Groundwater Monitoring Plan, Version 2.1

WHALE TAIL PIT PROJECT

Groundwater Monitoring Plan

In Accordance with: Project Certificate No. 008, T&C 15 and 16

Prepared by:
Agnico Eagle Mines Limited – Meadowbank Division

Version 2

Revision 1 February 2019

EXECUTIVE SUMMARY

Agnico Eagle Mines Limited – Meadowbank Division (Agnico Eagle) received a Project Certificate No.008 from the Nunavut Impact Review Board for the development of the Whale Tail Pit, a satellite deposit located on the Amaruq Exploration property.

The deposit will be mined as an open pit (i.e., Whale Tail Pit), and ore will be hauled by truck to the approved infrastructure at Meadowbank Mine for milling. Approximately 8.3 million tonnes (Mt) of ore will be mined from the open pit and processed over a three to four-year mine life. Ore from Whale Tail Pit will be crushed on site after which it will be transported to Meadowbank Mine for milling. The mill rate will be approximately 9,000 to 12,000 tonnes per day.

During mining, groundwater will flow into the open pit. This water is naturally high in total dissolved solids and will not be directly discharged out of the active mine site without treatment. Water management during mine operations will involve a variety of activities, described in detail in the Water Management Plan (WMP) developed for the Project (Agnico Eagle 2018a).

This Groundwater Management Plan (GWMP) reflects the commitments made with respect to submissions provided during the technical review of the FEIS, to comply with Terms and Conditions No. 15 and 16 included in the Project Certificate. This version of the plan includes:

- 1. Sampling results of the multi-level Westbay well system, that were completed in November 2018;
- 2. Thermal analyses completed in 2018;
- 3. Groundwater monitoring plan for horizontal and vertical groundwater flow; and,
- 4. Threshold and adaptive management plan related to the groundwater management.

Additional modelling efforts were completed in support of the water quality predictions at closure and post-closure. The additional modelling that were completed are: post-closure hydrogeological modelling in combination with the diffusion model; and, the pit lake hydrodynamic model and receiving lake (Mammoth Lake) hydrodynamic model.

The results of these studies indicated that arsenic release from the submerged pit wall (arsenic diffusion) will not affect water quality in the pit lake; and, mass transfer to water is very low even under the conservative assumptions of the calculations. Results from these studies further indicate that the seepage into and out of the pit lake are negligible in volume, particularly compared to surface water exchanged annually during post-closure when flows are re-established based on average climate year watershed runoff. The combination of results corroborates to support that the hydrogeological regime around the pit lake is not critical to pit lake water quality.

Agnico Eagle considers that the uncertainty related to the arsenic-related water quality issues emanate from the Water Rock Storage Facility and the fill water in the proposed pit lake created after the excavation of the ore body, are addressed, and the NIRB Project Certificate No. 008 terms and conditions No. 15 and 16 has been fulfilled.

The GWMP was updated to include additional monitoring of the horizontal and vertical groundwater flow to validate the prediction of these studies during the operation of the Whale Tail pit.

Agnico Eagle would like to clarify the monitoring requirements related to the Waste Rock Storage Facility (WRSF) are addressed in the approved ARD-ML monitoring plan, Water Quality and Flow Monitoring Plan, Water Management Plan and Waste Management Plan, as any seepage emanating from the WRSF is considered as a surface water management issue. The groundwater monitoring plan focus on the definition of the groundwater quality and flow reporting to the pit lake created before, during and after the excavation of the ore body.

DISTRIBUTION LIST

AEM – Geology Superintendent

AEM - Engineering Superintendent

AEM – Geotechnical Coordinator

AEM – Environment Superintendent

AEM – Environmental Coordinator

DOCUMENT CONTROL

Version	Date (YMD)	Section	Revision
1	2018-05-30	All	To address Project Certificate No. 008. T&C 15 and 16
2	2018/11/8	1.1, 2.4, 2.5	To address ECCC and CIRNAC recommendations issued in October 2018
2 Rev. 1	2019/02/19	All	To address NWB and CIRNAC comments discussed on February 13, 2019

Prepared by:Golder Associates & Agnico Eagle Mines Limited - Meadowbank Division

TABLE OF CONTENTS

EXEC	ECUTIVE SUMMARY	II
DIST	TRIBUTION LIST	IV
DOC	CUMENT CONTROL	V
LIST	T OF FIGURES	VII
LIST	T OF TABLES	VII
1	INTRODUCTION	1
1.1	Concordance	1
1.2	Objectives	2
2	BACKGROUND	4
2.1	Site Conditions	4
2.2	Hydrogeology Setting	
	2.2.1 Conceptual Model	
	2.2.3 Groundwater Volumes and Quality	
2.3	Additional Data Collection	
	2.3.1 Groundwater Quality	
	2.3.2 Hydraulic Conductivity Testing	
	2.3.3 Verification of Fiorizontal and Vertical Groundwater Fic	DIFFICITION14
3	GROUNDWATER MONITORING PLAN	15
3.1	Horizontal and Vertical Groundwater Flow Monitoring	15
3.2	GroundWater Quantity and Quality Monitoring	
	3.2.1 Water Quantity	
3.3	3.2.2 Water Quality Data Compilation and Updates to Groundwater Model	
4	QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES	21
4.1	Quality Assurance	
	4.1.1 Field Staff Training and Operations	
	4.1.2 Laboratory	
4.2	Quality Control	
E	REFERENCES	24
5	INLI LINLINGLO	24

