closure (late)  |                                     |
|      | Whale Tail Pit              | Post-Closure (early) |                                     |
|      |                             | Post-Closure (late)  |                                     |
|      | IVR Pit                     | Post-Closure (early) |                                     |
|      |                             | Post-Closure (late)  |                                     |

<sup>-- =</sup> not retained as a COPC; COPC = chemical of potential concern; mg/kg-d = milligrams per kilogram body weight per day.

Table 3.6-5: Exposure Assessment for Fish Tissue Quality for the Expansion Project

| COPC                 | Location(s)  | Project Phase(s)       | Expansion Project -<br>Exposure Dose<br>(mg/kg-d) |
|----------------------|--------------|------------------------|---------------------------------------------------|
| Non-cancer Endpoints |              |                        |                                                   |
| Arsenic              | Mammoth Lake | Operations             | 2.2E-06                                           |
|                      |              | Closure (pit flooding) | 2.7E-06                                           |
|                      |              | Closure (maintenance)  | 2.4E-06                                           |
|                      |              | Post-Closure           | 2.9E-06                                           |
|                      | Lake A15     | Operations             | 2.0E-06                                           |
|                      |              | Closure (pit flooding) | 2.5E-06                                           |
|                      |              | Closure (maintenance)  | 2.3E-06                                           |
|                      |              | Post-Closure           | 2.7E-06                                           |

<sup>(</sup>a) Note that cancer exposure for all project phases was evaluated, even if arsenic did not exceed its benchmark for that phase given that carcinogenic risks are additive over the life of the Project.

| COPC      | Location(s)                 | Project Phase(s)       | Expansion Project -<br>Exposure Dose<br>(mg/kg-d) |
|-----------|-----------------------------|------------------------|---------------------------------------------------|
|           | Lake A12                    | Operations             | 1.9E-06                                           |
|           |                             | Closure (pit flooding) | 2.4E-06                                           |
|           |                             | Closure (maintenance)  | 2.2E-06                                           |
|           |                             | Post-Closure           | 2.6E-06                                           |
|           | Lake A76                    | Closure (maintenance)  | 2.1E-06                                           |
|           |                             | Post-Closure           | 2.5E-06                                           |
|           | DS Node 2                   | Closure (maintenance)  | 1.8E-06                                           |
|           |                             | Post-Closure           | 2.4E-06                                           |
|           | Whale Tail Lake South Basin | Operations             | 2.4E-06                                           |
|           |                             | Closure (pit flooding) | 2.8E-06                                           |
|           | Whale Tail Pit              | Closure (maintenance)  | 2.5E-06                                           |
|           |                             | Post-Closure           | 2.9E-06                                           |
|           | IVR Pit                     | Closure (maintenance)  | 1.9E-06                                           |
|           |                             | Post-Closure           | 2.4E-06                                           |
| Manganese | Mammoth Lake                | Operations             | 7.1E-04                                           |
|           |                             | Closure (pit flooding) | 4.6E-04                                           |
|           |                             | Closure (maintenance)  | 4.8E-04                                           |
|           |                             | Post-Closure           | 3.8E-04                                           |
|           | Lake A15                    | Operations             | 5.5E-04                                           |
|           |                             | Closure (pit flooding) | 3.6E-04                                           |
|           |                             | Closure (maintenance)  | 4.1E-04                                           |
|           |                             | Post-Closure           | 3.2E-04                                           |
|           | Lake A12                    | Operations             | 4.8E-04                                           |
|           |                             | Closure (pit flooding) | 3.4E-04                                           |
|           |                             | Closure (maintenance)  | 4.0E-04                                           |
|           |                             | Post-Closure           | 3.1E-04                                           |
|           | Lake A76                    | Operations             | 3.1E-04                                           |
|           |                             | Closure (maintenance)  | 3.4E-04                                           |



| СОРС                            | Location(s)                 | Project Phase(s)       | Expansion Project -<br>Exposure Dose<br>(mg/kg-d) |
|---------------------------------|-----------------------------|------------------------|---------------------------------------------------|
|                                 |                             | Post-Closure           | 2.9E-04                                           |
|                                 | Whale Tail Lake South Basin | Operations             | 7.1E-04                                           |
|                                 |                             | Closure (pit flooding) | 7.1E-04                                           |
|                                 | Whale Tail Pit              | Closure (maintenance)  | 5.9E-04                                           |
|                                 |                             | Post-Closure           | 4.0E-04                                           |
| Cancer Endpoints <sup>(a)</sup> |                             |                        |                                                   |
| Arsenic                         | Mammoth Lake                | Operations             | 1.4E-07                                           |
|                                 |                             | Closure (pit flooding) | 6.7E-08                                           |
|                                 |                             | Closure (maintenance)  | 3.0E-07                                           |
|                                 |                             | Post-Closure           | 1.5-06                                            |
|                                 | Lake A15                    | Operations             | 1.2E-07                                           |
|                                 |                             | Closure (pit flooding) | 6.1E-08                                           |
|                                 |                             | Closure (maintenance)  | 2.8E-07                                           |
|                                 |                             | Post-Closure           | 1.4E-06                                           |
|                                 | Lake A12                    | Operations             | 1.2E-07                                           |
|                                 |                             | Closure (pit flooding) | 6.0E-08                                           |
|                                 |                             | Closure (maintenance)  | 2.8E-07                                           |
|                                 |                             | Post-Closure           | 1.4E-06                                           |
|                                 | Lake A76                    | Operations             | 1.1E-07                                           |
|                                 |                             | Closure (pit flooding) | 5.5E-08                                           |
|                                 |                             | Closure (maintenance)  | 2.6E-07                                           |
|                                 |                             | Post-Closure           | 1.4E-06                                           |
|                                 | DS Node 2                   | Operations             | 9.7E-08                                           |
|                                 |                             | Closure (pit flooding) | 4.8E-08                                           |
|                                 |                             | Closure (maintenance)  | 2.3E-07                                           |
|                                 |                             | Post-Closure           | 1.3E-06                                           |
|                                 | Whale Tail Lake South Basin | Operations             | 1.5E-07                                           |
|                                 |                             | Closure (pit flooding) | 7.1E-08                                           |



| СОРС | Location(s)    | Project Phase(s)      | Expansion Project -<br>Exposure Dose<br>(mg/kg-d) |
|------|----------------|-----------------------|---------------------------------------------------|
|      |                | Closure (maintenance) | 5.4E-08                                           |
|      |                | Post-Closure          | 4.5E-07                                           |
|      | Whale Tail Pit | Closure (maintenance) | 3.2E-07                                           |
|      |                | Post-Closure          | 1.6E-06                                           |
|      | IVR Pit        | Closure (maintenance) | 2.4E-07                                           |
|      |                | Post-Closure          | 1.3E-06                                           |

<sup>-- =</sup> not retained as a COPC; COPC = chemical of potential concern; mg/kg-d = milligrams per kilogram body weight per day.

### 3.6.4 Risk Characterization

Using the approach described by Health Canada (2010) to calculate health risks for contaminated food and using a target HQ of 0.2 and target ILCR of 1E-05 (or 1 in 100,000), HQs and ILCRs were calculated for each location and COPC (Table 3.6-6 for the Approved Project and Table 3.6-7 for the Expansion Project).

Table 3.6-6: Risk Characterization for Fish Tissue Quality for the Approved Project

| COPC            | Location(s)              | Project Phase(s)     | Approved Project –<br>Estimated Risks |
|-----------------|--------------------------|----------------------|---------------------------------------|
| Non-cancer Endp | oints – Hazard Quotients |                      | ·                                     |
| Arsenic         | Mammoth Lake             | Operations           | 0.09                                  |
|                 |                          | Closure              | 0.1                                   |
|                 |                          | Post-Closure (early) |                                       |
|                 |                          | Post-Closure (late)  |                                       |
|                 | Lake A15                 | Operations           | 0.08                                  |
|                 |                          | Closure              | 0.08                                  |
|                 |                          | Post-Closure (early) |                                       |
|                 |                          | Post-Closure (late)  |                                       |
|                 | Lake A12                 | Operations           | 0.07                                  |
|                 |                          | Closure              | 0.07                                  |
|                 |                          | Post-Closure (early) |                                       |
|                 |                          | Post-Closure (late)  |                                       |
|                 | Lake A76                 | Post-Closure (early) |                                       |

<sup>(</sup>a) Note that cancer exposure for all project phases was evaluated, even if arsenic did not exceed its benchmark for that phase given that carcinogenic risks are additive over the life of the Project.

| СОРС      | Location(s)                 | Project Phase(s)     | Approved Project –<br>Estimated Risks |
|-----------|-----------------------------|----------------------|---------------------------------------|
|           |                             | Post-Closure (late)  |                                       |
|           | DS Node 2                   | Post-Closure (early) |                                       |
|           |                             | Post-Closure (late)  |                                       |
|           | Whale Tail Lake South Basin | Operations           |                                       |
|           |                             | Closure              |                                       |
|           | Whale Tail Pit              | Post-Closure (early) |                                       |
|           |                             | Post-Closure (late)  |                                       |
|           | IVR Pit                     | Post-Closure (early) |                                       |
|           |                             | Post-Closure (late)  |                                       |
| Manganese | Mammoth Lake                | Operations           | 0.003                                 |
|           |                             | Closure              | 0.004                                 |
|           |                             | Post-Closure (early) |                                       |
|           |                             | Post-Closure (late)  |                                       |
|           | Lake A15                    | Operations           | 0.002                                 |
|           |                             | Closure              | 0.003                                 |
|           |                             | Post-Closure (early) |                                       |
|           |                             | Post-Closure (late)  |                                       |
|           | Lake A12                    | Operations           |                                       |
|           |                             | Closure              |                                       |
|           |                             | Post-Closure (early) |                                       |
|           |                             | Post-Closure (late)  |                                       |
|           | Lake A76                    | Operations           |                                       |
|           |                             | Post-Closure (early) |                                       |
|           |                             | Post-Closure (late)  |                                       |
|           | Whale Tail Lake South Basin | Operations           |                                       |
|           |                             | Closure              |                                       |
|           | Whale Tail Pit              | Post-Closure (early) |                                       |
|           |                             | Post-Closure (late)  |                                       |



| COPC                                    | Location(s)                   | Project Phase(s)     | Approved Project –<br>Estimated Risks |
|-----------------------------------------|-------------------------------|----------------------|---------------------------------------|
| Cancer Endpoints <sup>(a)</sup> – Incre | emental Lifetime Cancer Risks |                      |                                       |
| Arsenic                                 | Mammoth Lake                  | Operations           | 3.0E-06                               |
|                                         |                               | Closure              | 1.3E-06                               |
|                                         |                               | Post-Closure (early) | 2.8E-06                               |
|                                         |                               | Post-Closure (late)  | 4.0E-06                               |
|                                         |                               | Total ILCR           | 1E-05                                 |
|                                         | Lake A15                      | Operations           | 2.7E-06                               |
|                                         |                               | Closure              | 1.1E-06                               |
|                                         |                               | Post-Closure (early) | 2.8E-06                               |
|                                         |                               | Post-Closure (late)  | 3.7E-06                               |
|                                         |                               | Total ILCR           | 1E-05                                 |
|                                         | Lake A12                      | Operations           | 2.5E-06                               |
|                                         |                               | Closure              | 1.0E-06                               |
|                                         |                               | Post-Closure (early) | 2.7E-06                               |
|                                         |                               | Post-Closure (late)  | 3.4E-06                               |
|                                         |                               | Total ILCR           | 1E-05                                 |
|                                         | Lake A76                      | Operations           |                                       |
|                                         |                               | Closure              |                                       |
|                                         |                               | Post-Closure (early) |                                       |
|                                         |                               | Post-Closure (late)  |                                       |
|                                         |                               | Total ILCR           |                                       |
|                                         | DS Node 2                     | Operations           |                                       |
|                                         |                               | Closure              |                                       |
|                                         |                               | Post-Closure (early) |                                       |
|                                         |                               | Post-Closure (late)  |                                       |
|                                         |                               | Total ILCR           |                                       |
|                                         | Whale Tail Lake South Basin   | Operations           |                                       |
|                                         |                               | Closure              |                                       |



| COPC | Location(s)    | Project Phase(s)     | Approved Project –<br>Estimated Risks |
|------|----------------|----------------------|---------------------------------------|
|      |                | Post-Closure (early) |                                       |
|      |                | Post-Closure (late)  |                                       |
|      |                | Total ILCR           |                                       |
|      | Whale Tail Pit | Post-Closure (early) |                                       |
|      |                | Post-Closure (late)  |                                       |
|      |                | Total ILCR           |                                       |
|      | IVR Pit        | Post-Closure (early) |                                       |
|      |                | Post-Closure (late)  |                                       |
|      |                | Total ILCR           |                                       |

Shaded and bold text = HQ > 0.2 or ILCR > 1E-05; -- = not retained as a COPC; COPC = chemical of potential concern; ILCR = incremental lifetime cancer risk.

Table 3.6-7: Risk Characterization for Fish Tissue Quality for the Expansion Project

| COPC               | Location(s)                             | Project Phase(s)       | Expansion Project -<br>Estimated Risks |  |  |
|--------------------|-----------------------------------------|------------------------|----------------------------------------|--|--|
| Non-cancer Endpoir | Non-cancer Endpoints – Hazard Quotients |                        |                                        |  |  |
| Arsenic            | Mammoth Lake                            | Operations             | 0.007                                  |  |  |
|                    |                                         | Closure (pit flooding) | 0.009                                  |  |  |
|                    |                                         | Closure (maintenance)  | 0.008                                  |  |  |
|                    |                                         | Post-Closure           | 0.01                                   |  |  |
|                    | Lake A15                                | Operations             | 0.007                                  |  |  |
|                    |                                         | Closure (pit flooding) | 0.008                                  |  |  |
|                    |                                         | Closure (maintenance)  | 0.008                                  |  |  |
|                    |                                         | Post-Closure           | 0.009                                  |  |  |
|                    | Lake A12                                | Operations             | 0.006                                  |  |  |
|                    |                                         | Closure (pit flooding) | 0.008                                  |  |  |
|                    |                                         | Closure (maintenance)  | 0.007                                  |  |  |
|                    |                                         | Post-Closure           | 0.009                                  |  |  |
|                    | Lake A76                                | Closure (maintenance)  | 0.007                                  |  |  |
|                    |                                         | Post-Closure           | 0.008                                  |  |  |

<sup>(</sup>a) Note that cancer exposure for all project phases was evaluated, even if arsenic did not exceed its benchmark for that phase given that carcinogenic risks are additive over the life of the Project.

| COPC      | Location(s)                 | Project Phase(s)       | Expansion Project -<br>Estimated Risks |
|-----------|-----------------------------|------------------------|----------------------------------------|
|           | DS Node 2                   | Closure (maintenance)  | 0.006                                  |
|           |                             | Post-Closure           | 0.008                                  |
|           | Whale Tail Lake South Basin | Operations             | 0.008                                  |
|           |                             | Closure (pit flooding) | 0.009                                  |
|           | Whale Tail Pit              | Closure (maintenance)  | 0.008                                  |
|           |                             | Post-Closure           | 0.01                                   |
|           | IVR Pit                     | Closure (maintenance)  | 0.006                                  |
|           |                             | Post-Closure           | 0.008                                  |
| Manganese | Mammoth Lake                | Operations             | 0.005                                  |
|           |                             | Closure (pit flooding) | 0.003                                  |
|           |                             | Closure (maintenance)  | 0.003                                  |
|           |                             | Post-Closure           | 0.002                                  |
|           | Lake A15                    | Operations             | 0.003                                  |
|           |                             | Closure (pit flooding) | 0.002                                  |
|           |                             | Closure (maintenance)  | 0.003                                  |
|           |                             | Post-Closure           | 0.002                                  |
|           | Lake A12                    | Operations             | 0.003                                  |
|           |                             | Closure (pit flooding) | 0.002                                  |
|           |                             | Closure (maintenance)  | 0.003                                  |
|           |                             | Post-Closure           | 0.002                                  |
|           | Lake A76                    | Operations             | 0.002                                  |
|           |                             | Closure (maintenance)  | 0.002                                  |
|           |                             | Post-Closure           | 0.002                                  |
|           | Whale Tail Lake South Basin | Operations             | 0.005                                  |
|           |                             | Closure (pit flooding) | 0.005                                  |
|           | Whale Tail Pit              | Closure (maintenance)  | 0.004                                  |
|           |                             | Post-Closure           | 0.003                                  |



| COPC                                    | Location(s)                   | Project Phase(s)       | Expansion Project -<br>Estimated Risks |
|-----------------------------------------|-------------------------------|------------------------|----------------------------------------|
| Cancer Endpoints <sup>(a)</sup> – Incre | emental Lifetime Cancer Risks |                        |                                        |
| Arsenic                                 | Mammoth Lake                  | Operations             | 2.5E-07                                |
|                                         |                               | Closure (pit flooding) | 1.2E-07                                |
|                                         |                               | Closure (maintenance)  | 5.4E-07                                |
|                                         |                               | Post-Closure           | 2.8E-06                                |
|                                         |                               | Total ILCR             | 4E-06                                  |
|                                         | Lake A15                      | Operations             | 2.2E-07                                |
|                                         |                               | Closure (pit flooding) | 1.1E-07                                |
|                                         |                               | Closure (maintenance)  | 5.1E-07                                |
|                                         |                               | Post-Closure           | 2.6E-06                                |
|                                         |                               | Total ILCR             | 3E-06                                  |
|                                         | Lake A12                      | Operations             | 2.2E-07                                |
|                                         |                               | Closure (pit flooding) | 1.1E-07                                |
|                                         |                               | Closure (maintenance)  | 5.0E-07                                |
|                                         |                               | Post-Closure           | 2.6E-06                                |
|                                         |                               | Total ILCR             | 3E-06                                  |
|                                         | Lake A76                      | Operations             | 1.9E-07                                |
|                                         |                               | Closure (pit flooding) | 9.8E-08                                |
|                                         |                               | Closure (maintenance)  | 4.7E-07                                |
|                                         |                               | Post-Closure           | 2.5E-06                                |
|                                         |                               | Total ILCR             | 3E-06                                  |
|                                         | DS Node 2                     | Operations             | 1.7E-07                                |
|                                         |                               | Closure (pit flooding) | 8.7E-08                                |
|                                         |                               | Closure (maintenance)  | 4.1E-07                                |
|                                         |                               | Post-Closure           | 2.3E-06                                |
|                                         |                               | Total ILCR             | 3E-06                                  |
|                                         | Whale Tail Lake South Basin   | Operations             | 2.7E-07                                |
|                                         |                               | Closure (pit flooding) | 1.3E-07                                |

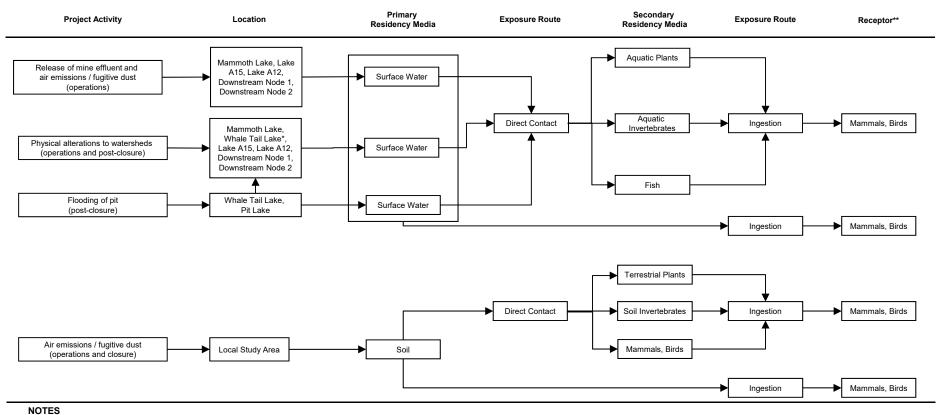


| COPC | Location(s)    | Project Phase(s)      | Expansion Project -<br>Estimated Risks |
|------|----------------|-----------------------|----------------------------------------|
|      |                | Closure (maintenance) | 9.7E-08                                |
|      |                | Post-Closure          | 8.0E-07                                |
|      |                | Total ILCR            | 1E-06                                  |
|      | Whale Tail Pit | Closure (maintenance) | 5.7E-07                                |
|      |                | Post-Closure          | 2.8E-06                                |
|      |                | Total ILCR            | 3E-06                                  |
|      | IVR Pit        | Closure (maintenance) | 4.3E-07                                |
|      |                | Post-Closure          | 2.3E-06                                |
|      |                | Total ILCR            | 3E-06                                  |

Shaded and bold text = HQ > 0.2 or ILCR > 1E-05; -- = not retained as a COPC; COPC = chemical of potential concern; ILCR = incremental lifetime cancer risk.

All calculated HQs were less than their target of 0.2, and all calculated ILCRs were less than their target of 1x10<sup>-5</sup>. Therefore, non-carcinogenic and carcinogenic health risks are not expected for members of the public that may rely on any of the assessed water bodies for fish should these receptors spend time in the area. As a result, fish tissue quality was not assessed further with respect to potential human health effects and no residual impacts due to changes to fish tissue quality were identified.

#### 4.0 EFFECTS ASSESSMENT FOR WILDLIFE


# 4.1 Conceptual Site Model

The CSM for wildlife receptors (Figure 4.1-1) was based upon the primary pathways identified above (Table 1.3-1). The exposure pathways between Approved Project and Expansion Project activities, intermediate residency media (i.e., the aspects of the environment that that may experience a change in quality due to project activities/emissions), and receptors are shown to be either complete or incomplete. Where pathways are incomplete, quantitative assessment was not carried out given that environmental quality was not anticipated to change as a result of the Approved Project or Expansion Project. Complete pathways on the figure indicate that a change to environmental quality was predicted and a quantitative assessment of the potential effects to human health was carried out. A brief summary of the complete exposure pathways are provided below for wildlife:

- incidental ingestion of soil;
- ingestion of surface water; and
- consumption of plants and animals as prey (e.g., sedges and forage fish).



<sup>(</sup>a) Note that cancer exposure for all project phases was evaluated, even if arsenic did not exceed its benchmark for that phase given that carcinogenic risks are additive over the life of the Project.



- \* For post-closure phase only.
- \*\* The receptors have been simplified to mammals and birds. The species of mammals and birds selected as receptors are described in Section 3-B-1.1 of Appendix 3-B of the FEIS Amendment.

#### LEGEND

- --- ▶ Pathway incomplete and/or not evaluated
- → Pathway complete and evaluated

| Date: June 17, 2016     |
|-------------------------|
| Project: 1541520 (3500) |
|                         |



| CAD: AA  |  |
|----------|--|
| CKD: TMG |  |

# 4.2 Air Quality

Direct effects to wildlife as a result of changes to air quality was not identified as a primary pathway. However, indirect effects due to particulate deposition onto soils and changes in soil quality were assessed further (see Section 4.3, below).

# 4.3 Soil Quality

#### 4.3.1 Problem Formulation

Changes to soil quality as a result of the Approved Project and Expansion Project were predicted as described in Section 3.3.1. For the protection of wildlife, concentrations of chemicals in soil were screened against the CCME Canadian Soil Quality Guidelines for the Protection of Environment and Human Health (CCME 1999b) for residential land use and the U.S. EPA Ecological Soil Screening Levels (U.S. EPA 2005b). If predicted concentrations for chemicals in soil were greater than the screening values and maximum baseline concentrations plus 10%, the chemical was identified as a COPC.

All concentrations in soil met their respective screening values and/or baseline plus 10% (Attachment 3-B-2) with the exception of sodium, which was greater than its baseline concentration +10% (no screening values are available for sodium). Sodium is naturally occurring and is present in the earth's crust at a concentration of 2.83% by weight (HSDB 2007); as a result, sodium was not retained as a COPC and therefore no COPCs were retained in soil and no residual impacts due to changes to soil quality were identified. Furthermore, given that no COPCs were identified for soil, no residual impacts to vegetation quality were identified. This result is consistent with the results of the conclusions of the previous risk assessments conducted at the Meadowbank Mine (described in Section 3.3.1).

# 4.4 Prey Quality

Given that no COPCs were identified in soil (Section 4.3), concentrations of chemicals in prey items (i.e., plants and animals consumed as prey) were not anticipated to change. As a result, prey items were not assessed further with respect to potential wildlife health effects and no residual health impacts due to changes to prey item quality were identified.

# 4.5 Water and Fish Quality

#### 4.5.1 Problem Formulation

Similar to the human health assessment, effects on wildlife health were evaluated based on the waterbodies expected to be affected by discharges from the Project. Locations that were identified by the water quality effects assessment were assessed in the HHERA (Table 3.5-1 in Section 3.5.1). The concentrations of the COPCs identified in Section 3.5.1 (Table 3.5-2) were based upon comparison to screening values that are protective of human health and aquatic life; the only available screening values for application to wildlife are the Livestock Watering Guidelines from CCME and the British Columbia Ministry of Environment (BC MOE). For substances for which screening guidelines were available, all predicted concentrations were less than these guidelines; however, given that these guidelines are generally only for select parameters and are not intended to be protective of fish consumption (with the exception of selenium), screening values have been derived (Table 4.5-1) using the methods described in Sample et al. (1996) except allometric scaling of TRVs was not undertaken (Allard et al. 2010). The common loon was selected to represent fish-eating birds; no fish-eating mammals were identified (Table 4.5-1).

Table 4.5-1 provides the comparison of the maximum concentrations from all locations and all project phases to the CCME/BC MOE screening values and the derived screening values for the common loon.



Table 4.5-1: Chemicals of Potential Concern for Water Quality for Wildlife Receptors

| Chemical   | Approved Project -<br>Maximum Concentration<br>(μg/L) | Expansion Project -<br>Maximum Concentration<br>(µg/L) | CCME / BC MOE<br>Livestock Watering<br>(µg/L) | Screening Value for<br>the Common Loon<br>(µg/L) |
|------------|-------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|--------------------------------------------------|
| Aluminum   | 322                                                   | 5.8                                                    | 5,000                                         | 800                                              |
| Antimony   | 3.0                                                   | 1                                                      | NV                                            | NV                                               |
| Arsenic    | 20                                                    | 30                                                     | 25                                            | 100                                              |
| Barium     | 19                                                    | 19                                                     | NV                                            | 200                                              |
| Beryllium  | 0.025                                                 | 0.033                                                  | 100                                           | NV                                               |
| Bismuth    | 0.033                                                 | 0.069                                                  | NV                                            | NV                                               |
| Boron      |                                                       | 103                                                    | 5000                                          | NV                                               |
| Cadmium    | 0.015                                                 | 0.019                                                  | 80                                            | 7                                                |
| Chromium   | 9.0                                                   | 0.95                                                   | 50                                            | 6,900                                            |
| Cobalt     | 0.53                                                  | 0.75                                                   | 1,000                                         | NV                                               |
| Copper     | 1.8                                                   | 1.8                                                    | 300                                           | 900                                              |
| Iron       | 754                                                   | 82                                                     | NV                                            | NV                                               |
| Lead       |                                                       | 0.4                                                    | 100                                           | NV                                               |
| Lithium    | 1.5                                                   | 2.8                                                    | NV                                            | NV                                               |
| Manganese  | 51                                                    | 132                                                    | NV                                            | NV                                               |
| Mercury    |                                                       | 0.011                                                  | 3                                             | NV                                               |
| Molybdenum | 1.5                                                   | 2.1                                                    | 25                                            | 250                                              |
| Nickel     | 4.6                                                   | 8.7                                                    | 1,000                                         | 4,400                                            |
| Selenium   | 0.59                                                  | 0.4                                                    | 2                                             | 1.7                                              |
| Silver     |                                                       | 0.025                                                  | NV                                            | NV                                               |
| Strontium  | 34                                                    | 66                                                     | NV                                            | NV                                               |
| Thallium   |                                                       | 0.019                                                  | NV                                            | NV                                               |
| Tin        | 0.017                                                 | 0.16                                                   | NV                                            | 370,000                                          |
| Uranium    | 2.8                                                   | 0.69                                                   | 200                                           | NV                                               |
| Vanadium   | 1.2                                                   | 1.2                                                    | 100                                           | NV                                               |
| Zinc       | 2.0                                                   | 3.2                                                    | 2,000                                         | 44                                               |

<sup>--- =</sup> not reported for Approved Project; μg/L = micrograms per litre; NV = no value.



All predicted concentrations were less than these derived screening values. In the absence of a guideline, the aquatic life guidelines were used for screening purposes given that these would be considered protective of wildlife. Aquatic life guidelines are typically more protective than those set for the protection for wildlife and as a result, this is considered to be a conservative approach. As shown in the effects assessment for aquatic life (Section 5.0, below), these substances without derived screening guidelines were less than their respective aquatic life guidelines or toxicity benchmarks. As a result, no COPCs in water (or fish) were identified for evaluation of effects to wildlife, and no residual impacts due to changes in water and fish quality were identified.

### 5.0 EFFECTS ASSESSMENT FOR AQUATIC LIFE

# 5.1 Problem Formulation

The problem formulation develops a focussed understanding of how environmental quality might affect aquatic life near the Project. The problem formulation identifies the aquatic life expected to occur near the Project (i.e., receptors), the exposure pathways between aquatic life and chemicals released by the Approved Project and Expansion Project and the chemicals released by the Approved Project and Expansion Project that may be harmful to aquatic life (i.e., COPCs). The information from the problem formulation is summarized in a CSM, which illustrates the sources of COPCs (i.e., Approved Project and Expansion Project activities resulting in changes in environmental quality), the pathways of exposure and the receptors that are evaluated in the assessment.

Section 1.3 summarizes the environmental media that were assessed with respect to potential changes to environmental quality that may have an effect on human health, wildlife and aquatic life. Of these media, water quality is applicable and was considered further with respect to aquatic life.

Effects on aquatic life were evaluated based on the waterbodies expected to be affected by the Approved Project and Expansion Project. Locations that were identified by the water quality effects assessment were assessed for aquatic life. These locations were identified previously in Section 3.5.1.

### 5.1.1 Receptors

The aquatic valued components identified in Section 1.1 (Table 1.1-3) were selected as receptors for the effects assessment for aquatic life. These receptors include algae, aquatic plants, aquatic invertebrates and fish (Arctic char, Arctic Grayling, Lake Trout, and Round Whitefish). Rationale for selection of these receptors for the effects assessment is provided in Section 1.1.

### 5.1.2 Exposure Pathways

Aquatic receptors may come in contact with, or be exposed to, chemicals in surface water by direct contact with surface water and this exposure pathway was considered further in the effects assessment.



## 5.1.3 Chemicals of Potential Concern

### **Screening Process**

Chemicals of potential concern in surface water were identified using a three-step process:

1) Step 1 of the screening process was previously described in Section 3.5.1. Parameters identified in Step 1 of the screening process were carried forward to Step 2 of the screening process.

- 2) In Step 2 of the screening process, maximum predicted concentrations were compared to long-term or chronic water quality guidelines protective of freshwater aquatic life. The following water quality guidelines were selected for the assessment:
  - Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (CWQG-PFALs) (CCME 2018);
  - Federal Environmental Quality Guidelines (FEQGs) and screening assessments conducted on high priority substances as part of the Chemicals Management Plan pursuant to the Canadian Environmental Protection Act, 1999 (for vanadium, Environment Canada and Health 2010; for cobalt, Environment Canada 2013);
  - United States Environmental Protection Agency (U.S. EPA) National Recommended Water Quality Criteria for Aquatic Life (U.S. EPA 2016a) and other U.S. state criteria (for total dissolved solids [TDS] only);
  - British Columbia Water Quality Guidelines (approved and working water quality guidelines (BCMOE 2018; and BCMOE 2017); and
  - Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC and ARMCANZ 2000).

Preference was given to the CWQG-PFALs, and in the absence of these, the FEQGs/screening assessments. In the absence of these, the other available guidelines were used. These guidelines were considered appropriate for use because supporting documentation that details the development of the guidelines is available and they have been developed using approaches similar to those used in the development of the CWQG-PFALs and FEQGs/screening assessments.

For some parameters, guidelines are dependent on pH, temperature or hardness. For temperature and pH, measured baseline levels were used. Hardness was calculated from predicted calcium and magnesium concentrations in Mammoth Lake. For chromium, which has a guideline that is dependent on speciation, the most conservative guideline was used (i.e., hexavalent chromium).

Comparison to guidelines was considered to represent a conservative evaluation of the potential for the predicted concentrations to elicit adverse effects. Therefore, parameters with predicted concentrations below guidelines were considered to pose no risk to aquatic life and were not identified as COPCs. If the predicted concentration was greater than the guideline, the parameter was identified as a COPC and carried forward in the effects assessment. Parameters without guidelines were carried forward to the next step of the screening process.

3) In Step 3, the modelled parameters were assessed to determine which had the potential to adversely affect aquatic life and which parameters could be excluded from further consideration for one of the following reasons:

The parameter has been shown to have limited potential to affect aquatic life (i.e., innocuous substances);

- Potential effects associated with the parameter was assessed elsewhere in the FEIS; and/or
- The parameter is a component of another parameter which is a more suitable focus point for the aquatic life effects assessment.

Parameters excluded during this step of the screening process were:

- Phosphorus, because potential effects related to eutrophication are assessed elsewhere in the FEIS; and
- Alkalinity, calcium, magnesium, potassium and sodium, because they are components of TDS, another modelled parameter included in the assessment.

#### Results

Based on the screening process outlined above, the following COPCs were identified for aquatic receptors for each modelled location and Project phase (Table 5.1-1 through 5.1-4).

Table 5.1-1: Chemicals of Potential Concern in Surface Waters during Operations

| СОРС              | Mammoth<br>Lake | Lake A15 | Lake A12 | Lake A76 | Downstream<br>Node 1 | Downstream<br>Node 2 | Whale Tail Lake<br>South Basin |  |
|-------------------|-----------------|----------|----------|----------|----------------------|----------------------|--------------------------------|--|
| Approved Project  |                 |          |          |          |                      |                      |                                |  |
| Arsenic           | ✓               | ✓        | ✓        | -        | ×                    | ✓                    | -                              |  |
| Lithium           | ✓               | ✓        | ✓        | -        | ✓                    | ✓                    | -                              |  |
| Strontium         | <b>✓</b>        | <b>✓</b> | ✓        | -        | ✓                    | ✓                    | -                              |  |
| Expansion Project |                 |          |          |          |                      |                      |                                |  |
| Arsenic           | ✓               | ✓        | ✓        | ✓        | ×                    | ✓                    | ✓                              |  |
| Lithium           | <b>✓</b>        | <b>✓</b> | ✓        | <b>✓</b> | ✓                    | <b>✓</b>             | ✓                              |  |
| Strontium         | <b>✓</b>        | ✓        | ✓        | ✓        | ×                    | ✓                    | ✓                              |  |

<sup>✓ =</sup> chemical identified as a COPC for noted location; **x** = chemical not identified as a COPC for noted location; **-** = location not evaluation for Approved/Expansion Project; COPC = chemical of potential concern.



Table 5.1-2: Chemicals of Potential Concern in Surface Waters during Closure (Approved Project) and Closure - Pit Flooding (Expansion)

| COPC              | Mammoth<br>Lake | Lake A15 | Lake A12 | Lake A76 | Downstream<br>Node 1 | Downstream<br>Node 2 | Whale Tail Lake<br>South Basin |
|-------------------|-----------------|----------|----------|----------|----------------------|----------------------|--------------------------------|
| Approved Project  |                 |          |          |          |                      |                      |                                |
| Fluoride          | ✓               | ×        | ×        | -        | ×                    | *                    | -                              |
| Arsenic           | ✓               | ✓        | ✓        | -        | ×                    | ✓                    | -                              |
| Chromium          | ✓               | ×        | ×        | -        | ×                    | ×                    | -                              |
| Lithium           | ✓               | ✓        | ✓        | -        | ✓                    | <b>√</b>             | -                              |
| Strontium         | ✓               | ✓        | ✓        | -        | ✓                    | ✓                    | -                              |
| Expansion Project | <u> </u>        |          |          |          |                      |                      |                                |
| Arsenic           | ✓               | ✓        | ✓        | ✓        | ×                    | ✓                    | ✓                              |
| Lithium           | ✓               | ✓        | ✓        | ✓        | ✓                    | ✓                    | ✓                              |
| Strontium         | ×               | ✓        | ✓        | ✓        | ×                    | ✓                    | ✓                              |

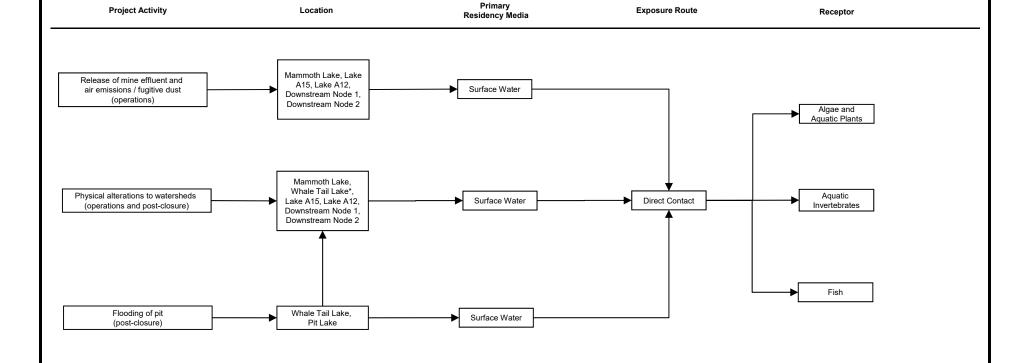
<sup>✓ =</sup> chemical identified as a COPC for noted location; × = chemical not identified as a COPC for noted location; - = location not evaluation for Approved/Expansion Project; COPC = chemical of potential concern.

Table 5.1-3: Chemicals of Potential Concern in Surface Waters during Post-Closure Year 1 (Approved Project) and Closure Maintenance (Expansion Project)

| СОРС      | Mammoth<br>Lake | Lake A15 | Lake A12 | Lake A76 | Downstream<br>Node 1 | Downstream<br>Node 2 | Whale Tail<br>Lake South<br>Basin | Whale Tail Pit | IVR Pit |
|-----------|-----------------|----------|----------|----------|----------------------|----------------------|-----------------------------------|----------------|---------|
| Approved  | Project         |          |          |          |                      |                      |                                   |                |         |
| Arsenic   | ✓               | <b>✓</b> | ✓        | -        | *                    | *                    | -                                 | -              | -       |
| Lithium   | ✓               | <b>✓</b> | ✓        | -        | ✓                    | ✓                    | -                                 | -              | -       |
| Strontium | ✓               | <b>✓</b> | ✓        | -        | ✓                    | ✓                    | -                                 | -              | -       |
| Expansion | Project         | •        |          |          |                      |                      |                                   |                |         |
| Arsenic   | ✓               | ✓        | ✓        | ✓        | *                    | ✓                    | ×                                 | ✓              | ✓       |
| Lithium   | ✓               | ✓        | ✓        | ✓        | ✓                    | ✓                    | ✓                                 | ✓              | ✓       |
| Strontium | ×               | <b>~</b> | ✓        | ✓        | *                    | ✓                    | ✓                                 | ✓              | ✓       |

<sup>✓ =</sup> chemical identified as a COPC for noted location; × = chemical not identified as a COPC for noted location; - = location not evaluation for Approved/Expansion Project; COPC = chemical of potential concern.

Table 5.1-4: Chemicals of Potential Concern in Surface Waters during Long-Term Post-Closure (Approved Project) and Post-Closure (Expansion Project)


| COPC      | Mammoth<br>Lake | Lake<br>A15 | Lake<br>A12 | Lake<br>A76 | Downstream<br>Node 1 | Downstream<br>Node 2 | Whale<br>Tail Lake<br>North | Whale Tail<br>Lake South<br>Basin | Whale<br>Tail<br>Pit | IVR<br>Pit |
|-----------|-----------------|-------------|-------------|-------------|----------------------|----------------------|-----------------------------|-----------------------------------|----------------------|------------|
| Approved  | Project         | •           |             | •           |                      |                      |                             |                                   |                      |            |
| Aluminum  | ×               | ×           | ×           | -           | ×                    | ×                    | ✓                           | -                                 | ×                    | -          |
| Arsenic   | ×               | ×           | ×           | -           | ×                    | ×                    | ✓                           | -                                 | ✓                    | -          |
| Chromium  | ×               | ×           | ×           | -           | ×                    | ×                    | ✓                           | -                                 | ×                    | -          |
| Iron      | ×               | ×           | ×           | -           | ×                    | ×                    | ✓                           | -                                 | ×                    | -          |
| Lithium   | ✓               | ✓           | ✓           | -           | ✓                    | ✓                    | ×                           | -                                 | ✓                    | -          |
| Strontium | ✓               | ✓           | ✓           | -           | ✓                    | ✓                    | ×                           | -                                 | ✓                    | -          |
| Expansion | Project         |             |             | •           |                      |                      |                             |                                   |                      | •          |
| Arsenic   | ✓               | ✓           | ✓           | ✓           | ×                    | ✓                    | -                           | ×                                 | ✓                    | ✓          |
| Lithium   | ✓               | ✓           | ✓           | ✓           | ✓                    | ✓                    | -                           | ✓                                 | ✓                    | ✓          |
| Strontium | ×               | ✓           | ✓           | ×           | ×                    | ✓                    | -                           | ✓                                 | ✓                    | ✓          |

<sup>✓ =</sup> chemical identified as a COPC for noted location; × = chemical not identified as a COPC for noted location; - = location not evaluation for Approved/Expansion Project; COPC = chemical of potential concern.

# 5.1.4 Conceptual Site Model

A CSM was developed for aquatic life based upon the primary pathways identified in Section 1.3 (Figure 5.1-1). The exposure pathways between Approved Project and Expansion Project activities, intermediate residency media (i.e., the aspects of the environment that may experience a change in quality due to project activities/emissions) and receptors are shown to be either complete or incomplete. Where pathways are incomplete, quantitative assessment was not carried out given that environmental quality was not anticipated to change as a result of the Approved Project or Expansion Project. Complete pathways indicate that a change to environmental quality was predicted and a quantitative assessment of potential effects to aquatic life was carried out.

To summarize, the effects assessment for aquatic life considered direct contact with surface water by algae, aquatic plants, aquatic invertebrates, and fish.



#### **NOTES**

\* For post-closure phase only.

#### LEGEND

--- ▶ Pathway incomplete and/or not evaluated

Pathway complete and evaluated

Date: June 17, 2016

Project: 1541520 (3500)



CAD: SG
CKD: TMG

# 5.2 Exposure Assessment and Toxicity Assessment

# **5.2.1** Exposure Assessment

The exposure assessment determines the amount of COPC to which each of the receptors is exposed via each complete exposure pathway. For aquatic life, exposure is expressed as the concentrations of the COPCs in the media to which the receptor is exposed (i.e., in  $\mu$ g/L in water). This permits the evaluation of exposure relative to the toxicity benchmarks that are also expressed in this way.

Exposure of aquatic receptors to COPCs was assessed using predicted maximum concentrations in water at the locations and for the Approved Project and Expansion Project phases summarized in Table 3.5-1. A COPC was only assessed for the locations and phases for which it was identified as a COPC. The predicted maximum concentrations for those locations and phases are provided in Table 5.2-1 to Table 5.2-4.

Table 5.2-1: Exposure Concentrations for Surface Water during Operations

| COPC             | Units | Mammoth<br>Lake | Lake<br>A15 | Lake<br>A12 | Lake<br>A76 | Downstream<br>Node 1 | Downstream<br>Node 2 | Whale Tail Lake<br>South Basin |  |  |  |
|------------------|-------|-----------------|-------------|-------------|-------------|----------------------|----------------------|--------------------------------|--|--|--|
| Approved Project |       |                 |             |             |             |                      |                      |                                |  |  |  |
| Arsenic          | μg/L  | 18              | 16          | 15          | -           | -                    | 6.3                  | -                              |  |  |  |
| Lithium          | μg/L  | 1.7             | 1.5         | 1.5         | -           | 0.58                 | 0.95                 | -                              |  |  |  |
| Strontium        | μg/L  | 43              | 39          | 38          | -           | 11                   | 22                   | -                              |  |  |  |
| Expansion Pro    | ect   |                 |             |             |             |                      |                      |                                |  |  |  |
| Arsenic          | μg/L  | 19              | 14          | 13          | 9.1         | -                    | 7.0                  | 26                             |  |  |  |
| Lithium          | μg/L  | 2.8             | 2.4         | 2.2         | 1.9         | 1.1                  | 1.8                  | 2.4                            |  |  |  |
| Strontium        | μg/L  | 66              | 56          | 51          | 37          | -                    | 33                   | 48                             |  |  |  |

Exposure concentrations are the predicted maximum concentrations;  $\mu g/L = micrograms$  per litre; "-" = not a COPC for this phase and location.

Table 5.2-2: Exposure Concentrations for Surface Water during Closure (Approved Project) and Closure - Pit Flooding (Expansion Project)

| СОРС              | Units | Mammoth<br>Lake | Lake A15 | Lake A12 | Lake A76 | Downstream<br>Node 1 | Downstream<br>Node 2 | Whale Tail Lake<br>South Basin |  |  |  |  |
|-------------------|-------|-----------------|----------|----------|----------|----------------------|----------------------|--------------------------------|--|--|--|--|
| Approved Project  |       |                 |          |          |          |                      |                      |                                |  |  |  |  |
| Fluoride          | mg/L  | 0.14            | -        | -        | -        | -                    | -                    | -                              |  |  |  |  |
| Arsenic           | μg/L  | 20              | 17       | 15       | -        | -                    | 6                    | -                              |  |  |  |  |
| Chromium          | μg/L  | 1.1             | -        | -        | -        | -                    | -                    | -                              |  |  |  |  |
| Lithium           | μg/L  | 2.7             | 2.3      | 2.1      | -        | 0.57                 | 1                    | -                              |  |  |  |  |
| Strontium         | μg/L  | 65              | 53       | 48       | -        | 10                   | 21                   | -                              |  |  |  |  |
| Expansion Project |       |                 |          |          |          |                      |                      |                                |  |  |  |  |
| Arsenic           | μg/L  | 17              | 13       | 12       | 9.1      | -                    | 5.0                  | 26                             |  |  |  |  |
| Lithium           | μg/L  | 2.0             | 1.8      | 1.8      | 1.7      | 1.1                  | 1.4                  | 2.4                            |  |  |  |  |

| COPC      | Units | Mammoth<br>Lake | Lake A15 | Lake A12 | Lake A76 | Downstream<br>Node 1 |    | Whale Tail Lake<br>South Basin |
|-----------|-------|-----------------|----------|----------|----------|----------------------|----|--------------------------------|
| Strontium | μg/L  | -               | 33       | 32       | 29       | -                    | 19 | 48                             |

Exposure concentrations are the predicted maximum concentrations;  $\mu g/L = micrograms$  per litre; mg/L = milligrams per litre; "-" = not a COPC for this phase and location.

Table 5.2-3: Exposure Concentrations for Surface Water during Post-Closure Year 1 (Approved Project) and Closure Maintenance (Expansion Project)

| СОРС        | Units            | Mammoth<br>Lake | Lake<br>A15 | Lake<br>A12 | Lake<br>A76 | Downstream<br>Node 1 | Downstream<br>Node 2 | Whale<br>Tail Lake<br>South<br>Basin | Whale<br>Tail Pit | IVR<br>Pit |  |  |
|-------------|------------------|-----------------|-------------|-------------|-------------|----------------------|----------------------|--------------------------------------|-------------------|------------|--|--|
| Approved P  | Approved Project |                 |             |             |             |                      |                      |                                      |                   |            |  |  |
| Arsenic     | μg/L             | 8.5             | 8.3         | 8.1         | -           | -                    | -                    | -                                    | -                 | -          |  |  |
| Lithium     | μg/L             | 1.9             | 1.8         | 1.7         | -           | 0.64                 | 1.1                  | -                                    | -                 | -          |  |  |
| Strontium   | μg/L             | 45              | 42          | 40          | -           | 12                   | 25                   | -                                    | -                 | -          |  |  |
| Expansion I | Project          |                 |             |             |             |                      |                      |                                      |                   |            |  |  |
| Arsenic     | μg/L             | 25              | 21          | 20          | 17          | -                    | 11                   | -                                    | 30                | 13         |  |  |
| Lithium     | μg/L             | 1.7             | 1.6         | 1.6         | 1.6         | 1.1                  | 1.4                  | 1.1                                  | 1.8               | 1.2        |  |  |
| Strontium   | μg/L             | -               | 26          | 25          | 24          | -                    | 19                   | 16                                   | 28                | 17         |  |  |

Exposure concentrations are the predicted maximum concentrations;  $\mu g = \text{micrograms}$  per litre; "-" = not a COPC for this phase and location.

Table 5.2-4: Exposure Concentrations for Surface Water during Long-Term Post-Closure (Approved Project) and Post-Closure (Expansion Project)

| СОРС        | Units            | Mammoth<br>Lake | Lake<br>A15 | Lake<br>A12 | Lake<br>A76 | Down-<br>stream<br>Node 1 | Down-<br>stream<br>Node 2 | Whale<br>Tail<br>Lake<br>North | Whale<br>Tail<br>Lake<br>South | Whale<br>Tail Pit | IVR<br>Pit |
|-------------|------------------|-----------------|-------------|-------------|-------------|---------------------------|---------------------------|--------------------------------|--------------------------------|-------------------|------------|
| Approved P  | Approved Project |                 |             |             |             |                           |                           |                                |                                |                   |            |
| Aluminum    | μg/L             | -               | -           | -           | -           | -                         | -                         | 322                            | -                              | -                 | -          |
| Arsenic     | μg/L             | -               | -           | -           | -           | -                         | -                         | 5.7                            | -                              | 10                | -          |
| Chromium    | μg/L             | =               | -           | -           | -           | -                         | -                         | 9                              | -                              | =                 | -          |
| Iron        | μg/L             | =               | -           | -           | -           | -                         | -                         | 754                            | -                              | -                 | -          |
| Lithium     | μg/L             | 1.1             | 1.1         | 1           | -           | 0.57                      | 0.81                      | -                              | -                              | 1.5               | -          |
| Strontium   | μg/L             | 26              | 24          | 23          | -           | 10                        | 17                        | -                              | -                              | 34                | -          |
| Expansion I | Project          |                 |             |             |             |                           |                           |                                |                                |                   |            |
| Arsenic     | μg/L             | 21              | 18          | 17          | 16          | -                         | 11                        | -                              | -                              | 22                | 12         |
| Lithium     | μg/L             | 1.6             | 1.5         | 1.5         | 1.6         | 1.1                       | 1.4                       | -                              | 1.1                            | 1.6               | 1.2        |
| Strontium   | μg/L             | -               | 24          | 23          | -           | -                         | 18                        | -                              | 16                             | 24                | 17         |

Exposure concentrations are the predicted maximum concentrations;  $\mu g/L = micrograms$  per litre; "-" = not a COPC for this phase and location.

### 5.2.2 Toxicity Assessment

The toxicity assessment characterizes potential effects associated with COPCs. It provides a basis for evaluating what is an acceptable exposure and what level of exposure may adversely affect the receptors. This involves determining concentrations that receptors can be exposed to without adverse effects. For aquatic life, this is expressed as an acceptable concentration in the media to which the receptor is exposed (i.e., in water in µg/L) and is referred to as the toxicity benchmark. These values are used as thresholds for comparison with exposure concentrations during risk characterization.

A toxicity assessment was completed to develop toxicity benchmarks for each of the COPCs identified in Section 5.1.3. The chronic toxicity benchmark derivation approach for each COPC was as follows:

- Fluoride and Arsenic: For fluoride, selection of a chronic toxicity benchmark recently derived using the Species Sensitivity Distribution (SSD) approach (McPherson et al. 2014) and for arsenic, development of a chronic toxicity benchmark using the SSD approach (Volume 6, Appendix 6-N). The SSD approach incorporates toxicity data from multiple species and allows for the determination of a benchmark that is protective of the aquatic community.
- Aluminum: Adoption of the U.S. EPA criterion continuous concentration (CCC) for freshwater aquatic life (U.S. EPA 2016a) as the chronic toxicity benchmark. Recent publications indicate that the complexation of aluminum under natural conditions yields reduced bioavailability and toxicity relative to the test conditions used in laboratory exposures (Wilson 2012). Factors that ameliorate toxicity of aluminum to freshwater aquatic life include complexation to dissolved organic matter (DOM), high water hardness and antagonistic (protective) effects of other elements including calcium, fluoride, and silicon (Gensemer and Playle 1999). In particular, aluminum toxicity is strongly influenced by the pH of the local environment, with increases in solubility/bioavailability and toxicity occurring as pH decreases below 6.5. Therefore, it was considered prudent to consider these exposure and toxicity modifying factors (ETMFs) in the development of a toxicity benchmark for aluminum. However, a technically defensible benchmark that reflects the full suite of ETMFs likely to be relevant to the Project could not be derived due to a lack of data. For example, focusing the literature review to exclude data with pH values that are not applicable to the Project (i.e., pH <6.5) would result in the exclusion of the majority of the data. The remaining limited dataset would reflect a range of exposure regimes that would also likely overstate the bioavailability of aluminum because they do not address the other factors known to ameliorate toxicity. As a result, the U.S. EPA criterion was adopted as the benchmark for aluminum. The U.S. EPA criterion was adopted over the CWQG-PFAL because of the lack of information regarding how the later was derived.
- Chromium, lithium and strontium: Selection of the lowest acceptable chronic toxicity values for use as the toxicity benchmarks. A search of the ECOTOXicology (ECOTOX) database (U.S. EPA 2016b) was done in 2016 to identify the lowest acceptable chronic toxicity values for use as the toxicity benchmarks (no new studies were identified in an updated search completed in October of 2018). The search included endpoints based on development, growth, population changes, reproduction and survival. The selection of toxicity values as benchmarks was based on the following order of precedence:
  - EC<sub>x</sub>/IC<sub>x</sub> representing a no-effects threshold;
  - EC<sub>10</sub>/IC<sub>10</sub>;
  - EC<sub>11-25</sub>/IC<sub>11-25</sub>;



 Maximum Allowable Toxicant Concentration (MATC), calculated by taking the geometric mean of the NOEC and LOEC reported for a given test. The procedure can yield results that are comparable to IC<sub>25</sub> results, as discussed for example in U.S. EPA (2007);

- No Observed Effect Concentration (NOEC);
- Lowest Observed Effect Concentration (LOEC);
- EC<sub>26-49</sub>/IC<sub>26-49</sub>; and
- Non-lethal EC<sub>50</sub>/IC<sub>50</sub>.
- Iron: Selection of a bioassessment-based benchmark. Iron bioavailability and toxicity to aquatic life in freshwater environments is complex and it is challenging to obtain meaningful toxicity data for this metal from laboratory studies. As an alternative approach to assess iron toxicity in the freshwater environment, Linton et al. (2007) established bioassessment-based benchmarks for total iron using field-based research. In brief, the decline in the maximum abundance of organisms along a gradient of increasing iron concentrations for eight different families of benthic invertebrates was modelled using field data from streams of West Virginia, USA. Two benchmarks were derived: 210 µg/L, which corresponds to no or minimal changes in community structure and function, and 1,740 µg/L, which corresponds to slight to moderate changes in community structure and function. These field-based benchmarks represent the most recent, available field-based research on iron toxicity and they address both the direct (toxic) and indirect (physical) effects of iron. The benchmarks were derived based on stream invertebrates such as mayflies, which have been reported as the most sensitive to iron (Phippen et al. 2008). The upper benchmark is similar to benchmarks derived by other researchers (e.g., 1.7 mg/L by Randall et al. [1999] based on laboratory tests with Daphnia magna) and to international criteria for iron (e.g., U.S. EPA 2016a; BC MOE 2016). The British Columbia Ministry used the work of Linton et al. (2007) in support of their guideline of 1 mg/L (Phippen et al. 2008). The U.S. EPA acute criterion of 1 mg/L for total iron was assumed to be protective of aquatic life "based on field observations principally" (U.S. EPA 1976). Thus, 1.74 mg/L was selected as the toxicity benchmark for iron.

The toxicity benchmarks for each COPC are summarized in Table 5.2-5.

Table 5.2-5: Toxicity Benchmarks for Chemicals of Potential Concern in Surface Water

| COPC      | Units | Toxicity<br>Benchmark | Basis and Source of Toxicity Benchmark                                                                                                                                                                                                                                                                                 |
|-----------|-------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fluoride  | mg/L  | 1.94                  | Generic chronic effect benchmark derived using the SSD approach (McPherson et al. 2014); $HC_5$ of 16 aquatic species (5 fish, 7 invertebrates, 4 algae/aquatic plants); considered to be conservatively protective because does not consider factors that can reduce toxicity (e.g., water hardness and temperature). |
| Aluminum  | μg/L  | 87                    | U.S. EPA criterion continuous concentration (U.S. EPA 2016a).                                                                                                                                                                                                                                                          |
| Arsenic   | μg/L  | 28                    | Toxicity benchmark derived using the SSD approach; HC₅ of 28 aquatic species (3 fish, 1 amphibian, 9 invertebrates, 15 algae/aquatic plants).                                                                                                                                                                          |
| Chromium  | μg/L  | 5                     | Lowest reported and acceptable chronic toxicity value in the U.S. EPA ECOTOX database (U.S. EPA 2016b); 14-d MATC for reproduction in <i>Ceriodaphnia dubia</i> exposed to Cr(VI) (Hickey 1989).                                                                                                                       |
| Iron      | μg/L  | 1,740                 | Bioassessment-based benchmark for total iron developed using field-based research (Linton et al. 2007); allows for slight to moderate change to benthic community population structure while protecting the structure and function of the ecosystem.                                                                   |
| Lithium   | μg/L  | 250                   | Lowest reported and acceptable chronic toxicity value in the U.S. EPA ECOTOX database (U.S. EPA 2016b); 26-d MATC for growth of fathead minnow ( <i>Pimephales promelas</i> ) (Long et al. 1998).                                                                                                                      |
| Strontium | μg/L  | 315                   | Lowest reported and acceptable chronic toxicity value in the U.S. EPA ECOTOX database (U.S. EPA 2016b); 7-d LC <sub>18</sub> for <i>Hyalella azteca</i> (Borgmann et al. 2005).                                                                                                                                        |

COPC = chemical of potential concern;  $HC_5$  = hazardous concentration to 5% of species; d = day; MATC = maximum acceptable toxicant concentration;  $LC_{18}$  = lethal concentration required to kill 18% of the test population; Cr(VI) = hexavalent chromium; SSD = species sensitivity distribution; mg/L = milligrams per litre;  $\mu g/L$  = micrograms per litre.

#### 5.3 Risk Characterization

Risk characterization determines the potential for risks to aquatic receptors. Risks to aquatic receptors were assessed on a quantitative basis by calculating HQs. The HQ is the ratio of the estimated exposure concentration from the exposure assessment (i.e., predicted concentration of COPC in surface water) to the chronic toxicity benchmark developed in the toxicity assessment. A target HQ of one was used in the assessment which is consistent with current guidance (CCME 1996). An HQ of less than one indicates that risks to aquatic life are not expected. An HQ of greater than one indicates the potential for risks to aquatic life. Chemicals of potential concern with HQs greater than one were considered further in the residual impact classification (Section 6.0).

#### 5.3.1 Fluoride, Iron, Lithium and Strontium

The HQs for fluoride, iron, lithium and strontium were less than one for all modelled locations and Project phases, indicating that risks to aquatic life from these COPCs are negligible (Table 5.3-1 through Table 5.3-4).

Table 5.3-1: Hazard Quotients for Surface Water during Operations

| СОРС             | Mammoth<br>Lake | Lake A15 | Lake A12 | Lake A76 | Downstream<br>Node 1 | Downstream<br>Node 2 | Whale Tail<br>Lake South<br>Basin |  |  |
|------------------|-----------------|----------|----------|----------|----------------------|----------------------|-----------------------------------|--|--|
| Approved Project |                 |          |          |          |                      |                      |                                   |  |  |
| Arsenic          | 0.64            | 0.57     | 0.54     | -        | -                    | 0.23                 | -                                 |  |  |
| Lithium          | 0.0068          | 0.0060   | 0.0060   | -        | 0.0023               | 0.0038               | -                                 |  |  |
| Strontium        | 0.14            | 0.12     | 0.12     | -        | 0.035                | 0.070                | -                                 |  |  |
| Expansion Proje  | ct              |          |          |          |                      |                      |                                   |  |  |
| Arsenic          | 0.68            | 0.50     | 0.46     | 0.33     | -                    | 0.25                 | 0.93                              |  |  |
| Lithium          | 0.011           | 0.0096   | 0.0088   | 0.0076   | 0.0044               | 0.0072               | 0.0096                            |  |  |
| Strontium        | 0.21            | 0.18     | 0.16     | 0.12     | -                    | 0.10                 | 0.15                              |  |  |

Shaded and bold text = hazard quotient > 1; "-" = Not a COPC for this phase and location; COPC = chemical of potential concern.

Table 3-B-2: Hazard Quotients for Surface Water during Closure (Approved Project) Closure Pit Flooding (Expansion Project)

| СОРС             | Mammoth Lake | Lake A15 | Lake A12 | Lake A76 | Downstream<br>Node 1 | Downstream<br>Node 2 | Whale Tail<br>Lake South<br>Basin |  |  |
|------------------|--------------|----------|----------|----------|----------------------|----------------------|-----------------------------------|--|--|
| Approved Project |              |          |          |          |                      |                      |                                   |  |  |
| Fluoride         | 0.072        | -        | -        | -        | -                    | -                    | -                                 |  |  |
| Arsenic          | 0.71         | 0.61     | 0.54     | -        | -                    | 0.21                 | -                                 |  |  |
| Chromium         | 0.22         | -        | -        | -        | -                    | -                    | -                                 |  |  |
| Lithium          | 0.011        | 0.0092   | 0.0084   | -        | 0.0023               | 0.0040               | -                                 |  |  |
| Strontium        | 0.21         | 0.17     | 0.15     | -        | 0.03                 | 0.067                | -                                 |  |  |
| Expansion Pr     | oject        |          |          |          |                      |                      |                                   |  |  |
| Arsenic          | 0.61         | 0.46     | 0.43     | 0.33     | -                    | 0.18                 | 0.93                              |  |  |
| Lithium          | 0.0080       | 0.0072   | 0.0072   | 0.0068   | 0.0044               | 0.0056               | 0.0096                            |  |  |
| Strontium        | -            | 0.10     | 0.10     | 0.092    | -                    | 0.060                | 0.15                              |  |  |

Shaded and bold text = hazard quotient > 1; "-" = Not a COPC for this phase and location; COPC = chemical of potential concern.

Table 5.3-3: Hazard Quotients for Surface Water during Post-Closure Year 1 (Approved Project) and Closure Maintenance (Expansion Project)

| СОРС             | Mammoth<br>Lake | Lake A15 | Lake A12 | Lake A76 | Down-<br>stream<br>Node 1 | Down-<br>stream<br>Node 2 | Whale Tail<br>Lake<br>South<br>Basin | Whale Tail<br>Pit | IVR Pit |
|------------------|-----------------|----------|----------|----------|---------------------------|---------------------------|--------------------------------------|-------------------|---------|
| Approved Project |                 |          |          |          |                           |                           |                                      |                   |         |
| Arsenic          | 0.30            | 0.30     | 0.29     | -        | -                         | -                         | -                                    | -                 | -       |
| Lithium          | 0.0076          | 0.0072   | 0.0068   | -        | 0.0026                    | 0.0044                    | -                                    | -                 | -       |
| Strontiu<br>m    | 0.14            | 0.13     | 0.13     | -        | 0.038                     | 0.079                     | -                                    | -                 | -       |
| Expansio         | n Project       |          |          |          |                           |                           |                                      |                   |         |
| Arsenic          | 0.89            | 0.75     | 0.71     | 0.61     | -                         | 0.39                      | -                                    | 1.1               | 0.46    |
| Lithium          | 0.0068          | 0.0064   | 0.0064   | 0.0064   | 0.0044                    | 0.0056                    | 0.0044                               | 0.0072            | 0.0048  |
| Strontiu<br>m    | -               | 0.083    | 0.079    | 0.076    | -                         | 0.060                     | 0.051                                | 0.089             | 0.054   |

Shaded and bold text = hazard quotient > 1; "-" = Not a COPC for this phase and location; COPC = chemical of potential concern.

Table 5.3-4: Hazard Quotients for Surface Water during Long-Term Post-Closure (Approved Project) and Post-Closure (Expansion Project)

| COPC       | Mammoth<br>Lake  | Lake<br>A15 | Lake<br>A12 | Lake<br>A76 | Down-<br>stream<br>Node 1 | Down-<br>stream<br>Node 2 | Whale<br>Tail<br>Lake<br>North | Whale Tail<br>Lake South<br>Basin | Whale<br>Tail Pit | IVR Pit |
|------------|------------------|-------------|-------------|-------------|---------------------------|---------------------------|--------------------------------|-----------------------------------|-------------------|---------|
| Approved I | Approved Project |             |             |             |                           |                           |                                |                                   |                   |         |
| Aluminum   | -                | -           | -           | -           | -                         | -                         | 3.7                            | -                                 | -                 | -       |
| Arsenic    | -                | -           | -           | -           | -                         | -                         | 0.20                           | -                                 | 0.36              | -       |
| Chromium   | -                | -           | -           | -           | -                         | -                         | 1.8                            | -                                 | -                 | -       |
| Iron       | -                | -           | -           | -           | -                         | -                         | 0.43                           | -                                 | -                 | -       |
| Lithium    | 0.0044           | 0.0044      | 0.0040      | -           | 0.0023                    | 0.0032                    | -                              | -                                 | 0.0060            | -       |
| Strontium  | 0.083            | 0.076       | 0.073       | -           | 0.032                     | 0.054                     | -                              | -                                 | 0.108             | -       |
| Expansion  | Project          |             |             |             |                           |                           |                                |                                   |                   |         |
| Arsenic    | 0.75             | 0.64        | 0.61        | 0.57        | -                         | 0.39                      | -                              | -                                 | 0.79              | 0.43    |
| Lithium    | 0.0064           | 0.0060      | 0.0060      | 0.0064      | 0.0044                    | 0.0056                    | -                              | 0.0044                            | 0.0064            | 0.0048  |
| Strontium  | -                | 0.076       | 0.073       | -           | =                         | 0.057                     | =                              | 0.051                             | 0.076             | 0.054   |

Shaded and bold text = hazard quotient > 1; "-" = Not a COPC for this phase and location; COPC = chemical of potential concern.

#### 5.3.2 Aluminum, Arsenic, and Chromium

Hazard quotients for aluminum, arsenic, and chromium were less than one for all modelled locations and Project phases with the exception of the HQs for Whale Tail Pit during Expansion Project closure maintenance (HQ of 1.1 for arsenic) and Whale Tail Lake during Approved Project late post-closure (HQs of 3.7 and 1.8 for aluminum and chromium, respectively) (Table 5.3-1 through Table 5.3-4). Therefore, aluminum and chromium in Whale Tail Lake during post-closure for the Approved Project and arsenic in Whale Tail Pit for the Expansion Project were considered further in the residual impact classification (Section 6.0).

## 6.0 RESIDUAL IMPACT CLASSIFICATION

Residual impact classification was carried out using the methods described in Volume 3, Section 3.7. The residual impact classification was carried out for VCs and substances that may be associated with a potential residual impact as identified in the HHERA. No residual impacts were identified for human health or wildlife, but residual impacts were identified for aquatic life.

As discussed in Section 5.3.2, the HQs for aluminum and chromium for aquatic life were greater than the target HQ of one for Whale Tail Lake during post-closure, and the HQ for arsenic for aquatic life was greater than the target HQ of one for Whale Tail Pit during the Expansion Project closure maintenance. However, until the water quality in Whale Tail Pit meets the SSWQO the dyke will be maintained; therefore, it would not constitute fish habitat. There is no residual effect during the Expansion Project Post-closure phase; therefore, arsenic was not considered a risk for aquatic life.

Therefore, these COPCs were considered further in the residual impact classification. The following subsections evaluate potential residual impacts associated with aluminum and chromium.

#### 6.1 Aluminum

The result of the residual impact assessment for aluminum in Whale Tail Lake North Basin during post-closure (late) for the Approved Project is provided in Table 6.1-1. When all criteria are considered, impacts to aquatic life resulting from aluminum at this location and for this phase of the Approved Project are expected to be not significant.

### 6.2 Chromium

The result of the residual impact assessment for chromium in Whale Tail Lake North Basin during post-closure (late) for the Approved Project is provided in Table 6.1-2. When all criteria are considered, impacts to aquatic life resulting from chromium at this location and for this phase of the Approved Project are expected to be not significant.



Table 6.1-1: Residual Impact Assessment for Aquatic Life for Aluminum

| Assessment<br>Criterion  | Assigned<br>Level | Rationale for Assigned Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Direction                | Negative          | The toxicity benchmarks are intended to identify the potential for risks to aquatic life; therefore, where an HQ is greater than one, it indicates that risks to aquatic life are possible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Magnitude <sup>(a)</sup> | Low               | A low level was assigned because the calculated HQ was 3.7 (i.e., HQ was greater than 1 but less than 10).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Geographic<br>Extent     | Local             | The potential effect is confined to Whale Tail Lake North Basin for the Approved Project (no impacts were identified for aluminum for the Expansion Project).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Duration                 | Unknown           | The potential effect is evident during the one year of monthly predictions representing Year 10 of post-closure (Approved Project only).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Frequency                | Continuous        | The potential effect is evident during the one year of monthly predictions representing Year 10 of post-closure (Approved Project only).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Reversibility            | Reversible        | The effect may result in impacts on sensitive individuals but it is unlikely to result in population-level effects.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Likelihood               | Unlikely          | <ul> <li>The likelihood of an effect on aquatic life is considered unlikely because:</li> <li>The predicted HQ &gt; 1 was predicted for the Approved Project only; no impacts were identified for the Expansion Project.</li> <li>Aluminum can be extremely toxic under acidic (pH&lt;6) or alkaline (pH&gt;8) conditions, but has relatively low toxicity to freshwater aquatic life between pH 6 and 8 such that "it is not a toxicological problem in the majority of freshwater environments" (Wilson 2012, p 70). Baseline pH in Whale Tail Lake ranges upwards from pH 6.5.</li> <li>As summarized in Wilson (2012), the U.S. EPA criterion (and toxicity benchmark used in this assessment) is highly conservative. For example, the criterion is based on "acid soluble" aluminum (acidified to pH &lt;2 then 0.45 μm filtered) rather than dissolved aluminum. The criterion does not consider the formation of exposure and toxicity modifying complexes. In particular, complexation with DOC reduces aluminum bioavailability and toxicity; however, aluminum also forms complexes with chloride, fluoride, sulphate, nitrate and phosphate. Furthermore, differences in the aging of aluminum stock solutions before their dilution and delivery to toxicity test exposure tanks may have resulted in unrealistic toxicity in the criteria database – "transient and highly toxic effects can occur within the first seconds after a dosing solution is prepared, which can disappear following a suitable again period that can be as short as a few minutes (Wilson 2012, p 77).</li> <li>HQs were calculated using total aluminum concentrations and a benchmark based on total aluminum. However, total aluminum may include forms that are not biologically reactive such as those organically complexed or adsorbed to particulates. Thus, use of total aluminum concentrations and a benchmark based on total aluminum concentration to aquatic biota (BCMOE 1988). The BCMOE provides a long-term average water quality guideline for freshwater aquatic life at pH ≥6.5 for dissolved aluminum</li></ul> |

<sup>(</sup>a) Magnitude for aquatic life risk is as follows: Low = 1< HQ ≤10; Moderate = 10 < HQ ≤ 100; High = HQ > 100.

DOC = dissolved organic carbon; HQ = hazard quotient.



Table 6.1-2: Residual Impact Assessment for Aquatic Life for Chromium

| Assessment<br>Criterion  | Assigned<br>Level | Rationale for Assigned Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Direction                | Negative          | The toxicity benchmarks are intended to identify the potential for risks to aquatic life; therefore, where an HQ is greater than one, it indicates that risks to aquatic life are possible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Magnitude <sup>(a)</sup> | Low               | A low level was assigned because the calculated HQ was 1.8 (i.e., HQ was greater than 1 but less than 10).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Geographic<br>Extent     | Local             | The potential effect is confined to Whale Tail Lake North Basin for the Approved Project (no impacts were identified for chromium for the Expansion Project).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Duration                 | Unknown           | The potential effect is evident during the one year of monthly predictions representing Year 10 of post-closure (Approved Project only).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Frequency                | Continuous        | The potential effect is evident during the one year of monthly predictions representing Year 10 of post-closure (Approved Project only).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Reversibility            | Reversible        | The effect may result in impacts on sensitive individuals but it is unlikely to result in population-level effects.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Likelihood               | Unlikely          | The likelihood of an effect on aquatic life is considered unlikely because:  The predicted HQ > 1 was predicted for the Approved Project only; no impacts were identified for the Expansion Project.  Predicted exposure concentrations for Whale Tail Lake North Basin are for total chromium. Chromium can exist in nine different oxidation forms; however, it is found most commonly in the trivalent (Cr³+, or Cr [III]) and hexavalent (Cr⁵+, or Cr [VI]) states in the environment. The toxicity, mobility, and bioavailability of chromium are highly dependent on these two valence states. In natural waters, Cr [VI] is more soluble, mobile and toxic than Cr [III]. Cr [VI] is the principal species found in surface waters (CCME 1999); therefore, the benchmark developed for chromium is for chromium (VI). However, if some fraction of the total concentration in Whale Tail Lake is Cr(III), the benchmark based on Cr (VI) may overestimate toxicity.  The toxicity benchmark represents the lowest reported and acceptable chronic toxicity value in the U.S. EPA ECOTOX database (U.S. EPA 2016b) and is thus considered to be conservative. The benchmark is a 14-d MATC of 5 µg/L for reproduction in <i>Ceriodaphnia dubia</i> exposed to Cr(VI) (Hickey 1989). In another study with <i>Ceriodaphnia dubia</i> , Baral et al. (2006) identified a 7-d IC₂₅ for reproduction of 20 µg/L. Predicted chromium concentrations in Whale Tail Lake (9 µg/L) are below the effect concentration reported by Baral et al. (2006). The next lowest reported and acceptable toxicity value is a 28-d IC₃ for growth of <i>Daphnia schodleri</i> of 6.4 µg/L (Arzate-Cardenas and Martinez-Jeronimo 2012), and predicted chromium concentrations are also higher than this value. However, other daphnid species were less sensitive to chromium with effect concentrations ranging from 50 µg/L for <i>Daphnia magna</i> to 71 µg/L for <i>Daphnia carinata</i> (Hickey 1989) and predicted concentrations in Whale Tail Lake are below these effect concentrations. Therefore, although effects to highly sensitive aquatic invertebr |

<sup>(</sup>a) Magnitude for aquatic life risk is as follows: Low = 1< HQ ≤10; Moderate = 10 < HQ ≤ 100; High = HQ > 100.



HQ = hazard quotient;  $Cr^{6+}$  and Cr(VI) = hexavalent chromium;  $Cr^{3+}$  and Cr(III) = trivalent chromium; MATC = maximum acceptable toxicant concentration; d = day;  $IC_x = inhibitory$  concentration (concentration at which x% impairment occurs in a response variable (e.g., reproduction)).

# 7.0 CUMULATIVE EFFECTS ASSESSMENT

Cumulative effects to air quality and surface water quality (Volume 4 and 6, respectively; Agnico Eagle 2018b) are expected to be negligible. Therefore, the subsequent effects to human health, wildlife and aquatic life are also expected to be negligible.

# 8.0 UNCERTAINTY

Table 8-1: Uncertainties in the Human Health and Ecological Risk Assessment

| Source of Uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Overestimate/<br>Underestimate/<br>Neutral? |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Baseline Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |
| The maximum concentrations of measured data from air, soil, vegetation, water, and fish tissue were used to represent baseline in the HHERA. For screening purposes, the maximum concentrations plus 10% were used when determining whether predictions were expected to be measurably greater than baseline. This is considered to be a reasonable approach by neither over- nor underestimating the potential range of baseline concentrations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Neutral                                     |
| Model Predictions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |
| The concentrations of COPCs in air considered in the HHERA were the predicted maximum concentrations from the 5-year modelling dataset. It was conservatively assumed that the maximum emissions would occur throughout each phase of the Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Overestimate                                |
| The concentrations of COPCs in water considered in the HHERA were the maximum monthly predictions out of one year of modelled data considering the maximum emissions from each phase of the Project. It was conservatively assumed that the maximum concentration could occur throughout each phase of the Project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Overestimate                                |
| HHERA Assumptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |
| Time spent at grave sites in the LSA is expected to be minimal. In general terms, visiting grave sites out on the land is not typically done, but people may stop and say a prayer or otherwise pay their respects if they happen across a grave site during their travels. However, the terrain in this area makes travel very difficult, such that even access by all-terrain vehicle in the summer is difficult, so the most likely access would be during the winter via skidoo. The presence of the haul road may make travel easier to this area, provided it is in the direction that people want to go. While it is possible that people may pass through this area on their way to the Back River, which is a good fishing spot, gas is expensive and the fisher would have to bring enough with them to get to Back River and back (as there is no way to get gas at Back River), and they will likely be going as quickly as possible to conserve gas and will not stop at grave sites (P. Burt, 2016, pers. comm.). | Overestimate                                |
| Considering the above, time spent at Grave Sites 4 and 30 was considered to be 1.5 hours per day, which is a default time spent outdoors (Health Canada 2012), for 10 days per year. This would assume that a person may stop at a grave site both on their way to Back River and during their travel back, assuming they make the trip to Back River five times per year. This is considered to be an overestimation of time spent at a grave site in the LSA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             |
| Although some caribou hunting could occur in the area, the areas identified in the TK report specifically identified two locations for muskox hunting, which is typically hunted when caribou are not available, and then can only be hunted in limited amounts based upon restrictions in the area (Golder 2015). It was considered that muskox hunting might occur for up to 14 days per year (i.e., a two-week trip or up to seven weekend trips). Exposure was considered to occur for 24 hours per day each day, as people would be spending most time outdoors and camping on the land.                                                                                                                                                                                                                                                                                                                                                                                                                                   | Overestimate                                |



| Source of Uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Overestimate/<br>Underestimate/<br>Neutral? |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| The TK report identified two locations as fishing locations (Pipedream Lake and Nutipilik Lake). Neither of these locations were anticipated to be affected by the Approved Project nor Expansion Project, as these lakes were not included in the water quality modeling. Therefore, the assumption that people could spend up to 14 days per year (i.e., a two-week trip or up to seven weekend trips) at the lakes and water bodies included in the water quality model, consuming surface water as drinking water and consuming fish caught from the modeled lakes and water bodies, is considered to be an overprediction of potential exposure.                                                                                                                                                                                                                                                                                        | Overestimate                                |
| The site-specific water-to-fish BCFs derived in the HHERA relied upon measured baseline surface water quality data from Whale Tail Lake and Mammoth Lake. For the BCFs relied upon in the assessment of risks to human health, BCFs were derived considering tissue residue data for trout, while those for wildlife were derived using tissue residue data for forage fish. These BCFs may be biased high given that tissue residues that were less than their respective laboratory method detection limit were considered to be detections at the detection limit (i.e., a tissue residue of <0.010 mg/kg wet weight was considered to be equal to 0.010 mg/kg wet weight). Site-specific BCFs were not derived for substances for which all samples were less than method detection limits in either water, fish, or both. In these cases, BCFs from the literature were used.                                                           | Overestimate                                |
| For the Expansion Project, a refined approach to estimating fish tissue concentrations of arsenic based upon predicted water concentrations was used. The equation from Williams (2006) is based upon field and laboratory studies in which whole body tissue residues of total arsenic were measured in comparison to total arsenic in water, resulting in a range of BCFs and BAFs. A concentration-dependent relationship was established that was statistically significant, and this relationship is considered to provide a realistic estimation of fish tissue concentrations.                                                                                                                                                                                                                                                                                                                                                        | Neutral-<br>Overestimate                    |
| The toxicity reference values used in the HHERA for human health and wildlife were selected from reputable sources including Health Canada and the U.S. EPA. The TRVs used in this RA are generally based on the most sensitive endpoints, with the application of safety factors to protect sensitive subpopulations. The uncertainty associated with TRVs is highly dependent on the number of studies available, and whether the key study was based on humans (low uncertainty) or small mammals (high uncertainty) in the case of the human health effects assessment, or the key study was based on species similar to those observed on-site (low uncertainty) or dissimilar (high uncertainty) in the case of the wildlife and aquatic effects assessments. When few studies are available, several types of safety factors must be applied to account for this uncertainty (e.g., factors for inter- and intraspecies sensitivity). | Neutral-<br>Overestimate                    |
| The toxicity benchmarks for COPCs do not account for all of the factors known to modify exposure and toxicity to aquatic life.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Overestimate                                |
| Individual survival, growth, reproduction, development and population changes were used as endpoints for aquatic life but these do not necessarily translate to population-level effects which are considered ecologically relevant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Overestimate                                |
| The potential for additive effects between COPCs was not considered for aquatic life.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Neutral-<br>Underestimate                   |
| Acclimation and adaptation were not considered for aquatic life although natural populations chronically exposed to metals often exhibit increased tolerance to exposure relative to unexposed or naïve populations such as those used in laboratory studies upon which the toxicity benchmarks are based.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Overestimate                                |
| Other uncertainties are described in Table 6.1-1 and Table 6.1-2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Overestimate                                |

 $\mathsf{BAF} = \mathsf{bioaccumulation} \ \mathsf{factors}; \ \mathsf{BCF} = \mathsf{bioconcentration} \ \mathsf{factors}; \ \mathsf{COPC} = \mathsf{chemicals} \ \mathsf{of} \ \mathsf{potential} \ \mathsf{concern}; \ \mathsf{TRV} = \mathsf{toxicity} \ \mathsf{reference} \ \mathsf{value}$ 



# 9.0 MONITORING AND FOLLOW-UP

Monitoring and follow-up as described by other disciplines in the FEIS are applicable. These include monitoring of air quality criteria air contaminants (e.g., NO<sub>2</sub>) and water quality (e.g. arsenic), which are implemented for both the Approved Project and Expansion Project. No additional monitoring or follow-up measures were identified in the HHERA.



## 10.0 CLOSURE

We trust this document satisfies you current requirements. If you have any questions or require further assistance, please do not hesitate to contact the undersigned.

Golder Associates Ltd.

for:

Andrea Amendola, B.Sc., QPRA Senior Risk Assessor & Toxicologist

Ruwan Jayasinghe, M.Sc., QPRA, DABT Senior Toxicologist & Risk Assessor

**David Brown** 

Principal, Project Director

David Besun

AA/MZG/DB/jr

Golder and the G logo are trademarks of Golder Associates Corporation

 $https://golder associates. share point. com/sites/1896037/03\_feis\_typea\_amendment/p3500\_hhera/updated \ hhera may 2019/19115196-306-rpt-expansion project\_hhera-rev0. docx and the proposal project of the project of$ 

#### 11.0 REFERENCES

Agnico Eagle (Agnico Eagle Mines Limited). 2012. Wildlife Screening Level Risk Assessment. Meadowbank Gold Project. Prepared by Baxter Consulting on behalf of Agnico Eagle in accordance with NIRB Project Certificate No. 004. June, 2012.

- Agnico Eagle. 2014a. Proposed All-Weather Exploration access road from the Meadowbank Mine to the Site: Baseline traditional Knowledge Report.
- Agnico Eagle. 2015a. 2014 Human Health Risk Assessment for Country foods. Meadowbank Gold Project. In accordance with NIRB Project Certificate No. 004. Prepared by Agnico Eagle Mines Limited Meadowbank Division. February, 2015.
- Agnico Eagle. 2015b. 2014 Wildlife Screening Level Risk Assessment. Meadowbank Gold Project. In accordance with NIRB Project Certificate No. 004. Prepared by Agnico Eagle Mines Limited Meadowbank Division. March, 2015.
- Agnico Eagle. 2016a. Whale Tail Pit Project Meadowbank Mine Final Environmental Impact Statement and Type A Water Licence Amendments. Amendment/Reconsideration of the Project Certificate (No. 004/ File No. 03MN107) and Amendment to the Type A Water Licence (No. 2AM-MEA1525). Submitted to the Nunavut Impact Review Board. June 2016.
- Agnico Eagle. 2016b. Whale Tail Pit Open House-Naujaat, October 2016.
- Agnico Eagle. 2017. Baker Lake HTO Meeting Q1-February 10, 2017.
- Agnico Eagle. 2018a. Agnico Eagle Mines: Whale Tail Pit Amendment. July 10-13 Community Consultation Notes. July 10-13, 2018, Baker Lake and Chesterfield Inlet, Nunavut.
- Agnico Eagle. 2018b. Final Environmental Impact Statement Addendum, Whale Tail Pit Expansion Project. Submitted to Nunavut Impact Review Board. December 2018.
- Allard, P., A. Fairbrother, B.K. Hope, R.N. Hull, M.S. Johnson, L. Kapustka, G. Mann, B. McDonald, and B.E. Sample. 2010. Recommendations for the development and application of wildlife toxicity reference values. Integrated Environmental Assessment and Management 6(1): 28-37.
- ANZECC and ARMCANZ (Australia and New Zealand Environment and Conservation Council and the Agriculture and Resource Management Council of Australia and New Zealand). 2000. Australian and New Zealand guidelines for fresh and marine water quality. Canberra, Australia.
- ATSDR (Agency for Toxic Substances and Disease Registry). Minimal Risk Levels, August 2018. Available at: http://www.atsdr.cdc.gov/mrls/mrllist.asp. Accessed October 2018.
- Azimuth (Azimuth Consulting Group Inc.). 2006. Wildlife Screening Level Risk Assessment for the Meadowbank Gold Project. Prepared for Cumberland Resources. March 2006.
- BC MOE (British Columbia Ministry of the Environment. 2017. Working Water Quality Guidelines for British Columbia (2017). Online: https://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/wqgs-wqos/bc\_env\_working\_water\_quality\_guidelines.pdf.



BC MOE. 2018. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture. Summary Report. March 2018. Online: https://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/wqgs-wqos/approved-wqgs/wqg\_summary\_aquaticlife\_wildlife\_agri.pdf.

- Borgmann UY, Doyle P and Dixon DG. 2005. Toxicity of sixty-three metals and metalloids to *Hyalella azteca* at two levels of water hardness. Environ Toxicol Chem 24: 641-652.
- Burt, P. 2016. Outcrop Ltd., Rankin Inlet, NU. Email. April 15 and 18, 2016.
- CalEPA (California Environmental Protection Agency). 2016. All OEHHA Acute, 8-Hour and Chronic Reference Exposure Levels (chRELs) as of June 2016. Air Toxicology and Epidemiology, Office of Environmental Health Hazard Assessment. Available at: http://www.oehha.ca.gov/air/allrels.html. Accessed October 2018.
- CCME (Canadian Council of Ministers of the Environment). 1996. A Framework for Ecological Risk Assessment: General Guidance. CCME. Winnipeg, MB.
- CCME. 1997. A Framework for Ecological Risk Assessment: Technical Appendices. CCME. Winnipeg, MB.
- CCME. 1999a. Canadian National Ambient Air Quality Objectives: Process and status. Canadian Environmental Quality Guidelines, 1999. CCME. Winnipeg, MB.
- CCME. 1999b. Canadian Environmental Quality Guidelines. Winnipeg, MB.
- CCME. Current to October 2018. Canadian Water Quality Guidelines for the Protection of Aquatic Life. Online: http://st-ts.ccme.ca/en/index.html
- Cumberland (Cumberland Resources Ltd.). 2005a. Meadowbank Gold Project, Final Environmental Impact Statement. October 2005. Cumberland Resources Ltd. Vancouver, British Columbia.
- Environment Canada and Health Canada. 2010. Screening Assessment for the Challenge, Vanadium oxide (Vanadium pentoxide). Chemical Abstracts Service Registry Number 1314-62-1. September 2010.
- Environment Canada. 2013. Federal Environmental Quality Guidelines. Cobalt. Canadian Environmental Protection Act, 1999. February 2013.
- Gensemer RW and Playle RC. 1999. The bioavailability and toxicity of aluminum in aquatic environments. Crit Rev Env Sci Tec 29: 315-450.
- Golder. 2015. Inuit Qaujimajatuqangit Baseline Report. Agnico Eagle Mines: Meadowbank Division Whale Tail Pit Project. Draft Report. October 2015. Report No. Doc 036-1524321.1700 Ver A.
- Health Canada. 2010. Federal Contaminated Site Risk Assessment in Canada Part II: Health Canada Toxicological Reference Values and Chemical-Specific Factors. Health Canada. Ottawa, ON.
- Health Canada. 2012. Federal Contaminated Site Risk Assessment in Canada Part I: Guidance on Human Health Preliminary Quantitative Risk Assessment Version 2.0. Health Canada. Ottawa, ON.
- Health Canada. 2017. Guidelines for Canadian Drinking Water Quality Summary Table (February 2017). Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada. Ottawa, ON.