APPENDIX A – WHALE TAIL PIT POST-CLOSURE PIT LAKE THERMAL ASSESSMENT25
APPENDIX B –2018 WESTBAY SYSTEM GROUNDWATER MONITRORING INVESTIGATION27
LIST OF FIGURES
FIGURE 1: SITE LOCATION3
FIGURE 2: HYDROGEOLOGY BASELINE STUDY AREA6
FIGURE 3: CONCEPTUAL MODEL OF PRE-MINING DEEP GROUNDWATER FLOW REGIME - CROSS-SECTION VIEW7
FIGURE 4: CONCEPTUAL MODEL OF DEEP GROUNDWATER FLOW REGIME DURING MINING - CROSS-SECTION VIEW8
FIGURE 5: CONCEPTUAL MODEL OF DEEP GROUNDWATER FLOW REGIME IN LONG-TERM POST-CLOSURE - CROSS-SECTION VIEW9
LIST OF TABLES
TABLE 1: 2015 PREDICTED GROUNDWATER INFLOW TO THE OPEN PIT DURING OPERATIONS AND CLOSURE11
TABLE 2: 2015 PREDICTED GROUNDWATER INFLOW TO THE ATTENUATION POND DURING OPERATIONS AND CLOSURE12
TABLE 3: PREDICTED GROUNDWATER INFLOW AND GROUNDWATER QUALITY – POST-CLOSURE12
TABLE 4: GROUNDWATER ADAPTIVE MANAGEMENT PLAN19

1 INTRODUCTION

Agnico Eagle Mines Limited – Meadowbank Division (Agnico Eagle) received Project Certificate No.008 from the Nunavut Impact Review Board (NIRB) for the development of the Whale Tail Pit (the Project), a satellite deposit located on the Amaruq Exploration property. The Amaruq Exploration property is a 408 square kilometre (km²) site located on Inuit Owned Land approximately 150 kilometres (km) north of the hamlet of Baker Lake and approximately 50 km northwest of the Meadowbank Mine in the Kivalliq region of Nunavut (Figure 1). The deposit will be mined as an open pit, and ore will be hauled by truck to the approved infrastructure at Meadowbank Mine for milling.

This document presents Groundwater Monitoring Plan (GWMP) for the Whale Tail Pit. Overall water management for operations, closure, and post-closure is described in the Agnico Eagle Water Management Plan (WMP) (Agnico Eagle 2018a). The WMP provides descriptions of the water control structures and associated design criteria.

1.1 CONCORDANCE

Meadowbank Mine is an approved mining operation and Agnico Eagle is planning to extend the life of the mine by constructing and operating the Project. The Project was subject to an environmental review established by Article 12, Part 5 of the Nunavut Agreement. In June 2016, Agnico Eagle submitted a Final Environmental Impact Statement (FEIS) seeking a reconsideration of the Meadowbank Mine Project Certificate (No. 004/File No. 03MN107) and Type A Water Licence Amendment (No. 2AM-MEA1525) from the NIRB.

On July 2016, the NIRB determined that the proposed Project required a separate screening assessment under the Nunavut Agreement and the *Nunavut Planning and Project Assessment Act* (NuPPAA). A separate Project Certificate (NIRB Project Certificate No. 008) was issued for the Project on March 15, 2018 by the NIRB. This GWMP reflects the commitments made with respect to submissions provided during the technical review of the FEIS, to comply with Terms and Conditions No. 15 and 16 included in the Project Certificate.

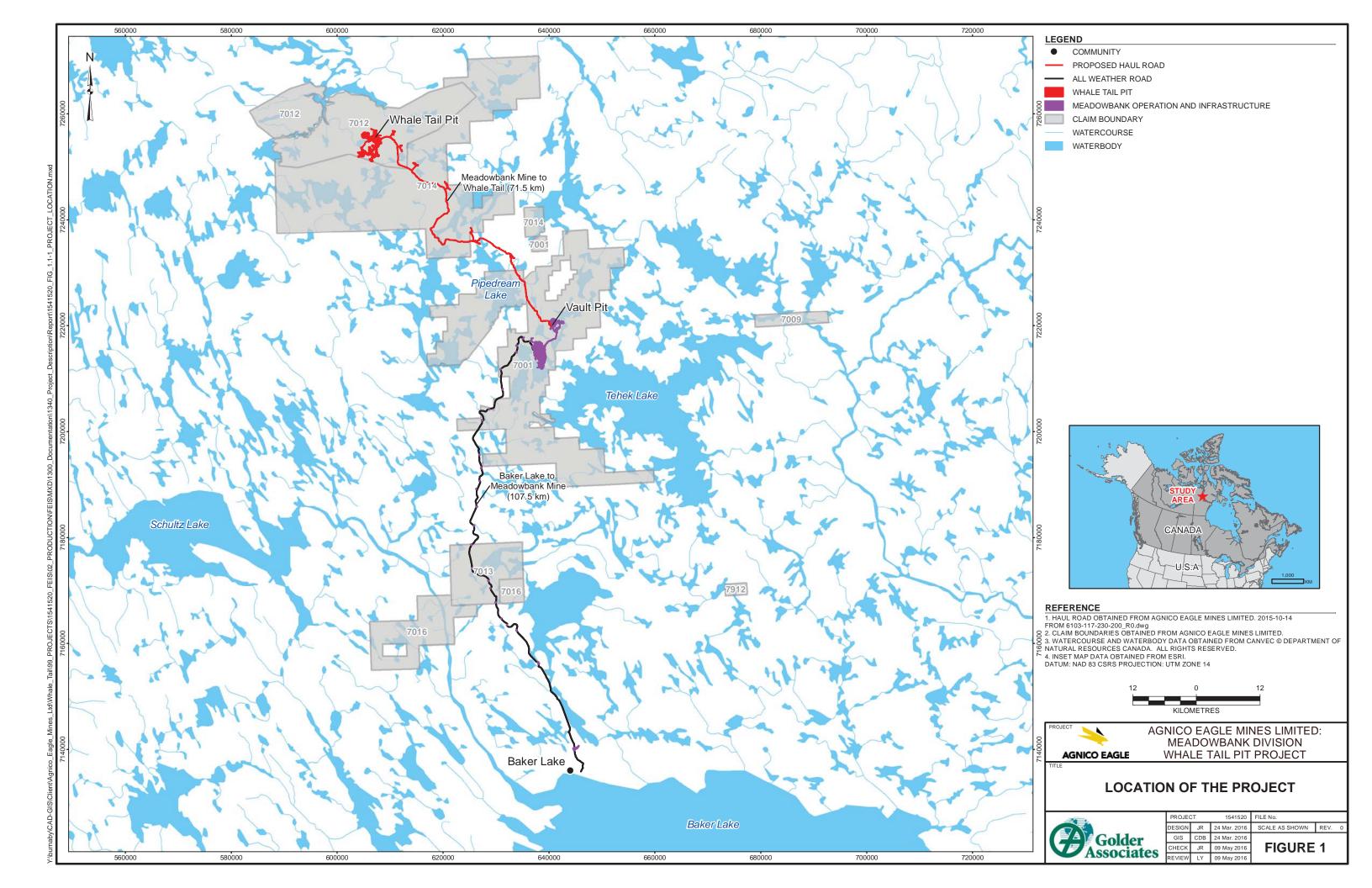
This version of the plan includes:

- 1. Sampling results of the multi-level Westbay well system, that were completed in November 2018;
- 2. Thermal analyses completed in 2018;
- 3. Groundwater monitoring plan for horizontal and vertical groundwater flow; and,
- 4. Threshold and adaptive management plan related to the groundwater management.

Additional modelling efforts were completed in support of the water quality predictions at closure and post-closure. The additional modelling that were completed are: post-closure hydrogeological modelling in combination with the diffusion model; and, the pit lake hydrodynamic model and receiving lake (Mammoth Lake) hydrodynamic model.

The results of these studies indicated that arsenic release from the submerged pit wall (arsenic diffusion) will not affect water quality in the pit lake; and, mass transfer to water is very low even under the conservative assumptions of the calculations. Results from these studies further indicate that the seepage into and out of the pit lake are negligible in volume, particularly compared to surface water exchanged annually during post-closure when flows are re-established based on average climate year watershed runoff. The combination of results corroborates to support that the hydrogeological regime around the pit lake is not critical to pit lake water quality.

Agnico Eagle considers that the uncertainty related to the arsenic-related water quality issues emanate from the Water Rock Storage Facility and the fill water in the proposed pit lake created after the excavation of the ore body, are addressed, and the NIRB Project Certificate No. 008 terms and conditions No. 15 and 16 has been fulfilled.


The GWMP was updated to include additional monitoring of the horizontal and vertical groundwater flow to validate the prediction of these studies during the operation of the Whale Tail pit.

Agnico Eagle would like to clarify the monitoring requirements related to the Waste Rock Storage Facility (WRSF) are addressed in the approved ARD-ML monitoring plan, Water Quality and Flow Monitoring Plan, Water Management Plan and Waste Management Plan, as any seepage emanating from the WRSF is considered as a surface water management issue. The groundwater monitoring plan focus on the definition of the groundwater quality and flow reporting to the pit lake created before, during and after the excavation of the ore body.

1.2 OBJECTIVES

The objective of the GWMP is to provide consolidated information on groundwater management for the Project. The GWMP is divided into the following components:

- Introductory section (Section 1)
- A brief summary of the physical and hydrogeological setting at the mine site, the mine development plan and FEIS pit inflow predictions (Section 2)
- A description of the groundwater monitoring program (Section 3)
- A summary of procedures for quality assurance and quality control (QA/QC) (Section 4)

2 BACKGROUND

2.1 SITE CONDITIONS

The Project is located in Canada's Northern Arctic ecozone. This region includes most of Canada's Arctic Archipelago and northern regions of continental Nunavut and the Northwest Territories. This ecoregion is classified as a polar desert and is characterized by long cold winters and short cool summers. The mean air temperatures in June to September is approximately 7 degrees Celsius (°C) and -20.6 °C in October to May.

Average annual precipitation at Meadowbank Mine is 142.6 mm (1998 to 2004). The annual precipitation at site generally falls as rain between June and September, and snow between October and May. However, snowfall can occur at any time of the year.

Based on data for Baker Lake (120 km to the south), and from experience ice auguring within the Meadowbank Mine lakes in the winter, the mean maximum lake ice thickness over Whale Tail Lake is expected to be 2.25 m. During the winter collection of water quality baseline data in Whale Tail Lake in April 2016, ice thickness was confirmed to be 2 m.

The surficial geology of the Project area shows strong evidence of glacial activity and is dominated by veneers and blankets of till overlying undulating bedrock. Bedrock frequently outcrops in isolated exposures, elevated plateaus and elongated ridges. Lakes and ponds are abundant, occupying approximately 16% of the area.