Hickey, C. 1989. Sensitivity of four New Zealand cladoceran species and *Daphnia magna* to aquatic toxicants. New Zeal J Mar Fresh 23:131–137.

- HSDB (Hazardous Substances Data Bank). 2002. HSDB Substance File for Bismuth Compounds. Accessed June 10, 2016, last updated/revised November 8, 2002. <a href="http://toxnet.nlm.nih.gov/cgi-bin/sis/search">http://toxnet.nlm.nih.gov/cgi-bin/sis/search</a>
- HSDB. 2007. HSDB Substance File for Sodium. Accessed October 27, 2018, last updated/revised January 11, 2007. http://toxnet.nlm.nih.gov/cgi-bin/sis/search
- Lamm SH, Engel A, Penn CA, Chen R, Feinleib M. 2006. Arsenic cancer risk confounder in southwest Taiwan Data Set. Environ Health Perspect 114(7): 1077-1082.
- Linton TK, Pacheco MAW, McIntyre DO, Clement WH, Goodrich-Mahoney J. 2007. Development of bioassessment-based benchmarks for iron. Environ Toxicol Chem 26(6): 1291-1298.
- Long KE, Brown RPJr, Woodburn KB. 1998. Lithium chloride: A flow-through embryo-larval toxicity test with the Fathead Minnow, Pimephales promelas Rafinesque. Bull Environ Contam Toxicol 60: 312-317.
- Marcus WL, Rispin AS. 1988. Threshold carcinogenicity using arsenic as an example. In: CR Cothern, MA Mehlman and WL Marcus (eds), Advance Modern Environmental Toxicology, Vol. XV, Risk Assessment and Risk Management of Industrial and Environmental Chemicals, Princeton Publishing Company, Princeton, NJ.
- McPherson CA, Lee DH, Chapmen PM. 2014. Development of a fluoride chronic effects benchmark for aquatic life in freshwater. Environ Toxicol Chem 33(11): 2621-2627.
- MECP (Ontario Ministry of the Environment, Conservation and Parks). 2018. Air Contaminants Benchmarks List: standards, guidelines and screening levels for assessing point of impingement concentrations of air contaminants. Last accessed November 3, 2018. Online: https://www.ontario.ca/page/air-contaminants-benchmarks-list-standards-guidelines-and-screening-levels-assessing-point
- NDOE (Government of Nunavut Department of Environment). 2011. Environmental Guideline for Ambient Air Quality. Department of Environment, Government of Nunavut. Iqaluit, NU.
- NIRB (Nunavut Impact Review Board). 2004. Environmental Impact Statement (EIS) Guidelines for the Meadowbank Project. February 2004.
- NIRB. 2014. *Public Information Meeting Summary Report* September 4, 2014 for the NIRB's monitoring of Agnico Eagle Mines Ltd.'s Meadowbank Gold Project (NIRB File No. 03MN107).
- NIRB. 2015. *Public Information Meetings Summary Report*, September 9 September 11, 2015. Created for the NIRB's Monitoring of Agnico Eagle Mines Ltd.'s Meadowbank Gold Mine Site (NIRB File No. 03MN107).
- NIRB. 2017. Nunavut Impact Review Board's Hearing Regarding the Review of Agnico Eagle Mines Limited's Whale Tail Pit Project Proposal. Hearing held at Baker Lake, Nunavut.
- NIRB (Nunavut Impact Review Board) and NWB (Nunavut Water Board). 2017. Pre-Hearing Conference Decision concerning the Whale Tail Pit Project and an Application for a New Type "A" Water License proposed by Agnico Eagle Mines Limited.



OMOE (Ontario Ministry of the Environment). 2011. Rationale for the Development of Soil and Groundwater Standards for use at Contaminated Sites in Ontario. PIBs #7386e01. OMOE, Standards Development Branch. Ottawa, ON.

- Petito CT, Beck BD. 1990. Evaluation of evidence of nonlinearities in the dose-response curve for arsenic carcinogenesis. Trace Sub Environ Health 24:143-176.
- Phippen B, Horvath C, Nordin R and Nagpal N. 2008. Ambient Water Quality Guidelines for iron. BC Ministry of Environment, Victoria, BC, Canada.
- Randall S, Harper D and Brieriey B. 1999. Ecological and ecophysiological impacts of ferric dosing in reservoirs. Hydrobiologia 395/396: 355-364.
- RIVM (Rijksinstituut Voor Volksgezondheid en Milieu; National Institute of Public Health and the Environment). 2001. Re-evaluation of Human Toxicological Maximum Permissible Risk Levels. RIVM Report No. 711701 025. Bilthoven, Netherlands.
- TCEQ (Texas Commission for Environmental Quality). 2018. Effects Screening Levels, August 2018. Toxicology Division for Air Permitting. Online: https://www.tceq.texas.gov/toxicology/esl/list\_main.html. Accessed August 2018.
- U.S. EPA (United States Environmental Protection Agency). 1976. Quality Criteria for Water. U.S. Environmental Protection Agency. PB-263 943.
- U.S. EPA. 1989. Risk Assessment Guidance for Superfund Volume 1: Human Health Evaluation Manual. Office of Remedial Response. Washington, DC.
- U.S. EPA. 2005a. Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities. U.S. EPA, Office of Solid Waste. EPA520-R-05-006. Washington, DC.
- U.S. EPA. 2005b. Guidance for Developing Ecological Soil Screening Levels. February 2005 (Revised). U.S. EPA, Office of Solid Waste and Emergency Response. OSWER Directive 9285.7-55. Washington, DC.
- U.S. EPA. 2007. Aquatic Life Ambient Freshwater Quality Criteria Copper. 2007 Revision. Washington, DC, USA. Online: http://www.epa.gov/waterscience/criteria/aqlife.html. Accessed on February 27, 2012.
- U.S. EPA. 2016a. National Recommended Water Quality Criteria Aquatic Life Criteria Table. Available online at: https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table.
- U.S. EPA. 2016b. ECOTOX User Guide: ECOTOXicology Database System. Version 4.0. Available: http://www.epa.gov/ecotox/.
- U.S. EPA. 2018a. Integrated Risk Information System. Available at: http://www.epa.gov/iris/index.html. Accessed October 2018.
- U.S. EPA. 2018b. Regional Screening Levels (RSL) Generic Tables (May 2018). Available at: http://www.epa.gov/region9/superfund/prg/. Accessed October 2018.
- WHO (World Health Organization). 2000. Air Quality Guidelines for Europe, 2nd Ed. World Health Organization Regional Publications, European Series, No. 91. Copenhagen, Denmark.



- WHO. 2005. Air Quality Guidelines Global Update. Report on Working Group Meeting. Bonn, Germany.
- Williams L, Schoof RA, Yager JW, Goodrich-Mahoney JW. 2006. Arsenic bioaccumulation in freshwater fishes. Human and Ecological Risk Assessment 12(5):904-923.
- Wilson RW. 2012. Aluminum. In Wood CM, Farrell AP, Brauner CJ (eds), Homeostasis and Toxicology of Non-Essential Metals. Fish Physiology Volume 31B, Academic Press/Elsevier, New York, NY, USA, pp 67-123.
- Wilson Scientific Consulting Inc. 2006. Human Health Risk Assessment of Consumption of Country Foods for the Meadowbank Gold Project. DRAFT. Prepared for Cumberland Resources. March 3, 2006.

#### **ATTACHMENT A**

Baseline Conditions for Soil and Vegetation

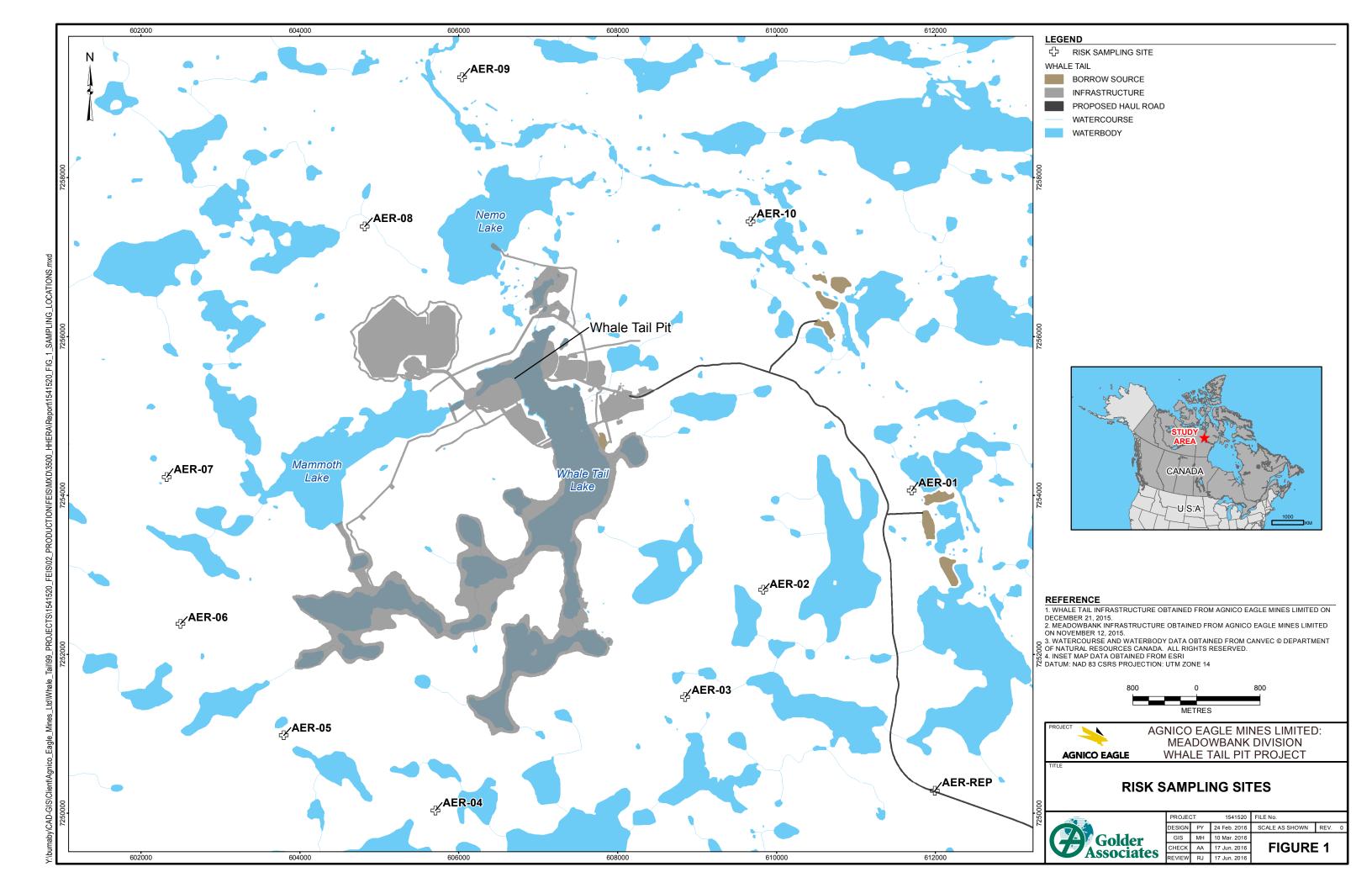
#### INTRODUCTION

To evaluate the potential for adverse health effects to terrestrial life associated with changes in environmental quality due to chemical releases from the Project, the existing (or baseline) conditions of the environment must first be understood. This attachment provides baseline conditions for soil and vegetation.

#### **METHODS**

A field program was carried out to characterize the existing (or baseline) conditions of soil and vegetation quality. The program included the collection of soil and vegetation samples, and analysis of the samples for concentrations of metals. These baseline concentrations in soil and vegetation were used to provide context to the predicted changes to environmental quality as a result of the Project.

The soil and vegetation sampling program was designed to include the collection of vegetation samples of interest (i.e., berries, sedges [graminoids], and lichens) and co-located soil samples, while taking spatial distribution into account. Vegetation types selected for sampling were identified based on their importance as food for human consumption (e.g., berries) and primary forage type for wildlife considered in the assessment of human and ecological health risk (e.g., sedges [graminoids], and lichens). Soil and vegetation were sampled at 10 locations at the Whale Tail site (Figure 1). Sample collection took place from August 9 to August 16, 2015 and was completed by David Brown of Golder Associates Ltd.


Vegetation samples were collected in 10 sites around the proposed mine area (AER-01 to AER-10) areas where sufficient plant material of a given species was available. One duplicate sample (for soil, lichen, graminoid and berry) was collected at AER-08 and five replicates were taken at the replicate site at the north end of the road (AER-REP). Upon arriving at a suitable sampling site, Universal Transverse Mercator (UTM) coordinates were marked with a Garmin GPSMAP62s Global Positioning System device and photographs were taken in the four cardinal directions. The species of plant was identified and general notes regarding the plant's health and vigour were recorded. Unhealthy plants were only collected when there was insufficient healthy plant material available. Plant material that was dropped during collection was not included in the sample.

Berries were hand-picked and care was taken to avoid removing dust from their surface. They were collected from a minimum of three plants. Effort was made to pick ripe berries that someone would consider edible. Graminoids were collected by cutting the base of the aboveground growth with clean, titanium blade, non-stick coated scissors and folding the stems gently. Reindeer lichen (*Cladina* sp.) was lifted from the ground surface.

At least 10 g of each vegetation type was collected and placed in a plastic sample bag. Once the sample was collected, the air was squeezed out of the bag and the bag was sealed closed. Sample bags were labelled with the date, location, time, and sample identification, and then placed inside a second plastic bag. The second bag was labelled with the same information as the first bag and sealed closed.

Disposable nitrile gloves were worn to collect samples and gloves were changed between each sample to avoid cross contamination. Scissors were cleaned with phosphate-free dish detergent and rinsed with distilled water between each sample.





Soil samples were collected at each location where berries, graminoids, or lichen samples were collected. Before collecting the samples, leaves and debris were cleared from the ground or water surface. A clean plastic hand trowel was used to collect a sample from the rooting zone or top 15 cm which was placed into a plastic Ziploc bag. All bags of soil were sealed and labelled with the location, date and sample identification. The sample bags were refrigerated until they were delivered to the laboratory for analysis. All samples were recorded on a chain-of-custody form, which was also placed in the coolers prior to delivery to the analytical laboratory. Laboratory analyses on vegetation and soil samples were performed by ALS Laboratories in Winnipeg, Manitoba. Samples were analyzed for the following suite of parameters:

- moisture content (plant tissue only);
- pH (soil only); and
- total metals (plant tissue and soil unless otherwise indicated): aluminum, antimony, arsenic, barium, beryllium, bismuth, boron, cadmium, calcium, cesium (plant tissue only), chromium (total), cobalt, copper, iron, lead, lithium, magnesium, manganese, mercury, molybdenum, nickel, phosphorus, potassium, rubidium (plant tissue only), selenium, silver (soil only),sodium, strontium, tellurium (plant tissue only), thallium, tin, titanium (soil only), uranium, vanadium, and zinc.

Mercury in vegetation was analyzed using cold vapour atomic absorption. Total metals in soil and vegetation were analyzed using inductively coupled plasma atomic emission spectroscopy and inductively coupled plasma mass spectrometry, respectively. The laboratory certificates of analyses are provided in Annex A-1.

A summary of soil and vegetation samples collected during the 2015 field program is presented in Table 1.

Table 1: Soil and Vegetation Sampled During the 2015 Field Program

| Media            | Number of Moisture Content Samples <sup>(a)</sup> | Number of Metals Samples <sup>(a)</sup> |
|------------------|---------------------------------------------------|-----------------------------------------|
| Soil             | -                                                 | 16 (1)                                  |
| Total Soil       | 0                                                 | 16 (1)                                  |
| Lichen           | 16 (1)                                            | 16 (1)                                  |
| Grass/sedges     | 16 (1)                                            | 16 (1)                                  |
| Berries          | 16 (1)                                            | 16 (1)                                  |
| Total Vegetation | 48 (3)                                            | 48 (3)                                  |

<sup>(</sup>a) Totals include field duplicate samples. Values in parentheses represent the number of duplicates.

#### **Quality Assurance and Quality Control**

Sample duplicates were collected for Quality Assurance and Quality Control (QA/QC) purposes. Duplicates provide an indication of natural sample variation and the reproducibility of the laboratory test methods. Duplicate samples were collected with 10% frequency, excluding the five replicates at AER-REP.

To obtain duplicate vegetation samples, two samples were collected from the sample location following the sampling methods described in above. Twice as much plant material was collected and the plant material was mixed thoroughly before dividing it into two bags. To obtain duplicate soil samples, two samples were collected from the



sample location following the methods described above, but twice as much sample was collected. The sample was mixed thoroughly in a large plastic bag before dividing it into plastic bags. Each duplicate sample was submitted to the laboratory for analyses via the methods and for the parameters identified above.

The results of the duplicate pair were expressed as a Relative Percent Difference (RPD). The RPD is an indicator of laboratory precision and sample heterogeneity. Lower RPD numbers indicate better precision in laboratory analysis and sample homogeneity. The formula for computing the RPD is given in the equation below:

$$RPD = \frac{|Sample - Duplicate|}{Mean} \times 100$$

Where:

RPD = relative percent difference (%);

Sample = concentration in original sample ( $\mu g/g$ );

Duplicate = concentration in duplicate sample ( $\mu g/g$ ); and

Mean = average of the original sample and the duplicate sample ( $\mu g/g$ ).

Relative percent differences were not calculated if concentrations were not detected in one or both of the duplicate samples. The calculated RPDs were compared to criteria established by the OMOE (2011). The QA/QC RPD criterion is 30% for all metals in soil (OMOE 2011). A criterion of 30% was used for vegetation, consistent with industry standard.

#### **SOIL AND VEGETATION RESULTS**

The results of the soil and sediment sampling program are presented in Annex A-2.

Soil collected around vegetation had concentrations of antimony, boron, selenium, silver and tin less than detection limits in all samples collected (Annex A-2, Table 1). The minimum and maximum concentrations for all metals in all samples were within an order of magnitude of each other, with the exception of chromium (i.e., 140 mg/kg in AER-SOIL-01 and 14.1 mg/kg in AER-SOIL-05), demonstrating there was little variability overall in metal concentrations between soil samples. Soil pH ranged from 4.59 to 5.69.

The results of the lichen sampling program are presented in Annex A-2, Table 2. Most metals were detected in lichen tissue. Only concentrations of tellurium were less than detection limits in all samples collected; lithium was not detected in all but one sample (AER-LI-10) and tin was not detected in all but two samples (AER-LI-07 and AER-LI-10). Some variability was observed in the metal concentrations between samples. The difference between the minimum and maximum concentrations were more than one order of magnitude for the following metals: aluminum, beryllium, bismuth, cesium, cobalt, iron, lead, manganese, mercury, nickel, rubidium, selenium, strontium, thallium, uranium, vanadium, and zirconium. Moisture content also varied widely, ranging from 10.1 to 81.0%.

The results of the graminoid sampling program are presented in Annex A-2, Table 3. As in lichen tissue, most metals were detected in graminoid tissue. Only concentrations of lithium were less than detection limits in all samples collected; tin was not detected in all but one sample (AER-GR-10) and tellurium was not detected in all but two samples (AER-GR-06 and AER-GR-10). Some variability was observed in the metal concentrations between samples. The difference between the minimum and maximum concentrations were more than one order of



magnitude for the following metals: antimony, lead, molybdenum, rubidium, thallium, and uranium. Moisture content ranged from 36.1 to 62.0%.

The results of the berry sampling program are presented in Annex A-2, Table 4. Concentrations of metals were less than detection limits in all samples collected for the following metals: antimony, arsenic, beryllium, bismuth, chromium, lead, lithium, mercury, selenium, sodium, tellurium, thallium, uranium, vanadium, and zirconium. Cesium and molybdenum were detected in one sample (AER-BER-04). Variability was observed in the metal concentrations between samples. The maximum concentration was over an order of magnitude greater than the minimum concentration for the following metals: aluminum, iron, and manganese. Moisture content ranged from 75.5 to 88.1%.

#### **Quality Assurance and Quality Control**

One duplicate sample of each vegetation type (berry, graminoid, and lichen) and co-located soil was collected during the 2015 sampling program at location AER-08 and analyzed for metals.

The RPDs for duplicates for metal concentrations in soil are presented in Annex A-2, Table 5. The RPDs for the soil duplicates were within the 30% criterion for all metals with the exception of mercury (95%) and zirconium (56%). These results suggest that the soils in the vicinity of the vegetation have a low degree of heterogeneity.

The RPDs for duplicates for metal concentrations in vegetation are presented in Annex A-2, Table 6. The RPDs for the lichen and graminoid duplicates were above the 30% criterion for 26 and 19 metal parameters, respectively. These results suggest that the metals concentrations in lichen and graminoid vegetation have some degree of heterogeneity. The RPD for the berry duplicates did not exceed the 30% criterion for any of the metal parameters, indicating that metals concentrations in berries are relatively homogenous.

Duplicate samples that have larger variation indicate high sample variability, which can be attributed to laboratory analysis, sampling technique or natural sample heterogeneity. Specific procedures were followed in the field during the collection of duplicate soil samples (i.e., sample homogenization) to reduce the effect of sampling techniques on variability. In addition, the results of the laboratory QA/QC analyses performed by ALS on both soil and vegetation fell within acceptable control limits for most samples, suggesting laboratory analyses would not be a large source of variability for either of these media.

For soils, the majority of the variability observed is likely attributed to the natural heterogeneity of soils. Almost all natural soils are highly variable and rarely homogeneous. Soil heterogeneity can be classified into two main categories. The first is lithological heterogeneity, which can be manifested in the form of different lithology within a more uniform soil mass. The second source of heterogeneity can be attributed to inherent spatial soil variability, which is the variation of soil properties from one point to another in space due to different deposition conditions.

#### REFERENCES

OMOE (Ontario Ministry of the Environment). 2011. Rationale for the Development of Soil and Groundwater Standards for use at Contaminated Sites in Ontario. PIBs #7386e01. OMOE, Standards Development Branch. Ottawa, ON.



**ANNEX A-1** 

**Laboratory Certificates of Analyses** 



**Environment Department** 

AGNICO-EAGLE MINES LTD. Date Received: 21-AUG-15

ATTN: RYAN VANENGEN Report Date: 30-SEP-15 15:00 (MT)

Meadowbank Division Version: FINAL

Baker Lake Nunavut XOC 0A0 Client Phone: 775-651-2974

# Certificate of Analysis

Lab Work Order #: L1661327

Project P.O. #: NOT SUBMITTED

Job Reference: MEADOWBANK SLRA

C of C Numbers: Legal Site Desc:

Ariel Tang, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company



L1661327 CONTD.... PAGE 2 of 17

30-SEP-15 15:00 (MT) Version: FINAL

#### ALS ENVIRONMENTAL ANALYTICAL REPORT

L1661327-1 L1661327-5 L1661327-9 L1661327-13 L1661327-17 Sample ID Description Soil Soil Soil Soil Soil 14-AUG-15 14-AUG-15 14-AUG-15 14-AUG-15 14-AUG-15 Sampled Date Sampled Time AER-SOIL-01 AER-SOIL-02 AER-SOIL-03 AER-SOIL-REP2 AER-SOIL-REP3 Client ID Grouping **Analyte** SOIL **Physical Tests** pH (1:2 soil:water) (pH) 5.17 4.92 5.41 5.37 5.67 Aluminum (AI) (mg/kg) Metals 9150 6270 6030 6200 9960 Antimony (Sb) (mg/kg) < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 Arsenic (As) (mg/kg) 8.23 3.39 2.87 4.41 5.66 Barium (Ba) (mg/kg) 14.1 21.9 19.5 21.6 46.5 Beryllium (Be) (mg/kg) 0.22 0.29 0.28 0.33 0.54 Bismuth (Bi) (mg/kg) < 0.20 < 0.20 < 0.20 < 0.20 0.27 Boron (B) (mg/kg) < 5.0 <5.0 < 5.0 <5.0 <5.0 Cadmium (Cd) (mg/kg) 0.061 0.047 0.026 0.036 0.047 Calcium (Ca) (mg/kg) 1550 1970 2680 2650 3110 Chromium (Cr) (mg/kg) 140 27.2 44.3 23.3 38.7 Cobalt (Co) (mg/kg) 11.6 4.49 4.20 5.49 7.96 Copper (Cu) (mg/kg) 5.50 4.99 4.76 8.02 4.34 Iron (Fe) (mg/kg) 21200 14800 13600 17800 21500 Lead (Pb) (mg/kg) 5.16 5.86 5.10 5.71 7.46 Lithium (Li) (mg/kg) 11.3 6.4 7.5 7.4 11.7 Magnesium (Mg) (mg/kg) 8810 3210 3640 3520 5210 Manganese (Mn) (mg/kg) 450 185 147 206 310 Mercury (Hg) (mg/kg) 0.0119 0.0184 < 0.0050 < 0.0050 0.0107 Molybdenum (Mo) (mg/kg) 0.43 0.47 0.25 0.32 0.51 Nickel (Ni) (mg/kg) 62.9 14.3 17.7 14.9 24.5 Phosphorus (P) (mg/kg) 328 325 487 615 479 Potassium (K) (mg/kg) 650 630 670 740 1230 Selenium (Se) (mg/kg) < 0.20 <0.20 < 0.20 < 0.20 < 0.20 Silver (Ag) (mg/kg) < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 Sodium (Na) (mg/kg) 75 <50 <50 52 66 Strontium (Sr) (mg/kg) 19.1 21.3 26.0 24.5 32.4 Thallium (TI) (mg/kg) 0.052 < 0.050 0.060 0.056 0.102 Tin (Sn) (mg/kg) <2.0 <2.0 <2.0 <2.0 <2.0 Titanium (Ti) (mg/kg) 374 535 583 491 754 Uranium (U) (mg/kg) 0.900 1.80 1.99 2.17 2.77 Vanadium (V) (mg/kg) 24.0 12.4 13.0 12.2 17.6 Zinc (Zn) (mg/kg) 28.9 36.5 25.5 23.4 41.4 Zirconium (Zr) (mg/kg) <1.0 1.6 7.0 6.9 4.7

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1661327 CONTD.... PAGE 3 of 17

30-SEP-15 15:00 (MT) Version: FINAL

|                |                          | Sample ID<br>Description<br>Sampled Date<br>Sampled Time<br>Client ID | L1661327-21<br>Soil<br>14-AUG-15<br>AER-SOIL-REP4 | L1661327-25<br>Soil<br>14-AUG-15<br>AER-SOIL-REP5 | L1661327-29<br>Soil<br>14-AUG-15<br>AER-SOIL-04 | L1661327-33<br>Soil<br>14-AUG-15<br>AER-SOIL-05 | L1661327-37<br>Soil<br>14-AUG-15<br>AER-SOIL-06 |
|----------------|--------------------------|-----------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| Grouping       | Analyte                  |                                                                       |                                                   |                                                   |                                                 |                                                 |                                                 |
| SOIL           | -                        |                                                                       |                                                   |                                                   |                                                 |                                                 |                                                 |
| Physical Tests | pH (1:2 soil:water) (pH) |                                                                       | 5.47                                              | 5.64                                              | 5.62                                            | 5.05                                            | 5.25                                            |
| Metals         | Aluminum (Al) (mg/kg)    |                                                                       | 6140                                              | 8860                                              | 7190                                            | 6300                                            | 7310                                            |
|                | Antimony (Sb) (mg/kg)    |                                                                       | <0.10                                             | <0.10                                             | <0.10                                           | <0.10                                           | <0.10                                           |
|                | Arsenic (As) (mg/kg)     |                                                                       | 3.26                                              | 4.14                                              | 2.45                                            | 2.04                                            | 2.72                                            |
|                | Barium (Ba) (mg/kg)      |                                                                       | 22.3                                              | 32.9                                              | 39.7                                            | 28.2                                            | 32.8                                            |
|                | Beryllium (Be) (mg/kg)   |                                                                       | 0.28                                              | 0.44                                              | 0.40                                            | 0.36                                            | 0.43                                            |
|                | Bismuth (Bi) (mg/kg)     |                                                                       | <0.20                                             | 0.22                                              | 0.20                                            | 0.21                                            | 0.30                                            |
|                | Boron (B) (mg/kg)        |                                                                       | <5.0                                              | <5.0                                              | <5.0                                            | <5.0                                            | <5.0                                            |
|                | Cadmium (Cd) (mg/kg)     |                                                                       | 0.031                                             | 0.043                                             | 0.032                                           | 0.037                                           | 0.035                                           |
|                | Calcium (Ca) (mg/kg)     |                                                                       | 2670                                              | 3440                                              | 3070                                            | 2020                                            | 3170                                            |
|                | Chromium (Cr) (mg/kg)    |                                                                       | 23.5                                              | 32.7                                              | 14.9                                            | 14.1                                            | 19.8                                            |
|                | Cobalt (Co) (mg/kg)      |                                                                       | 4.82                                              | 7.25                                              | 4.98                                            | 4.08                                            | 4.74                                            |
|                | Copper (Cu) (mg/kg)      |                                                                       | 4.73                                              | 6.03                                              | 4.44                                            | 3.45                                            | 10.1                                            |
|                | Iron (Fe) (mg/kg)        |                                                                       | 14000                                             | 19300                                             | 16900                                           | 15100                                           | 16600                                           |
|                | Lead (Pb) (mg/kg)        |                                                                       | 5.19                                              | 6.78                                              | 4.95                                            | 5.70                                            | 7.92                                            |
|                | Lithium (Li) (mg/kg)     |                                                                       | 6.7                                               | 10.1                                              | 8.2                                             | 7.2                                             | 8.1                                             |
|                | Magnesium (Mg) (mg/kg)   |                                                                       | 3300                                              | 4650                                              | 3550                                            | 2920                                            | 3440                                            |
|                | Manganese (Mn) (mg/kg)   |                                                                       | 168                                               | 279                                               | 242                                             | 202                                             | 199                                             |
|                | Mercury (Hg) (mg/kg)     |                                                                       | <0.0050                                           | 0.0078                                            | 0.0057                                          | 0.0131                                          | 0.0069                                          |
|                | Molybdenum (Mo) (mg/kg)  |                                                                       | 0.31                                              | 0.41                                              | 0.27                                            | 0.26                                            | 0.32                                            |
|                | Nickel (Ni) (mg/kg)      |                                                                       | 15.8                                              | 19.9                                              | 9.05                                            | 7.87                                            | 10.6                                            |
|                | Phosphorus (P) (mg/kg)   |                                                                       | 455                                               | 507                                               | 520                                             | 361                                             | 551                                             |
|                | Potassium (K) (mg/kg)    |                                                                       | 730                                               | 1060                                              | 710                                             | 690                                             | 830                                             |
|                | Selenium (Se) (mg/kg)    |                                                                       | <0.20                                             | <0.20                                             | <0.20                                           | <0.20                                           | <0.20                                           |
|                | Silver (Ag) (mg/kg)      |                                                                       | <0.10                                             | <0.10                                             | <0.10                                           | <0.10                                           | <0.10                                           |
|                | Sodium (Na) (mg/kg)      |                                                                       | <50                                               | 63                                                | 74                                              | 68                                              | 70                                              |
|                | Strontium (Sr) (mg/kg)   |                                                                       | 29.3                                              | 37.8                                              | 31.8                                            | 21.7                                            | 36.7                                            |
|                | Thallium (TI) (mg/kg)    |                                                                       | 0.052                                             | 0.081                                             | <0.050                                          | 0.053                                           | 0.063                                           |
|                | Tin (Sn) (mg/kg)         |                                                                       | <2.0                                              | <2.0                                              | <2.0                                            | <2.0                                            | <2.0                                            |
|                | Titanium (Ti) (mg/kg)    |                                                                       | 600                                               | 740                                               | 698                                             | 590                                             | 694                                             |
|                | Uranium (U) (mg/kg)      |                                                                       | 1.75                                              | 2.43                                              | 1.47                                            | 1.26                                            | 1.92                                            |
|                | Vanadium (V) (mg/kg)     |                                                                       | 11.8                                              | 16.7                                              | 17.4                                            | 13.3                                            | 15.2                                            |
|                | Zinc (Zn) (mg/kg)        |                                                                       | 25.5                                              | 36.2                                              | 29.2                                            | 27.7                                            | 31.7                                            |
|                | Zirconium (Zr) (mg/kg)   |                                                                       | 5.9                                               | 4.7                                               | 7.1                                             | 1.9                                             | 7.3                                             |
|                |                          |                                                                       |                                                   |                                                   |                                                 |                                                 |                                                 |

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1661327 CONTD....

PAGE 4 of 17

30-SEP-15 15:00 (MT)

Version: FINAL

|                |                          | Sample ID Description Sampled Date Sampled Time Client ID | L1661327-41<br>Soil<br>14-AUG-15<br>AER-SOIL-07 | L1661327-45<br>Soil<br>15-AUG-15<br>AER-SOIL-08 | L1661327-49<br>Soil<br>15-AUG-15<br>AER-SOIL-08-DUP | L1661327-53<br>Soil<br>15-AUG-15<br>AER-SOIL-09 | L1661327-57<br>Soil<br>15-AUG-15<br>AER-SOIL-10 |
|----------------|--------------------------|-----------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| Grouping       | Analyte                  |                                                           |                                                 |                                                 |                                                     |                                                 |                                                 |
| SOIL           |                          |                                                           |                                                 |                                                 |                                                     |                                                 |                                                 |
| Physical Tests | pH (1:2 soil:water) (pH) |                                                           | 4.98                                            | 5.26                                            | 5.62                                                | 5.69                                            | 4.59                                            |
| Metals         | Aluminum (Al) (mg/kg)    |                                                           | 6390                                            | 7190                                            | 8370                                                | 9360                                            | 8450                                            |
|                | Antimony (Sb) (mg/kg)    |                                                           | <0.10                                           | <0.10                                           | <0.10                                               | <0.10                                           | <0.10                                           |
|                | Arsenic (As) (mg/kg)     |                                                           | 3.48                                            | 12.2                                            | 12.9                                                | 8.00                                            | 4.94                                            |
|                | Barium (Ba) (mg/kg)      |                                                           | 21.2                                            | 73.9                                            | 86.8                                                | 48.4                                            | 14.3                                            |
|                | Beryllium (Be) (mg/kg)   |                                                           | 0.31                                            | 0.36                                            | 0.40                                                | 0.35                                            | 0.26                                            |
|                | Bismuth (Bi) (mg/kg)     |                                                           | <0.20                                           | <0.20                                           | <0.20                                               | <0.20                                           | <0.20                                           |
|                | Boron (B) (mg/kg)        |                                                           | <5.0                                            | <5.0                                            | <5.0                                                | <5.0                                            | <5.0                                            |
|                | Cadmium (Cd) (mg/kg)     |                                                           | 0.045                                           | 0.041                                           | 0.042                                               | 0.038                                           | 0.031                                           |
|                | Calcium (Ca) (mg/kg)     |                                                           | 1540                                            | 3150                                            | 3620                                                | 3280                                            | 1130                                            |
|                | Chromium (Cr) (mg/kg)    |                                                           | 29.2                                            | 45.9                                            | 55.1                                                | 94.1                                            | 70.0                                            |
|                | Cobalt (Co) (mg/kg)      |                                                           | 4.27                                            | 7.34                                            | 8.07                                                | 9.10                                            | 6.34                                            |
|                | Copper (Cu) (mg/kg)      |                                                           | 3.47                                            | 6.55                                            | 7.91                                                | 9.71                                            | 2.94                                            |
|                | Iron (Fe) (mg/kg)        |                                                           | 15800                                           | 16300                                           | 18300                                               | 20900                                           | 19400                                           |
|                | Lead (Pb) (mg/kg)        |                                                           | 6.77                                            | 6.11                                            | 6.86                                                | 4.72                                            | 4.60                                            |
|                | Lithium (Li) (mg/kg)     |                                                           | 7.7                                             | 8.7                                             | 10.4                                                | 10.7                                            | 9.3                                             |
|                | Magnesium (Mg) (mg/kg)   |                                                           | 3250                                            | 4930                                            | 5850                                                | 6710                                            | 5870                                            |
|                | Manganese (Mn) (mg/kg)   |                                                           | 169                                             | 264                                             | 280                                                 | 246                                             | 196                                             |
|                | Mercury (Hg) (mg/kg)     |                                                           | 0.0160                                          | 0.0249                                          | 0.0089                                              | 0.0055                                          | 0.0061                                          |
|                | Molybdenum (Mo) (mg/kg)  |                                                           | 0.28                                            | 0.32                                            | 0.33                                                | 0.29                                            | 0.33                                            |
|                | Nickel (Ni) (mg/kg)      |                                                           | 11.0                                            | 23.5                                            | 27.3                                                | 38.7                                            | 33.1                                            |
|                | Phosphorus (P) (mg/kg)   |                                                           | 358                                             | 735                                             | 859                                                 | 755                                             | 232                                             |
|                | Potassium (K) (mg/kg)    |                                                           | 710                                             | 1480                                            | 1890                                                | 1540                                            | 580                                             |
|                | Selenium (Se) (mg/kg)    |                                                           | <0.20                                           | <0.20                                           | <0.20                                               | <0.20                                           | <0.20                                           |
|                | Silver (Ag) (mg/kg)      |                                                           | <0.10                                           | <0.10                                           | <0.10                                               | <0.10                                           | <0.10                                           |
|                | Sodium (Na) (mg/kg)      |                                                           | 53                                              | 66                                              | 85                                                  | 55                                              | <50                                             |
|                | Strontium (Sr) (mg/kg)   |                                                           | 12.7                                            | 36.6                                            | 42.6                                                | 30.0                                            | 21.1                                            |
|                | Thallium (TI) (mg/kg)    |                                                           | 0.053                                           | 0.093                                           | 0.114                                               | 0.087                                           | <0.050                                          |
|                | Tin (Sn) (mg/kg)         |                                                           | <2.0                                            | <2.0                                            | <2.0                                                | <2.0                                            | <2.0                                            |
|                | Titanium (Ti) (mg/kg)    |                                                           | 572                                             | 683                                             | 798                                                 | 716                                             | 304                                             |
|                | Uranium (U) (mg/kg)      |                                                           | 0.962                                           | 1.36                                            | 1.56                                                | 1.30                                            | 0.977                                           |
|                | Vanadium (V) (mg/kg)     |                                                           | 17.0                                            | 20.1                                            | 23.0                                                | 25.0                                            | 18.8                                            |
|                | Zinc (Zn) (mg/kg)        |                                                           | 25.4                                            | 27.6                                            | 31.5                                                | 30.1                                            | 27.8                                            |
|                | Zirconium (Zr) (mg/kg)   |                                                           | 1.8                                             | 2.6                                             | 4.6                                                 | 6.9                                             | 1.2                                             |
|                |                          |                                                           |                                                 |                                                 |                                                     |                                                 |                                                 |

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1661327 CONTD.... PAGE 5 of 17 30-SEP-15 15:00 (MT)

### ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: FINAL

|                | Sample ID<br>Description<br>Sampled Date<br>Sampled Time<br>Client ID | L1661327-61<br>Soil<br>14-AUG-15<br>AER-SOIL-REP1 |  |  |
|----------------|-----------------------------------------------------------------------|---------------------------------------------------|--|--|
| Grouping       | Analyte                                                               |                                                   |  |  |
| SOIL           |                                                                       |                                                   |  |  |
| Physical Tests | pH (1:2 soil:water) (pH)                                              | 5.68                                              |  |  |
| Metals         | Aluminum (Al) (mg/kg)                                                 | 9350                                              |  |  |
|                | Antimony (Sb) (mg/kg)                                                 | <0.10                                             |  |  |
|                | Arsenic (As) (mg/kg)                                                  | 5.13                                              |  |  |
|                | Barium (Ba) (mg/kg)                                                   | 39.2                                              |  |  |
|                | Beryllium (Be) (mg/kg)                                                | 0.53                                              |  |  |
|                | Bismuth (Bi) (mg/kg)                                                  | 0.25                                              |  |  |
|                | Boron (B) (mg/kg)                                                     | <5.0                                              |  |  |
|                | Cadmium (Cd) (mg/kg)                                                  | 0.037                                             |  |  |
|                | Calcium (Ca) (mg/kg)                                                  | 3430                                              |  |  |
|                | Chromium (Cr) (mg/kg)                                                 | 36.7                                              |  |  |
|                | Cobalt (Co) (mg/kg)                                                   | 9.01                                              |  |  |
|                | Copper (Cu) (mg/kg)                                                   | 7.39                                              |  |  |
|                | Iron (Fe) (mg/kg)                                                     | 21200                                             |  |  |
|                | Lead (Pb) (mg/kg)                                                     | 7.37                                              |  |  |
|                | Lithium (Li) (mg/kg)                                                  | 10.7                                              |  |  |
|                | Magnesium (Mg) (mg/kg)                                                | 4990                                              |  |  |
|                | Manganese (Mn) (mg/kg)                                                | 421                                               |  |  |
|                | Mercury (Hg) (mg/kg)                                                  | 0.0084                                            |  |  |
|                | Molybdenum (Mo) (mg/kg)                                               | 0.44                                              |  |  |
|                | Nickel (Ni) (mg/kg)                                                   | 23.6                                              |  |  |
|                | Phosphorus (P) (mg/kg)                                                | 436                                               |  |  |
|                | Potassium (K) (mg/kg)                                                 | 1110                                              |  |  |
|                | Selenium (Se) (mg/kg)                                                 | <0.20                                             |  |  |
|                | Silver (Ag) (mg/kg)                                                   | <0.10                                             |  |  |
|                | Sodium (Na) (mg/kg)                                                   | 113                                               |  |  |
|                | Strontium (Sr) (mg/kg)                                                | 37.6                                              |  |  |
|                | Thallium (TI) (mg/kg)                                                 | 0.091                                             |  |  |
|                | Tin (Sn) (mg/kg)                                                      | <2.0                                              |  |  |
|                | Titanium (Ti) (mg/kg)                                                 | 816                                               |  |  |
|                | Uranium (U) (mg/kg)                                                   | 3.08                                              |  |  |
|                | Vanadium (V) (mg/kg)                                                  | 17.4                                              |  |  |
|                | Zinc (Zn) (mg/kg)                                                     | 36.8                                              |  |  |
|                | Zirconium (Zr) (mg/kg)                                                | 4.7                                               |  |  |
|                |                                                                       |                                                   |  |  |

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1661327 CONTD.... PAGE 6 of 17

PAGE 6 of 17 30-SEP-15 15:00 (MT)

Version: FINAL

|                | Sample ID<br>Description<br>Sampled Date<br>Sampled Time<br>Client ID | L1661327-2<br>Tissue<br>14-AUG-15<br>AER-LI-01 | L1661327-3<br>Tissue<br>14-AUG-15<br>AER-GR-01 | L1661327-4<br>Tissue<br>14-AUG-15<br>AER-BER-01 | L1661327-6<br>Tissue<br>14-AUG-15<br>AER-LI-02 | L1661327-7<br>Tissue<br>14-AUG-15<br>AER-GR-02 |
|----------------|-----------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------------|------------------------------------------------|------------------------------------------------|
| Grouping       | Analyte                                                               |                                                |                                                |                                                 |                                                |                                                |
| TISSUE         |                                                                       |                                                |                                                |                                                 |                                                |                                                |
| Physical Tests | % Moisture (%)                                                        | 15.0                                           | 55.4                                           | 81.9                                            | 12.5                                           | 50.1                                           |
| Metals         | Aluminum (Al)-Total (mg/kg wwt)                                       | 55.1                                           | 12.5                                           | 7.78                                            | 33.1                                           | 27.5                                           |
|                | Antimony (Sb)-Total (mg/kg wwt)                                       | 0.0021                                         | <0.0020                                        | <0.0020                                         | 0.0022                                         | <0.0020                                        |
|                | Arsenic (As)-Total (mg/kg wwt)                                        | 0.0636                                         | 0.0129                                         | <0.0040                                         | 0.0454                                         | 0.0191                                         |
|                | Barium (Ba)-Total (mg/kg wwt)                                         | 5.43                                           | 10.9                                           | 0.150                                           | 7.87                                           | 11.2                                           |
|                | Beryllium (Be)-Total (mg/kg wwt)                                      | 0.0037                                         | <0.0020                                        | <0.0020                                         | 0.0065                                         | 0.0154                                         |
|                | Bismuth (Bi)-Total (mg/kg wwt)                                        | 0.0030                                         | 0.0058                                         | <0.0020                                         | 0.0026                                         | <0.0020                                        |
|                | Boron (B)-Total (mg/kg wwt)                                           | 0.25                                           | 2.34                                           | 0.27                                            | 0.31                                           | 1.44                                           |
|                | Cadmium (Cd)-Total (mg/kg wwt)                                        | 0.0387                                         | 0.0110                                         | <0.0010                                         | 0.0398                                         | 0.0363                                         |
|                | Calcium (Ca)-Total (mg/kg wwt)                                        | 770                                            | 925                                            | 18.0                                            | 1030                                           | 1070                                           |
|                | Cesium (Cs)-Total (mg/kg wwt)                                         | 0.0122                                         | 0.0066                                         | <0.0010                                         | 0.0169                                         | 0.0149                                         |
|                | Chromium (Cr)-Total (mg/kg wwt)                                       | 0.470                                          | 0.109                                          | <0.010                                          | 0.180                                          | 0.144                                          |
|                | Cobalt (Co)-Total (mg/kg wwt)                                         | 0.180                                          | 0.0498                                         | 0.0041                                          | 0.0808                                         | 0.215                                          |
|                | Copper (Cu)-Total (mg/kg wwt)                                         | 0.807                                          | 1.61                                           | 0.062                                           | 0.639                                          | 1.69                                           |
|                | Iron (Fe)-Total (mg/kg wwt)                                           | 80.6                                           | 29.7                                           | 8.14                                            | 46.4                                           | 57.8                                           |
|                | Lead (Pb)-Total (mg/kg wwt)                                           | 0.220                                          | 0.0292                                         | <0.0040                                         | 0.292                                          | 0.104                                          |
|                | Lithium (Li)-Total (mg/kg wwt)                                        | <0.10                                          | <0.10                                          | <0.10                                           | <0.10                                          | <0.10                                          |
|                | Magnesium (Mg)-Total (mg/kg wwt)                                      | 362                                            | 704                                            | 21.7                                            | 217                                            | 553                                            |
|                | Manganese (Mn)-Total (mg/kg wwt)                                      | 74.8                                           | 155                                            | 0.333                                           | 71.3                                           | 325                                            |
|                | Mercury (Hg)-Total (mg/kg wwt)                                        | 0.0443                                         | 0.0053                                         | <0.0010                                         | 0.0714                                         | 0.0083                                         |
|                | Molybdenum (Mo)-Total (mg/kg wwt)                                     | 0.0149                                         | 0.157                                          | <0.0040                                         | 0.0157                                         | 0.197                                          |
|                | Nickel (Ni)-Total (mg/kg wwt)                                         | 0.725                                          | 2.53                                           | 0.135                                           | 0.314                                          | 1.86                                           |
|                | Phosphorus (P)-Total (mg/kg wwt)                                      | 289                                            | 481                                            | 35.1                                            | 209                                            | 365                                            |
|                | Potassium (K)-Total (mg/kg wwt)                                       | 860                                            | 3940                                           | 255                                             | 860                                            | 5080                                           |
|                | Rubidium (Rb)-Total (mg/kg wwt)                                       | 0.962                                          | 1.74                                           | 0.124                                           | 1.93                                           | 6.10                                           |
|                | Selenium (Se)-Total (mg/kg wwt)                                       | 0.031                                          | <0.010                                         | <0.010                                          | 0.045                                          | <0.010                                         |
|                | Sodium (Na)-Total (mg/kg wwt)                                         | 11.2                                           | 7.2                                            | <4.0                                            | 16.0                                           | 9.5                                            |
|                | Strontium (Sr)-Total (mg/kg wwt)                                      | 2.15                                           | 3.57                                           | 0.050                                           | 3.12                                           | 4.99                                           |
|                | Tellurium (Te)-Total (mg/kg wwt)                                      | <0.0040                                        | <0.0040                                        | <0.0040                                         | <0.0040                                        | <0.0040                                        |
|                | Thallium (TI)-Total (mg/kg wwt)                                       | 0.00184                                        | 0.00354                                        | <0.00040                                        | 0.00384                                        | 0.00109                                        |
|                | Tin (Sn)-Total (mg/kg wwt)                                            | <0.020                                         | <0.020                                         | <0.020                                          | <0.020                                         | <0.020                                         |
|                | Uranium (U)-Total (mg/kg wwt)                                         | 0.00701                                        | 0.00112                                        | <0.00040                                        | 0.00761                                        | 0.0164                                         |
|                | Vanadium (V)-Total (mg/kg wwt)                                        | 0.102                                          | 0.023                                          | <0.020                                          | 0.057                                          | 0.034                                          |
|                | Zinc (Zn)-Total (mg/kg wwt)                                           | 11.4                                           | 14.6                                           | 0.41                                            | 10.8                                           | 16.9                                           |
|                | Zirconium (Zr)-Total (mg/kg wwt)                                      | 0.069                                          | <0.040                                         | <0.040                                          | 0.051                                          | 0.042                                          |
|                |                                                                       |                                                |                                                |                                                 |                                                |                                                |

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1661327 CONTD.... PAGE 7 of 17

# ALS ENVIRONMENTAL ANALYTICAL REPORT 30-SEP-15 15:00 (MT)

Version: FINAL

|                | Sample ID<br>Description<br>Sampled Date<br>Sampled Time<br>Client ID | L1661327-8<br>Tissue<br>14-AUG-15<br>AER-BER-02 | L1661327-10<br>Tissue<br>14-AUG-15<br>AER-LI-03 | L1661327-11<br>Tissue<br>14-AUG-15<br>AER-GR-03 | L1661327-12<br>Tissue<br>14-AUG-15<br>AER-BER-03 | L1661327-14<br>Tissue<br>14-AUG-15<br>AER-LI-REP2 |
|----------------|-----------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|--------------------------------------------------|---------------------------------------------------|
| Grouping       | Analyte                                                               |                                                 |                                                 |                                                 |                                                  |                                                   |
| TISSUE         |                                                                       |                                                 |                                                 |                                                 |                                                  |                                                   |
| Physical Tests | % Moisture (%)                                                        | 86.8                                            | 11.3                                            | 40.1                                            | 81.4                                             | 25.5                                              |
| Metals         | Aluminum (Al)-Total (mg/kg wwt)                                       | <0.40                                           | 89.6                                            | 26.1                                            | <0.40                                            | 23.4                                              |
|                | Antimony (Sb)-Total (mg/kg wwt)                                       | <0.0020                                         | 0.0045                                          | <0.0020                                         | <0.0020                                          | <0.0020                                           |
|                | Arsenic (As)-Total (mg/kg wwt)                                        | <0.0040                                         | 0.0923                                          | 0.0312                                          | <0.0040                                          | 0.0444                                            |
|                | Barium (Ba)-Total (mg/kg wwt)                                         | 0.263                                           | 12.6                                            | 16.5                                            | 0.266                                            | 3.61                                              |
|                | Beryllium (Be)-Total (mg/kg wwt)                                      | <0.0020                                         | 0.0123                                          | 0.0051                                          | <0.0020                                          | <0.0020                                           |
|                | Bismuth (Bi)-Total (mg/kg wwt)                                        | <0.0020                                         | 0.0044                                          | <0.0020                                         | <0.0020                                          | 0.0032                                            |
|                | Boron (B)-Total (mg/kg wwt)                                           | <0.20                                           | 0.66                                            | 1.58                                            | <0.20                                            | 0.25                                              |
|                | Cadmium (Cd)-Total (mg/kg wwt)                                        | 0.0011                                          | 0.0555                                          | 0.0135                                          | <0.0010                                          | 0.0358                                            |
|                | Calcium (Ca)-Total (mg/kg wwt)                                        | 25.7                                            | 2330                                            | 1380                                            | 35.6                                             | 745                                               |
|                | Cesium (Cs)-Total (mg/kg wwt)                                         | <0.0010                                         | 0.0249                                          | 0.0104                                          | <0.0010                                          | 0.0076                                            |
|                | Chromium (Cr)-Total (mg/kg wwt)                                       | <0.010                                          | 0.715                                           | 0.348                                           | <0.010                                           | 0.187                                             |
|                | Cobalt (Co)-Total (mg/kg wwt)                                         | <0.0040                                         | 0.287                                           | 0.127                                           | <0.0040                                          | 0.0216                                            |
|                | Copper (Cu)-Total (mg/kg wwt)                                         | 0.084                                           | 1.12                                            | 1.33                                            | 0.213                                            | 0.637                                             |
|                | Iron (Fe)-Total (mg/kg wwt)                                           | <0.60                                           | 145                                             | 61.3                                            | <0.60                                            | 36.4                                              |
|                | Lead (Pb)-Total (mg/kg wwt)                                           | <0.0040                                         | 0.304                                           | 0.0883                                          | <0.0040                                          | 0.205                                             |
|                | Lithium (Li)-Total (mg/kg wwt)                                        | <0.10                                           | <0.10                                           | <0.10                                           | <0.10                                            | <0.10                                             |
|                | Magnesium (Mg)-Total (mg/kg wwt)                                      | 11.4                                            | 580                                             | 479                                             | 21.8                                             | 166                                               |
|                | Manganese (Mn)-Total (mg/kg wwt)                                      | 1.01                                            | 277                                             | 500                                             | 5.49                                             | 65.7                                              |
|                | Mercury (Hg)-Total (mg/kg wwt)                                        | <0.0010                                         | 0.0499                                          | 0.0095                                          | <0.0010                                          | 0.0730                                            |
|                | Molybdenum (Mo)-Total (mg/kg wwt)                                     | <0.0040                                         | 0.0673                                          | 0.181                                           | <0.0040                                          | 0.0137                                            |
|                | Nickel (Ni)-Total (mg/kg wwt)                                         | 0.041                                           | 1.26                                            | 1.74                                            | 0.067                                            | 0.259                                             |
|                | Phosphorus (P)-Total (mg/kg wwt)                                      | 25.5                                            | 376                                             | 359                                             | 42.3                                             | 182                                               |
|                | Potassium (K)-Total (mg/kg wwt)                                       | 138                                             | 1320                                            | 3400                                            | 289                                              | 648                                               |
|                | Rubidium (Rb)-Total (mg/kg wwt)                                       | 0.357                                           | 2.11                                            | 3.00                                            | 0.458                                            | 0.466                                             |
|                | Selenium (Se)-Total (mg/kg wwt)                                       | <0.010                                          | 0.049                                           | 0.012                                           | <0.010                                           | 0.044                                             |
|                | Sodium (Na)-Total (mg/kg wwt)                                         | <4.0                                            | 160                                             | 9.8                                             | <4.0                                             | 13.0                                              |
|                | Strontium (Sr)-Total (mg/kg wwt)                                      | 0.112                                           | 8.98                                            | 6.38                                            | 0.063                                            | 2.43                                              |
|                | Tellurium (Te)-Total (mg/kg wwt)                                      | <0.0040                                         | <0.0040                                         | <0.0040                                         | <0.0040                                          | <0.0040                                           |
|                | Thallium (TI)-Total (mg/kg wwt)                                       | <0.00040                                        | 0.00442                                         | 0.00541                                         | <0.00040                                         | 0.00137                                           |
|                | Tin (Sn)-Total (mg/kg wwt)                                            | 0.033                                           | <0.020                                          | <0.020                                          | 0.032                                            | <0.020                                            |
|                | Uranium (U)-Total (mg/kg wwt)                                         | <0.00040                                        | 0.0488                                          | 0.00698                                         | <0.00040                                         | 0.00496                                           |
|                | Vanadium (V)-Total (mg/kg wwt)                                        | <0.020                                          | 0.149                                           | 0.050                                           | <0.020                                           | 0.048                                             |
|                | Zinc (Zn)-Total (mg/kg wwt)                                           | 0.33                                            | 21.4                                            | 21.4                                            | 0.42                                             | 7.53                                              |
|                | Zirconium (Zr)-Total (mg/kg wwt)                                      | <0.040                                          | 0.167                                           | <0.040                                          | <0.040                                           | 0.044                                             |
|                |                                                                       |                                                 |                                                 |                                                 |                                                  |                                                   |

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1661327 CONTD.... PAGE 8 of 17

30-SEP-15 15:00 (MT) Version: FINAL

|                | Sample ID<br>Description<br>Sampled Date<br>Sampled Time<br>Client ID | L1661327-15<br>Tissue<br>14-AUG-15<br>AER-GR-REP2 | L1661327-16<br>Tissue<br>14-AUG-15<br>AER-BER-REP2 | L1661327-18<br>Tissue<br>14-AUG-15<br>AER-LI-REP3 | L1661327-19<br>Tissue<br>14-AUG-15<br>AER-GR-REP3 | L1661327-20<br>Tissue<br>14-AUG-15<br>AER-BER-REP3 |
|----------------|-----------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|---------------------------------------------------|---------------------------------------------------|----------------------------------------------------|
| Grouping       | Analyte                                                               |                                                   |                                                    |                                                   |                                                   |                                                    |
| TISSUE         |                                                                       |                                                   |                                                    |                                                   |                                                   |                                                    |
| Physical Tests | % Moisture (%)                                                        | 55.7                                              | 83.6                                               | 32.1                                              | 56.4                                              | 81.0                                               |
| Metals         | Aluminum (Al)-Total (mg/kg wwt)                                       | 12.2                                              | <0.40                                              | 27.9                                              | 16.7                                              | <0.40                                              |
|                | Antimony (Sb)-Total (mg/kg wwt)                                       | <0.0020                                           | <0.0020                                            | <0.0020                                           | <0.0020                                           | <0.0020                                            |
|                | Arsenic (As)-Total (mg/kg wwt)                                        | 0.0187                                            | <0.0040                                            | 0.0505                                            | 0.0250                                            | <0.0040                                            |
|                | Barium (Ba)-Total (mg/kg wwt)                                         | 13.6                                              | 0.259                                              | 3.23                                              | 22.1                                              | 0.289                                              |
|                | Beryllium (Be)-Total (mg/kg wwt)                                      | 0.0052                                            | <0.0020                                            | <0.0020                                           | 0.0081                                            | <0.0020                                            |
|                | Bismuth (Bi)-Total (mg/kg wwt)                                        | <0.0020                                           | <0.0020                                            | 0.0029                                            | <0.0020                                           | <0.0020                                            |
|                | Boron (B)-Total (mg/kg wwt)                                           | 1.75                                              | 0.24                                               | 0.35                                              | 2.09                                              | 0.24                                               |
|                | Cadmium (Cd)-Total (mg/kg wwt)                                        | 0.0120                                            | 0.0018                                             | 0.0456                                            | 0.0092                                            | <0.0010                                            |
|                | Calcium (Ca)-Total (mg/kg wwt)                                        | 1100                                              | 33.4                                               | 1260                                              | 1380                                              | 35.2                                               |
|                | Cesium (Cs)-Total (mg/kg wwt)                                         | 0.0062                                            | <0.0010                                            | 0.0071                                            | 0.0071                                            | <0.0010                                            |
|                | Chromium (Cr)-Total (mg/kg wwt)                                       | 0.083                                             | <0.010                                             | 0.241                                             | 0.076                                             | <0.010                                             |
|                | Cobalt (Co)-Total (mg/kg wwt)                                         | 0.0435                                            | <0.0040                                            | 0.0248                                            | 0.0431                                            | <0.0040                                            |
|                | Copper (Cu)-Total (mg/kg wwt)                                         | 1.41                                              | 0.159                                              | 0.769                                             | 1.37                                              | 0.188                                              |
|                | Iron (Fe)-Total (mg/kg wwt)                                           | 40.2                                              | <0.60                                              | 36.1                                              | 41.8                                              | <0.60                                              |
|                | Lead (Pb)-Total (mg/kg wwt)                                           | 0.0387                                            | <0.0040                                            | 0.236                                             | 0.0269                                            | <0.0040                                            |
|                | Lithium (Li)-Total (mg/kg wwt)                                        | <0.10                                             | <0.10                                              | <0.10                                             | <0.10                                             | <0.10                                              |
|                | Magnesium (Mg)-Total (mg/kg wwt)                                      | 475                                               | 18.1                                               | 213                                               | 605                                               | 21.8                                               |
|                | Manganese (Mn)-Total (mg/kg wwt)                                      | 328                                               | 6.16                                               | 89.7                                              | 227                                               | 4.84                                               |
|                | Mercury (Hg)-Total (mg/kg wwt)                                        | 0.0047                                            | <0.0010                                            | 0.0587                                            | 0.0042                                            | <0.0010                                            |
|                | Molybdenum (Mo)-Total (mg/kg wwt)                                     | 0.162                                             | <0.0040                                            | 0.0167                                            | 0.264                                             | <0.0040                                            |
|                | Nickel (Ni)-Total (mg/kg wwt)                                         | 1.38                                              | 0.069                                              | 0.459                                             | 1.80                                              | 0.066                                              |
|                | Phosphorus (P)-Total (mg/kg wwt)                                      | 388                                               | 36.6                                               | 235                                               | 302                                               | 43.2                                               |
|                | Potassium (K)-Total (mg/kg wwt)                                       | 3030                                              | 239                                                | 770                                               | 3040                                              | 303                                                |
|                | Rubidium (Rb)-Total (mg/kg wwt)                                       | 1.88                                              | 0.233                                              | 0.503                                             | 1.66                                              | 0.311                                              |
|                | Selenium (Se)-Total (mg/kg wwt)                                       | <0.010                                            | <0.010                                             | 0.042                                             | <0.010                                            | <0.010                                             |
|                | Sodium (Na)-Total (mg/kg wwt)                                         | 23.0                                              | <4.0                                               | 17.7                                              | 16.5                                              | <4.0                                               |
|                | Strontium (Sr)-Total (mg/kg wwt)                                      | 6.61                                              | 0.099                                              | 3.28                                              | 9.50                                              | 0.087                                              |
|                | Tellurium (Te)-Total (mg/kg wwt)                                      | <0.0040                                           | <0.0040                                            | <0.0040                                           | <0.0040                                           | <0.0040                                            |
|                | Thallium (TI)-Total (mg/kg wwt)                                       | <0.00040                                          | <0.00040                                           | 0.00063                                           | <0.00040                                          | <0.00040                                           |
|                | Tin (Sn)-Total (mg/kg wwt)                                            | <0.020                                            | 0.024                                              | <0.020                                            | <0.020                                            | 0.023                                              |
|                | Uranium (U)-Total (mg/kg wwt)                                         | 0.0121                                            | <0.00040                                           | 0.00549                                           | 0.0174                                            | <0.00040                                           |
|                | Vanadium (V)-Total (mg/kg wwt)                                        | <0.020                                            | <0.020                                             | 0.056                                             | <0.020                                            | <0.020                                             |
|                | Zinc (Zn)-Total (mg/kg wwt)                                           | 13.5                                              | 0.42                                               | 9.30                                              | 8.47                                              | 0.37                                               |
|                | Zirconium (Zr)-Total (mg/kg wwt)                                      | <0.040                                            | <0.040                                             | 0.042                                             | <0.040                                            | <0.040                                             |
|                |                                                                       |                                                   |                                                    |                                                   |                                                   |                                                    |

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1661327 CONTD.... PAGE 9 of 17

30-SEP-15 15:00 (MT) Version: FINAL

|                | Sample ID<br>Description<br>Sampled Date<br>Sampled Time<br>Client ID | L1661327-22<br>Tissue<br>14-AUG-15<br>AER-LI-REP4 | L1661327-23<br>Tissue<br>14-AUG-15<br>AER-GR-REP4 | L1661327-24<br>Tissue<br>14-AUG-15<br>AER-BER-REP4 | L1661327-26<br>Tissue<br>14-AUG-15<br>AER-LI-REP5 | L1661327-27<br>Tissue<br>14-AUG-15<br>AER-GR-REP5 |
|----------------|-----------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|----------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| Grouping       | Analyte                                                               |                                                   |                                                   |                                                    |                                                   |                                                   |
| TISSUE         |                                                                       |                                                   |                                                   |                                                    |                                                   |                                                   |
| Physical Tests | % Moisture (%)                                                        | 42.0                                              | 62.0                                              | 84.3                                               | 33.2                                              | 57.2                                              |
| Metals         | Aluminum (Al)-Total (mg/kg wwt)                                       | 29.6                                              | 25.2                                              | <0.40                                              | 39.1                                              | 8.95                                              |
|                | Antimony (Sb)-Total (mg/kg wwt)                                       | <0.0020                                           | <0.0020                                           | <0.0020                                            | <0.0020                                           | <0.0020                                           |
|                | Arsenic (As)-Total (mg/kg wwt)                                        | 0.0401                                            | 0.0264                                            | <0.0040                                            | 0.0651                                            | 0.0194                                            |
|                | Barium (Ba)-Total (mg/kg wwt)                                         | 3.11                                              | 7.08                                              | 0.251                                              | 5.51                                              | 14.7                                              |
|                | Beryllium (Be)-Total (mg/kg wwt)                                      | 0.0029                                            | 0.0035                                            | <0.0020                                            | 0.0098                                            | 0.0026                                            |
|                | Bismuth (Bi)-Total (mg/kg wwt)                                        | 0.0057                                            | <0.0020                                           | <0.0020                                            | 0.0029                                            | <0.0020                                           |
|                | Boron (B)-Total (mg/kg wwt)                                           | 0.27                                              | 1.10                                              | 0.20                                               | 0.24                                              | 2.06                                              |
|                | Cadmium (Cd)-Total (mg/kg wwt)                                        | 0.0675                                            | 0.0156                                            | 0.0017                                             | 0.0586                                            | 0.0123                                            |
|                | Calcium (Ca)-Total (mg/kg wwt)                                        | 1980                                              | 754                                               | 31.0                                               | 2010                                              | 1190                                              |
|                | Cesium (Cs)-Total (mg/kg wwt)                                         | 0.0109                                            | 0.0038                                            | <0.0010                                            | 0.0094                                            | 0.0045                                            |
|                | Chromium (Cr)-Total (mg/kg wwt)                                       | 0.168                                             | 0.164                                             | <0.010                                             | 0.251                                             | 0.126                                             |
|                | Cobalt (Co)-Total (mg/kg wwt)                                         | 0.0456                                            | 0.0560                                            | <0.0040                                            | 0.0652                                            | 0.0291                                            |
|                | Copper (Cu)-Total (mg/kg wwt)                                         | 0.626                                             | 1.17                                              | 0.155                                              | 0.612                                             | 1.23                                              |
|                | Iron (Fe)-Total (mg/kg wwt)                                           | 42.5                                              | 53.1                                              | 0.69                                               | 55.8                                              | 37.3                                              |
|                | Lead (Pb)-Total (mg/kg wwt)                                           | 0.250                                             | 0.0452                                            | <0.0040                                            | 0.304                                             | 0.0308                                            |
|                | Lithium (Li)-Total (mg/kg wwt)                                        | <0.10                                             | <0.10                                             | <0.10                                              | <0.10                                             | <0.10                                             |
|                | Magnesium (Mg)-Total (mg/kg wwt)                                      | 204                                               | 346                                               | 18.2                                               | 264                                               | 535                                               |
|                | Manganese (Mn)-Total (mg/kg wwt)                                      | 68.7                                              | 257                                               | 5.97                                               | 44.4                                              | 387                                               |
|                | Mercury (Hg)-Total (mg/kg wwt)                                        | 0.0489                                            | 0.0058                                            | <0.0010                                            | 0.0681                                            | 0.0045                                            |
|                | Molybdenum (Mo)-Total (mg/kg wwt)                                     | 0.0319                                            | 0.205                                             | <0.0040                                            | 0.0225                                            | 0.150                                             |
|                | Nickel (Ni)-Total (mg/kg wwt)                                         | 1.13                                              | 1.24                                              | 0.070                                              | 0.685                                             | 1.05                                              |
|                | Phosphorus (P)-Total (mg/kg wwt)                                      | 293                                               | 351                                               | 37.9                                               | 238                                               | 346                                               |
|                | Potassium (K)-Total (mg/kg wwt)                                       | 785                                               | 2160                                              | 227                                                | 676                                               | 3130                                              |
|                | Rubidium (Rb)-Total (mg/kg wwt)                                       | 0.737                                             | 0.861                                             | 0.226                                              | 0.685                                             | 1.60                                              |
|                | Selenium (Se)-Total (mg/kg wwt)                                       | 0.035                                             | 0.011                                             | <0.010                                             | 0.042                                             | <0.010                                            |
|                | Sodium (Na)-Total (mg/kg wwt)                                         | 39.1                                              | 30.1                                              | <4.0                                               | 18.9                                              | 20.4                                              |
|                | Strontium (Sr)-Total (mg/kg wwt)                                      | 5.95                                              | 4.62                                              | 0.099                                              | 8.59                                              | 6.79                                              |
|                | Tellurium (Te)-Total (mg/kg wwt)                                      | <0.0040                                           | <0.0040                                           | <0.0040                                            | <0.0040                                           | <0.0040                                           |
|                | Thallium (TI)-Total (mg/kg wwt)                                       | 0.00096                                           | 0.00056                                           | <0.00040                                           | 0.00086                                           | <0.00040                                          |
|                | Tin (Sn)-Total (mg/kg wwt)                                            | <0.020                                            | <0.020                                            | <0.020                                             | <0.020                                            | <0.020                                            |
|                | Uranium (U)-Total (mg/kg wwt)                                         | 0.0179                                            | 0.0175                                            | <0.00040                                           | 0.0367                                            | 0.00267                                           |
|                | Vanadium (V)-Total (mg/kg wwt)                                        | 0.050                                             | 0.039                                             | <0.020                                             | 0.059                                             | <0.020                                            |
|                | Zinc (Zn)-Total (mg/kg wwt)                                           | 9.01                                              | 13.8                                              | 0.40                                               | 8.85                                              | 14.6                                              |
|                | Zirconium (Zr)-Total (mg/kg wwt)                                      | 0.064                                             | <0.040                                            | <0.040                                             | 0.068                                             | <0.040                                            |

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1661327 CONTD.... PAGE 10 of 17

30-SEP-15 15:00 (MT) Version: FINAL

|                | Sample ID<br>Description<br>Sampled Date<br>Sampled Time<br>Client ID | 14-AUG-15 | L1661327-30<br>Tissue<br>14-AUG-15<br>AER-LI-04 | L1661327-31<br>Tissue<br>14-AUG-15<br>AER-GR-04 | L1661327-32<br>Tissue<br>14-AUG-15<br>AER-BER-04 | L1661327-34<br>Tissue<br>14-AUG-15<br>AER-LI-05 |
|----------------|-----------------------------------------------------------------------|-----------|-------------------------------------------------|-------------------------------------------------|--------------------------------------------------|-------------------------------------------------|
| Grouping       | Analyte                                                               |           |                                                 |                                                 |                                                  |                                                 |
| TISSUE         |                                                                       |           |                                                 |                                                 |                                                  |                                                 |
| Physical Tests | % Moisture (%)                                                        | 88.1      | 10.3                                            | 43.3                                            | 78.3                                             | 11.1                                            |
| Metals         | Aluminum (Al)-Total (mg/kg wwt)                                       | <0.40     | 23.4                                            | 31.4                                            | 1.07                                             | 36.7                                            |
|                | Antimony (Sb)-Total (mg/kg wwt)                                       | <0.0020   | <0.0020                                         | <0.0020                                         | <0.0020                                          | <0.0020                                         |
|                | Arsenic (As)-Total (mg/kg wwt)                                        | <0.0040   | 0.0521                                          | 0.0153                                          | <0.0040                                          | 0.0490                                          |
|                | Barium (Ba)-Total (mg/kg wwt)                                         | 0.223     | 3.85                                            | 16.5                                            | 0.451                                            | 18.0                                            |
|                | Beryllium (Be)-Total (mg/kg wwt)                                      | <0.0020   | 0.0052                                          | 0.0067                                          | <0.0020                                          | 0.0177                                          |
|                | Bismuth (Bi)-Total (mg/kg wwt)                                        | <0.0020   | 0.0036                                          | <0.0020                                         | <0.0020                                          | 0.0041                                          |
|                | Boron (B)-Total (mg/kg wwt)                                           | <0.20     | <0.20                                           | 1.10                                            | 0.30                                             | 0.34                                            |
|                | Cadmium (Cd)-Total (mg/kg wwt)                                        | 0.0022    | 0.0385                                          | 0.0099                                          | <0.0010                                          | 0.0854                                          |
|                | Calcium (Ca)-Total (mg/kg wwt)                                        | 23.8      | 621                                             | 848                                             | 57.1                                             | 3290                                            |
|                | Cesium (Cs)-Total (mg/kg wwt)                                         | <0.0010   | 0.0159                                          | 0.0151                                          | 0.0011                                           | 0.0106                                          |
|                | Chromium (Cr)-Total (mg/kg wwt)                                       | <0.010    | 0.143                                           | 0.184                                           | <0.010                                           | 0.187                                           |
|                | Cobalt (Co)-Total (mg/kg wwt)                                         | <0.0040   | 0.0469                                          | 0.0628                                          | <0.0040                                          | 0.120                                           |
|                | Copper (Cu)-Total (mg/kg wwt)                                         | 0.089     | 0.615                                           | 0.862                                           | 0.236                                            | 0.634                                           |
|                | Iron (Fe)-Total (mg/kg wwt)                                           | <0.60     | 35.4                                            | 46.2                                            | 0.79                                             | 63.6                                            |
|                | Lead (Pb)-Total (mg/kg wwt)                                           | <0.0040   | 0.343                                           | 0.0912                                          | <0.0040                                          | 0.518                                           |
|                | Lithium (Li)-Total (mg/kg wwt)                                        | <0.10     | <0.10                                           | <0.10                                           | <0.10                                            | <0.10                                           |
|                | Magnesium (Mg)-Total (mg/kg wwt)                                      | 11.7      | 125                                             | 239                                             | 28.2                                             | 280                                             |
|                | Manganese (Mn)-Total (mg/kg wwt)                                      | 4.64      | 28.7                                            | 96.8                                            | 8.95                                             | 62.3                                            |
|                | Mercury (Hg)-Total (mg/kg wwt)                                        | <0.0010   | 0.0651                                          | 0.0108                                          | <0.0010                                          | 0.0772                                          |
|                | Molybdenum (Mo)-Total (mg/kg wwt)                                     | <0.0040   | 0.0139                                          | 0.163                                           | 0.0055                                           | 0.0179                                          |
|                | Nickel (Ni)-Total (mg/kg wwt)                                         | 0.055     | 0.141                                           | 1.07                                            | <0.040                                           | 0.335                                           |
|                | Phosphorus (P)-Total (mg/kg wwt)                                      | 25.8      | 173                                             | 382                                             | 43.0                                             | 287                                             |
|                | Potassium (K)-Total (mg/kg wwt)                                       | 129       | 763                                             | 2490                                            | 317                                              | 1010                                            |
|                | Rubidium (Rb)-Total (mg/kg wwt)                                       | 0.122     | 1.94                                            | 3.83                                            | 0.694                                            | 1.64                                            |
|                | Selenium (Se)-Total (mg/kg wwt)                                       | <0.010    | 0.049                                           | 0.014                                           | <0.010                                           | 0.050                                           |
|                | Sodium (Na)-Total (mg/kg wwt)                                         | <4.0      | 14.3                                            | 13.0                                            | <4.0                                             | 19.9                                            |
|                | Strontium (Sr)-Total (mg/kg wwt)                                      | 0.069     | 1.96                                            | 3.91                                            | 0.090                                            | 12.0                                            |
|                | Tellurium (Te)-Total (mg/kg wwt)                                      | <0.0040   | <0.0040                                         | <0.0040                                         | <0.0040                                          | <0.0040                                         |
|                | Thallium (TI)-Total (mg/kg wwt)                                       | <0.00040  | 0.00203                                         | 0.00131                                         | <0.00040                                         | 0.00346                                         |
|                | Tin (Sn)-Total (mg/kg wwt)                                            | 0.024     | <0.020                                          | <0.020                                          | 0.033                                            | <0.020                                          |
|                | Uranium (U)-Total (mg/kg wwt)                                         | <0.00040  | 0.00560                                         | 0.00305                                         | <0.00040                                         | 0.0120                                          |
|                | Vanadium (V)-Total (mg/kg wwt)                                        | <0.020    | 0.046                                           | 0.041                                           | <0.020                                           | 0.059                                           |
|                | Zinc (Zn)-Total (mg/kg wwt)                                           | 0.36      | 8.36                                            | 9.79                                            | 0.45                                             | 15.6                                            |
|                | Zirconium (Zr)-Total (mg/kg wwt)                                      | <0.040    | <0.040                                          | 0.111                                           | <0.040                                           | 0.060                                           |
|                |                                                                       |           |                                                 |                                                 |                                                  |                                                 |

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1661327 CONTD.... PAGE 11 of 17

30-SEP-15 15:00 (MT) Version: FINAL

|                | Sample ID<br>Description<br>Sampled Date<br>Sampled Time<br>Client ID | L1661327-35<br>Tissue<br>14-AUG-15<br>AER-GR-05 | L1661327-36<br>Tissue<br>14-AUG-15<br>AER-BER-05 | L1661327-38<br>Tissue<br>14-AUG-15<br>AER-LI-06 | L1661327-39<br>Tissue<br>14-AUG-15<br>AER-GR-06 | L1661327-40<br>Tissue<br>14-AUG-15<br>AER-BER-06 |
|----------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------|-------------------------------------------------|-------------------------------------------------|--------------------------------------------------|
| Grouping       | Analyte                                                               |                                                 |                                                  |                                                 |                                                 |                                                  |
| TISSUE         |                                                                       |                                                 |                                                  |                                                 |                                                 |                                                  |
| Physical Tests | % Moisture (%)                                                        | 47.5                                            | 86.1                                             | 10.1                                            | 45.6                                            | 85.0                                             |
| Metals         | Aluminum (AI)-Total (mg/kg wwt)                                       | 47.3                                            | 0.81                                             | 39.7                                            | 17.4                                            | <0.40                                            |
|                | Antimony (Sb)-Total (mg/kg wwt)                                       | <0.0020                                         | <0.0020                                          | <0.0020                                         | <0.0020                                         | <0.0020                                          |
|                | Arsenic (As)-Total (mg/kg wwt)                                        | 0.0278                                          | <0.0040                                          | 0.0708                                          | 0.0161                                          | <0.0040                                          |
|                | Barium (Ba)-Total (mg/kg wwt)                                         | 16.9                                            | 0.258                                            | 8.32                                            | 62.1                                            | 0.304                                            |
|                | Beryllium (Be)-Total (mg/kg wwt)                                      | 0.0088                                          | <0.0020                                          | 0.0053                                          | 0.0146                                          | <0.0020                                          |
|                | Bismuth (Bi)-Total (mg/kg wwt)                                        | <0.0020                                         | <0.0020                                          | 0.0036                                          | <0.0020                                         | <0.0020                                          |
|                | Boron (B)-Total (mg/kg wwt)                                           | 0.89                                            | <0.20                                            | 0.21                                            | 2.11                                            | 0.23                                             |
|                | Cadmium (Cd)-Total (mg/kg wwt)                                        | 0.0119                                          | 0.0015                                           | 0.0409                                          | 0.0098                                          | 0.0021                                           |
|                | Calcium (Ca)-Total (mg/kg wwt)                                        | 860                                             | 30.4                                             | 909                                             | 1860                                            | 34.6                                             |
|                | Cesium (Cs)-Total (mg/kg wwt)                                         | 0.0145                                          | <0.0010                                          | 0.0201                                          | 0.0086                                          | <0.0010                                          |
|                | Chromium (Cr)-Total (mg/kg wwt)                                       | 0.313                                           | <0.010                                           | 0.375                                           | 0.124                                           | <0.010                                           |
|                | Cobalt (Co)-Total (mg/kg wwt)                                         | 0.0721                                          | <0.0040                                          | 0.0820                                          | 0.0681                                          | <0.0040                                          |
|                | Copper (Cu)-Total (mg/kg wwt)                                         | 0.809                                           | 0.061                                            | 0.624                                           | 2.11                                            | 0.117                                            |
|                | Iron (Fe)-Total (mg/kg wwt)                                           | 81.5                                            | 0.99                                             | 69.5                                            | 95.5                                            | <0.60                                            |
|                | Lead (Pb)-Total (mg/kg wwt)                                           | 0.141                                           | <0.0040                                          | 0.316                                           | 0.0614                                          | <0.0040                                          |
|                | Lithium (Li)-Total (mg/kg wwt)                                        | <0.10                                           | <0.10                                            | <0.10                                           | <0.10                                           | <0.10                                            |
|                | Magnesium (Mg)-Total (mg/kg wwt)                                      | 263                                             | 14.3                                             | 220                                             | 453                                             | 17.4                                             |
|                | Manganese (Mn)-Total (mg/kg wwt)                                      | 99.9                                            | 0.743                                            | 90.3                                            | 388                                             | 7.48                                             |
|                | Mercury (Hg)-Total (mg/kg wwt)                                        | 0.0123                                          | <0.0010                                          | 0.0673                                          | 0.0068                                          | <0.0010                                          |
|                | Molybdenum (Mo)-Total (mg/kg wwt)                                     | 0.0720                                          | <0.0040                                          | 0.0247                                          | 2.99                                            | <0.0040                                          |
|                | Nickel (Ni)-Total (mg/kg wwt)                                         | 0.631                                           | <0.040                                           | 0.282                                           | 1.67                                            | <0.040                                           |
|                | Phosphorus (P)-Total (mg/kg wwt)                                      | 341                                             | 23.6                                             | 226                                             | 700                                             | 31.5                                             |
|                | Potassium (K)-Total (mg/kg wwt)                                       | 1980                                            | 162                                              | 857                                             | 3860                                            | 190                                              |
|                | Rubidium (Rb)-Total (mg/kg wwt)                                       | 3.26                                            | 0.320                                            | 1.40                                            | 3.00                                            | 0.269                                            |
|                | Selenium (Se)-Total (mg/kg wwt)                                       | 0.016                                           | <0.010                                           | 0.042                                           | 0.011                                           | <0.010                                           |
|                | Sodium (Na)-Total (mg/kg wwt)                                         | 10.7                                            | <4.0                                             | 24.4                                            | 12.6                                            | <4.0                                             |
|                | Strontium (Sr)-Total (mg/kg wwt)                                      | 5.13                                            | 0.082                                            | 4.57                                            | 17.6                                            | 0.078                                            |
|                | Tellurium (Te)-Total (mg/kg wwt)                                      | <0.0040                                         | <0.0040                                          | <0.0040                                         | 0.0081                                          | <0.0040                                          |
|                | Thallium (TI)-Total (mg/kg wwt)                                       | 0.00124                                         | <0.00040                                         | 0.00271                                         | <0.00040                                        | <0.00040                                         |
|                | Tin (Sn)-Total (mg/kg wwt)                                            | <0.020                                          | 0.040                                            | <0.020                                          | <0.020                                          | 0.038                                            |
|                | Uranium (U)-Total (mg/kg wwt)                                         | 0.00687                                         | <0.00040                                         | 0.00670                                         | 0.00200                                         | <0.00040                                         |
|                | Vanadium (V)-Total (mg/kg wwt)                                        | 0.072                                           | <0.020                                           | 0.080                                           | 0.025                                           | <0.020                                           |
|                | Zinc (Zn)-Total (mg/kg wwt)                                           | 12.6                                            | 0.35                                             | 11.6                                            | 15.4                                            | 0.45                                             |
|                | Zirconium (Zr)-Total (mg/kg wwt)                                      | 0.053                                           | <0.040                                           | 0.050                                           | <0.040                                          | <0.040                                           |
|                |                                                                       |                                                 |                                                  |                                                 |                                                 |                                                  |

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1661327 CONTD.... PAGE 12 of 17

30-SEP-15 15:00 (MT) Version: FINAL

|                | Sample ID<br>Description<br>Sampled Date<br>Sampled Time<br>Client ID | L1661327-42<br>Tissue<br>14-AUG-15<br>AER-LI-07 | L1661327-43<br>Tissue<br>14-AUG-15<br>AER-GR-07 | L1661327-44<br>Tissue<br>14-AUG-15<br>AER-BER-07 | L1661327-46<br>Tissue<br>15-AUG-15<br>AER-LI-08 | L1661327-47<br>Tissue<br>15-AUG-15<br>AER-GR-08 |
|----------------|-----------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|--------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| Grouping       | Analyte                                                               |                                                 |                                                 |                                                  |                                                 |                                                 |
| TISSUE         |                                                                       |                                                 |                                                 |                                                  |                                                 |                                                 |
| Physical Tests | % Moisture (%)                                                        | 10.6                                            | 46.1                                            | 87.3                                             | 15.7                                            | 36.5                                            |
| Metals         | Aluminum (Al)-Total (mg/kg wwt)                                       | 228                                             | 22.6                                            | 0.84                                             | 31.6                                            | 72.2                                            |
|                | Antimony (Sb)-Total (mg/kg wwt)                                       | 0.0055                                          | <0.0020                                         | <0.0020                                          | <0.0020                                         | 0.0026                                          |
|                | Arsenic (As)-Total (mg/kg wwt)                                        | 0.149                                           | 0.0196                                          | <0.0040                                          | 0.0832                                          | 0.0757                                          |
|                | Barium (Ba)-Total (mg/kg wwt)                                         | 15.7                                            | 15.9                                            | 0.236                                            | 3.42                                            | 29.8                                            |
|                | Beryllium (Be)-Total (mg/kg wwt)                                      | 0.0170                                          | 0.0045                                          | <0.0020                                          | 0.0023                                          | 0.0067                                          |
|                | Bismuth (Bi)-Total (mg/kg wwt)                                        | 0.0130                                          | 0.0020                                          | <0.0020                                          | 0.0055                                          | 0.0024                                          |
|                | Boron (B)-Total (mg/kg wwt)                                           | 0.42                                            | 1.20                                            | <0.20                                            | 0.24                                            | 1.88                                            |
|                | Cadmium (Cd)-Total (mg/kg wwt)                                        | 0.0697                                          | 0.0070                                          | 0.0019                                           | 0.0477                                          | 0.0168                                          |
|                | Calcium (Ca)-Total (mg/kg wwt)                                        | 780                                             | 860                                             | 24.9                                             | 460                                             | 1430                                            |
|                | Cesium (Cs)-Total (mg/kg wwt)                                         | 0.0383                                          | 0.0226                                          | <0.0010                                          | 0.0155                                          | 0.0128                                          |
|                | Chromium (Cr)-Total (mg/kg wwt)                                       | 0.659                                           | 0.191                                           | <0.010                                           | 0.214                                           | 0.366                                           |
|                | Cobalt (Co)-Total (mg/kg wwt)                                         | 0.251                                           | 0.0534                                          | <0.0040                                          | 0.0350                                          | 0.131                                           |
|                | Copper (Cu)-Total (mg/kg wwt)                                         | 1.14                                            | 0.906                                           | 0.053                                            | 0.613                                           | 1.20                                            |
|                | Iron (Fe)-Total (mg/kg wwt)                                           | 367                                             | 44.6                                            | 0.91                                             | 46.1                                            | 117                                             |
|                | Lead (Pb)-Total (mg/kg wwt)                                           | 1.17                                            | 0.0709                                          | <0.0040                                          | 0.383                                           | 0.196                                           |
|                | Lithium (Li)-Total (mg/kg wwt)                                        | <0.10                                           | <0.10                                           | <0.10                                            | <0.10                                           | <0.10                                           |
|                | Magnesium (Mg)-Total (mg/kg wwt)                                      | 261                                             | 308                                             | 9.56                                             | 135                                             | 415                                             |
|                | Manganese (Mn)-Total (mg/kg wwt)                                      | 48.4                                            | 54.0                                            | 0.962                                            | 53.6                                            | 214                                             |
|                | Mercury (Hg)-Total (mg/kg wwt)                                        | 0.139                                           | 0.0083                                          | <0.0010                                          | 0.0914                                          | 0.0164                                          |
|                | Molybdenum (Mo)-Total (mg/kg wwt)                                     | 0.0237                                          | 0.146                                           | <0.0040                                          | 0.0149                                          | 0.321                                           |
|                | Nickel (Ni)-Total (mg/kg wwt)                                         | 0.696                                           | 1.23                                            | <0.040                                           | 0.234                                           | 1.44                                            |
|                | Phosphorus (P)-Total (mg/kg wwt)                                      | 249                                             | 344                                             | 20.2                                             | 173                                             | 449                                             |
|                | Potassium (K)-Total (mg/kg wwt)                                       | 739                                             | 2700                                            | 140                                              | 603                                             | 3210                                            |
|                | Rubidium (Rb)-Total (mg/kg wwt)                                       | 1.86                                            | 4.55                                            | 0.466                                            | 1.61                                            | 3.73                                            |
|                | Selenium (Se)-Total (mg/kg wwt)                                       | 0.072                                           | 0.010                                           | <0.010                                           | 0.052                                           | 0.021                                           |
|                | Sodium (Na)-Total (mg/kg wwt)                                         | 16.7                                            | 10.4                                            | <4.0                                             | 10.4                                            | 17.1                                            |
|                | Strontium (Sr)-Total (mg/kg wwt)                                      | 3.83                                            | 3.81                                            | 0.075                                            | 1.24                                            | 6.76                                            |
|                | Tellurium (Te)-Total (mg/kg wwt)                                      | <0.0040                                         | <0.0040                                         | <0.0040                                          | <0.0040                                         | <0.0040                                         |
|                | Thallium (TI)-Total (mg/kg wwt)                                       | 0.00620                                         | 0.00706                                         | <0.00040                                         | 0.00322                                         | 0.00348                                         |
|                | Tin (Sn)-Total (mg/kg wwt)                                            | 0.021                                           | <0.020                                          | <0.020                                           | <0.020                                          | <0.020                                          |
|                | Uranium (U)-Total (mg/kg wwt)                                         | 0.0758                                          | 0.00242                                         | <0.00040                                         | 0.00696                                         | 0.0128                                          |
|                | Vanadium (V)-Total (mg/kg wwt)                                        | 0.323                                           | 0.036                                           | <0.020                                           | 0.073                                           | 0.128                                           |
|                | Zinc (Zn)-Total (mg/kg wwt)                                           | 11.9                                            | 10.9                                            | 0.26                                             | 6.08                                            | 23.8                                            |
|                | Zirconium (Zr)-Total (mg/kg wwt)                                      | 0.202                                           | <0.040                                          | <0.040                                           | 0.064                                           | 0.079                                           |
|                |                                                                       |                                                 |                                                 |                                                  |                                                 |                                                 |