The local overburden consists of till with a silty sand matrix and clasts that range from granule gravel to large boulders in size. Glaciofluvial deposits in the form of eskers and terraces are found in the northeast section of the satellite deposit and they continue in a southeast direction intersecting the haul road in several locations.

The bedrock geology in the Project area consists of Archean and Proterozoic supercrustal sequences and plutonic rocks.

2.2 HYDROGEOLOGY SETTING

2.2.1 Conceptual Model

The Project is in an area of continuous permafrost. In this region, the layer of permanently frozen subsoil and rock is generally deep and overlain by an active layer that thaws during summer. The depth of the active layer is typically expected to range between one and three metres. Depending on lake size, depth, and thermal storage capacity, the talik (unfrozen ground surrounded by permafrost) beneath lakes may fully penetrate the permafrost layer resulting in an open talik. Circular lakes with a radius greater than 300 m, or elongated lakes with a half-width of at least 150 m, are assumed to be connected to the deep groundwater flow regime through open taliks. The thickness of the permanently frozen permafrost was estimated to be on the order of 427 to 495 m.

In areas of continuous permafrost, there are two groundwater flow regimes: a deep groundwater flow regime beneath permafrost, and a shallow groundwater flow regime located in the active (seasonally thawed) layer near the ground surface. With the exception of areas of taliks beneath lakes, the two groundwater regimes are isolated from one another by thick permafrost.

The shallow groundwater regime is active only seasonally during the summer months, and the magnitude of the flow in this layer is expected to be several times less than runoff from snowmelt. Groundwater in the active layer primarily flows to local depressions and ponds that drain to larger lakes; therefore, the total travel distance would generally extend only to the nearest pond, lake, or stream. Water in the active layer is stored in ground ice during the cold season and is then released with the ice thaws in late spring or early summer, thus providing flow to surface. During the warm season, groundwater in the active layer is recharged primarily by precipitation.

Permafrost reduces the hydraulic conductivity of the bedrock by several orders of magnitude (Burt and Williams 1976; McCauley et al. 2002). Consequently, the permafrost in the rock would be virtually impermeable to groundwater flow. The shallow groundwater flow regime, therefore, has little to no hydraulic connection with the deep groundwater regime which is overlain by massive and continuous permafrost.

Groundwater flow within the deep groundwater flow regime is limited to the sub-permafrost zone. This deep groundwater flow regime is connected to the ground surface by open taliks underlying larger lakes. Talik exist beneath lakes that have enough depth so that they do not freeze to the bottom over the winter. If the lake is sufficiently large and deep, the talik can extend down to the deep groundwater regime. These taliks are referred to as open talik. If the talik does not extend down to the deep groundwater, it is referred to as a closed or an isolated talik. The width and shape of lakes in the Hydrogeology Baseline Study area were reviewed to estimate if open taliks could be present below the lakes (FEIS Volume 6 Appendix 6.A). Based on 1-D analytical solutions presented in Burn (2002), Golder estimated that open taliks could be present for circular lakes with a radius of approximately 300 m and for elongated lakes with a half-width of approximately 150 m. Beneath smaller lakes that do not free to the bottom over the winter, a talik bulb may form; however, the talik bulb is not expected to extend to the deep groundwater flow system.

Generally, deep groundwater will flow from higher elevation lakes with open taliks to lower elevation lakes with open taliks. To a lesser degree, groundwater beneath the permafrost is influenced by density differences due to saline water conditions (density driven flow).

Below the active layer, permafrost underlies the land surrounding the lakes, which restricts the lateral or horizontal flow of groundwater and restricts the recharge of the sub-permafrost groundwater flow system by precipitation. Multiple thermistors in the land surrounding Whale Tail Lake, in combination with thermal modelling, indicate the permafrost extends to 425 m to 495 m below ground surface. In particular, thermistor data recorded at AMQ15-452, AMQ17-1233, AMQ17-1337 and AMQ17-1277A (Golder 2018b) indicates the presence of permafrost

between Whale Tail Lake and Nemo lake, and therefore the absence of horizontal groundwater flow in the upper 425 to 495 m of bedrock.

Groundwater flow is controlled by surface water elevations in lakes with open talik; water moves vertically through the open talik to the underlying sub-permafrost groundwater flow system. The elevations of the lakes with expected talik in the baseline study area indicate that Whale Tail Lake is likely a groundwater discharge zone at the south end of the Lake (upward vertical hydraulic gradient), with flow from Lake A60 to Whale Tail Lake, and a groundwater recharge zone at the north end of the Lake (downward hydraulic gradient), with groundwater flow from Whale Tail Lake to Lake DS1 as presented on the Figure 2 showing the hydrogeology baseline study area. Whale Tail Pit is located in the north basin and therefore a downward vertical hydraulic gradient is expected (Figure 3). This was verified by hydraulic head monitoring at the Westbay Well system, which had a measured downward hydraulic gradient of 0.008 m/m, which is equivalent to what would be expected based on the relative lake elevation of Whale Tail Lake and Lake DS1 (Golder 2019).