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1661327 CONTD.... PAGE 13 of 17

30-SEP-15 15:00 (MT) Version: FINAL

|                | Sample ID<br>Description<br>Sampled Date<br>Sampled Time<br>Client ID | L1661327-48<br>Tissue<br>15-AUG-15<br>AER-BER-08 | L1661327-50<br>Tissue<br>15-AUG-15<br>AER-LI-08-DUP | L1661327-51<br>Tissue<br>15-AUG-15<br>AER-GR-08-DUP | L1661327-52<br>Tissue<br>15-AUG-15<br>AER-BER-08-DUP | L1661327-54<br>Tissue<br>15-AUG-15<br>AER-LI-09 |
|----------------|-----------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|-------------------------------------------------|
| Grouping       | Analyte                                                               |                                                  |                                                     |                                                     |                                                      |                                                 |
| TISSUE         |                                                                       |                                                  |                                                     |                                                     |                                                      |                                                 |
| Physical Tests | % Moisture (%)                                                        | 79.8                                             | 15.2                                                | 46.5                                                | 81.8                                                 | 13.9                                            |
| Metals         | Aluminum (Al)-Total (mg/kg wwt)                                       | <0.40                                            | 147                                                 | 26.8                                                | <0.40                                                | 35.8                                            |
|                | Antimony (Sb)-Total (mg/kg wwt)                                       | <0.0020                                          | 0.0064                                              | 0.0054                                              | <0.0020                                              | 0.0078                                          |
|                | Arsenic (As)-Total (mg/kg wwt)                                        | <0.0040                                          | 0.173                                               | 0.0430                                              | <0.0040                                              | 0.0609                                          |
|                | Barium (Ba)-Total (mg/kg wwt)                                         | 0.309                                            | 9.26                                                | 23.6                                                | 0.295                                                | 8.74                                            |
|                | Beryllium (Be)-Total (mg/kg wwt)                                      | <0.0020                                          | 0.0065                                              | 0.0049                                              | <0.0020                                              | 0.0052                                          |
|                | Bismuth (Bi)-Total (mg/kg wwt)                                        | <0.0020                                          | 0.0120                                              | 0.0044                                              | <0.0020                                              | 0.0062                                          |
|                | Boron (B)-Total (mg/kg wwt)                                           | 0.28                                             | 0.31                                                | 1.04                                                | 0.27                                                 | 0.53                                            |
|                | Cadmium (Cd)-Total (mg/kg wwt)                                        | <0.0010                                          | 0.0482                                              | 0.0102                                              | <0.0010                                              | 0.0324                                          |
|                | Calcium (Ca)-Total (mg/kg wwt)                                        | 32.4                                             | 407                                                 | 760                                                 | 31.6                                                 | 508                                             |
|                | Cesium (Cs)-Total (mg/kg wwt)                                         | <0.0010                                          | 0.0337                                              | 0.0075                                              | <0.0010                                              | 0.0268                                          |
|                | Chromium (Cr)-Total (mg/kg wwt)                                       | <0.010                                           | 0.560                                               | 0.171                                               | <0.010                                               | 0.188                                           |
|                | Cobalt (Co)-Total (mg/kg wwt)                                         | <0.0040                                          | 0.113                                               | 0.0708                                              | <0.0040                                              | 0.0440                                          |
|                | Copper (Cu)-Total (mg/kg wwt)                                         | 0.194                                            | 0.782                                               | 0.848                                               | 0.182                                                | 0.822                                           |
|                | Iron (Fe)-Total (mg/kg wwt)                                           | <0.60                                            | 233                                                 | 43.9                                                | <0.60                                                | 45.2                                            |
|                | Lead (Pb)-Total (mg/kg wwt)                                           | <0.0040                                          | 1.32                                                | 0.0835                                              | <0.0040                                              | 0.241                                           |
|                | Lithium (Li)-Total (mg/kg wwt)                                        | <0.10                                            | <0.10                                               | <0.10                                               | <0.10                                                | <0.10                                           |
|                | Magnesium (Mg)-Total (mg/kg wwt)                                      | 20.6                                             | 167                                                 | 265                                                 | 19.4                                                 | 185                                             |
|                | Manganese (Mn)-Total (mg/kg wwt)                                      | 3.08                                             | 34.4                                                | 87.9                                                | 2.93                                                 | 57.6                                            |
|                | Mercury (Hg)-Total (mg/kg wwt)                                        | <0.0010                                          | 0.149                                               | 0.0103                                              | <0.0010                                              | 0.128                                           |
|                | Molybdenum (Mo)-Total (mg/kg wwt)                                     | <0.0040                                          | 0.0214                                              | 0.211                                               | <0.0040                                              | 0.0162                                          |
|                | Nickel (Ni)-Total (mg/kg wwt)                                         | 0.042                                            | 1.07                                                | 1.07                                                | 0.041                                                | 0.555                                           |
|                | Phosphorus (P)-Total (mg/kg wwt)                                      | 41.6                                             | 169                                                 | 266                                                 | 38.5                                                 | 313                                             |
|                | Potassium (K)-Total (mg/kg wwt)                                       | 311                                              | 596                                                 | 2310                                                | 290                                                  | 872                                             |
|                | Rubidium (Rb)-Total (mg/kg wwt)                                       | 0.578                                            | 2.12                                                | 2.98                                                | 0.544                                                | 2.62                                            |
|                | Selenium (Se)-Total (mg/kg wwt)                                       | <0.010                                           | 0.075                                               | 0.014                                               | <0.010                                               | 0.066                                           |
|                | Sodium (Na)-Total (mg/kg wwt)                                         | <4.0                                             | 25.3                                                | 12.3                                                | <4.0                                                 | 14.9                                            |
|                | Strontium (Sr)-Total (mg/kg wwt)                                      | 0.077                                            | 1.54                                                | 4.79                                                | 0.076                                                | 1.34                                            |
|                | Tellurium (Te)-Total (mg/kg wwt)                                      | <0.0040                                          | <0.0040                                             | <0.0040                                             | <0.0040                                              | <0.0040                                         |
|                | Thallium (TI)-Total (mg/kg wwt)                                       | <0.00040                                         | 0.00748                                             | 0.00423                                             | <0.00040                                             | 0.00288                                         |
|                | Tin (Sn)-Total (mg/kg wwt)                                            | 0.022                                            | 0.021                                               | <0.020                                              | 0.021                                                | <0.020                                          |
|                | Uranium (U)-Total (mg/kg wwt)                                         | <0.00040                                         | 0.0184                                              | 0.00275                                             | <0.00040                                             | 0.00524                                         |
|                | Vanadium (V)-Total (mg/kg wwt)                                        | <0.020                                           | 0.306                                               | 0.038                                               | <0.020                                               | 0.065                                           |
|                | Zinc (Zn)-Total (mg/kg wwt)                                           | 0.30                                             | 8.02                                                | 11.0                                                | 0.28                                                 | 9.71                                            |
|                | Zirconium (Zr)-Total (mg/kg wwt)                                      | <0.040                                           | 0.133                                               | <0.040                                              | <0.040                                               | 0.051                                           |
|                |                                                                       |                                                  |                                                     |                                                     |                                                      |                                                 |

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1661327 CONTD.... PAGE 14 of 17

30-SEP-15 15:00 (MT) Version: FINAL

|                | Sample ID<br>Description<br>Sampled Date<br>Sampled Time<br>Client ID | L1661327-55<br>Tissue<br>15-AUG-15<br>AER-GR-09 | L1661327-56<br>Tissue<br>15-AUG-15<br>AER-BER-09 | L1661327-58<br>Tissue<br>15-AUG-15<br>AER-LI-10 | L1661327-59<br>Tissue<br>15-AUG-15<br>AER-GR-10 | L1661327-60<br>Tissue<br>15-AUG-15<br>AER-BER-10 |
|----------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------|-------------------------------------------------|-------------------------------------------------|--------------------------------------------------|
| Grouping       | Analyte                                                               |                                                 |                                                  |                                                 |                                                 |                                                  |
| TISSUE         | ,                                                                     |                                                 |                                                  |                                                 |                                                 |                                                  |
| Physical Tests | % Moisture (%)                                                        | 44.5                                            | 75.5                                             | 11.2                                            | 36.1                                            | 83.8                                             |
| Metals         | Aluminum (Al)-Total (mg/kg wwt)                                       | 13.3                                            | 1.47                                             | 353                                             | 51.1                                            | <0.40                                            |
|                | Antimony (Sb)-Total (mg/kg wwt)                                       | 0.0039                                          | <0.0020                                          | 0.0118                                          | 0.0460                                          | <0.0020                                          |
|                | Arsenic (As)-Total (mg/kg wwt)                                        | 0.0220                                          | <0.0040                                          | 0.178                                           | 0.0981                                          | <0.0040                                          |
|                | Barium (Ba)-Total (mg/kg wwt)                                         | 45.0                                            | 0.637                                            | 18.4                                            | 17.2                                            | 0.228                                            |
|                | Beryllium (Be)-Total (mg/kg wwt)                                      | 0.0038                                          | <0.0020                                          | 0.0307                                          | 0.0109                                          | <0.0020                                          |
|                | Bismuth (Bi)-Total (mg/kg wwt)                                        | <0.0020                                         | <0.0020                                          | 0.0250                                          | 0.0552                                          | <0.0020                                          |
|                | Boron (B)-Total (mg/kg wwt)                                           | 3.10                                            | 0.44                                             | 0.66                                            | 2.00                                            | <0.20                                            |
|                | Cadmium (Cd)-Total (mg/kg wwt)                                        | 0.0111                                          | <0.0010                                          | 0.154                                           | 0.0283                                          | <0.0010                                          |
|                | Calcium (Ca)-Total (mg/kg wwt)                                        | 1010                                            | 58.2                                             | 2760                                            | 1360                                            | 27.4                                             |
|                | Cesium (Cs)-Total (mg/kg wwt)                                         | 0.0260                                          | <0.0010                                          | 0.0553                                          | 0.0300                                          | <0.0010                                          |
|                | Chromium (Cr)-Total (mg/kg wwt)                                       | 0.080                                           | <0.010                                           | 0.811                                           | 0.466                                           | <0.010                                           |
|                | Cobalt (Co)-Total (mg/kg wwt)                                         | 0.0877                                          | <0.0040                                          | 0.180                                           | 0.0883                                          | <0.0040                                          |
|                | Copper (Cu)-Total (mg/kg wwt)                                         | 1.80                                            | 0.275                                            | 1.75                                            | 1.98                                            | 0.147                                            |
|                | Iron (Fe)-Total (mg/kg wwt)                                           | 30.7                                            | 1.66                                             | 492                                             | 110                                             | <0.60                                            |
|                | Lead (Pb)-Total (mg/kg wwt)                                           | 0.0437                                          | <0.0040                                          | 3.15                                            | 0.432                                           | <0.0040                                          |
|                | Lithium (Li)-Total (mg/kg wwt)                                        | <0.10                                           | <0.10                                            | 0.10                                            | <0.10                                           | <0.10                                            |
|                | Magnesium (Mg)-Total (mg/kg wwt)                                      | 601                                             | 34.1                                             | 240                                             | 357                                             | 14.9                                             |
|                | Manganese (Mn)-Total (mg/kg wwt)                                      | 136                                             | 8.19                                             | 42.8                                            | 69.7                                            | 4.17                                             |
|                | Mercury (Hg)-Total (mg/kg wwt)                                        | 0.0106                                          | <0.0010                                          | 0.120                                           | 0.0180                                          | <0.0010                                          |
|                | Molybdenum (Mo)-Total (mg/kg wwt)                                     | 0.433                                           | <0.0040                                          | 0.0837                                          | 0.414                                           | <0.0040                                          |
|                | Nickel (Ni)-Total (mg/kg wwt)                                         | 3.40                                            | 0.059                                            | 1.28                                            | 1.23                                            | <0.040                                           |
|                | Phosphorus (P)-Total (mg/kg wwt)                                      | 595                                             | 61.9                                             | 329                                             | 379                                             | 27.2                                             |
|                | Potassium (K)-Total (mg/kg wwt)                                       | 3480                                            | 428                                              | 904                                             | 3210                                            | 230                                              |
|                | Rubidium (Rb)-Total (mg/kg wwt)                                       | 5.71                                            | 0.684                                            | 3.58                                            | 8.34                                            | 0.498                                            |
|                | Selenium (Se)-Total (mg/kg wwt)                                       | <0.010                                          | <0.010                                           | 0.118                                           | 0.069                                           | <0.010                                           |
|                | Sodium (Na)-Total (mg/kg wwt)                                         | 20.2                                            | <4.0                                             | 26.8                                            | 14.6                                            | <4.0                                             |
|                | Strontium (Sr)-Total (mg/kg wwt)                                      | 9.77                                            | 0.133                                            | 6.12                                            | 4.19                                            | 0.037                                            |
|                | Tellurium (Te)-Total (mg/kg wwt)                                      | <0.0040                                         | <0.0040                                          | <0.0040                                         | 0.0060                                          | <0.0040                                          |
|                | Thallium (TI)-Total (mg/kg wwt)                                       | 0.00135                                         | <0.00040                                         | 0.00995                                         | 0.0531                                          | <0.00040                                         |
|                | Tin (Sn)-Total (mg/kg wwt)                                            | <0.020                                          | 0.025                                            | 0.040                                           | 0.025                                           | <0.020                                           |
|                | Uranium (U)-Total (mg/kg wwt)                                         | 0.00134                                         | <0.00040                                         | 0.633                                           | 0.00967                                         | <0.00040                                         |
|                | Vanadium (V)-Total (mg/kg wwt)                                        | 0.020                                           | <0.020                                           | 0.474                                           | 0.112                                           | <0.020                                           |
|                | Zinc (Zn)-Total (mg/kg wwt)                                           | 17.0                                            | 0.49                                             | 18.8                                            | 14.7                                            | 0.28                                             |
|                | Zirconium (Zr)-Total (mg/kg wwt)                                      | <0.040                                          | <0.040                                           | 0.405                                           | 0.053                                           | <0.040                                           |

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1661327 CONTD.... PAGE 15 of 17

30-SEP-15 15:00 (MT) Version: FINAL

|                | Sample ID<br>Description<br>Sampled Date<br>Sampled Time<br>Client ID | L1661327-62<br>Tissue<br>14-AUG-15<br>AER-LI-REP1 | L1661327-63<br>Tissue<br>14-AUG-15<br>AER-GR-REP1 | L1661327-64<br>Tissue<br>14-AUG-15<br>AER-BER-REP1 |  |
|----------------|-----------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|----------------------------------------------------|--|
| Grouping       | Analyte                                                               |                                                   |                                                   |                                                    |  |
| TISSUE         |                                                                       |                                                   |                                                   |                                                    |  |
| Physical Tests | % Moisture (%)                                                        | 81.0                                              | 57.1                                              | 81.4                                               |  |
| Metals         | Aluminum (Al)-Total (mg/kg wwt)                                       | 72.1                                              | 8.66                                              | <0.40                                              |  |
|                | Antimony (Sb)-Total (mg/kg wwt)                                       | 0.0056                                            | <0.0020                                           | <0.0020                                            |  |
|                | Arsenic (As)-Total (mg/kg wwt)                                        | 0.0353                                            | 0.0262                                            | <0.0040                                            |  |
|                | Barium (Ba)-Total (mg/kg wwt)                                         | 9.55                                              | 15.3                                              | 0.250                                              |  |
|                | Beryllium (Be)-Total (mg/kg wwt)                                      | 0.0254                                            | 0.0032                                            | <0.0020                                            |  |
|                | Bismuth (Bi)-Total (mg/kg wwt)                                        | 0.0022                                            | <0.0020                                           | <0.0020                                            |  |
|                | Boron (B)-Total (mg/kg wwt)                                           | 0.35                                              | 1.54                                              | 0.25                                               |  |
|                | Cadmium (Cd)-Total (mg/kg wwt)                                        | 0.0260                                            | 0.0093                                            | 0.0013                                             |  |
|                | Calcium (Ca)-Total (mg/kg wwt)                                        | 1080                                              | 948                                               | 39.0                                               |  |
|                | Cesium (Cs)-Total (mg/kg wwt)                                         | 0.0041                                            | 0.0076                                            | <0.0010                                            |  |
|                | Chromium (Cr)-Total (mg/kg wwt)                                       | 0.216                                             | 0.097                                             | <0.010                                             |  |
|                | Cobalt (Co)-Total (mg/kg wwt)                                         | 0.0559                                            | 0.0360                                            | <0.0040                                            |  |
|                | Copper (Cu)-Total (mg/kg wwt)                                         | 0.741                                             | 1.33                                              | 0.234                                              |  |
|                | Iron (Fe)-Total (mg/kg wwt)                                           | 86.3                                              | 39.5                                              | 0.85                                               |  |
|                | Lead (Pb)-Total (mg/kg wwt)                                           | 0.0680                                            | 0.0290                                            | <0.0040                                            |  |
|                | Lithium (Li)-Total (mg/kg wwt)                                        | <0.10                                             | <0.10                                             | <0.10                                              |  |
|                | Magnesium (Mg)-Total (mg/kg wwt)                                      | 387                                               | 598                                               | 24.3                                               |  |
|                | Manganese (Mn)-Total (mg/kg wwt)                                      | 36.5                                              | 221                                               | 6.10                                               |  |
|                | Mercury (Hg)-Total (mg/kg wwt)                                        | 0.0114                                            | 0.0051                                            | <0.0010                                            |  |
|                | Molybdenum (Mo)-Total (mg/kg wwt)                                     | 0.0195                                            | 0.209                                             | <0.0040                                            |  |
|                | Nickel (Ni)-Total (mg/kg wwt)                                         | 2.44                                              | 1.47                                              | 0.066                                              |  |
|                | Phosphorus (P)-Total (mg/kg wwt)                                      | 96.2                                              | 541                                               | 56.6                                               |  |
|                | Potassium (K)-Total (mg/kg wwt)                                       | 359                                               | 4800                                              | 301                                                |  |
|                | Rubidium (Rb)-Total (mg/kg wwt)                                       | 0.290                                             | 2.97                                              | 0.328                                              |  |
|                | Selenium (Se)-Total (mg/kg wwt)                                       | 0.012                                             | <0.010                                            | <0.010                                             |  |
|                | Sodium (Na)-Total (mg/kg wwt)                                         | 15.0                                              | 17.8                                              | <4.0                                               |  |
|                | Strontium (Sr)-Total (mg/kg wwt)                                      | 8.83                                              | 6.47                                              | 0.127                                              |  |
|                | Tellurium (Te)-Total (mg/kg wwt)                                      | <0.0040                                           | <0.0040                                           | <0.0040                                            |  |
|                | Thallium (TI)-Total (mg/kg wwt)                                       | 0.00081                                           | 0.00057                                           | <0.00040                                           |  |
|                | Tin (Sn)-Total (mg/kg wwt)                                            | <0.020                                            | <0.020                                            | 0.026                                              |  |
|                | Uranium (U)-Total (mg/kg wwt)                                         | 0.126                                             | 0.00893                                           | <0.00040                                           |  |
|                | Vanadium (V)-Total (mg/kg wwt)                                        | 0.081                                             | <0.020                                            | <0.020                                             |  |
|                | Zinc (Zn)-Total (mg/kg wwt)                                           | 5.56                                              | 11.5                                              | 0.59                                               |  |
|                | Zirconium (Zr)-Total (mg/kg wwt)                                      | 0.080                                             | <0.040                                            | <0.040                                             |  |
|                |                                                                       |                                                   |                                                   |                                                    |  |

<sup>\*</sup> Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1661327 CONTD....
PAGE 16 of 17
30-SEP-15 15:00 (MT)

FINΔI

Version:

#### **Reference Information**

| QC | Samples | with | Qualifiers | & | Comments: |
|----|---------|------|------------|---|-----------|
|----|---------|------|------------|---|-----------|

| QC Type Description | Parameter           | Qualifier | Applies to Sample Number(s)                                                                                                  |
|---------------------|---------------------|-----------|------------------------------------------------------------------------------------------------------------------------------|
| Duplicate           | Aluminum (Al)-Total | DUP-H     | L1661327-12, -16, -20, -24, -28, -32, -36, -4, -40, -44, -48, -50, -51, -52, -54, -55, -56, -58, -59, -60, -62, -63, -64, -8 |
| Duplicate           | Iron (Fe)-Total     | DUP-H     | L1661327-12, -16, -20, -24, -28, -32, -36, -4, -40, -44, -48, -50, -51, -52, -54, -55, -56, -58, -59, -60, -62, -63, -64, -8 |

#### **Qualifiers for Individual Parameters Listed:**

Qualifier Description

DUP-H Duplicate results outside ALS DQO, due to sample heterogeneity.

#### Test Method References:

| Tool mound (Coloronous) |        |                          |                       |  |  |  |
|-------------------------|--------|--------------------------|-----------------------|--|--|--|
| ALS Test Code           | Matrix | Test Description         | Method Reference**    |  |  |  |
| HG-200.2-CVAF-VA        | Soil   | Mercury in Soil by CVAFS | EPA 200.2/1631E (mod) |  |  |  |

Soil samples are digested with nitric and hydrochloric acids, followed by analysis by CVAFS.

HG-WET-CVAFS-N-VA Tissue Mercury in Tissue by CVAFS (WET) EPA 200.3, EPA 245.7

This method is conducted following British Columbia Lab Manual method "Metals in Animal Tissue and Vegetation (Biota) - Prescriptive". Tissue samples are homogenized and sub-sampled prior to hotblock digestion with nitric and hydrochloric acids, in combination with addition of hydrogen peroxide. Analysis is by atomic fluorescence spectrophotometry or atomic absorption spectrophotometry, adapted from US EPA Method 245.7.

MET-200.2-CCMS-VA Soil Metals in Soil by CRC ICPMS EPA 200.2/6020A (mod)

Soil samples are digested with nitric and hydrochloric acids, followed by analysis by CRC ICPMS.

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. This method does not dissolve all silicate materials and may result in a partial extraction. depending on the sample matrix, for some metals, including, but not limited to Al, Ba, Be, Cr, Sr, Ti, Tl, and V.

MET-WET-CCMS-N-VA Tissue Metals in Tissue by CRC ICPMS (WET) EPA 200.3/6020A

This method is conducted following British Columbia Lab Manual method "Metals in Animal Tissue and Vegetation (Biota) - Prescriptive". Tissue samples are homogenized and sub-sampled prior to hotblock digestion with nitric and hydrochloric acids, in combination with addition of hydrogen peroxide. Instrumental analysis is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

Method Limitation: This method employs a strong acid/peroxide digestion, and is intended to provide a conservative estimate of bio-available metals. Near complete recoveries are achieved for most toxicologically important metals, but elements associated with recalcitrant minerals may be only partially recovered.

MOISTURE-TISS-VA Tissue % Moisture in Tissues ASTM D2974-00 Method A

This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours.

PH-1:2-VA Soil pH in Soil (1:2 Soil:Water Extraction) BC WLAP METHOD: PH, ELECTROMETRIC, SOIL

This analysis is carried out in accordance with procedures described in the pH, Electrometric in Soil and Sediment method - Section B Physical/Inorganic and Misc. Constituents, BC Environmental Laboratory Manual 2007. The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water. The pH of the solution is then measured using a standard pH probe.

\*\* ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

**Chain of Custody Numbers:** 

**Reference Information** 

L1661327 CONTD....

PAGE 17 of 17

30-SEP-15 15:00 (MT)

Version: FINAL

#### **GLOSSARY OF REPORT TERMS**

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

| COC# |  |
|------|--|
|      |  |

| •     |     |     |            |              |
|-------|-----|-----|------------|--------------|
|       |     |     |            |              |
| 4     | •   |     |            |              |
| Gi in | T., |     |            |              |
| (ALS) | -   |     | <br>       | 1            |
|       |     | vuu | <br>= 6 11 | . <b>a</b> : |

| 1.1661327-COFC |
|----------------|
| 1 1661327-COFC |

| Page | 1 of | • |
|------|------|---|

| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                     | n//#####                  | 1                   |                |                           |                            |                           |             | CO          | C# _      |            |           |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|---------------------------|---------------------|----------------|---------------------------|----------------------------|---------------------------|-------------|-------------|-----------|------------|-----------|----------------------|
| ALS Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | L166132             | 7-COFC                    |                     |                |                           |                            |                           |             |             |           | Page       |           | of <u>.</u>          |
| Report To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tr .            | F.100.              |                           |                     | Serv           | ce Re                     | ques                       | ted (R                    | ush for     | routine     | analysi   | s subject  | to avail  | lability)            |
| Company: Agnico Eagle Mines LtdMeadowbank Division                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tc.             | Julet               | , -                       |                     | ⊕ Re           | gular (S                  | Standa                     | rd Turnai                 | ound Ti     | nes - Bu    | ısiness D | ays)       |           |                      |
| Contact: Ryan VanEngen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | √ PUF           | ☑ Excel             | ☐ Digital                 | ☐ Fax               | O Pri          | ority (2-                 | 4 Busi                     | ness Day                  | s) - 50%    | Surcha      | rge - Co  | ntact ALS  | to Confir | m TAT                |
| Address: Baker Lake NU X0C 0A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Email 1:        | ryan.vanengen       | @agnicoeagle.co           | om                  | O En           | ergency                   | / (1-2                     | Bus. Day                  | s) - 100°   | % Surch     | arge - C  | ontact ALS | to Confr  | ırm TAT              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Email 2:        | andrea amend        | ola@golder.com            |                     | () Sa          | me Day                    | or We                      | ekend Er                  | nergeno     | y - Conta   | ect ALS t | to Confirm | TAT       |                      |
| Phone: 819 651 2974 Fax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Email 3:        | leilan.baxter@a     | ignicoeagle.com           |                     |                |                           |                            |                           |             |             | equest    |            |           |                      |
| Invoice To Same as Report ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Client / P      | roject Informati    | on_                       | :                   | Plea           | se ind                    | icate                      | below                     | Filtere     | d, Pres     | served    | or both    | (F, P, F  | <sup>-</sup> /P)     |
| Hardcopy of Invoice with Report? ☐ Yes ☑ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Job #:          | Meadowbank S        | LRA                       | <u> </u>            | <u> </u>       |                           | _                          |                           |             |             |           |            |           |                      |
| Company:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PO / AFE:       | <u> </u>            |                           |                     | [ 륜            | <u>}</u>                  | \$                         | ź                         |             |             |           |            |           |                      |
| Contact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LSD:            |                     |                           |                     | -CCME+FUI      | 35                        | 351                        | ξ                         |             |             |           |            |           | ıρ                   |
| Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                     |                           |                     | ် ဂ်           | Ś                         | Ü                          | 3                         |             |             |           |            |           | <u>=</u>             |
| Phone: Fax: ′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Quote #         | 52390               |                           |                     |                | Ē                         | Ĕ                          | Ë,                        |             |             |           |            |           | l g                  |
| Lab Work Order # (lab use only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALS<br>Contact: | Ariel Tang          | Sampler:                  | David Brown         | Met+Hg+pH (MET | Metals (MET-WET-CCMS-N-V/ | Moisture (MOISTURE-TISS-VA | Mercury (HG-WET-CVAFS-N-V |             |             |           |            |           | Number of Containers |
| Sample   Sample Identification  (This description will appear on the report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | Date<br>(dd-mmm-yy) | Time<br>(hh:mm)           | Sample Type         | Met+Hg         | Metals                    | Moistur                    | Mercun                    |             |             | i         |            |           | Numbe                |
| AER-SOIL-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | Aug 14/15           |                           | Soil                | Х              |                           |                            |                           |             |             |           |            |           | 1                    |
| lichen- AFP-LI-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>_</del>    | 3 1 // 13           |                           | Tissue              |                | $\overline{\mathbf{x}}$   | x                          | x                         |             |             |           |            |           | 1                    |
| 3sedge AER-GIR-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                     |                           | Tissue              |                |                           |                            | x                         | -           |             |           |            |           | 1                    |
| _berries AER-BER-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                     |                           | Tissue              |                |                           | x                          | x                         |             |             |           | •          |           | 1                    |
| AER-SOIL-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                     |                           | · Soil              | х              |                           |                            | <u> </u>                  |             |             |           |            |           | =1:-                 |
| AER-LI-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                     |                           | Tissue              |                | х                         | x                          | x                         |             |             |           |            |           | 1                    |
| 1 AER-GR-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                     |                           | Tissue              |                | X                         | х                          | x                         |             |             |           |            |           | 1                    |
| AER-BER-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                     |                           | Tissue              |                | х                         | x                          | х                         |             |             |           |            |           | 1                    |
| AER-SOIL-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                     |                           | Soil                | Х              |                           |                            | 1                         |             |             |           |            |           | 1                    |
| D AER-LI-US                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                     |                           | Tissue              |                | Х                         | x                          | х                         |             |             |           |            |           | 1                    |
| N AER-GR-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                     |                           | Tissue              |                | Х                         | Х                          | x _                       | ٦.          |             |           |            |           | 1                    |
| AER-BER-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | W                   |                           | Tissue              |                | X.                        | x                          | X                         | #           |             |           |            |           | 1                    |
| Special Instructions / Regulations with water or lan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d use (CCMI     | E-Freshwater A      | quatic Life/BC            | CSR - Commercia     | al/AB          | Tier 1                    | - Na                       | tural, e                  | tc) / H     | azardo      | ous De    | tails      |           | -                    |
| Please see back side of Titsheet for more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - Somple        | LC ID's 5           | analysis                  | -> Contact          | + L            | Pario                     | 1 B                        | rown                      | aji<br>aris | orown<br>Se | æg.       | older.     | Cotoc     |                      |
| Failure to complete all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                     |                           | Please fill in this | s form         | ı LEG!                    | BLY.                       |                           |             |             |           |            |           |                      |
| By the use of this form the user ackn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                     |                           |                     |                |                           |                            |                           |             |             |           |            | '         |                      |
| Also provided on another Excel tab are the ALS location SHIPMENT RELEASE (client use)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                     |                           |                     | rvatio         | n / ho                    |                            |                           |             |             |           |            |           |                      |
| Released by:  Date (dd-mmm-yy) (Time (ñh-mm) Receive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | Date:               | ION (lab use onl<br>Time; | y)<br>Temperature:  | Vos            | find by                   | ٠                          |                           | te:         | FICAT       | Time:     | ab use o   |           | rvations:            |
| Teleased by Training Trace (Institute (Insti | u uy.           | · /                 |                           |                     | ven            | fied by                   | •                          |                           | uic.        | Ī           |           |            | Yes /     | No?                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>        | 3(throld            | 12:09                     | °C                  | <u> </u>       |                           |                            |                           |             |             |           |            | If Yes    | add SIF              |
| A Company of the Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>.</b>        |                     |                           | _                   |                |                           |                            |                           |             |             |           | GEN        | F 20.00   | Front                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · ·             |                     |                           |                     | ٠              |                           |                            |                           |             |             | ٠         | . •        |           | •                    |

| -    |                  |           |
|------|------------------|-----------|
|      | SAMPLE ID        | DATE      |
| 13   | AER-SOIL-REPZ    | Amy 14/15 |
| ખ    | AER-LI-REP2      | 1         |
| 15   | AER-GR-REP2      |           |
| طأ   | AER - BER - REPZ |           |
| VI   | AER-SOIL-REP3    |           |
| V    | AER- LI - REP3   |           |
| ja   | AER-GR-REP3      |           |
| صو   | AER-BER-REP3     |           |
| Дl   | AER SOIL-PEP4    |           |
| 22   | AER-LI-REP4      |           |
| n    | AER-GR-REP4      |           |
| 24   | AER-BER-REP4     |           |
| ميره | AER-SOIL-REPS    |           |
| ji.  | AER-LI-REPS      |           |
|      | AER-GR-REPS      | 1         |
| ٦×   | AEK-BER-REPS     | 4         |

| SAMPLE | TYPE |
|--------|------|
| SOI    | L    |

ANALYSIS

TISSUE

TISSUE

TISSUE

SOTL

TISSUE

TITTUE

TISSUE

SoIL

TISSUE

TISSWE

TISSUE

SOIL

TESSUE

TISSUE

TISSUE



L1661327-COFC

See other side of Coc.



| COC# |  |
|------|--|
|      |  |

Page \_\_\_\_\_\_of

| Report To      |                                                                                                                                                                                                                                      |                   |                  | Report F                                      | วเพลเ / มาร | HIIVA | ,              | -              | Serv                    | ice R                    | eque                       | ested        | (Rush fo   | r routin  | e analy   | sis sul | bject ti | o avai | lability | )                    |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|-----------------------------------------------|-------------|-------|----------------|----------------|-------------------------|--------------------------|----------------------------|--------------|------------|-----------|-----------|---------|----------|--------|----------|----------------------|
|                | Agnico Eagle Mines                                                                                                                                                                                                                   | s LtdMeadowb      | ank Division     | ☐ Standard                                    | ı ☑ Ot      | her   |                |                | ⊕ R                     | egular                   | (Stand                     | lard Tu      | rnaround   | Times - I | Business  | Days)   |          |        |          | $\neg$               |
| Contact:       | Ryan VanEngen                                                                                                                                                                                                                        |                   |                  | ☑ PDF                                         | ☑ Ex        | cel   | ☐ Digita       | I ☐ Fax        | O Pr                    | iority (                 | 2-4 Bu                     | siness       | Days) - 50 | 3% Surch  | narge - ( | Contact | ALS to   | Confir | m TAT    |                      |
| Address:       | Baker Lake NU X00                                                                                                                                                                                                                    | C 0A0             |                  | Email 1:                                      | ryan.vane   | ngen( | @agnicoeagle.  | com            | O Er                    | nergen                   | icy (1-2                   | 2 Bus. I     | Days) - 10 | 0% Surc   | harge -   | Contac  | t ALS t  | o Conf | irm TAT  | r                    |
|                |                                                                                                                                                                                                                                      |                   |                  | Email 2:                                      | andrea a    | mend  | ola@golder.co  | <u> </u>       | O Sa                    | me Da                    | y or W                     | /eeken       | d Emergei  | ncy - Con | ntact ALS | S to Co | nfirm T  | AT     |          |                      |
| Phone;         | 819 651 2974                                                                                                                                                                                                                         | Fax:              |                  | Email 3;                                      | leilan bax  | ter@a | gnicoeagle.co  | <u> </u>       |                         |                          |                            |              | Ana        | lysis F   | Reque     | st      |          |        |          |                      |
| Invoice To     | Same as Report ?                                                                                                                                                                                                                     | ✓ Yes             | □ No             | Client / P                                    | roject Info | rmati | оп             |                | Plea                    | ase in                   | dicate                     | e belo       | w Filter   | ed, Pre   | serve     | d or b  | oth (F   | , P, F | -/P)     |                      |
| Hardcopy of Ir | nvoice with Report?                                                                                                                                                                                                                  | ☐ Yes             | ☑ No             | Job #:                                        | Meadowb     | ank S | LRA            | <u> </u>       |                         |                          |                            |              |            |           |           |         |          |        |          |                      |
| Company:       | <u> </u>                                                                                                                                                                                                                             | <u> </u>          |                  | PO / AFE                                      |             |       |                |                | Ϳ ቨ                     | ><br>2                   | ۰.۲۸                       | 7-N-S        |            |           |           |         | . 1      |        |          |                      |
| Contact:       |                                                                                                                                                                                                                                      |                   |                  | LSD:                                          |             |       |                |                | ļ #                     | MS-I                     | 1188                       | F.           |            |           |           |         |          |        |          | တ                    |
| Address:       | <del></del>                                                                                                                                                                                                                          |                   |                  |                                               |             |       |                |                | Ü                       | Ş                        | Ę.                         |              |            |           |           |         |          |        | 1        | iner                 |
| Phone:         |                                                                                                                                                                                                                                      | Fax:              |                  | Quote #:                                      | 52390       |       |                |                | ] 🛓                     | ĒŢ.                      | ΙΩΣ                        | (HG-WET-CVAF |            |           |           |         |          |        | - !      | nta                  |
| Lab W          | ork Order#                                                                                                                                                                                                                           |                   | T. Park T.       | ALS                                           | Ariel Tang  | ,     | Sampler:       | David Brown    | ₹                       | ¥-                       | 1018                       | اخ ا         |            |           |           |         |          |        |          | ပို                  |
| (lab           | Fame as Report? Yes  voice with Report? Yes  Voice with Report? Yes  Fame ork Order #  Use only)  Sample  (This description  AER-SOIL-  Sector AER-LI-  Sector AER-BER-BER  AER-GR-05  AER-BER-05  AER-LI-06  AER-BER-06  AER-BER-06 | 4                 | ur (Ph           | Contact:                                      | And rang    | 4     | Sampler.       | David Biowii   | Met+Hg+pH (MET-CCME+FUL | (ME                      | e (s                       | Ě            | i          |           |           |         |          |        | ]        | 0                    |
| - Sample -     |                                                                                                                                                                                                                                      | Sample lo         | dentification    |                                               | Date        | 9     | Time           | Sample Type    | ] Ĭ                     | Metais (MET-WET-CCMS-N-V | Moisture (MOISTURE-TISS-VA | Mercury      |            |           |           |         |          | ı      |          | Number of Containers |
| # * *          | (Thi                                                                                                                                                                                                                                 | is description wi | ll appear on the | report)                                       | (dd-mmn     | n-yy) | (hh:mm)        | Odniple Type   | ğ                       | ξ                        | o₩                         | Me           |            |           |           |         |          |        |          | ž                    |
| 9.             | - AER                                                                                                                                                                                                                                | -SOIL-(           | 04               |                                               | Aug 1       | 14/13 |                | - Soil         | X                       |                          |                            |              |            |           |           |         | -        | ~ :    |          | 1                    |
| 30             | seben AER                                                                                                                                                                                                                            | 2- LI-U           | 4                |                                               | 1           | •     | <b>—</b>       | Tissue         |                         | Х                        | Х                          | х            |            |           |           |         |          |        |          | 1                    |
| 31 1           |                                                                                                                                                                                                                                      |                   |                  |                                               |             |       | ~_             | Tissue         |                         | Х                        | Х                          | Х            |            |           |           |         |          |        |          | 1                    |
| 31             |                                                                                                                                                                                                                                      | <del></del>       |                  |                                               |             |       |                | Tissue         |                         | Х                        | Х                          | Х            |            | Ī         |           |         |          |        |          | 1                    |
| with 3 taken   | AER-SO                                                                                                                                                                                                                               | IL-05_            |                  |                                               |             |       |                | Soil           | Х                       |                          |                            |              |            |           |           |         |          |        |          | 1                    |
| ્ર3પ ે         | AER-L                                                                                                                                                                                                                                | I-05              |                  |                                               |             |       |                | Tissue         |                         | Х                        | Х                          | Х            |            |           |           |         |          | $\neg$ |          | 1                    |
| 37.            | AER-GR                                                                                                                                                                                                                               | 2-05              |                  |                                               |             |       |                | Tissue         |                         | Х                        | Χ                          | Х            |            |           |           |         |          |        |          | 1                    |
| 3C             | AER-BO                                                                                                                                                                                                                               | ER-05             | _                |                                               |             |       | ,              | Tissue         |                         | Х                        | X                          | Х            |            |           |           |         |          |        |          | 1                    |
| - 31           | AER-SO                                                                                                                                                                                                                               | JL-06             | <u></u>          | <u> </u>                                      |             |       |                | Soil           | X                       |                          |                            |              |            |           |           |         |          |        |          | 1                    |
| 34             | AER-L                                                                                                                                                                                                                                | I-06              |                  |                                               |             |       |                | Tissue         |                         | Х                        | Х                          | Х            |            |           |           |         |          |        |          | 1                    |
| 31             | AER-G                                                                                                                                                                                                                                | R-06              |                  |                                               |             |       |                | Tissue         |                         | Х                        | Х                          | Х            |            |           |           |         |          |        |          | 1                    |
| ાપથ            | AER-BE                                                                                                                                                                                                                               | ER-06             |                  |                                               | 4           |       |                | Tissue         |                         | Х                        | Х                          | Х            |            |           |           |         |          |        |          | 1                    |
|                | Special Instru                                                                                                                                                                                                                       | ictions / Regul   | ations with wa   | ter or land use (CCM                          | E-Freshwa   | ter A | uatic Life/BC  | CSR - Commerci | al/AB                   | Tier                     | 1 - N                      | atura        | l, etc) /  | Hazaro    | lous l    | Detail  | 5        |        |          |                      |
|                |                                                                                                                                                                                                                                      |                   |                  |                                               |             |       |                |                |                         |                          |                            |              |            |           |           |         |          |        |          |                      |
| <u></u>        | <del></del>                                                                                                                                                                                                                          |                   |                  |                                               |             |       |                |                |                         |                          |                            |              | _          |           |           |         |          |        |          |                      |
|                |                                                                                                                                                                                                                                      | By the use of     |                  | mplete all portions of<br>iser acknowledges a |             |       |                |                |                         |                          |                            |              |            | 4-1-      |           |         |          |        |          |                      |
|                |                                                                                                                                                                                                                                      |                   |                  | iser acknowledges a<br>S location addresses   |             |       |                |                |                         |                          |                            |              |            |           |           |         |          |        |          | • •                  |
| <del></del>    | SHIPMENT RELE                                                                                                                                                                                                                        |                   |                  |                                               |             |       | ON (lab use or |                | Valle                   | /11 / 11                 |                            |              | NT VE      |           |           |         |          |        |          |                      |
| Released by:   |                                                                                                                                                                                                                                      | Date (dd-mmm-yy)  | Time (hh-mm)     | Received by:                                  | Date:       |       | Time:          | Temperature:   | Veri                    | fied b                   |                            |              | Date:      |           | Tim       |         |          | • •    | ervatio  | ns:                  |
|                |                                                                                                                                                                                                                                      |                   |                  |                                               |             |       |                | °C             |                         |                          | **                         |              |            |           |           |         | ľ        | Yes /  | No?      |                      |
|                |                                                                                                                                                                                                                                      |                   |                  | <u> </u>                                      | <u> </u>    |       | <u> </u>       | 1 °C           |                         |                          |                            |              |            |           | 1         |         |          | If Yes | s add    | SIF                  |

|--|

| COC# | • |   |
|------|---|---|
|      |   | _ |

| (ALS) Environmental                                                                                                                                  |                                                    | L1661327            | 7-COFC                                                |                                                                              |                         |           |                                   |                                        |                    |                |            | Page      | _3           | . 01 _    |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------|-------------------------------------------------------|------------------------------------------------------------------------------|-------------------------|-----------|-----------------------------------|----------------------------------------|--------------------|----------------|------------|-----------|--------------|-----------|
| Report To                                                                                                                                            |                                                    | [100 to2            |                                                       |                                                                              | Serv                    | ice R     | eque                              | sted                                   | (Rush fo           | r routin       | e analysi  | s subjec  | t to ava     | ilability |
| Company: Agnico Eagle Mines LtdMeadowbank Division                                                                                                   | Standard                                           | ☑ Other             |                                                       |                                                                              |                         |           | •                                 |                                        | al                 |                | Business C |           |              |           |
| Contact: Ryan VanEngen                                                                                                                               | ☑ PDF                                              | ☑ Excel             | ☐ Digital                                             | ☐ Fax                                                                        | O Pri                   | ority (   | 2-4 Bus                           | siness [                               | Days) - 50         | 1% Surci       | narge - Co | ntact ALS | to Confi     | im TAT    |
| Address: Baker Lake NU XOC 0A0                                                                                                                       | Email 1:                                           | ryan.vanengend      | @agnicoe <u>agle.co</u>                               |                                                                              | O En                    | nergen    | cy (1-2                           | Bus. E                                 | Days) - 10         | 0% Sur         | harge - Co | ntact AL  | S to Con     | firm TAT  |
|                                                                                                                                                      | Email 2:                                           |                     | ola@golder.com                                        |                                                                              | O Sa                    | me Da     | y or W                            | eekend                                 | l Emerger          | cy - Cor       | tact ALS t | o Confirr | TAT          |           |
| Phone: 819 651 2974 Fax:                                                                                                                             | Email 3:                                           | leilan.baxter@a     | gnicoeagle.com                                        |                                                                              |                         |           |                                   |                                        | Ana                | lysis F        | Request    |           |              |           |
| nvoice To Same as Report ? 🖸 Yes 🔲 No                                                                                                                | Client / Pr                                        | roject Informati    | on                                                    |                                                                              | Plea                    | se in     | dicate                            | e belo                                 | w Filter           | ed, Pre        | served     | or both   | (F, P,       | F/P)      |
| Hardcopy of Invoice with Report? ☐ Yes ☑ No                                                                                                          | Job #:                                             | Meadowbank S        | LRA                                                   |                                                                              |                         |           |                                   |                                        |                    |                |            |           |              |           |
| Company:                                                                                                                                             | PO / AFE:                                          |                     |                                                       |                                                                              | 뒾                       | <u> </u>  | Ş                                 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                    |                |            |           |              |           |
| Contact:                                                                                                                                             | LSD:                                               |                     |                                                       |                                                                              | <u> </u>                | CCMS-N-V  | - E                               | FS                                     |                    |                |            |           |              |           |
| Address:                                                                                                                                             |                                                    |                     |                                                       | _                                                                            | ၂ ဦ                     | Ö         | ų.                                | اڅ                                     |                    |                |            |           |              |           |
| Phone: Fax:                                                                                                                                          | Quote #:                                           | 52390               |                                                       |                                                                              |                         | 1.5       | 덻                                 | Ü                                      |                    |                |            |           |              |           |
| Lab Work Order# (lab use only)                                                                                                                       | ALS<br>Contact:                                    | Ariel Tang          | Sampler:                                              | David Brown                                                                  | Met+Hg+pH (MET-CCME+FUL | (MET-WET  | e (MOISTURE-TISS-VA               | (HG-WET-CVAFS-N-V                      |                    |                |            |           |              |           |
| Sample Sample Identification  # (This description will appear on the report)                                                                         |                                                    | Date<br>(dd-mmm-yy) | Time<br>(hh:mm)                                       | Sample Type                                                                  | Met+Hg                  | Metals    | Moistur                           | Mercury                                |                    |                |            |           |              | 1         |
| 41 AER-SOIL-07                                                                                                                                       |                                                    | AUG H/1             | <del></del>                                           | Soil                                                                         | х                       |           |                                   |                                        |                    |                |            |           |              |           |
| 42 TICHEN AER-LI-07                                                                                                                                  |                                                    | 1                   |                                                       | Tissue                                                                       |                         | Х         | Х                                 | х                                      | - 1                |                |            |           |              |           |
| 43 _ SONDE AER-GR-07                                                                                                                                 |                                                    |                     |                                                       | Tissue                                                                       |                         | х         | х                                 | х                                      |                    |                |            |           | 1            |           |
| Sedicion AER-BER-07                                                                                                                                  |                                                    |                     |                                                       | Tissue                                                                       |                         | х         | х                                 | X                                      |                    | _              |            |           |              | -         |
| -UK AER-SOIL-OSS                                                                                                                                     |                                                    | Aug 15/15           |                                                       | Soil                                                                         | Х                       |           |                                   |                                        |                    |                |            |           |              |           |
| 4 AER-LI-08                                                                                                                                          |                                                    | 1/2) 1/1/2          | _                                                     | Tissue                                                                       |                         | Х         | Х                                 | Х                                      |                    |                |            |           |              |           |
| 47 AER-GR-08                                                                                                                                         |                                                    |                     |                                                       | Tissue                                                                       |                         | Х         | Х                                 | Х                                      |                    |                |            |           |              |           |
| 48 AER-BER-08                                                                                                                                        |                                                    |                     |                                                       | Tissue                                                                       |                         | х         | х                                 | X                                      |                    |                |            |           |              |           |
| 99 AER-SOIL-08-DUP                                                                                                                                   | - "                                                |                     |                                                       | Soil                                                                         | Х                       |           |                                   |                                        |                    |                | 1 1        |           | <del> </del> |           |
|                                                                                                                                                      |                                                    |                     | -                                                     | Tissue                                                                       |                         | х         | Х                                 | $\overline{\mathbf{x}}$                |                    |                |            |           |              | Ī         |
| SO AER-LI-08-DUP                                                                                                                                     |                                                    |                     |                                                       | <del></del>                                                                  |                         | X         | Х                                 | х                                      |                    |                |            |           |              |           |
| SI AER-LI-08-DUP                                                                                                                                     |                                                    |                     |                                                       | Tissue                                                                       | 1                       | _^        |                                   |                                        |                    |                |            |           |              |           |
|                                                                                                                                                      |                                                    |                     |                                                       | Tissue<br>Tissue                                                             |                         | X         | Х                                 | х                                      |                    |                |            |           |              |           |
| SI AER-GR-08-DUP                                                                                                                                     | and use (CCME                                      | E-Freshwater A      | quatic Life/BC                                        | Tissue                                                                       | al/AB                   | х         |                                   |                                        | I, etc) /          | Hazar          | dous De    | tails     |              |           |
| SI AER-GR-08-DUP<br>AER-BER-08-DUP                                                                                                                   | and use (CCME                                      | E-Freshwater A      | quatic Life/BC (                                      | Tissue                                                                       | al/AB                   | х         |                                   |                                        | I, etc) /          | Hazar          | dous De    | tails     |              |           |
| SI AER-GR-08-DUP<br>AER-BER-08-DUP                                                                                                                   |                                                    | •                   |                                                       | Tissue<br>CSR - Commerci                                                     |                         | X<br>Tier | 1 - Na                            | atural                                 | I, etc) /          | Hazar          | dous De    | tails     |              |           |
| 51 AER-GR-OS-DUP 52 AER-BER-OS-DUP Special Instructions / Regulations with water or la  Failure to complete and By the use of this form the user act | all portions of<br>knowledges, ar                  | this form may       | delay analysis.<br>the Terms and (                    | Tissue CSR - Commerci Please fill In this Conditions as pr                   | s forn                  | X<br>Tier | 1 - Na<br>SIBLY<br>a sep          | atural                                 | e Excel            | tab.           |            |           | 9s.          |           |
| 51 AER-GR-OS-DUP 52 AER-BER-OS-DUP Special Instructions / Regulations with water or la                                                               | all portions of<br>knowledges ar<br>ion addresses, | this form may       | delay analysis.<br>the Terms and (<br>rs and sample ( | Tissue CSR - Commerci Please fill In this Conditions as procontainer / prese | s forn                  | X<br>Tier | 1 - Na<br>SIBLY<br>a sep<br>oldin | atural<br>/.<br>parate<br>g tim        | e Excel<br>e table | tab.<br>for co |            | nalys     |              | 7         |

| $\sim$ | # |
|--------|---|
| -      | # |





Page \_\_\_\_of \_

|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 1400400-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ~~-~            |                     | _              |                          |                            |                                               |                 |          |           |            |           |                     |                      |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|----------------|--------------------------|----------------------------|-----------------------------------------------|-----------------|----------|-----------|------------|-----------|---------------------|----------------------|
| Report To            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | L1661327-(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | COFC .          | <u>_</u>            | Serv           | ice R                    | eque                       | sted                                          | (Rush f         | or routi | ne anal   | ysis-sub   | ject to a | /ailabilit          | у)                   |
| Company:=            | Agnico Eagle Mines LtdMeadowbank Division                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _               |                     | <b>└</b>       |                          | <u> </u>                   |                                               |                 |          | Busines   |            |           |                     |                      |
| Contact:             | mpany: Agnico Eagle Mines LtdMeadowbank Division  ntact: Ryan VanEngen  dress: Baker Lake NU XOC 0A0  one: 819 651 2974 Fax:  roice To Same as Report? Yes No  rdcopy of Invoice with Report? Yes No  mpany:  ntact: dress: one: Fax:  Lab Work Order # (lab use only)  Sample Sample Identification  (This description will appear on the rep  (1) — AER - SoIL - 09  SS Nedge: AER - BER - 09  SS Nedge: AER - BER - 09  SS NER - LI - 10  SS NER - LI - 10  SS NER - LI - 10  SS NER - SOIL - REPI  SS NER - SOIL - REPI  SS NER - SP NER - REPI  SS NER - SP NER - REPI  SS NER - SP NER - REPI  SS NEG NER - SER - REPI  SS NEG NER - SER - REPI  SS NEG NER - REPI |                 | ☑ Excel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Digital         | ☐ Fax               | O Pr           | iority (                 | 2-4 Bu:                    | siness [                                      | Days) - 5       | 0% Sur   | charge -  | Contact /  | ALS to Co | nfirm TA            | r                    |
| Address:             | Baker Lake NU X0C 0A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Email 1:        | ryan.vanengen(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | @agnicoeagle.c  | <u>om</u>           | O En           | nergen                   | Cy (1-2                    | Bus, C                                        | Pays) - 1       | 00% Su   | rcharge   | - Contact  | ALS to Co | mfirm T/            | 4T                   |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Email 2:        | andrea amendo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ola@golder.com  | <u></u>             | O Sa           | me Da                    | y or W                     | eekend                                        | l Emerge        | ncy - C  | ontact Al | .S to Conf | firm TAT  |                     |                      |
| Рћоле:               | 819 651 2974 Fax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Email 3:        | leilan.baxter@a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gnicoeagle.com  |                     |                |                          |                            |                                               | Ana             | alysis   | Reque     | ıst        |           |                     |                      |
| nvoice To            | Same as Report?   Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Client / Po     | roject Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | on              |                     | Plea           | ise in                   | dicate                     | belo                                          | w Filte         | red, P   | reserve   | ed or bo   | oth (F, P | , F/P)              |                      |
|                      | voice with Report?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Job #:          | Meadowbank S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LRA             |                     |                |                          |                            |                                               |                 |          |           |            |           |                     |                      |
| Company:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PO / AFE:       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                     | ] [            | \ <u>\}</u>              | × .                        | - <u>-</u>                                    |                 |          |           |            |           |                     |                      |
| Contact:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LSD:            | PO / AFE: LSD:  LSD:  CCWE+ENT/ CCWE |                 |                     |                |                          |                            |                                               |                 |          |           |            |           |                     | γ                    |
| Address:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     | [ <u>6</u> ]   | ပ်                       | <u> </u>                   | \$                                            |                 | İ        |           |            |           |                     | je j                 |
| Phone:               | Fax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Quote #:        | 52390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                     |                | E E                      | ž                          |                                               |                 |          |           |            |           |                     | 멸                    |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ALS<br>Contact: | Ariel Tang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sampler:        | David Brown         | Met+Hg+pH (MET | Metals (MET-WET-CCMS-N-V | Moisture (MOISTURE-TISS-VA | (HG-WET                                       |                 |          |           |            |           |                     | Number of Containers |
| Sample<br>#          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | υ               | Date<br>(dd-mmm-yy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Time<br>(hh:mm) | Sample Type         | Vet+Hg         | Metals (                 | Moisture                   | Mercury                                       |                 |          |           |            |           |                     | Numbe                |
|                      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del>7</del>    | Aug 15/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | Soil                | X              |                          |                            | _                                             |                 |          | <u> </u>  |            |           |                     | 1                    |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | Tissue              |                | Х                        | Х                          | Х                                             |                 |          |           |            |           |                     | 1                    |
| 55                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Tissue              |                | Х                        | Х                          | Х                                             |                 |          |           |            |           |                     | 1                    |
| <b>\$</b> (          | _berries AER-BER-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -               | Tissue              |                | Х                        | Х                          | Х                                             |                 |          |           |            |           |                     | 1                    |
| #157 <del>- ++</del> | AER-SOIL=10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Soil                | X              |                          |                            |                                               |                 |          |           |            |           | _                   | 1                    |
| 51                   | AER-LI-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Tissue              |                | Х                        | Х                          | Х                                             |                 |          |           |            |           |                     | 1                    |
| 59                   | AER-GR-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Tissue              |                | Х                        | Х                          | Х                                             |                 |          |           | <u> </u>   |           | <u> </u>            | 1                    |
| (o                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | Tissue              |                | Х                        | _X                         | Х                                             |                 | <u> </u> |           |            |           | <u> </u>            | 1                    |
| اها                  | AER- SOIL-REPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _               | Aug 14/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | Soil                | Х              |                          |                            |                                               |                 |          | <u> </u>  |            |           |                     | 1                    |
|                      | AER-LI-REP1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>        | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | Tissue              |                | Х                        | Х                          | Х                                             |                 |          |           |            |           | ļ                   | 1                    |
| 6 <sup>3</sup>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Tissue              |                | Х                        | X                          | Х                                             |                 |          |           |            |           |                     | 1                    |
| (4                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | Tissue              |                | X                        | X                          | X                                             |                 |          |           |            |           |                     | 1                    |
| -                    | Special Instructions / Regulations with water or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | land use (CCM   | E-Freshwater A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | quatic Life/BC  | CSR - Commerci      | al/AB          | Tier                     | 1 - Na                     | atural                                        | , etc) <i>i</i> | Haza     | rdous     | Details    | ;         |                     |                      |
| · <del>····</del> ·  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |                |                          |                            |                                               |                 |          |           |            |           |                     |                      |
| -                    | Failure to complete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | all portions of | this form may                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | delay analysis. | Please fill in this | s forn         | n LEG                    | SIBLY                      | <u>'.                                    </u> |                 |          |           |            |           |                     |                      |
|                      | By the use of this form the user a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     |                |                          |                            |                                               |                 |          |           |            |           |                     | ٠                    |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                     | rvatio         | on / h                   |                            |                                               |                 |          |           |            |           |                     |                      |
| Simple Ministra      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | MENT RECEPTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del>, `</del>  | <del>,,</del>       | ļ.,            | ·                        |                            | IPME                                          |                 | RIFIC    |           |            | e only)   |                     | · ·                  |
| Released by:         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eived by:       | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Time:           | Temperature:        |                | fied b                   | γ:                         |                                               | Date:           |          | Tirr      | ię:        | Yes       | servati<br>s / No 1 | ?                    |
| <del> </del>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del></del>     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>        | <u> </u>            | <b></b>        |                          |                            |                                               |                 |          |           |            | ENE 20    | es add              |                      |

**ANNEX A-2** 

Results of the Soil and Sediment Program





Table 1. Baseline Soil Analytical Results

|                     | Sample Location | AER-01      | AER-02      | AER-03      | AER-04      | AER-05      | AER-06      | AER-07      | AE          | R-08            | AER-09      | AER-10      |               |               | AER-REP       |               |               |        |        |
|---------------------|-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----------------|-------------|-------------|---------------|---------------|---------------|---------------|---------------|--------|--------|
|                     | Sample Name     | AER-SOIL-01 | AER-SOIL-02 | AER-SOIL-03 | AER-SOIL-04 | AER-SOIL-05 | AER-SOIL-06 | AER-SOIL-07 | AER-SOIL-08 | AER-SOIL-08-DUP | AER-SOIL-09 | AER-SOIL-10 | AER-SOIL-REP1 | AER-SOIL-REP2 | AER-SOIL-REP3 | AER-SOIL-REP4 | AER-SOIL-REP5 |        |        |
|                     | Sampling Date   | 14-Aug-15   | 15-Aug-15   | 15-Aug-15       | 15-Aug-15   | 15-Aug-15   | 14-Aug-15     | 14-Aug-15     | 14-Aug-15     | 14-Aug-15     | 14-Aug-15     | MIN    | MAX    |
| Parameter           | Units           | •           |             |             |             |             |             |             |             |                 | -           |             |               |               |               |               |               |        |        |
| pH (1:2 soil:water) |                 | 5.17        | 4.92        | 5.41        | 5.62        | 5.05        | 5.25        | 4.98        | 5.26        | 5.62            | 5.69        | 4.59        | 5.68          | 5.37          | 5.67          | 5.47          | 5.64          | 4.59   | 5.69   |
| Aluminum (Al)       | mg/kg           | 9150        | 6270        | 6030        | 7190        | 6300        | 7310        | 6390        | 7190        | 8370            | 9360        | 8450        | 9350          | 6200          | 9960          | 6140          | 8860          | 6030   | 9960   |
| Antimony (Sb)       | mg/kg           | <0.10       | <0.10       | <0.10       | <0.10       | <0.10       | <0.10       | <0.10       | <0.10       | <0.10           | <0.10       | <0.10       | <0.10         | <0.10         | <0.10         | <0.10         | <0.10         | <0.10  | <0.10  |
| Arsenic (As)        | mg/kg           | 8.23        | 3.39        | 2.87        | 2.45        | 2.04        | 2.72        | 3.48        | 12.2        | 12.9            | 8           | 4.94        | 5.13          | 4.41          | 5.66          | 3.26          | 4.14          | 2.04   | 12.9   |
| Barium (Ba)         | mg/kg           | 14.1        | 21.9        | 19.5        | 39.7        | 28.2        | 32.8        | 21.2        | 73.9        | 86.8            | 48.4        | 14.3        | 39.2          | 21.6          | 46.5          | 22.3          | 32.9          | 14.1   | 86.8   |
| Beryllium (Be)      | mg/kg           | 0.22        | 0.29        | 0.28        | 0.4         | 0.36        | 0.43        | 0.31        | 0.36        | 0.4             | 0.35        | 0.26        | 0.53          | 0.33          | 0.54          | 0.28          | 0.44          | 0.22   | 0.54   |
| Bismuth (Bi)        | mg/kg           | <0.20       | <0.20       | <0.20       | 0.2         | 0.21        | 0.3         | <0.20       | <0.20       | <0.20           | <0.20       | <0.20       | 0.25          | <0.20         | 0.27          | <0.20         | 0.22          | 0.2    | 0.3    |
| Boron (B)           | mg/kg           | <5.0        | <5.0        | <5.0        | <5.0        | <5.0        | <5.0        | <5.0        | <5.0        | <5.0            | <5.0        | <5.0        | <5.0          | <5.0          | <5.0          | <5.0          | <5.0          | <5.0   | <5.0   |
| Cadmium (Cd)        | mg/kg           | 0.061       | 0.047       | 0.026       | 0.032       | 0.037       | 0.035       | 0.045       | 0.041       | 0.042           | 0.038       | 0.031       | 0.037         | 0.036         | 0.047         | 0.031         | 0.043         | 0.026  | 0.061  |
| Calcium (Ca)        | mg/kg           | 1550        | 1970        | 2680        | 3070        | 2020        | 3170        | 1540        | 3150        | 3620            | 3280        | 1130        | 3430          | 2650          | 3110          | 2670          | 3440          | 1130   | 3620   |
| Chromium (Cr)       | mg/kg           | 140         | 27.2        | 44.3        | 14.9        | 14.1        | 19.8        | 29.2        | 45.9        | 55.1            | 94.1        | 70          | 36.7          | 23.3          | 38.7          | 23.5          | 32.7          | 14.1   | 140    |
| Cobalt (Co)         | mg/kg           | 11.6        | 4.49        | 4.2         | 4.98        | 4.08        | 4.74        | 4.27        | 7.34        | 8.07            | 9.1         | 6.34        | 9.01          | 5.49          | 7.96          | 4.82          | 7.25          | 4.08   | 11.6   |
| Copper (Cu)         | mg/kg           | 5.5         | 4.34        | 4.99        | 4.44        | 3.45        | 10.1        | 3.47        | 6.55        | 7.91            | 9.71        | 2.94        | 7.39          | 4.76          | 8.02          | 4.73          | 6.03          | 2.94   | 10.1   |
| Iron (Fe)           | mg/kg           | 21200       | 14800       | 13600       | 16900       | 15100       | 16600       | 15800       | 16300       | 18300           | 20900       | 19400       | 21200         | 17800         | 21500         | 14000         | 19300         | 13600  | 21500  |
| Lead (Pb)           | mg/kg           | 5.16        | 5.86        | 5.1         | 4.95        | 5.7         | 7.92        | 6.77        | 6.11        | 6.86            | 4.72        | 4.6         | 7.37          | 5.71          | 7.46          | 5.19          | 6.78          | 4.6    | 7.92   |
| Lithium (Li)        | mg/kg           | 11.3        | 6.4         | 7.5         | 8.2         | 7.2         | 8.1         | 7.7         | 8.7         | 10.4            | 10.7        | 9.3         | 10.7          | 7.4           | 11.7          | 6.7           | 10.1          | 6.4    | 11.7   |
| Magnesium (Mg)      | mg/kg           | 8810        | 3210        | 3640        | 3550        | 2920        | 3440        | 3250        | 4930        | 5850            | 6710        | 5870        | 4990          | 3520          | 5210          | 3300          | 4650          | 2920   | 8810   |
| Manganese (Mn)      | mg/kg           | 450         | 185         | 147         | 242         | 202         | 199         | 169         | 264         | 280             | 246         | 196         | 421           | 206           | 310           | 168           | 279           | 147    | 450    |
| Mercury (Hg)        | mg/kg           | 0.0119      | 0.0184      | <0.0050     | 0.0057      | 0.0131      | 0.0069      | 0.016       | 0.0249      | 0.0089          | 0.0055      | 0.0061      | 0.0084        | <0.0050       | 0.0107        | <0.0050       | 0.0078        | 0.0055 | 0.0249 |
| Molybdenum (Mo)     | mg/kg           | 0.43        | 0.47        | 0.25        | 0.27        | 0.26        | 0.32        | 0.28        | 0.32        | 0.33            | 0.29        | 0.33        | 0.44          | 0.32          | 0.51          | 0.31          | 0.41          | 0.25   | 0.51   |
| Nickel (Ni)         | mg/kg           | 62.9        | 14.3        | 17.7        | 9.05        | 7.87        | 10.6        | 11          | 23.5        | 27.3            | 38.7        | 33.1        | 23.6          | 14.9          | 24.5          | 15.8          | 19.9          | 7.87   | 62.9   |
| Phosphorus (P)      | mg/kg           | 328         | 325         | 487         | 520         | 361         | 551         | 358         | 735         | 859             | 755         | 232         | 436           | 615           | 479           | 455           | 507           | 232    | 859    |
| Potassium (K)       | mg/kg           | 630         | 670         | 650         | 710         | 690         | 830         | 710         | 1480        | 1890            | 1540        | 580         | 1110          | 740           | 1230          | 730           | 1060          | 580    | 1890   |
| Selenium (Se)       | mg/kg           | <0.20       | <0.20       | <0.20       | <0.20       | <0.20       | <0.20       | <0.20       | <0.20       | <0.20           | <0.20       | <0.20       | <0.20         | <0.20         | <0.20         | <0.20         | <0.20         | <0.20  | <0.20  |
| Silver (Ag)         | mg/kg           | <0.10       | <0.10       | <0.10       | <0.10       | <0.10       | <0.10       | <0.10       | <0.10       | <0.10           | <0.10       | <0.10       | <0.10         | <0.10         | <0.10         | <0.10         | <0.10         | <0.10  | <0.10  |
| Sodium (Na)         | mg/kg           | <50         | 75          | <50         | 74          | 68          | 70          | 53          | 66          | 85              | 55          | <50         | 113           | 52            | 66            | <50           | 63            | 52     | 113    |
| Strontium (Sr)      | mg/kg           | 19.1        | 21.3        | 26          | 31.8        | 21.7        | 36.7        | 12.7        | 36.6        | 42.6            | 30          | 21.1        | 37.6          | 24.5          | 32.4          | 29.3          | 37.8          | 12.7   | 42.6   |
| Thallium (TI)       | mg/kg           | <0.050      | 0.06        | 0.052       | <0.050      | 0.053       | 0.063       | 0.053       | 0.093       | 0.114           | 0.087       | <0.050      | 0.091         | 0.056         | 0.102         | 0.052         | 0.081         | 0.052  | 0.114  |
| Tin (Sn)            | mg/kg           | <2.0        | <2.0        | <2.0        | <2.0        | <2.0        | <2.0        | <2.0        | <2.0        | <2.0            | <2.0        | <2.0        | <2.0          | <2.0          | <2.0          | <2.0          | <2.0          | <2.0   | <2.0   |
| Titanium (Ti)       | mg/kg           | 374         | 535         | 583         | 698         | 590         | 694         | 572         | 683         | 798             | 716         | 304         | 816           | 491           | 754           | 600           | 740           | 304    | 816    |
| Uranium (U)         | mg/kg           | 0.9         | 1.99        | 1.8         | 1.47        | 1.26        | 1.92        | 0.962       | 1.36        | 1.56            | 1.3         | 0.977       | 3.08          | 2.17          | 2.77          | 1.75          | 2.43          | 0.9    | 3.08   |
| Vanadium (V)        | mg/kg           | 24          | 12.4        | 13          | 17.4        | 13.3        | 15.2        | 17          | 20.1        | 23              | 25          | 18.8        | 17.4          | 12.2          | 17.6          | 11.8          | 16.7          | 11.8   | 25     |
| Zinc (Zn)           | mg/kg           | 36.5        | 25.5        | 23.4        | 29.2        | 27.7        | 31.7        | 25.4        | 27.6        | 31.5            | 30.1        | 27.8        | 36.8          | 28.9          | 41.4          | 25.5          | 36.2          | 23.4   | 41.4   |
| Zirconium (Zr)      | mg/kg           | <1.0        | 1.6         | 7           | 7.1         | 1.9         | 7.3         | 1.8         | 2.6         | 4.6             | 6.9         | 1.2         | 4.7           | 6.9           | 4.7           | 5.9           | 4.7           | 1.2    | 7.3    |

mg/kg = milligram per kilogram; < = less than laboratory method detection limit



Table 2. Baseline Lichen Analytical Results

|                       | Sample Location | AER-01    | AER-02    | AER-03    | AER-04    | AER-05    | AER-06    | AER-07    | AE        | R-08                                   | AER-09    | AER-10    |             |             | AER-REP     |             |             |         |         |
|-----------------------|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------------------------------------|-----------|-----------|-------------|-------------|-------------|-------------|-------------|---------|---------|
|                       | Sample Name     | AER-LI-01 | AER-LI-02 | AER-LI-03 | AER-LI-04 | AER-LI-05 | AER-LI-06 | AER-LI-07 | AER-LI-08 | AER-LI-08-DUP                          | AER-LI-09 | AER-LI-10 | AER-LI-REP1 | AER-LI-REP2 | AER-LI-REP3 | AER-LI-REP4 | AER-LI-REP5 |         |         |
|                       | Sampling Date   | 14-Aug-15 | 15-Aug-15 | 15-Aug-15                              | 15-Aug-15 | 15-Aug-15 | 14-Aug-15   | 14-Aug-15   | 14-Aug-15   | 14-Aug-15   | 14-Aug-15   |         |         |
| Parameter             | Units           |           |           |           |           |           |           |           |           | it i i i i i i i i i i i i i i i i i i |           | .c.ig.ic  |             |             |             |             |             | MIN     | MAX     |
| % Moisture            | %               | 15        | 12.5      | 11.3      | 10.3      | 11.1      | 10.1      | 10.6      | 15.7      | 15.2                                   | 13.9      | 11.2      | 81          | 25.5        | 32.1        | 42          | 33.2        | 10.1    | 81      |
| Aluminum (Al)-Total   | mg/kg wwt       | 55.1      | 33.1      | 89.6      | 23.4      | 36.7      | 39.7      | 228       | 31.6      | 147                                    | 35.8      | 353       | 72.1        | 23.4        | 27.9        | 29.6        | 39.1        | 23.4    | 353     |
| Antimony (Sb)-Total   | mg/kg wwt       | 0.0021    | 0.0022    | 0.0045    | <0.0020   | <0.0020   | <0.0020   | 0.0055    | <0.0020   | 0.0064                                 | 0.0078    | 0.0118    | 0.0056      | <0.0020     | <0.0020     | <0.0020     | <0.0020     | 0.0021  | 0.0118  |
| Arsenic (As)-Total    | mg/kg wwt       | 0.0636    | 0.0454    | 0.0923    | 0.0521    | 0.049     | 0.0708    | 0.149     | 0.0832    | 0.173                                  | 0.0609    | 0.178     | 0.0353      | 0.0444      | 0.0505      | 0.0401      | 0.0651      | 0.0353  | 0.178   |
| Barium (Ba)-Total     | mg/kg wwt       | 5.43      | 7.87      | 12.6      | 3.85      | 18        | 8.32      | 15.7      | 3.42      | 9.26                                   | 8.74      | 18.4      | 9.55        | 3.61        | 3.23        | 3.11        | 5.51        | 3.11    | 18.4    |
| Bervllium (Be)-Total  | mg/kg wwt       | 0.0037    | 0.0065    | 0.0123    | 0.0052    | 0.0177    | 0.0053    | 0.017     | 0.0023    | 0.0065                                 | 0.0052    | 0.0307    | 0.0254      | <0.0020     | <0.0020     | 0.0029      | 0.0098      | 0.0023  | 0.0307  |
| Bismuth (Bi)-Total    | mg/kg wwt       | 0.003     | 0.0026    | 0.0044    | 0.0036    | 0.0041    | 0.0036    | 0.013     | 0.0055    | 0.012                                  | 0.0062    | 0.025     | 0.0022      | 0.0032      | 0.0029      | 0.0057      | 0.0029      | 0.0022  | 0.025   |
| Boron (B)-Total       | mg/kg wwt       | 0.25      | 0.31      | 0.66      | <0.20     | 0.34      | 0.21      | 0.42      | 0.24      | 0.31                                   | 0.53      | 0.66      | 0.35        | 0.25        | 0.35        | 0.27        | 0.24        | 0.21    | 0.66    |
| Cadmium (Cd)-Total    | mg/kg wwt       | 0.0387    | 0.0398    | 0.0555    | 0.0385    | 0.0854    | 0.0409    | 0.0697    | 0.0477    | 0.0482                                 | 0.0324    | 0.154     | 0.026       | 0.0358      | 0.0456      | 0.0675      | 0.0586      | 0.026   | 0.154   |
| Calcium (Ca)-Total    | mg/kg wwt       | 770       | 1030      | 2330      | 621       | 3290      | 909       | 780       | 460       | 407                                    | 508       | 2760      | 1080        | 745         | 1260        | 1980        | 2010        | 407     | 3290    |
| Cesium (Cs)-Total     | mg/kg wwt       | 0.0122    | 0.0169    | 0.0249    | 0.0159    | 0.0106    | 0.0201    | 0.0383    | 0.0155    | 0.0337                                 | 0.0268    | 0.0553    | 0.0041      | 0.0076      | 0.0071      | 0.0109      | 0.0094      | 0.0041  | 0.0553  |
| Chromium (Cr)-Total   | mg/kg wwt       | 0.47      | 0.18      | 0.715     | 0.143     | 0.187     | 0.375     | 0.659     | 0.214     | 0.56                                   | 0.188     | 0.811     | 0.216       | 0.187       | 0.241       | 0.168       | 0.251       | 0.143   | 0.811   |
| Cobalt (Co)-Total     | mg/kg wwt       | 0.18      | 0.0808    | 0.287     | 0.0469    | 0.12      | 0.082     | 0.251     | 0.035     | 0.113                                  | 0.044     | 0.18      | 0.0559      | 0.0216      | 0.0248      | 0.0456      | 0.0652      | 0.0216  | 0.287   |
| Copper (Cu)-Total     | mg/kg wwt       | 0.807     | 0.639     | 1.12      | 0.615     | 0.634     | 0.624     | 1.14      | 0.613     | 0.782                                  | 0.822     | 1.75      | 0.741       | 0.637       | 0.769       | 0.626       | 0.612       | 0.612   | 1.75    |
| Iron (Fe)-Total       | mg/kg wwt       | 80.6      | 46.4      | 145       | 35.4      | 63.6      | 69.5      | 367       | 46.1      | 233                                    | 45.2      | 492       | 86.3        | 36.4        | 36.1        | 42.5        | 55.8        | 35.4    | 492     |
| Lead (Pb)-Total       | mg/kg wwt       | 0.22      | 0.292     | 0.304     | 0.343     | 0.518     | 0.316     | 1.17      | 0.383     | 1.32                                   | 0.241     | 3.15      | 0.068       | 0.205       | 0.236       | 0.25        | 0.304       | 0.068   | 3.15    |
| Lithium (Li)-Total    | mg/kg wwt       | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10                                  | <0.10     | 0.1       | <0.10       | <0.10       | <0.10       | <0.10       | <0.10       | 0.1     | 0.1     |
| Magnesium (Mg)-Total  | mg/kg wwt       | 362       | 217       | 580       | 125       | 280       | 220       | 261       | 135       | 167                                    | 185       | 240       | 387         | 166         | 213         | 204         | 264         | 125     | 580     |
| Manganese (Mn)-Total  | mg/kg wwt       | 74.8      | 71.3      | 277       | 28.7      | 62.3      | 90.3      | 48.4      | 53.6      | 34.4                                   | 57.6      | 42.8      | 36.5        | 65.7        | 89.7        | 68.7        | 44.4        | 28.7    | 277     |
| Mercury (Hg)-Total    | mg/kg wwt       | 0.0443    | 0.0714    | 0.0499    | 0.0651    | 0.0772    | 0.0673    | 0.139     | 0.0914    | 0.149                                  | 0.128     | 0.12      | 0.0114      | 0.073       | 0.0587      | 0.0489      | 0.0681      | 0.0114  | 0.149   |
| Molybdenum (Mo)-Total | mg/kg wwt       | 0.0149    | 0.0157    | 0.0673    | 0.0139    | 0.0179    | 0.0247    | 0.0237    | 0.0149    | 0.0214                                 | 0.0162    | 0.0837    | 0.0195      | 0.0137      | 0.0167      | 0.0319      | 0.0225      | 0.0137  | 0.0837  |
| Nickel (Ni)-Total     | mg/kg wwt       | 0.725     | 0.314     | 1.26      | 0.141     | 0.335     | 0.282     | 0.696     | 0.234     | 1.07                                   | 0.555     | 1.28      | 2.44        | 0.259       | 0.459       | 1.13        | 0.685       | 0.141   | 2.44    |
| Phosphorus (P)-Total  | mg/kg wwt       | 289       | 209       | 376       | 173       | 287       | 226       | 249       | 173       | 169                                    | 313       | 329       | 96.2        | 182         | 235         | 293         | 238         | 96.2    | 376     |
| Potassium (K)-Total   | mg/kg wwt       | 860       | 860       | 1320      | 763       | 1010      | 857       | 739       | 603       | 596                                    | 872       | 904       | 359         | 648         | 770         | 785         | 676         | 359     | 1320    |
| Rubidium (Rb)-Total   | mg/kg wwt       | 0.962     | 1.93      | 2.11      | 1.94      | 1.64      | 1.4       | 1.86      | 1.61      | 2.12                                   | 2.62      | 3.58      | 0.29        | 0.466       | 0.503       | 0.737       | 0.685       | 0.29    | 3.58    |
| Selenium (Se)-Total   | mg/kg wwt       | 0.031     | 0.045     | 0.049     | 0.049     | 0.05      | 0.042     | 0.072     | 0.052     | 0.075                                  | 0.066     | 0.118     | 0.012       | 0.044       | 0.042       | 0.035       | 0.042       | 0.012   | 0.118   |
| Sodium (Na)-Total     | mg/kg wwt       | 11.2      | 16        | 160       | 14.3      | 19.9      | 24.4      | 16.7      | 10.4      | 25.3                                   | 14.9      | 26.8      | 15          | 13          | 17.7        | 39.1        | 18.9        | 10.4    | 160     |
| Strontium (Sr)-Total  | mg/kg wwt       | 2.15      | 3.12      | 8.98      | 1.96      | 12        | 4.57      | 3.83      | 1.24      | 1.54                                   | 1.34      | 6.12      | 8.83        | 2.43        | 3.28        | 5.95        | 8.59        | 1.24    | 12      |
| Tellurium (Te)-Total  | mg/kg wwt       | <0.0040   | <0.0040   | <0.0040   | <0.0040   | <0.0040   | <0.0040   | <0.0040   | <0.0040   | <0.0040                                | <0.0040   | <0.0040   | <0.0040     | <0.0040     | <0.0040     | <0.0040     | <0.0040     | <0.0040 | <0.0040 |
| Thallium (TI)-Total   | mg/kg wwt       | 0.00184   | 0.00384   | 0.00442   | 0.00203   | 0.00346   | 0.00271   | 0.0062    | 0.00322   | 0.00748                                | 0.00288   | 0.00995   | 0.00081     | 0.00137     | 0.00063     | 0.00096     | 0.00086     | 0.00063 | 0.00995 |
| Tin (Sn)-Total        | mg/kg wwt       | <0.020    | <0.020    | <0.020    | <0.020    | <0.020    | <0.020    | 0.021     | <0.020    | 0.021                                  | <0.020    | 0.04      | <0.020      | <0.020      | <0.020      | <0.020      | <0.020      | 0.021   | 0.04    |
| Uranium (U)-Total     | mg/kg wwt       | 0.00701   | 0.00761   | 0.0488    | 0.0056    | 0.012     | 0.0067    | 0.0758    | 0.00696   | 0.0184                                 | 0.00524   | 0.633     | 0.126       | 0.00496     | 0.00549     | 0.0179      | 0.0367      | 0.00496 | 0.633   |
| Vanadium (V)-Total    | mg/kg wwt       | 0.102     | 0.057     | 0.149     | 0.046     | 0.059     | 0.08      | 0.323     | 0.073     | 0.306                                  | 0.065     | 0.474     | 0.081       | 0.048       | 0.056       | 0.05        | 0.059       | 0.046   | 0.474   |
| Zinc (Zn)-Total       | mg/kg wwt       | 11.4      | 10.8      | 21.4      | 8.36      | 15.6      | 11.6      | 11.9      | 6.08      | 8.02                                   | 9.71      | 18.8      | 5.56        | 7.53        | 9.3         | 9.01        | 8.85        | 5.56    | 21.4    |
| Zirconium (Zr)-Total  | mg/kg wwt       | 0.069     | 0.051     | 0.167     | <0.040    | 0.06      | 0.05      | 0.202     | 0.064     | 0.133                                  | 0.051     | 0.405     | 0.08        | 0.044       | 0.042       | 0.064       | 0.068       | 0.042   | 0.405   |

mg/kg wwt = milligram per kilogram wet weight; < = less than laboratory method detection limit