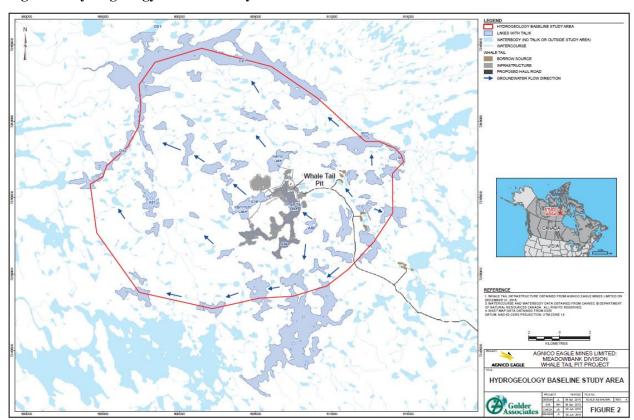


Figure 2: Hydrogeology Baseline Study Area

Southeast Northwest Location of Whale Tail Pit Whale Tail Lake (152.5m) Depth to Base of Active Zone (~2m) Partially Closed Talik Below Northern Portion of Whale Tail Lake Frozen Permafrost Open Talik Groundwater Flow Depth of Permafrost Below Land ~ 425 m Subpermafrost Groundwater Flow to DS1 Legend NOTES: Inferred Groundwater Flow Direction Conceptual Only. Not to Scale. Waterbody Permafrost Overburden (6 to 34 m below ground surface) Weathered Bedrock (6 to 34 m below ground surface) Competent Bedrock (34 to 60 m below ground surface) Competent Bedrock (>60 m below ground surface)

Figure 3: Conceptual Model of Pre-Mining Deep Groundwater Flow Regime - Cross-Section View

Below Whale Tail Lake, a talik is expected to form a continuous channel that is closed in the northern portion of Whale Tail Lake below the open pit and becomes open towards the south and central portion of the lake. As shown in Figure 4, during mining the open pit will act as a sink for groundwater flow, with seepage faces developing along the pit walls. In response to mining of the open pit, groundwater will be induced to flow through bedrock to the open pit. Mine inflow will primarily originate from Whale Tail Lake, the attenuation pond between the pit and Whale Tail dike, and deep bedrock. The quality of mine inflow will be a result of the mixing from each of these sources.

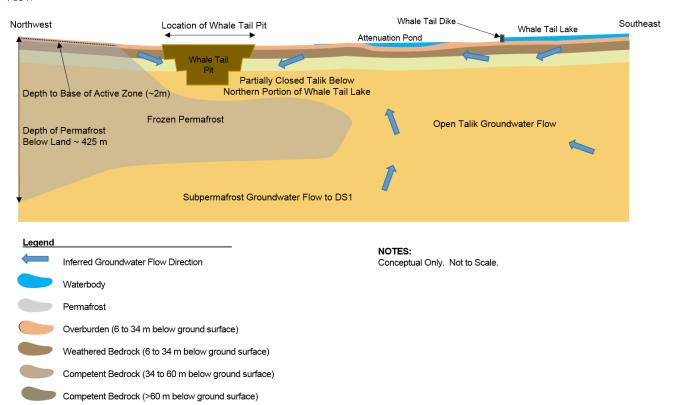


Figure 4: Conceptual Model of Deep Groundwater Flow Regime during Mining - Cross-Section View

During closure (Figure 5), the open pit will be flooded with water from a variety of sources including: water pumped from the flooded South Whale Tail watershed until the original Whale Tail Lake level is reached (152.5 m), the north-east watershed following the breach of the North-East dike, groundwater originating from nearby lakes underlain by open taliks, connate water and water pumped from the attenuation pond. This process will dissipate the large hydraulic head differences established during mine operations in the vicinity of the mine workings. The rate of groundwater inflow will decrease as the water level in the open pit rises. From the start of closure and following the formation of the pit lake in post-closure, permafrost below the pit is expected to thaw slowly. The thermal regime in the vicinity of the pit will be monitored, as outlined in the Thermal Monitoring Plan for the Project (Agnico Eagle 2018b).

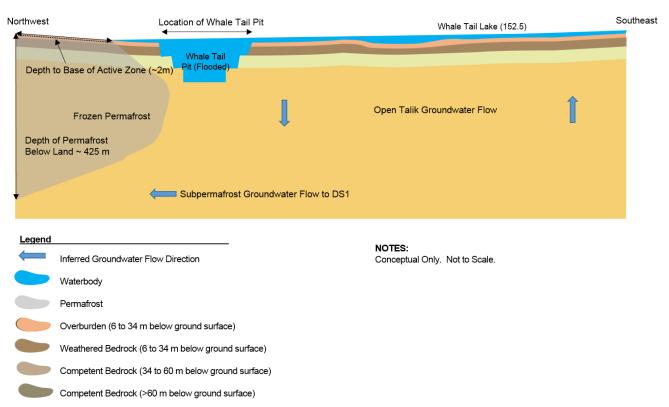


Figure 5: Conceptual Model of Deep Groundwater Flow Regime in Long-Term Post-Closure - Cross-Section View

2.2.2 Post-Closure Hydrogeological and Thermal Analysis

Hydrogeological analysis was conducted to assess the post-closure groundwater regime in the vicinity of the Whale Tail Pit (Golder 2018a). The intent of the study was to consider post-closure changes in the groundwater regime once the pit lake reaches its ultimate elevation and the influence, if any, that these changes may have on water quality in the flooded pit. As part of the analysis, the predicted changes in the permafrost regime, based on a post-closure thermal assessment, were incorporated in to the hydrogeological model. The results of the hydrogeological assessment provided input into a concurrent study that assessed water quality in the flooded pit (Golder 2018c). Overall, groundwater was found to be a minor component of the flooded pit lake water quality due to the small predicted seepage rates from the pit in relation to typical surface water exchanges.