Table 3. Baseline Graminoid Analytical Results

|                       | Sample Location | AER-01                                  | AER-02    | AER-03    | AER-04    | AER-05    | AER-06    | AER-07    | Al        | R-08          | AER-09    | AER-10    |             |             | AER-REP     |             |             |         |        |
|-----------------------|-----------------|-----------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------------|-----------|-----------|-------------|-------------|-------------|-------------|-------------|---------|--------|
|                       | Sample Name     | AER-GR-01                               | AER-GR-02 | AER-GR-03 | AER-GR-04 | AER-GR-05 | AER-GR-06 | AER-GR-07 | AER-GR-08 | AER-GR-08-DUP | AER-GR-09 | AER-GR-10 | AER-GR-REP1 | AER-GR-REP2 | AER-GR-REP3 | AER-GR-REP4 | AER-GR-REP5 |         |        |
|                       | Sampling Date   | 14-Aug-15                               | 14-Aug-15 | 14-Aug-15 | 14-Aug-15 | 14-Aug-15 | 14-Aug-15 | 14-Aug-15 | 15-Aug-15 | 15-Aug-15     | 15-Aug-15 | 15-Aug-15 | 14-Aug-15   | 14-Aug-15   | 14-Aug-15   | 14-Aug-15   | 14-Aug-15   |         |        |
| Parameter             | Units           |                                         |           |           |           |           |           |           |           |               | - · · · · |           |             | . 3         |             |             |             | MIN     | MAX    |
| % Moisture            | %               | 55.4                                    | 50.1      | 40.1      | 43.3      | 47.5      | 45.6      | 46.1      | 36.5      | 46.5          | 44.5      | 36.1      | 57.1        | 55.7        | 56.4        | 62          | 57.2        | 36.1    | 62     |
| Aluminum (AI)-Total   | mg/kg wwt       | 12.5                                    | 27.5      | 26.1      | 31.4      | 47.3      | 17.4      | 22.6      | 72.2      | 26.8          | 13.3      | 51.1      | 8.66        | 12.2        | 16.7        | 25.2        | 8.95        | 8.66    | 72.2   |
| Antimony (Sb)-Total   | mg/kg wwt       | <0.0020                                 | <0.0020   | <0.0020   | <0.0020   | <0.0020   | <0.0020   | <0.0020   | 0.0026    | 0.0054        | 0.0039    | 0.046     | <0.0020     | <0.0020     | <0.0020     | <0.0020     | <0.0020     | 0.0026  | 0.046  |
| Arsenic (As)-Total    | mg/kg wwt       | 0.0129                                  | 0.0191    | 0.0312    | 0.0153    | 0.0278    | 0.0161    | 0.0196    | 0.0757    | 0.043         | 0.022     | 0.0981    | 0.0262      | 0.0187      | 0.025       | 0.0264      | 0.0194      | 0.0129  | 0.0981 |
| Barium (Ba)-Total     | mg/kg wwt       | 10.9                                    | 11.2      | 16.5      | 16.5      | 16.9      | 62.1      | 15.9      | 29.8      | 23.6          | 45        | 17.2      | 15.3        | 13.6        | 22.1        | 7.08        | 14.7        | 7.08    | 62.1   |
| Beryllium (Be)-Total  | mg/kg wwt       | <0.0020                                 | 0.0154    | 0.0051    | 0.0067    | 0.0088    | 0.0146    | 0.0045    | 0.0067    | 0.0049        | 0.0038    | 0.0109    | 0.0032      | 0.0052      | 0.0081      | 0.0035      | 0.0026      | 0.0026  | 0.0154 |
| Bismuth (Bi)-Total    | mg/kg wwt       | 0.0058                                  | <0.0020   | <0.0020   | <0.0007   | <0.0020   | <0.0020   | 0.002     | 0.0024    | 0.0049        | <0.0020   | 0.0552    | <0.0032     | <0.0032     | <0.0020     | <0.0020     | <0.0020     | 0.0020  | 0.0552 |
| Boron (B)-Total       | mg/kg wwt       | 2.34                                    | 1.44      | 1.58      | 1.1       | 0.89      | 2.11      | 1.2       | 1.88      | 1.04          | 3.1       | 2         | 1.54        | 1.75        | 2.09        | 1.1         | 2.06        | 0.89    | 3.1    |
| Cadmium (Cd)-Total    | mg/kg wwt       | 0.011                                   | 0.0363    | 0.0135    | 0.0099    | 0.0119    | 0.0098    | 0.007     | 0.0168    | 0.0102        | 0.0111    | 0.0283    | 0.0093      | 0.012       | 0.0092      | 0.0156      | 0.0123      | 0.007   | 0.0363 |
| Calcium (Ca)-Total    | mg/kg wwt       | 925                                     | 1070      | 1380      | 848       | 860       | 1860      | 860       | 1430      | 760           | 1010      | 1360      | 948         | 1100        | 1380        | 754         | 1190        | 754     | 1860   |
| Cesium (Cs)-Total     |                 | 0.0066                                  | 0.0149    | 0.0104    | 0.0151    | 0.0145    | 0.0086    | 0.0226    | 0.0128    | 0.0075        | 0.026     | 0.03      | 0.0076      | 0.0062      | 0.0071      | 0.0038      | 0.0045      | 0.0038  | 0.03   |
| Chromium (Cr)-Total   | mg/kg wwt       | 0.109                                   | 0.0149    | 0.348     | 0.0131    | 0.313     | 0.124     | 0.0226    | 0.366     | 0.0075        | 0.026     | 0.466     | 0.0076      | 0.083       | 0.0071      | 0.0038      | 0.126       | 0.0036  | 0.466  |
| Cobalt (Co)-Total     | mg/kg wwt       | 0.109                                   | 0.144     | 0.348     | 0.184     | 0.313     | 0.124     | 0.0534    | 0.366     | 0.171         | 0.08      | 0.466     | 0.097       | 0.083       | 0.076       | 0.164       | 0.0291      | 0.076   | 0.466  |
|                       | mg/kg wwt       | *************************************** | 1.69      | 1.33      | 0.0628    |           |           | 0.0534    |           |               |           |           | 1.33        |             | 1.37        |             |             | 0.0291  |        |
| Copper (Cu)-Total     | mg/kg wwt       | 1.61                                    |           |           |           | 0.809     | 2.11      |           | 1.2       | 0.848         | 1.8       | 1.98      |             | 1.41        |             | 1.17        | 1.23        |         | 2.11   |
| Iron (Fe)-Total       | mg/kg wwt       | 29.7                                    | 57.8      | 61.3      | 46.2      | 81.5      | 95.5      | 44.6      | 117       | 43.9          | 30.7      | 110       | 39.5        | 40.2        | 41.8        | 53.1        | 37.3        | 29.7    | 117    |
| Lead (Pb)-Total       | mg/kg wwt       | 0.0292                                  | 0.104     | 0.0883    | 0.0912    | 0.141     | 0.0614    | 0.0709    | 0.196     | 0.0835        | 0.0437    | 0.432     | 0.029       | 0.0387      | 0.0269      | 0.0452      | 0.0308      | 0.0269  | 0.432  |
| Lithium (Li)-Total    | mg/kg wwt       | <0.10                                   | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10         | <0.10     | <0.10     | <0.10       | <0.10       | <0.10       | <0.10       | <0.10       | <0.10   | <0.10  |
| Magnesium (Mg)-Total  | mg/kg wwt       | 704                                     | 553       | 479       | 239       | 263       | 453       | 308       | 415       | 265           | 601       | 357       | 598         | 475         | 605         | 346         | 535         | 239     | 704    |
| Manganese (Mn)-Total  | mg/kg wwt       | 155                                     | 325       | 500       | 96.8      | 99.9      | 388       | 54        | 214       | 87.9          | 136       | 69.7      | 221         | 328         | 227         | 257         | 387         | 54      | 500    |
| Mercury (Hg)-Total    | mg/kg wwt       | 0.0053                                  | 0.0083    | 0.0095    | 0.0108    | 0.0123    | 0.0068    | 0.0083    | 0.0164    | 0.0103        | 0.0106    | 0.018     | 0.0051      | 0.0047      | 0.0042      | 0.0058      | 0.0045      | 0.0042  | 0.018  |
| Molybdenum (Mo)-Total | mg/kg wwt       | 0.157                                   | 0.197     | 0.181     | 0.163     | 0.072     | 2.99      | 0.146     | 0.321     | 0.211         | 0.433     | 0.414     | 0.209       | 0.162       | 0.264       | 0.205       | 0.15        | 0.072   | 2.99   |
| Nickel (Ni)-Total     | mg/kg wwt       | 2.53                                    | 1.86      | 1.74      | 1.07      | 0.631     | 1.67      | 1.23      | 1.44      | 1.07          | 3.4       | 1.23      | 1.47        | 1.38        | 1.8         | 1.24        | 1.05        | 0.631   | 3.4    |
| Phosphorus (P)-Total  | mg/kg wwt       | 481                                     | 365       | 359       | 382       | 341       | 700       | 344       | 449       | 266           | 595       | 379       | 541         | 388         | 302         | 351         | 346         | 266     | 700    |
| Potassium (K)-Total   | mg/kg wwt       | 3940                                    | 5080      | 3400      | 2490      | 1980      | 3860      | 2700      | 3210      | 2310          | 3480      | 3210      | 4800        | 3030        | 3040        | 2160        | 3130        | 1980    | 5080   |
| Rubidium (Rb)-Total   | mg/kg wwt       | 1.74                                    | 6.1       | 3         | 3.83      | 3.26      | 3         | 4.55      | 3.73      | 2.98          | 5.71      | 8.34      | 2.97        | 1.88        | 1.66        | 0.861       | 1.6         | 0.861   | 8.34   |
| Selenium (Se)-Total   | mg/kg wwt       | <0.010                                  | <0.010    | 0.012     | 0.014     | 0.016     | 0.011     | 0.01      | 0.021     | 0.014         | <0.010    | 0.069     | <0.010      | <0.010      | <0.010      | 0.011       | <0.010      | 0.01    | 0.069  |
| Sodium (Na)-Total     | mg/kg wwt       | 7.2                                     | 9.5       | 9.8       | 13        | 10.7      | 12.6      | 10.4      | 17.1      | 12.3          | 20.2      | 14.6      | 17.8        | 23          | 16.5        | 30.1        | 20.4        | 7.2     | 30.1   |
| Strontium (Sr)-Total  | mg/kg wwt       | 3.57                                    | 4.99      | 6.38      | 3.91      | 5.13      | 17.6      | 3.81      | 6.76      | 4.79          | 9.77      | 4.19      | 6.47        | 6.61        | 9.5         | 4.62        | 6.79        | 3.57    | 17.6   |
| Tellurium (Te)-Total  | mg/kg wwt       | <0.0040                                 | <0.0040   | <0.0040   | <0.0040   | <0.0040   | 0.0081    | <0.0040   | <0.0040   | <0.0040       | <0.0040   | 0.006     | <0.0040     | <0.0040     | <0.0040     | <0.0040     | <0.0040     | 0.006   | 0.0081 |
| Thallium (TI)-Total   | mg/kg wwt       | 0.00354                                 | 0.00109   | 0.00541   | 0.00131   | 0.00124   | <0.00040  | 0.00706   | 0.00348   | 0.00423       | 0.00135   | 0.0531    | 0.00057     | <0.00040    | <0.00040    | 0.00056     | <0.00040    | 0.00056 | 0.0531 |
| Tin (Sn)-Total        | mg/kg wwt       | <0.020                                  | <0.020    | <0.020    | <0.020    | <0.020    | <0.020    | <0.020    | <0.020    | <0.020        | <0.020    | 0.025     | <0.020      | <0.020      | <0.020      | <0.020      | <0.020      | 0.025   | 0.025  |
| Uranium (U)-Total     | mg/kg wwt       | 0.00112                                 | 0.0164    | 0.00698   | 0.00305   | 0.00687   | 0.002     | 0.00242   | 0.0128    | 0.00275       | 0.00134   | 0.00967   | 0.00893     | 0.0121      | 0.0174      | 0.0175      | 0.00267     | 0.00112 | 0.0175 |
| Vanadium (V)-Total    | mg/kg wwt       | 0.023                                   | 0.034     | 0.05      | 0.041     | 0.072     | 0.025     | 0.036     | 0.128     | 0.038         | 0.02      | 0.112     | <0.020      | <0.020      | <0.020      | 0.039       | <0.020      | 0.02    | 0.128  |
| Zinc (Zn)-Total       | mg/kg wwt       | 14.6                                    | 16.9      | 21.4      | 9.79      | 12.6      | 15.4      | 10.9      | 23.8      | 11            | 17        | 14.7      | 11.5        | 13.5        | 8.47        | 13.8        | 14.6        | 8.47    | 23.8   |
| Zirconium (Zr)-Total  | mg/kg wwt       | < 0.040                                 | 0.042     | < 0.040   | 0.111     | 0.053     | < 0.040   | < 0.040   | 0.079     | < 0.040       | <0.040    | 0.053     | < 0.040     | < 0.040     | < 0.040     | < 0.040     | <0.040      | 0.042   | 0.111  |

Zirconium (Zr)-Total mg/kg wwt < 0.040 0.042 mg/kg wwt = milligram per kilogram wet weight; < = less than laboratory method detection limit



## Table 4. Baseline Berry Analytical Results

|                       | Sample Location | AER-01     | AER-02     | AER-03     | AER-04     | AER-05     | AER-06     | AER-07     | AE         | R-08           | AER-09     | AER-10     |              |              | AER-REP      |              |              |          |          |
|-----------------------|-----------------|------------|------------|------------|------------|------------|------------|------------|------------|----------------|------------|------------|--------------|--------------|--------------|--------------|--------------|----------|----------|
|                       | Sample Name     | AER-BER-01 | AER-BER-02 | AER-BER-03 | AER-BER-04 | AER-BER-05 | AER-BER-06 | AER-BER-07 | AER-BER-08 | AER-BER-08-DUP | AER-BER-09 | AER-BER-10 | AER-BER-REP1 | AER-BER-REP2 | AER-BER-REP3 | AER-BER-REP4 | AER-BER-REP5 |          | , ,      |
|                       | Sampling Date   | 14-Aug-15  | 15-Aug-15  | 15-Aug-15      | 15-Aug-15  | 15-Aug-15  | 14-Aug-15    | 14-Aug-15    | 14-Aug-15    | 14-Aug-15    | 14-Aug-15    |          |          |
| Parameter             | Units           |            |            |            |            |            |            |            |            |                |            |            |              |              | J            |              |              | MIN      | MAX      |
| % Moisture            | %               | 81.9       | 86.8       | 81.4       | 78.3       | 86.1       | 85         | 87.3       | 79.8       | 81.8           | 75.5       | 83.8       | 81.4         | 83.6         | 81           | 84.3         | 88.1         | 75.5     | 88.1     |
| Aluminum (Al)-Total   | mg/kg wwt       | 7.78       | <0.40      | <0.40      | 1.07       | 0.81       | <0.40      | 0.84       | <0.40      | <0.40          | 1.47       | <0.40      | <0.40        | <0.40        | <0.40        | <0.40        | <0.40        | 0.81     | 7.78     |
| Antimony (Sb)-Total   | mg/kg wwt       | <0.0020    | <0.0020    | <0.0020    | <0.0020    | <0.0020    | <0.0020    | <0.0020    | <0.0020    | <0.0020        | <0.0020    | <0.0020    | <0.0020      | <0.0020      | <0.0020      | <0.0020      | <0.0020      | <0.0020  | <0.0020  |
| Arsenic (As)-Total    | mg/kg wwt       | <0.0040    | <0.0040    | <0.0040    | <0.0040    | <0.0040    | <0.0040    | <0.0040    | <0.0040    | <0.0040        | <0.0040    | <0.0040    | <0.0040      | <0.0040      | <0.0040      | <0.0040      | <0.0040      | <0.0040  | <0.0040  |
| Barium (Ba)-Total     | mg/kg wwt       | 0.15       | 0.263      | 0.266      | 0.451      | 0.258      | 0.304      | 0.236      | 0.309      | 0.295          | 0.637      | 0.228      | 0.25         | 0.259        | 0.289        | 0.251        | 0.223        | 0.15     | 0.637    |
| Beryllium (Be)-Total  | mg/kg wwt       | <0.0020    | <0.0020    | <0.0020    | <0.0020    | <0.0020    | <0.0020    | <0.0020    | <0.0020    | <0.0020        | <0.0020    | <0.0020    | <0.0020      | <0.0020      | <0.0020      | <0.0020      | <0.0020      | <0.0020  | <0.0020  |
| Bismuth (Bi)-Total    | mg/kg wwt       | <0.0020    | <0.0020    | <0.0020    | <0.0020    | <0.0020    | <0.0020    | <0.0020    | <0.0020    | <0.0020        | <0.0020    | <0.0020    | <0.0020      | <0.0020      | <0.0020      | <0.0020      | <0.0020      | <0.0020  | <0.0020  |
| Boron (B)-Total       | mg/kg wwt       | 0.27       | <0.20      | <0.20      | 0.3        | <0.20      | 0.23       | <0.20      | 0.28       | 0.27           | 0.44       | <0.20      | 0.25         | 0.24         | 0.24         | 0.2          | <0.20        | 0.2      | 0.44     |
| Cadmium (Cd)-Total    | mg/kg wwt       | <0.0010    | 0.0011     | <0.0010    | <0.0010    | 0.0015     | 0.0021     | 0.0019     | <0.0010    | <0.0010        | <0.0010    | <0.0010    | 0.0013       | 0.0018       | <0.0010      | 0.0017       | 0.0022       | 0.0011   | 0.0022   |
| Calcium (Ca)-Total    | mg/kg wwt       | 18         | 25.7       | 35.6       | 57.1       | 30.4       | 34.6       | 24.9       | 32.4       | 31.6           | 58.2       | 27.4       | 39           | 33.4         | 35.2         | 31           | 23.8         | 18       | 58.2     |
| Cesium (Cs)-Total     | mg/kg wwt       | <0.0010    | <0.0010    | <0.0010    | 0.0011     | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010        | <0.0010    | <0.0010    | <0.0010      | <0.0010      | <0.0010      | <0.0010      | <0.0010      | 0.0011   | 0.0011   |
| Chromium (Cr)-Total   | mg/kg wwt       | <0.010     | <0.010     | <0.010     | <0.010     | <0.010     | <0.010     | <0.010     | <0.010     | <0.010         | <0.010     | <0.010     | <0.010       | <0.010       | <0.010       | <0.010       | <0.010       | <0.010   | <0.010   |
| Cobalt (Co)-Total     | mg/kg wwt       | 0.0041     | <0.0040    | <0.0040    | <0.0040    | <0.0040    | <0.0040    | <0.0040    | <0.0040    | <0.0040        | <0.0040    | <0.0040    | <0.0040      | <0.0040      | <0.0040      | <0.0040      | <0.0040      | 0.0041   | 0.0041   |
| Copper (Cu)-Total     | mg/kg wwt       | 0.062      | 0.084      | 0.213      | 0.236      | 0.061      | 0.117      | 0.053      | 0.194      | 0.182          | 0.275      | 0.147      | 0.234        | 0.159        | 0.188        | 0.155        | 0.089        | 0.053    | 0.275    |
| Iron (Fe)-Total       | mg/kg wwt       | 8.14       | <0.60      | <0.60      | 0.79       | 0.99       | <0.60      | 0.91       | <0.60      | <0.60          | 1.66       | <0.60      | 0.85         | <0.60        | <0.60        | 0.69         | <0.60        | 0.69     | 8.14     |
| Lead (Pb)-Total       | mg/kg wwt       | <0.0040    | <0.0040    | <0.0040    | <0.0040    | <0.0040    | <0.0040    | <0.0040    | <0.0040    | <0.0040        | <0.0040    | <0.0040    | <0.0040      | <0.0040      | <0.0040      | <0.0040      | <0.0040      | <0.0040  | <0.0040  |
| Lithium (Li)-Total    | mg/kg wwt       | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      | <0.10          | <0.10      | <0.10      | <0.10        | <0.10        | <0.10        | <0.10        | <0.10        | <0.10    | <0.10    |
| Magnesium (Mg)-Total  | mg/kg wwt       | 21.7       | 11.4       | 21.8       | 28.2       | 14.3       | 17.4       | 9.56       | 20.6       | 19.4           | 34.1       | 14.9       | 24.3         | 18.1         | 21.8         | 18.2         | 11.7         | 9.56     | 34.1     |
| Manganese (Mn)-Total  | mg/kg wwt       | 0.333      | 1.01       | 5.49       | 8.95       | 0.743      | 7.48       | 0.962      | 3.08       | 2.93           | 8.19       | 4.17       | 6.1          | 6.16         | 4.84         | 5.97         | 4.64         | 0.333    | 8.95     |
| Mercury (Hg)-Total    | mg/kg wwt       | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010        | <0.0010    | <0.0010    | <0.0010      | <0.0010      | <0.0010      | <0.0010      | <0.0010      | <0.0010  | <0.0010  |
| Molybdenum (Mo)-Total | mg/kg wwt       | <0.0040    | <0.0040    | <0.0040    | 0.0055     | <0.0040    | <0.0040    | <0.0040    | <0.0040    | <0.0040        | <0.0040    | <0.0040    | <0.0040      | <0.0040      | <0.0040      | <0.0040      | <0.0040      | 0.0055   | 0.0055   |
| Nickel (Ni)-Total     | mg/kg wwt       | 0.135      | 0.041      | 0.067      | <0.040     | <0.040     | <0.040     | <0.040     | 0.042      | 0.041          | 0.059      | <0.040     | 0.066        | 0.069        | 0.066        | 0.07         | 0.055        | 0.041    | 0.135    |
| Phosphorus (P)-Total  | mg/kg wwt       | 35.1       | 25.5       | 42.3       | 43         | 23.6       | 31.5       | 20.2       | 41.6       | 38.5           | 61.9       | 27.2       | 56.6         | 36.6         | 43.2         | 37.9         | 25.8         | 20.2     | 61.9     |
| Potassium (K)-Total   | mg/kg wwt       | 255        | 138        | 289        | 317        | 162        | 190        | 140        | 311        | 290            | 428        | 230        | 301          | 239          | 303          | 227          | 129          | 129      | 428      |
| Rubidium (Rb)-Total   | mg/kg wwt       | 0.124      | 0.357      | 0.458      | 0.694      | 0.32       | 0.269      | 0.466      | 0.578      | 0.544          | 0.684      | 0.498      | 0.328        | 0.233        | 0.311        | 0.226        | 0.122        | 0.122    | 0.694    |
| Selenium (Se)-Total   | mg/kg wwt       | <0.010     | <0.010     | <0.010     | <0.010     | <0.010     | <0.010     | <0.010     | <0.010     | <0.010         | <0.010     | <0.010     | <0.010       | <0.010       | <0.010       | <0.010       | <0.010       | <0.010   | <0.010   |
| Sodium (Na)-Total     | mg/kg wwt       | <4.0       | <4.0       | <4.0       | <4.0       | <4.0       | <4.0       | <4.0       | <4.0       | <4.0           | <4.0       | <4.0       | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0     | <4.0     |
| Strontium (Sr)-Total  | mg/kg wwt       | 0.05       | 0.112      | 0.063      | 0.09       | 0.082      | 0.078      | 0.075      | 0.077      | 0.076          | 0.133      | 0.037      | 0.127        | 0.099        | 0.087        | 0.099        | 0.069        | 0.037    | 0.133    |
| Tellurium (Te)-Total  | mg/kg wwt       | <0.0040    | <0.0040    | <0.0040    | <0.0040    | <0.0040    | <0.0040    | <0.0040    | <0.0040    | <0.0040        | <0.0040    | <0.0040    | <0.0040      | <0.0040      | <0.0040      | <0.0040      | <0.0040      | <0.0040  | <0.0040  |
| Thallium (TI)-Total   | mg/kg wwt       | <0.00040   | <0.00040   | <0.00040   | <0.00040   | <0.00040   | <0.00040   | <0.00040   | <0.00040   | <0.00040       | <0.00040   | <0.00040   | <0.00040     | <0.00040     | <0.00040     | <0.00040     | <0.00040     | <0.00040 | <0.00040 |
| Tin (Sn)-Total        | mg/kg wwt       | <0.020     | 0.033      | 0.032      | 0.033      | 0.04       | 0.038      | <0.020     | 0.022      | 0.021          | 0.025      | <0.020     | 0.026        | 0.024        | 0.023        | <0.020       | 0.024        | 0.021    | 0.04     |
| Uranium (U)-Total     | mg/kg wwt       | <0.00040   | <0.00040   | <0.00040   | <0.00040   | <0.00040   | <0.00040   | <0.00040   | <0.00040   | <0.00040       | <0.00040   | <0.00040   | <0.00040     | <0.00040     | <0.00040     | <0.00040     | <0.00040     | <0.00040 | <0.00040 |
| Vanadium (V)-Total    | mg/kg wwt       | <0.020     | <0.020     | <0.020     | <0.020     | <0.020     | <0.020     | <0.020     | <0.020     | <0.020         | <0.020     | <0.020     | <0.020       | <0.020       | <0.020       | <0.020       | <0.020       | <0.020   | <0.020   |
| Zinc (Zn)-Total       | mg/kg wwt       | 0.41       | 0.33       | 0.42       | 0.45       | 0.35       | 0.45       | 0.26       | 0.3        | 0.28           | 0.49       | 0.28       | 0.59         | 0.42         | 0.37         | 0.4          | 0.36         | 0.26     | 0.59     |
| Zirconium (Zr)-Total  | mg/kg wwt       | <0.040     | <0.040     | <0.040     | <0.040     | <0.040     | <0.040     | <0.040     | <0.040     | <0.040         | <0.040     | <0.040     | <0.040       | <0.040       | <0.040       | <0.040       | <0.040       | <0.040   | <0.040   |

mg/kg wwt = milligram per kilogram wet weight; < = less than laboratory method detection limit

**Table 5. Relative Percent Differences - Soils** 

| Sample Name     | AER-SOIL-08 | AER-SOIL-08-DUP |         |
|-----------------|-------------|-----------------|---------|
| Sample Date     | 15-Aug-15   | 15-Aug-15       |         |
| Parameter       | -           |                 | RPD (%) |
| Aluminum (Al)   | 7190        | 8370            | 15.2    |
| Antimony (Sb)   | <0.10       | <0.10           | -       |
| Arsenic (As)    | 12.2        | 12.9            | 5.6     |
| Barium (Ba)     | 73.9        | 86.8            | 16.1    |
| Beryllium (Be)  | 0.36        | 0.4             | 10.5    |
| Bismuth (Bi)    | <0.20       | <0.20           | -       |
| Boron (B)       | <5.0        | <5.0            | -       |
| Cadmium (Cd)    | 0.041       | 0.042           | 2.4     |
| Calcium (Ca)    | 3150        | 3620            | 13.9    |
| Chromium (Cr)   | 45.9        | 55.1            | 18.2    |
| Cobalt (Co)     | 7.34        | 8.07            | 9.5     |
| Copper (Cu)     | 6.55        | 7.91            | 18.8    |
| Iron (Fe)       | 16300       | 18300           | 11.6    |
| Lead (Pb)       | 6.11        | 6.86            | 11.6    |
| Lithium (Li)    | 8.7         | 10.4            | 17.8    |
| Magnesium (Mg)  | 4930        | 5850            | 17.1    |
| Manganese (Mn)  | 264         | 280             | 5.9     |
| Mercury (Hg)    | 0.0249      | 0.0089          | 94.7    |
| Molybdenum (Mo) | 0.32        | 0.33            | 3.1     |
| Nickel (Ni)     | 23.5        | 27.3            | 15.0    |
| Phosphorus (P)  | 735         | 859             | 15.6    |
| Potassium (K)   | 1480        | 1890            | 24.3    |
| Selenium (Se)   | <0.20       | <0.20           | -       |
| Silver (Ag)     | <0.10       | <0.10           | -       |
| Sodium (Na)     | 66          | 85              | 25.2    |
| Strontium (Sr)  | 36.6        | 42.6            | 15.2    |
| Thallium (TI)   | 0.093       | 0.114           | 20.3    |
| Tin (Sn)        | <2.0        | <2.0            | -       |
| Titanium (Ti)   | 683         | 798             | 15.5    |
| Uranium (U)     | 1.36        | 1.56            | 13.7    |
| Vanadium (V)    | 20.1        | 23              | 13.5    |
| Zinc (Zn)       | 27.6        | 31.5            | 13.2    |
| Zirconium (Zr)  | 2.6         | 4.6             | 55.6    |

### Notes:

All concentrations in milligrams per kilogram (mg/kg)

RPD is greater than the 30% criterion for metals in soil.

<sup>&</sup>lt; = less than laboratory method detection limit

<sup>- =</sup> not calculated because one or both concentrations were below the laboratory method detection limit RPD = relative percent difference



| Sample Name           | AER-LI-08 | AER-LI-08-DUP |         | AER-GR-08 | AER-GR-08-DUP |         | AER-BER-08 | AER-BER-08-DUP |         |
|-----------------------|-----------|---------------|---------|-----------|---------------|---------|------------|----------------|---------|
| Sample Date           | 15-Aug-15 | 15-Aug-15     |         | 15-Aug-15 | 15-Aug-15     |         | 15-Aug-15  | 15-Aug-15      |         |
| Parameter             |           |               | RPD (%) |           |               | RPD (%) |            |                | RPD (%) |
| Aluminum (AI)-Total   | 31.6      | 147           | 129     | 72.2      | 26.8          | 92      | <0.40      | <0.40          | -       |
| Antimony (Sb)-Total   | <0.0020   | 0.0064        | -       | 0.0026    | 0.0054        | 70      | <0.0020    | <0.0020        | -       |
| Arsenic (As)-Total    | 0.0832    | 0.173         | 70      | 0.0757    | 0.043         | 55      | <0.0040    | <0.0040        | -       |
| Barium (Ba)-Total     | 3.42      | 9.26          | 92      | 29.8      | 23.6          | 23      | 0.309      | 0.295          | 5       |
| Beryllium (Be)-Total  | 0.0023    | 0.0065        | 95      | 0.0067    | 0.0049        | 31      | <0.0020    | <0.0020        | -       |
| Bismuth (Bi)-Total    | 0.0055    | 0.012         | 74      | 0.0024    | 0.0044        | 59      | <0.0020    | <0.0020        |         |
| Boron (B)-Total       | 0.24      | 0.31          | 25      | 1.88      | 1.04          | 58      | 0.28       | 0.27           | -       |
| Cadmium (Cd)-Total    | 0.0477    | 0.0482        | 1       | 0.0168    | 0.0102        | 49      | <0.0010    | <0.0010        | -       |
| Calcium (Ca)-Total    | 460       | 407           | 12      | 1430      | 760           | 61      | 32.4       | 31.6           | 2       |
| Cesium (Cs)-Total     | 0.0155    | 0.0337        | 74      | 0.0128    | 0.0075        | 52      | <0.0010    | <0.0010        | -       |
| Chromium (Cr)-Total   | 0.214     | 0.56          | 89      | 0.366     | 0.171         | 73      | <0.010     | <0.010         | -       |
| Cobalt (Co)-Total     | 0.035     | 0.113         | 105     | 0.131     | 0.0708        | 60      | <0.0040    | <0.0040        | -       |
| Copper (Cu)-Total     | 0.613     | 0.782         | 24      | 1.2       | 0.848         | 34      | 0.194      | 0.182          | 6       |
| Iron (Fe)-Total       | 46.1      | 233           | 134     | 117       | 43.9          | 91      | <0.60      | <0.60          | -       |
| Lead (Pb)-Total       | 0.383     | 1.32          | 110     | 0.196     | 0.0835        | 81      | <0.0040    | <0.0040        | -       |
| Lithium (Li)-Total    | <0.10     | <0.10         | -       | <0.10     | <0.10         | -       | <0.10      | <0.10          | -       |
| Magnesium (Mg)-Total  | 135       | 167           | 21      | 415       | 265           | 44      | 20.6       | 19.4           | 6       |
| Manganese (Mn)-Total  | 53.6      | 34.4          | 44      | 214       | 87.9          | 84      | 3.08       | 2.93           | 5       |
| Mercury (Hg)-Total    | 0.0914    | 0.149         | 48      | 0.0164    | 0.0103        | 46      | <0.0010    | <0.0010        | -       |
| Molybdenum (Mo)-Total | 0.0149    | 0.0214        | 36      | 0.321     | 0.211         | 41      | <0.0040    | <0.0040        | -       |
| Nickel (Ni)-Total     | 0.234     | 1.07          | 128     | 1.44      | 1.07          | 29      | 0.042      | 0.041          | 2       |
| Phosphorus (P)-Total  | 173       | 169           | 2       | 449       | 266           | 51      | 41.6       | 38.5           | 8       |
| Potassium (K)-Total   | 603       | 596           | 1       | 3210      | 2310          | 33      | 311        | 290            | 7       |
| Rubidium (Rb)-Total   | 1.61      | 2.12          | 27      | 3.73      | 2.98          | 22      | 0.578      | 0.544          | 6       |
| Selenium (Se)-Total   | 0.052     | 0.075         | 36      | 0.021     | 0.014         | 40      | <0.010     | <0.010         | -       |
| Sodium (Na)-Total     | 10.4      | 25.3          | 83      | 17.1      | 12.3          | 33      | <4.0       | <4.0           | -       |
| Strontium (Sr)-Total  | 1.24      | 1.54          | 22      | 6.76      | 4.79          | 34      | 0.077      | 0.076          | 1       |
| Tellurium (Te)-Total  | <0.0040   | <0.0040       | -       | <0.0040   | <0.0040       | -       | <0.0040    | <0.0040        | -       |
| Thallium (Tl)-Total   | 0.00322   | 0.00748       | 80      | 0.00348   | 0.00423       | 19      | <0.00040   | <0.00040       | -       |
| Tin (Sn)-Total        | <0.020    | 0.021         | -       | <0.020    | <0.020        | -       | 0.022      | 0.021          | 5       |
| Uranium (U)-Total     | 0.00696   | 0.0184        | 90      | 0.0128    | 0.00275       | 129     | <0.00040   | <0.00040       | -       |
| Vanadium (V)-Total    | 0.073     | 0.306         | 123     | 0.128     | 0.038         | 108     | <0.020     | <0.020         | -       |
| Zinc (Zn)-Total       | 6.08      | 8.02          | 28      | 23.8      | 11            | 74      | 0.3        | 0.28           | 7       |
| Zirconium (Zr)-Total  | 0.064     | 0.133         | 70      | 0.079     | <0.040        | -       | <0.040     | <0.040         | -       |

## Notes:

All concentrations in milligram per kilogram wet weight (mg/kg wwt)

RPD = relative percent difference

50 RI

RPD is greater than the 30% criterion for metals in vegetation.

<sup>&</sup>lt; = less than laboratory method detection limit

<sup>- =</sup> not calculated because one or both concentrations were below the laboratory method detection limit

May 2019 19115196-306-RPT-Rev0

**ATTACHMENT B** 

**Screening Tables** 

May 2019 19115196-306-RPT-Rev0

**ANNEX B-1** 

Air Quality

## Table 1: Criteria Air Contaminants - 1-Hour Air Thresholds

| Parameter                           | NDOE <sup>(a)</sup> | C         | CME NAAQO <sup>(I</sup> | b)        | MOE <sup>(c)</sup> | ATSDR <sup>(d)</sup> | OEHHA <sup>(e)</sup> | WHO <sup>(f)(g)</sup> | TCEQ <sup>(h)</sup>   | Toxicological Endpoints and Derivations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------|---------------------|-----------|-------------------------|-----------|--------------------|----------------------|----------------------|-----------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     |                     | Desirable | Acceptable              | Tolerable |                    |                      |                      |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Criteria Air Contaminants           |                     |           |                         |           |                    |                      |                      |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sulphur dioxide (SO <sub>2</sub> )  | 450                 | 450       | 900                     | _         | 690                | 26 <sup>(i)</sup>    | 660                  | 500 <sup>(j)</sup>    | 200 <sup>(i)</sup>    | NDOE - human health, environment and aethetics, adopted from CCME; CCME - health and environment; MOE - health and vegetation; ATSDR - A minimal LOAEL of 0.1 ppm for bronchoconstriction in excercising asthmatics. An uncertainty factor of 9 was applied to give an MRL of 0.01 ppm. OEHHA - A consensus value from several studies. Impairment of airway function (especially in asthmatics) and based on NOAEL of 0.25 ppm; WHO - Changes in pulmonary function and respiratory symptoms; TCEQ - must meet NAAQS of 75 ppb.                                                                             |
| Carbon monoxide (CO)                | _                   | 15,000    | 35,000                  | _         | 36,200             | _                    | 23,000               | 30,000 <sup>(k)</sup> | 40,100 <sup>(i)</sup> | CCME - health and environment; MOE - health; OEHHA - Based on angina in persons with known cardiovascular diseases who are exercising heavily. A NOAEL of 1.1%-1.3% COHb in blood (corresponding to 20 ppm CO (23,000 µg/m³), calculated toxicokinetically) was determined. Uncertainty factors of 1 were applied. WHO - Based on COHb levels. To protect non-smoking, middle-aged and elderly populations with documented or latent heart diseases, and fetuses of non-smoking pregnant women from untoward hypoxic effects, a COHb level of 2.5% should not be exceeded; TCEQ - must meet NAAQS of 35 ppm. |
| Nitrogen dioxide (NO <sub>2</sub> ) | 400                 |           | 400                     | 1000      | 400                | _                    | 470                  | 200                   | 190 <sup>(i)</sup>    | NDOE - human health, environment and aethetics, adopted from CCME; CCME - health and environment; MOE - Health; OEHHA - Increased airway reactivity in asthmatics and based on a NOAEL of 0.25 ppm; WHO - Based on an increase in bronchial responsiveness in asthmatics; TCEQ - must meet NAAQS of 100 ppb.                                                                                                                                                                                                                                                                                                 |

#### Notes

#### All values are in µg/m³

COHb = carboxyhemoglobin; LOAEL = Lowest Observed Adverse Effect Level; m³ = cubic metre; µg/m³ = microgram per cubic metre; PM = particulate matter; PM = fine particulate matter; PM<sub>10</sub> = coarse particulate matter; ppm = parts per million.

— = Value not available.

Shaded + Bold = Screening threshold selected for use in the assessment is the NDOE threshold. In the absence of an NDOE threshold, the most conservative threshold from all other jurisdictions is selected.

1 / 6 Golder Associates Ltd.

<sup>(</sup>a) Government of Nunavut Department of Environment (NDOE), Ambient Air Quality Standards. In: Environmental Guideline for Ambient Air Quality (October 2011).

<sup>(</sup>b) Canadian Council of Ministers of the Environment (CCME), Canadian National Ambient Air Quality Objectives: Process and Status. In: Canadian Environmental Quality Guidelines (1999)

<sup>(</sup>c) Ontario Ministry of the Environment (MOE), Ontario's Ambient Air Quality Criteria. Standards Development Branch, MOE. (April 2012)

<sup>(</sup>d) Agency of Toxic Substances and Disease Registry (ATSDR), Minimum Risk Levels (MRLs), October 2015 and supporting toxicological profiles. The ATSDR defines acute exposure as 14 days or les

<sup>(</sup>e) California Office of Environmental Health Hazard Assessment (OEHHA), Air Toxicology and Epidemiology. Acute, 8-hour and Chronic Reference Exposure Levels (June 2014)

<sup>(</sup>f) World Health Organization (WHO), WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global update 2005. Summary of risk assessment (2005)

<sup>(</sup>g) World Health Organization (WHO), Air Quality Guidelines for Europe. Second Edition. WHO Regional Publications, European Series, No. 91 (2000

<sup>(</sup>h) Texas Commission on Environmental Quality (TCEQ), Interoffice memorandum, Effects Screening Levels (September 2015)

## Table 2: Criteria Air Contaminants - 24-Hour Air Thresholds

| Parameter                           | NDOE <sup>(a)</sup> | С                   | CME NAAQO <sup>(b)</sup> | )(c)                  | MOE <sup>(d)</sup>    | ATSDR <sup>(e)</sup> | OEHHA <sup>(f)</sup> | WHO <sup>(g)(h)</sup> | TCEQ <sup>(i)</sup> | Toxicological Endpoints and Derivations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------|---------------------|---------------------|--------------------------|-----------------------|-----------------------|----------------------|----------------------|-----------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     |                     | Desirable           | Acceptable               | Tolerable             |                       |                      |                      |                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Criteria Air Contaminants           |                     |                     |                          |                       |                       |                      |                      |                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sulphur dioxide (SO <sub>2</sub> )  | 150                 | 150                 | 300                      | 800                   | 275                   | _                    | _                    | 20                    | _                   | NDOE - human health, environment and aethetics; CCME - health and environment; MOE - health and vegetation; WHO - lung function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Carbon monoxide (CO)                | _                   | 6000 <sup>(i)</sup> | 15,000 <sup>(i)</sup>    | 20,000 <sup>(i)</sup> | 15,700 <sup>(i)</sup> | _                    | _                    | 10,000 <sup>(i)</sup> | 1                   | CCME - health and environment; MOE - health; WHO - Based on COHb levels. To protect non-smoking, middle-<br>aged and elderly populations with documented or latent heart diseases, and fetuses of non-smoking pregnant<br>women from untoward hypoxic effects, a COHb level of 2.5% should not be exceeded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Nitrogen dioxide (NO <sub>2</sub> ) | 200                 | l –                 | 200                      | 300                   | 200                   | _                    | _                    | _                     | _                   | NDOE - human health, environment and aethetics; CCME - health and environment; MOE - health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PM <sub>2.5</sub>                   | 30                  | _                   | 27                       | -                     | 30                    | _                    | _                    | 25                    | _                   | NDOE - human health, environment and aethetics; CCME - The CAAQS (that replaced the CWS in 2013) is a health-based standard that was derived to be protective of human health and the environment, but also account for feasibility and costs associated with reducing pollutant emissions; a value of 28 $\mu$ g/m³ is effective in 2015 and a value of 27 $\mu$ g/m³ is effective in 2020. These values are applicable to the 3-year average of the annual 98th percentile of the daily 24-h average concentrations. The 2020 standard was selected as it will be in effect during the life of the Project; MOE - The value is not technically an AAQC, but is the CWS for PM $_{2.5}$ . The CWS is a long-term goal of minimizing risk that fine PM poses on human health and the environment. The MOE recommends that contribution of PM $_{2.5}$ from a single facility be less than 25 $\mu$ g/m³ (24-hour) to achieve the CWS target; WHO - The AQG is based on a PM $_{2.5}$ :PM $_{10}$ ratio of 0.5. Therefore, the AQG reflects the relationship between the distributions of 24-h means (and its 99th percentile) and annual average concentrations. |
| PM <sub>10</sub>                    | _                   | _                   | NV                       | _                     | 50                    | _                    | _                    | 50                    | _                   | CCME - The NAAQOs for PM have been replaced by CAAQS and the CCME does not provide a CAAQS for $PM_{10}$ . A CAAQS is only available for $PM_{2.5}$ as the greatest human health effects related to PM are are associated with the fine fraction. Actions to reduce $PM_{2.5}$ emissions will also reduce concentrations of the coarse fraction ( $PM_{10}$ ); MOE - interim AAQC, provided for decision making; WHO - The AQG is based on a 0.46 to 0.62% increase in mortality per 10 $\mu$ g/m³ increase in $PM_{10}$ . The AQG reflects the relationship between the distributions of 24-h means (and its 99th percentile) and annual average concentrations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total Suspended Particulates (TSP)  | 120                 | _                   | 120                      | 400                   | 120                   | _                    | _                    | _                     | -                   | NDOE - human health, environment and aethetics; CCME - health and environment; MOE - visibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

### Notes

All values are in  $\mu g/m^3$ , unless otherwise noted.

AAQC = Ambient Air Quality Criteria; AQG = Air Quality Guideline; CAAQS = Canadian ambient air quality standard; COHb = carboxyhemoglobin; CWS = Canada-wide Standard; h = hour; m³ = cubic metre; μg/m³ = microgram per cubic metre; mg/m³ = milligram per cubic metre; mg/m³ = milligram per cubic metre; mg/m³ = microgram per cubic metre; mg/m³ = microgram per cubic metre; mg/m³ = microgram per cubic metre; mg/m³ = milligram per cubic metre; mg/m³ = microgram per cubic me

— = Value not available.

naded + Bold = Screening threshold selected for use in the assessment is the NDOE threshold. In the absence of an NDOE threshold, the most conservative threshold from all other jurisdictions is selected.

- (a) Government of Nunavut Department of Environment (NDOE), Ambient Air Quality Standards. In: Environmental Guideline for Ambient Air Quality (October 2011).
- (b) Canadian Council of Ministers of the Environment (CCME), Canadian National Ambient Air Quality Objectives: Process and Status. In: Canadian Environmental Quality Guidelines (1999).
- (c) Guidelines from the Canadian Council of Ministers of the Environment (CCME), Guidance Document on Achievement Determination Canadian Ambient Air Quality Standards for Fine Particulate Matter and Ozone (2012).
- (d) Ontario Ministry of the Environment (MOE), Ontario's Ambient Air Quality Criteria. Standards Development Branch, MOE. (April, 2012).
- (e) Agency of Toxic Substances and Disease Registry (ATSDR), Minimum Risk Levels (MRLs), October 2015 and supporting toxicological profiles.
- (1) California Office of Environmental Health Hazard Assessment (OEHHA), Air Toxicology and Epidemiology. Acute, 8-hour and Chronic Reference Exposure Levels (January 2014).
- (9) World Health Organization (WHO), WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global update 2005. Summary of risk assessment (2005).
- (h) World Health Organization (WHO), Air Quality Guidelines for Europe. Second Edition. WHO Regional Publications, European Series, No. 91 (2000).
- (i) Texas Commission on Environmental Quality (TCEQ), Interoffice memorandum, Effects Screening Levels (September 2015).

2 / 6 Golder Associates Ltd.

## Table 3: Criteria Air Contaminants - Annual Air Thresholds

| Parameter                           | NDOE <sup>(a)</sup> | C         | CME NAAQO <sup>(b</sup> | )(c)      | MOE <sup>(d)</sup> | ATSDR <sup>(e)</sup> | OEHHA <sup>(f)(g)</sup> | WHO <sup>(h)(i)</sup> | TCEQ <sup>(j)</sup> | Toxicological Endpoints and Derivations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------|---------------------|-----------|-------------------------|-----------|--------------------|----------------------|-------------------------|-----------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     |                     | Desirable | Acceptable              | Tolerable |                    |                      |                         |                       | -                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Criteria Air Contaminants           |                     |           |                         |           |                    |                      |                         |                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sulphur dioxide (SO <sub>2</sub> )  | 30                  | 30        | 60                      | _         | 55                 | _                    | _                       | 50                    |                     | NDOE - human health, environment and aethetics (annual arithmetic mean); MOE - health and vegetation; CCME - health and environment; WHO - Based on a LOAEL of 100 μg/m <sup>3</sup> for respiratory symptoms and illnesses or differences in lung function values.                                                                                                                                                                                                                                                                                                                                                                                           |
| Carbon monoxide (CO)                | _                   |           | _                       |           | _                  | _                    | _                       | _                     | _                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Nitrogen dioxide (NO <sub>2</sub> ) | 60                  | 60        | 100                     | ı         | I                  | _                    | _                       | 40                    | 99.7 <sup>(k)</sup> | NDOE - human health, environment and aethetics (annual arithmetic mean); CCME - health and environment; MOE - health; WHO - Based on outdoor epidemiological studies that found exposures to NO <sub>2</sub> in ambient air associated with increased respiratory symptoms and lung function decreases in children; TCEQ - must meet NAAQS of 53 ppb.                                                                                                                                                                                                                                                                                                         |
| PM <sub>2.5</sub>                   | _                   | I         | 8.8                     | I         |                    | _                    | _                       | 10                    | 12                  | CCME – The CAAQS (that replaced the CWS in 2013) is a health-based standard that was derived to be protective of human health and the environment, but also account for feasibility and costs associated with reducing pollutant emissions; a value of 10 μg/m <sup>3</sup> is effective in 2015 and a value of 8.8 μg/m <sup>3</sup> is effective in 2020. This value is applicable to the 3-year average of the annual average concentrations. The 2020 standard was selected as it will be in effect during the life of the Project; WHO - The AQG is based on cardiopulmonary and lung cancer mortality; TCEQ - must meet NAAQS of 12 μg/m <sup>3</sup> . |
| PM <sub>10</sub>                    | _                   | _         | NV                      | _         | _                  | _                    | _                       | 20                    | _                   | WHO - The WHO AQG is based on a PM <sub>2.5</sub> :PM <sub>10</sub> ratio of 0.5. The lowest level at which total cardiopulmonary and lung cancer mortality have been shown to increase with more than 95% confidence in response to long-term exposure to PM <sub>2.5</sub> .                                                                                                                                                                                                                                                                                                                                                                                |
| Total Suspended Particulates (TSP)  | 60                  | 60        | 70                      | _         | 60                 | _                    | _                       | _                     | _                   | NDOE - human health, environment and aethetics (annual geometric mean); CCME - health and environment; MOE - visibility.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### Notos

All values are in  $\mu g/m^3$ , unless otherwise noted.

AQG = Air Quality Guideline; CAAQS = Canadian ambient air quality standard; LOAEL = Lowest Observed Adverse Effect Level; µg/L = microgram per litre; µg/m³ = microgram per litre; µg/m³ = microgram per day; mg/m³ = milligram per cubic metre; NAAQS = National Ambient Air Quality Standard; PAH = polycyclic aromatic hydrocarbon; NAAQO = National Ambient Air Quality Objectives; NOAEL = no observable adverse effect level; PM = particulate matter; PM<sub>1.5</sub> = fine particulate matter; PM<sub>2.5</sub> = fine particulate matter; PM = p

## — = Value not available. Shaded + Bold =

Screening threshold selected for use in the assessment is the NDOE threshold. In the absence of an NDOE threshold, the most conservative threshold from all other jurisdictions is selected.

- (a) Government of Nunavut Department of Environment (NDOE), Ambient Air Quality Standards. In: Environmental Guideline for Ambient Air Quality (October 2011)
- (b) Canadian Council of Ministers of the Environment (CCME), Canadian National Ambient Air Quality Objectives: Process and Status. In: Canadian Environmental Quality Guidelines (1999).
- (c) Guidelines from the Canadian Council of Ministers of the Environment (CCME), Guidance Document on Achievement Determination Canadian Ambient Air Quality Standards for Fine Particulate Matter and Ozone (2012)
- (d) Ontario Ministry of the Environment (MOE), Ontario's Ambient Air Quality Criteria. Standards Development Branch, MOE (April, 2012).
- (e) Agency of Toxic Substances and Disease Registry (ATSDR), Minimum Risk Levels (MRLs), October 2015 and supporting toxicological profiles.
- (f) California Office of Environmental Health Hazard Assessment (OEHHA), Air Toxicology and Epidemiology. Acute, 8-hour and Chronic Reference Exposure Levels (June 2014).
- (g) California Office of Environmental Health Hazard Assessment (OEHHA), 2012, Toxicity Criteria Database.
- (h) World Health Organization (WHO), WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global update 2005. Summary of risk assessment (2005).
- (1) World Health Organization (WHO), Air Quality Guidelines for Europe. Second Edition. WHO Regional Publications, European Series, No. 91 (2000).
- 1) Texas Commission on Environmental Quality (TCEQ), Interoffice memorandum, Effects Screening Levels (September 2015). Guideline was provided from TCEQ if values were not available from any of the other jurisdications.
- (k) TCEQ refers to US EPA NAAQS value in units of parts per million (ppm) or parts per million (ppm) or parts per million (ppm) or parts per billion (ppm) or parts per million (ppm) o

3 / 6 Golder Associates Ltd.

#### **Attachment B-1: Air Quality Screening Tables** March 2019 1896037 (3500)

## Table 4: Screening of 1-hour Maximum Predicted CAC Air Concentrations (Approved Project)

|                                     | Selected 1-hour   | Baseline +             |        |        |        |        |         |         | Maximum P | redicted 1- | hour Conce | entration (µg | g/m³) <sup>(b)</sup> |         |         |         |        |         | Retain for CAC |
|-------------------------------------|-------------------|------------------------|--------|--------|--------|--------|---------|---------|-----------|-------------|------------|---------------|----------------------|---------|---------|---------|--------|---------|----------------|
| Parameter                           | Screening         | 10%                    | Grave  | Grave  | Grave  | Grave  | Grave   | Grave   | Grave     | Grave       | Fishing    |               |                      |         | Fishing | Caching |        |         | Inhalation     |
|                                     | Threshold (µg/m³) | (µg/m³) <sup>(a)</sup> | Site 2 | Site 3 | Site 4 | Site 5 | Site 27 | Site 28 | Site 29   | Site 30     | Marker     | Muskox        | Muskox               | To Iglu | Area    | Area    | Track  | Caching | Assessment?    |
| Criteria Air Contaminants           | (CAC)             |                        |        |        |        |        |         |         |           |             |            |               |                      |         |         |         |        |         |                |
| Sulphur dioxide (SO <sub>2</sub> )  | 450               | 3.0                    | 5.94   | 6.24   | 9.80   | 9.64   | 6.38    | 6.33    | 6.26      | 21.95       | 5.97       | 6.44          | 13.07                | 10.07   | 5.98    | 6.21    | 9.24   | 7.64    | No             |
| Carbon monoxide (CO)                | 15,000            | 427                    | 804.48 | 820.02 | 992.31 | 978.48 | 828.13  | 825.68  | 820.78    | 1537.89     | 806.08     | 828.36        | 1142.54              | 1011.69 | 808.08  | 817.75  | 962.01 | 887.35  | No             |
| Nitrogen dioxide (NO <sub>2</sub> ) | 400               | 13.9                   | 62.56  | 72.57  | 107.14 | 97.79  | 78.35   | 73.87   | 73.36     | 177.44      | 66.73      | 76.36         | 122.34               | 100.05  | 66.70   | 68.76   | 98.32  | 88.42   | No             |

Notes:  $\mu g/m^3 = microgram per cubic metre; PM_{2.5} = particulate matter fine fraction; PM_{10} = particulate matter coarse fraction.$ Shaded + Bold = Exceeds 1-hour Screening Threshold and Baseline+10%

4/6 Golder Associates Ltd.

<sup>(</sup>a) Baseline concentrations are based on the average 90th percentile from multiple sites. A 10% factor was applied to account for natural variability

<sup>(</sup>b) Air concentrations are the sum of baseline concentrations and maximum predicted 1-hour concentrations provided in the Air Quality TSD.

## Table 5: Screening of 24-hour Maximum Predicted CAC Air Concentrations (Approved Project)

|                                     | Selected 24-hour  | Baseline +             |        |        |        |        |         | М       | aximum Pr | edicted 24- | hour Conc | entration (µ | g/m³) <sup>(c)</sup> |         |         |         |        |         | Retain for CAC    |
|-------------------------------------|-------------------|------------------------|--------|--------|--------|--------|---------|---------|-----------|-------------|-----------|--------------|----------------------|---------|---------|---------|--------|---------|-------------------|
| Parameter                           | Screening         | 10%                    | Grave  | Grave  | Grave  | Grave  | Grave   | Grave   | Grave     | Grave       | Fishing   |              |                      |         | Fishing | Caching |        |         | Inhalation        |
|                                     | Threshold (µg/m³) | (µg/m³) <sup>(b)</sup> | Site 2 | Site 3 | Site 4 | Site 5 | Site 27 | Site 28 | Site 29   | Site 30     | Marker    | Muskox       | Muskox               | To Iglu | Area    | Area    | Track  | Caching | Assessment?       |
| Criteria Air Contaminants (CAC)     |                   |                        |        |        |        |        |         |         |           |             |           |              |                      |         |         |         |        |         |                   |
| Sulphur dioxide (SO <sub>2</sub> )  | 150               | 3.0                    | 5.44   | 5.60   | 6.37   | 6.11   | 5.66    | 5.63    | 5.57      | 9.19        | 5.48      | 5.48         | 6.52                 | 6.14    | 5.45    | 5.48    | 6.18   | 5.62    | No                |
| Carbon monoxide (CO) <sup>(a)</sup> | 6,000             | 423                    | 774.85 | 778.92 | 838.37 | 822.58 | 788.75  | 787.20  | 786.01    | 994.37      | 775.59    | 783.90       | 867.49               | 817.92  | 777.72  | 776.46  | 812.08 | 790.13  | No                |
| Nitrogen dioxide (NO <sub>2</sub> ) | 200               | 12.54                  | 26.36  | 28.73  | 35.38  | 38.70  | 29.37   | 29.01   | 28.69     | 84.56       | 29.52     | 27.24        | 38.46                | 31.59   | 26.33   | 28.52   | 36.98  | 29.04   | No                |
| PM <sub>2.5</sub>                   | 30                | 7.37                   | 13.54  | 13.60  | 15.08  | 15.35  | 13.89   | 13.85   | 13.76     | 25.58       | 13.61     | 13.72        | 15.84                | 15.06   | 13.67   | 13.66   | 15.07  | 14.17   | No                |
| PM <sub>10</sub>                    | NV <sup>(d)</sup> | _                      | 7.95   | 8.93   | 28.76  | 13.20  | 10.88   | 10.70   | 10.19     | 72.31       | 7.76      | 8.39         | 24.09                | 19.65   | 8.62    | 9.44    | 16.48  | 11.68   | No                |
| Total Suspended Particulates (TSP)  | 120               | _                      | 10.08  | 10.33  | 74.74  | 27.54  | 18.87   | 18.35   | 16.84     | 157.81      | 9.85      | 11.52        | 60.87                | 48.50   | 12.25   | 15.19   | 33.29  | 22.20   | No <sup>(e)</sup> |

Notes:  $\mu g/m^3 = microgram per cubic metre; PM_{2.5} = particulate matter fine fraction; PM_{10} = particulate matter coarse fraction.$ 

— = Value not available.

Shaded =

Exceeds 24-hour Screening Threshold

Shaded + Bold =

Exceeds 24-hour Screening Threshold and Baseline+10%

(a) 8-hour

5/6 Golder Associates Ltd.

<sup>(</sup>b) Baseline concentrations are based on the average 90th percentile from multiple sites. A 10% factor was applied to account for natural variability in air concentrations.

<sup>(</sup>c) Air concentrations are the sum of baseline concentrations (as available) and maximum predicted 1-hour concentrations provided in the Air Quality TSD.

 $<sup>^{(</sup>d)}$  The health effects due to PM $_{10}$  will be evaluated based on the the PM $_{2.5}$  concentrations. The greatested human health effects due to PM are associated with the fine fraction.

 $<sup>^{(\</sup>mathrm{e})}$  The standard for TSP is based on nuisance rather than human health.

## Table 6: Screening of Annual Maximum Predicted CAC Air Concentrations (Approved Project)

|                                     | Selected Annual-  | Baseline +                 |        |        |        |        |         | Max     | imum Pred | icted Annı | ual Concen | tration (µg | /m³) <sup>(c)</sup> |         |         |         |       |         | Retain for CAC |
|-------------------------------------|-------------------|----------------------------|--------|--------|--------|--------|---------|---------|-----------|------------|------------|-------------|---------------------|---------|---------|---------|-------|---------|----------------|
| Parameter                           | hour Screening    |                            | Grave  | Grave  | Grave  | Grave  | Grave   | Grave   | Grave     | Grave      | Fishing    |             |                     |         | Fishing | Caching |       |         | Inhalation     |
|                                     | Threshold (µg/m³) | 10% (μg/m³) <sup>(b)</sup> | Site 2 | Site 3 | Site 4 | Site 5 | Site 27 | Site 28 | Site 29   | Site 30    | Marker     | Muskox      | Muskox              | To Iglu | Area    | Area    | Track | Caching | Assessment?    |
| Criteria Air Contaminants (CAC)     |                   |                            |        |        |        |        |         |         |           |            |            |             |                     |         |         |         |       |         |                |
| Sulphur dioxide (SO <sub>2</sub> )  | 30                | 0.33                       | 0.57   | 0.57   | 0.59   | 0.60   | 0.57    | 0.57    | 0.57      | 0.79       | 0.57       | 0.57        | 0.60                | 0.58    | 0.57    | 0.57    | 0.58  | 0.58    | No             |
| Carbon monoxide (CO) <sup>(a)</sup> | <del>-</del>      | _                          | _      | _      | _      | _      | _       | _       | _         | _          | _          | _           | _                   | _       | _       | _       | _     | _       | No             |
| Nitrogen dioxide (NO <sub>2</sub> ) | 60                | 5.50                       | 10.12  | 10.13  | 10.63  | 11.13  | 10.24   | 10.22   | 10.20     | 19.12      | 10.19      | 10.18       | 11.00               | 10.43   | 10.15   | 10.23   | 10.50 | 10.41   | No             |
| PM <sub>2.5</sub>                   | 8.8               | 3.96                       | 7.22   | 7.22   | 7.42   | 7.39   | 7.24    | 7.24    | 7.23      | 8.87       | 7.22       | 7.23        | 7.40                | 7.31    | 7.22    | 7.23    | 7.31  | 7.27    | Yes            |
| PM <sub>10</sub>                    | NV                | _                          | _      | _      | _      | _      | _       | _       | _         | _          | _          | _           | _                   | _       | _       |         | _     | _       | No             |
| Total Suspended Particulates (TSP)  | 60                | _                          | 3.74   | 3.70   | 4.98   | 5.18   | 3.89    | 3.88    | 3.85      | 18.78      | 3.77       | 3.84        | 5.40                | 4.83    | 3.77    | 3.87    | 5.11  | 4.31    | No             |

Notes:  $\mu g/m^3 = microgram per cubic metre; PM_{2.5} = particulate matter fine fraction; PM_{10} = particulate matter coarse fraction.$ 

— = Value not available.

Shaded = Exceeds Annual-hour Screening Threshold Shaded + Bold = Exceeds Annual-hour Screening Threshold and Baseline + 10%

<sup>(a)</sup> 8-hour

6/6 Golder Associates Ltd.

<sup>(</sup>b) Baseline concentrations are based on the average 50th percentile from multiple sites. A 10% factor was applied to account for natural variability in air concentrations.

<sup>(</sup>c) Air concentrations are the sum of baseline concentrations (as available) and maximum predicted 1-hour concentrations provided in the Air Quality TSD.

#### **Attachment B-1: Air Quality Screening Tables** March 2019 1896037 (3500)

## Table 7: Screening of 1-hour Maximum Predicted CAC Air Concentrations (Expansion Project)

|                                     | Selected 1-hour   | Baseline +             |         |         |         |         |         |         | Maximum P | redicted 1- | hour Conce | entration (µg | g/m³) <sup>(b)</sup> |         |         |         |         |         | Retain for CAC |
|-------------------------------------|-------------------|------------------------|---------|---------|---------|---------|---------|---------|-----------|-------------|------------|---------------|----------------------|---------|---------|---------|---------|---------|----------------|
| Parameter                           | Screening         | 10%                    | Grave     | Grave       | Fishing    |               |                      |         | Fishing | Caching |         |         | Inhalation     |
|                                     | Threshold (µg/m³) | (µg/m³) <sup>(a)</sup> | Site 2  | Site 3  | Site 4  | Site 5  | Site 27 | Site 28 | Site 29   | Site 30     | Marker     | Muskox        | Muskox               | To Iglu | Area    | Area    | Track   | Caching | Assessment?    |
| Criteria Air Contaminants           | (CAC)             |                        |         |         |         |         |         |         |           |             |            |               |                      |         |         |         |         |         |                |
| Sulphur dioxide (SO <sub>2</sub> )  | 450               | 3.0                    | 16.96   | 25.99   | 84.14   | 85.99   | 42.65   | 39.95   | 33.13     | 372.87      | 20.79      | 28.23         | 161.56               | 86.63   | 23.43   | 23.56   | 85.98   | 41.85   | No             |
| Carbon monoxide (CO)                | 15,000            | 427                    | 1191.06 | 1519.20 | 3666.89 | 3653.49 | 2106.41 | 2021.61 | 1800.82   | 13581.47    | 1349.09    | 1601.61       | 6259.79              | 3699.28 | 1410.14 | 1409.52 | 3622.53 | 2066.76 | No             |
| Nitrogen dioxide (NO <sub>2</sub> ) | 400               | 13.9                   | 88.69   | 104.81  | 185.92  | 180.61  | 109.18  | 105.19  | 102.29    | 451.92      | 89.85      | 105.14        | 263.57               | 194.09  | 96.24   | 93.29   | 167.42  | 127.52  | Yes            |

Notes:  $\mu g/m^3 = microgram per cubic metre; PM_{2.5} = particulate matter fine fraction; PM_{10} = particulate matter coarse fraction.$ Shaded + Bold = Exceeds 1-hour Screening Threshold and Baseline+10%

1/3 Golder Associates Ltd.

<sup>(</sup>a) Baseline concentrations are based on the average 90th percentile from multiple sites. A 10% factor was applied to account for natural variability

<sup>(</sup>b) Air concentrations are the sum of baseline concentrations and maximum predicted 1-hour concentrations provided in the Air Quality TSD.

## Table 8: Screening of 24-hour Maximum Predicted CAC Air Concentrations (Expansion Project)

|                                     | Selected 24-hour  |                        |        |        |         |         |         | М       | aximum Pr | edicted 24- | hour Conc | entration (µ | g/m³) <sup>(c)</sup> |         |         |         |         |         | Retain for CAC    |
|-------------------------------------|-------------------|------------------------|--------|--------|---------|---------|---------|---------|-----------|-------------|-----------|--------------|----------------------|---------|---------|---------|---------|---------|-------------------|
| Parameter                           | Screening         | 10%                    | Grave  | Grave  | Grave   | Grave   | Grave   | Grave   | Grave     | Grave       | Fishing   |              |                      |         | Fishing | Caching |         |         | Inhalation        |
|                                     | Threshold (µg/m³) | (µg/m³) <sup>(b)</sup> | Site 2 | Site 3 | Site 4  | Site 5  | Site 27 | Site 28 | Site 29   | Site 30     | Marker    | Muskox       | Muskox               | To Iglu | Area    | Area    | Track   | Caching | Assessment?       |
| Criteria Air Contaminants (CAC)     |                   |                        |        |        |         |         |         |         |           |             |           |              |                      |         |         |         |         |         | -                 |
| Sulphur dioxide (SO <sub>2</sub> )  | 150               | 3.0                    | 6.82   | 8.51   | 22.97   | 25.00   | 16.75   | 15.59   | 14.23     | 80.91       | 7.98      | 7.50         | 32.99                | 23.02   | 7.17    | 7.96    | 18.86   | 8.76    | No                |
| Carbon monoxide (CO) <sup>(a)</sup> | 6,000             | 423                    | 880.42 | 929.89 | 1526.16 | 1419.24 | 1043.71 | 1017.25 | 1016.12   | 4172.83     | 885.57    | 958.25       | 2344.76              | 1464.92 | 887.45  | 926.30  | 1299.62 | 1010.00 | No                |
| Nitrogen dioxide (NO <sub>2</sub> ) | 200               | 12.54                  | 31.84  | 32.84  | 55.78   | 57.25   | 44.47   | 42.91   | 40.96     | 161.04      | 41.43     | 31.88        | 60.24                | 48.31   | 30.54   | 35.94   | 54.58   | 36.34   | No                |
| PM <sub>2.5</sub>                   | 30                | 7.37                   | 13.69  | 13.76  | 15.71   | 16.22   | 14.49   | 14.40   | 14.26     | 29.93       | 13.81     | 13.97        | 18.46                | 16.03   | 13.80   | 13.88   | 15.47   | 14.43   | No                |
| PM <sub>10</sub>                    | NV <sup>(d)</sup> | _                      | 9.12   | 9.76   | 46.09   | 22.13   | 19.29   | 19.05   | 17.20     | 146.33      | 9.09      | 11.21        | 45.55                | 29.75   | 10.20   | 12.24   | 24.46   | 17.59   | No                |
| Total Suspended Particulates (TSP)  | 120               | _                      | 9.70   | 9.74   | 69.18   | 24.05   | 19.21   | 18.97   | 17.14     | 174.24      | 9.43      | 11.46        | 58.71                | 36.48   | 11.01   | 12.93   | 28.33   | 20.06   | No <sup>(e)</sup> |

### Notes

 $\mu$ g/m<sup>3</sup> = microgram per cubic metre; PM <sub>2.5</sub> = particulate matter fine fraction; PM <sub>10</sub> = particulate matter coarse fraction.

— = Value not available.

NV

Exceeds 24-hour Screening Threshold

Shaded + Bold =

Exceeds 24-hour Screening Threshold and Baseline+10%

(a) 8-hour

2/3 Golder Associates Ltd.

<sup>(</sup>b) Baseline concentrations are based on the average 90th percentile from multiple sites. A 10% factor was applied to account for natural variability in air concentrations.

<sup>(</sup>c) Air concentrations are the sum of baseline concentrations (as available) and maximum predicted 1-hour concentrations provided in the Air Quality TSD.

<sup>(</sup>d) The health effects due to PM 10 will be evaluated based on the the PM 2.5 concentrations. The greatested human health effects due to PM are associated with the fine fraction.

<sup>(</sup>e) The standard for TSP is based on nuisance rather than human health and therefore was not retained in the HHERA.

## Table 9: Screening of Annual Maximum Predicted CAC Air Concentrations (Expansion Project)

|                                     | Selected Annual-  | Baseline +                 |        |        |        |        |         | Max     | imum Pred | icted Annı | ıal Concen | tration (µg/ | m³) <sup>(b)</sup> |         |         |         |       |         | Retain for CAC |
|-------------------------------------|-------------------|----------------------------|--------|--------|--------|--------|---------|---------|-----------|------------|------------|--------------|--------------------|---------|---------|---------|-------|---------|----------------|
| Parameter                           | hour Screening    |                            | Grave  | Grave  | Grave  | Grave  | Grave   | Grave   | Grave     | Grave      | Fishing    |              |                    |         | Fishing | Caching |       |         | Inhalation     |
|                                     | Threshold (µg/m³) | 10% (μg/m³) <sup>(a)</sup> | Site 2 | Site 3 | Site 4 | Site 5 | Site 27 | Site 28 | Site 29   | Site 30    | Marker     | Muskox       | Muskox             | To Iglu | Area    | Area    | Track | Caching | Assessment?    |
| Criteria Air Contaminants (CAC)     |                   |                            |        |        |        |        |         |         |           |            |            |              |                    |         |         |         |       |         |                |
| Sulphur dioxide (SO <sub>2</sub> )  | 30                | 0.33                       | 0.62   | 0.63   | 0.89   | 1.11   | 0.70    | 0.69    | 0.68      | 5.56       | 0.64       | 0.66         | 1.09               | 0.92    | 0.63    | 0.67    | 0.86  | 0.75    | No             |
| Carbon monoxide (CO)                | _                 | _                          | _      | _      | _      |        | _       | _       | _         | _          | _          | _            | _                  |         | _       |         | _     | _       | No             |
| Nitrogen dioxide (NO <sub>2</sub> ) | 60                | 5.50                       | 10.47  | 10.41  | 11.53  | 13.40  | 10.76   | 10.71   | 10.66     | 35.10      | 10.66      | 10.62        | 12.17              | 11.34   | 10.54   | 10.86   | 11.55 | 11.42   | No             |
| PM <sub>2.5</sub>                   | 8.8               | 3.96                       | 7.24   | 7.24   | 7.46   | 7.55   | 7.28    | 7.27    | 7.27      | 10.27      | 7.24       | 7.26         | 7.57               | 7.42    | 7.24    | 7.26    | 7.44  | 7.34    | Yes            |
| PM <sub>10</sub>                    | NV                | _                          | _      | _      | _      | _      | _       | _       | _         | _          | _          | _            | _                  | _       | _       | _       | _     | _       | No             |
| Total Suspended Particulates (TSP)  | 60                |                            | 3.74   | 3.70   | 4.98   | 5.18   | 3.89    | 3.88    | 3.85      | 18.78      | 3.77       | 3.84         | 5.40               | 4.83    | 3.77    | 3.87    | 5.11  | 4.31    | No             |

Notes:  $\mu g/m^3 = microgram per cubic metre; PM_{2.5} = particulate matter fine fraction; PM_{10} = particulate matter coarse fraction.$ 

— = Value not available.

Shaded = Exceeds Annual-hour Screening Threshold Exceeds Annual-hour Screening Threshold and Baseline + 10% Shaded + Bold =

3/3 Golder Associates Ltd.

<sup>(</sup>a) Baseline concentrations are based on the average 50th percentile from multiple sites. A 10% factor was applied to account for natural variability in air concentrations.

<sup>(</sup>b) Air concentrations are the sum of baseline concentrations (as available) and maximum predicted 1-hour concentrations provided in the Air Quality TSD.

# Attachment B-1: Air Quality Screening Tables Table 10: 24-Hour Metals Screening Thresholds

| Parameter  | NDOE <sup>(a)</sup> | Co        | CME NAAQO <sup>(b</sup> | )(c)      | MOE <sup>(d)</sup> | ATSDR <sup>(e)</sup> | OEHHA <sup>(f)</sup> | WHO <sup>(g)</sup> | TCEQ <sup>(h)</sup> | Toxicological Endpoints and Derivations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------|---------------------|-----------|-------------------------|-----------|--------------------|----------------------|----------------------|--------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                     | Desirable | Acceptable              | Tolerable |                    |                      |                      |                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Aluminum   | _                   | _         | _                       | _         | _                  | _                    | _                    | _                  | _                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Antimony   | _                   |           | _                       | _         | 25                 | _                    |                      |                    | _                   | MOE - health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Arsenic    | _                   | _         | _                       | _         | 0.3                | _                    | 0.015 <sup>(i)</sup> | _                  | _                   | MOE - health; OEHHA - The 8-hr REL was taken to be equivalent to the chronic REL due to the possibility of repeated exposure and the relatively slow clearance of arsenic compounds. The chronic REL was based on a LOAEL of 0.23 μg/m³ for decrease in intellectual function and adverse effects on neurobehavioural development in children. An uncertainty factor of 30 was applied.                                                                                                                                                                                                                                                                                                                                               |
| Barium     | _                   |           | _                       | _         | 10                 |                      | _                    |                    |                     | MOE - health; total water soluble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Beryllium  |                     |           |                         |           | 0.01               |                      |                      |                    |                     | MOE - health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Bismuth    | _                   | _         | _                       | _         | — U.U.I            | _                    | _                    |                    | _                   | - Indian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Cadmium    | _                   | _         | _                       | _         | 0.025              | _                    | _                    | _                  | _                   | MOE - health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Calcium    | _                   | _         | _                       | _         | - 0.020            | _                    | _                    | _                  | _                   | - Indian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Chromium   | _                   | _         | _                       | _         | 0.5                | 0.1                  | _                    | _                  | _                   | MOE - health for metallic, divalent and trivalent chromium compounds; ATSDR - The MRL for soluble Cr(III) particulate compounds was based on a LOAEL of 3 mg/m³ for nasal and larynx lesions. The LOAEL was adjusted for intermittent exposure (6 h/day, 5 days/week) and a human equivalent concentration of 0.078. An uncertainty factor of 300 was applied.                                                                                                                                                                                                                                                                                                                                                                        |
| Cobalt     | _                   | _         | _                       | _         | 0.1                | _                    | _                    | _                  | _                   | MOE - health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Copper     | _                   | _         | _                       | _         | 50                 | _                    | _                    | _                  | _                   | MOE - health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Gold       | _                   |           | _                       | _         | _                  |                      |                      |                    | _                   | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Iron       |                     | _         | _                       | _         | 4                  |                      | _                    | _                  | _                   | MOE - health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Lead       | _                   | _         | _                       | _         | 0.5                | _                    | _                    | _                  | _                   | MOE - health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Lithium    | _                   | _         | _                       | _         | 20                 | _                    | _                    | _                  | _                   | MOE - health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Magnesium  | _                   | _         | _                       | _         | _                  | _                    | _                    | _                  | _                   | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Manganese  | _                   | _         | _                       | -         | 0.1                | _                    | 0.17 <sup>(i)</sup>  | -                  | _                   | MOE - health effects for chemical present as particulate matter, PM <sub>2.5</sub> fraction. The value for the PM <sub>2.5</sub> fraction was selected as it was the most conservative; OEHHA - The 8-h REL is based on a benchmark concentration of 72 μg/m³ for impaired neurobehaviour (visual reaction time, eye-hand coordination and hand steadiness). The benchmark concentration was adjusted for duration (5 days/week) and an uncertainty factor of 300 was applied.                                                                                                                                                                                                                                                        |
| Molybdenum | _                   | _         | _                       | _         | 120                | _                    | _                    | _                  | _                   | MOE - particulate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Nickel     | _                   | _         | _                       | _         | 0.1                | 0.2                  | 0.06 <sup>(i)</sup>  | _                  | _                   | MOE - health effects for chemical present as particulate matter, PM <sub>10</sub> fraction. The value for the PM <sub>10</sub> fraction was selected as it was the most conservative; ATSDR - The MRL was based on a NOAEL of 0.06 mg/m³ for chronic active inflammation in rats. The NOAEL was adjusted for exposure duration (6 h/day, 5 days/week) and a human equivalent concentration of 0.474. An uncertainty factor of 30 was applied; OEHHA - The 8-h REL was based on a NOAEL of 0.03 μg/m³ for alveolar macrophage hyperplasia, alveolar proteinosis and chronic active inflammation. The NOAEL was corrected for a duration time of 5 days/week, a dosimetric adjustment factor of 0.264 and an uncertainty factor of 100. |
| Potassium  | _                   | _         | _                       | _         | _                  | _                    | _                    | _                  | _                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Selenium   | _                   | _         | _                       | _         | 10                 | _                    | _                    | _                  | _                   | MOE - health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Silver     | _                   | _         | _                       | _         | 1                  | _                    | _                    | _                  | _                   | MOE - health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sodium     | _                   | _         | _                       | _         |                    | _                    | _                    | _                  | _                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Strontium  | _                   | _         | _                       | _         | 120                | _                    | _                    | _                  | _                   | MOE - particulate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Thallium   | _                   | _         | _                       | _         |                    | _                    | _                    | _                  | _                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Tin        | _                   | _         | _                       | _         | 10                 | _                    | _                    | _                  | _                   | MOE - health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Titanium   | _                   | _         | _                       | _         | 120                | _                    | _                    | _                  | _                   | MOE - particulate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Uranium    | _                   | _         | _                       | _         | 0.15               | 0.1                  | _                    | _                  | _                   | MOE - health effects for chemical present as particulate matter, PM <sub>10</sub> fraction. The value for the PM2.5 fraction was selected as it was the most conservative; ATSDR - The MRL for soluble uranium (soluble salts) was based on a LOAEL of 0.15 mg/m³ for minimal microscopic lesions in the renal tubules in dogs. The LOAEL was adjusted for duration (6 h/day, 6 days/week) and an uncertainty factor of 300 was applied.                                                                                                                                                                                                                                                                                              |
| Vanadium   | _                   | _         | _                       | _         | 2                  | _                    | _                    | 1                  | _                   | MOE - health; WHO - Based on a LOAEL of 20 μg/m³ for chronic upper respiratory tract symptoms. A protection factor of 20 was applied based on minimal upper respiratory tract effects and susceptible sub-populations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Yttrium    | _                   | _         | _                       | _         | _                  | _                    | _                    | _                  | _                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Zinc       |                     | _         | _                       | _         | 120                | _                    | _                    | _                  | _                   | MOE - particulate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

### Notes:

All values are in μg/m³, unless otherwise noted

Cr(III) = trivalent chromium; h = hour; LOAEL = Lowest Observed Adverse Effect Level; m³ = cubic metre; mg/m³ = microgram per cubic metre; mg/m³ = milligram per cubic metre; MRL = minimal risk level; NAAQC = Ambient Air Quality Criteria; PM = particulate matter; NOAEL = no observable adverse effect level; REL = reference exposure level.

- = Value not available.

Shaded + Bold = Screening threshold selected for use in the assessment is the NDOE value. In the absence of NDOE, the most conservative value of all other jurisdictions is selected.

- (a) Government of Nunavut Department of Environment (NDOE), Ambient Air Quality Standards. In: Environmental Guideline for Ambient Air Quality (October 2011).
- (b) Canadian Council of Ministers of the Environment (CCME), Canadian national ambient air quality objectives: Process and status. In: Canadian environmental quality guidelines (1999).
- (e) Guidelines from the Canadian Council of Ministers of the Environment (CCME), Canada-Wide Standards for Particulate Matter and Ozone. 2000.
- (d) Ontario Ministry of the Environment (MOE), Ontario's Ambient Air Quality Criteria. Standards Development Branch, MOE. (April, 2012).
- (e) Agency of Toxic Substances and Disease Registry (ATSDR), Minimum Risk Levels (MRLs), October 2015 and supporting toxicological profiles.
- (f) California Office of Environmental Health Hazard Assessment (OEHHA), Air Toxicology and Epidemiology. Acute, 8-hour and Chronic Reference Exposure Levels (January 2014).
- (9) World Health Organization (WHO), Air Quality Guidelines for Europe. Second Edition. WHO Regional Publications, European Series, No. 91 (2000).
- (h) Texas Commission on Environmental Quality (TCEQ), Interoffice memorandum, Effects Screening Levels (September 2015). Guideline was provided from TCEQ if values were not available from any of the other jurisdications.

1 / 2 Golder Associates Ltd.

## Attachment B-1: Air Quality Screening Tables Table 11: Screening of 24-hour Maximum Predicted Metal Concentrations (Approved Project)

|            | Selected 24-hour               |              |              |              |              |               |               | Maximum Pr    | edicted 24-hour | Concentration     | (µg/m³)   |           |           |              |              |           |           | Retain for 24-hour        |
|------------|--------------------------------|--------------|--------------|--------------|--------------|---------------|---------------|---------------|-----------------|-------------------|-----------|-----------|-----------|--------------|--------------|-----------|-----------|---------------------------|
| Parameter  | Screening<br>Threshold (µg/m³) | Grave Site 2 | Grave Site 3 | Grave Site 4 | Grave Site 5 | Grave Site 27 | Grave Site 28 | Grave Site 29 | Grave Site 30   | Fishing<br>Marker | Muskox    | Muskox    | To Iglu   | Fishing Area | Caching Area | Track     | Caching   | Inhalation<br>Assessment? |
| Aluminum   | _                              | 0.69782      | 0.7153       | 5.17375      | 1.90625      | 1.30624       | 1.27016       | 1.1655        | 10.9251         | 0.6817            | 0.7974    | 4.2138    | 3.3578    | 0.8478       | 1.0519       | 2.3045    | 1.5366    | No                        |
| Antimony   | 25                             | 0.000039     | 0.000040     | 0.000293     | 0.000108     | 0.000074      | 0.000072      | 0.00007       | 0.00062         | 0.00004           | 0.00005   | 0.00024   | 0.00019   | 0.00005      | 0.00006      | 0.00013   | 0.00009   | No                        |
| Arsenic    | 0.015 <sup>(a)</sup>           | 0.00112      | 0.00115      | 0.00830      | 0.00306      | 0.00210       | 0.002037      | 0.00187       | 0.01752         | 0.00109           | 0.00128   | 0.00676   | 0.00539   | 0.00136      | 0.00169      | 0.00370   | 0.00246   | Yes                       |
| Barium     | 10                             | 0.0039       | 0.004        | 0.029224     | 0.010768     | 0.007378      | 0.007175      | 0.006583      | 0.061711        | 0.003851          | 0.004504  | 0.023802  | 0.018967  | 0.004789     | 0.005942     | 0.013017  | 0.008679  | No                        |
| Beryllium  | 0.01                           | 0.0000073    | 0.0000075    | 0.0000544    | 0.0000200    | 0.0000137     | 0.0000134     | 0.000012      | 0.000115        | 0.000007          | 0.000008  | 0.000044  | 0.000035  | 0.000009     | 0.000011     | 0.000024  | 0.000016  | No                        |
| Bismuth    | _                              | 0.0000020    | 0.0000021    | 0.0000149    | 0.0000055    | 0.0000038     | 0.0000037     | 0.0000034     | 0.000032        | 0.000002          | 0.000002  | 0.000012  | 0.000010  | 0.000002     | 0.000003     | 0.000007  | 0.000004  | No                        |
| Cadmium    | 0.025                          | 0.00000      | 0.00000      | 0.00002      | 0.00001      | 0.00001       | 0.00000       | 0.00000       | 0.0000          | 0.0000            | 0.0000    | 0.0000    | 0.0000    | 0.0000       | 0.0000       | 0.0000    | 0.0000    | No                        |
| Calcium    | _                              | 0.398413     | 0.408368     | 2.953893     | 1.088352     | 0.745783      | 0.725183      | 0.66543       | 6.23755         | 0.38922           | 0.45524   | 2.40582   | 1.91712   | 0.484021     | 0.600567     | 1.31572   | 0.87729   | No                        |
| Chromium   | 0.1                            | 0.00168      | 0.001718     | 0.012429     | 0.004579     | 0.003138      | 0.003051      | 0.002800      | 0.026245        | 0.00164           | 0.00192   | 0.01012   | 0.00807   | 0.00204      | 0.00253      | 0.0055    | 0.00369   | No                        |
| Cobalt     | 0.1                            | 0.000270     | 0.000277     | 0.002002     | 0.000738     | 0.000506      | 0.000492      | 0.000451      | 0.00423         | 0.000264          | 0.000309  | 0.00163   | 0.001300  | 0.000328     | 0.000407     | 0.00089   | 0.000595  | No                        |
| Copper     | 50                             | 0.0007       | 0.0007       | 0.0053       | 0.0020       | 0.0013        | 0.0013        | 0.0012        | 0.0112          | 0.0007            | 0.0008    | 0.0043    | 0.0034    | 0.0009       | 0.0011       | 0.0024    | 0.0016    | No                        |
| Gold       | _                              | 0.0000       | 0.0000       | 0.0000       | 0.0000       | 0.0000        | 0.0000        | 0.0000        | 0.0000          | 0.0000            | 0.0000    | 0.0000    | 0.0000    | 0.0000       | 0.0000       | 0.0000    | 0.0000    | No                        |
| Iron       | 4                              | 0.766        | 0.785        | 5.681        | 2.093        | 1.434         | 1.395         | 1.280         | 11.995          | 0.748             | 0.875     | 4.627     | 3.687     | 0.931        | 1.155        | 2.530     | 1.687     | Yes                       |
| Lead       | 0.5                            | 0.00012      | 0.000123     | 0.000893     | 0.000329     | 0.000225      | 0.000219      | 0.000201      | 0.001885        | 0.000118          | 0.000138  | 0.000727  | 0.000579  | 0.000146     | 0.000181     | 0.000398  | 0.000265  | No                        |
| Lithium    | 20                             | 0.0003259    | 0.000334     | 0.002416     | 0.000890     | 0.000610      | 0.000593      | 0.000544      | 0.005102        | 0.000318          | 0.000372  | 0.001968  | 0.001568  | 0.000396     | 0.000491     | 0.001076  | 0.000718  | No                        |
| Magnesium  | _                              | 0.2113383    | 0.216619     | 1.566894     | 0.577317     | 0.395601      | 0.384674      | 0.352980      | 3.308709        | 0.206463          | 0.241482  | 1.276167  | 1.016936  | 0.256749     | 0.318571     | 0.697924  | 0.465358  | No                        |
| Manganese  | 0.1                            | 0.007944     | 0.008142     | 0.058897     | 0.021701     | 0.014870      | 0.014459      | 0.013268      | 0.124370        | 0.007761          | 0.009077  | 0.047969  | 0.038225  | 0.009651     | 0.011975     | 0.026234  | 0.017492  | Yes                       |
| Molybdenum | 120                            | 0.0000121    | 0.0000124    | 0.0000897    | 0.0000330    | 0.0000226     | 0.0000220     | 0.0000202     | 0.0001893       | 0.0000118         | 0.0000138 | 0.0000730 | 0.0000582 | 0.0000147    | 0.0000182    | 0.0000399 | 0.0000266 | No                        |
| Nickel     | 0.06 <sup>(a)</sup>            | 0.001        | 0.001        | 0.005        | 0.002        | 0.001         | 0.001         | 0.001         | 0.01            | 0.001             | 0.001     | 0.004     | 0.003     | 0.001        | 0.001        | 0.002     | 0.002     | No                        |
| Potassium  | _                              | 0.13372      | 0.13706      | 0.99139      | 0.365273     | 0.25030       | 0.243386      | 0.22333       | 2.09345         | 0.13063           | 0.15279   | 0.80744   | 0.64342   | 0.16245      | 0.20156      | 0.44158   | 0.29444   | No                        |
| Selenium   | 10                             | 0.00001      | 0.00001      | 0.00009      | 0.00003      | 0.00002       | 0.000022      | 0.00002       | 0.00019         | 0.00001           | 0.00001   | 0.00007   | 0.00006   | 0.00001      | 0.00002      | 0.00004   | 0.00003   | No                        |
| Silver     | 1                              | 0.00000      | 0.00000      | 0.00002      | 0.00001      | 0.00001       | 0.00001       | 0.00000       | 0.0000          | 0.0000            | 0.0000    | 0.0000    | 0.0000    | 0.00000      | 0.00000      | 0.0000    | 0.00001   | No                        |
| Sodium     | _                              | 0.159714     | 0.163705     | 1.184147     | 0.436295     | 0.298967      | 0.290709      | 0.266757      | 2.50049         | 0.156030          | 0.182495  | 0.96444   | 0.76853   | 0.194033     | 0.240753     | 0.52744   | 0.35168   | No                        |
| Strontium  | 120                            | 0.002        | 0.002        | 0.016        | 0.006        | 0.004         | 0.004         | 0.004         | 0.03            | 0.002             | 0.002     | 0.01      | 0.010     | 0.003        | 0.003        | 0.007     | 0.005     | No                        |
| Thallium   | _                              | 0.000003     | 0.000003     | 0.000023     | 0.000008     | 0.000006      | 0.000006      | 0.000005      | 0.000048        | 0.000003          | 0.000004  | 0.000019  | 0.000015  | 0.000004     | 0.000005     | 0.000010  | 0.000007  | No                        |
| Tin        | 10                             | 0.00001      | 0.0000       | 0.0001       | 0.0000       | 0.0000        | 0.0000        | 0.0000        | 0.0002          | 0.0000            | 0.0000    | 0.0001    | 0.0001    | 0.00001      | 0.00002      | 0.0000    | 0.00002   | No                        |
| Titanium   | 120                            | 0.035139     | 0.036017     | 0.260524     | 0.095989     | 0.065776      | 0.063959      | 0.058689      | 0.550131        | 0.034328          | 0.040151  | 0.212185  | 0.169083  | 0.042689     | 0.052968     | 0.116042  | 0.077374  | No                        |
| Uranium    | 0.1                            | 0.0000       | 0.000        | 0.000        | 0.000        | 0.000         | 0.000         | 0.000         | 0.000           | 0.000             | 0.000     | 0.000     | 0.000     | 0.000        | 0.000        | 0.000     | 0.000     | No                        |
| Vanadium   | 1                              | 0.0012922    | 0.001324     | 0.0095806    | 0.0035299    | 0.0024189     | 0.0023521     | 0.002158      | 0.020231        | 0.001262          | 0.001477  | 0.007803  | 0.006218  | 0.001570     | 0.001948     | 0.004267  | 0.002845  | No                        |
| Yttrium    | _                              | 0.00009537   | 0.0000978    | 0.0007071    | 0.0002605    | 0.0001785     | 0.0001736     | 0.0001593     | 0.0014932       | 0.0000932         | 0.0001090 | 0.0005759 | 0.0004589 | 0.0001159    | 0.0001438    | 0.0003150 | 0.0002100 | No                        |
| Zinc       | 120                            | 0.0010       | 0.0010       | 0.0075       | 0.0028       | 0.0019        | 0.0018        | 0.0017        | 0.016           | 0.0010            | 0.0012    | 0.006     | 0.005     | 0.0012       | 0.002        | 0.003     | 0.0022    | No                        |

Notes:
All values are in µg/m³, unless otherwise noted.

— = Value not available.

Shaded + Bold = Exceeds 24-hour Screening Threshold

(a) 8-hour.

2/2 Golder Associates Ltd.

## Attachment B-1: Air Quality Screening Tables Table 12: Screening of 24-hour Maximum Predicted Metal Concentrations (Expansion Project)

|            | Selected 24-hour               |              |              |              |              |               |               | Maximum Pr    | edicted 24-hour | Concentration     | (ug/m³)   |           |           |              |              |           |           | Retain for 24-hour     |
|------------|--------------------------------|--------------|--------------|--------------|--------------|---------------|---------------|---------------|-----------------|-------------------|-----------|-----------|-----------|--------------|--------------|-----------|-----------|------------------------|
| Parameter  | Screening<br>Threshold (µg/m³) | Grave Site 2 | Grave Site 3 | Grave Site 4 | Grave Site 5 | Grave Site 27 | Grave Site 28 | Grave Site 29 |                 | Fishing<br>Marker | Muskox    | Muskox    | To Iglu   | Fishing Area | Caching Area | Track     | Caching   | Inhalation Assessment? |
| Aluminum   | _                              | 6.716E-01    | 6.746E-01    | 4.789E+00    | 1.665E+00    | 1.330E+00     | 1.313E+00     | 1.187E+00     | 1.206E+01       | 6.529E-01         | 7.930E-01 | 4.064E+00 | 2.526E+00 | 7.624E-01    | 8.952E-01    | 1.961E+00 | 1.388E+00 | No                     |
| Antimony   | 25                             | 3.799E-05    | 3.816E-05    | 2.709E-04    | 9.415E-05    | 7.520E-05     | 7.427E-05     | 6.712E-05     | 6.823E-04       | 3.693E-05         | 4.485E-05 | 2.299E-04 | 1.429E-04 | 4.312E-05    | 5.064E-05    | 1.109E-04 | 7.853E-05 | No                     |
| Arsenic    | 0.015 <sup>(a)</sup>           | 1.077E-03    | 1.082E-03    | 7.682E-03    | 2.670E-03    | 2.133E-03     | 2.106E-03     | 1.903E-03     | 1.935E-02       | 1.047E-03         | 1.272E-03 | 6.519E-03 | 4.051E-03 | 1.223E-03    | 1.436E-03    | 3.145E-03 | 2.227E-03 | Yes                    |
| Barium     | 10                             | 3.793E-03    | 3.811E-03    | 2.705E-02    | 9.403E-03    | 7.510E-03     | 7.417E-03     | 6.703E-03     | 6.813E-02       | 3.688E-03         | 4.479E-03 | 2.296E-02 | 1.427E-02 | 4.306E-03    | 5.057E-03    | 1.108E-02 | 7.843E-03 | No                     |
| Beryllium  | 0.01                           | 7.061E-06    | 7.093E-06    | 5.035E-05    | 1.750E-05    | 1.398E-05     | 1.380E-05     | 1.248E-05     | 1.268E-04       | 6.864E-06         | 8.338E-06 | 4.273E-05 | 2.655E-05 | 8.015E-06    | 9.412E-06    | 2.062E-05 | 1.460E-05 | No                     |
| Bismuth    | _                              | 1.940E-06    | 1.949E-06    | 1.384E-05    | 4.809E-06    | 3.841E-06     | 3.793E-06     | 3.428E-06     | 3.485E-05       | 1.886E-06         | 2.291E-06 | 1.174E-05 | 7.297E-06 | 2.203E-06    | 2.586E-06    | 5.665E-06 | 4.011E-06 | No                     |
| Cadmium    | 0.025                          | 2.582E-06    | 2.594E-06    | 1.841E-05    | 6.401E-06    | 5.112E-06     | 5.049E-06     | 4.563E-06     | 4.638E-05       | 2.510E-06         | 3.049E-06 | 1.563E-05 | 9.712E-06 | 2.931E-06    | 3.442E-06    | 7.540E-06 | 5.339E-06 | No                     |
| Calcium    | _                              | 3.834E-01    | 3.852E-01    | 2.734E+00    | 9.504E-01    | 7.591E-01     | 7.497E-01     | 6.775E-01     | 6.887E+00       | 3.728E-01         | 4.528E-01 | 2.320E+00 | 1.442E+00 | 4.353E-01    | 5.111E-01    | 1.120E+00 | 7.927E-01 | No                     |
| Chromium   | 0.1                            | 1.613E-03    | 1.621E-03    | 1.150E-02    | 3.999E-03    | 3.194E-03     | 3.154E-03     | 2.851E-03     | 2.898E-02       | 1.568E-03         | 1.905E-03 | 9.763E-03 | 6.067E-03 | 1.831E-03    | 2.151E-03    | 4.711E-03 | 3.335E-03 | No                     |
| Cobalt     | 0.1                            | 2.599E-04    | 2.611E-04    | 1.854E-03    | 6.443E-04    | 5.146E-04     | 5.082E-04     | 4.593E-04     | 4.669E-03       | 2.527E-04         | 3.069E-04 | 1.573E-03 | 9.775E-04 | 2.951E-04    | 3.465E-04    | 7.590E-04 | 5.374E-04 | No                     |
| Copper     | 50                             | 6.876E-04    | 6.907E-04    | 4.903E-03    | 1.704E-03    | 1.361E-03     | 1.344E-03     | 1.215E-03     | 1.235E-02       | 6.684E-04         | 8.119E-04 | 4.161E-03 | 2.586E-03 | 7.805E-04    | 9.165E-04    | 2.008E-03 | 1.421E-03 | No                     |
| Gold       | _                              | 7.512E-07    | 7.546E-07    | 5.357E-06    | 1.862E-06    | 1.487E-06     | 1.469E-06     | 1.327E-06     | 1.349E-05       | 7.303E-07         | 8.870E-07 | 4.546E-06 | 2.825E-06 | 8.527E-07    | 1.001E-06    | 2.193E-06 | 1.553E-06 | No                     |
| Iron       | 4                              | 7.374E-01    | 7.407E-01    | 5.258E+00    | 1.828E+00    | 1.460E+00     | 1.442E+00     | 1.303E+00     | 1.324E+01       | 7.169E-01         | 8.707E-01 | 4.462E+00 | 2.773E+00 | 8.371E-01    | 9.829E-01    | 2.153E+00 | 1.524E+00 | Yes                    |
| Lead       | 0.5                            | 1.159E-04    | 1.164E-04    | 8.263E-04    | 2.872E-04    | 2.294E-04     | 2.265E-04     | 2.047E-04     | 2.081E-03       | 1.126E-04         | 1.368E-04 | 7.012E-04 | 4.358E-04 | 1.315E-04    | 1.545E-04    | 3.383E-04 | 2.395E-04 | No                     |
| Lithium    | 20                             | 3.136E-04    | 3.150E-04    | 2.236E-03    | 7.774E-04    | 6.209E-04     | 6.132E-04     | 5.542E-04     | 5.633E-03       | 3.049E-04         | 3.703E-04 | 1.898E-03 | 1.180E-03 | 3.560E-04    | 4.181E-04    | 9.158E-04 | 6.484E-04 | No                     |
| Magnesium  | _                              | 2.034E-01    | 2.043E-01    | 1.450E+00    | 5.041E-01    | 4.027E-01     | 3.977E-01     | 3.594E-01     | 3.653E+00       | 1.977E-01         | 2.402E-01 | 1.231E+00 | 7.649E-01 | 2.309E-01    | 2.711E-01    | 5.939E-01 | 4.205E-01 | No                     |
| Manganese  | 0.1                            | 7.645E-03    | 7.680E-03    | 5.452E-02    | 1.895E-02    | 1.514E-02     | 1.495E-02     | 1.351E-02     | 1.373E-01       | 7.433E-03         | 9.028E-03 | 4.627E-02 | 2.875E-02 | 8.679E-03    | 1.019E-02    | 2.232E-02 | 1.581E-02 | Yes                    |
| Molybdenum | 120                            | 1.164E-05    | 1.169E-05    | 8.300E-05    | 2.885E-05    | 2.304E-05     | 2.276E-05     | 2.057E-05     | 2.091E-04       | 1.132E-05         | 1.374E-05 | 7.044E-05 | 4.377E-05 | 1.321E-05    | 1.552E-05    | 3.399E-05 | 2.406E-05 | No                     |
| Nickel     | 0.06 <sup>(a)</sup>            | 6.743E-04    | 6.774E-04    | 4.809E-03    | 1.671E-03    | 1.335E-03     | 1.318E-03     | 1.192E-03     | 1.211E-02       | 6.556E-04         | 7.963E-04 | 4.081E-03 | 2.536E-03 | 7.655E-04    | 8.989E-04    | 1.969E-03 | 1.394E-03 | No                     |
| Potassium  | _                              | 1.287E-01    | 1.293E-01    | 9.177E-01    | 3.190E-01    | 2.548E-01     | 2.516E-01     | 2.274E-01     | 2.311E+00       | 1.251E-01         | 1.520E-01 | 7.788E-01 | 4.840E-01 | 1.461E-01    | 1.715E-01    | 3.758E-01 | 2.661E-01 | No                     |
| Selenium   | 10                             | 1.161E-05    | 1.166E-05    | 8.279E-05    | 2.878E-05    | 2.299E-05     | 2.270E-05     | 2.052E-05     | 2.085E-04       | 1.129E-05         | 1.371E-05 | 7.026E-05 | 4.367E-05 | 1.318E-05    | 1.548E-05    | 3.390E-05 | 2.400E-05 | No                     |
| Silver     | 1                              | 2.857E-06    | 2.870E-06    | 2.037E-05    | 7.081E-06    | 5.656E-06     | 5.586E-06     | 5.048E-06     | 5.132E-05       | 2.778E-06         | 3.374E-06 | 1.729E-05 | 1.074E-05 | 3.243E-06    | 3.808E-06    | 8.342E-06 | 5.907E-06 | No                     |
| Sodium     | _                              | 1.537E-01    | 1.544E-01    | 1.096E+00    | 3.810E-01    | 3.043E-01     | 3.005E-01     | 2.716E-01     | 2.761E+00       | 1.494E-01         | 1.815E-01 | 9.302E-01 | 5.781E-01 | 1.745E-01    | 2.049E-01    | 4.488E-01 | 3.178E-01 | No                     |
| Strontium  | 120                            | 2.054E-03    | 2.063E-03    | 1.465E-02    | 5.091E-03    | 4.066E-03     | 4.016E-03     | 3.629E-03     | 3.689E-02       | 1.997E-03         | 2.425E-03 | 1.243E-02 | 7.725E-03 | 2.332E-03    | 2.738E-03    | 5.998E-03 | 4.247E-03 | No                     |
| Thallium   | _                              | 2.966E-06    | 2.980E-06    | 2.115E-05    | 7.352E-06    | 5.873E-06     | 5.800E-06     | 5.241E-06     | 5.328E-05       | 2.884E-06         | 3.503E-06 | 1.795E-05 | 1.116E-05 | 3.367E-06    | 3.954E-06    | 8.662E-06 | 6.133E-06 | No                     |
| Tin        | 10                             | 1.046E-05    | 1.050E-05    | 7.457E-05    | 2.592E-05    | 2.070E-05     | 2.045E-05     | 1.848E-05     | 1.878E-04       | 1.017E-05         | 1.235E-05 | 6.328E-05 | 3.933E-05 | 1.187E-05    | 1.394E-05    | 3.053E-05 | 2.162E-05 | No                     |
| Titanium   | 120                            | 3.382E-02    | 3.397E-02    | 2.412E-01    | 8.382E-02    | 6.695E-02     | 6.612E-02     | 5.975E-02     | 6.074E-01       | 3.288E-02         | 3.993E-02 | 2.047E-01 | 1.272E-01 | 3.839E-02    | 4.508E-02    | 9.875E-02 | 6.991E-02 | No                     |
| Uranium    | 0.1                            | 9.436E-06    | 9.479E-06    | 6.729E-05    | 2.339E-05    | 1.868E-05     | 1.845E-05     | 1.667E-05     | 1.695E-04       | 9.174E-06         | 1.114E-05 | 5.711E-05 | 3.549E-05 | 1.071E-05    | 1.258E-05    | 2.755E-05 | 1.951E-05 | No                     |
| Vanadium   | 1                              | 1.244E-03    | 1.249E-03    | 8.868E-03    | 3.082E-03    | 2.462E-03     | 2.431E-03     | 2.197E-03     | 2.234E-02       | 1.209E-03         | 1.468E-03 | 7.526E-03 | 4.677E-03 | 1.412E-03    | 1.658E-03    | 3.631E-03 | 2.571E-03 | No                     |
| Yttrium    | _                              | 9.179E-05    | 9.220E-05    | 6.545E-04    | 2.275E-04    | 1.817E-04     | 1.795E-04     | 1.622E-04     | 1.649E-03       | 8.923E-05         | 1.084E-04 | 5.555E-04 | 3.452E-04 | 1.042E-04    | 1.224E-04    | 2.680E-04 | 1.898E-04 | No                     |
| Zinc       | 120                            | 9.709E-04    | 9.753E-04    | 6.924E-03    | 2.407E-03    | 1.922E-03     | 1.898E-03     | 1.716E-03     | 1.744E-02       | 9.439E-04         | 1.146E-03 | 5.876E-03 | 3.651E-03 | 1.102E-03    | 1.294E-03    | 2.835E-03 | 2.007E-03 | No                     |

1/1

All values are in µg/m³, unless otherwise noted.

— = Value not available.

Shaded + Bold = Exceeds 24-hour Screening Threshold

<sup>(a)</sup> 8-hour.

Golder Associates Ltd.

# Attachment B-1: Air Quality Screening Tables Table 13: Annual Metals Screening Thresholds

| Р          | arameter         | NDOE <sup>(a)</sup> | C         | CME NAAQO  | (b)       | MOE <sup>(c)</sup> | ATSDR <sup>(d)</sup> | OEHHA <sup>(e)(f)</sup> | WHO <sup>(g)</sup> | TCEQ <sup>(h)</sup> | Toxicological Endpoints and Derivations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------|------------------|---------------------|-----------|------------|-----------|--------------------|----------------------|-------------------------|--------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                  |                     | Desirable | Acceptable | Tolerable |                    |                      |                         |                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Aluminum   |                  | _                   |           | _          | _         |                    | _                    | —                       |                    | 3 (5)               | TCEQ - health effects for chemical present as particulate matter, PM <sub>10</sub> fraction, for metal and insoluble aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Antimony   |                  | _                   | _         | _          | _         | _                  | _                    | _                       | _                  | 0.3 (0.5)           | TCEQ - health effects for chemical present as particulate matter, PM <sub>10</sub> fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Arsenic    | Non-carcinogenic | l                   |           | _          | _         | l                  | _                    | 0.003<br>(0.015)        | l                  | 0.05 (0.067)        | OEHHA - Based on a LOAEL of 0.23 μg/m³ for decrease in intellectual function and adverse effects on neurobehavioural development in children. An uncertainty factor of 30 was applied; TCEQ - health effects for chemical present as particulate matter, PM <sub>10</sub> fraction, for arsenic inorganic compounds.                                                                                                                                                                                                                                                                                                                                                                                      |
| Alsenic    | Carcinogenic     | _                   | _         | _          | _         | _                  | _                    | 0.003                   | 0.0067             | _                   | OEHHA - Based on the 95% upper confidence limit of cancer incidence predicted from fitting a linear model to human data, adjusted for interaction with smoking. WHO - Derived from lung cancer in human studies. Based on a lifetime risk level of 1:1000000.                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Barium     |                  | _                   |           | _          | _         | _                  | _                    | _                       | _                  | 0.3 (0.5)           | TCEQ - health effects for chemical present as particulate matter, PM <sub>10</sub> fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Beryllium  | Non-carcinogenic | _                   | _         | _          | _         | _                  | _                    | 0.0014<br>(0.007)       | _                  | 0.001<br>(0.002)    | OEHHA - Based on beryllium sensitization and chronic beryllium disease in occupationally exposed humans. A LOAEL of 0.55 µg/m <sup>3</sup> for the above effects was selected. The LOAEL was adjusted for duration and an uncertainty factor of 30 was applied; TCEQ - health effects for chemical present as particulate matter, PM <sub>10</sub> fraction, for beryllium particulate.                                                                                                                                                                                                                                                                                                                   |
|            | Carcinogenic     | _                   |           |            |           | _                  | _                    | 0.0042                  | _                  | _                   | OEHHA - Based on lung cancer in occupationally exposed human males                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Bismuth    | Carolinogerilo   |                     | _         | _          | _         | _                  | _                    | — U.0042                | _                  | 3 (5)               | TCEQ - health effects for chemical present as particulate matter, PM <sub>10</sub> fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Cadmium    | Non-carcinogenic | -                   | _         | _          | _         | 0.001<br>(0.005)   | 0.002 (0.01)         | 0.004 (0.02)            | 0.001<br>(0.005)   | 0.007 (0.01)        | MOE - health; ATSDR - Based on creatinine in the urine; OEHHA - Based on a NOAEL of 1.4 μg/m <sup>3</sup> for kidney and respiratory effects. The NOAEL was adjusted for exposure duration and an uncertainty factor of 30 was applied. WHO - Based on renal effects; TCEQ - health effects for chemical present as particulate matter, PM <sub>10</sub> fraction.                                                                                                                                                                                                                                                                                                                                        |
|            | Carcinogenic     | _                   | _         | _          | _         | _                  | _                    | 0.0002                  | _                  | _                   | OEHHA - Based on human occupational exposures and lung cancer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Calcium    |                  | _                   | _         | _          | _         |                    | _                    | _                       |                    | 1 (2)               | TCEQ - health effects for chemical present as particulate matter, PM <sub>10</sub> fraction, for calcium oxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Chromium   |                  | _                   | 1         |            | _         | 1                  | _                    | _                       | 1                  | 0.027<br>(0.041)    | TCEQ - health effects for chemical present as particulate matter, PM <sub>10</sub> fraction, for chromium (III) compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cobalt     |                  | _                   | _         | _          | _         | _                  | 0.02 (0.1)           | _                       | _                  | 0.013 (0.02)        | ATSDR - Based on a NOAEL of 0.0053 mg/m <sup>3</sup> for pulmonary function effects. The NOAEL was adjusted for duration and an uncertainty factor of 10 was applied; TCEQ - health effects for chemical present as particulate matter, PM <sub>10</sub> fraction.                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Copper     |                  | _                   | _         | _          | _         | _                  | _                    | _                       | _                  | 0.7 (1)             | TCEQ - health effects for chemical present as particulate matter, PM <sub>10</sub> fraction, for copper dusts and mists                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Gold       |                  | _                   | _         | _          | _         | _                  | _                    | _                       | _                  | 1.7 (2.5)           | TCEQ - health effects for chemical present as particulate matter, PM <sub>10</sub> fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Iron       |                  | _                   | _         | _          | _         | _                  | _                    | _                       | _                  | 0.7 (1)             | TCEQ - health effects for chemical present as particulate matter, PM <sub>10</sub> fraction, as soluble iron salts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Lead       | Non-carcinogenic | _                   | _         | _          | _         | 0.04<br>(0.2(i))   | _                    | _                       | 0.1 (0.5)          | _                   | MOE - health; WHO - Based on the concentration of lead in blood. Critical effects occur in adults at 150 to 300 μg/L and include erythrocyte protoporphyrin elevation. Critical effects in children include cognitive deficit, hearing impairment and affected vitamin D metabolism at 100 to 150 μg/L.                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | Carcinogenic     | _                   |           |            | _         | _                  |                      | 0.833                   |                    |                     | OEHHA - Based on kidney tumours in rats exposed to lead via the oral route                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lithium    |                  | _                   | _         | _          | _         | _                  |                      | _                       | _                  | 0.1 (0.2)           | TCEQ - health effects for chemical present as particulate matter, PM <sub>10</sub> fraction, for lithium inorganic compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Magnesium  |                  | _                   | _         | _          |           | _                  | _                    | _                       | _                  | 3 (4)               | TCEQ - health effects for chemical present as particulate matter, PM <sub>10</sub> fraction, magnesium nitrate (as Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Manganese  |                  | ĺ                   | Ι         | _          | _         | I                  | 0.06 (0.3)           | 0.018 (0.09)            | 0.03 (0.15)        | 0.1 (0.2)           | ATSDR - Based on abnormal eye-hand coordination scores in workers. Adjusted for duration and an uncertainty factor of 100 was applied. OEHHA - Based on a benchmark concentration of 72 µg/m³ for impaired neurobehaviour (visual reaction time, eye-hand coordination and hand steadiness). The benchmark concentration was adjusted for duration and an uncertainty factor of 300 was applied. WHO - A NOAEL of 30 µg/m³ for neurotoxic effects was selected as the basis of the WHO threshold. The NOAEL was adjusted for exposure duration and an uncertainty factor of 50 was applied; TCEQ - health effects for chemical present as particulate matter, PM10 fraction, manganese metal & compounds. |
| Molybdenum |                  | _                   | _         | _          | _         |                    | _                    | _                       | _                  | 2 (3)               | TCEQ - health effects for chemical present as particulate matter, PM <sub>10</sub> fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

1/4

Golder Associates Ltd.

|           | Parameter        | NDOE <sup>(a)</sup> | С         | CME NAAQO  | (b)       | MOE <sup>(c)</sup> | ATSDR <sup>(d)</sup> | OEHHA <sup>(e)(f)</sup> | WHO <sup>(g)</sup> | TCEQ <sup>(h)</sup> | Toxicological Endpoints and Derivations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------|------------------|---------------------|-----------|------------|-----------|--------------------|----------------------|-------------------------|--------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                  |                     | Desirable | Acceptable | Tolerable |                    |                      |                         |                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Nickel    | Non-carcinogenic | _                   | _         | _          | _         | 0.004<br>(0.02)    | 0.018 (0.09)         | 0.0028<br>(0.014)       | _                  | 0.04 (0.059)        | MOE - health effects for chemical present as particulate matter, $PM_{10}$ fraction; ATSDR - Based on a NOAEL of 0.03 mg/m³ for chronic active inflammation and lung fibrosis in rats. The LOAEL was adjusted for exposure duration and an uncertainty factor of 30 was applied. OEHHA - Based on a BMDL05 of 30.5 $\mu$ g/m³ for pathological changes in lung, lymph nodes and nasal epithelium, adjusted for exposure duration and an uncertainty factor of 100 was applied; TCEQ - health effects for chemical present as particulate matter, $PM_{10}$ fraction, for nickel metal and compounds. |
|           | Carcinogenic     | _                   | _         | _          | _         | _                  | _                    | 0.0385                  | 0.025              | _                   | OEHHA - Based on a study that demonstrated an increased risk of lung cancer in occupationally-exposed humans. WHO - Based on lung cancer in human studies associated with a lifetime risk of 1: 1000000.                                                                                                                                                                                                                                                                                                                                                                                             |
| Potassium |                  | _                   | _         | _          | _         | _                  | _                    | _                       | _                  | 1 (2)               | TCEQ - health effects for chemical present as particulate matter, PM <sub>10</sub> fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Selenium  |                  | _                   | _         | _          | _         | _                  | _                    | 4 (20)                  | -                  | 0.1 (0.2)           | OEHHA - Based on a NOAEL of 0.015 mg/kg/day. The NOAEL was adjusted with an uncertainty factor of 3 and extrapolated to an inhalation threshold; TCEQ - health effects for chemical present as particulate matter, PM <sub>10</sub> fraction.                                                                                                                                                                                                                                                                                                                                                        |
| Silver    |                  | _                   | _         | _          | _         | _                  | _                    | _                       |                    | 0.007 (0.01)        | TCEQ - health effects for chemical present as particulate matter, PM <sub>10</sub> fraction, silver metal & compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sodium    |                  | _                   | _         | _          | _         | _                  | _                    | _                       |                    | 1 (2)               | TCEQ - health effects for chemical present as particulate matter, PM <sub>10</sub> fraction, for sodium oxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Strontium |                  | _                   | _         | _          | _         | _                  | _                    | _                       |                    | 1 (2)               | TCEQ - health effects for chemical present as particulate matter, PM <sub>10</sub> fraction, strontium & compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Thallium  |                  | _                   | _         | _          | _         | _                  | _                    | _                       |                    | 0.07 (0.1)          | TCEQ - health effects for chemical present as particulate matter, PM <sub>10</sub> fraction, thallium & compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Tin       |                  | _                   | _         |            | _         | _                  | _                    | _                       |                    | 1 (2)               | TCEQ - health effects for chemical present as particulate matter, PM <sub>10</sub> fraction, tin inorganic compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Titanium  |                  | _                   | _         |            | _         | _                  | _                    | _                       |                    | 3 (5)               | TCEQ - health effects for chemical present as particulate matter, PM <sub>10</sub> fraction, titanium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Uranium   |                  | _                   | _         | _          |           | 0.006<br>(0.03)    | 0.02 (0.1)           |                         |                    |                     | MOE - health effects for chemical present as particulate matter, PM <sub>10</sub> fraction; ATSDR - For soluble uranium salts based on renal toxicity in dogs, adjusted for exposure duration and an uncertainty factor of 100 was applied; TCEQ - health effects for chemical present as particulate matter, PM <sub>10</sub> fraction, elemental uranium.                                                                                                                                                                                                                                          |
| Vanadium  |                  | _                   | _         | _          | _         | _                  | 0.02 (0.1)           | _                       | _                  | 1 (2)               | ATSDR - Based on degeneration of respiratory epithelium of the epiglottis in rats. Adjusted for intermittent exposure and an uncertainty factor of 30 was applied; TCEQ - health effects for chemical present as particulate matter, PM <sub>10</sub> fraction, vanadium metals and compounds.                                                                                                                                                                                                                                                                                                       |
| Yttrium   |                  | _                   | _         | _          | _         | _                  | _                    | _                       |                    | 0.7 (1)             | TCEQ - health effects for chemical present as particulate matter, PM <sub>10</sub> fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Zinc      |                  | _                   | _         | _          | _         | _                  | _                    | _                       | _                  | 1 (2)               | TCEQ - health effects for zinc & compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

2/4

| Parameter | NDOE <sup>(a)</sup> | CCME NAAQO <sup>(b)</sup>      | MOE <sup>(c)</sup> | ATSDR <sup>(d)</sup> | OEHHA <sup>(e)(f)</sup> | WHO <sup>(g)</sup> | TCEQ <sup>(h)</sup> | Toxicological Endpoints and Derivations |
|-----------|---------------------|--------------------------------|--------------------|----------------------|-------------------------|--------------------|---------------------|-----------------------------------------|
|           |                     | Desirable Acceptable Tolerable |                    |                      |                         |                    |                     |                                         |

### Notes

All values are in µg/m³, unless otherwise noted.

All guideline values are for non-carcinogens, unless otherwise noted.

The screening levels derived by MOE, ATSDR, CalEPA, and WHO are based on an HQ=1.0 for non-carcinogens. The non-carcinogenic thresholds for metals were divided by 5 to adjust for a final target HQ of 0.2. The original values are provided in brackets.

The screening levels derived by TCEQ are based on an HQ=0.3 for non-carcinogens. These guidelines have been adjusted to a HQ=0.2 for comparison to other guidelines with the following equation: threshold (µg/m³) = TCEQ value x 3.333/5. The original values are provided in brackets.

Chemical-specific inhalation unit risks were used to derive carcinogenic thresholds. An ILCR of 10<sup>-5</sup> was assumed in calculating thresholds from Inhalation Unit Risk factors.

HQ = hazard quotient; ILCR = incremental lifetime cancer risk; LOAEL = Lowest Observed Adverse Effect Level; μg/L = microgram per litre; μg/m³ = microgram per litre; μg/m³ = microgram per litre; μg/m³ = milligram per day; mg/m³ = millig

- = Value not available.

Shaded + Bold = Screening threshold from all other jurisdictions is selected.

- (a) Government of Nunavut Department of Environment (NDOE), Ambient Air Quality Standards. In: Environmental Guideline for Ambient Air Quality (October 2011).
- (b) Canadian Council of Ministers of the Environment (CCME), Canadian national ambient air quality objectives Process and status. In Canadian environmental quality guidelines (1999).
- (c) Ontario Ministry of the Environment (MOE), Ontario's Ambient Air Quality Criteria. Standards Development Branch, MOE. (April, 2012).
- (d) Agency of Toxic Substances and Disease Registry (ATSDR), Minimum Risk Levels (MRLs), October 2015 and supporting toxicological profiles.
- (e) California Office of Environmental Health Hazard Assessment (OEHHA), Air Toxicology and Epidemiology. Acute, 8-hour and Chronic Reference Exposure Levels (January 2014).
- (f) California Office of Environmental Health Hazard Assessment (OEHHA), 2012, Toxicity Criteria Database.
- (9) World Health Organization (WHO), Air Quality Guidelines for Europe. Second Edition. WHO Regional Publications, European Series, No. 91 (2000).
- (h) Texas Commission on Environmental Quality (TCEQ), Interoffice memorandum, Effects Screening Levels (September 2015). Guideline was provided from TCEQ if values were not available from any of the other jurisdications.
- <sup>(i)</sup> 30 days.

3 / 4 Golder Associates Ltd.

## Attachment B-1: Air Quality Screening Tables Table 14: Screening of Annual Predicted Metal Concentrations (Approved Project)

|                      | Selected Annual                |              |              |              |              |               |               | Maximum       | Predicted Annua | l Concentration (µ | ıg/m³)       |             |             |              |              |            |             | Retain for Annual         |
|----------------------|--------------------------------|--------------|--------------|--------------|--------------|---------------|---------------|---------------|-----------------|--------------------|--------------|-------------|-------------|--------------|--------------|------------|-------------|---------------------------|
| Parameter            | Screening<br>Threshold (µg/m³) | Grave Site 2 | Grave Site 3 | Grave Site 4 | Grave Site 5 | Grave Site 27 | Grave Site 28 | Grave Site 29 | Grave Site 30   | Fishing Marker     | Muskox       | Muskox      | To Iglu     | Fishing Area | Caching Area | Track      | Caching     | Inhalation<br>Assessment? |
| Aluminum             | 3                              | 0.258989     | 0.256309     | 0.344894     | 0.358629     | 0.269440      | 0.268263      | 0.266559      | 1.299824        | 0.260760           | 0.265571     | 0.373527    | 0.334537    | 0.261143     | 0.268124     | 0.354055   | 0.298273    | No                        |
| Antimony             | 0.3                            | 0.0000146    | 0.0000145    | 0.0000195    | 0.0000203    | 0.00001524    | 0.0000152     | 0.000015      | 0.0000735       | 0.00001475         | 0.00001502   | 0.0000211   | 0.0000189   | 0.000015     | 0.000015     | 0.000020   | 0.0000169   | No                        |
| Arsenic Carcinogenic | 0.003                          | 0.00041542   | 0.00041112   | 0.0005532    | 0.0005752    | 0.00043219    | 0.00043030    | 0.0004276     | 0.0020849       | 0.00041826         | 0.00042598   | 0.0005991   | 0.0005366   | 0.000419     | 0.0004301    | 0.000568   | 0.0004784   | No                        |
| Barium               | 0.3                            | 0.0014629    | 0.0014478    | 0.0019481    | 0.0020257    | 0.00152194    | 0.00151529    | 0.0015057     | 0.0073421       | 0.00147291         | 0.00150008   | 0.0021099   | 0.0018896   | 0.0014751    | 0.0015145    | 0.002000   | 0.0016848   | No                        |
| Beryllium            | 0.001                          | 0.00000272   | 0.00000269   | 0.0000036    | 0.0000038    | 0.00000283    | 0.00000282    | 0.0000028     | 0.0000137       | 0.00000274         | 0.00000279   | 0.0000039   | 0.0000035   | 0.0000027    | 0.0000028    | 0.000004   | 0.0000031   | No                        |
| 3ismuth              | 3                              | 0.000001     | 0.0000007    | 0.000001     | 0.000001     | 0.0000008     | 0.0000008     | 0.000001      | 0.000004        | 0.0000008          | 0.0000008    | 0.000001    | 0.000001    | 0.00000      | 0.000001     | 0.00000    | 0.000001    | No                        |
| Cadmium Carcinogenic | 0.0002                         | 0.000001     | 0.000001     | 0.00000      | 0.00000      | 0.000001      | 0.000001      | 0.00000       | 0.00000         | 0.000001           | 0.000001     | 0.00000     | 0.00000     | 0.0000       | 0.00000      | 0.0000     | 0.00000     | No                        |
| Calcium              | 1                              | 0.147867     | 0.146336     | 0.19691      | 0.20476      | 0.153834      | 0.153162      | 0.15219       | 0.74212         | 0.148878           | 0.151624     | 0.21326     | 0.19100     | 0.14910      | 0.15308      | 0.2021     | 0.17030     | No                        |
| Chromium             | 0.027                          | 0.000622     | 0.000616     | 0.00083      | 0.00086      | 0.000647      | 0.000644      | 0.00064       | 0.00312         | 0.000626           | 0.000638     | 0.00090     | 0.00080     | 0.0006       | 0.00064      | 0.0009     | 0.00072     | No                        |
| Cobalt               | 0.013                          | 0.00010      | 0.00010      | 0.0001       | 0.00014      | 0.00010       | 0.00010       | 0.0001        | 0.0005          | 0.00010            | 0.00010      | 0.0001      | 0.0001      | 0.0001       | 0.0001       | 0.0001     | 0.0001      | No                        |
| Copper               | 0.7                            | 0.000265     | 0.000262     | 0.00035      | 0.000367     | 0.000276      | 0.000275      | 0.00027       | 0.00133         | 0.000267           | 0.000272     | 0.00038     | 0.00034     | 0.00027      | 0.00027      | 0.00036    | 0.00031     | No                        |
| Gold                 | 1.7                            | 0.00000029   | 0.00000029   | 0.0000004    | 0.00000040   | 0.00000030    | 0.00000030    | 0.0000003     | 0.0000015       | 0.00000029         | 0.00000030   | 0.0000004   | 0.0000004   | 0.0000003    | 0.0000003    | 0.0000004  | 0.0000003   | No                        |
| ron                  | 0.7                            | 0.28435748   | 0.28141443   | 0.3786774    | 0.39375749   | 0.29583251    | 0.29453960    | 0.2926690     | 1.4271437       | 0.28630178         | 0.29158363   | 0.4101146   | 0.3673057   | 0.2867229    | 0.2943868    | 0.3887356  | 0.3274894   | No <sup>(b)</sup>         |
| Lead                 | 0.04 <sup>(a)</sup>            | 0.0000447    | 0.0000442    | 0.000060     | 0.000062     | 0.0000465     | 0.0000463     | 0.000046      | 0.000224        | 0.0000450          | 0.0000458    | 0.000064    | 0.000058    | 0.000045     | 0.000046     | 0.00006    | 0.000051    | No                        |
| _ithium              | 0.1                            | 0.000121     | 0.000120     | 0.00016      | 0.000167     | 0.000126      | 0.000125      | 0.00012       | 0.00061         | 0.000122           | 0.000124     | 0.00017     | 0.00016     | 0.00012      | 0.00013      | 0.00017    | 0.00014     | No                        |
| Magnesium            | 3                              | 0.078436     | 0.077624     | 0.10445      | 0.108612     | 0.081601      | 0.081245      | 0.08073       | 0.39366         | 0.078972           | 0.080429     | 0.11312     | 0.10132     | 0.07909      | 0.08120      | 0.10723    | 0.09033     | No                        |
| Manganese            | 0.018                          | 0.002948     | 0.002918     | 0.00393      | 0.004083     | 0.003067      | 0.003054      | 0.00303       | 0.01480         | 0.002968           | 0.003023     | 0.00425     | 0.00381     | 0.00297      | 0.00305      | 0.00403    | 0.00340     | No                        |
| Molybdenum           | 2                              | 0.000004     | 0.000004     | 0.00001      | 0.00001      | 0.000005      | 0.000005      | 0.00000       | 0.00002         | 0.000005           | 0.000005     | 0.00001     | 0.00001     | 0.0000       | 0.00000      | 0.0000     | 0.00001     | No                        |
| Nickel               | 0.0028                         | 0.0002601    | 0.0002574    | 0.000346     | 0.000360     | 0.0002706     | 0.0002694     | 0.000268      | 0.001305        | 0.0002618          | 0.0002667    | 0.000375    | 0.000336    | 0.000262     | 0.00027      | 0.00036    | 0.000300    | No                        |
| Potassium            | 1                              | 0.0496271    | 0.0491135    | 0.066088     | 0.0687200    | 0.0516298     | 0.0514041     | 0.051078      | 0.249070        | 0.0499664          | 0.0508882    | 0.071575    | 0.064104    | 0.050040     | 0.051377     | 0.067844   | 0.057155    | No                        |
| Selenium             | 0.1                            | 0.000004     | 0.000004     | 0.00001      | 0.00001      | 0.000005      | 0.000005      | 0.00000       | 0.00002         | 0.000005           | 0.000005     | 0.00001     | 0.00001     | 0.0000       | 0.00000      | 0.0000     | 0.00001     | No                        |
| Silver               | 0.007                          | 0.0000011    | 0.0000011    | 0.000001     | 0.000002     | 0.0000011     | 0.0000011     | 0.000001      | 0.000006        | 0.0000011          | 0.0000011    | 0.000002    | 0.000001    | 0.00000      | 0.000001     | 0.00000    | 0.000001    | No                        |
| Sodium               | 1                              | 0.0593       | 0.0587       | 0.0789       | 0.0821       | 0.06167       | 0.0614        | 0.061         | 0.2975          | 0.0597             | 0.0608       | 0.0855      | 0.077       | 0.060        | 0.061        | 0.081      | 0.0683      | No                        |
| Strontium            | 1                              | 0.0007921    | 0.0007839    | 0.0010549    | 0.0010969    | 0.0008241     | 0.0008205     | 0.000815      | 0.0039755       | 0.0007975          | 0.0008123    | 0.001142    | 0.001023    | 0.000799     | 0.000820     | 0.001083   | 0.0009123   | No                        |
| Thallium             | 0.07                           | 0.0000011439 | 0.0000011321 | 0.000001523  | 0.000001584  | 0.0000011901  | 0.0000011849  | 0.000001177   | 0.000005741     | 0.0000011518       | 0.0000011730 | 0.000001650 | 0.000001478 | 0.00000115   | 0.000001184  | 0.00000156 | 0.000001317 | No                        |
| Tin                  | 1                              | 0.000004     | 0.000004     | 0.00001      | 0.00001      | 0.000004      | 0.000004      | 0.00000       | 0.00002         | 0.000004           | 0.000004     | 0.00001     | 0.00001     | 0.00000      | 0.00000      | 0.0000     | 0.00000     | No                        |
| Titanium             | 3                              | 0.013041     | 0.012906     | 0.01737      | 0.01806      | 0.013568      | 0.013508      | 0.01342       | 0.06545         | 0.013131           | 0.013373     | 0.01881     | 0.01685     | 0.0131       | 0.01350      | 0.0178     | 0.01502     | No                        |
| Jranium              | 0.006                          | 0.0000036    | 0.0000036    | 0.000005     | 0.000005     | 0.0000038     | 0.000038      | 0.000004      | 0.000018        | 0.0000037          | 0.0000037    | 0.000005    | 0.000005    | 0.00000      | 0.000004     | 0.00000    | 0.000004    | No                        |
| Vanadium             | 0.02                           | 0.00047959   | 0.00047463   | 0.0006387    | 0.0006641    | 0.00049894    | 0.00049676    | 0.0004936     | 0.0024070       | 0.00048287         | 0.00049178   | 0.0006917   | 0.0006195   | 0.0004836    | 0.0004965    | 0.000656   | 0.0005523   | No                        |
| Yttrium              | 0.7                            | 0.0000354    | 0.0000350    | 0.000047     | 0.000049     | 0.0000368     | 0.0000367     | 0.000036      | 0.000178        | 0.0000356          | 0.0000363    | 0.000051    | 0.000046    | 0.000036     | 0.000037     | 0.00005    | 0.000041    | No                        |
| Zinc                 | 1                              | 0.00037      | 0.00037      | 0.0005       | 0.0005       | 0.00039       | 0.00039       | 0.0004        | 0.0019          | 0.00038            | 0.00038      | 0.0005      | 0.0005      | 0.0004       | 0.0004       | 0.0005     | 0.0004      | No                        |

Notes:

All values are in µg/m³, unless otherwise noted.

— = Value not available.

Shaded + Bold = Exceeds Annual Screening Threshold

(a) 30 days.

4/4 Golder Associates Ltd.

## Table 15: Screening of Annual Predicted Metal Concentrations (Expansion Project)

|                     | Selected Annual                |              |              |              |              |               |               | Maximun       | Predicted Annua | l Concentration (µ | ıg/m³)       |             |             |              |              |            |             | Retain for Annual         |
|---------------------|--------------------------------|--------------|--------------|--------------|--------------|---------------|---------------|---------------|-----------------|--------------------|--------------|-------------|-------------|--------------|--------------|------------|-------------|---------------------------|
| Parameter           | Screening<br>Threshold (µg/m³) | Grave Site 2 | Grave Site 3 | Grave Site 4 | Grave Site 5 | Grave Site 27 | Grave Site 28 | Grave Site 29 | Grave Site 30   | Fishing Marker     | Muskox       | Muskox      | To Iglu     | Fishing Area | Caching Area | Track      | Caching     | Inhalation<br>Assessment? |
| luminum             | 3                              | 0.259466     | 0.257425     | 0.346457     | 0.355781     | 0.270416      | 0.269021      | 0.267322      | 1.485099        | 0.260186           | 0.266668     | 0.384081    | 0.334240    | 0.261213     | 0.267708     | 0.340854   | 0.295867    | No                        |
| ntimony             | 0.3                            | 0.0000147    | 0.0000146    | 0.0000196    | 0.0000201    | 0.00001530    | 0.0000152     | 0.000015      | 0.0000840       | 0.00001472         | 0.00001508   | 0.0000217   | 0.0000189   | 0.000015     | 0.000015     | 0.000019   | 0.0000167   | No                        |
| rsenic Carcinogenic | 0.003                          | 0.00041619   | 0.00041291   | 0.0005557    | 0.0005707    | 0.00043375    | 0.00043151    | 0.0004288     | 0.0023821       | 0.00041734         | 0.00042774   | 0.0006161   | 0.0005361   | 0.000419     | 0.0004294    | 0.000547   | 0.0004746   | No                        |
| arium               | 0.3                            | 0.0014656    | 0.0014541    | 0.0019570    | 0.0020096    | 0.00152745    | 0.00151957    | 0.0015100     | 0.0083886       | 0.00146967         | 0.00150628   | 0.0021695   | 0.0018880   | 0.0014755    | 0.0015122    | 0.001925   | 0.0016712   | No                        |
| eryllium            | 0.001                          | 0.00000273   | 0.00000271   | 0.0000036    | 0.0000037    | 0.00000284    | 0.00000283    | 0.0000028     | 0.0000156       | 0.00000274         | 0.00000280   | 0.0000040   | 0.0000035   | 0.0000027    | 0.0000028    | 0.000004   | 0.0000031   | No                        |
| smuth               | 3                              | 0.000001     | 0.0000007    | 0.000001     | 0.000001     | 0.0000008     | 0.0000008     | 0.000001      | 0.000004        | 0.0000008          | 0.0000008    | 0.000001    | 0.000001    | 0.00000      | 0.000001     | 0.00000    | 0.000001    | No                        |
| admium Carcinogenic | 0.0002                         | 0.000001     | 0.000001     | 0.00000      | 0.00000      | 0.000001      | 0.000001      | 0.00000       | 0.00001         | 0.000001           | 0.000001     | 0.00000     | 0.00000     | 0.0000       | 0.00000      | 0.0000     | 0.00000     | No                        |
| alcium              | 1                              | 0.148139     | 0.146974     | 0.19781      | 0.20313      | 0.154391      | 0.153594      | 0.15262       | 0.84790         | 0.148550           | 0.152251     | 0.21929     | 0.19083     | 0.14914      | 0.15284      | 0.1946     | 0.16892     | No                        |
| hromium             | 0.027                          | 0.000623     | 0.000618     | 0.00083      | 0.00085      | 0.000650      | 0.000646      | 0.00064       | 0.00357         | 0.000625           | 0.000641     | 0.00092     | 0.00080     | 0.0006       | 0.00064      | 0.0008     | 0.00071     | No                        |
| obalt               | 0.001                          | 0.00010      | 0.00010      | 0.0001       | 0.00014      | 0.00010       | 0.00010       | 0.0001        | 0.0006          | 0.00010            | 0.00010      | 0.0001      | 0.0001      | 0.0001       | 0.0001       | 0.0001     | 0.0001      | No                        |
| opper               | 0.7                            | 0.000266     | 0.000264     | 0.00035      | 0.000364     | 0.000277      | 0.000275      | 0.00027       | 0.00152         | 0.000266           | 0.000273     | 0.00039     | 0.00034     | 0.00027      | 0.00027      | 0.00035    | 0.00030     | No                        |
| old                 | 1.7                            | 0.00000029   | 0.00000029   | 0.0000004    | 0.00000040   | 0.00000030    | 0.00000030    | 0.0000003     | 0.0000017       | 0.00000029         | 0.00000030   | 0.0000004   | 0.0000004   | 0.0000003    | 0.0000003    | 0.0000004  | 0.000003    | No                        |
| on                  | 0.7                            | 0.28488118   | 0.28264045   | 0.3803929    | 0.39063050   | 0.29690423    | 0.29537190    | 0.2935066     | 1.6305672       | 0.28567167         | 0.29278912   | 0.4217028   | 0.3669796   | 0.2867989    | 0.2939300    | 0.3742408  | 0.3248481   | No <sup>(b)</sup>         |
| ead                 | 0.04 <sup>(a)</sup>            | 0.0000448    | 0.0000444    | 0.000060     | 0.000061     | 0.0000467     | 0.0000464     | 0.000046      | 0.000256        | 0.0000449          | 0.0000460    | 0.000066    | 0.000058    | 0.000045     | 0.000046     | 0.00006    | 0.000051    | No                        |
| thium               | 0.1                            | 0.000121     | 0.000120     | 0.00016      | 0.000166     | 0.000126      | 0.000126      | 0.00012       | 0.00069         | 0.000122           | 0.000125     | 0.00018     | 0.00016     | 0.00012      | 0.00013      | 0.00016    | 0.00014     | No                        |
| lagnesium           | 3                              | 0.078580     | 0.077962     | 0.10493      | 0.107750     | 0.081897      | 0.081474      | 0.08096       | 0.44977         | 0.078799           | 0.080762     | 0.11632     | 0.10123     | 0.07911      | 0.08108      | 0.10323    | 0.08960     | No                        |
| langanese           | 0.018                          | 0.002954     | 0.002930     | 0.00394      | 0.004050     | 0.003078      | 0.003063      | 0.00304       | 0.01691         | 0.002962           | 0.003036     | 0.00437     | 0.00380     | 0.00297      | 0.00305      | 0.00388    | 0.00337     | No                        |
| lolybdenum          | 0.08                           | 0.000004     | 0.000004     | 0.00001      | 0.00001      | 0.000005      | 0.000005      | 0.00000       | 0.00003         | 0.000005           | 0.000005     | 0.00001     | 0.00001     | 0.0000       | 0.00000      | 0.0000     | 0.00001     | No                        |
| lickel              | 0.0028                         | 0.0002605    | 0.0002585    | 0.000348     | 0.000357     | 0.0002715     | 0.0002701     | 0.000268      | 0.001491        | 0.0002613          | 0.0002678    | 0.000386    | 0.000336    | 0.000262     | 0.00027      | 0.00034    | 0.000297    | No                        |
| otassium            | 1                              | 0.0497185    | 0.0493275    | 0.066388     | 0.0681743    | 0.0518168     | 0.0515494     | 0.051224      | 0.284573        | 0.0498565          | 0.0510986    | 0.073597    | 0.064047    | 0.050053     | 0.051298     | 0.065314   | 0.056694    | No                        |
| elenium             | 0.1                            | 0.000004     | 0.000004     | 0.00001      | 0.00001      | 0.000005      | 0.000005      | 0.00000       | 0.00003         | 0.000004           | 0.000005     | 0.00001     | 0.00001     | 0.0000       | 0.00000      | 0.0000     | 0.00001     | No                        |
| lver                | 0.007                          | 0.0000011    | 0.0000011    | 0.000001     | 0.000002     | 0.0000012     | 0.0000011     | 0.000001      | 0.000006        | 0.0000011          | 0.0000011    | 0.000002    | 0.000001    | 0.00000      | 0.000001     | 0.00000    | 0.000001    | No                        |
| odium               | 1                              | 0.0594       | 0.0589       | 0.0793       | 0.0814       | 0.06189       | 0.0616        | 0.061         | 0.3399          | 0.0596             | 0.0610       | 0.0879      | 0.076       | 0.060        | 0.061        | 0.078      | 0.0677      | No                        |
| trontium            | 1                              | 0.0007936    | 0.0007873    | 0.0010596    | 0.0010882    | 0.0008271     | 0.0008228     | 0.000818      | 0.0045422       | 0.0007958          | 0.0008156    | 0.001175    | 0.001022    | 0.000799     | 0.000819     | 0.001043   | 0.0009049   | No                        |
| nallium             | 0.07                           | 0.0000011460 | 0.0000011370 | 0.000001530  | 0.000001571  | 0.0000011944  | 0.0000011882  | 0.000001181   | 0.000006560     | 0.0000011492       | 0.0000011779 | 0.000001696 | 0.000001476 | 0.00000115   | 0.000001182  | 0.00000151 | 0.000001307 | No                        |
| in                  | 1                              | 0.000004     | 0.000004     | 0.00001      | 0.00001      | 0.000004      | 0.000004      | 0.00000       | 0.00002         | 0.000004           | 0.000004     | 0.00001     | 0.00001     | 0.00000      | 0.00000      | 0.0000     | 0.00000     | No                        |
| tanium              | 3                              | 0.013065     | 0.012963     | 0.01745      | 0.01792      | 0.013617      | 0.013547      | 0.01346       | 0.07478         | 0.013102           | 0.013428     | 0.01934     | 0.01683     | 0.0132       | 0.01348      | 0.0172     | 0.01490     | No                        |
| ranium              | 0.006                          | 0.0000036    | 0.0000036    | 0.000005     | 0.000005     | 0.0000038     | 0.0000038     | 0.000004      | 0.000021        | 0.0000037          | 0.0000037    | 0.000005    | 0.000005    | 0.00000      | 0.000004     | 0.00000    | 0.000004    | No                        |
| anadium             | 0.02                           | 0.00048047   | 0.00047669   | 0.0006416    | 0.0006588    | 0.00050075    | 0.00049817    | 0.0004950     | 0.0027501       | 0.00048181         | 0.00049381   | 0.0007112   | 0.0006189   | 0.0004837    | 0.0004957    | 0.000631   | 0.0005479   | No                        |
| trium               | 0.7                            | 0.0000355    | 0.0000352    | 0.000047     | 0.000049     | 0.0000370     | 0.0000368     | 0.000037      | 0.000203        | 0.0000356          | 0.0000364    | 0.000052    | 0.000046    | 0.000036     | 0.000037     | 0.00005    | 0.000040    | No                        |
| nc                  | 1                              | 0.00038      | 0.00037      | 0.0005       | 0.0005       | 0.00039       | 0.00039       | 0.0004        | 0.0021          | 0.00038            | 0.00039      | 0.0006      | 0.0005      | 0.0004       | 0.0004       | 0.0005     | 0.0004      | No                        |

Notes:

All values are in µg/m³, unless otherwise noted.

— = Value not available.

Shaded + Bold = Exceeds Annual Screening Threshold

(a) 30 days.

(b) Iron was retained for the 24-hour predictions at Grave Site 30; given that the predicted concentrations were higher for the 24-hour modeling period, the 24-hour averaging time was used in the remainder of the RA to assess risks due to iron at this location.

1/1 Golder Associates Ltd. May 2019 19115196-306-RPT-Rev0

**ANNEX B-2** 

Soil Quality

Table 1: Predicted Soil Concentrations

| Chemical   | Baseline Soil<br>Concentration <sup>(a)</sup> (mg/kg) | Approved Project - Dry<br>Deposition Rate <sup>(b)</sup><br>(g/m²/yr) | Approved Project - Wet Deposition Rate (b) (g/m²/yr) | Approved Project -<br>Incremental Soil<br>Concentration <sup>(c)</sup> (mg/kg) | Approved Project -<br>Predicted Soil<br>Concentration <sup>(d)</sup> (mg/kg) | Expansion Project - Dry<br>Deposition Rate <sup>(b)</sup><br>(g/m²/yr) | Expansion Project - Wet Deposition Rate (b) (g/m²/yr) | Expansion Project -<br>Incremental Soil<br>Concentration <sup>(c)</sup> (mg/kg) | Expansion Project -<br>Predicted Soil<br>Concentration <sup>(d)</sup> (mg/kg) |
|------------|-------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Metals     |                                                       |                                                                       |                                                      |                                                                                |                                                                              |                                                                        |                                                       |                                                                                 |                                                                               |
| Aluminum   | 9960                                                  | 7.29E-02                                                              | 1.38E-02                                             | 2.02E+01                                                                       | 9.98E+03                                                                     | 8.98E-01                                                               | 4.05E-02                                              | 2.19E+02                                                                        | 1.02E+04                                                                      |
| Antimony   | 0.10                                                  | 4.12E-06                                                              | 7.81E-07                                             | 1.14E-03                                                                       | 1.01E-01                                                                     | 5.08E-05                                                               | 2.29E-06                                              | 1.24E-02                                                                        | 1.12E-01                                                                      |
| Arsenic    | 13                                                    | 1.17E-04                                                              | 2.21E-05                                             | 3.25E-02                                                                       | 1.29E+01                                                                     | 1.44E-03                                                               | 6.49E-05                                              | 3.51E-01                                                                        | 1.33E+01                                                                      |
| Barium     | 87                                                    | 4.12E-04                                                              | 7.80E-05                                             | 1.14E-01                                                                       | 8.69E+01                                                                     | 5.08E-03                                                               | 2.29E-04                                              | 1.24E+00                                                                        | 8.80E+01                                                                      |
| Beryllium  | 0.54                                                  | 7.67E-07                                                              | 1.45E-07                                             | 2.13E-04                                                                       | 5.40E-01                                                                     | 9.45E-06                                                               | 4.26E-07                                              | 2.30E-03                                                                        | 5.42E-01                                                                      |
| Bismuth    | 0.30                                                  | 2.11E-07                                                              | 3.99E-08                                             | 5.85E-05                                                                       | 3.00E-01                                                                     | 2.60E-06                                                               | 1.17E-07                                              | 6.33E-04                                                                        | 3.01E-01                                                                      |
| Cadmium    | 0.06                                                  | 2.80E-07                                                              | 5.31E-08                                             | 7.78E-05                                                                       | 6.11E-02                                                                     | 3.45E-06                                                               | 1.56E-07                                              | 8.42E-04                                                                        | 6.18E-02                                                                      |
| Calcium    | 3620                                                  | 4.16E-02                                                              | 7.88E-03                                             | 1.16E+01                                                                       | 3.63E+03                                                                     | 5.13E-01                                                               | 2.31E-02                                              | 1.25E+02                                                                        | 3.75E+03                                                                      |
| Chromium   | 140                                                   | 1.75E-04                                                              | 3.32E-05                                             | 4.86E-02                                                                       | 1.40E+02                                                                     | 2.16E-03                                                               | 9.72E-05                                              | 5.26E-01                                                                        | 1.41E+02                                                                      |
| Cobalt     | 12                                                    | 2.82E-05                                                              | 5.34E-06                                             | 7.83E-03                                                                       | 1.16E+01                                                                     | 3.48E-04                                                               | 1.57E-05                                              | 8.48E-02                                                                        | 1.17E+01                                                                      |
| Copper     | 10                                                    | 7.47E-05                                                              | 1.41E-05                                             | 2.07E-02                                                                       | 1.01E+01                                                                     | 9.20E-04                                                               | 4.14E-05                                              | 2.24E-01                                                                        | 1.03E+01                                                                      |
| Gold       | NM                                                    | 8.16E-08                                                              | 1.54E-08                                             | 2.26E-05                                                                       | 2.26E-05                                                                     | 1.00E-06                                                               | 4.53E-08                                              | 2.45E-04                                                                        | 2.45E-04                                                                      |
| Iron       | 21500                                                 | 8.01E-02                                                              | 1.52E-02                                             | 2.22E+01                                                                       | 2.15E+04                                                                     | 9.86E-01                                                               | 4.44E-02                                              | 2.41E+02                                                                        | 2.17E+04                                                                      |
| Lead       | 8                                                     | 1.26E-05                                                              | 2.38E-06                                             | 3.49E-03                                                                       | 7.92E+00                                                                     | 1.55E-04                                                               | 6.98E-06                                              | 3.78E-02                                                                        | 7.96E+00                                                                      |
| Lithium    | 12                                                    | 3.41E-05                                                              | 6.45E-06                                             | 9.45E-03                                                                       | 1.17E+01                                                                     | 4.20E-04                                                               | 1.89E-05                                              | 1.02E-01                                                                        | 1.18E+01                                                                      |
| Magnesium  | 8810                                                  | 2.21E-02                                                              | 4.18E-03                                             | 6.13E+00                                                                       | 8.82E+03                                                                     | 2.72E-01                                                               | 1.23E-02                                              | 6.64E+01                                                                        | 8.88E+03                                                                      |
| Manganese  | 450                                                   | 8.30E-04                                                              | 1.57E-04                                             | 2.30E-01                                                                       | 4.50E+02                                                                     | 1.02E-02                                                               | 4.61E-04                                              | 2.49E+00                                                                        | 4.52E+02                                                                      |
| Molybdenum | 0.51                                                  | 1.26E-06                                                              | 2.39E-07                                             | 3.51E-04                                                                       | 5.10E-01                                                                     | 1.56E-05                                                               | 7.02E-07                                              | 3.80E-03                                                                        | 5.14E-01                                                                      |
| Nickel     | 63                                                    | 7.32E-05                                                              | 1.39E-05                                             | 2.03E-02                                                                       | 6.29E+01                                                                     | 9.02E-04                                                               | 4.06E-05                                              | 2.20E-01                                                                        | 6.31E+01                                                                      |
| Potassium  | 1890                                                  | 1.40E-02                                                              | 2.65E-03                                             | 3.88E+00                                                                       | 1.89E+03                                                                     | 1.72E-01                                                               | 7.76E-03                                              | 4.20E+01                                                                        | 1.93E+03                                                                      |
| Selenium   | 0.20                                                  | 1.26E-06                                                              | 2.39E-07                                             | 3.50E-04                                                                       | 2.00E-01                                                                     | 1.55E-05                                                               | 7.00E-07                                              | 3.79E-03                                                                        | 2.04E-01                                                                      |
| Silver     | 0.10                                                  | 3.10E-07                                                              | 5.87E-08                                             | 8.61E-05                                                                       | 1.00E-01                                                                     | 3.82E-06                                                               | 1.72E-07                                              | 9.32E-04                                                                        | 1.01E-01                                                                      |
| Sodium     | 113                                                   | 1.67E-02                                                              | 3.16E-03                                             | 4.63E+00                                                                       | 1.18E+02                                                                     | 2.06E-01                                                               | 9.26E-03                                              | 5.01E+01                                                                        | 1.63E+02                                                                      |
| Strontium  | 43                                                    | 2.23E-04                                                              | 4.22E-05                                             | 6.19E-02                                                                       | 4.27E+01                                                                     | 2.75E-03                                                               | 1.24E-04                                              | 6.70E-01                                                                        | 4.33E+01                                                                      |
| Thallium   | 0.11                                                  | 3.22E-07                                                              | 6.10E-08                                             | 8.94E-05                                                                       | 1.14E-01                                                                     | 3.97E-06                                                               | 1.79E-07                                              | 9.68E-04                                                                        | 1.15E-01                                                                      |
| Tin        | 2                                                     | 1.14E-06                                                              | 2.15E-07                                             | 3.15E-04                                                                       | 2.00E+00                                                                     | 1.40E-05                                                               | 6.30E-07                                              | 3.41E-03                                                                        | 2.00E+00                                                                      |
| Titanium   | 816                                                   | 3.67E-03                                                              | 6.95E-04                                             | 1.02E+00                                                                       | 8.17E+02                                                                     | 4.52E-02                                                               | 2.04E-03                                              | 1.10E+01                                                                        | 8.27E+02                                                                      |
| Uranium    | 3                                                     | 1.02E-06                                                              | 1.94E-07                                             | 2.84E-04                                                                       | 3.08E+00                                                                     | 1.26E-05                                                               | 5.69E-07                                              | 3.08E-03                                                                        | 3.08E+00                                                                      |
| Vanadium   | 25                                                    | 1.35E-04                                                              | 2.56E-05                                             | 3.75E-02                                                                       | 2.50E+01                                                                     | 1.66E-03                                                               | 7.50E-05                                              | 4.06E-01                                                                        | 2.54E+01                                                                      |
| Yttrium    | NM                                                    | 9.97E-06                                                              | 1.89E-06                                             | 2.77E-03                                                                       | 2.77E-03                                                                     | 1.23E-04                                                               | 5.53E-06                                              | 2.99E-02                                                                        | 2.99E-02                                                                      |
| Zinc       | 41                                                    | 1.05E-04                                                              | 2.00E-05                                             | 2.93E-02                                                                       | 4.14E+01                                                                     | 1.30E-03                                                               | 5.85E-05                                              | 3.17E-01                                                                        | 4.17E+01                                                                      |

## Note:

 $g/m^2/yr = gram per square metre per year; < = less than; <math>\mu g/m^2/s = microgram per square metre per second; mg/kg = milligram per kilogram; NM = not measured; a baseline value for this parameter was not measured, therefore, the predicted soil concentration is equal to the incremental soil concentration.$ 

- (a) Maximum measured baseline soil concentration.
- (b) Maximum dry/wet deposition rate of all receptor locations.
- (c) Maximum incremental soil concentration of all receptor locations.
- (d) Calculated as the sum of the baseline soil concentration and the incremental soil concentration from particulate deposition.

Prepared by: SG

Checked by: AA

1/3 Golder Associates Ltd.

Table 2: Soil Deposition Screening for Human Health

|            |                                                  |                                      | Baseline Soil                                 |                                                           | Approved            | d Project                                                                                                                 |                                                           | Expansio            | n Project                                   |
|------------|--------------------------------------------------|--------------------------------------|-----------------------------------------------|-----------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------|---------------------------------------------|
| Chemical   | CCME SQG <sub>HH</sub> <sup>(a)</sup><br>(mg/kg) | US EPA RSL <sup>(c)</sup><br>(mg/kg) | Concentration <sup>(d)</sup> + 10%<br>(mg/kg) | Predicted Soil<br>Concentration <sup>(e)</sup><br>(mg/kg) | Retained as a COPC? | Rationale                                                                                                                 | Predicted Soil<br>Concentration <sup>(e)</sup><br>(mg/kg) | Retained as a COPC? | Rationale                                   |
| Metals     |                                                  |                                      |                                               |                                                           |                     |                                                                                                                           |                                                           |                     |                                             |
| Aluminum   | NV                                               | 15400                                | 10956                                         | 9980                                                      | No                  | <rsl, <baseline+10%<="" td=""><td>10179</td><td>No</td><td><rsl, <baseline+10%<="" td=""></rsl,></td></rsl,>              | 10179                                                     | No                  | <rsl, <baseline+10%<="" td=""></rsl,>       |
| Antimony   | 20 <sup>(f)</sup>                                | NA                                   | 0.11                                          | 0.10                                                      | No                  | <sqg, <baseline+10%<="" td=""><td>0.11</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>               | 0.11                                                      | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |
| Arsenic    | 12                                               | NA                                   | 14                                            | 13                                                        | No                  | <sqg, <baseline+10%<="" td=""><td>13</td><td>No</td><td>&gt;SQG, <baseline+10%< td=""></baseline+10%<></td></sqg,>        | 13                                                        | No                  | >SQG, <baseline+10%< td=""></baseline+10%<> |
| Barium     | 500                                              | NA                                   | 95                                            | 87                                                        | No                  | <sqg, <baseline+10%<="" td=""><td>88</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>                 | 88                                                        | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |
| Beryllium  | 550 <sup>(g)</sup>                               | NA                                   | 0.6                                           | 0.5                                                       | No                  | <sqg, <baseline+10%<="" td=""><td>0.5</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>                | 0.5                                                       | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |
| Bismuth    | NV                                               | NV                                   | NR                                            | 0.30                                                      | No                  | NV                                                                                                                        | 0.30                                                      | No                  | NV                                          |
| Cadmium    | 14                                               | NA                                   | 0.07                                          | 0.06                                                      | No                  | <sqg, <baseline+10%<="" td=""><td>0.06</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>               | 0.06                                                      | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |
| Calcium    | NV                                               | NV                                   | 3982                                          | 3632                                                      | No                  | <baseline+10%< td=""><td>3745</td><td>No</td><td><baseline+10%< td=""></baseline+10%<></td></baseline+10%<>               | 3745                                                      | No                  | <baseline+10%< td=""></baseline+10%<>       |
| Chromium   | 220                                              | NA                                   | 154                                           | 140                                                       | No                  | >SQG, <baseline+10%< td=""><td>141</td><td>No</td><td>&gt;SQG, <baseline+10%< td=""></baseline+10%<></td></baseline+10%<> | 141                                                       | No                  | >SQG, <baseline+10%< td=""></baseline+10%<> |
| Cobalt     | 50 <sup>(f)</sup>                                | NA                                   | 13                                            | 12                                                        | No                  | <sqg, <baseline+10%<="" td=""><td>12</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>                 | 12                                                        | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |
| Copper     | 1100                                             | NA                                   | 11                                            | 10                                                        | No                  | <sqg, <baseline+10%<="" td=""><td>10</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>                 | 10                                                        | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |
| Gold       | NV                                               | NV                                   | NR                                            | 0.000023                                                  | No                  | NV                                                                                                                        | 0.000245                                                  | No                  | NV                                          |
| Iron       | NV                                               | 11000                                | 23650                                         | 21522                                                     | No                  | <rsl, <baseline+10%<="" td=""><td>21741</td><td>No</td><td>&gt;RSL, <baseline+10%< td=""></baseline+10%<></td></rsl,>     | 21741                                                     | No                  | >RSL, <baseline+10%< td=""></baseline+10%<> |
| Lead       | 140                                              | NA                                   | 9                                             | 8                                                         | No                  | <sqg, <baseline+10%<="" td=""><td>8</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>                  | 8                                                         | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |
| Lithium    | NV                                               | 32                                   | 13                                            | 12                                                        | No                  | <rsl, <baseline+10%<="" td=""><td>12</td><td>No</td><td><rsl, <baseline+10%<="" td=""></rsl,></td></rsl,>                 | 12                                                        | No                  | <rsl, <baseline+10%<="" td=""></rsl,>       |
| Magnesium  | NV                                               | NV                                   | 9691                                          | 8816                                                      | No                  | <baseline+10%< td=""><td>8876</td><td>No</td><td><baseline+10%< td=""></baseline+10%<></td></baseline+10%<>               | 8876                                                      | No                  | <baseline+10%< td=""></baseline+10%<>       |
| Manganese  | NV                                               | 360                                  | 495                                           | 450                                                       | No                  | >RSL, <baseline+10%< td=""><td>452</td><td>No</td><td>&gt;RSL, <baseline+10%< td=""></baseline+10%<></td></baseline+10%<> | 452                                                       | No                  | >RSL, <baseline+10%< td=""></baseline+10%<> |
| Molybdenum | 10 <sup>(f)</sup>                                | NA                                   | 0.56                                          | 0.51                                                      | No                  | <sqg, <baseline+10%<="" td=""><td>0.51</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>               | 0.51                                                      | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |
| Nickel     | 50 <sup>(h)</sup>                                | NA                                   | 69                                            | 63                                                        | No                  | <sqg, <baseline+10%<="" td=""><td>63</td><td>No</td><td>&gt;SQG, <baseline+10%< td=""></baseline+10%<></td></sqg,>        | 63                                                        | No                  | >SQG, <baseline+10%< td=""></baseline+10%<> |
| Potassium  | NV                                               | NV                                   | 2079                                          | 1894                                                      | No                  | <baseline+10%< td=""><td>1932</td><td>No</td><td><baseline+10%< td=""></baseline+10%<></td></baseline+10%<>               | 1932                                                      | No                  | <baseline+10%< td=""></baseline+10%<>       |
| Selenium   | 80                                               | NA                                   | 0.22                                          | 0.20                                                      | No                  | <sqg, <baseline+10%<="" td=""><td>0.20</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>               | 0.20                                                      | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |
| Silver     | 20 <sup>(f)</sup>                                | NA                                   | 0.11                                          | 0.10                                                      | No                  | <sqg, <baseline+10%<="" td=""><td>0.10</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>               | 0.10                                                      | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |
| Sodium     | NV                                               | NV                                   | 124                                           | 118                                                       | No                  | <baseline+10%< td=""><td>163</td><td>No (see text)</td><td>&gt;Baseline+10%</td></baseline+10%<>                          | 163                                                       | No (see text)       | >Baseline+10%                               |
| Strontium  | NV                                               | 9400                                 | 47                                            | 43                                                        | No                  | <rsl, <baseline+10%<="" td=""><td>43</td><td>No</td><td><rsl, <baseline+10%<="" td=""></rsl,></td></rsl,>                 | 43                                                        | No                  | <rsl, <baseline+10%<="" td=""></rsl,>       |
| Thallium   | 1                                                | NA                                   | 0.13                                          | 0.11                                                      | No                  | <sqg, <baseline+10%<="" td=""><td>0.11</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>               | 0.11                                                      | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |
| Tin        | 50 <sup>(f)</sup>                                | NA                                   | 2                                             | 2                                                         | No                  | <sqg, <baseline+10%<="" td=""><td>2</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>                  | 2                                                         | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |
| Titanium   | NV                                               | NV                                   | 898                                           | 817                                                       | No                  | <baseline+10%< td=""><td>827</td><td>No</td><td><baseline+10%< td=""></baseline+10%<></td></baseline+10%<>                | 827                                                       | No                  | <baseline+10%< td=""></baseline+10%<>       |
| Uranium    | 23                                               | NA                                   | 3                                             | 3                                                         | No                  | <sqg, <baseline+10%<="" td=""><td>3</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>                  | 3                                                         | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |
| Vanadium   | 130 <sup>(f)</sup>                               | NA                                   | 28                                            | 25                                                        | No                  | <sqg, <baseline+10%<="" td=""><td>25</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>                 | 25                                                        | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |
| Yttrium    | NV                                               | NV                                   | NR                                            | 0.0028                                                    | No                  | NV                                                                                                                        | 0.0299                                                    | No                  | NV                                          |
| Zinc       | 10,000                                           | NA                                   | 46                                            | 41                                                        | No                  | <sqg, <baseline+10%<="" td=""><td>42</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>                 | 42                                                        | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |

## Note:

COPC = contaminant of potential concern; > = greater than; < = less than; mg/kg = milligram per kilogram; NA = not applicable; a soil guideline/standard is available from CCME or MOE, therefore screening against US EPA RSLs was not required; NR = not reported; a baseline value for this parameter was not available, therefore the predicted soil concentration is equal to the incremental soil concentration; NV = no value.

RSLs were adjusted to reflect a hazard quotient of 0.2 (multiplied by 0.2).

- (d) Maximum measured baseline soil concentration.
- (e) Calculated as the sum of the baseline soil concentration and the incremental soil concentration from particulate deposition.
- (f) Overall Residential/Parkland guideline (1991); CCME factsheet unavailable.
- (g) Based on an incremental lifetime cancer risk of 1 in 1,000,000.
- (h) Overall Residential/Parkland guideline (1999); only a SQG<sub>E</sub> was derived (no value for SQG<sub>HH</sub>).

2 / 3 Golder Associates Ltd.

<sup>(</sup>a) Canadian Council of Ministers of the Environment (CCME). Canadian Soil Quality Guidelines (SQG) for the Protection of Environmental and Human Health. Residential land use. Parameter-specific Factsheets: Arsenic (1997); Barium (2013); Beryllium (2015); Cadmium (1999); Chromium: total chromium (1997); Copper (1999); Lead (1999); Nickel (2015); Selenium (2009); Thallium (1999); Uranium (2007); Vanadium (1997); Cinc (2018).

<sup>(</sup>c) United States Environmental Protection Agency (US EPA). 2015. Regional Screening Levels (RSL) for industrial soils. US EPA Region 9. Last updated November 2015. Accessed 08 April 2016 from http://www.epa.gov/region9/superfund/prg/.

**Table 3: Soil Deposition Screening for Wildlife** 

|            |                                                 |                                         | Baseline Soil                                 |                                                           | Approved            | l Project                                                                                                                 |                                                           | Expansion           | n Project                                   |
|------------|-------------------------------------------------|-----------------------------------------|-----------------------------------------------|-----------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------|---------------------------------------------|
| Chemical   | CCME SQG <sub>E</sub> <sup>(a)</sup><br>(mg/kg) | US EPA EcoSSL <sup>(c)</sup><br>(mg/kg) | Concentration <sup>(d)</sup> + 10%<br>(mg/kg) | Predicted Soil<br>Concentration <sup>(e)</sup><br>(mg/kg) | Retained as a COPC? | Rationale                                                                                                                 | Predicted Soil<br>Concentration <sup>(e)</sup><br>(mg/kg) | Retained as a COPC? | Rationale                                   |
| Metals     |                                                 |                                         |                                               |                                                           |                     |                                                                                                                           |                                                           |                     |                                             |
| Aluminum   | NV                                              | Narrative <sup>(i)</sup>                | 10956                                         | 9980                                                      | No                  | <baseline+10%< td=""><td>10179</td><td>No</td><td><baseline+10%< td=""></baseline+10%<></td></baseline+10%<>              | 10179                                                     | No                  | <baseline+10%< td=""></baseline+10%<>       |
| Antimony   | 20 <sup>(f)</sup>                               | NA                                      | 0.11                                          | 0.10                                                      | No                  | <sqg, <baseline+10%<="" td=""><td>0.11</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>               | 0.11                                                      | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |
| Arsenic    | 17                                              | NA                                      | 14                                            | 13                                                        | No                  | <sqg, <baseline+10%<="" td=""><td>13</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>                 | 13                                                        | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |
| Barium     | 500 <sup>(g)</sup>                              | NA                                      | 95                                            | 87                                                        | No                  | <sqg, <baseline+10%<="" td=""><td>88</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>                 | 88                                                        | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |
| Beryllium  | 550 <sup>(h)</sup>                              | NA                                      | 0.6                                           | 0.5                                                       | No                  | <sqg, <baseline+10%<="" td=""><td>0.5</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>                | 0.5                                                       | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |
| Bismuth    | NV                                              | NV                                      | NR                                            | 0.30                                                      | No                  | NV                                                                                                                        | 0.30                                                      | No                  | NV                                          |
| Cadmium    | 10                                              | NA                                      | 0.07                                          | 0.06                                                      | No                  | <sqg, <baseline+10%<="" td=""><td>0.06</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>               | 0.06                                                      | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |
| Calcium    | NV                                              | NV                                      | 3982                                          | 3632                                                      | No                  | <baseline+10%< td=""><td>3745</td><td>No</td><td><baseline+10%< td=""></baseline+10%<></td></baseline+10%<>               | 3745                                                      | No                  | <baseline+10%< td=""></baseline+10%<>       |
| Chromium   | 64                                              | NA                                      | 154                                           | 140                                                       | No                  | >SQG, <baseline+10%< td=""><td>141</td><td>No</td><td>&gt;SQG, <baseline+10%< td=""></baseline+10%<></td></baseline+10%<> | 141                                                       | No                  | >SQG, <baseline+10%< td=""></baseline+10%<> |
| Cobalt     | 50 <sup>(f)</sup>                               | NA                                      | 13                                            | 12                                                        | No                  | <sqg, <baseline+10%<="" td=""><td>12</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>                 | 12                                                        | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |
| Copper     | 63                                              | NA                                      | 11                                            | 10                                                        | No                  | <sqg, <baseline+10%<="" td=""><td>10</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>                 | 10                                                        | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |
| Gold       | NV                                              | NV                                      | NR                                            | 0.000023                                                  | No                  | NV                                                                                                                        | 0.000245                                                  | No                  | NV                                          |
| Iron       | NV                                              | NV                                      | 23650                                         | 21522                                                     | No                  | <baseline+10%< td=""><td>21741</td><td>No</td><td><baseline+10%< td=""></baseline+10%<></td></baseline+10%<>              | 21741                                                     | No                  | <baseline+10%< td=""></baseline+10%<>       |
| Lead       | 300                                             | NA                                      | 9                                             | 8                                                         | No                  | <sqg, <baseline+10%<="" td=""><td>8</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>                  | 8                                                         | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |
| Lithium    | NV                                              | NV                                      | 13                                            | 12                                                        | No                  | <baseline+10%< td=""><td>12</td><td>No</td><td><baseline+10%< td=""></baseline+10%<></td></baseline+10%<>                 | 12                                                        | No                  | <baseline+10%< td=""></baseline+10%<>       |
| Magnesium  | NV                                              | NV                                      | 9691                                          | 8816                                                      | No                  | <baseline+10%< td=""><td>8876</td><td>No</td><td><baseline+10%< td=""></baseline+10%<></td></baseline+10%<>               | 8876                                                      | No                  | <baseline+10%< td=""></baseline+10%<>       |
| Manganese  | NV                                              | NV                                      | 495                                           | 450                                                       | No                  | <baseline+10%< td=""><td>452</td><td>No</td><td><baseline+10%< td=""></baseline+10%<></td></baseline+10%<>                | 452                                                       | No                  | <baseline+10%< td=""></baseline+10%<>       |
| Molybdenum | 10 <sup>(f)</sup>                               | NA                                      | 0.56                                          | 0.51                                                      | No                  | <sqg, <baseline+10%<="" td=""><td>0.51</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>               | 0.51                                                      | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |
| Nickel     | 50                                              | NA                                      | 69                                            | 63                                                        | No                  | >SQG, <baseline+10%< td=""><td>63</td><td>No</td><td>&gt;SQG, <baseline+10%< td=""></baseline+10%<></td></baseline+10%<>  | 63                                                        | No                  | >SQG, <baseline+10%< td=""></baseline+10%<> |
| Potassium  | NV                                              | NV                                      | 2079                                          | 1894                                                      | No                  | <baseline+10%< td=""><td>1932</td><td>No</td><td><baseline+10%< td=""></baseline+10%<></td></baseline+10%<>               | 1932                                                      | No                  | <baseline+10%< td=""></baseline+10%<>       |
| Selenium   | 1                                               | NA                                      | 0.22                                          | 0.20                                                      | No                  | <sqg, <baseline+10%<="" td=""><td>0.20</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>               | 0.20                                                      | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |
| Silver     | 20 <sup>(f)</sup>                               | NA                                      | 0.11                                          | 0.10                                                      | No                  | <sqg, <baseline+10%<="" td=""><td>0.10</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>               | 0.10                                                      | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |
| Sodium     | NV                                              | NV                                      | 124                                           | 118                                                       | No                  | <baseline+10%< td=""><td>163</td><td>No (see text)</td><td>&gt;Baseline+10%</td></baseline+10%<>                          | 163                                                       | No (see text)       | >Baseline+10%                               |
| Strontium  | NV                                              | NV                                      | 47                                            | 43                                                        | No                  | <baseline+10%< td=""><td>43</td><td>No</td><td><baseline+10%< td=""></baseline+10%<></td></baseline+10%<>                 | 43                                                        | No                  | <baseline+10%< td=""></baseline+10%<>       |
| Thallium   | 1.4                                             | NA                                      | 0.13                                          | 0.11                                                      | No                  | <sqg, <baseline+10%<="" td=""><td>0.11</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>               | 0.11                                                      | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |
| Tin        | 50 <sup>(f)</sup>                               | NA                                      | 2                                             | 2                                                         | No                  | <sqg, <baseline+10%<="" td=""><td>2</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>                  | 2                                                         | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |
| Titanium   | NV                                              | NV                                      | 898                                           | 817                                                       | No                  | <baseline+10%< td=""><td>827</td><td>No</td><td><baseline+10%< td=""></baseline+10%<></td></baseline+10%<>                | 827                                                       | No                  | <baseline+10%< td=""></baseline+10%<>       |
| Uranium    | 500                                             | NA                                      | 3                                             | 3                                                         | No                  | <sqg, <baseline+10%<="" td=""><td>3</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>                  | 3                                                         | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |
| Vanadium   | 130                                             | NA                                      | 28                                            | 25                                                        | No                  | <sqg, <baseline+10%<="" td=""><td>25</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>                 | 25                                                        | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |
| Yttrium    | NV                                              | NV                                      | NR                                            | 0.0028                                                    | No                  | NV                                                                                                                        | 0.0299                                                    | No                  | NV                                          |
| Zinc       | 250                                             | NA                                      | 46                                            | 41                                                        | No                  | <sqg, <baseline+10%<="" td=""><td>42</td><td>No</td><td><sqg, <baseline+10%<="" td=""></sqg,></td></sqg,>                 | 42                                                        | No                  | <sqg, <baseline+10%<="" td=""></sqg,>       |

COPC = contaminant of potential concern; > = greater than; < = less than; mg/kg = milligram per kilogram; NA = not applicable; a soil guideline/standard is available from CCME or MOE, therefore screening against US EPA RSLs was not required; NR = not reported; a baseline value for this parameter was not available, therefore the predicted soil concentration is equal to the incremental soil concentration; NV = no value.

(c) United States Environmental Protection Agency (US EPA). 2015. Ecological Soil Screening Levels (EcoSSLs). Parameter-specific Reports: Aluminum (2003);

RSLs were adjusted to reflect a hazard quotient of 0.2 (multiplied by 0.2).

- (d) Maximum measured baseline soil concentration.
- (e) Calculated as the sum of the baseline soil concentration and the incremental soil concentration from particulate deposition.
- (f) Overall Residential/Parkland guideline (1991); CCME factsheet unavailable.
- (g) Overall Residential/Parkland guideline (1999); only a SQG<sub>HH</sub> was derived (no value for SQG<sub>E</sub>).
- (h) Based on an incremental lifetime cancer risk of 1 in 1,000,000.
- (i) An EcoSSL is only required for soils where pH is less than 5.5 (pH is >5.5 at the site).

3 / 3 Golder Associates Ltd.

May 2019 19115196-306-RPT-Rev0

**ANNEX B-3** 

Water Quality

May 2019 Attachment B-3: Water Quality Screening Tables 1896307 (3500)

Table 1: Surface Water Quality Screening for Human Health - Off-Site Waterbodies (Approved Project)

| Fable 1: Surface Water Quality Sci     |        |            |       | protection of:          | , , , , , , , , , , , , , , , , , , , | Baseline    | Levels + 10%    |                 |                      | Predicted Maximum To                              | otal Concentrations    |                       |                    |                      |
|----------------------------------------|--------|------------|-------|-------------------------|---------------------------------------|-------------|-----------------|-----------------|----------------------|---------------------------------------------------|------------------------|-----------------------|--------------------|----------------------|
| Parameter                              | Unit   | Health Ca  | anada | US EPA RSL for          | Mammoth Lake                          | A15 and A12 | Downstream Node | Downstream Node |                      | Mammoth La                                        | ke Proper              |                       | Retained as a COC? | Rationale            |
|                                        |        | Drinking \ | Water | Tapwater <sup>(1)</sup> |                                       |             | 1               | 2               | Operational          | Closure (January 2022 to<br>June 2029, inclusive) | Post-Closure Year<br>1 | Long Term             |                    |                      |
| Conventional Parameters                | , ,    |            |       | •                       | · ·                                   |             | •               | •               |                      |                                                   |                        |                       | •                  |                      |
| Total alkalinity, as CaCO3             | mg/L   | -          | -     | -                       | 6.4                                   | 6.5         | 7.8             | 7.8             | 16 <sup>(B)</sup>    | 21 <sup>(B)</sup>                                 | 14 <sup>(B)</sup>      | 7.4 <sup>(B)</sup>    | No                 | > B, NR              |
| Total dissolved solids                 | mg/L   | 500        | AO    | -                       | 24                                    | 20          | 22              | 22              | 57 <sup>(B)</sup>    | 85 <sup>(B)</sup>                                 | 56 <sup>(B)</sup>      | 31 <sup>(B)</sup>     | No                 | > B, < G             |
| Major lons                             |        |            |       |                         |                                       |             |                 |                 |                      |                                                   |                        |                       |                    |                      |
| Calcium                                | mg/L   | NR         | -     | -                       | 2.6                                   | 2.8         | 2.2             | 2.2             | 6.6 <sup>(B)</sup>   | 11 <sup>(B)</sup>                                 | 7.7 <sup>(B)</sup>     | 4.5 <sup>(B)</sup>    | No                 | > B, NR              |
| Magnesium                              | mg/L   | NR         | -     | -                       | 0.87                                  | 0.95        | 0.94            | 0.94            | 2.0 <sup>(B)</sup>   | 3.2 <sup>(B)</sup>                                | 2.3 <sup>(B)</sup>     | 1.3 <sup>(B)</sup>    | No                 | > B, NR              |
| Potassium                              | mg/L   | -          | -     | -                       | 0.58                                  | 0.63        | 0.37            | 0.65            | 3.7 <sup>(B)</sup>   | 7.5 <sup>(B)</sup>                                | 5.6 <sup>(B)</sup>     | 3.6 <sup>(B)</sup>    | No                 | > B, NR              |
| Sodium                                 | mg/L   | 200        | AO    | -                       | 0.61                                  | 0.64        | 0.80            | 0.80            | 5.4 <sup>(B)</sup>   | 6.1 <sup>(B)</sup>                                | 2.7 <sup>(B)</sup>     | 0.94 <sup>(B)</sup>   | No                 | > B, < G             |
| Fluoride                               | mg/L   | 1.5        | MAC   | -                       | 0.036                                 | 0.028       | 0.042           | 0.042           | 0.11 <sup>(B)</sup>  | 0.14 <sup>(B)</sup>                               | 0.094 <sup>(B)</sup>   | 0.051 <sup>(B)</sup>  | No                 | > B, < G             |
| Sulphate                               | mg/L   | 500        | AO    | -                       | 3.2                                   | 3.6         | 1.3             | 2.6             | 14 <sup>(B)</sup>    | 26 <sup>(B)</sup>                                 | 19 <sup>(B)</sup>      | 12 <sup>(B)</sup>     | No                 | > B, < G             |
| <b>Nutrients and Biological Indica</b> |        |            |       | •                       |                                       |             |                 |                 | •                    |                                                   |                        |                       |                    |                      |
| Dissolved phosphorus                   | mg-P/L | -          | -     | 0.00008 <sup>(2)</sup>  | 0.0042                                | 0.0011      | 0.0011          | 0.0011          | 0.048 <sup>(B)</sup> | 0.058 <sup>(B)</sup>                              | 0.037 <sup>(B)</sup>   | 0.0041                | No                 | > B, NR              |
| Dissolved Metals                       |        |            |       |                         |                                       |             |                 |                 |                      | T                                                 |                        |                       |                    |                      |
| Antimony                               | μg/L   | 6          | MAC   | -                       | 0.06                                  | 0.06        | 0.06            | 0.06            | 2.6 <sup>(B)</sup>   | 3.0 <sup>(B)</sup>                                | 1.3 <sup>(B)</sup>     | 0.64 <sup>(B)</sup>   | No                 | > B, < G             |
| Arsenic                                | μg/L   | 10         | MAC   | -                       | 0.52                                  | 0.35        | 0.17            | 0.18            | 18 <sup>(D, B)</sup> | 20 <sup>(D, B)</sup>                              | 8.5 <sup>(B)</sup>     | 2.8 <sup>(B)</sup>    | Yes                | > B, > G             |
| Barium                                 | μg/L   | 1000       | MAC   | -                       | 5.2                                   | 6.7         | 3.4             | 8.1             | 12 <sup>(B)</sup>    | 19 <sup>(B)</sup>                                 | 12 <sup>(B)</sup>      | 6.2 <sup>(B)</sup>    | No                 | >B, < G              |
| Beryllium                              | μg/L   | -          | -     | 5                       | 0.06                                  | 0.01        | 0.01            | 0.01            | 0.024                | 0.025                                             | 0.012                  | 0.005                 | No                 | < B, <g< td=""></g<> |
| Bismuth                                | μg/L   | -          | -     | -                       | 0.28                                  | 0.03        | 0.03            | 0.03            | 0.033                | 0.033                                             | 0.024                  | 0.011                 | No                 | < B, NG              |
| Chromium                               | μg/L   | 50         | MAC   | -                       | 0.06                                  | 0.06        | 0.06            | 0.06            | 0.94 <sup>(B)</sup>  | 1.1 <sup>(B)</sup>                                | 0.25 <sup>(B)</sup>    | 0.031                 | No                 | > B, < G             |
| Cobalt                                 | μg/L   | -          | -     | 1.2                     | 0.06                                  | 0.06        | 0.06            | 0.06            | 0.56 <sup>(B)</sup>  | 0.67 <sup>(B)</sup>                               | 0.32 <sup>(B)</sup>    | 0.087 <sup>(B)</sup>  | No                 | > B, < G             |
| Lithium                                | μg/L   | -          | -     | 8                       | 0.55                                  | 0.55        | 0.55            | 0.55            | 1.7 <sup>(B)</sup>   | 2.7 <sup>(B)</sup>                                | 1.9 <sup>(B)</sup>     | 1.1 <sup>(B)</sup>    | No                 | > B, < G             |
| Manganese                              | μg/L   | 50         | AO    | 86 <sup>(3)</sup>       | 3.5                                   | 0.65        | 0.75            | 0.75            | 74 <sup>(D, B)</sup> | 121 <sup>(D, B)</sup>                             | 50 <sup>(B)</sup>      | 5.2 <sup>(B)</sup>    | Yes                | > B, > G             |
| Molybdenum                             | μg/L   | -          | -     | 20                      | 0.028                                 | 0.028       | 0.028           | 0.028           | 1.4 <sup>(B)</sup>   | 3.1 <sup>(B)</sup>                                | 2.3 <sup>(B)</sup>     | 1.5 <sup>(B)</sup>    | No                 | > B, < G             |
| Nickel                                 | μg/L   | -          | -     | 78                      | 0.98                                  | 0.72        | 0.28            | 0.28            | 5.1 <sup>(B)</sup>   | 6.5 <sup>(B)</sup>                                | 3.0 <sup>(B)</sup>     | 0.67                  | No                 | > B, < G             |
| Strontium                              | μg/L   | -          | -     | 2400                    | 14.3                                  | 12.1        | 6.8             | 9.0             | 43 <sup>(B)</sup>    | 65 <sup>(B)</sup>                                 | 45 <sup>(B)</sup>      | 26 <sup>(B)</sup>     | No                 | > B, < G             |
| Thallium                               | μg/L   | -          | -     | 0.04                    | 0.006                                 | 0.006       | 0.006           | 0.006           | 0.023 <sup>(B)</sup> | 0.025 <sup>(B)</sup>                              | 0.015 <sup>(B)</sup>   | 0.0076 <sup>(B)</sup> | No                 | > B, < G             |
| Tin                                    | μg/L   | -          | -     | 2400                    | 0.055                                 | 0.13        | 0.14            | 0.30            | 0.096 <sup>(B)</sup> | 0.15 <sup>(B)</sup>                               | 0.11 <sup>(B)</sup>    | 0.062 <sup>(B)</sup>  | No                 | > B, < G             |
| Vanadium                               | µg/L   | -          | -     | 17.2                    | 0.55                                  | 0.28        | 0.28            | 0.28            | 2.8 <sup>(B)</sup>   | 3.2 <sup>(B)</sup>                                | 1.1 <sup>(B)</sup>     | 0.48                  | No                 | > B, < G             |

Water quality data and guidelines shown in this table were rounded to reflect laboratory or field instrument precision *after* comparisons to guidelines. Therefore, values slightly above guidelines may be displayed as being equal to the guidelines and identified as exceedances. Measured concentrations equal to the guideline values were not identified as exceedances.