Results of the post-closure thermal assessment (Golder, 2018b) included:

• During pit flooding, the warm pit lake temperature impacts mostly the upper portion of the permafrost under the pit, and a talik starts to form around the pit wall and floor.

- The permafrost under the pit lake continues to thaw during the long-term post-closure stage, and the open talik expands towards the northern edge of the pit lake (land side). The majority of the permafrost under the pit lake is thawed 300 years after closure.
- The steady-state model indicates the pit lake would thaw the permafrost in the long-term, and eventually somewhat reduce the permafrost depth to the northwest of the pit.
 A significantly longer time (in the order of 10,000 years) is likely required for the pit lake to reach the steady-state thermal conditions. Permafrost is still predicted to the north of the pit, restricting the horizontal flow of groundwater to towards Nemo Lake where the permafrost is present.

Result of the Post-closure hydrogeological model (Golder, 2018a) included:

- Initially, once the hydraulic heads return to near equilibrium shortly after mine flooding, groundwater inflow into the pit is greater than pit lake discharge into surrounding bedrock. This groundwater discharge to the pit lake decrease gradually over 100 years, at which time it reverses and the pit lake discharge into the bedrock is greater than the groundwater inflow. The relative difference in flow increases with time and as the permafrost layer beneath the pit lake thaws.
- Long-term, the pit lake establishes as a source of groundwater recharge, which is consistent with the current pre-development groundwater flow condition.

As summarized above, with the exception of deep sub-permafrost groundwater flow, groundwater flow during closure will be similar to pre-development conditions and limited to the area of talik below Whale Tail Lake and the developed pit lake during closure. Horizontal flow beneath land will be restricted by the presence of permafrost below the active layer. Thermal analysis indicates that although permafrost degradation below the pit footprint will occur, permafrost will be present below the land outside of the pit lake and other lakes with talik (i.e., including between the pit and Nemo Lake).

Predictions from the hydrogeological modelling were an input into a concurrent study that assesses overall water quality in the flooded pit (Golder, 2018c). Arsenic loading rate from the Whale Tail pit north wall has been determined from the completion of the Arsenic diffusion model (Golder, 2018d) and integrated to the Whale Tail Pit hydrodynamic model (Golder, 2018c). Result of the hydrodynamic model are:

- The concentration of TDS will remain below site specific water quality objectives at all times. TDS will peak at just below 25mg/L in year 2025, and thereafter decrease over time. Concentration of TDS will stabilize at approximately 11mg/L by 2055.
- The concentration of arsenic will remain below site specific water quality objectives at all times. Arsenic will peak at just below 0.025mg/L in year 2025, and thereafter decrease over time. Concentration of arsenic will stabilize at approximately 0.0025mg/L by 2055.

 The concentration of total phosphorous will remain below site specific water quality objectives at all times. Total phosphorus will peak at just above 0.007mg/L in year 2025, and thereafter decrease over time. Concentration of total phosphorus will stabilize at approximately 0.0025 mg/L by 2055.

The pit lake in the long-term is expected to be a source of groundwater recharge, with a seepage loss rates to groundwater of approximately 1.7 m³/day (620 m³/year), which is negligible relative to the 3,000,000+ m³ of surface water exchanged annually post-closure when surface water flows are re-established, based on average climate year watershed runoff. This groundwater loss rate is representing 0.02% of the total surface water exchanged annually. This indicates that uncertainty in the hydraulic gradient and groundwater flow is not critical to the long-term assessment of pit lake water quality. As presented in Golder (2018) recent monitoring of the hydraulic gradient, and calculated fluxes based on this gradient suggest that the predicted post-closure seepage rates are reasonable based on the measured data.

2.2.3 Groundwater Volumes and Quality

Potential groundwater inflow quantity and quality with respect to total dissolved solids was predicted in the FEIS using a groundwater numerical model (FEIS Volume 6, Appendix 6.B). A summary of these predictions is presented on Table 1 and Table 2.

Table 1: 2015 Predicted Groundwater Inflow to the Open Pit during Operations and Closure

Phase	Period	Groundwater Inflow (m³/day)	TDS Concentration (mg/L)
Dewatering	Mar 2019 to Oct 2019	-	-
Mining	Q4 2019 to 2020	275	415
wiiriirig	2021	100	410
	2022	65	370
	2023	55	365
Filling	2024	30	370
	Jan to Oct 2025	15	370
	Nov 2025 to Oct 2028	1	370

Note: Mining prior to Q4 2019 is within permafrost and groundwater inflow will be negligible.

TDS = total dissolved solids; m³/day = cubic metres per day; mg/L = milligrams per litre

Table 2: 2015 Predicted Groundwater Inflow to the Attenuation Pond during Operations and Closure

Phase	Period	Net Groundwater Inflow (m³/day)	TDS Concentration (mg/L)
Dewatering	Mar 2019 to Oct 2019	-	-
Mining	Q4 2019 to 2020	2	160
Ivilling	2021	1	170
	2022	1	195
	2023	1	175
Filling	2024	1	175
	Jan to Oct 2025	1	175
	Nov 2025 to Oct 2028	-	-

TDS = total dissolved solids; m³/day = cubic metres per day; mg/L = milligrams per litre

In accordance with Project Certificate Term and Condition No. 16b and 16c, Golder conducted a supplemental hydrogeological assessment to predict the post-closure groundwater regime in the vicinity of the Whale Tail Pit (Golder 2018a). The purpose of the model simulations was to evaluate the effects of higher TDS groundwater beneath the open pit on the groundwater flow system after closure and to evaluate the influence of solute transport by density—driven flow on the movement of solutes from the bedrock into the flooded pit.