## Notes:

(B) = concentration higher than the relevant baseline level or beyond the recommended pH or DO concentration range.

(D) = concentration higher than the relevant drinking water guideline or beyond the recommended pH or DO concentration range.

AO - Aesthetic objective; COC - Contaminant of concern; DO - Dissolved oxygen; MAC - Maximum acceptable concentration; NR - Not relevant for human health; mg/L = milligrams per litre; mg-P/L = milligrams phosphorus per litre; NR = Not relevant for human health; μg/L = micrograms per litre.

## Screening:

Bold and shaded - Concentrations exceed baseline level+10% (B) and water quality guideline (G). If the water quality guideline is lower than the baseline+10%, the baseline+10% is used as the screening value. If there is no water quality guideline (NG), and a baseline value is available, baseline+10% is used as the screening value.

## References:

Health Canada, 2014. Guidelines for Canadian Drinking Water Quality Summary Table. October 2014.

<sup>(1) =</sup> In the absence of Health Canada guidelines, US EPA RSLs for tapwater adjusted for a hazard quotient of 0.2 were used

<sup>(2) =</sup> Value for phosphorus (white) used

<sup>(3) =</sup> Value for non-diet manganese

<sup>- =</sup> no guideline or data.

Table 1: Surface Water Quality Screening for Human Health - Off-Site Waterbodies (Approved Project)

| Table 1: Surface Water Quality Screening for Human Health - Off-Site Waterbodies (Approved Project) |        |            |             |                         |              |             |                 |                 |                      |                                                |                        |                       |                    |           |
|-----------------------------------------------------------------------------------------------------|--------|------------|-------------|-------------------------|--------------|-------------|-----------------|-----------------|----------------------|------------------------------------------------|------------------------|-----------------------|--------------------|-----------|
|                                                                                                     |        | Guideline  | s for the p | protection of:          |              | Baseline l  | Levels + 10%    |                 |                      | Predicted Maximum Tota                         | I Concentrations       |                       |                    |           |
| Parameter                                                                                           | Unit   | Health Can | ada         | US EPA RSL for          | Mammoth Lake | A15 and A12 | Downstream Node | Downstream Node |                      | Lake A1                                        | 5                      |                       | Retained as a COC? | Rationale |
|                                                                                                     |        | Drinking W | ater        | Tapwater <sup>(1)</sup> |              |             | 1               | 2               | Operational          | Closure (January 2022 to June 2029, inclusive) | Post-Closure<br>Year 1 | Long Term             |                    |           |
| Conventional Parameters                                                                             |        |            |             | •                       |              |             | •               |                 |                      |                                                |                        |                       |                    |           |
| Total alkalinity, as CaCO3                                                                          | mg/L   | -          | -           | -                       | 6.4          | 6.5         | 7.8             | 7.8             | 15 <sup>(B)</sup>    | 18 <sup>(B)</sup>                              | 14 <sup>(B)</sup>      | 7.2 <sup>(B)</sup>    | No                 | > B, NR   |
| Total dissolved solids                                                                              | mg/L   | 500        | AO          | -                       | 24           | 20          | 22              | 22              | 52 <sup>(B)</sup>    | 70 <sup>(B)</sup>                              | 52 <sup>(B)</sup>      | 30 <sup>(B)</sup>     | No                 | > B, < G  |
| Major Ions                                                                                          |        |            |             |                         |              |             |                 |                 |                      |                                                |                        |                       |                    |           |
| Calcium                                                                                             | mg/L   | NR         | -           | -                       | 2.6          | 2.8         | 2.2             | 2.2             | 6.1 <sup>(B)</sup>   | 8.8 <sup>(B)</sup>                             | 7.2 <sup>(B)</sup>     | 4.2 <sup>(B)</sup>    | No                 | > B, NR   |
| Magnesium                                                                                           | mg/L   | NR         | -           | -                       | 0.87         | 0.95        | 0.94            | 0.94            | 1.9 <sup>(B)</sup>   | 2.6 <sup>(B)</sup>                             | 2.2 <sup>(B)</sup>     | 1.3 <sup>(B)</sup>    | No                 | > B, NR   |
| Potassium                                                                                           | mg/L   | -          | -           | -                       | 0.58         | 0.63        | 0.37            | 0.65            | 3.3 <sup>(B)</sup>   | 6.0 <sup>(B)</sup>                             | 5.0 <sup>(B)</sup>     | 3.3 <sup>(B)</sup>    | No                 | > B, NR   |
| Sodium                                                                                              | mg/L   | 200        | AO          | -                       | 0.61         | 0.64        | 0.80            | 0.80            | 4.9 <sup>(B)</sup>   | 5.2 <sup>(B)</sup>                             | 2.7 <sup>(B)</sup>     | 0.9 <sup>(B)</sup>    | No                 | > B, < G  |
| Fluoride                                                                                            | mg/L   | 1.5        | MAC         | -                       | 0.036        | 0.028       | 0.042           | 0.042           | 0.097 <sup>(B)</sup> | 0.12 <sup>(B)</sup>                            | 0.089 <sup>(B)</sup>   | 0.049 <sup>(B)</sup>  | No                 | > B, < G  |
| Sulphate                                                                                            | mg/L   | 500        | AO          | -                       | 3.2          | 3.6         | 1.3             | 2.6             | 13 <sup>(B)</sup>    | 21 <sup>(B)</sup>                              | 17 <sup>(B)</sup>      | 11 <sup>(B)</sup>     | No                 | > B, < G  |
| Nutrients and Biological Indica                                                                     |        |            |             | T (a)                   | T            |             |                 | 1               | (0)                  | T (D)                                          | (2)                    | (2)                   |                    |           |
| Dissolved phosphorus                                                                                | mg-P/L | -          | -           | 0.00008 <sup>(2)</sup>  | 0.0042       | 0.0011      | 0.0011          | 0.0011          | 0.043 <sup>(B)</sup> | 0.048 <sup>(B)</sup>                           | 0.034 <sup>(B)</sup>   | 0.0041 <sup>(B)</sup> | No                 | > B, NR   |
| Dissolved Metals                                                                                    |        |            |             | T                       | 1            |             |                 | ı               | (P)                  | (D)                                            | (D)                    | (D)                   |                    |           |
| Antimony                                                                                            | μg/L   | 6          | MAC         | -                       | 0.06         | 0.06        | 0.06            | 0.06            | 2.3 <sup>(B)</sup>   | 2.5 <sup>(B)</sup>                             | 1.2 <sup>(B)</sup>     | 0.59 <sup>(B)</sup>   | No                 | > B , < G |
| Arsenic                                                                                             | μg/L   | 10         | MAC         | -                       | 0.52         | 0.35        | 0.17            | 0.18            | 16 <sup>(D, B)</sup> | 17 <sup>(D, B)</sup>                           | 8.3 <sup>(B)</sup>     | 2.6 <sup>(B)</sup>    | Yes                | > B, > G  |
| Barium                                                                                              | μg/L   | 1000       | MAC         | -                       | 5.2          | 6.7         | 3.4             | 8.1             | 11 <sup>(B)</sup>    | 16 <sup>(B)</sup>                              | 12 <sup>(B)</sup>      | 6.1                   | No                 | > B, < G  |
| Beryllium                                                                                           | μg/L   | -          | -           | 5                       | 0.06         | 0.01        | 0.01            | 0.01            | 0.022 <sup>(B)</sup> | 0.023 <sup>(B)</sup>                           | 0.013 <sup>(B)</sup>   | 0.0054                | No                 | > B, < G  |
| Bismuth                                                                                             | μg/L   | -          | -           | -                       | 0.28         | 0.03        | 0.03            | 0.03            | 0.032 <sup>(B)</sup> | 0.032 <sup>(B)</sup>                           | 0.026 <sup>(B)</sup>   | 0.012                 | Yes                | > B, NG   |
| Chromium                                                                                            | μg/L   | 50         | MAC         | -                       | 0.06         | 0.06        | 0.06            | 0.06            | 0.83 <sup>(B)</sup>  | 0.89 <sup>(B)</sup>                            | 0.26 <sup>(B)</sup>    | 0.033                 | No                 | > B, < G  |
| Cobalt                                                                                              | μg/L   | -          | -           | 1.2                     | 0.06         | 0.06        | 0.06            | 0.06            | 0.5 <sup>(B)</sup>   | 0.56 <sup>(B)</sup>                            | 0.33 <sup>(B)</sup>    | 0.083 <sup>(B)</sup>  | No                 | > B, < G  |
| Lithium                                                                                             | μg/L   | -          | -           | 8                       | 0.55         | 0.55        | 0.55            | 0.55            | 1.5 <sup>(B)</sup>   | 2.3 <sup>(B)</sup>                             | 1.8 <sup>(B)</sup>     | 1.1 <sup>(B)</sup>    | No                 | > B, < G  |
| Manganese                                                                                           | μg/L   | 50         | AO          | 86 <sup>(3)</sup>       | 3.5          | 0.65        | 0.75            | 0.75            | 65 <sup>(D, B)</sup> | 96 <sup>(D, B)</sup>                           | 53 <sup>(D, B)</sup>   | 4.8 <sup>(B)</sup>    | Yes                | > B, > G  |
| Molybdenum                                                                                          | μg/L   | -          | -           | 20                      | 0.028        | 0.028       | 0.028           | 0.028           | 1.3 <sup>(B)</sup>   | 2.4 <sup>(B)</sup>                             | 2.0 <sup>(B)</sup>     | 1.3 <sup>(B)</sup>    | No                 | > B, < G  |
| Nickel                                                                                              | μg/L   | -          | -           | 78                      | 0.98         | 0.72        | 0.28            | 0.28            | 4.6 <sup>(B)</sup>   | 5.4 <sup>(B)</sup>                             | 3.1 <sup>(B)</sup>     | 0.65                  | No                 | > B, < G  |
| Strontium                                                                                           | μg/L   | -          | -           | 2400                    | 14.3         | 12.1        | 6.8             | 9.0             | 39 <sup>(B)</sup>    | 53 <sup>(B)</sup>                              | 42 <sup>(B)</sup>      | 24 <sup>(B)</sup>     | No                 | > B, < G  |
| Thallium                                                                                            | μg/L   | -          | -           | 0.04                    | 0.006        | 0.006       | 0.006           | 0.006           | 0.02 <sup>(B)</sup>  | 0.022 <sup>(B)</sup>                           | 0.014 <sup>(B)</sup>   | 0.0073 <sup>(B)</sup> | No                 | > B, < G  |
| Tin                                                                                                 | μg/L   | -          | -           | 2400                    | 0.055        | 0.13        | 0.14            | 0.30            | 0.096                | 0.14 <sup>(B)</sup>                            | 0.11                   | 0.064                 | No                 | > B, < G  |
| Vanadium                                                                                            | μg/L   | -          | -           | 17.2                    | 0.55         | 0.28        | 0.28            | 0.28            | 2.5 <sup>(B)</sup>   | 2.7 <sup>(B)</sup>                             | 1.1 <sup>(B)</sup>     | 0.46 <sup>(B)</sup>   | No                 | > B, < G  |

Water quality data and guidelines shown in this table were rounded to reflect laboratory or field instrument precision *after* comparisons to guidelines. Therefore, values slightly above guidelines may be displayed as being equal to the guidelines and identified as exceedances. Measured concentrations equal to the guideline values were not identified as exceedances.

## Notes:

(B) = concentration higher than the relevant baseline level or beyond the recommended pH or DO concentration range.

AO - Aesthetic objective; COC - Contaminant of concern; DO - Dissolved oxygen; MAC - Maximum acceptable concentration; NR - Not relevant for human health; mg/L = milligrams per litre; mg-P/L = milligrams phosphorus per litre; NR = Not relevant for human health; μg/L = micrograms per litre.

## Screening:

Bold and shaded - Concentrations exceed baseline level+10% (B) and water quality guideline (G). If the water quality guideline is lower than the baseline+10%, the baseline+10% is used as the screening value. If there is no water quality guideline (NG), and a baseline value is available, baseline+10% is used as the screening value.

## References:

Health Canada, 2014. Guidelines for Canadian Drinking Water Quality Summary Table. October 2014.

<sup>(</sup>D) = concentration higher than the relevant drinking water guideline or beyond the recommended pH or DO concentration range.

<sup>(1) =</sup> In the absence of Health Canada guidelines, US EPA RSLs for tapwater adjusted for a hazard quotient of 0.2 were used

<sup>(2) =</sup> Value for phosphorus (white) used

<sup>(3) =</sup> Value for non-diet manganese

<sup>- =</sup> no guideline or data.

Table 1: Surface Water Quality Screening for Human Health - Off-Site Waterbodies (Approved Project)

|                                  |        | Guideline  | es for the p | protection of:          |              | Baseline    | Levels + 10%    |                 |                      | Predicted Maximum Tota                            | I Concentrations       |                       |                    |           |
|----------------------------------|--------|------------|--------------|-------------------------|--------------|-------------|-----------------|-----------------|----------------------|---------------------------------------------------|------------------------|-----------------------|--------------------|-----------|
| Parameter                        | Unit   | Health Ca  | nada         | US EPA RSL for          | Mammoth Lake | A15 and A12 | Downstream Node | Downstream Node |                      | Lake A12                                          | 2                      |                       | Retained as a COC? | Rationale |
|                                  |        | Drinking V | Vater        | Tapwater <sup>(1)</sup> |              |             | 1               | 2               | Operational          | Closure (January 2022 to<br>June 2029, inclusive) | Post-Closure Year<br>1 | Long Term             |                    |           |
| Conventional Parameters          |        |            |              |                         | ļ            |             | - I             |                 |                      |                                                   |                        | l                     |                    |           |
| Total alkalinity, as CaCO3       | mg/L   | -          | -            | -                       | 6.4          | 6.5         | 7.8             | 7.8             | 14 <sup>(B)</sup>    | 17 <sup>(B)</sup>                                 | 13 <sup>(B)</sup>      | 7.1 <sup>(B)</sup>    | No                 | > B, NR   |
| Total dissolved solids           | mg/L   | 500        | AO           | -                       | 24           | 20          | 22              | 22              | 49 <sup>(B)</sup>    | 64 <sup>(B)</sup>                                 | 49 <sup>(B)</sup>      | 28 <sup>(B)</sup>     | No                 | > B, < G  |
| Major Ions                       |        |            |              |                         |              |             | _               |                 |                      |                                                   |                        |                       |                    |           |
| Calcium                          | mg/L   | NR         | -            | -                       | 2.6          | 2.8         | 2.2             | 2.2             | 5.8 <sup>(B)</sup>   | 8.0 <sup>(B)</sup>                                | 6.7 <sup>(B)</sup>     | 4.1 <sup>(B)</sup>    | No                 | > B, NR   |
| Magnesium                        | mg/L   | NR         | -            | -                       | 0.87         | 0.95        | 0.94            | 0.94            | 1.8 <sup>(B)</sup>   | 2.4 <sup>(B)</sup>                                | 2.0 <sup>(B)</sup>     | 1.2 <sup>(B)</sup>    | No                 | > B, NR   |
| Potassium                        | mg/L   | -          | -            | -                       | 0.58         | 0.63        | 0.37            | 0.65            | 3.1 <sup>(B)</sup>   | 5.3 <sup>(B)</sup>                                | 4.7 <sup>(B)</sup>     | 3.1 <sup>(B)</sup>    | No                 | > B, NR   |
| Sodium                           | mg/L   | 200        | AO           | -                       | 0.61         | 0.64        | 0.80            | 0.80            | 4.6 <sup>(B)</sup>   | 4.7 <sup>(B)</sup>                                | 2.6 <sup>(B)</sup>     | 0.88 <sup>(B)</sup>   | No                 | > B, < G  |
| Fluoride                         | mg/L   | 1.5        | MAC          | -                       | 0.036        | 0.028       | 0.042           | 0.042           | 0.093 <sup>(B)</sup> | 0.11 <sup>(B)</sup>                               | 0.085 <sup>(B)</sup>   | 0.047 <sup>(B)</sup>  | No                 | > B, < G  |
| Sulphate                         | mg/L   | 500        | AO           | -                       | 3.2          | 3.6         | 1.3             | 2.6             | 12 <sup>(B)</sup>    | 19 <sup>(B)</sup>                                 | 16 <sup>(B)</sup>      | 10 <sup>(B)</sup>     | No                 | > B, < G  |
| Nutrients and Biological Indicat |        |            |              | (0)                     | 1            |             | 1               | 1               | (D)                  | (D)                                               | (D)                    | (D)                   |                    |           |
| Dissolved phosphorus             | mg-P/L | -          | -            | 0.00008 <sup>(2)</sup>  | 0.0042       | 0.0011      | 0.0011          | 0.0011          | 0.04 <sup>(B)</sup>  | 0.043 <sup>(B)</sup>                              | 0.032 <sup>(B)</sup>   | 0.0041 <sup>(B)</sup> | No                 | > B, NR   |
| Dissolved Metals                 |        |            |              | 1                       | T            |             |                 | T               | (P)                  | (P)                                               | (D)                    | (D)                   |                    |           |
| Antimony                         | μg/L   | 6          | MAC          | -                       | 0.06         | 0.06        | 0.06            | 0.06            | 2.2 <sup>(B)</sup>   | 2.2 <sup>(B)</sup>                                | 1.1 <sup>(B)</sup>     | 0.54 <sup>(B)</sup>   | No                 | > B, < G  |
| Arsenic                          | μg/L   | 10         | MAC          | -                       | 0.52         | 0.35        | 0.17            | 0.18            | 15 <sup>(D, B)</sup> | 15 <sup>(D, B)</sup>                              | 8.1 <sup>(B)</sup>     | 2.4 <sup>(B)</sup>    | Yes                | > B, > G  |
| Barium                           | μg/L   | 1000       | MAC          | -                       | 5.2          | 6.7         | 3.4             | 8.1             | 11 <sup>(B)</sup>    | 15 <sup>(B)</sup>                                 | 12 <sup>(B)</sup>      | 6.0                   | No                 | > B, < G  |
| Beryllium                        | μg/L   | -          | -            | 5                       | 0.06         | 0.01        | 0.01            | 0.01            | 0.022 <sup>(B)</sup> | 0.022 <sup>(B)</sup>                              | 0.014 <sup>(B)</sup>   | 0.0059                | No                 | > B, < G  |
| Bismuth                          | μg/L   | -          | -            | -                       | 0.28         | 0.03        | 0.03            | 0.03            | 0.032 <sup>(B)</sup> | 0.033 <sup>(B)</sup>                              | 0.027 <sup>(B)</sup>   | 0.013                 | Yes                | > B, NG   |
| Chromium                         | μg/L   | 50         | MAC          | -                       | 0.06         | 0.06        | 0.06            | 0.06            | 0.78 <sup>(B)</sup>  | 0.81 <sup>(B)</sup>                               | 0.27 <sup>(B)</sup>    | 0.035                 | No                 | > B, < G  |
| Cobalt                           | μg/L   | -          |              | 1.2                     | 0.06         | 0.06        | 0.06            | 0.06            | 0.47 <sup>(B)</sup>  | 0.51 <sup>(B)</sup>                               | 0.33 <sup>(B)</sup>    | 0.081 <sup>(B)</sup>  | No                 | > B, < G  |
| Lithium                          | μg/L   | -          | -            | 8                       | 0.55         | 0.55        | 0.55            | 0.55            | 1.5 <sup>(B)</sup>   | 2.1 <sup>(B)</sup>                                | 1.7 <sup>(B)</sup>     | 1.0 <sup>(B)</sup>    | No                 | > B, < G  |
| Manganese                        | μg/L   | 50         | AO           | 86 <sup>(3)</sup>       | 3.5          | 0.65        | 0.75            | 0.75            | 61 <sup>(B)</sup>    | 85 <sup>(B)</sup>                                 | 54 <sup>(B)</sup>      | 4.5 <sup>(B)</sup>    | Yes                | > B, > G  |
| Molybdenum                       | μg/L   | -          | -            | 20                      | 0.028        | 0.028       | 0.028           | 0.028           | 1.2 <sup>(B)</sup>   | 2.1 <sup>(B)</sup>                                | 1.9 <sup>(B)</sup>     | 1.2 <sup>(B)</sup>    | No                 | > B, < G  |
| Nickel                           | μg/L   | -          | -            | 78                      | 0.98         | 0.72        | 0.28            | 0.28            | 4.3 <sup>(B)</sup>   | 4.8 <sup>(B)</sup>                                | 3.2 <sup>(B)</sup>     | 0.63                  | No                 | > B, < G  |
| Strontium                        | μg/L   | -          | -            | 2400                    | 14.3         | 12.1        | 6.8             | 9.0             | 38 <sup>(B)</sup>    | 48 <sup>(B)</sup>                                 | 40 <sup>(B)</sup>      | 23 <sup>(B)</sup>     | No                 | > B, < G  |
| Thallium                         | μg/L   | -          | -            | 0.04                    | 0.006        | 0.006       | 0.006           | 0.006           | 0.02 <sup>(B)</sup>  | 0.02 <sup>(B)</sup>                               | 0.014 <sup>(B)</sup>   | 0.0071 <sup>(B)</sup> | No                 | > B, < G  |
| Tin                              | μg/L   | -          | -            | 2400                    | 0.055        | 0.13        | 0.14            | 0.30            | 0.1                  | 0.14 <sup>(B)</sup>                               | 0.11                   | 0.069                 | No                 | > B, < G  |
| Vanadium                         | μg/L   | -          | -            | 17.2                    | 0.55         | 0.28        | 0.28            | 0.28            | 2.4 <sup>(B)</sup>   | 2.4 <sup>(B)</sup>                                | 1.1 <sup>(B)</sup>     | 0.44 <sup>(B)</sup>   | No                 | > B, < G  |

Water quality data and guidelines shown in this table were rounded to reflect laboratory or field instrument precision *after* comparisons to guidelines. Therefore, values slightly above guidelines may be displayed as being equal to the guidelines and identified as exceedances. Measured concentrations equal to the guideline values were not identified as exceedances.

## Notes:

(B) = concentration higher than the relevant baseline level or beyond the recommended pH or DO concentration range.

AO - Aesthetic objective; COC - Contaminant of concern; DO - Dissolved oxygen; MAC - Maximum acceptable concentration; NR - Not relevant for human health; mg/L = milligrams per litre; mg-P/L = milligrams phosphorus per litre; NR = Not relevant for human health; μg/L = micrograms per litre.

## Screening:

Bold and shaded - Concentrations exceed baseline level+10% (B) and water quality guideline (G). If the water quality guideline is lower than the baseline+10%, the baseline+10% is used as the screening value. If there is no water quality guideline (NG), and a baseline value is available, baseline+10% is used as the screening value.

## References:

Health Canada, 2014. Guidelines for Canadian Drinking Water Quality Summary Table. October 2014.

<sup>(</sup>D) = concentration higher than the relevant drinking water guideline or beyond the recommended pH or DO concentration range.

<sup>(1) =</sup> In the absence of Health Canada guidelines, US EPA RSLs for tapwater adjusted for a hazard quotient of 0.2 were used

<sup>(2) =</sup> Value for phosphorus (white) used

<sup>(3) =</sup> Value for non-diet manganese

<sup>- =</sup> no guideline or data.

May 2019 Attachment B-3: Water Quality Screening Tables 1896307 (3500)

Table 1: Surface Water Quality Screening for Human Health - Off-Site Waterbodies (Approved Project)

| Table 1: Surface Water Quality  | ocreening to |            |      | the protection of:  Baseline Levels + 10% |              |             |        |                   |                       | Predicted Maximum Tot                             | al Concentrations      |                       |                                       |           |
|---------------------------------|--------------|------------|------|-------------------------------------------|--------------|-------------|--------|-------------------|-----------------------|---------------------------------------------------|------------------------|-----------------------|---------------------------------------|-----------|
| Parameter                       | Unit         | Health Can |      | US EPA RSL for                            | Mammoth Lake | A15 and A12 |        | e Downstream Node |                       | Downstream                                        |                        |                       | Retained as a COC?                    | Rationale |
|                                 |              | Drinking W | ater | Tapwater <sup>(1)</sup>                   |              |             | 1 2    |                   | Operational           | Closure (January 2022 to<br>June 2029, inclusive) | Post-Closure Year<br>1 | Long Term             |                                       |           |
| Conventional Parameters         | Į.           |            |      |                                           |              |             | •      | <u>'</u>          |                       | 1                                                 | <u> </u>               |                       |                                       |           |
| Total alkalinity, as CaCO3      | mg/L         | -          | -    | -                                         | 6.4          | 6.5         | 7.8    | 7.8               | 6.3                   | 6.2                                               | 6.6                    | 5.9                   | No                                    | < B, NR   |
| Total dissolved solids          | mg/L         | 500        | AO   | -                                         | 24           | 20          | 22     | 22                | 16                    | 15                                                | 17                     | 15                    | No                                    | < B, < G  |
| Major lons                      |              |            |      |                                           |              |             |        |                   |                       |                                                   |                        |                       |                                       |           |
| Calcium                         | mg/L         | NR         | -    | -                                         | 2.6          | 2.8         | 2.2    | 2.2               | 2.3 <sup>(B)</sup>    | 2.2                                               | 2.5 <sup>(B)</sup>     | 2.2                   | No                                    | > B, NR   |
| Magnesium                       | mg/L         | NR         | -    | -                                         | 0.87         | 0.95        | 0.94   | 0.94              | 0.74                  | 0.72                                              | 0.8                    | 0.72                  | No                                    | < B, NR   |
| Potassium                       | mg/L         | -          | -    | -                                         | 0.58         | 0.63        | 0.37   | 0.65              | 0.68 <sup>(B)</sup>   | 0.68 <sup>(B)</sup>                               | 0.88 <sup>(B)</sup>    | 0.78 <sup>(B)</sup>   | No                                    | > B, NR   |
| Sodium                          | mg/L         | 200        | AO   | -                                         | 0.61         | 0.64        | 0.80   | 0.80              | 0.93 <sup>(B)</sup>   | 0.89 <sup>(B)</sup>                               | 0.89 <sup>(B)</sup>    | 0.69                  | No                                    | > B, < G  |
| Fluoride                        | mg/L         | 1.5        | MAC  | -                                         | 0.036        | 0.028       | 0.042  | 0.042             | 0.032                 | 0.031                                             | 0.034                  | 0.03                  | No                                    | < B, < G  |
| Sulphate                        | mg/L         | 500        | AO   | -                                         | 3.2          | 3.6         | 1.3    | 2.6               | 2.9 <sup>(B)</sup>    | 2.8 <sup>(B)</sup>                                | 3.5 <sup>(B)</sup>     | 3.1 <sup>(B)</sup>    | No                                    | > B, < G  |
| Nutrients and Biological Indica |              |            |      |                                           |              |             |        | •                 |                       | -                                                 |                        |                       | · · · · · · · · · · · · · · · · · · · |           |
| Dissolved phosphorus            | mg-P/L       | -          | -    | 0.00008 <sup>(2)</sup>                    | 0.0042       | 0.0011      | 0.0011 | 0.0011            | 0.0044 <sup>(B)</sup> | 0.004 <sup>(B)</sup>                              | 0.0047 <sup>(B)</sup>  | 0.002 <sup>(B)</sup>  | No                                    | > B, NR   |
| Dissolved Metals                |              |            |      | 1                                         |              |             | 1      |                   | (8)                   | 1                                                 |                        | (5)                   |                                       |           |
| Antimony                        | μg/L         | 6          | MAC  | -                                         | 0.06         | 0.06        | 0.06   | 0.06              | 0.2 <sup>(B)</sup>    | 0.18 <sup>(B)</sup>                               | 0.17 <sup>(B)</sup>    | 0.11 <sup>(B)</sup>   | No                                    | > B, < G  |
| Arsenic                         | μg/L         | 10         | MAC  | -                                         | 0.52         | 0.35        | 0.17   | 0.18              | 1.2 <sup>(B)</sup>    | 1.1 <sup>(B)</sup>                                | 1.0 <sup>(B)</sup>     | 0.41 <sup>(B)</sup>   | No                                    | > B, < G  |
| Barium                          | μg/L         | 1000       | MAC  | -                                         | 5.2          | 6.7         | 3.4    | 8.1               | 6.0 <sup>(B)</sup>    | 6.0 <sup>(B)</sup>                                | 6.3 <sup>(B)</sup>     | 5.7 <sup>(B)</sup>    | No                                    | > B, < G  |
| Beryllium                       | μg/L         | -          | -    | 5                                         | 0.06         | 0.01        | 0.01   | 0.01              | 0.011 <sup>(B)</sup>  | 0.011 <sup>(B)</sup>                              | 0.011 <sup>(B)</sup>   | 0.01                  | No                                    | > B, < G  |
| Bismuth                         | μg/L         | -          | -    | -                                         | 0.28         | 0.03        | 0.03   | 0.03              | 0.026                 | 0.026                                             | 0.026                  | 0.025                 | No                                    | < B, NG   |
| Chromium                        | μg/L         | 50         | MAC  | -                                         | 0.06         | 0.06        | 0.06   | 0.06              | 0.1 <sup>(B)</sup>    | 0.096 <sup>(B)</sup>                              | 0.079 <sup>(B)</sup>   | 0.05                  | No                                    | > B, < G  |
| Cobalt                          | μg/L         | -          | -    | 1.2                                       | 0.06         | 0.06        | 0.06   | 0.06              | 0.08 <sup>(B)</sup>   | 0.076 <sup>(B)</sup>                              | 0.082 <sup>(B)</sup>   | 0.055 <sup>(B)</sup>  | No                                    | > B, < G  |
| Lithium                         | μg/L         | -          | -    | 8                                         | 0.55         | 0.55        | 0.55   | 0.55              | 0.58 <sup>(B)</sup>   | 0.57 <sup>(B)</sup>                               | 0.64 <sup>(B)</sup>    | 0.57 <sup>(B)</sup>   | No                                    | > B, < G  |
| Manganese                       | μg/L         | 50         | AO   | 86 <sup>(3)</sup>                         | 3.5          | 0.65        | 0.75   | 0.75              | 4.9 <sup>(B)</sup>    | 4.4 <sup>(B)</sup>                                | 6.3 <sup>(B)</sup>     | 1.1 <sup>(B)</sup>    | No                                    | > B, < G  |
| Molybdenum                      | μg/L         | -          | -    | 20                                        | 0.028        | 0.028       | 0.028  | 0.028             | 0.11 <sup>(B)</sup>   | 0.11 <sup>(B)</sup>                               | 0.2 <sup>(B)</sup>     | 0.16 <sup>(B)</sup>   | No                                    | > B, < G  |
| Nickel                          | μg/L         | -          | -    | 78                                        | 0.98         | 0.72        | 0.28   | 0.28              | 0.68 <sup>(B)</sup>   | 0.65 <sup>(B)</sup>                               | 0.71 <sup>(B)</sup>    | 0.44 <sup>(B)</sup>   | No                                    | > B, < G  |
| Strontium                       | μg/L         | -          | -    | 2400                                      | 14.3         | 12.1        | 6.8    | 9.0               | 11 <sup>(B)</sup>     | 10 <sup>(B)</sup>                                 | 12 <sup>(B)</sup>      | 10 <sup>(B)</sup>     | No                                    | > B, < G  |
| Thallium                        | μg/L         | -          | -    | 0.04                                      | 0.006        | 0.006       | 0.006  | 0.006             | 0.0062 <sup>(B)</sup> | 0.0060                                            | 0.0061 <sup>(B)</sup>  | 0.0054 <sup>(B)</sup> | No                                    | > B, < G  |
| Tin                             | μg/L         | -          | -    | 2400                                      | 0.055        | 0.13        | 0.14   | 0.30              | 0.11                  | 0.12                                              | 0.12                   | 0.11                  | No                                    | < B, < G  |
| Vanadium                        | μg/L         | -          | -    | 17.2                                      | 0.55         | 0.28        | 0.28   | 0.28              | 0.4 <sup>(B)</sup>    | 0.38 <sup>(B)</sup>                               | 0.36 <sup>(B)</sup>    | 0.28 <sup>(B)</sup>   | No                                    | > B, < G  |

Water quality data and guidelines shown in this table were rounded to reflect laboratory or field instrument precision *after* comparisons to guidelines. Therefore, values slightly above guidelines may be displayed as being equal to the guidelines and identified as exceedances. Measured concentrations equal to the guideline values were not identified as exceedances.

## Notes:

(B) = concentration higher than the relevant baseline level or beyond the recommended pH or DO concentration range.

AO - Aesthetic objective; COC - Contaminant of concern; DO - Dissolved oxygen; MAC - Maximum acceptable concentration; NR - Not relevant for human health; mg/L = milligrams per litre; mg-P/L = milligrams phosphorus per litre; NR = Not relevant for human health; μg/L = micrograms per litre.

## Screening:

Bold and shaded - Concentrations exceed baseline level+10% (B) and water quality guideline (G). If the water quality guideline is lower than the baseline+10%, the baseline+10% is used as the screening value. If there is no water quality guideline (NG), and a baseline value is available, baseline+10% is used as the screening value.

## References:

Health Canada, 2014. Guidelines for Canadian Drinking Water Quality Summary Table. October 2014.

<sup>(</sup>D) = concentration higher than the relevant drinking water guideline or beyond the recommended pH or DO concentration range.

<sup>(1) =</sup> In the absence of Health Canada guidelines, US EPA RSLs for tapwater adjusted for a hazard quotient of 0.2 were used

<sup>(2) =</sup> Value for phosphorus (white) used

<sup>(3) =</sup> Value for non-diet manganese

<sup>- =</sup> no guideline or data.

May 2019 Attachment B-3: Water Quality Screening Tables 1896307 (3500)

Table 1: Surface Water Quality Screening for Human Health - Off-Site Waterbodies (Approved Project)

| Table 1: Surface Water Quality S | screening to | Human Health | - Oπ-Site | waterbodies (Appr       | oved Project) |             |                   |                 |                      |                                                |                                  |                       | 1 1                |           |
|----------------------------------|--------------|--------------|-----------|-------------------------|---------------|-------------|-------------------|-----------------|----------------------|------------------------------------------------|----------------------------------|-----------------------|--------------------|-----------|
|                                  |              | Guideline    | s for the | protection of:          |               | Baseline    | Levels + 10%      |                 |                      | Predicted Maximum Tota                         | I Concentrations                 |                       |                    |           |
| Parameter                        | Unit         | Health Car   | ıada      | US EPA RSL for          | Mammoth Lake  | A15 and A12 | Downstream Node I | Downstream Node |                      | Downstream N                                   | Node 2                           |                       | Retained as a COC? | Rationale |
|                                  |              | Drinking W   | ater/     | Tapwater <sup>(1)</sup> |               |             | 1 2               |                 | Operational          | Closure (January 2022 to June 2029, inclusive) | Post-Closure<br>Year 1 Long Term |                       |                    |           |
| Conventional Parameters          |              |              |           |                         | <u>'</u>      |             | 1                 | *               |                      |                                                | 1                                |                       | ·                  |           |
| Total alkalinity, as CaCO3       | mg/L         | -            | -         | -                       | 6.4           | 6.5         | 7.8               | 7.8             | 9.5 <sup>(B)</sup>   | 9.5 <sup>(B)</sup>                             | 9.9 <sup>(B)</sup>               | 6.8                   | No                 | > B, NR   |
| Total dissolved solids           | mg/L         | 500          | AO        | -                       | 24            | 20          | 22                | 22              | 29 <sup>(B)</sup>    | 30 <sup>(B)</sup>                              | 32 <sup>(B)</sup>                | 22                    | No                 | > B, < G  |
| Major Ions                       |              |              |           |                         |               |             |                   |                 |                      |                                                |                                  |                       |                    |           |
| Calcium                          | mg/L         | NR           | -         | -                       | 2.6           | 2.8         | 2.2               | 2.2             | 3.7 <sup>(B)</sup>   | 3.9 <sup>(B)</sup>                             | 4.5 <sup>(B)</sup>               | 3.2 <sup>(B)</sup>    | No                 | > B, NR   |
| Magnesium                        | mg/L         | NR           | -         | -                       | 0.87          | 0.95        | 0.94              | 0.94            | 1.2 <sup>(B)</sup>   | 1.2 <sup>(B)</sup>                             | 1.4 <sup>(B)</sup>               | 0.99 <sup>(B)</sup>   | No                 | > B, NR   |
| Potassium                        | mg/L         | -            | -         | -                       | 0.58          | 0.63        | 0.37              | 0.65            | 1.6 <sup>(B)</sup>   | 1.9 <sup>(B)</sup>                             | 2.5 <sup>(B)</sup>               | 1.9 <sup>(B)</sup>    | No                 | > B, NR   |
| Sodium                           | mg/L         | 200          | AO        | -                       | 0.61          | 0.64        | 0.80              | 0.80            | 2.3 <sup>(B)</sup>   | 2.2 <sup>(B)</sup>                             | 1.7 <sup>(B)</sup>               | 0.82 <sup>(B)</sup>   | No                 | > B, < G  |
| Fluoride                         | mg/L         | 1.5          | MAC       | -                       | 0.036         | 0.028       | 0.042             | 0.042           | 0.056 <sup>(B)</sup> | 0.054 <sup>(B)</sup>                           | 0.058 <sup>(B)</sup>             | 0.039                 | No                 | > B, < G  |
| Sulphate                         | mg/L         | 500          | AO        | -                       | 3.2           | 3.6         | 1.3               | 2.6             | 6.4 <sup>(B)</sup>   | 7.2 <sup>(B)</sup>                             | 8.9 <sup>(B)</sup>               | 6.4 <sup>(B)</sup>    | No                 | > B, < G  |
| Nutrients and Biological Indicat |              |              |           |                         |               |             | · .               | ·               |                      |                                                |                                  |                       |                    |           |
| Dissolved phosphorus             | mg-P/L       | -            | -         | 0.00008 <sup>(2)</sup>  | 0.0042        | 0.0011      | 0.0011            | 0.0011          | 0.018 <sup>(B)</sup> | 0.017 <sup>(B)</sup>                           | 0.016 <sup>(B)</sup>             | 0.0034 <sup>(B)</sup> | No                 | > B, NR   |
| Dissolved Metals                 |              |              | 1         | 1                       |               |             |                   |                 | (D)                  | (D)                                            | (D)                              | (D)                   | 1 1                |           |
| Antimony                         | μg/L         | 6            | MAC       | -                       | 0.06          | 0.06        | 0.06              | 0.06            | 0.93 <sup>(B)</sup>  | 0.89 <sup>(B)</sup>                            | 0.61 <sup>(B)</sup>              | 0.31 <sup>(B)</sup>   | No                 | > B, < G  |
| Arsenic                          | μg/L         | 10           | MAC       | -                       | 0.52          | 0.35        | 0.17              | 0.18            | 6.3 <sup>(B)</sup>   | 6.0 <sup>(B)</sup>                             | 4.3 <sup>(B)</sup>               | 1.4 <sup>(B)</sup>    | No                 | > B, < G  |
| Barium                           | μg/L         | 1000         | MAC       | -                       | 5.2           | 6.7         | 3.4               | 8.1             | 8.1                  | 8.7 <sup>(B)</sup>                             | 9.2 <sup>(B)</sup>               | 6.2                   | No                 | > B, < G  |
| Beryllium                        | μg/L         | -            | -         | 5                       | 0.06          | 0.01        | 0.01              | 0.01            | 0.016 <sup>(B)</sup> | 0.015 <sup>(B)</sup>                           | 0.013 <sup>(B)</sup>             | 0.0096                | No                 | > B, < G  |
| Bismuth                          | μg/L         | -            | -         | -                       | 0.28          | 0.03        | 0.03              | 0.03            | 0.03                 | 0.03                                           | 0.029                            | 0.023                 | No                 | < B, NG   |
| Chromium                         | μg/L         | 50           | MAC       | -                       | 0.06          | 0.06        | 0.06              | 0.06            | 0.36 <sup>(B)</sup>  | 0.35 <sup>(B)</sup>                            | 0.19 <sup>(B)</sup>              | 0.05                  | No                 | > B, < G  |
| Cobalt                           | μg/L         | -            | -         | 1.2                     | 0.06          | 0.06        | 0.06              | 0.06            | 0.23 <sup>(B)</sup>  | 0.22 <sup>(B)</sup>                            | 0.2 <sup>(B)</sup>               | 0.07 <sup>(B)</sup>   | No                 | > B, < G  |
| Lithium                          | μg/L         | -            | -         | 8                       | 0.55          | 0.55        | 0.55              | 0.55            | 0.95 <sup>(B)</sup>  | 1.0 <sup>(B)</sup>                             | 1.1 <sup>(B)</sup>               | 0.81 <sup>(B)</sup>   | No                 | > B, < G  |
| Manganese                        | μg/L         | 50           | AO        | 86 <sup>(3)</sup>       | 3.5           | 0.65        | 0.75              | 0.75            | 26 <sup>(B)</sup>    | 26 <sup>(B)</sup>                              | 28 <sup>(B)</sup>                | 2.7 <sup>(B)</sup>    | No                 | > B, < G  |
| Molybdenum                       | μg/L         | -            | -         | 20                      | 0.028         | 0.028       | 0.028             | 0.028           | 0.51 <sup>(B)</sup>  | 0.64 <sup>(B)</sup>                            | 0.87 <sup>(B)</sup>              | 0.65 <sup>(B)</sup>   | No                 | > B, < G  |
| Nickel                           | μg/L         | -            | -         | 78                      | 0.98          | 0.72        | 0.28              | 0.28            | 2.1 <sup>(B)</sup>   | 2.0 <sup>(B)</sup>                             | 1.9 <sup>(B)</sup>               | 0.55 <sup>(B)</sup>   | No                 | > B, < G  |
| Strontium                        | μg/L         | -            | -         | 2400                    | 14.3          | 12.1        | 6.8               | 9.0             | 22 <sup>(B)</sup>    | 21 <sup>(B)</sup>                              | 25 <sup>(B)</sup>                | 17 <sup>(B)</sup>     | No                 | > B, < G  |
| Thallium                         | μg/L         | -            | -         | 0.04                    | 0.006         | 0.006       | 0.006             | 0.006           | 0.012 <sup>(B)</sup> | 0.011 <sup>(B)</sup>                           | 0.0099 <sup>(B)</sup>            | 0.0065 <sup>(B)</sup> | No                 | > B, < G  |
| Tin                              | μg/L         | -            | -         | 2400                    | 0.055         | 0.13        | 0.14              | 0.30            | 0.12                 | 0.13                                           | 0.12                             | 0.11                  | No                 | < B, < G  |
| Vanadium                         | μg/L         | -            | -         | 17.2                    | 0.55          | 0.28        | 0.28              | 0.28            | 1.2 <sup>(B)</sup>   | 1.1 <sup>(B)</sup>                             | 0.72 <sup>(B)</sup>              | 0.37 <sup>(B)</sup>   | No                 | > B, < G  |

Water quality data and guidelines shown in this table were rounded to reflect laboratory or field instrument precision *after* comparisons to guidelines. Therefore, values slightly above guidelines may be displayed as being equal to the guidelines and identified as exceedances. Measured concentrations equal to the guideline values were not identified as exceedances.

### <u>Notes</u>

(B) = concentration higher than the relevant baseline level or beyond the recommended pH or DO concentration range.

AO - Aesthetic objective; COC - Contaminant of concern; DO - Dissolved oxygen; MAC - Maximum acceptable concentration; NR - Not relevant for human health; mg/L = milligrams per litre; mg-P/L = milligrams phosphorus per litre; NR = Not relevant for human health; μg/L = micrograms per litre.

## Screening:

Bold and shaded - Concentrations exceed baseline level+10% (B) and water quality guideline (G). If the water quality guideline is lower than the baseline+10%, the baseline+10% is used as the screening value. If there is no water quality guideline (NG), and a baseline value is available, baseline+10% is used as the screening value.

## References:

Health Canada, 2014. Guidelines for Canadian Drinking Water Quality Summary Table. October 2014.

<sup>(</sup>D) = concentration higher than the relevant drinking water guideline or beyond the recommended pH or DO concentration range.

<sup>(1) =</sup> In the absence of Health Canada guidelines, US EPA RSLs for tapwater adjusted for a hazard quotient of 0.2 were used

<sup>(2) =</sup> Value for phosphorus (white) used

<sup>(3) =</sup> Value for non-diet manganese

<sup>- =</sup> no guideline or data.

Table 2: Surface Water Quality Screening for Human Health - On-Site Waterbodies (Approved Project)

| Table 2: Surface Water Quality S        |        |                                 |     | rotection of:          | Baseline Le     | evels + 10% | I                                                      | Whale Tail Lake     |           |                                                  | Flooded Pit        |           |
|-----------------------------------------|--------|---------------------------------|-----|------------------------|-----------------|-------------|--------------------------------------------------------|---------------------|-----------|--------------------------------------------------|--------------------|-----------|
| Parameter                               | Unit   | Health Canada<br>Drinking Water |     | US EPA RSL             | Whale Tail Lake | Flooded Pit | Predicted Maximum<br>Total Concentrations<br>Long Term | -Retained as a COC? | Rationale | Predicted Maximum Total Concentrations Long Term | Retained as a COC? | Rationale |
| Conventional Parameters                 |        |                                 |     |                        |                 |             | •                                                      |                     |           | •                                                |                    |           |
| Total alkalinity, as CaCO3              | mg/L   | -                               | -   | -                      | 6.1             | 6.1         | 0.24                                                   | No                  | < B, NR   | 11 <sup>(B)</sup>                                | No                 | > B, NR   |
| Total dissolved solids                  | mg/L   | 500                             | AO  | -                      | 23              | 23          | 1.0                                                    | No                  | < B, < G  | 41 <sup>(B)</sup>                                | No                 | > B, < G  |
| Major Ions                              |        |                                 |     |                        |                 |             |                                                        |                     |           |                                                  | _                  |           |
| Calcium                                 | mg/L   | NR                              | -   | -                      | 2.4             | 2.4         | 0.43                                                   | No                  | < B, NR   | 5.6 <sup>(B)</sup>                               | No                 | > B, NR   |
| Magnesium                               | mg/L   | NR                              | -   | -                      | 0.87            | 0.87        | 0.45                                                   | No                  | < B, NR   | 1.8 <sup>(B)</sup>                               | No                 | > B, NR   |
| Potassium                               | mg/L   | -                               | -   | -                      | 0.48            | 0.48        | 0.27                                                   | No                  | < B, NR   | 3.6 <sup>(B)</sup>                               | No                 | > B, NR   |
| Sodium                                  | mg/L   | 200                             | AO  | -                      | 0.61            | 0.61        | 0.039                                                  | No                  | < B, < G  | 2.1 <sup>(B)</sup>                               | No                 | > B, < G  |
| Sulphate                                | mg/L   | 500                             | AO  | -                      | 2.9             | 2.9         | 0.35                                                   | No                  | < B, < G  | 12 <sup>(B)</sup>                                | No                 | > B, < G  |
| <b>Nutrients and Biological Indicat</b> |        |                                 |     |                        |                 |             |                                                        |                     |           |                                                  | _                  |           |
| Total phosphorus                        | mg-P/L | -                               | -   | 0.00008 <sup>(2)</sup> | 0.0033          | -           | 0.011 <sup>(D,B)</sup>                                 | Yes                 | > B, > G  |                                                  | No                 | No values |
| Dissolved phosphorus                    | mg-P/L | -                               | -   | 0.00008 <sup>(2)</sup> | 0.00308         | 0.00308     | -                                                      | No                  | No values | 0.021 <sup>(B)</sup>                             | No                 | > B, NR   |
| Metals <sup>(5)</sup>                   |        |                                 |     |                        |                 |             |                                                        |                     |           |                                                  |                    |           |
| Aluminum                                | μg/L   | 100                             | OG  | -                      | 24              | 12          | 322 <sup>(D, B)</sup>                                  | Yes                 | > B, > G  | 0.2                                              | No                 | < B, < G  |
| Antimony                                | μg/L   | 6                               | MAC | -                      | 0.24            | 0.06        | 0.044                                                  | No                  | < B, < G  | 0.74 <sup>(B)</sup>                              | No                 | > B, < G  |
| Arsenic                                 | μg/L   | 10                              | MAC | -                      | 0.32            | 0.33        | 5.7 <sup>(B)</sup>                                     | No                  | > B, < G  | 10 <sup>(B)</sup>                                | No                 | > B, < G  |
| Barium                                  | μg/L   | 1000                            | MAC | -                      | 4.8             | 4.6         | 3.3                                                    | No                  | < B, < G  | 10 <sup>(B)</sup>                                | No                 | > B, < G  |
| Chromium                                | μg/L   | 50                              | MAC | -                      | 0.15            | 0.055       | 9.0 <sup>(B)</sup>                                     | No                  | > B, < G  | 0.15 <sup>(B)</sup>                              | No                 | > B, < G  |
| Cobalt                                  | μg/L   | -                               | -   | 1.2                    | 0.055           | 0.055       | 0.53 <sup>(B)</sup>                                    | No                  | > B, < G  | 0.27 <sup>(B)</sup>                              | No                 | > B, < G  |
| Iron                                    | μg/L   | 300                             | AO  | 2800                   | 41              | 106         | 754 <sup>(B)</sup>                                     | No                  | > B, < G  | 30                                               | No                 | < B, < G  |
| Lithium                                 | μg/L   | -                               | -   | 8                      | 0.55            | 0.55        | 0.32                                                   | No                  | < B, < G  | 1.5 <sup>(B)</sup>                               | No                 | > B, < G  |
| Manganese                               | μg/L   | 50                              | AO  | 86 <sup>(3)</sup>      | 7.0             | 5.0         | 13 <sup>(B)</sup>                                      | No                  | > B, < G  | 51 <sup>(B)</sup>                                | Yes                | > B, > G  |
| Molybdenum                              | μg/L   | -                               | -   | 20                     | 0.065           | 0.028       | 0.063                                                  | No                  | < B, < G  | 1.5 <sup>(B)</sup>                               | No                 | > B, < G  |
| Nickel                                  | μg/L   | -                               | -   | 78 <sup>(4)</sup>      | 0.946           | 0.902       | 4.6 <sup>(B)</sup>                                     | No                  | > B, < G  | 2.6 <sup>(B)</sup>                               | No                 | > B, < G  |
| Strontium                               | μg/L   | -                               | -   | 2400                   | 17              | 17          | 2.1                                                    | No                  | < B, < G  | 34 <sup>(B)</sup>                                | No                 | > B, < G  |
| Thallium                                | μg/L   | -                               | -   | 0.04                   | 0.0055          | 0.0055      | 0.0054                                                 | No                  | < B, < G  | 0.011 <sup>(B)</sup>                             | No                 | > B, < G  |
| Tin                                     | μg/L   | -                               | -   | 2400                   | 0.055           | 0.055       | 0.0079                                                 | No                  | < B, < G  | 0.094 <sup>(B)</sup>                             | No                 | > B, < G  |
| Vanadium                                | μg/L   | -                               | -   | 17.2                   | 0.55            | 0.55        | 0.83 <sup>(B)</sup>                                    | No                  | > B, < G  | 0.67 <sup>(B)</sup>                              | No                 | > B, < G  |

Water quality data and guidelines shown in this table were rounded to reflect laboratory or field instrument precisionafter comparisons to guidelines. Therefore, values slightly above guidelines may be displayed as being equal to the guidelines and identified as exceedances. Measured concentrations equal to the guideline values were not identified as exceedances.

### Notes:

- (B) = concentration higher than the relevant baseline level or beyond the recommended pH or DO concentration range.
- (D) = concentration higher than the relevant drinking water guideline or beyond the recommended pH or DO concentration range.
- (1) = In the absence of Health Canada guidelines, US EPA RSLs for tapwater adjusted for a hazard quotient of 0.2 were used
- (2) = Value for phosphorus (white) used
- (3) = Value for non-diet manganese
- (4) = Value for soluble nickel salts
- (5) = Predicted concentrations presented as total metals concentrations for Whale Tail lake, and dissolved metals concentrations for Flooded Pit
- = no guideline or data.

AO = Aesthetic objective; CaCO3 = calcium carbonate; COC = Contaminant of concern; DO = Dissolved oxygen; OG = Operational guideline; MAC = Maximum acceptable concentration; mg/L = milligrams per litre; mg-P/L = milligrams phosphorus per litre; NR = Not relevant for human health;  $\mu$ g/L = micrograms per litre.

## Screening:

Bold and shaded - Concentrations exceed baseline level+10% (B) and water quality guideline (G). If the water quality guideline is lower than the baseline+10%, the baseline+10% is used as the screening value. If there is no water quality guideline (NG), and a baseline value is available, baseline+10% is used as the screening value.

### References:

Health Canada, 2014. Guidelines for Canadian Drinking Water Quality Summary Table. October 2014.

Table 3: Surface Water Quality Screening for Aquatic Life - Off-Site Waterbodies (Approved Project)

| Table 3: Surface Water Quality         | ocreening to | Guidelines for the protection of: | te vvaterbodies (App |                          | _evels + 10% |                    |                      | Predicted Maximum Dissolv                         | ved Concentration      | s                     |               |                        |
|----------------------------------------|--------------|-----------------------------------|----------------------|--------------------------|--------------|--------------------|----------------------|---------------------------------------------------|------------------------|-----------------------|---------------|------------------------|
| Parameter                              | Unit         | Aquatic Life                      | Manage of his late   | Mammoth Lake A15 and A12 |              | Dameston and North |                      | Mammoth Lake                                      | Proper                 |                       | Retained as a | Rationale              |
|                                        |              | Chronic (CCME)                    | - Mammoth Lake       | A15 and A12              | 1            | Downstream Node    | Operational          | Closure (January 2022 to<br>June 2029, inclusive) | Post-Closure<br>Year 1 | Long Term             | COC?          |                        |
| Conventional Parameters                | ı.           |                                   | ı                    |                          |              | Į.                 |                      | <del></del>                                       | ļ-                     |                       |               |                        |
| Total alkalinity, as CaCO <sub>3</sub> | mg/L         | -                                 | 6.4                  | 6.5                      | 7.8          | 7.8                | 16 <sup>(B)</sup>    | 21 <sup>(B)</sup>                                 | 14 <sup>(B)</sup>      | 7.4 <sup>(B)</sup>    | No            | > B, NG <sup>(8)</sup> |
| Total dissolved solids                 | mg/L         | -                                 | 24                   | 20                       | 22           | 22                 | 57 <sup>(B)</sup>    | 85 <sup>(B)</sup>                                 | 56 <sup>(B)</sup>      | 31 <sup>(B)</sup>     | Yes           | > B, NG                |
| Major Ions                             |              |                                   |                      |                          | •            |                    |                      | •                                                 |                        |                       |               |                        |
| Calcium                                | mg/L         | -                                 | 2.6                  | 2.75                     | 2.2          | 2.2                | 6.6 <sup>(B)</sup>   | 11 <sup>(B)</sup>                                 | 7.7 <sup>(B)</sup>     | 4.5 <sup>(B)</sup>    | No            | > B, NG <sup>(8)</sup> |
| Magnesium                              | mg/L         | -                                 | 0.87                 | 0.95                     | 0.94         | 0.94               | 2.0 <sup>(B)</sup>   | 3.2 <sup>(B)</sup>                                | 2.3 <sup>(B)</sup>     | 1.3 <sup>(B)</sup>    | No            | > B, NG <sup>(8)</sup> |
| Potassium                              | mg/L         | -                                 | 0.58                 | 0.63                     | 0.37         | 0.65               | 3.7 <sup>(B)</sup>   | 7.5 <sup>(B)</sup>                                | 5.6 <sup>(B)</sup>     | 3.6 <sup>(B)</sup>    | No            | > B, NG <sup>(8)</sup> |
| Sodium                                 | mg/L         | -                                 | 0.61                 | 0.64                     | 0.80         | 0.80               | 5.4 <sup>(B)</sup>   | 6.1 <sup>(B)</sup>                                | 2.7 <sup>(B)</sup>     | 0.94 <sup>(B)</sup>   | No            | > B, NG <sup>(8)</sup> |
| Fluoride                               | mg/L         | 0.12                              | 0.036                | 0.028                    | 0.042        | 0.042              | 0.11 <sup>(B)</sup>  | 0.14 <sup>(B)</sup>                               | 0.094 <sup>(B)</sup>   | 0.051 <sup>(B)</sup>  | Yes           | > B, > G               |
| Sulphate                               | mg/L         | 128 <sup>(1)</sup>                | 3.2                  | 3.6                      | 1.3          | 2.6                | 14 <sup>(B)</sup>    | 26 <sup>(B)</sup>                                 | 19 <sup>(B)</sup>      | 12 <sup>(B)</sup>     | No            | > B, < G               |
| <b>Nutrients and Biological Indica</b> | itors        |                                   |                      |                          | •            |                    |                      |                                                   |                        |                       |               |                        |
| Dissolved phosphorus                   | mg-P/L       | -                                 | 0.0042               | 0.0011                   | 0.0011       | 0.0011             | 0.048 <sup>(B)</sup> | 0.058 <sup>(B)</sup>                              | 0.037 <sup>(B)</sup>   | 0.0041                | No            | > B, NG <sup>(9)</sup> |
| Dissolved Metals                       |              |                                   |                      |                          |              |                    |                      |                                                   |                        |                       |               |                        |
| Antimony                               | μg/L         | 9 <sup>(2)</sup>                  | 0.06                 | 0.06                     | 0.06         | 0.06               | 2.6 <sup>(B)</sup>   | 3.0 <sup>(B)</sup>                                | 1.3 <sup>(B)</sup>     | 0.64 <sup>(B)</sup>   | No            | > B, <g< td=""></g<>   |
| Arsenic                                | μg/L         | 5                                 | 0.52                 | 0.35                     | 0.17         | 0.18               | 18 <sup>(C, B)</sup> | 20 <sup>(C, B)</sup>                              | 8.5 <sup>(C, B)</sup>  | 2.8 <sup>(B)</sup>    | Yes           | > B, > G               |
| Barium                                 | μg/L         | 1000 <sup>(2)</sup>               | 5.2                  | 6.7                      | 3.4          | 8.1                | 12 <sup>(B)</sup>    | 19 <sup>(B)</sup>                                 | 12 <sup>(B)</sup>      | 6.2 <sup>(B)</sup>    | No            | > B, < G               |
| Beryllium                              | μg/L         | 0.13 <sup>(2)</sup>               | 0.06                 | 0.01                     | 0.01         | 0.01               | 0.024                | 0.025                                             | 0.012                  | 0.005                 | No            | < B, < G               |
| Bismuth                                | μg/L         | 0.7 <sup>(3)</sup>                | 0.28                 | 0.028                    | 0.028        | 0.028              | 0.033                | 0.033                                             | 0.024                  | 0.011                 | No            | < B, < G               |
| Chromium                               | μg/L         | 1 <sup>(4)</sup>                  | 0.06                 | 0.06                     | 0.06         | 0.06               | 0.94 <sup>(B)</sup>  | 1.1 <sup>(C, B)</sup>                             | 0.25 <sup>(B)</sup>    | 0.031                 | Yes           | > B, > G               |
| Cobalt                                 | μg/L         | 2.5 <sup>(5)</sup>                | 0.06                 | 0.06                     | 0.06         | 0.06               | 0.56 <sup>(B)</sup>  | 0.67 <sup>(B)</sup>                               | 0.32 <sup>(B)</sup>    | 0.087 <sup>(B)</sup>  | No            | > B, < G               |
| Lithium                                | μg/L         | -                                 | 0.55                 | 0.55                     | 0.55         | 0.55               | 1.7 <sup>(B)</sup>   | 2.7 <sup>(B)</sup>                                | 1.9 <sup>(B)</sup>     | 1.1 <sup>(B)</sup>    | Yes           | > B, NG                |
| Manganese                              | μg/L         | 1700 <sup>(3)</sup>               | 3.5                  | 0.65                     | 0.75         | 0.75               | 74 <sup>(B)</sup>    | 121 <sup>(B)</sup>                                | 50 <sup>(B)</sup>      | 5.2 <sup>(B)</sup>    | No            | > B, < G               |
| Molybdenum                             | μg/L         | 73                                | 0.028                | 0.028                    | 0.028        | 0.028              | 1.4 <sup>(B)</sup>   | 3.1 <sup>(B)</sup>                                | 2.3 <sup>(B)</sup>     | 1.5 <sup>(B)</sup>    | No            | > B, < G               |
| Nickel                                 | μg/L         | 25 <sup>(7)</sup>                 | 0.98                 | 0.72                     | 0.28         | 0.28               | 5.1 <sup>(B)</sup>   | 6.5 <sup>(B)</sup>                                | 3.0 <sup>(B)</sup>     | 0.67                  | No            | > B, < G               |
| Strontium                              | μg/L         | -                                 | 14                   | 12                       | 6.8          | 9.0                | 43 <sup>(B)</sup>    | 65 <sup>(B)</sup>                                 | 45 <sup>(B)</sup>      | 26 <sup>(B)</sup>     | Yes           | > B, NG                |
| Thallium                               | μg/L         | 0.8                               | 0.006                | 0.006                    | 0.006        | 0.006              | 0.023 <sup>(B)</sup> | 0.025 <sup>(B)</sup>                              | 0.015 <sup>(B)</sup>   | 0.0076 <sup>(B)</sup> | No            | > B, < G               |
| Tin                                    | μg/L         | 3 <sup>(3)</sup>                  | 0.055                | 0.13                     | 0.14         | 0.30               | 0.096 <sup>(B)</sup> | 0.15 <sup>(B)</sup>                               | 0.11 <sup>(B)</sup>    | 0.062 <sup>(B)</sup>  | No            | > B, < G               |
| Vanadium                               | μg/L         | 120 <sup>(6)</sup>                | 0.55                 | 0.28                     | 0.28         | 0.28               | 2.8 <sup>(B)</sup>   | 3.2 <sup>(B)</sup>                                | 1.1 <sup>(B)</sup>     | 0.48                  | No            | < B, < G               |

Water quality data and guidelines shown in this table were rounded to reflect laboratory or field instrument precision *after* comparisons to guidelines. Therefore, values slightly above guidelines may be displayed as being equal to the guidelines and identified as exceedances. Measured concentrations equal to the guideline values were not identified as exceedances.

## Notes:

- (B) = concentration higher than the relevant baseline level.
- (C) = concentration higher than the relevant chronic aquatic life guideline.
- (1) = In the absence of CCME guidelines, the BC MOE water quality guideline was used (based on observed hardness of 16.94 mg/L and observed pH of >6.5, if applicable).
- (2) = In the absence of CCME guidelines, the BC MOE working water quality guideline was used.
- (3) = In the absence of CCME guidelines for bismuth, manganese and tin, the ANZECC 2000 guidelines were used.
- (4) = CCME value for hexavalent chromium used in the absence of value for chromium.
- (5) = In the absence of CCME guidelines, the Federal Environmental Quality Guideline was used (Environment Canada 2013).
- (6) = In the absence of CCME guidelines, the EC/HC predicted no effect concentration (PNEC) for freshwater organisms was used (Environment Canada/Health Canada, 2010).
- $^{(7)}$  = CCME value based on available observed hardness value of 16.94 mg/L.
- (8) Alkalinity, calcium, potassium, magnesium and sodium were not identified as COCs because they are a component of TDS, a parameter which was identified as a COC and included in the assessment.
- (9) Phosphorus is a nutrient that can exert adverse effects at high concentrations via eutrophication. This parameter was not retained as a COC because potential effects related to eutrophication are assessed separately in the FEIS.
- $CaCO_3^2$  = calcium carbonate; COC = Contaminant of concern; mg/L = milligrams per litre; mg-N/L = milligrams nitrogen per litre; mg-P/L = milligrams phosporus per litre; µg/L = micrograms per litre.

## Screening:

Bold and shaded - Concentrations exceed baseline level+10% (B) and water quality guideline (G). If the water quality guideline is lower than the baseline+10%, the baseline+10% is used as the screening value. If there is no water quality guideline (NG), and a baseline value is available, baseline+10% is used as the screening value.

## References:

Australia and New Zealand Environment and Conservation Council (ANZECC), 2000. Australian and New Zealand guidelines for fresh and marine water quality, 2000. Volume 2 - Aquatic ecosystems - rationale and background information. National Water Quality Management Strategy, Australian and New Zealand Environment and Conservation. 678p. Accessed on-line at http://www.environment.gov.au/resource/australian-and-new-zealand-guidelines-fresh-and-marine-water-quality-volume-2-aquatic.

British Columbia Ministry of the Environment (BC MOE), 2016. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture. Summary Report. March 2016. Online: http://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/waterqualityguidesobjs/approved-wat-qual-guides/final\_approved\_wqg\_summary\_march\_2016.pdf.

British Columbia Ministry of the Environment (BC MOE), 2015. Working Water Quality Guidelines for British Columbia (2015). Online: http://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/waterqualityguidesobjs/final\_2015\_wwqgs\_26\_nov\_2015.pdf.

Canadian Council of Ministers of the Environment (CCME), current to April 2016. Canadian Water Quality Guidelines for the Protection of Aquatic Life. Environment Canada/Health Canada (EC/HC), 2010. Screening Assessment for the Challenge, Vanadium oxide (Vanadium pentoxide). Chemical Abstracts Service Registry Number 1314-62-1. September 2010.

Environment Canada, 2013. Federal Environmental Quality Guidelines. Cobalt. Canadian Environmental Protection Act, 1999. February 2013.

Table 3: Surface Water Quality Screening for Aquatic Life - Off-Site Waterbodies (Approved Project)

| Table 3: Surface Water Quality Se      | creening fo |                                      | te Waterbodies (App | proved Project) |                 |                 |                      |                                                   |                        |                       |             | 1                      |
|----------------------------------------|-------------|--------------------------------------|---------------------|-----------------|-----------------|-----------------|----------------------|---------------------------------------------------|------------------------|-----------------------|-------------|------------------------|
|                                        |             | Guidelines for the<br>protection of: |                     | Baseline I      | _evels + 10%    |                 | Pre                  | dicted Maximum Dissolve                           | d Concentration        | s                     |             |                        |
| Parameter                              | Unit        | Aquatic Life                         | Mammoth Lake        | A15 and A12     | Downstream Node | Downstroom Nodo |                      | Lake A15                                          |                        |                       | Retained as | Rationale              |
|                                        |             | Chronic (CCME)                       | Mammour Lake        | A 15 and A 12   | 1               | 2               | Operational          | Closure (January 2022<br>to June 2029, inclusive) | Post-Closure<br>Year 1 | Long Term             | a COC?      |                        |
| Conventional Parameters                |             |                                      | •                   |                 | •               | •               |                      | •                                                 |                        | •                     |             |                        |
| Total alkalinity, as CaCO <sub>3</sub> | mg/L        | -                                    | 6.4                 | 6.5             | 7.8             | 7.8             | 15 <sup>(B)</sup>    | 18 <sup>(B)</sup>                                 | 14 <sup>(B)</sup>      | 7.2 <sup>(B)</sup>    | No          | > B, NG <sup>(8)</sup> |
| Total dissolved solids                 | mg/L        | -                                    | 24                  | 20              | 22              | 22              | 52 <sup>(B)</sup>    | 70 <sup>(B)</sup>                                 | 52 <sup>(B)</sup>      | 30 <sup>(B)</sup>     | Yes         | > B, NG                |
| Major Ions                             |             |                                      |                     |                 |                 |                 |                      |                                                   |                        |                       |             |                        |
| Calcium                                | mg/L        | =                                    | 2.6                 | 2.75            | 2.2             | 2.2             | 6.1 <sup>(B)</sup>   | 8.8 <sup>(B)</sup>                                | 7.2 <sup>(B)</sup>     | 4.2 <sup>(B)</sup>    | No          | > B, NG <sup>(8)</sup> |
| Magnesium                              | mg/L        | =                                    | 0.87                | 0.95            | 0.94            | 0.94            | 1.9 <sup>(B)</sup>   | 2.6 <sup>(B)</sup>                                | 2.2 <sup>(B)</sup>     | 1.3 <sup>(B)</sup>    | No          | > B, NG <sup>(8)</sup> |
| Potassium                              | mg/L        | =                                    | 0.58                | 0.63            | 0.37            | 0.65            | 3.3 <sup>(B)</sup>   | 6.0 <sup>(B)</sup>                                | 5.0 <sup>(B)</sup>     | 3.3 <sup>(B)</sup>    | No          | > B, NG <sup>(8)</sup> |
| Sodium                                 | mg/L        | =                                    | 0.61                | 0.64            | 0.80            | 0.80            | 4.9 <sup>(B)</sup>   | 5.2 <sup>(B)</sup>                                | 2.7 <sup>(B)</sup>     | 0.9 <sup>(B)</sup>    | No          | > B, NG <sup>(8)</sup> |
| Fluoride                               | mg/L        | 0.12                                 | 0.036               | 0.028           | 0.042           | 0.042           | 0.097 <sup>(B)</sup> | 0.12 <sup>(B)</sup>                               | 0.089 <sup>(B)</sup>   | 0.049 <sup>(B)</sup>  | No          | > B, < G               |
| Sulphate                               | mg/L        | 128 <sup>(1)</sup>                   | 3.2                 | 3.6             | 1.3             | 2.6             | 13 <sup>(B)</sup>    | 21 <sup>(B)</sup>                                 | 17 <sup>(B)</sup>      | 11 <sup>(B)</sup>     | No          | > B, < G               |
| Nutrients and Biological Indicator     | rs          |                                      |                     |                 |                 |                 |                      |                                                   |                        |                       |             |                        |
| Dissolved phosphorus                   | mg-P/L      | -                                    | 0.0042              | 0.0011          | 0.0011          | 0.0011          | 0.043 <sup>(B)</sup> | 0.048 <sup>(B)</sup>                              | 0.034 <sup>(B)</sup>   | 0.0041 <sup>(B)</sup> | No          | > B, NG <sup>(9)</sup> |
| Dissolved Metals                       |             |                                      | 1                   |                 | _               |                 |                      |                                                   | -                      |                       |             |                        |
| Antimony                               | μg/L        | 9 <sup>(2)</sup>                     | 0.06                | 0.06            | 0.06            | 0.06            | 2.3 <sup>(B)</sup>   | 2.5 <sup>(B)</sup>                                | 1.2 <sup>(B)</sup>     | 0.59 <sup>(B)</sup>   | No          | > B, < G               |
| Arsenic                                | μg/L        | 5                                    | 0.52                | 0.35            | 0.17            | 0.18            | 16 <sup>(C, B)</sup> | 17 <sup>(C, B)</sup>                              | 8.3 <sup>(C, B)</sup>  | 2.6 <sup>(B)</sup>    | Yes         | > B, > G               |
| Barium                                 | μg/L        | 1000 <sup>(2)</sup>                  | 5.2                 | 6.7             | 3.4             | 8.1             | 11 <sup>(B)</sup>    | 16 <sup>(B)</sup>                                 | 12 <sup>(B)</sup>      | 6.1                   | No          | > B, < G               |
| Beryllium                              | μg/L        | 0.13 <sup>(2)</sup>                  | 0.06                | 0.01            | 0.01            | 0.01            | 0.022 <sup>(B)</sup> | 0.023 <sup>(B)</sup>                              | 0.013 <sup>(B)</sup>   | 0.0054                | No          | > B, < G               |
| Bismuth                                | μg/L        | 0.7 <sup>(3)</sup>                   | 0.28                | 0.028           | 0.028           | 0.028           | 0.032 <sup>(B)</sup> | 0.032 <sup>(B)</sup>                              | 0.026                  | 0.012                 | No          | > B, < G               |
| Chromium                               | μg/L        | 1 <sup>(4)</sup>                     | 0.06                | 0.06            | 0.06            | 0.06            | 0.83 <sup>(B)</sup>  | 0.89 <sup>(B)</sup>                               | 0.26 <sup>(B)</sup>    | 0.033                 | No          | > B, < G               |
| Cobalt                                 | μg/L        | 2.5 <sup>(5)</sup>                   | 0.06                | 0.06            | 0.06            | 0.06            | 0.5 <sup>(B)</sup>   | 0.56 <sup>(B)</sup>                               | 0.33 <sup>(B)</sup>    | 0.083 <sup>(B)</sup>  | No          | > B, < G               |
| Lithium                                | μg/L        | -                                    | 0.55                | 0.55            | 0.55            | 0.55            | 1.5 <sup>(B)</sup>   | 2.3 <sup>(B)</sup>                                | 1.8 <sup>(B)</sup>     | 1.1 <sup>(B)</sup>    | Yes         | > B, NG                |
| Manganese                              | μg/L        | 1700 <sup>(3)</sup>                  | 3.5                 | 0.65            | 0.75            | 0.75            | 65 <sup>(B)</sup>    | 96 <sup>(B)</sup>                                 | 53 <sup>(B)</sup>      | 4.8 <sup>(B)</sup>    | No          | > B, < G               |
| Molybdenum                             | μg/L        | 73                                   | 0.028               | 0.028           | 0.028           | 0.028           | 1.3 <sup>(B)</sup>   | 2.4 <sup>(B)</sup>                                | 2.0 <sup>(B)</sup>     | 1.3 <sup>(B)</sup>    | No          | > B, < G               |
| Nickel                                 | μg/L        | 25 <sup>(7)</sup>                    | 0.98                | 0.72            | 0.28            | 0.28            | 4.6 <sup>(B)</sup>   | 5.4 <sup>(B)</sup>                                | 3.1 <sup>(B)</sup>     | 0.65                  | No          | > B, < G               |
| Strontium                              | μg/L        | -                                    | 14                  | 12              | 6.8             | 9.0             | 39 <sup>(B)</sup>    | 53 <sup>(B)</sup>                                 | 42 <sup>(B)</sup>      | 24 <sup>(B)</sup>     | Yes         | > B, NG                |
| Thallium                               | μg/L        | 0.8                                  | 0.006               | 0.006           | 0.006           | 0.006           | 0.02 <sup>(B)</sup>  | 0.022 <sup>(B)</sup>                              | 0.014 <sup>(B)</sup>   | 0.0073 <sup>(B)</sup> | No          | > B, < G               |
| Tin                                    | μg/L        | 3 <sup>(3)</sup>                     | 0.055               | 0.13            | 0.14            | 0.30            | 0.096                | 0.14 <sup>(B)</sup>                               | 0.11                   | 0.064                 | No          | > B, < G               |
| Vanadium                               | μg/L        | 120 <sup>(6)</sup>                   | 0.55                | 0.28            | 0.28            | 0.28            | 2.5 <sup>(B)</sup>   | 2.7 <sup>(B)</sup>                                | 1.1 <sup>(B)</sup>     | 0.46 <sup>(B)</sup>   | No          | > B, < G               |

Water quality data and guidelines shown in this table were rounded to reflect laboratory or field instrument precision *after* comparisons to guidelines. Therefore, values slightly above guidelines may be displayed as being equal to the guidelines and identified as exceedances. Measured concentrations equal to the guideline values were not identified as exceedances.

## Notes:

- (B) = concentration higher than the relevant baseline level.
- (C) = concentration higher than the relevant chronic aquatic life guideline.
- (1) = In the absence of CCME guidelines, the BC MOE water quality guideline was used (based on observed hardness of 16.94 mg/L and observed pH of >6.5, if applicable).
- (2) = In the absence of CCME guidelines, the BC MOE working water quality guideline was used.
- (3) = In the absence of CCME guidelines for bismuth, manganese and tin, the ANZECC 2000 guidelines were used.
- (4) = CCME value for hexavalent chromium used in the absence of value for chromium.
- (5) = In the absence of CCME guidelines, the Federal Environmental Quality Guideline was used (Environment Canada 2013).
- (6) = In the absence of CCME guidelines, the EC/HC predicted no effect concentration (PNEC) for freshwater organisms was used (Environment Canada/Health Canada, 2010).
- <sup>(7)</sup> = CCME value based on available observed hardness value of 16.94 mg/L.
- (8) Alkalinity, calcium, potassium, magnesium and sodium were not identified as COCs because they are a component of TDS, a parameter which was iden
- (9) Phosphorus is a nutrient that can exert adverse effects at high concentrations via eutrophication. This parameter was not retained as a COC because p = no quideline or data.
- CaCO<sub>3</sub> = calcium carbonate; COC = Contaminant of concern; mg/L = milligrams per litre; mg-N/L = milligrams nitrogen per litre; mg-P/L = milligrams phosporus per litre; µg/L = micrograms per litre.

## Screening:

Bold and shaded - Concentrations exceed baseline level+10% (B) and water quality guideline (G). If the water quality guideline is lower than the baseline+10%, the baseline+10% is used as the screening value. If there is no water quality guideline (NG), and a baseline value is available, baseline+10% is used as the screening value.

## References:

Australia and New Zealand Environment and Conservation Council (ANZECC), 2000. Australian and New Zealand guidelines for fresh and marine water quality, 2000. Volume 2 - Aquatic ecosystems - rationale and background information. National Water Quality Management Strategy, Australian and New Zealand Environment and Conservation. 678p. Accessed on-line at http://www.environment.gov.au/resource/australian-and-new-zealand-guidelines-fresh-and-marine-water-quality-volume-2-aquatic.

British Columbia Ministry of the Environment (BC MOE), 2016. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture. Summary Report. March 2016. Online: http://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/waterqualityguidesobjs/approved-wat-qual-guides/final\_approved\_wqg\_summary\_march\_2016.pdf.

British Columbia Ministry of the Environment (BC MOE), 2015. Working Water Quality Guidelines for British Columbia (2015). Online: http://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/waterqualityguidesobjs/final\_2015\_wwqgs\_26\_nov\_2015.pdf.

Canadian Council of Ministers of the Environment (CCME), current to April 2016. Canadian Water Quality Guidelines for the Protection of Aquatic Life. Environment Canada/Health Canada (EC/HC), 2010. Screening Assessment for the Challenge, Vanadium oxide (Vanadium pentoxide). Chemical Abstracts Service Registry Number 1314-62-1. September 2010.

Environment Canada, 2013. Federal Environmental Quality Guidelines. Cobalt. Canadian Environmental Protection Act, 1999. February 2013.

Table 3: Surface Water Quality Screening for Aquatic Life - Off-Site Waterbodies (Approved Project)

|                                        |        | Guidelines for the<br>protection of: |               | Baseline L     | evels + 10%     |                 | P                    | redicted Maximum Dissolve                         | d Concentrations       |                       |             |                        |
|----------------------------------------|--------|--------------------------------------|---------------|----------------|-----------------|-----------------|----------------------|---------------------------------------------------|------------------------|-----------------------|-------------|------------------------|
| Parameter                              | Unit   | Aquatic Life                         | Mammoth Lake  | A15 and A12    | Downstream Node | Downstroom Nodo |                      | Lake A12                                          |                        |                       | Retained as | Rationale              |
|                                        |        | Chronic (CCME)                       | Manimoth Lake | A 13 aliu A 12 | 1               | 2               | Operational          | Closure (January 2022 to<br>June 2029, inclusive) | Post-Closure<br>Year 1 | Long Term             | a COC?      |                        |
| Conventional Parameters                | '      |                                      | •             |                |                 |                 |                      | •                                                 |                        |                       |             |                        |
| Total alkalinity, as CaCO <sub>3</sub> | mg/L   |                                      | 6.4           | 6.5            | 7.8             | 7.8             | 14 <sup>(B)</sup>    | 17 <sup>(B)</sup>                                 | 13 <sup>(B)</sup>      | 7.1 <sup>(B)</sup>    | No          | > B, NG <sup>(8)</sup> |
| Total dissolved solids                 | mg/L   | -                                    | 24            | 20             | 22              | 22              | 49 <sup>(B)</sup>    | 64 <sup>(B)</sup>                                 | 49 <sup>(B)</sup>      | 28 <sup>(B)</sup>     | Yes         | > B, NG                |
| Major Ions                             | , ,    |                                      | •             |                | •               |                 |                      | •                                                 |                        | •                     |             |                        |
| Calcium                                | mg/L   | -                                    | 2.6           | 2.75           | 2.2             | 2.2             | 5.8 <sup>(B)</sup>   | 8.0 <sup>(B)</sup>                                | 6.7 <sup>(B)</sup>     | 4.1 <sup>(B)</sup>    | No          | > B, NG <sup>(8)</sup> |
| Magnesium                              | mg/L   | -                                    | 0.87          | 0.95           | 0.94            | 0.94            | 1.8 <sup>(B)</sup>   | 2.4 <sup>(B)</sup>                                | 2.0 <sup>(B)</sup>     | 1.2 <sup>(B)</sup>    | No          | > B, NG <sup>(8)</sup> |
| Potassium                              | mg/L   | -                                    | 0.58          | 0.63           | 0.37            | 0.65            | 3.1 <sup>(B)</sup>   | 5.3 <sup>(B)</sup>                                | 4.7 <sup>(B)</sup>     | 3.1 <sup>(B)</sup>    | No          | > B, NG <sup>(8)</sup> |
| Sodium                                 | mg/L   | -                                    | 0.61          | 0.64           | 0.80            | 0.80            | 4.6 <sup>(B)</sup>   | 4.7 <sup>(B)</sup>                                | 2.6 <sup>(B)</sup>     | 0.88 <sup>(B)</sup>   | No          | > B, NG <sup>(8)</sup> |
| Fluoride                               | mg/L   | 0.12                                 | 0.036         | 0.028          | 0.042           | 0.042           | 0.093 <sup>(B)</sup> | 0.11 <sup>(B)</sup>                               | 0.085 <sup>(B)</sup>   | 0.047 <sup>(B)</sup>  | No          | > B, < G               |
| Sulphate                               | mg/L   | 128 <sup>(1)</sup>                   | 3.2           | 3.6            | 1.3             | 2.6             | 12 <sup>(B)</sup>    | 19 <sup>(B)</sup>                                 | 16 <sup>(B)</sup>      | 10 <sup>(B)</sup>     | No          | > B, < G               |
| Nutrients and Biological Indica        | ators  |                                      | •             |                |                 |                 |                      | •                                                 |                        |                       |             |                        |
| Dissolved phosphorus                   | mg-P/L | i                                    | 0.0042        | 0.0011         | 0.0011          | 0.0011          | 0.04 <sup>(B)</sup>  | 0.043 <sup>(B)</sup>                              | 0.032 <sup>(B)</sup>   | 0.0041 <sup>(B)</sup> | No          | > B, NG <sup>(9)</sup> |
| Dissolved Metals                       |        |                                      |               |                |                 |                 |                      |                                                   |                        |                       |             |                        |
| Antimony                               | μg/L   | 9 <sup>(2)</sup>                     | 0.06          | 0.06           | 0.06            | 0.06            | 2.2 <sup>(B)</sup>   | 2.2 <sup>(B)</sup>                                | 1.1 <sup>(B)</sup>     | 0.54 <sup>(B)</sup>   | No          | > B, <g< td=""></g<>   |
| Arsenic                                | μg/L   | 5                                    | 0.52          | 0.35           | 0.17            | 0.18            | 15 <sup>(C, B)</sup> | 15 <sup>(C, B)</sup>                              | 8.1 <sup>(C, B)</sup>  | 2.4 <sup>(B)</sup>    | Yes         | > B, > G               |
| Barium                                 | μg/L   | 1000 <sup>(2)</sup>                  | 5.2           | 6.7            | 3.4             | 8.1             | 11 <sup>(B)</sup>    | 15 <sup>(B)</sup>                                 | 12 <sup>(B)</sup>      | 6.0                   | No          | > B, < G               |
| Beryllium                              | μg/L   | 0.13 <sup>(2)</sup>                  | 0.06          | 0.01           | 0.01            | 0.01            | 0.022 <sup>(B)</sup> | 0.022 <sup>(B)</sup>                              | 0.014 <sup>(B)</sup>   | 0.0059                | No          | > B, < G               |
| Bismuth                                | μg/L   | 0.7 <sup>(3)</sup>                   | 0.28          | 0.028          | 0.028           | 0.028           | 0.032 <sup>(B)</sup> | 0.033 <sup>(B)</sup>                              | 0.027                  | 0.013                 | No          | > B, < G               |
| Chromium                               | μg/L   | 1 <sup>(4)</sup>                     | 0.06          | 0.06           | 0.06            | 0.06            | 0.78 <sup>(B)</sup>  | 0.81 <sup>(B)</sup>                               | 0.27 <sup>(B)</sup>    | 0.035                 | No          | > B, < G               |
| Cobalt                                 | μg/L   | 2.5 <sup>(5)</sup>                   | 0.06          | 0.06           | 0.06            | 0.06            | 0.47 <sup>(B)</sup>  | 0.51 <sup>(B)</sup>                               | 0.33 <sup>(B)</sup>    | 0.081 <sup>(B)</sup>  | No          | > B, < G               |
| Lithium                                | μg/L   | -                                    | 0.55          | 0.55           | 0.55            | 0.55            | 1.5 <sup>(B)</sup>   | 2.1 <sup>(B)</sup>                                | 1.7 <sup>(B)</sup>     | 1.0 <sup>(B)</sup>    | Yes         | > B, NG                |
| Manganese                              | μg/L   | 1700 <sup>(3)</sup>                  | 3.5           | 0.65           | 0.75            | 0.75            | 61 <sup>(B)</sup>    | 85 <sup>(B)</sup>                                 | 54 <sup>(B)</sup>      | 4.5 <sup>(B)</sup>    | No          | > B, < G               |
| Molybdenum                             | μg/L   | 73                                   | 0.028         | 0.028          | 0.028           | 0.028           | 1.2 <sup>(B)</sup>   | 2.1 <sup>(B)</sup>                                | 1.9 <sup>(B)</sup>     | 1.2 <sup>(B)</sup>    | No          | > B, < G               |
| Nickel                                 | μg/L   | 25 <sup>(7)</sup>                    | 0.98          | 0.72           | 0.28            | 0.28            | 4.3 <sup>(B)</sup>   | 4.8 <sup>(B)</sup>                                | 3.2 <sup>(B)</sup>     | 0.63                  | No          | > B, < G               |
| Strontium                              | μg/L   | -                                    | 14            | 12             | 6.8             | 9.0             | 38 <sup>(B)</sup>    | 48 <sup>(B)</sup>                                 | 40 <sup>(B)</sup>      | 23 <sup>(B)</sup>     | Yes         | > B, NG                |
| Thallium                               | μg/L   | 0.8                                  | 0.006         | 0.006          | 0.006           | 0.006           | 0.02 <sup>(B)</sup>  | 0.02 <sup>(B)</sup>                               | 0.014 <sup>(B)</sup>   | 0.0071 <sup>(B)</sup> | No          | > B, < G               |
| Tin                                    | μg/L   | 3 <sup>(3)</sup>                     | 0.055         | 0.13           | 0.14            | 0.30            | 0.1                  | 0.14 <sup>(B)</sup>                               | 0.11                   | 0.069                 | No          | > B, < G               |
| Vanadium                               | μg/L   | 120 <sup>(6)</sup>                   | 0.55          | 0.28           | 0.28            | 0.28            | 2.4 <sup>(B)</sup>   | 2.4 <sup>(B)</sup>                                | 1.1 <sup>(B)</sup>     | 0.44 <sup>(B)</sup>   | No          | > B, < G               |

Water quality data and guidelines shown in this table were rounded to reflect laboratory or field instrument precision *after* comparisons to guidelines. Therefore, values slightly above guidelines may be displayed as being equal to the guidelines and identified as exceedances. Measured concentrations equal to the guideline values were not identified as exceedances.

## Notes:

- (B) = concentration higher than the relevant baseline level.
- (C) = concentration higher than the relevant chronic aquatic life guideline.
- (1) = In the absence of CCME guidelines, the BC MOE water quality guideline was used (based on observed hardness of 16.94 mg/L and observed pH of >6.5, if applicable).
- (2) = In the absence of CCME guidelines, the BC MOE working water quality guideline was used.
- $^{(3)}$  = In the absence of CCME guidelines for bismuth, manganese and tin, the ANZECC 2000 guidelines were used.
- (4) = CCME value for hexavalent chromium used in the absence of value for chromium.
- (5) = In the absence of CCME guidelines, the Federal Environmental Quality Guideline was used (Environment Canada 2013).
- (6) = In the absence of CCME guidelines, the EC/HC predicted no effect concentration (PNEC) for freshwater organisms was used (Environment Canada/Health Canada, 2010).
- $^{(7)}$  = CCME value based on available observed hardness value of 16.94 mg/L.
- (8) Alkalinity, calcium, potassium, magnesium and sodium were not identified as COCs because they are a component of TDS, a parameter which was iden
- (9) Phosphorus is a nutrient that can exert adverse effects at high concentrations via eutrophication. This parameter was not retained as a COC because p = no quideline or data.
- CaCO<sub>3</sub> = calcium carbonate; COC = Contaminant of concern; mg/L = milligrams per litre; mg-N/L = milligrams nitrogen per litre; mg-P/L = milligrams phosporus per litre; µg/L = micrograms per litre.

# Screening:

Bold and shaded - Concentrations exceed baseline level+10% (B) and water quality guideline (G). If the water quality guideline is lower than the baseline+10%, the baseline+10% is used as the screening value. If there is no water quality guideline (NG), and a baseline value is available, baseline+10% is used as the screening value.

# References:

Australia and New Zealand Environment and Conservation Council (ANZECC), 2000. Australian and New Zealand guidelines for fresh and marine water quality, 2000. Volume 2 - Aquatic ecosystems - rationale and background information. National Water Quality Management Strategy, Australian and New Zealand Environment and Conservation. 678p. Accessed on-line at http://www.environment.gov.au/resource/australian-and-new-zealand-guidelines-fresh-and-marine-water-quality-volume-2-aquatic.

British Columbia Ministry of the Environment (BC MOE), 2016. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture. Summary Report. March 2016. Online: http://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/waterqualityguidesobjs/approved-wat-qual-guides/final\_approved\_wqg\_summary\_march\_2016.pdf.

British Columbia Ministry of the Environment (BC MOE), 2015. Working Water Quality Guidelines for British Columbia (2015). Online: http://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/waterqualityguidesobjs/final\_2015\_wwqgs\_26\_nov\_2015.pdf.

Canadian Council of Ministers of the Environment (CCME), current to April 2016. Canadian Water Quality Guidelines for the Protection of Aquatic Life. Environment Canada/Health Canada (EC/HC), 2010. Screening Assessment for the Challenge, Vanadium oxide (Vanadium pentoxide). Chemical Abstracts Service Registry Number 1314-62-1. September 2010.

| Table 3: Surface Water Quality         | Screening for | or Aquatic Life - Off-Sit<br>Guidelines for the | te Waterbodies (App | roved Project) |                 | <del></del>     |                       |                                                   |                        |                      |               |                        |
|----------------------------------------|---------------|-------------------------------------------------|---------------------|----------------|-----------------|-----------------|-----------------------|---------------------------------------------------|------------------------|----------------------|---------------|------------------------|
|                                        |               | protection of:                                  |                     | Baseline L     | evels + 10%     |                 | F                     | Predicted Maximum Dissolved                       | I Concentrations       |                      |               |                        |
| Parameter                              | Unit          | Aquatic Life                                    | Mammoth Lake        | A15 and A12    | Downstroom Nodo | Downstream Node |                       | Downstream Noc                                    | ie 1                   |                      | Retained as a | Rationale              |
|                                        |               | Chronic (CCME)                                  | Mammoth Lake        | A 15 and A 12  | 1               | 2               | Operational           | Closure (January 2022 to<br>June 2029, inclusive) | Post-Closure<br>Year 1 | Long Term            | COC?          |                        |
| Conventional Parameters                | •             | •                                               | •                   |                | *               | •               |                       |                                                   |                        |                      |               |                        |
| Total alkalinity, as CaCO <sub>3</sub> | mg/L          | -                                               | 6.4                 | 6.5            | 7.8             | 7.8             | 6.3                   | 6.2                                               | 6.6                    | 5.9                  | No            | < B, NG                |
| Total dissolved solids                 | mg/L          | -                                               | 24                  | 20             | 22              | 22              | 16                    | 15                                                | 17                     | 15                   | No            | < B, NG                |
| Major Ions                             |               |                                                 |                     |                |                 |                 |                       | •                                                 |                        |                      |               |                        |
| Calcium                                | mg/L          | -                                               | 2.6                 | 2.75           | 2.2             | 2.2             | 2.3 <sup>(B)</sup>    | 2.2 <sup>(B)</sup>                                | 2.5 <sup>(B)</sup>     | 2.2 <sup>(B)</sup>   | No            | > B, NG <sup>(8)</sup> |
| Magnesium                              | mg/L          | -                                               | 0.87                | 0.95           | 0.94            | 0.94            | 0.74                  | 0.72                                              | 0.8                    | 0.72                 | No            | < B, NG                |
| Potassium                              | mg/L          | -                                               | 0.58                | 0.63           | 0.37            | 0.65            | 0.68 <sup>(B)</sup>   | 0.68 <sup>(B)</sup>                               | 0.88 <sup>(B)</sup>    | 0.78 <sup>(B)</sup>  | No            | > B, NG <sup>(8)</sup> |
| Sodium                                 | mg/L          | -                                               | 0.61                | 0.64           | 0.80            | 0.80            | 0.93 <sup>(B)</sup>   | 0.89 <sup>(B)</sup>                               | 0.89 <sup>(B)</sup>    | 0.69                 | No            | > B, NG <sup>(8)</sup> |
| Fluoride                               | mg/L          | 0.12                                            | 0.036               | 0.028          | 0.042           | 0.042           | 0.032                 | 0.031                                             | 0.034                  | 0.03                 | No            | < B, < G               |
| Sulphate                               | mg/L          | 128 <sup>(1)</sup>                              | 3.2                 | 3.6            | 1.3             | 2.6             | 2.9 <sup>(B)</sup>    | 2.8 <sup>(B)</sup>                                | 3.5 <sup>(B)</sup>     | 3.1 <sup>(B)</sup>   | No            | > B, < G               |
| Nutrients and Biological Indica        | itors         |                                                 |                     |                |                 |                 |                       | •                                                 |                        |                      |               |                        |
| Dissolved phosphorus                   | mg-P/L        | -                                               | 0.0042              | 0.0011         | 0.0011          | 0.0011          | 0.0044 <sup>(B)</sup> | 0.004 <sup>(B)</sup>                              | 0.0047 <sup>(B)</sup>  | 0.002 <sup>(B)</sup> | No            | > B, NG <sup>(9)</sup> |
| Dissolved Metals                       |               |                                                 |                     |                |                 |                 |                       |                                                   |                        |                      |               |                        |
| Antimony                               | μg/L          | 9 <sup>(2)</sup>                                | 0.06                | 0.06           | 0.06            | 0.06            | 0.2 <sup>(B)</sup>    | 0.18 <sup>(B)</sup>                               | 0.17 <sup>(B)</sup>    | 0.11 <sup>(B)</sup>  | No            | > B, <g< td=""></g<>   |
| Arsenic                                | μg/L          | 5                                               | 0.52                | 0.35           | 0.17            | 0.18            | 1.2 <sup>(B)</sup>    | 1.1 <sup>(B)</sup>                                | 1.0 <sup>(B)</sup>     | 0.41 <sup>(B)</sup>  | No            | > B, < G               |
| Barium                                 | μg/L          | 1000 <sup>(2)</sup>                             | 5.2                 | 6.7            | 3.4             | 8.1             | 6.0 <sup>(B)</sup>    | 6.0 <sup>(B)</sup>                                | 6.3 <sup>(B)</sup>     | 5.7 <sup>(B)</sup>   | No            | > B, < G               |
| Beryllium                              | μg/L          | 0.13 <sup>(2)</sup>                             | 0.06                | 0.01           | 0.01            | 0.01            | 0.011 <sup>(B)</sup>  | 0.011 <sup>(B)</sup>                              | 0.011 <sup>(B)</sup>   | 0.01                 | No            | > B, < G               |
| Bismuth                                | μg/L          | 0.7 <sup>(3)</sup>                              | 0.28                | 0.028          | 0.028           | 0.028           | 0.026                 | 0.026                                             | 0.026                  | 0.025                | No            | < B, < G               |
| Chromium                               | μg/L          | 1 <sup>(4)</sup>                                | 0.06                | 0.06           | 0.06            | 0.06            | 0.1 <sup>(B)</sup>    | 0.096 <sup>(B)</sup>                              | 0.079 <sup>(B)</sup>   | 0.05                 | No            | > B, < G               |
| Cobalt                                 | μg/L          | 2.5 <sup>(5)</sup>                              | 0.06                | 0.06           | 0.06            | 0.06            | 0.08 <sup>(B)</sup>   | 0.076 <sup>(B)</sup>                              | 0.082 <sup>(B)</sup>   | 0.055                | No            | > B, < G               |
| Lithium                                | μg/L          | -                                               | 0.55                | 0.55           | 0.55            | 0.55            | 0.58 <sup>(B)</sup>   | 0.57 <sup>(B)</sup>                               | 0.64 <sup>(B)</sup>    | 0.57 <sup>(B)</sup>  | Yes           | > B, NG                |
| Manganese                              | μg/L          | 1700 <sup>(3)</sup>                             | 3.5                 | 0.65           | 0.75            | 0.75            | 4.9 <sup>(B)</sup>    | 4.4 <sup>(B)</sup>                                | 6.3 <sup>(B)</sup>     | 1.1 <sup>(B)</sup>   | No            | > B, < G               |
| Molybdenum                             | μg/L          | 73                                              | 0.028               | 0.028          | 0.028           | 0.028           | 0.11 <sup>(B)</sup>   | 0.11 <sup>(B)</sup>                               | 0.2 <sup>(B)</sup>     | 0.16 <sup>(B)</sup>  | No            | > B, < G               |
| Nickel                                 | μg/L          | 25 <sup>(7)</sup>                               | 0.98                | 0.72           | 0.28            | 0.28            | 0.68 <sup>(B)</sup>   | 0.65 <sup>(B)</sup>                               | 0.71 <sup>(B)</sup>    | 0.44 <sup>(B)</sup>  | No            | > B, < G               |
| Strontium                              | μg/L          | -                                               | 14                  | 12             | 6.8             | 9.0             | 11 <sup>(B)</sup>     | 10 <sup>(B)</sup>                                 | 12 <sup>(B)</sup>      | 10 <sup>(B)</sup>    | Yes           | > B, NG                |
| Thallium                               | μg/L          | 0.8                                             | 0.006               | 0.006          | 0.006           | 0.006           | 0.0062 <sup>(B)</sup> | 0.006                                             | 0.0061 <sup>(B)</sup>  | 0.0054               | No            | > B, < G               |
| Tin                                    | μg/L          | 3 <sup>(3)</sup>                                | 0.055               | 0.13           | 0.14            | 0.30            | 0.11                  | 0.12                                              | 0.12                   | 0.11                 | No            | < B, < G               |
| Vanadium                               | μg/L          | 120 <sup>(6)</sup>                              | 0.55                | 0.28           | 0.28            | 0.28            | 0.4 <sup>(B)</sup>    | 0.38 <sup>(B)</sup>                               | 0.36 <sup>(B)</sup>    | 0.28                 | No            | > B, < G               |

Water quality data and guidelines shown in this table were rounded to reflect laboratory or field instrument precision after comparisons to guidelines. Therefore, values slightly above guidelines may be displayed as being equal to the guidelines and identified as exceedances. Measured concentrations equal to the guideline values were not identified as exceedances.

## Notes:

- concentration higher than the relevant baseline level.
- (C) = concentration higher than the relevant chronic aquatic life guideline.
- (1) = In the absence of CCME guidelines, the BC MOE water quality guideline was used (based on observed hardness of 16.94 mg/L and observed pH of >6.5, if applicable).
- (2) = In the absence of CCME guidelines, the BC MOE working water quality guideline was used.
- $^{(3)}$  = In the absence of CCME guidelines for bismuth, manganese and tin, the ANZECC 2000 guidelines were used.
- (4) = CCME value for hexavalent chromium used in the absence of value for chromium.
- (5) = In the absence of CCME guidelines, the Federal Environmental Quality Guideline was used (Environment Canada 2013).
- (6) = In the absence of CCME guidelines, the EC/HC predicted no effect concentration (PNEC) for freshwater organisms was used (Environment Canada/Health Canada, 2010).
- (7) = CCME value based on available observed hardness value of 16.94 mg/L.
- (8) Alkalinity, calcium, potassium, magnesium and sodium were not identified as COCs because they are a component of TDS, a parameter which was iden
- (9) Phosphorus is a nutrient that can exert adverse effects at high concentrations via eutrophication. This parameter was not retained as a COC because p - = no guideline or data.
- CaCO3 = calcium carbonate; COC = Contaminant of concern; mg/L = milligrams per litre; mg-N/L = milligrams nitrogen per litre; mg-P/L = milligrams phosporus per litre;  $\mu$ g/L = micrograms per litre.

# Screening:

Bold and shaded - Concentrations exceed baseline level+10% (B) and water quality guideline (G). If the water quality guideline is lower than the baseline+10%, the baseline+10% is used as the screening value. If there is no water quality guideline (NG), and a baseline value is available, baseline+10% is used as the screening value.

# References:

Australia and New Zealand Environment and Conservation Council (ANZECC), 2000. Australian and New Zealand guidelines for fresh and marine water quality, 2000. Volume 2 - Aquatic ecosystems - rationale and background information. National Water Quality Management Strategy, Australian and New Zealand Environment and Conservation. 678p. Accessed on-line at http://www.environment.gov.au/resource/australian-and-new-zealand-guidelines-freshand-marine-water-quality-volume-2-aquatic.

British Columbia Ministry of the Environment (BC MOE), 2016. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture. Summary Report. March 2016. Online: http://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/waterquality/guidesobjs/approvedwat-qual-guides/final\_approved\_wqg\_summary\_march\_2016.pdf.

British Columbia Ministry of the Environment (BC MOE), 2015. Working Water Quality Guidelines for British Columbia (2015). Online: http://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/waterqualityguidesobjs/final\_2015\_wwqgs\_26\_nov\_2015.pdf.

Canadian Council of Ministers of the Environment (CCME), current to April 2016. Canadian Water Quality Guidelines for the Protection of Aquatic Life. Environment Canada/Health Canada (EC/HC), 2010. Screening Assessment for the Challenge, Vanadium oxide (Vanadium pentoxide). Chemical Abstracts Service Registry Number 1314-62-1. September 2010.

Table 3: Surface Water Quality Screening for Aquatic Life - Off-Site Waterbodies (Approved Project)

| Table 3: Surface Water Quality         | Screening for | or Aquatic Life - Off-Si Guidelines for the | te Waterbodies (App |               |                 | i               |                       |                                                |                        |                       |             |                        |
|----------------------------------------|---------------|---------------------------------------------|---------------------|---------------|-----------------|-----------------|-----------------------|------------------------------------------------|------------------------|-----------------------|-------------|------------------------|
|                                        |               | protection of:                              |                     | Baseline      | Levels + 10%    |                 | i                     | Predicted Maximum Dissol                       | ved Concentration      | ns                    |             |                        |
| Parameter                              | Unit          | Aquatic Life                                | Mammoth Lake        | A15 and A12   | Downstroom Node | Downstream Node |                       | Downstream N                                   | Node 2                 |                       | Retained as | Rationale              |
|                                        |               | Chronic (CCME)                              | Mailinoth Lake      | A 15 and A 12 | 1               | 2               | Operational           | Closure (January 2022 to June 2029, inclusive) | Post-Closure<br>Year 1 | Long Term             | a COC?      |                        |
| Conventional Parameters                | •             | •                                           | •                   |               | *               | •               |                       | *                                              |                        |                       |             |                        |
| Total alkalinity, as CaCO <sub>3</sub> | mg/L          | -                                           | 6.4                 | 6.5           | 7.8             | 7.8             | 9.5 <sup>(B)</sup>    | 9.5 <sup>(B)</sup>                             | 9.9 <sup>(B)</sup>     | 6.8                   | No          | > B, NG <sup>(8)</sup> |
| Total dissolved solids                 | mg/L          | -                                           | 24                  | 20            | 22              | 22              | 29 <sup>(B)</sup>     | 30 <sup>(B)</sup>                              | 32 <sup>(B)</sup>      | 22                    | Yes         | > B, NG                |
| Major Ions                             | -             |                                             |                     |               |                 |                 |                       | •                                              |                        |                       |             |                        |
| Calcium                                | mg/L          | -                                           | 2.6                 | 2.75          | 2.2             | 2.2             | 3.7 <sup>(B)</sup>    | 3.9 <sup>(B)</sup>                             | 4.5 <sup>(B)</sup>     | 3.2 <sup>(B)</sup>    | No          | > B, NG <sup>(8)</sup> |
| Magnesium                              | mg/L          | -                                           | 0.87                | 0.95          | 0.94            | 0.94            | 1.2 <sup>(B)</sup>    | 1.2 <sup>(B)</sup>                             | 1.4 <sup>(B)</sup>     | 0.99 <sup>(B)</sup>   | No          | > B, NG <sup>(8)</sup> |
| Potassium                              | mg/L          | -                                           | 0.58                | 0.63          | 0.37            | 0.65            | 1.6 <sup>(B)</sup>    | 1.9 <sup>(B)</sup>                             | 2.5 <sup>(B)</sup>     | 1.9 <sup>(B)</sup>    | No          | > B, NG <sup>(8)</sup> |
| Sodium                                 | mg/L          | -                                           | 0.61                | 0.64          | 0.80            | 0.80            | 2.3 <sup>(B)</sup>    | 2.2 <sup>(B)</sup>                             | 1.7 <sup>(B)</sup>     | 0.82 <sup>(B)</sup>   | No          | > B, NG <sup>(8)</sup> |
| Fluoride                               | mg/L          | 0.12                                        | 0.036               | 0.028         | 0.042           | 0.042           | 0.056 <sup>(B)</sup>  | 0.054 <sup>(B)</sup>                           | 0.058 <sup>(B)</sup>   | 0.039                 | No          | > B, < G               |
| Sulphate                               | mg/L          | 128 <sup>(1)</sup>                          | 3.2                 | 3.6           | 1.3             | 2.6             | 6.4 <sup>(B)</sup>    | 7.2 <sup>(B)</sup>                             | 8.9 <sup>(B)</sup>     | 6.4 <sup>(B)</sup>    | No          | > B, < G               |
| <b>Nutrients and Biological Indica</b> | tors          |                                             |                     |               |                 |                 |                       |                                                |                        |                       |             |                        |
| Dissolved phosphorus                   | mg-P/L        | -                                           | 0.0042              | 0.0011        | 0.0011          | 0.0011          | 0.018 <sup>(B)</sup>  | 0.017 <sup>(B)</sup>                           | 0.016 <sup>(B)</sup>   | 0.0034 <sup>(B)</sup> | No          | > B, NG <sup>(8)</sup> |
| Dissolved Metals                       |               | T                                           | _                   | •             | _               |                 |                       |                                                |                        |                       |             |                        |
| Antimony                               | μg/L          | 9 <sup>(2)</sup>                            | 0.06                | 0.06          | 0.06            | 0.06            | 0.93 <sup>(B)</sup>   | 0.89 <sup>(B)</sup>                            | 0.61 <sup>(B)</sup>    | 0.31 <sup>(B)</sup>   | No          | > B, <g< td=""></g<>   |
| Arsenic                                | μg/L          | 5                                           | 0.52                | 0.35          | 0.17            | 0.18            | 6.3 <sup>(C, B)</sup> | 6.0 <sup>(C, B)</sup>                          | 4.3 <sup>(B)</sup>     | 1.4 <sup>(B)</sup>    | Yes         | > B, > G               |
| Barium                                 | μg/L          | 1000 <sup>(2)</sup>                         | 5.2                 | 6.7           | 3.4             | 8.1             | 8.1                   | 8.7 <sup>(B)</sup>                             | 9.2 <sup>(B)</sup>     | 6.2                   | No          | > B, < G               |
| Beryllium                              | μg/L          | 0.13 <sup>(2)</sup>                         | 0.06                | 0.01          | 0.01            | 0.01            | 0.016 <sup>(B)</sup>  | 0.015 <sup>(B)</sup>                           | 0.013 <sup>(B)</sup>   | 0.0096                | No          | > B, < G               |
| Bismuth                                | μg/L          | 0.7 <sup>(3)</sup>                          | 0.28                | 0.028         | 0.028           | 0.028           | 0.03 <sup>(B)</sup>   | 0.03 <sup>(B)</sup>                            | 0.029 <sup>(B)</sup>   | 0.023                 | No          | > B, < G               |
| Chromium                               | μg/L          | 1 <sup>(4)</sup>                            | 0.06                | 0.06          | 0.06            | 0.06            | 0.36 <sup>(B)</sup>   | 0.35 <sup>(B)</sup>                            | 0.19 <sup>(B)</sup>    | 0.05                  | No          | > B, < G               |
| Cobalt                                 | μg/L          | 2.5 <sup>(5)</sup>                          | 0.06                | 0.06          | 0.06            | 0.06            | 0.23 <sup>(B)</sup>   | 0.22 <sup>(B)</sup>                            | 0.2 <sup>(B)</sup>     | 0.07 <sup>(B)</sup>   | No          | > B, < G               |
| Lithium                                | μg/L          | -                                           | 0.55                | 0.55          | 0.55            | 0.55            | 0.95 <sup>(B)</sup>   | 1.0 <sup>(B)</sup>                             | 1.1 <sup>(B)</sup>     | 0.81 <sup>(B)</sup>   | Yes         | > B, NG                |
| Manganese                              | μg/L          | 1700 <sup>(3)</sup>                         | 3.5                 | 0.65          | 0.75            | 0.75            | 26 <sup>(B)</sup>     | 26 <sup>(B)</sup>                              | 28 <sup>(B)</sup>      | 2.7 <sup>(B)</sup>    | No          | > B, < G               |
| Molybdenum                             | μg/L          | 73                                          | 0.028               | 0.028         | 0.028           | 0.028           | 0.51 <sup>(B)</sup>   | 0.64 <sup>(B)</sup>                            | 0.87 <sup>(B)</sup>    | 0.65 <sup>(B)</sup>   | No          | > B, < G               |
| Nickel                                 | μg/L          | 25 <sup>(7)</sup>                           | 0.98                | 0.72          | 0.28            | 0.28            | 2.1 <sup>(B)</sup>    | 2.0 <sup>(B)</sup>                             | 1.9 <sup>(B)</sup>     | 0.55 <sup>(B)</sup>   | No          | > B, < G               |
| Strontium                              | μg/L          | -                                           | 14                  | 12            | 6.8             | 9.0             | 22 <sup>(B)</sup>     | 21 <sup>(B)</sup>                              | 25 <sup>(B)</sup>      | 17 <sup>(B)</sup>     | Yes         | > B, NG                |
| Thallium                               | μg/L          | 0.8                                         | 0.006               | 0.006         | 0.006           | 0.006           | 0.012 <sup>(B)</sup>  | 0.011 <sup>(B)</sup>                           | 0.0099 <sup>(B)</sup>  | 0.0065 <sup>(B)</sup> | No          | > B, < G               |
| Tin                                    | μg/L          | 3 <sup>(3)</sup>                            | 0.055               | 0.13          | 0.14            | 0.30            | 0.12                  | 0.13                                           | 0.12                   | 0.11                  | No          | < B, < G               |
| Vanadium                               | μg/L          | 120 <sup>(6)</sup>                          | 0.55                | 0.28          | 0.28            | 0.28            | 1.2 <sup>(B)</sup>    | 1.1 <sup>(B)</sup>                             | 0.72 <sup>(B)</sup>    | 0.37 <sup>(B)</sup>   | No          | > B, < G               |

Water quality data and guidelines shown in this table were rounded to reflect laboratory or field instrument precision *after* comparisons to guidelines. Therefore, values slightly above guidelines may be displayed as being equal to the guidelines and identified as exceedances. Measured concentrations equal to the guideline values were not identified as exceedances.

## Notes:

- (B) = concentration higher than the relevant baseline level.
- (C) = concentration higher than the relevant chronic aquatic life guideline.
- (1) = In the absence of CCME guidelines, the BC MOE water quality guideline was used (based on observed hardness of 16.94 mg/L and observed pH of >6.5, if applicable).
- (2) = In the absence of CCME guidelines, the BC MOE working water quality guideline was used.
- $^{(3)}$  = In the absence of CCME guidelines for bismuth, manganese and tin, the ANZECC 2000 guidelines were used.
- (4) = CCME value for hexavalent chromium used in the absence of value for chromium.
- (5) = In the absence of CCME guidelines, the Federal Environmental Quality Guideline was used (Environment Canada 2013).
- (6) = In the absence of CCME guidelines, the EC/HC predicted no effect concentration (PNEC) for freshwater organisms was used (Environment Canada/Health Canada, 2010).
- $^{(7)}$  = CCME value based on available observed hardness value of 16.94 mg/L.
- (8) Alkalinity, calcium, potassium, magnesium and sodium were not identified as COCs because they are a component of TDS, a parameter which was iden
- (9) Phosphorus is a nutrient that can exert adverse effects at high concentrations via eutrophication. This parameter was not retained as a COC because p = no guideline or data.
- CaCO<sub>3</sub> = calcium carbonate; COC = Contaminant of concern; mg/L = milligrams per litre; mg-N/L = milligrams nitrogen per litre; mg-P/L = milligrams phosporus per litre; µg/L = micrograms per litre.

# Screening:

Bold and shaded - Concentrations exceed baseline level+10% (B) and water quality guideline (G). If the water quality guideline is lower than the baseline+10%, the baseline+10% is used as the screening value. If there is no water quality guideline (NG), and a baseline value is available, baseline+10% is used as the screening value.

# References:

Australia and New Zealand Environment and Conservation Council (ANZECC), 2000. Australian and New Zealand guidelines for fresh and marine water quality, 2000. Volume 2 - Aquatic ecosystems - rationale and background information. National Water Quality Management Strategy, Australian and New Zealand Environment and Conservation. 678p. Accessed on-line at http://www.environment.gov.au/resource/australian-and-new-zealand-guidelines-fresh-and-marine-water-quality-volume-2-aquatic.

British Columbia Ministry of the Environment (BC MOE), 2016. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture. Summary Report. March 2016. Online: http://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/waterqualityguidesobjs/approved-wat-qual-guides/final\_approved\_wqg\_summary\_march\_2016.pdf.

British Columbia Ministry of the Environment (BC MOE), 2015. Working Water Quality Guidelines for British Columbia (2015). Online: http://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/waterqualityguidesobjs/final\_2015\_wwqgs\_26\_nov\_2015.pdf.

Canadian Council of Ministers of the Environment (CCME), current to April 2016. Canadian Water Quality Guidelines for the Protection of Aquatic Life. Environment Canada/Health Canada (EC/HC), 2010. Screening Assessment for the Challenge, Vanadium oxide (Vanadium pentoxide). Chemical Abstracts Service Registry Number 1314-62-1. September 2010.

Table 4: Surface Water Quality Screening for Aquatic Life - On-Site Waterbodies (Approved Project)

|                                        |        | Guidelines for the<br>protection of: | Baseline Le     | evels + 10% | Wh                                        | ale Tail Lake                            |                         | Floo                                          | oded Pit      |                         |
|----------------------------------------|--------|--------------------------------------|-----------------|-------------|-------------------------------------------|------------------------------------------|-------------------------|-----------------------------------------------|---------------|-------------------------|
| Parameter                              | Unit   | Aquatic Life                         | Whale Tail Lake | Flooded Pit | Predicted Maximum Total<br>Concentrations | Retained as a                            |                         | Predicted Maximum Dissolved<br>Concentrations | Retained as a |                         |
|                                        |        | Chronic (CCME)                       |                 |             | Long Term                                 | COC?                                     | Rationale               | Long Term                                     | COC?          | Rationale               |
| Conventional Parameters                |        | l .                                  |                 |             | L.                                        | L. L |                         | •                                             | <u> </u>      |                         |
| Total alkalinity, as CaCO <sub>3</sub> | mg/L   | -                                    | 6.1             | 6.1         | 0.24                                      | No                                       | < B, NG                 | 11 <sup>(e)</sup>                             | No            | > B, NG <sup>(9)</sup>  |
| Total dissolved solids                 | mg/L   | -                                    | 23              | 23          | 1.0                                       | No                                       | < B, NG                 | 41 <sup>(B)</sup>                             | Yes           | > B, NG                 |
| Major lons                             |        |                                      |                 |             |                                           |                                          |                         |                                               | •             |                         |
| Calcium                                | mg/L   | -                                    | 2.4             | 2.4         | 0.43                                      | No                                       | < B, NG                 | 5.6 <sup>(B)</sup>                            | No            | > B, NG <sup>(9)</sup>  |
| Magnesium                              | mg/L   | -                                    | 0.87            | 0.87        | 0.45                                      | No                                       | < B, NG                 | 1.8 <sup>(B)</sup>                            | No            | > B, NG <sup>(9)</sup>  |
| Potassium                              | mg/L   | -                                    | 0.48            | 0.48        | 0.27                                      | No                                       | < B, NG                 | 3.6 <sup>(B)</sup>                            | No            | > B, NG <sup>(9)</sup>  |
| Sodium                                 | mg/L   | -                                    | 0.61            | 0.61        | 0.039                                     | No                                       | < B, NG                 | 2.1 <sup>(B)</sup>                            | No            | > B, NG <sup>(9)</sup>  |
| Sulphate                               | mg/L   | 128 <sup>(1)</sup>                   | 2.9             | 2.9         | 0.35                                      | No                                       | < B, < G                | 12 <sup>(B)</sup>                             | No            | > B, < G                |
| Nutrients and Biological Indicate      | ors    |                                      |                 |             |                                           |                                          |                         |                                               |               |                         |
| Total phosphorus                       | mg-N/L |                                      | 0.0033          | -           | 0.011 <sup>(B)</sup>                      | No                                       | > B, NG <sup>(10)</sup> | -                                             | No            | No values               |
| Dissolved phosphorus                   | mg-P/L | -                                    | 0.0031          | 0.0031      | -                                         | No                                       | No values               | 0.021 <sup>(B)</sup>                          | No            | > B, NG <sup>(10)</sup> |
| Metals <sup>(8)</sup>                  |        |                                      |                 |             |                                           |                                          |                         |                                               |               |                         |
| Aluminum                               | μg/L   | 100 <sup>(1)</sup>                   | 24              | 12          | 322 <sup>(C, B)</sup>                     | Yes                                      | > B, > G                | 0.2                                           | No            | < B, < G                |
| Antimony                               | μg/L   | 9 <sup>(2)</sup>                     | 0.24            | 0.06        | 0.044                                     | No                                       | < B, < G                | 0.74 <sup>(B)</sup>                           | No            | > B, < G                |
| Arsenic                                | μg/L   | 5                                    | 0.32            | 0.33        | 5.7 <sup>(C, B)</sup>                     | Yes                                      | > B, > G                | 10 <sup>(C, B)</sup>                          | Yes           | > B, > G                |
| Barium                                 | μg/L   | 1000 <sup>(2)</sup>                  | 4.8             | 4.6         | 3.3                                       | No                                       | < B, < G                | 10 <sup>(B)</sup>                             | No            | > B, < G                |
| Chromium                               | μg/L   | 1 <sup>(3)</sup>                     | 0.15            | 0.055       | 9.0 <sup>(C, B)</sup>                     | Yes                                      | > B, > G                | 0.15 <sup>(B)</sup>                           | No            | > B, < G                |
| Cobalt                                 | μg/L   | 2.5 <sup>(4)</sup>                   | 0.055           | 0.055       | 0.53 <sup>(B)</sup>                       | No                                       | > B, < G                | 0.27 <sup>(B)</sup>                           | No            | > B, < G                |
| Iron                                   | μg/L   | 300                                  | 41              | 106         | 754 <sup>(C, B)</sup>                     | Yes                                      | > B, > G                | 30                                            | No            | < B, < G                |
| Lithium                                | μg/L   | -                                    | 0.55            | 0.55        | 0.32                                      | No                                       | < B, NG                 | 1.5 <sup>(B)</sup>                            | Yes           | > B, NG                 |
| Manganese                              | μg/L   | 1700 <sup>(6)</sup>                  | 7.0             | 5.0         | 13 <sup>(B)</sup>                         | No                                       | > B, < G                | 51 <sup>(B)</sup>                             | No            | > B, < G                |
| Molybdenum                             | μg/L   | 73                                   | 0.065           | 0.028       | 0.063                                     | No                                       | < B, < G                | 1.5 <sup>(B)</sup>                            | No            | > B, < G                |
| Nickel                                 | μg/L   | 25 <sup>(5)</sup>                    | 0.95            | 0.90        | 4.6 <sup>(B)</sup>                        | No                                       | > B, < G                | 2.6 <sup>(B)</sup>                            | No            | > B, < G                |
| Strontium                              | μg/L   | -                                    | 17              | 17          | 2.1                                       | No                                       | < B, NG                 | 34 <sup>(B)</sup>                             | Yes           | > B, NG                 |
| Thallium                               | μg/L   | 0.8                                  | 0.006           | 0.006       | 0.0054                                    | No                                       | < B, < G                | 0.011 <sup>(B)</sup>                          | No            | > B, < G                |
| Tin                                    | μg/L   | 3 <sup>(6)</sup>                     | 0.055           | 0.055       | 0.0079                                    | No                                       | < B, < G                | 0.094 <sup>(B)</sup>                          | No            | > B, < G                |
| Vanadium                               | μg/L   | 120 <sup>(7)</sup>                   | 0.55            | 0.55        | 0.83 <sup>(B)</sup>                       | No                                       | > B, < G                | 0.67 <sup>(B)</sup>                           | No            | > B, < G                |

Water quality data and guidelines shown in this table were rounded to reflect laboratory or field instrument precision after comparisons to guidelines. Therefore, values slightly above guidelines may be displayed as being equal to the guidelines and identified as exceedances. Measured concentrations equal to the guideline values were not identified as exceedances.

### Notes:

- (B) = concentration higher than the relevant baseline level.
- (C) = concentration higher than the relevant chronic aquatic life guideline.
- (1) = In the absence of CCME quidelines, the BC MOE water quality quideline was used (based on observed hardness of 16.94 mg/L and observed pH of >6.5).
- (2) = In the absence of CCME guidelines, the BC MOE working water quality guideline was used.
- (3) = CCME value for hexavalent chromium used in the absence of value for chromium.
- (4) = In the absence of CCME guidelines, the Federal Environmental Quality Guideline was used (Environment Canada 2013).
- (5) = CCME value based on observed hardness value of 16.94 mg/L .
- (6) = In the absence of a CCME guideline, the ANZECC 2000 guideline was used.
- (7) = In the absence of CCME guidelines, the EC/HC predicted no effect concentration (PNEC) for freshwater organisms was used (Environment Canada/Health Canada, 2010).
- (8) = Predicted concentrations presented as total metals concentrations for Whale Tail Lake, and dissolved metals concentrations for Flooded Pit.
- (9) Alkalinity, calcium, potassium, magnesium and sodium were not identified as COCs because they are a component of TDS, a parameter which was identified as a COC and included in the assessment.
- (10) Phosphorus is a nutrient that can exert adverse effects at high concentrations via eutrophication. This parameter was not retained as a COC because potential effects related to eutrophication are assessed separately in the FEIS.
- = no guideline or data.

COC = Contaminant of concern; FEIS = Final Environmental Impact Statement; mg-N/L = milligrams nitrogen per litre; mg-P/L = milligrams phosphorus per litre; mg/L = milligrams per litre; TDS = total dissolved solids; µg/L = micrograms per litre.

## Screening:

Bold and shaded - Concentrations exceed baseline level+10% (B) and water quality guideline (G). If the water quality guideline is lower than the baseline+10%, the baseline+10% is used as the screening value. If there is no water quality guideline (NG), and a baseline value is available, baseline+10% is used as the screening value.

### References:

Australia and New Zealand Environment and Conservation Council (ANZECC), 2000. Australian and New Zealand guidelines for fresh and marine water quality, 2000. Volume 2 - Aquatic ecosystems - rationale and background information. National Water Quality Management Strategy, Australian and New Zealand Environment and Conservation. 678p. Accessed on-line at http://www.environment.gov.au/resource/australian-and-new-zealand-guidelines-fresh-and-marine-water-quality-volume-2-aquatic.

British Columbia Ministry of the Environment (BC MOE), 2016. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture. Summary Report. March 2016. Online: http://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/water/waterquality/waterquality/guidesobjs/approved-wat-qual-guides/final approved wgg summary march 2016.pdf.

British Columbia Ministry of the Environment (BC MOE), 2015. Working Water Quality Guidelines for British Columbia (2015). Online: http://www2.gov.bc.ca/assets/gov/environment/air-land-

water/waterquality/waterqualityguidesobjs/final\_2015\_wwqgs\_26\_nov\_2015.pdf.

Canadian Council of Ministers of the Environment (CCME), current to April 2016. Canadian Water Quality Guidelines for the Protection of Aquatic Life.

Environment Canada/Health Canada (EC/HC), 2010. Screening Assessment for the Challenge, Vanadium oxide (Vanadium pentoxide). Chemical Abstracts Service Registry Number 1314-62-1. September 2010.

Table 5: Whale Tail Pit - Post-Closure (Expansion Project

|                                    |        |                            | Selected Scree    | ning Values  |                 | 011 0 15                       |              | Whale Tail Pit (Early Post-closure) | Whale Tail Pit (Late Post-closure |
|------------------------------------|--------|----------------------------|-------------------|--------------|-----------------|--------------------------------|--------------|-------------------------------------|-----------------------------------|
| Parameter                          | Unit   | Aquatic Life               |                   | Human Health |                 | Site-Specific<br>Water Quality | Baseline     | ` •                                 | •                                 |
| Faranieter                         | Oiiit  | CCME Chronic<br>Guideline  | Healti            | n Canada     | U.S. EPA<br>RSL | Objective                      | (Whale Tail) | Maximum Concentration               | Maximum Concentration             |
| Conventional Parameters            |        |                            |                   |              |                 | •                              |              |                                     |                                   |
| Hardness, as CaCO₃                 | mg/L   | -                          | NR                | -            | -               | -                              | -            | 16                                  | 14                                |
| Total dissolved solids (calculated | mg/L   | -                          | 500               | AO           | -               | -                              | -            | 30                                  | 25                                |
| Major lons                         |        |                            |                   |              |                 |                                |              |                                     |                                   |
| Calcium                            | mg/L   | -                          | NR                | -            | -               | -                              | 1.5          | 4.5 <sup>(B)</sup>                  | 3.9 <sup>(B)</sup>                |
| Chloride                           | mg/L   | 120                        | 250               | AO           | -               | -                              | 0.85         | 5.8 <sup>(B)</sup>                  | 4.8 <sup>(B)</sup>                |
| Fluoride                           | mg/L   | 0.12                       | 1.5               | MAC          | -               | -                              | 0.024        | 0.072 <sup>(B)</sup>                | 0.062 <sup>(B)</sup>              |
| Magnesium                          | mg/L   | -                          | NR                | -            | -               | -                              | 0.59         | 1.3 <sup>(B)</sup>                  | 1.1 <sup>(B)</sup>                |
| Potassium                          | mg/L   | -                          | -                 | -            | -               | -                              | 0.35         | 1.6 <sup>(B)</sup>                  | 1.4 <sup>(B)</sup>                |
| Sodium                             | mg/L   | -                          | 200               | AO           | -               | -                              | 0.48         | 2.6 <sup>(B)</sup>                  | 2.0 <sup>(B)</sup>                |
| Sulphate                           | mg/L   | 128 <sup>(a,f)</sup>       | 500               | AO           | -               | -                              | 1.2          | 6.0 <sup>(B)</sup>                  | 4.8 <sup>(B)</sup>                |
| Nutrients                          |        |                            |                   |              |                 |                                |              |                                     |                                   |
| Nitrate                            | mg-N/L | 2.9                        | 10                | MAC          | -               | -                              | 0.0025       | 0.44 <sup>(B)</sup>                 | 0.30 <sup>(B)</sup>               |
| Total ammonia                      | mg-N/L | 0.019 <sup>(b)</sup>       | NR                | -            | -               | -                              | 0.0025       | 0.058 <sup>(C, B)</sup>             | 0.041 <sup>(C, B)</sup>           |
| Dissolved phosphorus               | mg-P/L | 0.010                      | -                 | -            | -               | -                              | 0.0010       | 0.014 <sup>(C, B)</sup>             | 0.010 <sup>(B)</sup>              |
| Dissolved Metals                   |        |                            |                   |              |                 |                                |              |                                     |                                   |
| Aluminum                           | μg/L   | 100 <sup>(c)</sup>         | 100               | AO           | 4000            | -                              | 2.7          | 0.20                                | 0.20                              |
| Antimony                           | μg/L   | 9 <sup>(d)</sup>           | 6                 | MAC          | -               | -                              | 0.050        | 0.62 <sup>(B)</sup>                 | 0.49 <sup>(B)</sup>               |
| Arsenic                            | μg/L   | 5                          | 10                | MAC          | -               | 25 <sup>(e)</sup>              | 0.13         | 30 <sup>(C, D, S, B)</sup>          | 22 <sup>(C, D, B)</sup>           |
| Barium                             | μg/L   | 1000 <sup>(d)</sup>        | 1000              | MAC          | -               | -                              | 3.0          | 11 <sup>(B)</sup>                   | 9.2 <sup>(B)</sup>                |
| Beryllium                          | μg/L   | 0.13 <sup>(d)</sup>        | -                 | -            | 5               | -                              | 0.010        | 0.025 <sup>(B)</sup>                | 0.024 <sup>(B)</sup>              |
| Bismuth                            | μg/L   | 0.7 <sup>(f)</sup>         | -                 | -            | -               | -                              | 0.025        | 0.055 <sup>(B)</sup>                | 0.054 <sup>(B)</sup>              |
| Boron                              | μg/L   | 1,500                      | 5,000             | MAC          | -               | -                              | 5.0          | 39 <sup>(B)</sup>                   | 30 <sup>(B)</sup>                 |
| Cadmium                            | μg/L   | 0.18 - 0.90 <sup>(g)</sup> | 5.0               | MAC          | -               | -                              | 0.0025       | 0.012 <sup>(B)</sup>                | 0.010 <sup>(B)</sup>              |
| Chromium                           | μg/L   | 1.0 <sup>(h)</sup>         | 50 <sup>(g)</sup> | MAC          | -               | -                              | 0.050        | 0.36 <sup>(B)</sup>                 | 0.28 <sup>(B)</sup>               |
| Cobalt                             | μg/L   | 2.5 <sup>(i)</sup>         | -                 | -            | 1.2             | -                              | 0.050        | 0.56 <sup>(B)</sup>                 | 0.42 <sup>(B)</sup>               |
| Copper                             | μg/L   | 2.0 <sup>(g)</sup>         | 1000              | MAC          | -               | -                              | 0.31         | 1.1 <sup>(B)</sup>                  | 0.94 <sup>(B)</sup>               |
| Iron                               | μg/L   | 300                        | 300               | AO           | 2800            | -                              | 5.0          | 59 <sup>(B)</sup>                   | 46 <sup>(B)</sup>                 |
| Lead                               | μg/L   | 1.0 <sup>(g)</sup>         | 10                | MAC          | -               | -                              | 0.025        | 0.21 <sup>(B)</sup>                 | 0.16 <sup>(B)</sup>               |
| Lithium                            | μg/L   | -                          | -                 | -            | 8               | -                              | 0.25         | 1.8 <sup>(B)</sup>                  | 1.6 <sup>(B)</sup>                |
| Manganese                          | μg/L   | 1700 <sup>(g)</sup>        | 50                | AO           | 86              | -                              | 0.37         | 109 <sup>(D, B)</sup>               | 74 <sup>(D, B)</sup>              |
| Mercury                            | µg/L   | 0.026                      | 1.0               | MAC          | -               | -                              | 0.0025       | 0.010 <sup>(B)</sup>                | 0.0091 <sup>(B)</sup>             |
| Molybdenum                         | µg/L   | 73                         | -                 | -            | 20              | -                              | 0.025        | 0.96 <sup>(B)</sup>                 | 0.77 <sup>(B)</sup>               |
| Nickel                             | µg/L   | 25 <sup>(g)</sup>          | -                 | -            | 78              | -                              | 0.25         | 5.4 <sup>(B)</sup>                  | 3.9 <sup>(B)</sup>                |
| Selenium                           | μg/L   | 1.0                        | 50                | MAC          | -               | -                              | 0.025        | 0.20 <sup>(B)</sup>                 | 0.16 <sup>(B)</sup>               |
| Silver                             | µg/L   | 0.25                       | NR                | -            | -               | -                              | 0.0050       | 0.015 <sup>(B)</sup>                | 0.014 <sup>(B)</sup>              |
| Strontium                          | µg/L   | -                          | -                 | -            | 2400            | -                              | 7.5          | 28 <sup>(B)</sup>                   | 24 <sup>(B)</sup>                 |
| Thallium                           | µg/L   | 0.80                       | -                 | -            | 0.04            | -                              | 0.0050       | 0.014 <sup>(B)</sup>                | 0.014 <sup>(B)</sup>              |
| Tin                                | µg/L   | 3 <sup>(f)</sup>           | -                 | _            | 2400            | _                              | 0.050        | 0.16 <sup>(B)</sup>                 | 0.15 <sup>(B)</sup>               |
| Uranium                            | μg/L   | 15                         | 20                | MAC          | -               | -                              | 0.023        | 0.45 <sup>(B)</sup>                 | 0.37 <sup>(B)</sup>               |
| Vanadium                           | µg/L   | 120 <sup>(j)</sup>         | -                 | -            | 17              | -                              | 0.25         | 0.91 <sup>(B)</sup>                 | 0.83 <sup>(B)</sup>               |
| Zinc                               | μg/L   | 7 <sup>(K)</sup>           | 5000              | AO           | 1200            | -                              | 0.50         | 2.4 <sup>(b)</sup>                  | 2.2 <sup>(b)</sup>                |

(a) = In the absence of CCME guidelines, the BC MOE water quality guideline was used.

(b) = The guideline shown is for unionized ammonia. Model predictions were for total ammonia. For each prediction, the proportion of predicted total ammonia that would be unionized ammonia was based on the assumption of pH of 7 and water temperature of 40 (Beceiving environment) and pH of 8.5 and water temperature of 15.0°C (effluent)

(c) = Guideline is pH dependent. The guideline range shown is based on an assumed pH value of more than or equal to 6.5, which is comparable to baseline values determined in the receiving environment.

(d) = In the absence of CCME guidelines, the BC MOE working water quality guideline was used.

(e) = Value provided is the Site-Specific Water Quality Objective (SSWQO) derived for the Meadowbank Mine.

(f) = In the absence of a CCME guideline, the ANZECC 2000 guideline was used.

(9) = Guideline is hardness dependent. The guideline range shown is based on the hardness range observed in the dataset (9 to 44 mg/L). The guideline is calculated based on the individual hardness value for each sample.

(h) = Guidline is for hexavalent chromium.

(f) = In the absence of CCME guidelines, the Federal Environmental Quality Guideline was used (Environment Canada 2013).

(I) = In the absence of CCME guidelines, the EC/HC predicted no effect concentration (PNEC) for freshwater organisms was used (Environment Canada/Health Canada, 2010).

(A) = Guideline is hardness, dissolved organic carbon, and pH dependent. The guideline value shown is based on hardness of 23.4 mg/L, dissolved organic carbon of 1.7 mg/L, and pH of 7.2. Guideline for each prediction was determined using predicted hardness, minimum dissolved organic carbon from the measured baseline, and 95th percentile pH from the measured baseline.

(C) = concentration is higher than the chronic aquatic life CCME guideline or outside the recommended pH, DO or total alkalinity range.

(D) = concentration is higher than the drinking water Health Canada guideline.

(s) = concentration is higher than the Site-specific Water Quality Objective (SSWQO) developed for the Whale Tail Project (Volume 6, Appendix 6-N) guideline.

(B) = Concentration higher than the relevant baseline level, or beyond the reccomended pH or DO concentration range.

Bolded values represent constituents of potential concern (COPC

Water quality data and guidelines shown in this table were rounded to reflect laboratory or field instrument precisi after comparisons to guidelines. Therefore, values slightly above guidelines may be displayed as being equal to the guidelines and identified as exceedances. Concentrations equal to the guideline values were not identified as exceedances are no guideline or no data

### References:

Australia and New Zealand Environment and Conservation Council (ANZECC), 2000. Australian and New Zealand guidelines for fresh and marine water quality, 2000. Volume 2 - Aquatic ecosystems - rationale and background information. National Water Quality Management Strategy,

British Columbia Ministry of the Environment (BC MOE), 2018. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture. Summary Report. March 2018. Online: https://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/water/waterquality/wggs-British Columbia Ministry of the Environment (BC MOE), 2017. British Columbia Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture (June 2017). Online: https://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water/water

Canadian Council of Ministers of the Environment (CCME), current to October 2018. Canadian Water Quality Guidelines for the Protection of Aquatic Lii

Environment Canada/Health Canada (EC/HC), 2010. Screening Assessment for the Challenge, Vanadium oxide (Vanadium pentoxide). Chemical Abstracts Service Registry Number 1314-62-1. September 2C Environment Canada, 2013. Federal Environmental Quality Guidelines. Cobalt. Canadian Environmental Protection Act, 1999. February 20

Health Canada, 2017. Guidelines for Canadian Drinking Water Quality. Summary Table. February 201

Table 6: IVP Dit Doct Closure (Expansion Project

| Table 6: IVR Pit Post-Closure (E   | xpansio      | n Project                  | Coloated          | Screening Values |                 |                            |              | IVR Pit (Early Post-closure) | IVR Pit (Late Post-closure) |
|------------------------------------|--------------|----------------------------|-------------------|------------------|-----------------|----------------------------|--------------|------------------------------|-----------------------------|
|                                    |              | Aquatic Life               | Selecteu .        | Human Health     |                 | Site-Specific              | Baseline     | IVR Fit (Early Fost-closure) | IVR Fit (Late Post-closure) |
| Parameter                          | Unit         | CCME Chronic<br>Guideline  | Н                 | lealth Canada    | U.S. EPA<br>RSL | Water Quality<br>Objective | (Whale Tail) | Maximum Concentration        | Maximum Concentration       |
| Conventional Parameters            |              | . Caraonno                 |                   |                  |                 |                            |              | •                            | •                           |
| Hardness, as CaCO₃                 | mg/L         | -                          | NR                | -                | -               | -                          | -            | 10                           | 10                          |
| Total dissolved solids (calculated | mg/L         | -                          | 500               | AO               | -               | -                          | -            | 15                           | 15                          |
| Major Ions                         |              | L                          |                   |                  |                 |                            |              |                              |                             |
| Calcium                            | mg/L         | -                          | NR                | -                | -               | -                          | 1.5          | 2.7 <sup>(B)</sup>           | 2.7 <sup>(B)</sup>          |
| Chloride                           | mg/L         | 120                        | 250               | AO               | -               | -                          | 0.85         | 3.0 <sup>(B)</sup>           | 2.9 <sup>(B)</sup>          |
| Fluoride                           | mg/L         | 0.12                       | 1.5               | MAC              | -               | -                          | 0.024        | 0.044 <sup>(B)</sup>         | 0.045 <sup>(B)</sup>        |
| Magnesium                          | mg/L         | -                          | NR                | -                | -               | -                          | 0.59         | 0.86 <sup>(B)</sup>          | 0.86 <sup>(B)</sup>         |
| Potassium                          | mg/L         | -                          | -                 | -                | -               | -                          | 0.35         | 0.94 <sup>(B)</sup>          | 0.94 <sup>(B)</sup>         |
| Sodium                             | mg/L         | -                          | 200               | AO               | -               | -                          | 0.48         | 0.68 <sup>(B)</sup>          | 0.68 <sup>(B)</sup>         |
| Sulphate                           | mg/L         | 128 <sup>(a,f)</sup>       | 500               | AO               | -               | -                          | 1.2          | 2.6 <sup>(B)</sup>           | 2.5 <sup>(B)</sup>          |
| Nutrients                          |              |                            |                   |                  | •               |                            |              |                              |                             |
| Nitrate                            | mg-N/L       | 2.9                        | 10                | MAC              | -               | -                          | 0.0025       | 0.040 <sup>(B)</sup>         | 0.037 <sup>(B)</sup>        |
| Total ammonia                      | ma-N/L       | 0.019 <sup>(b)</sup>       | NR                | -                | -               | -                          | 0.0025       | 0.011 <sup>(B)</sup>         | 0.010 <sup>(B)</sup>        |
| Dissolved phosphorus               | mg-P/L       | 0.010                      | -                 | -                | -               | -                          | 0.0010       | 0.0032 <sup>(B)</sup>        | 0.0032 <sup>(B)</sup>       |
| Dissolved Metals                   |              |                            |                   |                  |                 |                            |              |                              |                             |
| Aluminum                           | μg/L         | 100 <sup>(c)</sup>         | 100               | AO               | 4000            | -                          | 2.7          | 0.20                         | 0.20                        |
| Antimony                           | μg/L         | 9 <sup>(d)</sup>           | 6                 | MAC              | -               | -                          | 0.050        | 0.28 <sup>(B)</sup>          | 0.28 <sup>(B)</sup>         |
| Arsenic                            | μg/L         | 5                          | 10                | MAC              | -               | 25 <sup>(e)</sup>          | 0.13         | 13 <sup>(C, D, B)</sup>      | 12 <sup>(C, D, B)</sup>     |
| Barium                             | ua/L         | 1000 <sup>(d)</sup>        | 1000              | MAC              | -               | -                          | 3.0          | 5.4 <sup>(B)</sup>           | 5.4 <sup>(B)</sup>          |
| Beryllium                          | ua/L         | 0.13 <sup>(d)</sup>        | -                 |                  | 5               | -                          | 0.010        | 0.022 <sup>(B)</sup>         | 0.022 <sup>(B)</sup>        |
| Bismuth                            | μg/L         | 0.7 <sup>(f)</sup>         | -                 | -                | -               | -                          | 0.025        | 0.053 <sup>(B)</sup>         | 0.052 <sup>(B)</sup>        |
| Boron                              | µg/L         | 1,500                      | 5,000             | MAC              | -               | -                          | 5.0          | 12 <sup>(B)</sup>            | 12 <sup>(B)</sup>           |
| Cadmium                            | μg/L         | 0.18 - 0.90 <sup>(g)</sup> | 5.0               | MAC              | -               | -                          | 0.0025       | 0.0061 <sup>(B)</sup>        | 0.0060 <sup>(B)</sup>       |
| Chromium                           | ua/L         | 1.0 <sup>(h)</sup>         | 50 <sup>(g)</sup> | MAC              | _               | _                          | 0.050        | 0.13 <sup>(B)</sup>          | 0.14 <sup>(B)</sup>         |
| Cobalt                             | µg/L         | 2.5 <sup>(i)</sup>         | -                 | -                | 1.2             | -                          | 0.050        | 0.15 <sup>(B)</sup>          | 0.15 <sup>(B)</sup>         |
| Copper                             | µg/L         | 2.0 <sup>(g)</sup>         | 1000              | MAC              |                 | _                          | 0.31         | 0.59 <sup>(B)</sup>          | 0.60 <sup>(B)</sup>         |
| Iron                               | µg/L         | 300                        | 300               | AO               | 2800            | -                          | 5.0          | 24 <sup>(B)</sup>            | 27 <sup>(B)</sup>           |
| Lead                               | µg/L         | 1.0 <sup>(g)</sup>         | 10                | MAC              |                 | -                          | 0.025        | 0.068 <sup>(B)</sup>         | 0.070 <sup>(B)</sup>        |
| Lithium                            | ua/L         |                            | -                 | -                | 8               |                            | 0.25         | 1.2 <sup>(B)</sup>           | 1.2 <sup>(B)</sup>          |
| Manganese                          | µg/L         | 1700 <sup>(g)</sup>        | 50                | AO               | 86              | -                          | 0.37         | 4.5 <sup>(B)</sup>           | 4.5 <sup>(B)</sup>          |
| Mercury                            | µg/L         | 0.026                      | 1.0               | MAC              | -               |                            | 0.0025       | 0.0076 <sup>(B)</sup>        | 0.0077 <sup>(B)</sup>       |
| Molybdenum                         | µg/L         | 73                         | -                 | -                | 20              | -                          | 0.025        | 0.45 <sup>(B)</sup>          | 0.46 <sup>(B)</sup>         |
| Nickel                             | µg/L         | 25 <sup>(g)</sup>          | -                 |                  | 78              | -                          | 0.25         | 0.89 <sup>(B)</sup>          | 0.90 <sup>(B)</sup>         |
| Selenium                           | µg/L         | 1.0                        | 50                | MAC              |                 |                            | 0.025        | 0.088 <sup>(B)</sup>         | 0.087 <sup>(B)</sup>        |
| Silver                             | μg/L         | 0.25                       | NR                | - WAC            | 1 :             | -                          | 0.0050       | 0.011 <sup>(B)</sup>         | 0.011 <sup>(B)</sup>        |
| Strontium                          | µg/L         | -                          | -                 | -                | 2400            |                            | 7.5          | 17 <sup>(B)</sup>            | 17 <sup>(B)</sup>           |
| Thallium                           | μg/L         | 0.80                       | -                 | -                | 0.04            | -                          | 0.0050       | 0.012 <sup>(B)</sup>         | 0.012 <sup>(B)</sup>        |
| Tin                                | µg/L         | 3 <sup>(f)</sup>           | -                 | -                | 2400            | -                          | 0.050        | 0.13 <sup>(B)</sup>          | 0.13 <sup>(B)</sup>         |
| Uranium                            | μg/L         | 15                         | 20                | MAC              | 2400            |                            | 0.023        | 0.13<br>0.23 <sup>(B)</sup>  | 0.23 <sup>(B)</sup>         |
| Vanadium                           | μg/L<br>μg/L | 120 <sup>(j)</sup>         | -                 | WAC -            | 17              | -                          | 0.025        | 0.70 <sup>(B)</sup>          | 0.23<br>0.70 <sup>(B)</sup> |
| Zinc                               | μg/L<br>μg/L | 7 <sup>(K)</sup>           | 5000              | AO               | 1200            | <del></del>                | 0.25         | 1.7 <sup>(B)</sup>           | 1.7 <sup>(B)</sup>          |
| ZIIIC                              | µg/L         | '                          | 3000              | AU               | 1200            | -                          | 0.00         | 1.7                          | 1.7                         |

(a) = In the absence of CCME guidelines, the BC MOE water quality guideline was used.

(b) = The guideline shown is for unionized ammonia. Model predictions were for total ammonia. For each prediction, the proportion of predicted total ammonia that would be unionized ammonia was based on the assumption of pH of 7 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and the state of \*\*To Meceiving

(e) = Guideline is pH dependent. The guideline range shown is based on an assumed pH value of more than or equal to 6.5, which is comparable to baseline values determined in the receiving environment.

(d) = In the absence of CCME guidelines, the BC MOE working water quality guideline was used.

(e) = Value provided is the Site-Specific Water Quality Objective (SSWQO) derived for the Meadowbank Mine.

(f) = In the absence of a CCME guideline, the ANZECC 2000 guideline was used.

(a) = Guideline is hardness dependent. The guideline range shown is based on the hardness range observed in the dataset (9 to 44 mg/L). The guideline is calculated based on the individual hardness value for each sample.

(h) = Guidline is for hexavalent chromium.

(I) = In the absence of CCME guidelines, the Federal Environmental Quality Guideline was used (Environment Canada 2013).

(I) = In the absence of CCME guidelines, the EC/HC predicted no effect concentration (PNEC) for freshwater organisms was used (Environment Canada/Health Canada, 2010).

(6) = Guideline is hardness, dissolved organic carbon, and pH dependent. The guideline value shown is based on hardness of 23.4 mg/L, dissolved organic carbon of 1.7 mg/L, and pH of 7.2. Guideline for each prediction was determined using predicted hardness, minimum dissolved organic carbon from the measured baseline.

(C) = concentration is higher than the chronic aquatic life guideline or outside the recommended pH, DO or total alkalinity range

(D) = concentration is higher than the human health-based guideline.

(S) = concentration is higher than the Site-specific Water Quality Objective (SSWQO) developed for the Whale Tail Project (Volume 6, Appendix 6-N) guideline.

(B) = Concentration higher than the relevant baseline level, or beyond the reccomended pH or DO concentration range.

Bolded values represent constituents of potential concern (COPC
Water quality data and guidelines shown in this table were rounded to reflect laboratory or field instrument precisi after comparisons to guidelines. Therefore, values slightly above guidelines may be displayed as being equal to the guidelines and identified as exceedances. Concentrations equal to the guideline values were not identified as exceedances. - = no guideline or no data

References:
Australia and New Zealand Environment and Conservation Council (ANZECC), 2000. Australian and New Zealand guidelines for fresh and marine water quality, 2000. Volume 2 - Aquatic ecosystems -

British Columbia Ministry of the Environment (BC MOE), 2018. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture. Summary Report. March 2018. Online:

British Columbia Ministry of the Environment (BC MOE), 2017. British Columbia Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture (June 2017). Online: Canadian Council of Ministers of the Environment (CCME), current to October 2018. Canadian Water Quality Guidelines for the Protection of Aquatic Lil

Environment Canada/Health Canada (EC/HC), 2010. Screening Assessment for the Challenge, Vanadium oxide (Vanadium pentoxide). Chemical Abstracts Service Registry Number 1314-62-1. September 20

Environment Canada, 2013. Federal Environmental Quality Guidelines. Cobalt. Canadian Environmental Protection Act, 1999. February 20

Health Canada, 2017. Guidelines for Canadian Drinking Water Quality. Summary Table. February 201

| Table 7: Whale Tail South - Ope    | rations, | Closure, and Pos           | st-Closure (Expan | sion Projec | el .            |                   |              |                               |                            |                                       |                                      |
|------------------------------------|----------|----------------------------|-------------------|-------------|-----------------|-------------------|--------------|-------------------------------|----------------------------|---------------------------------------|--------------------------------------|
|                                    |          | -                          | Selected Screenin | g Values    |                 | Site-Specific     |              | Whale Tail South (Operations) | Whale Tail South (Closure) | Whale Tail South (Early Post-closure) | Whale Tail South (Late Post-closure) |
| Parameter                          | Unit     | Aquatic Life               | Hur               | nan Health  |                 | Water Quality     | Baseline     |                               |                            |                                       |                                      |
|                                    |          | CCME Chronic<br>Guideline  | Health Can        | ada         | U.S. EPA<br>RSL | Objective         | (Whale Tail) | Maximum Concentration         | Maximum Concentration      | Maximum Concentration                 | Maximum Concentration                |
| Conventional Parameters            | -        | Guideline                  |                   |             | RSL             | 1                 | 1            |                               |                            |                                       |                                      |
| Hardness, as CaCO <sub>3</sub>     | mg/L     | -                          | NR                |             | -               |                   |              | 27                            | 27                         | 9.0                                   | 9.0                                  |
| Total dissolved solids (calculated | mg/L     | -                          | 500               | AO          |                 | _                 |              | 59                            | 59                         | 12                                    | 12                                   |
| Major Ions                         | mg/L     |                            | 300               | AO          |                 |                   |              | 55                            | 55                         | 12                                    | 12                                   |
| Calcium                            | mg/L     | -                          | NR                | -           | -               | -                 | 1.5          | 7.8 <sup>(B)</sup>            | 7.8 <sup>(B)</sup>         | 2.3 <sup>(B)</sup>                    | 2.3 <sup>(B)</sup>                   |
| Chloride                           | mg/L     | 120                        | 250               | AO          | -               | -                 | 0.85         | 12 <sup>(B)</sup>             | 12 <sup>(B)</sup>          | 2.9 <sup>(B)</sup>                    | 2.9 <sup>(B)</sup>                   |
| Fluoride                           | mg/L     | 0.12                       | 1.5               | MAC         | -               | -                 | 0.024        | 0.072 <sup>(B)</sup>          | 0.072 <sup>(B)</sup>       | 0.029 <sup>(B)</sup>                  | 0.029 <sup>(B)</sup>                 |
| Magnesium                          | mg/L     | -                          | NR                | -           | -               | -                 | 0.59         | 1.8 <sup>(B)</sup>            | 1.8 <sup>(B)</sup>         | 0.79 <sup>(B)</sup>                   | 0.79 <sup>(B)</sup>                  |
| Potassium                          | mg/L     | _                          | -                 | -           | -               | -                 | 0.35         | 2.2 <sup>(B)</sup>            | 2.2 <sup>(B)</sup>         | 0.44 <sup>(B)</sup>                   | 0.44 <sup>(B)</sup>                  |
| Sodium                             | mg/L     | -                          | 200               | AO          | -               | -                 | 0.48         | 4.9 <sup>(B)</sup>            | 4.9 <sup>(B)</sup>         | 0.60 <sup>(B)</sup>                   | 0.60 <sup>(B)</sup>                  |
| Sulphate                           | mg/L     | 128 <sup>(a,f)</sup>       | 500               | AO          |                 | -                 | 1.2          | 9.0 <sup>(B)</sup>            | 8.9 <sup>(B)</sup>         | 1.5 <sup>(B)</sup>                    | 1.5 <sup>(B)</sup>                   |
| Nutrients                          | g/L      | .25                        | 550               | .10         |                 |                   |              | 0.0                           | 0.0                        | 1.0                                   | 1.0                                  |
| Nitrate                            | mg-N/L   | 2.9                        | 10                | MAC         | -               | -                 | 0.0025       | 2.8 <sup>(B)</sup>            | 2.8 <sup>(B)</sup>         | 0.0057 <sup>(B)</sup>                 | 0.0056 <sup>(B)</sup>                |
| Total ammonia                      | mg-N/L   | 0.019 <sup>(b)</sup>       | NR                | -           | -               | -                 | 0.0025       | 0.33 <sup>(C, B)</sup>        | 0.34 <sup>(C, B)</sup>     | 0.0067 <sup>(B)</sup>                 | 0.0067 <sup>(B)</sup>                |
| Dissolved phosphorus               | mg-P/L   | 0.010                      | -                 |             | -               | -                 | 0.0010       | 0.020 <sup>(C, B)</sup>       | 0.020 <sup>(C, B)</sup>    | 0.0023 <sup>(B)</sup>                 | 0.0023 <sup>(B)</sup>                |
| Dissolved Metals                   | mg . /L  | 0.010                      |                   |             |                 |                   | 0.0010       |                               |                            |                                       |                                      |
| Aluminum                           | μg/L     | 100 <sup>(c)</sup>         | 100               | AO          | 4000            | -                 | 2.7          | 5.6 <sup>(B)</sup>            | 5.8 <sup>(B)</sup>         | 5.8 <sup>(B)</sup>                    | 5.8 <sup>(B)</sup>                   |
| Antimony                           | µg/L     | 9 <sup>(d)</sup>           | 6                 | MAC         | -               | -                 | 0.050        | 1.0 <sup>(B)</sup>            | 1.0 <sup>(B)</sup>         | 0.11 <sup>(B)</sup>                   | 0.11 <sup>(B)</sup>                  |
| Arsenic                            | µg/L     | 5                          | 10                | MAC         | -               | 25 <sup>(e)</sup> | 0.13         | 26 <sup>(C, D, S, B)</sup>    | 26 <sup>(C, D, S, B)</sup> | 0.16 <sup>(B)</sup>                   | 0.16 <sup>(B)</sup>                  |
| Barium                             | µg/L     | 1000 <sup>(d)</sup>        | 1000              | MAC         | -               | -                 | 3.0          | 14 <sup>(B)</sup>             | 14 <sup>(B)</sup>          | 4.5 <sup>(B)</sup>                    | 4.5 <sup>(B)</sup>                   |
| Beryllium                          | µg/L     | 0.13 <sup>(d)</sup>        | -                 | -           | 5               | -                 | 0.010        | 0.031 <sup>(B)</sup>          | 0.031 <sup>(B)</sup>       | 0.022 <sup>(B)</sup>                  | 0.022 <sup>(B)</sup>                 |
| Bismuth                            | µg/L     | 0.7 <sup>(f)</sup>         | -                 | -           | -               | -                 | 0.025        | 0.068 <sup>(B)</sup>          | 0.069 <sup>(B)</sup>       | 0.055 <sup>(B)</sup>                  | 0.055 <sup>(B)</sup>                 |
| Boron                              | µg/L     | 1,500                      | 5,000             | MAC         | -               | -                 | 5.0          | 77 <sup>(B)</sup>             | 77 <sup>(B)</sup>          | 11 <sup>(B)</sup>                     | 11 <sup>(B)</sup>                    |
| Cadmium                            | μg/L     | 0.18 - 0.90 <sup>(g)</sup> | 5.0               | MAC         | -               | -                 | 0.0025       | 0.015 <sup>(B)</sup>          | 0.015 <sup>(B)</sup>       | 0.0055 <sup>(B)</sup>                 | 0.0055 <sup>(B)</sup>                |
| Chromium                           | µg/L     | 1.0 <sup>(h)</sup>         | 50 <sup>(g)</sup> | MAC         | -               | -                 | 0.050        | 0.73 <sup>(R, B)</sup>        | 0.73 <sup>(R, B)</sup>     | 0.11 <sup>(B)</sup>                   | 0.11 <sup>(B)</sup>                  |
| Cobalt                             | µg/L     | 2.5 <sup>(i)</sup>         | -                 | -           | 1.2             | -                 | 0.050        | 0.74 <sup>(B)</sup>           | 0.74 <sup>(B)</sup>        | 0.11 <sup>(B)</sup>                   | 0.11 <sup>(B)</sup>                  |
| Copper                             | µg/L     | 2.0 <sup>(g)</sup>         | 1000              | MAC         | -               | -                 | 0.31         | 1.6 <sup>(R, B)</sup>         | 1,6 <sup>(R, B)</sup>      | 0.53 <sup>(B)</sup>                   | 0.53 <sup>(B)</sup>                  |
| Iron                               | µg/L     | 300                        | 300               | AO          | 2800            | -                 | 5.0          | 50 <sup>(B)</sup>             | 50 <sup>(B)</sup>          | 17 <sup>(B)</sup>                     | 17 <sup>(B)</sup>                    |
| Lead                               | µg/L     | 1.0 <sup>(g)</sup>         | 10                | MAC         | -               | -                 | 0.025        | 0.32 <sup>(B)</sup>           | 0.32 <sup>(B)</sup>        | 0.060 <sup>(B)</sup>                  | 0.060 <sup>(B)</sup>                 |
| Lithium                            | ua/L     | -                          | -                 | -           | 8               | -                 | 0.25         | 2.4 <sup>(B)</sup>            | 2.4 <sup>(B)</sup>         | 1.1 <sup>(B)</sup>                    | 1.1 <sup>(B)</sup>                   |
| Manganese                          | µg/L     | 1700 <sup>(g)</sup>        | 50                | AO          | 86              | -                 | 0.37         | 131 <sup>(D, B)</sup>         | 131 <sup>(D, B)</sup>      | 1.7 <sup>(B)</sup>                    | 1.7 <sup>(B)</sup>                   |
| Mercury                            | µg/L     | 0.026                      | 1.0               | MAC         | -               | -                 | 0.0025       | 0.011 <sup>(B)</sup>          | 0.011 <sup>(B)</sup>       | 0.0055 <sup>(B)</sup>                 | 0.0055 <sup>(B)</sup>                |
| Molybdenum                         | µg/L     | 73                         | -                 | -           | 20              | -                 | 0.025        | 0.93 <sup>(B)</sup>           | 0.92 <sup>(B)</sup>        | 0.055 <sup>(B)</sup>                  | 0.055 <sup>(B)</sup>                 |
| Nickel                             | µg/L     | 25 <sup>(g)</sup>          | -                 | -           | 78              | -                 | 0.25         | 8.7 <sup>(B)</sup>            | 8.7 <sup>(B)</sup>         | 0.69 <sup>(B)</sup>                   | 0.69 <sup>(B)</sup>                  |
| Selenium                           | ua/L     | 1.0                        | 50                | MAC         | -               | -                 | 0.025        | 0.40 <sup>(B)</sup>           | 0.40 <sup>(B)</sup>        | 0.055 <sup>(B)</sup>                  | 0.055 <sup>(B)</sup>                 |
| Silver                             | µg/L     | 0.25                       | NR                | -           | _               | -                 | 0.0050       | 0.025 <sup>(B)</sup>          | 0.025 <sup>(B)</sup>       | 0.011 <sup>(B)</sup>                  | 0.011 <sup>(B)</sup>                 |
| Strontium                          | µg/L     | -                          | -                 | -           | 2400            | -                 | 7.5          | 48 <sup>(R, B)</sup>          | 48 <sup>(R, B)</sup>       | 16 <sup>(B)</sup>                     | 16 <sup>(B)</sup>                    |
| Thallium                           | µg/L     | 0.80                       | -                 | -           | 0.04            | _                 | 0.0050       | 0.019 <sup>(B)</sup>          | 0.019 <sup>(B)</sup>       | 0.011 <sup>(B)</sup>                  | 0.011 <sup>(B)</sup>                 |
| Tin                                | µg/L     | 3 <sup>(f)</sup>           | -                 | -           | 2400            | _                 | 0.050        | 0.16 <sup>(B)</sup>           | 0.16 <sup>(B)</sup>        | 0.11 <sup>(B)</sup>                   | 0.11 <sup>(B)</sup>                  |
| Uranium                            | ua/L     | 15                         | 20                | MAC         | -               | -                 | 0.023        | 0.37 <sup>(B)</sup>           | 0.37 <sup>(B)</sup>        | 0.034 <sup>(B)</sup>                  | 0.034 <sup>(B)</sup>                 |
| Vanadium                           | µg/L     | 120 <sup>(j)</sup>         | -                 | -           | 17              | -                 | 0.25         | 1.2 <sup>(B)</sup>            | 1.2 <sup>(B)</sup>         | 0.55 <sup>(B)</sup>                   | 0.55 <sup>(B)</sup>                  |
|                                    |          | 7 <sup>(K)</sup>           |                   |             |                 | -                 |              | 3.2 <sup>(B)</sup>            | 3.2 <sup>(B)</sup>         | 1.2 <sup>(B)</sup>                    | 1.2 <sup>(B)</sup>                   |
| Zinc                               | μg/L     | 7 <sup>(K)</sup>           | 5000              | AO          | 1200            | -                 | 0.50         | 3.2 <sup>(B)</sup>            | 3.2 <sup>(B)</sup>         | 1.2 <sup>(B)</sup>                    | 1.2 <sup>(B)</sup>                   |

<sup>(</sup>a) = In the absence of CCME guidelines, the BC MOE water quality guideline was used.

Bolded values represent constituents of potential concern (COPC
Water quality data and guidelines shown in this table were rounded to reflect laboratory or field instrument precisi after comparisons to guidelines. Therefore, values slightly above guidelines may be displayed as being equal to the guidelines and identified as exceedances. Concentrations equal to the guideline values were not identified as exceedances. - = no guideline or no data

References:
Australia and New Zealand Environment and Conservation Council (ANZECC), 2000. Australian and New Zealand guidelines for fresh and marine water quality, 2000. Volum

British Columbia Ministry of the Environment (BC MOE), 2018. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture. Summary Report. British Columbia Ministry of the Environment (BC MOE), 2017. British Columbia Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture (June 2017). Online:

Canadian Council of Ministers of the Environment (CCME), current to October 2018. Canadian Water Quality Guidelines for the Protection of Aquatic Lil

Environment Canada/Health Canada (EC/HC), 2010. Screening Assessment for the Challenge, Vanadium oxide (Vanadium pentoxide). Chemical Abstracts Service Registry Number 1314-62-1. September 20

Environment Canada, 2013. Federal Environmental Quality Guidelines. Cobalt. Canadian Environmental Protection Act, 1999. February 20

Health Canada, 2017. Guidelines for Canadian Drinking Water Quality. Summary Table. February 201

<sup>(</sup>b) = The guideline shown is for unionized ammonia. Model predictions were for total ammonia. For each prediction, the proportion of predicted total ammonia that would be unionized ammonia was based on the assumption of pH of 7 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and the state of \*\*To Meceiving

<sup>(</sup>e) = Guideline is pH dependent. The guideline range shown is based on an assumed pH value of more than or equal to 6.5, which is comparable to baseline values determined in the receiving environment.

<sup>(</sup>d) = In the absence of CCME guidelines, the BC MOE working water quality guideline was used.

<sup>(</sup>e) = Value provided is the Site-Specific Water Quality Objective (SSWQO) derived for the Meadowbank Mine.

<sup>(</sup>f) = In the absence of a CCME guideline, the ANZECC 2000 guideline was used.

<sup>(</sup>a) = Guideline is hardness dependent. The guideline range shown is based on the hardness range observed in the dataset (9 to 44 mg/L). The guideline is calculated based on the individual hardness value for each sample.

<sup>(</sup>h) = Guidline is for hexavalent chromium.

<sup>(</sup>f) = In the absence of CCME guidelines, the Federal Environmental Quality Guideline was used (Environment Canada 2013).

<sup>(</sup>I) = In the absence of CCME guidelines, the EC/HC predicted no effect concentration (PNEC) for freshwater organisms was used (Environment Canada/Health Canada, 2010).

<sup>(6) =</sup> Guideline is hardness, dissolved organic carbon, and pH dependent. The guideline value shown is based on hardness of 23.4 mg/L, dissolved organic carbon of 1.7 mg/L, and pH of 7.2. Guideline for each prediction was determined using predicted hardness, minimum dissolved organic carbon from the measured baseline.

<sup>(</sup>C) = concentration is higher than the chronic aquatic life guideline or outside the recommended pH, DO or total alkalinity range.

<sup>(</sup>D) = concentration is higher than the human health-based guideline.

<sup>(</sup>S) = concentration is higher than the Site-specific Water Quality Objective (SSWQO) developed for the Whale Tail Project (Volume 6, Appendix 6-N) guideline.

<sup>(</sup>B) = Concentration higher than the relevant baseline level, or beyond the reccomended pH or DO concentration range.

| Table 8: Mammoth Lake - Ope        | erations, ( | losure, and Po             |                   |               |                 |                   |                |                              |                               |                                   |                                  |
|------------------------------------|-------------|----------------------------|-------------------|---------------|-----------------|-------------------|----------------|------------------------------|-------------------------------|-----------------------------------|----------------------------------|
|                                    |             |                            | Selected Scr      | eening Values |                 | Site-Specific     |                | Mammoth Lake (Operations)    | Mammoth Lake (Closure)        | Mammoth Lake (Early Post-closure) | Mammoth Lake (Late Post-closure) |
| Parameter                          | Unit        | Aquatic Life               |                   | Human Health  |                 | Water Quality     | Baseline       |                              |                               |                                   |                                  |
|                                    |             | CCME<br>Chronic            | Health            | n Canada      | U.S. EPA<br>RSL | Objective         | (Mammoth Lake) | Maximum Concentration        | Maximum Concentration         | Maximum Concentration             | Maximum Concentration            |
| Conventional Parameters            |             |                            |                   |               |                 |                   |                |                              |                               |                                   |                                  |
| Hardness, as CaCO <sub>3</sub>     | mg/L        | -                          | NR                | -             | -               | -                 | -              | 110                          | 23                            | 16                                | 15                               |
| Total dissolved solids (calculated | ma/L        | -                          | 500               | AO            | -               | -                 | -              | 152                          | 45                            | 29                                | 26                               |
| Major lons                         |             |                            |                   |               |                 |                   |                | -                            | *                             | *                                 |                                  |
| Calcium                            | mg/L        | -                          | NR                | -             | -               | -                 | 5.6            | 39 <sup>(B)</sup>            | 6.7 <sup>(B)</sup>            | 4.5                               | 4.2                              |
| Chloride                           | mg/L        | 120                        | 250               | AO            | -               | -                 | 9.2            | 74 <sup>(B)</sup>            | 11 <sup>(B)</sup>             | 5.7                               | 5.1                              |
| Fluoride                           | mg/L        | 0.12                       | 1.5               | MAC           | -               | -                 | -              | 0.089                        | 0.058                         | 0.071                             | 0.066                            |
| Magnesium                          | mg/L        | -                          | NR                | -             | -               | -                 | 1.6            | 3.0 <sup>(B)</sup>           | 1.6 <sup>(B)</sup>            | 1.2                               | 1.2                              |
| Potassium                          | mg/L        |                            | -                 | -             | -               | -                 | 0.90           | 1.9 <sup>(B)</sup>           | 1.5 <sup>(B)</sup>            | 1.6 <sup>(B)</sup>                | 1.5 <sup>(B)</sup>               |
| Sodium                             | mg/L        |                            | 200               | AO            | -               | -                 | 0.87           | 7.3 <sup>(B)</sup>           | 3.5 <sup>(B)</sup>            | 2.3 <sup>(B)</sup>                | 1.9 <sup>(B)</sup>               |
| Sulphate                           | mg/L        | 128-309 <sup>(a,f)</sup>   | 500               | AO            | -               | -                 | 3.5            | 9.7 <sup>(B)</sup>           | 6.4 <sup>(B)</sup>            | 5.8 <sup>(B)</sup>                | 5.1 <sup>(B)</sup>               |
| Nutrients                          | 3           |                            |                   |               |                 |                   |                | •                            |                               |                                   |                                  |
| Nitrate                            | mg-N/L      | 2.9                        | 10                | MAC           | -               | -                 | 0.0058         | 1.8 <sup>(B)</sup>           | 1.8 <sup>(R, B)</sup>         | 0.37 <sup>(B)</sup>               | 0.28 <sup>(B)</sup>              |
| Total ammonia                      | mg-N/L      | 0.019 <sup>(b)</sup>       | NR                | -             | -               | -                 | 0.028          | 0.19 <sup>(C, B)</sup>       | 0.18 <sup>(C, B)</sup>        | 0.049 <sup>(C, B)</sup>           | 0.039 <sup>(C, B)</sup>          |
| Dissolved phosphorus               | mg-P/L      | 0.010                      |                   | -             | -               | -                 | 0.0022         | 0.029 <sup>(C, B)</sup>      | 0.015 <sup>(C, R, T, B)</sup> | 0.012 <sup>(C, B)</sup>           | 0.0099 <sup>(B)</sup>            |
| Dissolved Metals                   |             |                            |                   |               |                 |                   |                |                              |                               |                                   |                                  |
| Aluminum                           | μg/L        | 100 <sup>(c)</sup>         | 100               | AO            | 4000            | -                 | 6.5            | 4.9                          | 4.9                           | 0.99                              | 0.80                             |
| Antimony                           | µg/L        | 9 <sup>(d)</sup>           | 6                 | MAC           |                 |                   | 0.050          | 0.71 <sup>(B)</sup>          | 0.68 <sup>(B)</sup>           | 0.57 <sup>(B)</sup>               | 0.51 <sup>(B)</sup>              |
| Arsenic                            | µg/L        | 5                          | 10                | MAC           | -               | 25 <sup>(e)</sup> | 0.43           | 19 <sup>(C, D, B)</sup>      | 17 <sup>(C, D, B)</sup>       | 25 <sup>(C, D, B)</sup>           | 21 <sup>(C, D, B)</sup>          |
| Barium                             | ua/L        | 1000 <sup>(d)</sup>        | 1000              | MAC           |                 | -                 | 11             | 19 <sup>(B)</sup>            | 12 <sup>(B)</sup>             | 11                                | 9.6                              |
| Beryllium                          | µg/L        | 0.13 <sup>(d)</sup>        | -                 | -             | 5               | -                 | 0.050          | 0.033                        | 0.028                         | 0.025                             | 0.024                            |
| Bismuth                            | µg/L        | 0.7 <sup>(f)</sup>         |                   | -             | -               | -                 | 0.25           | 0.063                        | 0.063                         | 0.055                             | 0.054                            |
| Boron                              | µg/L        | 1,500                      | 5.000             | MAC           | -               | -                 | 5.0            | 103 <sup>(B)</sup>           | 54 <sup>(B)</sup>             | 34 <sup>(B)</sup>                 | 29 <sup>(B)</sup>                |
| Cadmium                            | µg/L        | 0.18 - 0.90 <sup>(g)</sup> | 5.0               | MAC           | -               | -                 | 0.0050         | 0.019 <sup>(B)</sup>         | 0.012 <sup>(B)</sup>          | 0.011 <sup>(B)</sup>              | 0.010 <sup>(B)</sup>             |
| Chromium                           | µg/L        | 1.0 <sup>(h)</sup>         | 50 <sup>(g)</sup> | MAC           | -               | -                 | 0.050          | 0.019<br>0.95 <sup>(B)</sup> | 0.52 <sup>(B)</sup>           | 0.31 <sup>(B)</sup>               | 0.010<br>0.27 <sup>(B)</sup>     |
| Cobalt                             | µg/L        | 2.5 <sup>(i)</sup>         | -                 | IVIAO         | 1.2             | -                 | 0.050          | 0.78 <sup>(B)</sup>          | 0.51 <sup>(B)</sup>           | 0.49 <sup>(B)</sup>               | 0.41 <sup>(B)</sup>              |
| Copper                             | µg/L        | 2.0 <sup>(g)</sup>         | 1000              | MAC           | 1.2             |                   | 0.53           | 1.8 <sup>(B)</sup>           | 1.2 <sup>(R, B)</sup>         | 1.0 <sup>(B)</sup>                | 0.41<br>0.92 <sup>(B)</sup>      |
| Iron                               | µg/L        | 300                        | 300               | AO            | 2800            |                   | 12             | 82 <sup>(B)</sup>            | 41 <sup>(B)</sup>             | 50 <sup>(B)</sup>                 | 44 <sup>(B)</sup>                |
| Lead                               | µg/L        | 1.0 <sup>(g)</sup>         | 10                | MAC           | 2000            | -                 | 0.21           | 0.40 <sup>(B)</sup>          | 0.23 <sup>(B)</sup>           | 0.18                              | 0.16                             |
| Lithium                            |             |                            |                   | IVIAC         | - 8             |                   | 1.4            | 2.8 <sup>(B)</sup>           | 2.0 <sup>(B)</sup>            | 1.7 <sup>(B)</sup>                | 1.6 <sup>(B)</sup>               |
|                                    | μg/L        | -<br>1700 <sup>(g)</sup>   | 50                | AO            | 86              | -                 | 2.6            | 132 <sup>(D, B)</sup>        | 85 <sup>(D, B)</sup>          | 89 <sup>(D, B)</sup>              | 70 <sup>(D, B)</sup>             |
| Manganese                          | μg/L        |                            |                   |               |                 | -                 |                |                              |                               |                                   |                                  |
| Mercury                            | μg/L        | 0.026                      | 1.0               | MAC           | -               | -                 | 0.0054         | 0.0099 <sup>(B)</sup>        | 0.0090 <sup>(B)</sup>         | 0.010 <sup>(B)</sup>              | 0.010 <sup>(B)</sup>             |
| Molybdenum                         | μg/L        | 73                         | -                 | -             | 20              | -                 | 0.025          | 2.1 <sup>(B)</sup>           | 0.69 <sup>(B)</sup>           | 0.97 <sup>(B)</sup>               | 0.89 <sup>(B)</sup>              |
| Nickel                             | μg/L        | 25 <sup>(g)</sup>          |                   |               | 78              | -                 | 1.2            | 7.6 <sup>(B)</sup>           | 5.6 <sup>(B)</sup>            | 4.6 <sup>(B)</sup>                |                                  |
| Selenium                           | μg/L        | 1.0                        | 50                | MAC           | -               | -                 | 0.050          | 0.35 <sup>(B)</sup>          | 0.26 <sup>(B)</sup>           | 0.18 <sup>(B)</sup>               | 0.16 <sup>(B)</sup>              |
| Silver                             | μg/L        | 0.25                       | NR                | -             |                 | -                 | 0.0050         | 0.022 <sup>(B)</sup>         | 0.020 <sup>(B)</sup>          | 0.015 <sup>(B)</sup>              | 0.014 <sup>(B)</sup>             |
| Strontium                          | μg/L        | -                          | -                 | -             | 2400            | -                 | 40             | 66 <sup>(B)</sup>            | 38                            | 27                                | 25                               |
| Thallium                           | μg/L        | 0.80                       | -                 | -             | 0.04            | -                 | 0.0050         | 0.016 <sup>(B)</sup>         | 0.016 <sup>(B)</sup>          | 0.014 <sup>(B)</sup>              | 0.014 <sup>(B)</sup>             |
| Tin                                | μg/L        | 3 <sup>(f)</sup>           | -                 | -             | 2400            | -                 | 0.050          | 0.14 <sup>(B)</sup>          | 0.14 <sup>(B)</sup>           | 0.16 <sup>(B)</sup>               | 0.16 <sup>(B)</sup>              |
| Uranium                            | μg/L        | 15                         | 20                | MAC           | -               | -                 | 0.028          | 0.69 <sup>(B)</sup>          | 0.27 <sup>(B)</sup>           | 0.45 <sup>(B)</sup>               | 0.42 <sup>(B)</sup>              |
| Vanadium                           | μg/L        | 120 <sup>(j)</sup>         | -                 | -             | 17              | -                 | 0.50           | 0.92 <sup>(B)</sup>          | 0.92 <sup>(B)</sup>           | 0.91 <sup>(B)</sup>               | 0.87 <sup>(B)</sup>              |
| Zinc                               | μg/L        | 7 <sup>(k)</sup>           | 5000              | AO            | 1200            | -                 | 0.50           | 3.1 <sup>(B)</sup>           | 2.4 <sup>(B)</sup>            | 2.4 <sup>(B)</sup>                | 2.3 <sup>(B)</sup>               |

(a) = the guideline shown is for unionized ammonia. Model predictions were for total ammonia. For each prediction, the proportion of predicted total ammonia that would be unionized ammonia was based on the assumption of pH of 7 and water temperature of 1000 (receiving environment) and pH of 8.5 and water temperature of 15.0°C (effluent)

(b) = guildeline is pH dependent. The guildeline range shown is based on an assumed pH value of more than or equal to 6.5, which is comparable to baseline values determined in the receiving environment.