Table 3 presents the predicted groundwater inflow quantity and quality to the Whale Tail Pit during post-closure. The results of the post-closure hydrogeological assessment provided input into a concurrent study that was assessing overall water quality in the flooded pit (Golder 2018b). The post-closure model results show that, initially, once the hydraulic heads return to near equilibrium shortly after mine flooding, groundwater inflow into the pit lake is greater than pit lake discharge into surrounding bedrock. Over time, pit lake water is drawn downwards from the bottom part of the flooded pit into bedrock. Approximately 100 years after closure, pit lake water discharge into bedrock becomes greater than groundwater inflow into the pit lake. The relative difference in flow increases with time and as the permafrost layer beneath the pit lake is predicted to thaw.

Table 3: Predicted Groundwater Inflow and Groundwater Quality - Post-Closure

Years Following Closure	Groundwater Inflow to Pit Lake (m³/day)	Average TDS Concentration into pit (mg/l)	Pit Lake Outflow to Groundwater (m³/day)
1	2.2	650	1.1
10	1.1	540	0.8
100	0.2	440	0.8
500	0.1	77	1.7

2.3 ADDITIONAL DATA COLLECTION

Project Certificate Term and Condition No. 15 indicates the need to collect additional site-specific hydraulic data in key areas of the Project during the pre-development, construction and operational phases. Agnico Eagle has commenced with the collection and documentation of this data, and a summary of the results is presented below.

2.3.1 Groundwater Quality

At the time of the FEIS, a representative sample of deep groundwater had not been collected and data collected at the Meadowbank Mine was used to infer the TDS profile at the project. A Westbay well system was installed on site between March and April in 2016. The borehole was drilled to a depth of 499 m. The well was installed to monitor hydraulic heads, test hydraulic conductivity, and collect groundwater samples from multiple intervals (Golder 2016c). The groundwater samples collected from the Westbay system at depths from 276 m to 392 m indicate that the TDS content in the groundwater was between 3,198 mg/L and 4,042 mg/L. This range is slightly higher than the groundwater TDS measured at Meadowbank from shallower depths (less than 200m vertical depth).

Groundwater samples were also collected from the Westbay in November 2018, along with the measurement of vertical hydraulic gradient (Golder 2018). The 2018 program estimated groundwater quality were in the same range as previously estimated. The calculated groundwater TDS were slightly higher in 2018 which was attributed to the higher proportion of residual drilling water in the sample. The concentrations of metals and arsenic were low. Given that the arsenic concentrations are similar to the assumptions adopted in the geochemical models (low arsenic in formation groundwater), groundwater arsenic content is still not likely to have a significant effect on mine surface water quality.

Data collected from the Westbay will be used in future updates to the water quality forecast in support of the Project. At this time, it is expected that the water treatment system planned for the project can handle groundwater with the measured water quality observed in 2016 and 2018.

2.3.2 Hydraulic Conductivity Testing

Supplemental hydrogeological investigations have been undertaken between 2015 and 2017 to further characterize the hydraulic conductivity of the bedrock in the vicinity of the Whale Tail Pit. These investigations have been documented in reports by Knight Piesold (2016), Golder (2016a, 2017), and SNC (2017). These investigations included the completion of 49 packer tests in unfrozen areas of bedrock (i.e., within the talik or below the regional permafrost).

Data collected from these four supplemental investigations indicate the bulk hydraulic conductivity of the bedrock ranges on the order of 1 x 10^{-5} m/s near surface (i.e., up to depths of 40 m) to approximately 1 x 10^{-9} m/s at greater depths. As part of the FEIS, the hydraulic conductivity was estimated to be between 1 x 10^{-8} and 2 x 10^{-7} m/s. Evaluation of the refined estimates of hydraulic conductivity from the supplemental testing with respect to groundwater

flows indicate that the inflow to the pit could be up to five times higher (up to 1,400 m³/day) during mining due to the groundwater flow rates to the pit being controlled by the shallow bedrock hydraulic conductivity (connection of the pit to the south whale tail basin). This higher flow rate is within the limits of the water treatment system and water management infrastructure and adaptive management of these flows is not required at this time.

The lower hydraulic conductivity of the bedrock at depth indicate that the seepage rates from the pit are likely to be lower than predicted in the post closure hydrogeological assessment. This indicates that the predicted seepage rates were conservatively high, and that actual seepage rates from the pit lake will be slightly lower due to the lower bedrock hydraulic conductivity expected to be present near the base of the pit. Based on the lower estimated hydraulic conductivity near the base of the pit (1 x 10⁻⁹ m/s), the measured vertical hydraulic gradient in the Westbay (0.008 m/m), and an approximately flooded pit lake area of approximately 0.5 Km3, the long-term predicted discharge from the pit lake at post-closure would be approximately 0.3 m³/day). Overall, the estimated flux is similar to the long-term predicted discharge from the pit lake at post-closure (1.7 m³/day) and supports the conclusion in the FEIS that long-term predicted flows from the pit lake to the groundwater flow system will be negligible relative to the surface water exchange into the pit lake (Golder 2018c).