(e) = guideline is hardness dependent. The guideline range shown is based on the hardness range observed in the dataset (10 to 110 mg/L). The guideline is calculated based on the individual hardness value for each sample.

e guideline is hardness and dissolved organic carbon dependent. The guideline value shown is based on hardness of 17 mg/L and dissolved organic carbon of 1.7 mg/L. Guideline for each prediction was determined using predicted hardness and minimum dissolved organic carbon from the measured baseline.

(e) = guideline is hardness, dissolved organic carbon, and pH dependent. The guideline value shown is based on hardness of 23.4 mg/L, dissolved organic carbon of 1.7 mg/L, and pH of 7.2. Guideline for each prediction was determined using predicted hardness, minimum dissolved organic carbon from the measured baseline, and 95th percentile pH from the measured baseline.

(f) = guideline is for chromium VI.

(a) = In the absence of CCME guidelines, the BC MOE water quality guideline was used.

(e) = The guideline shown is for unionized ammonia. Model predictions were for total ammonia. For each prediction, the proportion of predicted total ammonia that would be unionized ammonia was based on the assumption of pH of 7 and water temperature of 1000 (receiving environment) and pH of 8.5 and water temperature of 15.0 (effluent)

(c) = Guideline is pH dependent. The guideline range shown is based on an assumed pH value of more than or equal to 6.5, which is comparable to baseline values determined in the receiving environment.

<sup>(d)</sup> = In the absence of CCME guidelines, the BC MOE working water quality guideline was used.

(e) = Value provided is the Site-Specific Water Quality Objective (SSWQO) derived for the Meadowbank Mine.

 $^{(f)}$  = In the absence of a CCME guideline, the ANZECC 2000 guideline was used.

(e) = Guideline is hardness dependent. The guideline range shown is based on the hardness range observed in the dataset (9 to 44 mg/L). The guideline is calculated based on the individual hardness value for each sample.

 $^{(h)}$  = Guidline is for hexavalent chromium.

(i) = In the absence of CCME guidelines, the Federal Environmental Quality Guideline was used (Environment Canada 2013).

0 = In the absence of CCME guidelines, the EC/HC predicted no effect concentration (PNEC) for freshwater organisms was used (Environment Canada/Health Canada, 2010).

(6) = Guideline is hardness, dissolved organic carbon, and pH dependent. The guideline value shown is based on hardness of 23.4 mg/L, dissolved organic carbon of 1.7 mg/L, and pH of 7.2. Guideline for each prediction was determined using predicted hardness, minimum dissolved organic carbon from the measured baseline, and 95th percentile pH from the measured baseline.

(C) = concentration is higher than the chronic aquatic life guideline or outside the recommended pH, DO or total alkalinity range.

(D) = concentration is higher than the human health-based guideline.

(8) = concentration is higher than the Site-specific Water Quality Objective (SSWQO) developed for the Whale Tail Project (Volume 6, Appendix 6-N) guideline.

(B) = Concentration higher than the relevant baseline level, or beyond the reccomended pH or DO concentration range. Bolded values represent constituents of potential concern (COPC

Water quality data and guidelines shown in this table were rounded to reflect laboratory or field instrument precisic after comparisons to guidelines. Therefore, values slightly above guidelines may be displayed as being equal to the guidelines and identified as exceedances. Concentrations equal to the guideline values were not identified as exceedan

- = no guideline or no data.

References:
Australia and New Zealand Environment and Conservation Council (ANZECC), 2000. Australian and New Zealand guidelines for fresh and marine water quality, 2000. Volume 2

British Columbia Ministry of the Environment (BC MOE), 2018. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture. Summary Report. British Columbia Ministry of the Environment (BC MOE), 2017. British Columbia Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture (June 2017). Online:

Canadian Council of Ministers of the Environment (CCME), current to October 2018. Canadian Water Quality Guidelines for the Protection of Aquatic Life Environment Canada/Health Canada (EC/HC), 2010. Screening Assessment for the Challenge, Vanadium oxide (Vanadium pentoxide). Chemical Abstracts Service Registry Number 1314-62-1. September 201

Environment Canada, 2013. Federal Environmental Quality Guidelines. Cobalt. Canadian Environmental Protection Act, 1999. February 2013

Health Canada, 2017. Guidelines for Canadian Drinking Water Quality. Summary Table. February 2017
United States Environmental Protection Agency, 2018. Regional Screening Levels Summary Table. May 2018. Online: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-table

Table 0.1 also 0.5 and 
| Table 9: Lake A15 - Operations, C  |        |                            | elected Screenir  | aguleV ne   |                 | 1                          |              | A15 (Operations)                            | A15 (Closure)                                | A15 (Early Post-closure)                     | A15 (Late Post-closure)                      |
|------------------------------------|--------|----------------------------|-------------------|-------------|-----------------|----------------------------|--------------|---------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
| _                                  |        | Aquatic Life               |                   | ıman Healti | h               | Site-Specific              | Baseline     |                                             | A10 (Glosure)                                | A to (Early 1 ost-closure)                   | A 10 (Eute 1 Ost-closure)                    |
| Parameter                          | Unit   | CCME Chronic<br>Guideline  | Health Ca         |             | U.S. EPA<br>RSL | Water Quality<br>Objective | (A15/A12)    | Maximum<br>Concentration                    | Maximum Concentration                        | Maximum Concentration                        | Maximum Concentration                        |
| Conventional Parameters            |        | Guideline                  |                   |             | KSL             |                            |              | 1                                           | 1                                            |                                              | 1                                            |
| Hardness, as CaCO <sub>3</sub>     | mg/L   |                            | NR                | -           |                 |                            | -            | 86                                          | 21                                           | 16                                           | 14                                           |
| Total dissolved solids (calculated | mg/L   | <del>-</del>               | 500               | AO          | -               |                            |              | 120                                         | 39                                           | 27                                           | 24                                           |
| Major lons                         | mg/L   | 1                          | 500               | AO          |                 |                            |              | 120                                         | - 55                                         |                                              | 24                                           |
| Calcium                            | mg/L   | -                          | NR                |             | -               | -                          | 2.5          | 30 <sup>(B)</sup>                           | 6.0 <sup>(B)</sup>                           | 4.3 <sup>(B)</sup>                           | 3.9 <sup>(B)</sup>                           |
| Chloride                           | mg/L   | 120                        | 250               | AO          |                 |                            | 2.1          | 57 <sup>(B)</sup>                           | 9.3 <sup>(B)</sup>                           | 5.3 <sup>(B)</sup>                           | 4.8 <sup>(B)</sup>                           |
| Fluoride                           | mg/L   | 0.12                       | 1.5               | MAC         |                 |                            | 0.025        | 0.074 <sup>(B)</sup>                        | 0.052 <sup>(B)</sup>                         | 0.064 <sup>(B)</sup>                         | 0.060 <sup>(B)</sup>                         |
| Magnesium                          | mg/L   | -                          | NR                | -           | -               | -                          | 0.89         | 2.5 <sup>(B)</sup>                          | 1.4 <sup>(B)</sup>                           | 1.2 <sup>(B)</sup>                           | 1.1 <sup>(B)</sup>                           |
| Potassium                          | mg/L   | _                          | -                 | -           | -               |                            | 0.58         | 1.5 <sup>(B)</sup>                          | 1.3 <sup>(B)</sup>                           | 1.5 <sup>(B)</sup>                           | 1.4 <sup>(B)</sup>                           |
| Sodium                             | mg/L   | -                          | 200               | AO          | -               | -                          | 0.67         | 5.8 <sup>(B)</sup>                          | 2.9 <sup>(B)</sup>                           | 2.0 <sup>(B)</sup>                           | 1.7 <sup>(B)</sup>                           |
| Sulphate                           | mg/L   | 128-309 <sup>(a,f)</sup>   | 500               | AO          | -               | -                          | 3.3          | 7.8 <sup>(B)</sup>                          | 5.5 <sup>(B)</sup>                           | 5.2 <sup>(B)</sup>                           | 4.7 <sup>(B)</sup>                           |
| Nutrients                          | my/L   | 120-303                    | 300               | ΛU          |                 |                            | 3.3          | 7.0                                         | 3.3                                          | J.2                                          | 4.1                                          |
| Nitrate                            | mg-N/L | 2.9                        | 10                | MAC         |                 |                            | 0.014        | 1.4 <sup>(B)</sup>                          | 1.4 <sup>(B)</sup>                           | 0.32 <sup>(B)</sup>                          | 0.24 <sup>(B)</sup>                          |
| Total ammonia                      | mg-N/L | 0.019 <sup>(b)</sup>       | NR                | -           | -               | -                          | 0.0071       | 0.14 <sup>(C, B)</sup>                      | 0.14 <sup>(C, B)</sup>                       | 0.043 <sup>(C, B)</sup>                      | 0.034 <sup>(C, B)</sup>                      |
| Dissolved phosphorus               | mg-P/L | 0.010                      | -                 |             | -               |                            | 0.0010       | 0.023 <sup>(C, B)</sup>                     | 0.013 <sup>(C, B)</sup>                      | 0.010 <sup>(B)</sup>                         | 0.0087 <sup>(B)</sup>                        |
| Dissolved Metals                   | my-r/L | 0.010                      |                   |             |                 |                            | 0.0010       | 0.020                                       | 0.010                                        | 0.010                                        | 0.0007                                       |
| Aluminum                           | μg/L   | 100 <sup>(c)</sup>         | 100               | AO          | 4000            | -                          | 3.2          | 4.7 <sup>(B)</sup>                          | 4.6 <sup>(B)</sup>                           | 1.4                                          | 1.3                                          |
| Antimony                           | μg/L   | 9 <sup>(d)</sup>           | 6                 | MAC         |                 | -                          | 0.050        | 0.56 <sup>(B)</sup>                         | 0.56 <sup>(B)</sup>                          | 0.50 <sup>(B)</sup>                          | 0.45 <sup>(B)</sup>                          |
| Arsenic                            | μg/L   | 5                          | 10                | MAC         | -               | 25 <sup>(e)</sup>          | 0.32         | 14 <sup>(C, D, B)</sup>                     | 13 <sup>(C, D, B)</sup>                      | 21 <sup>(C, D, B)</sup>                      | 18 <sup>(C, D, B)</sup>                      |
| Barium                             | µg/L   | 1000 <sup>(d)</sup>        | 1000              | MAC         |                 | -                          | 6.1          | 16 <sup>(B)</sup>                           | 10 <sup>(B)</sup>                            | 10 <sup>(B)</sup>                            | 9.0 <sup>(B)</sup>                           |
| Beryllium                          | µg/L   | 0.13 <sup>(d)</sup>        | -                 | - IVIAC     | 5               | -                          | 0.010        | 0.030 <sup>(B)</sup>                        | 0.027 <sup>(B)</sup>                         | 0.024 <sup>(B)</sup>                         | 0.024 <sup>(B)</sup>                         |
| Bismuth                            | µg/L   | 0.7 <sup>(f)</sup>         |                   | -           | -               |                            | 0.025        | 0.050<br>0.061 <sup>(B)</sup>               | 0.027<br>0.061 <sup>(B)</sup>                | 0.055 <sup>(B)</sup>                         | 0.054 <sup>(B)</sup>                         |
| Boron                              | μg/L   | 1,500                      | 5,000             | MAC         | -               | <del>- : -</del>           | 5.0          | 81 <sup>(B)</sup>                           | 45 <sup>(B)</sup>                            | 30 <sup>(B)</sup>                            | 26 <sup>(B)</sup>                            |
| Cadmium                            | µg/L   | 0.18 - 0.90 <sup>(g)</sup> | 5.0               | MAC         | -               | -                          | 0.0025       | 0.016 <sup>(B)</sup>                        | 0.011 <sup>(B)</sup>                         | 0.010 <sup>(B)</sup>                         | 0.0093 <sup>(B)</sup>                        |
|                                    |        | 1.0 <sup>(h)</sup>         | 50 <sup>(g)</sup> | MAC         | -               |                            | 0.050        | 0.73 <sup>(B)</sup>                         | 0.44 <sup>(B)</sup>                          | 0.010<br>0.28 <sup>(B)</sup>                 | 0.0093<br>0.24 <sup>(B)</sup>                |
| Chromium<br>Cobalt                 | µg/L   | 2.5 <sup>(i)</sup>         |                   | IVIAC -     | 1.2             |                            | 0.050        | 0.61 <sup>(B)</sup>                         | 0.43 <sup>(B)</sup>                          | 0.43 <sup>(B)</sup>                          | 0.24°                                        |
| -                                  | μg/L   | 2.0 <sup>(g)</sup>         | 1000              | MAC         |                 | -                          |              | 1.4 <sup>(B)</sup>                          | 1.1 <sup>(B)</sup>                           | 0.43°                                        | 0.85 <sup>(B)</sup>                          |
| Copper                             | μg/L   | 300                        | 300               | AO          | 2800            | -                          | 0.79<br>5.0  | 66 <sup>(B)</sup>                           | 36 <sup>(B)</sup>                            | 44 <sup>(B)</sup>                            | 39 <sup>(B)</sup>                            |
| Iron                               | μg/L   | 1.0 <sup>(g)</sup>         | 10                | MAC         |                 | -                          | 0.025        | 0.32 <sup>(B)</sup>                         | 0.20 <sup>(B)</sup>                          | 0.17 <sup>(B)</sup>                          | 0.14 <sup>(B)</sup>                          |
| Lead                               | μg/L   |                            |                   |             | -               | -                          |              | 2.4 <sup>(B)</sup>                          | 1.8 <sup>(B)</sup>                           | 1.6 <sup>(B)</sup>                           | 1.5 <sup>(B)</sup>                           |
| Lithium                            | μg/L   | -<br>1700 <sup>(g)</sup>   | 50                | -           | 8               | -                          | 0.50<br>0.58 | 101 <sup>(D, B)</sup>                       | 67 <sup>(D, B)</sup>                         | 76 <sup>(D, B)</sup>                         | 60 <sup>(D, B)</sup>                         |
| Manganese                          | μg/L   |                            |                   | AO          | 86              | -                          |              |                                             |                                              |                                              |                                              |
| Mercury                            | μg/L   | 0.026                      | 1.0               | MAC         | -               | -                          | 0.0025       | 0.0087 <sup>(B)</sup><br>1.6 <sup>(B)</sup> | 0.0082 <sup>(B)</sup><br>0.57 <sup>(B)</sup> | 0.0095 <sup>(B)</sup><br>0.81 <sup>(B)</sup> | 0.0092 <sup>(B)</sup><br>0.75 <sup>(B)</sup> |
| Molybdenum                         | μg/L   | 73                         | -                 | -           | 20              | -                          | 0.025        |                                             |                                              |                                              |                                              |
| Nickel                             | μg/L   | 25 <sup>(g)</sup>          |                   |             | 78              | -                          | 0.65         | 5.9 <sup>(B)</sup>                          | 4.5 <sup>(B)</sup>                           | 4.0 <sup>(B)</sup>                           | 3.3 <sup>(B)</sup>                           |
| Selenium                           | μg/L   | 1.0                        | 50                | MAC         | -               | -                          | 0.025        | 0.27 <sup>(B)</sup>                         | 0.21 <sup>(B)</sup>                          | 0.16 <sup>(B)</sup>                          | 0.14 <sup>(B)</sup>                          |
| Silver                             | μg/L   | 0.25                       | NR                | -           |                 | -                          | 0.0050       | 0.019 <sup>(B)</sup>                        | 0.018 <sup>(B)</sup>                         | 0.014 <sup>(B)</sup>                         | 0.013 <sup>(B)</sup>                         |
| Strontium                          | μg/L   | -                          | -                 | -           | 2400            | -                          | 11           | 56 <sup>(B)</sup>                           | 33 <sup>(B)</sup>                            | 26 <sup>(B)</sup>                            | 24 <sup>(B)</sup>                            |
| Thallium                           | μg/L   | 0.80                       | -                 | -           | 0.04            | -                          | 0.0050       | 0.015 <sup>(B)</sup>                        | 0.015 <sup>(B)</sup>                         | 0.014 <sup>(B)</sup>                         | 0.013 <sup>(B)</sup>                         |
| Tin                                | μg/L   | 3 <sup>(f)</sup>           | -                 | -           | 2400            | -                          | 0.12         | 0.14 <sup>(B)</sup>                         | 0.14 <sup>(B)</sup>                          | 0.16 <sup>(B)</sup>                          | 0.15 <sup>(B)</sup>                          |
| Uranium                            | μg/L   | 15                         | 20                | MAC         | -               | -                          | 0.023        | 0.54 <sup>(B)</sup>                         | 0.23 <sup>(B)</sup>                          | 0.38 <sup>(B)</sup>                          | 0.35 <sup>(B)</sup>                          |
| Vanadium                           | μg/L   | 120 <sup>(j)</sup>         | -                 | -           | 17              | -                          | 0.25         | 0.84 <sup>(B)</sup>                         | 0.84 <sup>(B)</sup>                          | 0.84 <sup>(B)</sup>                          | 0.81 <sup>(B)</sup>                          |
| Zinc                               | μg/L   | 7 <sup>(K)</sup>           | 5000              | AO          | 1200            | -                          | 1.2          | 2.6 <sup>(B)</sup>                          | 2.1 <sup>(B)</sup>                           | 2.2 <sup>(B)</sup>                           | 2.1 <sup>(B)</sup>                           |

<sup>(</sup>a) = In the absence of CCME guidelines, the BC MOE water quality guideline was used.

Bolded values represent constituents of potential concern (COPC
Water quality data and guidelines shown in this table were rounded to reflect laboratory or field instrument precisi after comparisons to guidelines. Therefore, values slightly above guidelines may be displayed as being equal to the guidelines and identified as exceedances. Concentrations equal to the guideline values were not identified as exceedances. - = no guideline or no data

References:
Australia and New Zealand Environment and Conservation Council (ANZECC), 2000. Australian and New Zealand guidelines for fresh and marine water quality, 2000. Volume 2 -

British Columbia Ministry of the Environment (BC MOE), 2018. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture. Summary Report. March

British Columbia Ministry of the Environment (BC MOE), 2017. British Columbia Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture (June 2017). Online: Canadian Council of Ministers of the Environment (CCME), current to October 2018. Canadian Water Quality Guidelines for the Protection of Aquatic Lil

Environment Canada/Health Canada (EC/HC), 2010. Screening Assessment for the Challenge, Vanadium oxide (Vanadium pentoxide). Chemical Abstracts Service Registry Number 1314-62-1. September 20

Environment Canada, 2013. Federal Environmental Quality Guidelines. Cobalt. Canadian Environmental Protection Act, 1999. February 20

Health Canada, 2017. Guidelines for Canadian Drinking Water Quality. Summary Table. February 201

<sup>(</sup>b) = The guideline shown is for unionized ammonia. Model predictions were for total ammonia. For each prediction, the proportion of predicted total ammonia that would be unionized ammonia was based on the assumption of pH of 7 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and the state of \*\*To Meceiving

<sup>(</sup>e) = Guideline is pH dependent. The guideline range shown is based on an assumed pH value of more than or equal to 6.5, which is comparable to baseline values determined in the receiving environment.

<sup>(</sup>d) = In the absence of CCME guidelines, the BC MOE working water quality guideline was used.

<sup>(</sup>e) = Value provided is the Site-Specific Water Quality Objective (SSWQO) derived for the Meadowbank Mine.

<sup>(</sup>f) = In the absence of a CCME guideline, the ANZECC 2000 guideline was used.

<sup>(</sup>a) = Guideline is hardness dependent. The guideline range shown is based on the hardness range observed in the dataset (9 to 44 mg/L). The guideline is calculated based on the individual hardness value for each sample.

<sup>(</sup>h) = Guidline is for hexavalent chromium.

<sup>(</sup>f) = In the absence of CCME guidelines, the Federal Environmental Quality Guideline was used (Environment Canada 2013).

<sup>(</sup>I) = In the absence of CCME guidelines, the EC/HC predicted no effect concentration (PNEC) for freshwater organisms was used (Environment Canada/Health Canada, 2010).

<sup>(6) =</sup> Guideline is hardness, dissolved organic carbon, and pH dependent. The guideline value shown is based on hardness of 23.4 mg/L, dissolved organic carbon of 1.7 mg/L, and pH of 7.2. Guideline for each prediction was determined using predicted hardness, minimum dissolved organic carbon from the measured baseline.

<sup>(</sup>C) = concentration is higher than the chronic aquatic life guideline or outside the recommended pH, DO or total alkalinity range.

<sup>(</sup>D) = concentration is higher than the human health-based guideline.

<sup>(</sup>S) = concentration is higher than the Site-specific Water Quality Objective (SSWQO) developed for the Whale Tail Project (Volume 6, Appendix 6-N) guideline.

<sup>(</sup>B) = Concentration higher than the relevant baseline level, or beyond the reccomended pH or DO concentration range.

| Assenic $\mu g l$ 5 10 MAC - $25^{(0)}$ 0.32 $13^{(0.5,8)}$ $12^{(0.5,8)}$ $26^{(0.5,8)}$ $17^{(0.5,8)}$ $18^{(0.5,8)}$ $19^{(0.5,8)}$ $19^{(0.5,8)}$ $19^{(0.5,8)}$ $10^{(0.5)}$ 1000 $10^{(0.5)}$ 1000 MAC 6.1 $15^{(0.5)}$ 10 $^{(0.5)}$ 10 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.024 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.024 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0.025 $^{(0.5)}$ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Table 10: Lake A12 - Operations, | Closure, and P | ost-Closure (Ex          | pansion Project   |            |              |                   |           |                         |                         |                          |                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------|--------------------------|-------------------|------------|--------------|-------------------|-----------|-------------------------|-------------------------|--------------------------|-------------------------|
| Parameter   Unit   Against   Human Harman   Water Quality   Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                |                          | Selected Scree    | ning Value | s            | Site-Specific     |           | A12 (Operations)        | A12 (Closure)           | A12 (Early Post-closure) | A12 (Late Post-closure) |
| Conventional Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Parameter                        | Unit           |                          | Н                 | luman Heal | th           |                   |           | Maximum                 | Maximum                 |                          |                         |
| Conventional Parameters   Feature   Conventional Parameters   Feature   Color   Colo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                |                          | Health Ca         | ınada      | U.S. EPA RSL |                   | (A15/A12) |                         |                         | Maximum Concentration    | Maximum Concentration   |
| Hardness, ac CACC    mg/L   -   NR   -   -   -   -   75   21   15   14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Conventional Parameters          |                | Chronic                  |                   |            | l            |                   |           | j.                      | l .                     | ļ.                       | 1                       |
| Total dissolved solids (calculated   mg/L   0   500   AO   0   0   0   0   0   0   38   26   24   Magin form   Mg/L   0   NR   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  | ma/l           | _                        | NR                |            | _            |                   |           | 75                      | 21                      | 15                       | 14                      |
| Major lons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |                | -                        |                   | AO         | -            | -                 | _         |                         |                         |                          |                         |
| Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                |                          |                   |            | 1            |                   |           |                         |                         |                          |                         |
| Flacetide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  | mg/L           | -                        | NR                | -          | -            | -                 | 2.5       | 26 <sup>(B)</sup>       | 5.9 <sup>(B)</sup>      | 4.2 <sup>(B)</sup>       | 3.9 <sup>(B)</sup>      |
| Magnessum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chloride                         | mg/L           | 120                      | 250               | AO         | -            | -                 | 2.1       | 49 <sup>(B)</sup>       | 9.2 <sup>(B)</sup>      | 5.2 <sup>(B)</sup>       | 4.7 <sup>(B)</sup>      |
| Magnesism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                |                          |                   |            | -            | -                 |           | 0.068 <sup>(B)</sup>    | 0.052 <sup>(B)</sup>    | 0.063 <sup>(B)</sup>     | 0.059 <sup>(B)</sup>    |
| Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Magnesium                        |                |                          | NR                | -          | -            | -                 |           | 2.3 <sup>(B)</sup>      | 1.4 <sup>(B)</sup>      | 1.2 <sup>(B)</sup>       | 1.1 <sup>(B)</sup>      |
| Sulphate   mg/L   128-218 <sup>(h)</sup>   500   AO   -   -   3.3   7.1 <sup>(h)</sup>   5.4 <sup>(h)</sup>   5.2 <sup>(h)</sup>   4.6 <sup>(h)</sup>   AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Potassium                        | mg/L           | -                        | -                 | -          | -            | -                 | 0.58      | 1.4 <sup>(B)</sup>      | 1.3 <sup>(B)</sup>      | 1.4 <sup>(B)</sup>       | 1.3 <sup>(B)</sup>      |
| Nutries   mg-N/L   2.9   10   MAC   -   -   0.014   1.3   1.3   0.31   1.3   0.24   1.3   0.02   1.3   0.02   1.3   0.02   1.3   0.02   1.3   0.02   1.3   0.02   1.3   0.02   1.3   0.02   1.3   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |                | -                        | 200               | AO         | -            | -                 |           |                         |                         |                          |                         |
| Nutries   mg,NU,   2.9   10   MAC   -   -   0.014   1.3   1.3   1.3   0.31   0.24   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.030   0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sulphate                         | mg/L           | 128-218 <sup>(a,f)</sup> | 500               | AO         | -            | -                 | 3.3       | 7.1 <sup>(B)</sup>      | 5.4 <sup>(B)</sup>      | 5.2 <sup>(B)</sup>       | 4.6 <sup>(B)</sup>      |
| Total ammonia mgNL 0.019 <sup>(1)</sup> NR 0.0001 0.13 <sup>(1)</sup> 0.13 <sup>(1)</sup> 0.13 <sup>(1)</sup> 0.0008 <sup>(1)</sup> 0.00086 <sup>(1)</sup> 0.0008 | Nutrients                        |                |                          |                   |            |              |                   |           | •                       | •                       | •                        |                         |
| Dissolved phosphorus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nitrate                          | mg-N/L         | 2.9                      | 10                | MAC        | -            | -                 | 0.014     |                         |                         |                          |                         |
| Dissolved Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Total ammonia                    | mg-N/L         | 0.019 <sup>(b)</sup>     | NR                | -          | -            | -                 | 0.0071    |                         |                         | 0.042 <sup>(C, B)</sup>  | 0.033 <sup>(C, B)</sup> |
| Aluminum         μg/L         100 <sup>(6)</sup> 100         AO         4000         -         3.2         4.7 <sup>(6)</sup> 4.7 <sup>(6)</sup> 1.6         1.5           Antimony         μg/L         9         6         MAC         -         -         0.050         0.53 <sup>(6)</sup> 0.53 <sup>(6)</sup> 0.48 <sup>(6)</sup> 0.43 <sup>(6)</sup> Arsenic         μg/L         1000 <sup>(6)</sup> 100         MAC         -         -         0.13 <sup>(6)</sup> 12 <sup>(6)</sup> Cr, 8 <sup>(6)</sup> 12 <sup>(6)</sup> Cr, 8 <sup>(6)</sup> 10 <sup>(6)</sup> 9.0 <sup>(6)</sup> <th< td=""><td>Dissolved phosphorus</td><td>mg-P/L</td><td>0.010</td><td>-</td><td>-</td><td>-</td><td>-</td><td>0.0010</td><td>0.020<sup>(C, B)</sup></td><td>0.012<sup>(C, B)</sup></td><td>0.010<sup>(B)</sup></td><td>0.0086<sup>(B)</sup></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dissolved phosphorus             | mg-P/L         | 0.010                    | -                 | -          | -            | -                 | 0.0010    | 0.020 <sup>(C, B)</sup> | 0.012 <sup>(C, B)</sup> | 0.010 <sup>(B)</sup>     | 0.0086 <sup>(B)</sup>   |
| Antimony         μg/L         9 <sup>(0)</sup> 6         MAC         -         -         0.050         0.53 <sup>(0)</sup> 0.63 <sup>(0)</sup> 0.48 <sup>(0)</sup> 17 <sup>(C, Ng)</sup> 18 <sup>(D, Ng)</sup> 0.028 <sup>(0)</sup> 0.028 <sup>(0)</sup> 0.027 <sup>(0)</sup> 0.025 <sup>(0)</sup> 0.027 <sup>(0)</sup> 0.055 <sup>(0)</sup> 0.055 <sup>(0)</sup> 0.055 <sup>(0)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dissolved Metals                 |                |                          |                   |            |              |                   |           |                         |                         |                          |                         |
| Arsenic         μg/L         5         10         MAC         -         25 <sup>(c)</sup> 0.32         13 <sup>(c)</sup> , 0.8)         12 <sup>(c)</sup> , 0.8)         20 <sup>(c)</sup> , 0.8)         17 <sup>(c)</sup> , 0.8)           Barlum         μg/L         1000 <sup>(c)</sup> 1000         MAC         -         -         6.1         15 <sup>(R)</sup> 10 <sup>(R)</sup> 10 <sup>(R)</sup> 9.0 <sup>(R)</sup> Bervillum         μg/L         0.7 <sup>(c)</sup> -         -         5         -         0.025         0.022 <sup>(R)</sup> 0.025 <sup>(R)</sup> 0.025 <sup>(R)</sup> 0.025 <sup>(R)</sup> 0.025 <sup>(R)</sup> 0.025 <sup>(R)</sup> 0.055 <sup>(R)</sup> 0.0025 <sup>(R)</sup> 0.066 <sup>(R)</sup> 0.066 <sup>(R)</sup> 0.010 <sup>(R)</sup> 0.010 <sup>(R)</sup> 0.003 <sup>(R)</sup> 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Aluminum                         |                |                          |                   |            | 4000         | -                 |           |                         |                         |                          |                         |
| Bartim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Antimony                         | μg/L           |                          |                   |            | -            |                   |           |                         |                         |                          |                         |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Arsenic                          | μg/L           |                          | 10                | MAC        | -            | 25 <sup>(e)</sup> | 0.32      |                         |                         |                          |                         |
| Bismuth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Barium                           | μg/L           |                          | 1000              | MAC        | -            | -                 | 6.1       |                         |                         |                          |                         |
| Boron   Pg/L   1,500   5,000   MAC   -   -   5.0   72   0   44   0   30   0   26   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Beryllium                        | μg/L           | 0.13 <sup>(d)</sup>      | •                 |            | 5            | -                 | 0.010     |                         |                         | 0.025 <sup>(B)</sup>     | 0.024 <sup>(B)</sup>    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bismuth                          | μg/L           |                          |                   |            | -            | -                 | 0.025     |                         |                         |                          |                         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Boron                            | μg/L           |                          | 5,000             | MAC        | -            | -                 | 5.0       |                         |                         |                          |                         |
| Cobalt         μg/L         2.5 <sup>(0)</sup> -         -         1.2         -         0.050         0.55 <sup>(0)</sup> 0.44 <sup>(0)</sup> 0.42 <sup>(0)</sup> 0.36 <sup>(0)</sup> Copper         μg/L         2.0 <sup>(0)</sup> 1000         MAC         -         -         0.79         1.3 <sup>(0)</sup> 1.1 <sup>(0)</sup> 0.95 <sup>(0)</sup> 0.86 <sup>(0)</sup> Iron         μg/L         300         300         AO         2800         -         5.0         60 <sup>(0)</sup> 35 <sup>(0)</sup> 44 <sup>(0)</sup> 38 <sup>(0)</sup> Lead         μg/L         1.0 <sup>(0)</sup> 10         MAC         -         -         0.025         0.29 <sup>(0)</sup> 0.19 <sup>(0)</sup> 0.16 <sup>(0)</sup> 0.14 <sup>(0)</sup> Lead         μg/L         1.0 <sup>(0)</sup> 10         MAC         -         -         0.025         0.29 <sup>(0)</sup> 0.19 <sup>(0)</sup> 0.16 <sup>(0)</sup> 0.14 <sup>(0)</sup> Lead         μg/L         1.0 <sup>(0)</sup> 10         MAC         -         -         0.025         0.29 <sup>(0)</sup> 0.19 <sup>(0)</sup> 0.16 <sup>(0)</sup> 0.14 <sup>(0)</sup> Lithium         μg/L         -         -         8         -         0.58         89 <sup>(0)</sup> 1.8 <sup>(0)</sup> 0.16 <sup>(0)</sup> 1.5 <sup>(0)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cadmium                          | μg/L           |                          |                   | MAC        | -            | -                 | 0.0025    |                         |                         |                          |                         |
| Copper         μg/L         2.0 <sup>(6)</sup> 1000         MAC         -         0.79         1.3 <sup>(6)</sup> 1.1 <sup>(6)</sup> 0.95 <sup>(6)</sup> 0.86 <sup>(6)</sup> Iron         μg/L         300         300         AO         2800         -         5.0         60 <sup>(6)</sup> 35 <sup>(6)</sup> 44 <sup>(6)</sup> 38 <sup>(6)</sup> Lead         μg/L         1.0 <sup>(6)</sup> 10         MAC         -         -         0.025         0.29 <sup>(6)</sup> 0.19 <sup>(6)</sup> 0.14 <sup>(6)</sup> 0.14 <sup>(6)</sup> Lithium         μg/L         -         -         -         8         -         0.50         2.2 <sup>(6)</sup> 1.8 <sup>(6)</sup> 1.6 <sup>(6)</sup> 1.5 <sup>(6)</sup> 1.5 <sup>(6)</sup> Manganese         μg/L         170 <sup>(6)</sup> 50         AO         86         -         0.58         89 <sup>(7)</sup> , 8)         63 <sup>(7)</sup> , 8)         74 <sup>(9)</sup> , 8)         58 <sup>(7)</sup> , 8)           Mercury         μg/L         73         -         -         20         -         0.0025         0.0026 <sup>(7)</sup> 0.0081 <sup>(8)</sup> 0.0091 <sup>(8)</sup> <td>Chromium</td> <td>μg/L</td> <td></td> <td>50<sup>(g)</sup></td> <td>MAC</td> <td>-</td> <td>-</td> <td>0.050</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chromium                         | μg/L           |                          | 50 <sup>(g)</sup> | MAC        | -            | -                 | 0.050     |                         |                         |                          |                         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cobalt                           | μg/L           |                          | •                 |            | 1.2          | -                 | 0.050     |                         |                         |                          |                         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Copper                           | μg/L           |                          | 1000              |            |              | -                 |           |                         |                         |                          |                         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Iron                             | μg/L           |                          |                   | AO         | 2800         | -                 | 5.0       |                         |                         |                          |                         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lead                             | μg/L           | 1.0 <sup>(g)</sup>       | 10                | MAC        | -            | -                 | 0.025     |                         |                         |                          |                         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lithium                          | μg/L           |                          | -                 | -          | 8            | -                 | 0.50      |                         |                         |                          |                         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Manganese                        | μg/L           | 1700 <sup>(g)</sup>      | 50                | AO         | 86           | -                 | 0.58      | 89 <sup>(D, B)</sup>    | 63 <sup>(D, B)</sup>    |                          | 58 <sup>(D, B)</sup>    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mercury                          | μg/L           | 0.026                    | 1.0               | MAC        | -            | -                 |           |                         |                         |                          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Molybdenum                       | μg/L           |                          |                   | -          |              | -                 |           |                         |                         |                          |                         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nickel                           | μg/L           | 25 <sup>(g)</sup>        | •                 |            | 78           | -                 | 0.65      |                         |                         |                          |                         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Selenium                         | μg/L           | 1.0                      |                   | MAC        | -            | -                 | 0.025     |                         |                         |                          |                         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Silver                           | μg/L           | 0.25                     | NR                | -          | -            | -                 | 0.0050    |                         |                         |                          |                         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Strontium                        | μg/L           |                          | -                 | -          | 2400         | -                 |           |                         |                         |                          |                         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Thallium                         | μg/L           |                          | -                 | -          |              | -                 | 0.0050    |                         |                         |                          |                         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tin                              | μg/L           | 3 <sup>(f)</sup>         | -                 | -          | 2400         | -                 | 0.12      | 0.14 <sup>(B)</sup>     | 0.14 <sup>(B)</sup>     | 0.16 <sup>(B)</sup>      | 0.15 <sup>(B)</sup>     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Uranium                          | μg/L           |                          | 20                | MAC        | -            | -                 | 0.023     |                         |                         |                          |                         |
| Zinc $ua/L$ $7^{(K)}$ 5000 AO 1200 - 1.2 2.4 <sup>(E)</sup> 2.1 <sup>(E)</sup> 2.2 <sup>(E)</sup> 2.1 <sup>(E)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vanadium                         | μg/L           |                          |                   | -          |              | -                 | 0.25      |                         |                         |                          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Zinc                             | μg/L           | 7 <sup>(K)</sup>         | 5000              | AO         | 1200         | -                 | 1.2       | 2.4 <sup>(B)</sup>      | 2.1 <sup>(B)</sup>      | 2.2 <sup>(B)</sup>       | 2.1 <sup>(B)</sup>      |

<sup>(</sup>a) = In the absence of CCME guidelines, the BC MOE water quality guideline was used.

Bolded values represent constituents of potential concern (COPC
Water quality data and guidelines shown in this table were rounded to reflect laboratory or field instrument precisi after comparisons to guidelines. Therefore, values slightly above guidelines may be displayed as being equal to the guidelines and identified as exceedances. Concentrations equal to the guideline values were not identified as exceedances. - = no guideline or no data

References:
Australia and New Zealand Environment and Conservation Council (ANZECC), 2000. Australian and New Zealand guidelines for fresh and marine water quality, 2000.

British Columbia Ministry of the Environment (BC MOE), 2018. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture. Summary Report. British Columbia Ministry of the Environment (BC MOE), 2017. British Columbia Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture (June 2017). Online:

Canadian Council of Ministers of the Environment (CCME), current to October 2018. Canadian Water Quality Guidelines for the Protection of Aquatic Lil

Environment Canada/Health Canada (EC/HC), 2010. Screening Assessment for the Challenge, Vanadium oxide (Vanadium pentoxide). Chemical Abstracts Service Registry Number 1314-62-1. September 20

Environment Canada, 2013. Federal Environmental Quality Guidelines. Cobalt. Canadian Environmental Protection Act, 1999. February 20

Health Canada, 2017. Guidelines for Canadian Drinking Water Quality. Summary Table. February 201

<sup>(</sup>b) = The guideline shown is for unionized ammonia. Model predictions were for total ammonia. For each prediction, the proportion of predicted total ammonia that would be unionized ammonia was based on the assumption of pH of 7 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and the state of \*\*To Meceiving

<sup>(</sup>e) = Guideline is pH dependent. The guideline range shown is based on an assumed pH value of more than or equal to 6.5, which is comparable to baseline values determined in the receiving environment.

<sup>(</sup>d) = In the absence of CCME guidelines, the BC MOE working water quality guideline was used.

<sup>(</sup>e) = Value provided is the Site-Specific Water Quality Objective (SSWQO) derived for the Meadowbank Mine.

<sup>(</sup>f) = In the absence of a CCME guideline, the ANZECC 2000 guideline was used.

<sup>(</sup>a) = Guideline is hardness dependent. The guideline range shown is based on the hardness range observed in the dataset (9 to 44 mg/L). The guideline is calculated based on the individual hardness value for each sample.

<sup>(</sup>h) = Guidline is for hexavalent chromium.

<sup>(</sup>I) = In the absence of CCME guidelines, the Federal Environmental Quality Guideline was used (Environment Canada 2013).

<sup>(</sup>I) = In the absence of CCME guidelines, the EC/HC predicted no effect concentration (PNEC) for freshwater organisms was used (Environment Canada/Health Canada,

<sup>(6) =</sup> Guideline is hardness, dissolved organic carbon, and pH dependent. The guideline value shown is based on hardness of 23.4 mg/L, dissolved organic carbon of 1.7 mg/L, and pH of 7.2. Guideline for each prediction was determined using predicted hardness, minimum dissolved organic carbon from the measured baseline.

<sup>(</sup>C) = concentration is higher than the chronic aquatic life guideline or outside the recommended pH, DO or total alkalinity range.

<sup>(</sup>D) = concentration is higher than the human health-based guideline.

<sup>(</sup>S) = concentration is higher than the Site-specific Water Quality Objective (SSWQO) developed for the Whale Tail Project (Volume 6, Appendix 6-N) guideline.

<sup>(</sup>B) = Concentration higher than the relevant baseline level, or beyond the reccomended pH or DO concentration range.

| Table 11: Lake A76 - Operations, C | 1            |                            |                   | ed Screening Values |                 | Site-Specific     |                | A76 (Operations)        | A76 (Closure)                  | A76 (Early Post-closure) | A76 (Late Post-closure) |
|------------------------------------|--------------|----------------------------|-------------------|---------------------|-----------------|-------------------|----------------|-------------------------|--------------------------------|--------------------------|-------------------------|
| Parameter                          | Unit         | Aquatic Life               |                   | Human Health        |                 | Water Quality     | Baseline (A76) | Maximum                 | Maximum                        |                          |                         |
| raiametei                          | Oilit        | CCME<br>Chronic            |                   | lealth Canada       | U.S. EPA<br>RSL | Objective         | Daseline (A70) | Concentration           | Concentration                  | Maximum Concentration    | Maximum Concentration   |
| Conventional Parameters            |              |                            |                   |                     |                 |                   |                | •                       |                                |                          |                         |
| Hardness, as CaCO <sub>3</sub>     | mg/L         | -                          | NR                | -                   | -               | -                 |                | 50                      | 21                             | 15                       | 14                      |
| Total dissolved solids (calculated | mg/L         | -                          | 500               | AO                  | -               | -                 | -              | 70                      | 36                             | 25                       | 23                      |
| Major lons                         |              |                            |                   |                     |                 |                   |                |                         |                                | -                        |                         |
| Calcium                            | mg/L         | -                          | NR                | -                   | -               | -                 | 3.8            | 17 <sup>(B)</sup>       | 6.2 <sup>(B)</sup>             | 4.1 <sup>(B)</sup>       | 3.8 <sup>(B)</sup>      |
| Chloride                           | mg/L         | 120                        | 250               | AO                  | -               | -                 | 5.3            | 31 <sup>(B)</sup>       | 9.6 <sup>(B)</sup>             | 4.7                      | 4.4                     |
| Fluoride                           | mg/L         | 0.12                       | 1.5               | MAC                 | -               | -                 | 0.034          | 0.057 <sup>(B)</sup>    | 0.049 <sup>(B)</sup>           | 0.059 <sup>(B)</sup>     | 0.058 <sup>(B)</sup>    |
| Magnesium                          | mg/L         | -                          | NR                | -                   | -               | -                 | 1.3            | 1.8 <sup>(B)</sup>      | 1.4 <sup>(B)</sup>             | 1.2                      | 1.1                     |
| Potassium                          | mg/L         | -                          | -                 | -                   | -               | -                 | 0.84           | 1.2 <sup>(B)</sup>      | 1.1 <sup>(B)</sup>             | 1.3 <sup>(B)</sup>       | 1.3 <sup>(B)</sup>      |
| Sodium                             | mg/L         | -                          | 200               | AO                  | -               | -                 | 0.80           | 3.6 <sup>(B)</sup>      | 2.5 <sup>(B)</sup>             | 1.8 <sup>(B)</sup>       | 1.7 <sup>(B)</sup>      |
| Sulphate                           | mg/L         | 128-218 <sup>(a,f)</sup>   | 500               | AO                  | -               | -                 | 3.8            | 5.6 <sup>(B)</sup>      | 4.8 <sup>(B)</sup>             | 4.9 <sup>(B)</sup>       | 4.6 <sup>(B)</sup>      |
| Nutrients                          |              |                            | •                 |                     | •               |                   |                | •                       | •                              | •                        | •                       |
| Nitrate                            | mg-N/L       | 2.9                        | 10                | MAC                 | -               | -                 | 0.0058         | 0.89 <sup>(B)</sup>     | 0.89 <sup>(B)</sup>            | 0.26 <sup>(B)</sup>      | 0.22 <sup>(B)</sup>     |
| Total ammonia                      | mg-N/L       | 0.019 <sup>(b)</sup>       | NR                | -                   | -               | -                 | 0.013          | 0.085 <sup>(C, B)</sup> | 0.085 <sup>(C, B)</sup>        | 0.037 <sup>(C, B)</sup>  | 0.031 <sup>(C, B)</sup> |
| Dissolved phosphorus               | mg-P/L       | 0.010                      | -                 | -                   | -               | -                 | 0.0012         | 0.014 <sup>(C, B)</sup> | 0.010 <sup>(B)</sup>           | 0.0090 <sup>(B)</sup>    | 0.0081 <sup>(B)</sup>   |
| Dissolved Metals                   |              |                            | •                 |                     | •               |                   |                | •                       | •                              | •                        | •                       |
| Aluminum                           | μg/L         | 100 <sup>(c)</sup>         | 100               | AO                  | 4000            | -                 | 2.6            | 4.7 <sup>(B)</sup>      | 4.9 <sup>(B)</sup>             | 2.5                      | 2.0                     |
| Antimony                           | μg/L         | 9 <sup>(d)</sup>           | 6                 | MAC                 | -               | -                 | 0.050          | 0.43 <sup>(B)</sup>     | 0.43 <sup>(B)</sup>            | 0.43 <sup>(B)</sup>      | 0.41 <sup>(B)</sup>     |
| Arsenic                            | μg/L         | 5                          | 10                | MAC                 | -               | 25 <sup>(e)</sup> | 0.23           | 9.1 <sup>(C, B)</sup>   | 9.1 <sup>(C, B)</sup>          | 17 <sup>(C, D, B)</sup>  | 16 <sup>(C, D, B)</sup> |
| Barium                             | ua/L         | 1000 <sup>(d)</sup>        | 1000              | MAC                 | -               | -                 | 8.0            | 12 <sup>(B)</sup>       | 9.9 <sup>(B)</sup>             | 9.7 <sup>(B)</sup>       | 9.2 <sup>(B)</sup>      |
| Beryllium                          | μg/L         | 0.13 <sup>(d)</sup>        | -                 | -                   | 5               | -                 | 0.010          | 0.028 <sup>(B)</sup>    | 0.028 <sup>(B)</sup>           | 0.026 <sup>(B)</sup>     | 0.025 <sup>(B)</sup>    |
| Bismuth                            | μg/L         | 0.7 <sup>(f)</sup>         | -                 | -                   | -               | -                 | 0.025          | 0.063 <sup>(B)</sup>    | 0.065 <sup>(B)</sup>           | 0.059 <sup>(B)</sup>     | 0.058 <sup>(B)</sup>    |
| Boron                              | μg/L         | 1,500                      | 5,000             | MAC                 | -               | -                 | 5.0            | 52 <sup>(B)</sup>       | 38 <sup>(B)</sup>              | 28 <sup>(B)</sup>        | 25 <sup>(B)</sup>       |
| Cadmium                            | μg/L         | 0.18 - 0.90 <sup>(g)</sup> | 5.0               | MAC                 | -               | -                 | 0.014          | 0.012                   | 0.0099                         | 0.0098                   | 0.0093                  |
| Chromium                           | μg/L         | 1.0 <sup>(h)</sup>         | 50 <sup>(g)</sup> | MAC                 | -               | -                 | 0.050          | 0.48 <sup>(B)</sup>     | 0.36 <sup>(B)</sup>            | 0.26 <sup>(B)</sup>      | 0.24 <sup>(B)</sup>     |
| Cobalt                             | µg/L         | 2.5 <sup>(i)</sup>         | -                 |                     | 1.2             | -                 | 0.071          | 0.41 <sup>(B)</sup>     | 0.35 <sup>(B)</sup>            | 0.38 <sup>(B)</sup>      | 0.34 <sup>(B)</sup>     |
| Copper                             | µg/L         | 2.0 <sup>(g)</sup>         | 1000              | MAC                 | -               | -                 | 0.66           | 1.1 <sup>(B)</sup>      | 1.0 <sup>(B)</sup>             | 0.93 <sup>(B)</sup>      | 0.89 <sup>(B)</sup>     |
| Iron                               | µg/L         | 300                        | 300               | AO                  | 2800            | -                 | 5.0            | 46 <sup>(B)</sup>       | 33 <sup>(B)</sup>              | 39 <sup>(B)</sup>        | 37 <sup>(B)</sup>       |
| Lead                               | ua/L         | 1.0 <sup>(g)</sup>         | 10                | MAC                 | -               | -                 | 0.14           | 0.22 <sup>(B)</sup>     | 0.17 <sup>(B)</sup>            | 0.15 <sup>(B)</sup>      | 0.14 <sup>(B)</sup>     |
| Lithium                            | ua/L         |                            | -                 |                     | 8               |                   | 0.50           | 1.9 <sup>(B)</sup>      | 1.7 <sup>(B)</sup>             | 1.6 <sup>(B)</sup>       | 1.6 <sup>(B)</sup>      |
| Manganese                          | µg/L         | 1700 <sup>(g)</sup>        | 50                | AO                  | 86              | -                 | 1.2            | 58 <sup>(D, B)</sup>    | 49 <sup>(B)</sup>              | 62 <sup>(D, B)</sup>     | 53 <sup>(D, B)</sup>    |
| Mercury                            | µg/L         | 0.026                      | 1.0               | MAC                 | -               | -                 | 0.0035         | 0.0078 <sup>(B)</sup>   | 0.0078 <sup>(B)</sup>          | 0.0091 <sup>(B)</sup>    | 0.0090 <sup>(B)</sup>   |
| Molybdenum                         | μg/L         | 73                         | -                 | -                   | 20              |                   | 0.025          | 0.95 <sup>(B)</sup>     | 0.49 <sup>(B)</sup>            | 0.66 <sup>(B)</sup>      | 0.65 <sup>(B)</sup>     |
| Nickel                             | µg/L         | 25 <sup>(g)</sup>          | -                 | -                   | 78              | -                 | 0.99           | 3.7 <sup>(B)</sup>      | 3.4 <sup>(B)</sup>             | 3.4 <sup>(B)</sup>       | 3.0 <sup>(B)</sup>      |
| Selenium                           | μg/L<br>μg/L | 1.0                        | 50                | MAC                 | -               | -                 | 0.025          | 0.18 <sup>(B)</sup>     | 0.17 <sup>(B)</sup>            | 0.15 <sup>(B)</sup>      | 0.14 <sup>(B)</sup>     |
| Silver                             | μg/L<br>μg/L | 0.25                       | NR                | IVIAC               | -               | -                 | 0.0050         | 0.017 <sup>(B)</sup>    | 0.016 <sup>(B)</sup>           | 0.014 <sup>(B)</sup>     | 0.014 <sup>(B)</sup>    |
| Strontium                          | μg/L<br>μg/L | 0.23                       | -                 | -                   | 2400            |                   | 23             | 37 <sup>(B)</sup>       | 29 <sup>(B)</sup>              | 24 <sup>(B)</sup>        | 22                      |
| Thallium                           | μg/L<br>μg/L | 0.80                       |                   | -                   | 0.04            | -                 | 0.0050         | 0.014 <sup>(B)</sup>    | 0.014 <sup>(B)</sup>           | 0.014 <sup>(B)</sup>     | 0.014 <sup>(B)</sup>    |
| Tin                                | μg/L<br>μg/L | 3 <sup>(f)</sup>           |                   |                     | 2400            |                   | 0.050          | 0.014 <sup>(B)</sup>    | 0.014**<br>0.16 <sup>(B)</sup> | 0.16 <sup>(B)</sup>      | 0.16 <sup>(B)</sup>     |
|                                    | μg/L<br>ug/L | 15                         | 20                | MAC                 | 2400            | -                 | 0.050          | 0.32 <sup>(B)</sup>     | 0.16 <sup>(B)</sup>            | 0.16 <sup>(B)</sup>      | 0.16°                   |
| Uranium                            |              | 15<br>120 <sup>(j)</sup>   | 20                | MAC -               | 17              |                   | 0.017          | 0.79 <sup>(B)</sup>     | 0.79 <sup>(B)</sup>            | 0.83 <sup>(B)</sup>      | 0.81 <sup>(B)</sup>     |
| Vanadium                           | μg/L         | 7 <sup>(K)</sup>           |                   |                     |                 | -                 |                |                         |                                |                          |                         |
| Zinc                               | μg/L         | $\Gamma'$                  | 5000              | AO                  | 1200            | -                 | 2.5            | 2.1                     | 1.9                            | 2.1                      | 2.0                     |

<sup>(</sup>a) = In the absence of CCME guidelines, the BC MOE water quality guideline was used.

Bolded values represent constituents of potential concern (COPC
Water quality data and guidelines shown in this table were rounded to reflect laboratory or field instrument precisi after comparisons to guidelines. Therefore, values slightly above guidelines may be displayed as being equal to the guidelines and identified as exceedances. Concentrations equal to the guideline values were not identified as exceedances. - = no guideline or no data

References:
Australia and New Zealand Environment and Conservation Council (ANZECC), 2000. Australian and New Zealand guidelines for fresh and marine water quality, 2000. Volume 2 - Aquatic

British Columbia Ministry of the Environment (BC MOE), 2018. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture. Summary Report. March 2018. British Columbia Ministry of the Environment (BC MOE), 2017. British Columbia Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture (June 2017). Online:

Canadian Council of Ministers of the Environment (CCME), current to October 2018. Canadian Water Quality Guidelines for the Protection of Aquatic Lil

Environment Canada/Health Canada (EC/HC), 2010. Screening Assessment for the Challenge, Vanadium oxide (Vanadium pentoxide). Chemical Abstracts Service Registry Number 1314-62-1. September 20

Environment Canada, 2013. Federal Environmental Quality Guidelines. Cobalt. Canadian Environmental Protection Act, 1999. February 20

Health Canada, 2017. Guidelines for Canadian Drinking Water Quality. Summary Table. February 201

<sup>(</sup>b) = The guideline shown is for unionized ammonia. Model predictions were for total ammonia. For each prediction, the proportion of predicted total ammonia that would be unionized ammonia was based on the assumption of pH of 7 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and pH of 8.5 and water temperature of \*\*To Meceiving environment\*) and the state of \*\*To Meceiving

<sup>(</sup>e) = Guideline is pH dependent. The guideline range shown is based on an assumed pH value of more than or equal to 6.5, which is comparable to baseline values determined in the receiving environment.

<sup>(</sup>d) = In the absence of CCME guidelines, the BC MOE working water quality guideline was used.

<sup>(</sup>e) = Value provided is the Site-Specific Water Quality Objective (SSWQO) derived for the Meadowbank Mine.

<sup>(</sup>f) = In the absence of a CCME guideline, the ANZECC 2000 guideline was used.

<sup>(</sup>a) = Guideline is hardness dependent. The guideline range shown is based on the hardness range observed in the dataset (9 to 44 mg/L). The guideline is calculated based on the individual hardness value for each sample.

<sup>(</sup>h) = Guidline is for hexavalent chromium.

<sup>(</sup>I) = In the absence of CCME guidelines, the Federal Environmental Quality Guideline was used (Environment Canada 2013).

<sup>(</sup>I) = In the absence of CCME guidelines, the EC/HC predicted no effect concentration (PNEC) for freshwater organisms was used (Environment Canada/Health Canada, 2010).

<sup>(6) =</sup> Guideline is hardness, dissolved organic carbon, and pH dependent. The guideline value shown is based on hardness of 23.4 mg/L, dissolved organic carbon of 1.7 mg/L, and pH of 7.2. Guideline for each prediction was determined using predicted hardness, minimum dissolved organic carbon from the measured baseline.

<sup>(</sup>C) = concentration is higher than the chronic aquatic life guideline or outside the recommended pH, DO or total alkalinity range.

<sup>(</sup>D) = concentration is higher than the human health-based guideline.

<sup>(</sup>S) = concentration is higher than the Site-specific Water Quality Objective (SSWQO) developed for the Whale Tail Project (Volume 6, Appendix 6-N) guideline.

<sup>(</sup>B) = Concentration higher than the relevant baseline level, or beyond the reccomended pH or DO concentration range.

Table 12: Node DS1 Operations Closure and Bost Closure (Expansion Project

|                                  |              | S                          | elected Screen    | ning Values | 1        | 014- 0161-                     |                | DS1 (Operations)         | DS1 (Closure)            | DS1 (Early Post-closure) | DS1 (Late Post-closure) |
|----------------------------------|--------------|----------------------------|-------------------|-------------|----------|--------------------------------|----------------|--------------------------|--------------------------|--------------------------|-------------------------|
| B                                | Unit         | Aquatic Life               |                   | uman Healt  |          | Site-Specific<br>Water Quality | Baseline (DS1) |                          | ` '                      | (,                       | (                       |
| Parameter                        | Unit         | CCME                       | Health Ca         | anada       | U.S. EPA | Objective                      | Baseline (DS1) | Maximum<br>Concentration | Maximum<br>Concentration | Maximum Concentration    | Maximum Concentration   |
| Conventional Parameters          |              | Chronic                    |                   |             | RSL      |                                |                |                          |                          |                          |                         |
|                                  |              |                            | ND                |             |          |                                |                | 40                       |                          |                          | 0.5                     |
| Hardness, as CaCO₃               | mg/L         | -                          | NR                | -           | -        | -                              | -              | 13                       | 8.9                      | 8.6                      | 8.5                     |
| Total dissolved solids (calculat | mg/L         | -                          | 500               | AO          | -        | -                              | -              | 18                       | 13                       | 13                       | 12                      |
| Major Ions                       |              |                            | ND                |             |          |                                | 0.4            | 3.9 <sup>(B)</sup>       | 2.4                      | 0.0                      | 0.0                     |
| Calcium                          | mg/L         | -                          | NR                | -           | -        | -                              | 3.4            | 4.9 <sup>(B)</sup>       |                          | 2.3                      | 2.2                     |
| Chloride<br>Fluoride             | mg/L         | 120<br>0.12                | 250<br>1.5        | AO<br>MAC   | -        | -                              | 2.4<br>0.055   | 0.031                    | 2.1<br>0.029             | 1.7<br>0.031             | 1.6<br>0.031            |
| Magnesium                        | mg/L<br>mg/L | 0.12                       | NR                | MAC -       | -        | -                              | 1.1            | 0.031                    | 0.029                    | 0.031                    | 0.031                   |
| Potassium                        | mg/L         |                            | -                 |             |          | -                              | 0.75           | 0.58                     | 0.54                     | 0.60                     | 0.60                    |
| Sodium                           | mg/L         |                            | 200               | AO          |          | -                              | 1.4            | 1.0                      | 0.81                     | 0.82                     | 0.80                    |
| Sulphate                         | mg/L         | 128 <sup>(a)</sup>         | 500               | AO          | -        | _                              | 2.8            | 2.6                      | 2.4                      | 2.5                      | 2.5                     |
| Nutrients                        | 9            |                            |                   | 7.0         | ll       | 1                              |                | 2.0                      |                          |                          | 2.0                     |
| Nitrate                          | ma-N/L       | 2.9                        | 10                | MAC         | -        | -                              | 0.029          | 0.10 <sup>(B)</sup>      | 0.082 <sup>(B)</sup>     | 0.043 <sup>(B)</sup>     | 0.037 <sup>(B)</sup>    |
| Total ammonia                    | mg-N/L       | 0.019 <sup>(b)</sup>       | NR                | -           | -        | -                              | 0.010          | 0.015 <sup>(B)</sup>     | 0.012 <sup>(B)</sup>     | 0.0098                   | 0.0091                  |
| Dissolved phosphorus             | mg-P/L       | 0.010                      | -                 |             | -        | -                              | 0.0012         | 0.0037 <sup>(B)</sup>    | 0.0028 <sup>(B)</sup>    | 0.0031 <sup>(B)</sup>    | 0.0030 <sup>(B)</sup>   |
| Dissolved Metals                 |              |                            |                   |             |          |                                |                |                          |                          |                          |                         |
| Aluminum                         | μg/L         | 100 <sup>(c)</sup>         | 100               | AO          | 4000     | -                              | 7.2            | 3.9                      | 3.9                      | 3.6                      | 3.6                     |
| Antimony                         | μg/L         | 9 <sup>(d)</sup>           | 6                 | MAC         | -        | -                              | 0.24           | 0.14                     | 0.13                     | 0.15                     | 0.15                    |
| Arsenic                          | μg/L         | 5                          | 10                | MAC         | -        | 25 <sup>(e)</sup>              | 0.19           | 1.2 <sup>(B)</sup>       | 0.95 <sup>(B)</sup>      | 2.5 <sup>(B)</sup>       | 2.3 <sup>(B)</sup>      |
| Barium                           | μg/L         | 1000 <sup>(d)</sup>        | 1000              | MAC         | -        | -                              | 6.9            | 6.5                      | 5.9                      | 6.2                      | 6.1                     |
| Beryllium                        | µg/L         | 0.13 <sup>(d)</sup>        | -                 |             | 5        | -                              | 0.010          | 0.021 <sup>(B)</sup>     | 0.021 <sup>(B)</sup>     | 0.021 <sup>(B)</sup>     | 0.021 <sup>(B)</sup>    |
| Bismuth                          | µg/L         | 0.7 <sup>(f)</sup>         | -                 |             | -        | -                              | 0.025          | 0.053 <sup>(B)</sup>     | 0.052 <sup>(B)</sup>     | 0.052 <sup>(B)</sup>     | 0.052 <sup>(B)</sup>    |
| Boron                            | µg/L         | 1.500                      | 5.000             | MAC         | -        | -                              | 5.0            | 16 <sup>(B)</sup>        | 13 <sup>(B)</sup>        | 13 <sup>(B)</sup>        | 12 <sup>(B)</sup>       |
| Cadmium                          | μg/L         | 0.18 - 0.90 <sup>(g)</sup> | 5.0               | MAC         | -        | -                              | 0.037          | 0.0061                   | 0.0056                   | 0.0059                   | 0.0059                  |
| Chromium                         | μg/L         | 1.0 <sup>(h)</sup>         | 50 <sup>(g)</sup> | MAC         | -        | -                              | 0.078          | 0.15 <sup>(B)</sup>      | 0.12 <sup>(B)</sup>      | 0.12 <sup>(B)</sup>      | 0.12 <sup>(B)</sup>     |
| Cobalt                           | µg/L         | 2.5 <sup>(i)</sup>         | -                 |             | 1.2      | _                              | 0.050          | 0.14 <sup>(B)</sup>      | 0.12 <sup>(B)</sup>      | 0.14 <sup>(B)</sup>      | 0.14 <sup>(B)</sup>     |
| Copper                           | μg/L         | 2.0 <sup>(g)</sup>         | 1000              | MAC         | 1.2      |                                | 1.4            | 0.68                     | 0.64                     | 0.66                     | 0.65                    |
| Iron                             | µg/L         | 300                        | 300               | AO          | 2800     | -                              | 31             | 17                       | 14                       | 16                       | 16                      |
| Lead                             | μg/L         | 1.0 <sup>(g)</sup>         | 10                | MAC         | -        | -                              | 5.1            | 0.084                    | 0.073                    | 0.076                    | 0.074                   |
| Lithium                          | μg/L         | -                          | -                 |             | 8        | -                              | 0.50           | 1.1 <sup>(B)</sup>       | 1.1 <sup>(B)</sup>       | 1.1 <sup>(B)</sup>       | 1.1 <sup>(B)</sup>      |
| Manganese                        | µg/L         | 1700 <sup>(g)</sup>        | 50                | AO          | 86       | -                              | 1.5            | 8.1 <sup>(B)</sup>       | 4.9 <sup>(B)</sup>       | 8.9 <sup>(B)</sup>       | 8.1 <sup>(B)</sup>      |
| Mercury                          | μg/L         | 0.026                      | 1.0               | MAC         | -        |                                | 0.0025         | 0.0054 <sup>(B)</sup>    | 0.0053 <sup>(B)</sup>    | 0.0056 <sup>(B)</sup>    | 0.0057 <sup>(B)</sup>   |
| Molybdenum                       | μg/L         | 73                         | -                 | -           | 20       | -                              | 0.029          | 0.17 <sup>(B)</sup>      | 0.093 <sup>(B)</sup>     | 0.13 <sup>(B)</sup>      | 0.14 <sup>(B)</sup>     |
| Nickel                           | μg/L         | 25 <sup>(g)</sup>          | -                 | -           | 78       | -                              | 0.99           | 0.97                     | 0.79                     | 0.94                     | 0.89                    |
| Selenium                         | μg/L         | 1.0                        | 50                | MAC         | -        | -                              | 0.025          | 0.068 <sup>(B)</sup>     | 0.060 <sup>(B)</sup>     | 0.064 <sup>(B)</sup>     | 0.063 <sup>(B)</sup>    |
| Silver                           | μg/L         | 0.25                       | NR                |             |          |                                | 0.0050         | 0.011 <sup>(B)</sup>     | 0.011 <sup>(B)</sup>     | 0.011 <sup>(B)</sup>     | 0.011 <sup>(B)</sup>    |
| Strontium                        | μg/L         | - 0.23                     | -                 | -           | 2400     | -                              | 15             | 13                       | 10                       | 11                       | 11                      |
| Thallium                         | μg/L         | 0.80                       | -                 | -           | 0.04     | -                              | 0.0050         | 0.011 <sup>(B)</sup>     | 0.010 <sup>(B)</sup>     | 0.011 <sup>(B)</sup>     | 0.011 <sup>(B)</sup>    |
| Tin                              | µg/L         | 3 <sup>(f)</sup>           | -                 | -           | 2400     | _                              | 0.050          | 0.14 <sup>(B)</sup>      | 0.14 <sup>(B)</sup>      | 0.14 <sup>(B)</sup>      | 0.14 <sup>(B)</sup>     |
| Uranium                          | μg/L         | 15                         | 20                | MAC         | -        | _                              | 0.036          | 0.064 <sup>(B)</sup>     | 0.041 <sup>(B)</sup>     | 0.063 <sup>(B)</sup>     | 0.065 <sup>(B)</sup>    |
| Vanadium                         | μg/L         | 120 <sup>(j)</sup>         | -                 | -           | 17       | -                              | 0.25           | 0.54 <sup>(B)</sup>      | 0.53 <sup>(B)</sup>      | 0.55 <sup>(B)</sup>      | 0.55 <sup>(B)</sup>     |
| Zinc                             | μg/L         | 7 <sup>(K)</sup>           | 5000              | AO          | 1200     | -                              | 7.6            | 1.2                      | 1.1                      | 1.2                      | 1.2                     |
|                                  | P9'-         | 1                          | 0000              | 7.0         | .200     | ·                              |                |                          |                          | 1                        |                         |

(a) = In the absence of CCME guidelines, the BC MOE water quality guideline was used.

(b) = The guideline shown is for unionized ammonia. Model predictions were for total ammonia. For each prediction, the proportion of predicted total ammonia that would be unionized ammonia was based on the assumption of pH of 7 and water temperature of 40 (Deceiving environment) and pH of 8.5 and water temperature of 15.0°C (effluent)

(c) = Guideline is pH dependent. The guideline range shown is based on an assumed pH value of more than or equal to 6.5, which is comparable to baseline values determined in the receiving environment.

(d) = In the absence of CCME guidelines, the BC MOE working water quality guideline was used.

(e) = Value provided is the Site-Specific Water Quality Objective (SSWQO) derived for the Meadowbank Mine.

(f) = In the absence of a CCME guideline, the ANZECC 2000 guideline was used.

(a) = Guideline is hardness dependent. The guideline range shown is based on the hardness range observed in the dataset (9 to 44 mg/L). The guideline is calculated based on the individual hardness value for each sample.

(h) = Guidline is for hexavalent chromium.

(f) = In the absence of CCME guidelines, the Federal Environmental Quality Guideline was used (Environment Canada 2013).

(I) = In the absence of CCME guidelines, the EC/HC predicted no effect concentration (PNEC) for freshwater organisms was used (Environment Canada/Health

(h) = Guideline is hardness, dissolved organic carbon, and pH dependent. The guideline value shown is based on hardness of 23.4 mg/L, dissolved organic carbon of 1.7 mg/L, and pH of 7.2. Guideline for each prediction was determined using predicted hardness, minimum dissolved organic carbon from the measured baseline, and 95th percentile pH from the measured baseline.

(C) = concentration is higher than the chronic aquatic life guideline or outside the recommended pH, DO or total alkalinity range.

(D) = concentration is higher than the human health-based guideline.

(S) = concentration is higher than the Site-specific Water Quality Objective (SSWQO) developed for the Whale Tail Project (Volume 6, Appendix 6-N) guideline.

(B) = Concentration higher than the relevant baseline level, or beyond the reccomended pH or DO concentration range.

Bolded values represent constituents of potential concern (COPC

Water quality data and guidelines shown in this table were rounded to reflect laboratory or field instrument precisi after comparisons to guidelines. Therefore, values slightly above guidelines may be displayed as being equal to the guidelines and identified as exceedances. Concentrations equal to the guideline values were not identified as exceedances. - = no guideline or no data

References:
Australia and New Zealand Environment and Conservation Council (ANZECC), 2000. Australian and New Zealand quidelines for fresh and marine water quality, British Columbia Ministry of the Environment (BC MOE), 2018. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture.

British Columbia Ministry of the Environment (BC MOE), 2017. British Columbia Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture (June

Canadian Council of Ministers of the Environment (CCME), current to October 2018. Canadian Water Quality Guidelines for the Protection of Aquatic Lil

Environment Canada/Health Canada (EC/HC), 2010. Screening Assessment for the Challenge, Vanadium oxide (Vanadium pentoxide). Chemical Abstracts Service Registry Number 1314-62-1. September 20

Environment Canada, 2013. Federal Environmental Quality Guidelines. Cobalt. Canadian Environmental Protection Act, 1999. February 20

Health Canada, 2017. Guidelines for Canadian Drinking Water Quality. Summary Table. February 201
United States Environmental Protection Agency, 2018. Regional Screening Levels Summary Table. May 2018. Online: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tab

| Table 13: Node DS2 - Operation     | s, Closure,  | and Post-Clos              | ure (Expansior    | Project      |                 |                   |          |                          |                               |                               |                               |
|------------------------------------|--------------|----------------------------|-------------------|--------------|-----------------|-------------------|----------|--------------------------|-------------------------------|-------------------------------|-------------------------------|
| Parameter                          | Unit         | Selected Screening Values  |                   |              |                 | Site-Specific     |          | DS2 (Operations)         | DS2 (Closure)                 | DS2 (Early Pos                | DS2 (Late Post-closure)       |
|                                    |              | <b>Aquatic Life</b>        |                   | Human Health |                 | Water Quality     | Baseline | Maximum                  | Maximum                       | Maximum                       |                               |
|                                    |              | CCME<br>Chronic            | Healt             | h Canada     | U.S. EPA<br>RSL | Objective         | (DS1)    | Concentration            | Concentration                 | Concentration                 | Maximum Concentration         |
| Conventional Parameters            |              |                            |                   |              |                 | •                 | •        | •                        | •                             | •                             |                               |
| Hardness, as CaCO <sub>3</sub>     | mg/L         | _                          | NR                | -            | -               | _                 | -        | 44                       | 15                            | 12                            | 12                            |
| Total dissolved solids (calculated | mg/L         | -                          | 500               | AO           | -               | -                 | -        | 61                       | 24                            | 20                            | 19                            |
| Major lons                         |              |                            |                   | •            |                 |                   |          |                          |                               | 1                             |                               |
| Calcium                            | mg/L         | -                          | NR                | -            | -               | -                 | 3.4      | 15 <sup>(B)</sup>        | 4.1 <sup>(B)</sup>            | 3.4                           | 3.2                           |
| Chloride                           | mg/L         | 120                        | 250               | AO           | -               | -                 | 2.4      | 26 <sup>(B)</sup>        | 5.5 <sup>(B)</sup>            | 3.6 <sup>(B)</sup>            | 3.3 <sup>(B)</sup>            |
| Fluoride                           | mg/L         | 0.12                       | 1.5               | MAC          | -               | -                 | 0.055    | 0.052                    | 0.039                         | 0.048                         | 0.047                         |
| Magnesium                          | mg/L         | -                          | NR                | -            | -               | -                 | 1.1      | 1.6 <sup>(B)</sup>       | 1.0                           | 0.99                          | 0.95                          |
| Potassium                          | mg/L         | -                          |                   | -            | -               | -                 | 0.75     | 1.0 <sup>(B)</sup>       | 0.82 <sup>(B)</sup>           | 1.0 <sup>(B)</sup>            | 1.0 <sup>(B)</sup>            |
| Sodium                             | ma/L         | -                          | 200               | AO           | -               | -                 | 1.4      | 3.2 <sup>(B)</sup>       | 1.6 <sup>(B)</sup>            | 1.4 <sup>(B)</sup>            | 1.3                           |
| Sulphate                           | mg/L         | 128 <sup>(a,f)</sup>       | 500               | AO           | -               | -                 | 2.8      | 5.1 <sup>(B)</sup>       | 3.6 <sup>(B)</sup>            | 4.0 <sup>(B)</sup>            | 3.8 <sup>(B)</sup>            |
| Nutrients                          | g/L          |                            |                   |              | 1               | 1                 |          |                          | 2.0                           |                               | 2.0                           |
| Nitrate                            | mg-N/L       | 2.9                        | 10                | MAC          | -               | -                 | 0.029    | 0.62 <sup>(B)</sup>      | 0.48 <sup>(B)</sup>           | 0.18 <sup>(B)</sup>           | 0.15 <sup>(B)</sup>           |
| Total ammonia                      | mg-N/L       | 0.019 <sup>(b)</sup>       | NR                | -            | -               | -                 | 0.010    | 0.067 <sup>(C, B)</sup>  | 0.048 <sup>(C, B)</sup>       | 0.027 <sup>(C, B)</sup>       | 0.023 <sup>(C, B)</sup>       |
| Dissolved phosphorus               | mg-P/L       | 0.010                      | -                 | -            | -               | -                 | 0.0012   | 0.012 <sup>(C, B)</sup>  | 0.0065 <sup>(B)</sup>         | 0.0067 <sup>(B)</sup>         | 0.0062 <sup>(B)</sup>         |
| Dissolved Metals                   | IIIg-I /L    | 0.010                      | _                 | _            |                 |                   | 0.0012   | 0.0.2                    | 0.0000                        | 0.0001                        | 0.0002                        |
| Aluminum                           | μg/L         | 100 <sup>(c)</sup>         | 100               | AO           | 4000            | _                 | 7.2      | 4.4                      | 4.4                           | 3.5                           | 3.4                           |
| Antimony                           | µg/L         | 9 <sup>(d)</sup>           | 6                 | MAC          | -               | -                 | 0.24     | 0.31 <sup>(B)</sup>      | 0.28 <sup>(B)</sup>           | 0.32 <sup>(B)</sup>           | 0.31 <sup>(B)</sup>           |
| Arsenic                            | µg/L         | 5                          | 10                | MAC          | -               | 25 <sup>(e)</sup> | 0.19     | 7.0 <sup>(C, B)</sup>    | 5.0 <sup>(C, B)</sup>         | 11 <sup>(C, D, B)</sup>       | 11 <sup>(C, D, B)</sup>       |
| Barium                             | µg/L         | 1000 <sup>(d)</sup>        | 1000              | MAC          | -               | -                 | 6.9      | 11 <sup>(B)</sup>        | 7.8 <sup>(B)</sup>            | 8.4 <sup>(B)</sup>            | 7.9 <sup>(B)</sup>            |
| Beryllium                          | μg/L<br>μg/L | 0.13 <sup>(d)</sup>        | -                 | -            | 5               | -                 | 0.010    | 0.027 <sup>(B)</sup>     | 0.024 <sup>(B)</sup>          | 0.024 <sup>(B)</sup>          | 0.024 <sup>(B)</sup>          |
| Bismuth                            | μg/L         | 0.7 <sup>(f)</sup>         | -                 | -            | -               | -                 | 0.025    | 0.059 <sup>(B)</sup>     | 0.058 <sup>(B)</sup>          | 0.057 <sup>(B)</sup>          | 0.056 <sup>(B)</sup>          |
| Boron                              | μg/L<br>μg/L | 1,500                      | 5,000             | MAC          | -               | -                 | 5.0      | 45 <sup>(B)</sup>        | 25 <sup>(B)</sup>             | 22 <sup>(B)</sup>             | 20 <sup>(B)</sup>             |
| Cadmium                            | μg/L<br>μg/L | 0.18 - 0.90 <sup>(g)</sup> | 5.0               | MAC          | -               | -                 | 0.037    | 0.011                    | 0.0077                        | 0.0083                        | 0.0079                        |
|                                    |              | 1.0 <sup>(h)</sup>         | 50 <sup>(g)</sup> | MAC          |                 |                   |          | 0.42 <sup>(B)</sup>      | 0.0077<br>0.24 <sup>(B)</sup> | 0.0063<br>0.21 <sup>(B)</sup> | 0.0079<br>0.19 <sup>(B)</sup> |
| Chromium<br>Cobalt                 | μg/L         | 2.5(i)                     |                   |              | 1.2             | -                 | 0.078    | 0.42 <sup>(B)</sup>      | 0.24 <sup>(B)</sup>           | 0.28 <sup>(B)</sup>           | 0.19 <sup>(B)</sup>           |
|                                    | μg/L         |                            | -                 | -            | 1.2             | -                 |          |                          |                               |                               |                               |
| Copper                             | μg/L         | 2.0 <sup>(g)</sup>         | 1000              | MAC          | -               | -                 | 1.4      | 1.1<br>40 <sup>(B)</sup> | 0.82                          | 0.83                          | 0.79                          |
| Iron                               | μg/L         | 300                        | 300               | AO           | 2800            | -                 | 31       |                          | 24                            | 30                            | 29                            |
| Lead                               | μg/L         | 1.0 <sup>(g)</sup>         | 10                | MAC          | -               | -                 | 5.1      | 0.19                     | 0.12                          | 0.12                          | 0.11                          |
| Lithium                            | μg/L         | - (a)                      | -                 | -            | 8               | -                 | 0.50     | 1.8 <sup>(B)</sup>       | 1.4 <sup>(B)</sup>            | 1.4 <sup>(B)</sup>            | 1.4 <sup>(B)</sup>            |
| Manganese                          | μg/L         | 1700 <sup>(g)</sup>        | 50                | AO           | 86              | -                 | 1.5      | 48 <sup>(B)</sup>        | 26 <sup>(B)</sup>             | 41 <sup>(B)</sup>             | 36 <sup>(B)</sup>             |
| Mercury                            | μg/L         | 0.026                      | 1.0               | MAC          | -               | -                 | 0.0025   | 0.0073 <sup>(B)</sup>    | 0.0065 <sup>(B)</sup>         | 0.0078 <sup>(B)</sup>         | 0.0077 <sup>(B)</sup>         |
| Molybdenum                         | μg/L         | 73                         | -                 | -            | 20              | -                 | 0.029    | 0.82 <sup>(B)</sup>      | 0.28 <sup>(B)</sup>           | 0.45 <sup>(B)</sup>           | 0.46 <sup>(B)</sup>           |
| Nickel                             | μg/L         | 25 <sup>(g)</sup>          | -                 | -            | 78              | -                 | 0.99     | 3.2 <sup>(B)</sup>       | 2.0 <sup>(B)</sup>            | 2.5 <sup>(B)</sup>            | 2.2 <sup>(B)</sup>            |
| Selenium                           | μg/L         | 1.0                        | 50                | MAC          | -               | -                 | 0.025    | 0.16 <sup>(B)</sup>      | 0.11 <sup>(B)</sup>           | 0.11 <sup>(B)</sup>           | 0.11 <sup>(B)</sup>           |
| Silver                             | μg/L         | 0.25                       | NR                | -            | -               | -                 | 0.0050   | 0.016 <sup>(B)</sup>     | 0.013 <sup>(B)</sup>          | 0.013 <sup>(B)</sup>          | 0.013 <sup>(B)</sup>          |
| Strontium                          | μg/L         | -                          | -                 | -            | 2400            | -                 | 15       | 33 <sup>(B)</sup>        | 19 <sup>(B)</sup>             | 19 <sup>(B)</sup>             | 18 <sup>(B)</sup>             |
| Thallium                           | μg/L         | 0.80                       | -                 | -            | 0.04            | -                 | 0.0050   | 0.013 <sup>(B)</sup>     | 0.012 <sup>(B)</sup>          | 0.013 <sup>(B)</sup>          | 0.013 <sup>(B)</sup>          |
| Tin                                | μg/L         | 3 <sup>(f)</sup>           | -                 | -            | 2400            | -                 | 0.050    | 0.15 <sup>(B)</sup>      | 0.15 <sup>(B)</sup>           | 0.16 <sup>(B)</sup>           | 0.16 <sup>(B)</sup>           |
| Uranium                            | μg/L         | 15                         | 20                | MAC          | -               | -                 | 0.036    | 0.27 <sup>(B)</sup>      | 0.11 <sup>(B)</sup>           | 0.21 <sup>(B)</sup>           | 0.21 <sup>(B)</sup>           |
| Vanadium                           | μg/L         | 120 <sup>(j)</sup>         | -                 | -            | 17              | -                 | 0.25     | 0.70 <sup>(B)</sup>      | 0.66 <sup>(B)</sup>           | 0.72 <sup>(B)</sup>           | 0.71 <sup>(B)</sup>           |
| Zinc                               | μg/L         | 7 <sup>(K)</sup>           | 5000              | AO           | 1200            | -                 | 7.6      | 1.9                      | 1.5                           | 1.7                           | 1.7                           |

<sup>(</sup>a) = In the absence of CCME guidelines, the BC MOE water quality guideline was used.

Australia and New Zealand Environment and Conservation Council (ANZECC), 2000. Australian and New Zealand guidelines for fresh and marine water quality, 2000.

British Columbia Ministry of the Environment (BC MOE), 2018. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture. Summary

British Columbia Ministry of the Environment (BC MOE), 2017. British Columbia Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture (June 2017). Canadian Council of Ministers of the Environment (CCME), current to October 2018. Canadian Water Quality Guidelines for the Protection of Aquatic Life

Environment Canada/Health Canada (EC/HC), 2010. Screening Assessment for the Challenge, Vanadium oxide (Vanadium pentoxide). Chemical Abstracts Service Registry Number 1314-62-1. September 20.

Environment Canada, 2013. Federal Environmental Quality Guidelines. Cobalt. Canadian Environmental Protection Act, 1999. February 20

Health Canada, 2017. Guidelines for Canadian Drinking Water Quality. Summary Table. February 201

<sup>(</sup>b) = The guideline shown is for unionized ammonia. Model predictions were for total ammonia. For each prediction, the proportion of predicted total ammonia that would be unionized ammonia was based on the assumption of pH of 7 and water temperature of "00,000 eceiving environment) and pH of 8.5 and water temperature of 15.0°C (effluent)

<sup>(</sup>c) = Guideline is pH dependent. The quideline range shown is based on an assumed pH value of more than or equal to 6.5, which is comparable to baseline values determined in the receiving environment.

<sup>(</sup>d) = In the absence of CCME guidelines, the BC MOE working water quality guideline was used.

<sup>(</sup>e) = Value provided is the Site-Specific Water Quality Objective (SSWQO) derived for the Meadowbank Mine.

<sup>(</sup>f) = In the absence of a CCME guideline, the ANZECC 2000 guideline was used.

<sup>(9) =</sup> Guideline is hardness dependent. The guideline range shown is based on the hardness range observed in the dataset (9 to 44 mg/L). The guideline is calculated based on the individual hardness value for each sample.

<sup>(</sup>h) = Guidline is for hexavalent chromium.

<sup>(</sup>i) = In the absence of CCME guidelines, the Federal Environmental Quality Guideline was used (Environment Canada 2013).

<sup>(</sup>I) = In the absence of CCME guidelines, the EC/HC predicted no effect concentration (PNEC) for freshwater organisms was used (Environment Canada/Health

<sup>(6) =</sup> Guideline is hardness, dissolved organic carbon, and pH dependent. The guideline value shown is based on hardness of 23.4 mg/L, dissolved organic carbon of 1.7 mg/L, and pH of 7.2. Guideline for each prediction was determined using predicted hardness, minimum dissolved organic carbon from the measured baseline, and 95th percentile pH from the measured baseline.

<sup>(</sup>C) = concentration is higher than the chronic aquatic life guideline or outside the recommended pH, DO or total alkalinity range.

<sup>(</sup>D) = concentration is higher than the human health-based guideline.

<sup>(</sup>S) = concentration is higher than the Site-specific Water Quality Objective (SSWQO) developed for the Whale Tail Project (Volume 6, Appendix 6-N) quideline.

<sup>(</sup>B) = Concentration higher than the relevant baseline level, or beyond the reccomended pH or DO concentration range.

Bolded values represent constituents of potential concern (COPC

Water quality data and guidelines shown in this table were rounded to reflect laboratory or field instrument precisi after comparisons to guidelines. Therefore, values slightly above guidelines may be displayed as being equal to the guidelines and identified as exceedances. Concentrations equal to the guideline values were not identified as exceeda - = no guideline or no data



golder.com