2.3.3 Verification of Horizontal and Vertical Groundwater Flow Direction

Thermal data continues to be collected at the Project to verify assumptions in the permafrost conditions. Thermistors have been installed at ten locations, of which four are located to the north of the Whale Tail Pit, between Nemo Lake and Whale Tail Pit (Golder 2018b). These thermistors verify the presence of permafrost below the active layer and that the deep-sub permafrost groundwater flow system will only be connected/recharged by vertical flow through talik present below lakes of sufficient size, such as Whale Tail lake. The four thermistors between Nemo Lake and Whale Tail Pit (AMQ17-1337, AMQ17-1233, AMQ17-1277A and AMQ15-452) each indicate permafrost below the land and that horizontal flow below the active layer is restricted by permafrost in the upper 425 to 495 m of bedrock.

The vertical movement of groundwater flow through the open talik is being monitored using the Westbay Well system (AMQ16-626) to measure the vertical hydraulic gradient. This monitoring verified the direction of groundwater flow and can be used in combination with the measured bedrock hydraulic conductivity to estimate the groundwater flux near Whale Tail Pit.

The data collected at AMQ16-626 (Golder 2018), indicates the presence of a downward hydraulic gradient. Assuming the measured hydraulic head is representative of the midpoint of the measurement interval, the downward gradient is 0.008 m/m. This gradient is consistent with the estimated gradient derived from looking at the relative elevation of Whale Tail Lake and DS1 (0.008 m/m), as reported in Agnico Eagles response to TC15 (Agnico Eagle 2018). DS1 is the predicted receptor from water in the area of Whale Tail Pit and Underground (Golder 2016c). Figure 2 is presenting location of Whale Tail Lake and DS1 Lake.

For the depth interval over which the hydraulic head was measured (326 to 456 mbgs), the estimated hydraulic conductivity of the bedrock for the FEIS for the Whale Tail Pit Project was 1 x10⁻⁸ to 3 x 10⁻⁸ m/s (Golder 2016c). As discussed, in support of TC15 and the development of the Project, additional packer testing was conducted subsequent to the FEIS and the data indicate the hydraulic conductivity of bedrock over this depth interval is likely lower (1 x 10⁻⁹ m/s based on the geometric average of the test data) (Golder 2018a). Considering the measured gradient (0.008), the historical range of bedrock hydraulic conductivity adopted in the FEIS (1 x10⁻⁸ to 3 x 10⁻⁸) and the now refined hydraulic conductivity (1 x 10⁻⁹ m/s) and an assumed effective porosity of 0.001 (Maidment 1992; Stober and Bucher 2007), the estimated downward groundwater flow velocity is between approximately 0.25 m/yr and 8 m/yr. The lower bound of this range is considered more reasonable, as it uses the refined hydraulic conductivity data discussed above, which is based on the geometric mean of all the packer test measurements (pre- and post-FEIS).

Gradients measured during this monitoring program are considered a reasonable interpretation of what long-term gradients could be post-closure following the formation of the pit lake. Recharge and discharge from the base of Whale Tail Lake or a flooded pit lake will be controlled by the vertical hydraulic gradients and the bedrock hydraulic conductivity near the base of the permafrost. Considering the approximate area of the Whale Tail Pit (0.5 km²), the range in bedrock hydraulic conductivity (1 x 10⁻⁹ to 3 x 10⁻⁸ m/s), and the measured downward gradient (0.008), the data would indicate long-term groundwater flux would be approximately 0.3 m³/day to 11 m3/day. Similar to the estimated groundwater velocity, the lower bound of this range is considered more reasonable, as it uses the refined estimate of hydraulic conductivity. Overall, the estimated flux is similar to the long-term predicted discharge from the pit lake at post-closure (1.7 m3/day; Golder 2016c) and supports the conclusion in the FEIS that long-term predicted flows from the pit lake to the groundwater flow system will be negligible relative to the surface water exchange into the pit lake (Golder 2018c).

3 GROUNDWATER MONITORING PLAN

Water quantity and quality monitoring data will be used to verify the predicted water quality and quantity trends and to conduct adaptive management should differing trends be observed. Monitoring will be initiated at the start of mining and continue during operations and closure.

The GWMP will be further defined as the open pit is developed and will be conducted in agreement with the WMP for the Project.

3.1 HORIZONTAL AND VERTICAL GROUNDWATER FLOW MONITORING

Thermal monitoring will continue at each of the installed thermistors to monitor the presence of permafrost below the active layer during construction and operations phases. The monitoring will continue until such time as a thermistor is destroyed by active mining. Two thermistors, AMQ17-1233 and AMQ17-337, are located outside of the pit footprint and will be used to

monitor permafrost conditions between Nemo Lake and Whale Tail Pit. The thermistor data will be used to verify the presence of permafrost and the restricted horizontal movement of groundwater below the active layer due to permafrost in the upper 425 to 495 m of bedrock.

As part of the Whale Tail Dike Operation Maintenance and Surveillance manual, performance of the Whale Tail dike will be monitored with different instruments (e.g. piezometers) located in the principal horizontal groundwater flow pathway between Whale Tail South Basin and the Whale Tail pit. Piezometer readings and water level in the Whale Tail South Basin and the Attenuation Pond will be available to calibrate the hydrogeological model during operation if deemed necessary.

Vertical groundwater flow conditions in the area of Whale Tail Pit will be monitored by the Westbay Well system. Agnico Eagle will be sampling the Westbay Well system commencing in March 2019 and will continue to sample and report on an annual basis during the Construction and Operations Phases. The monitoring will include the measurement of the vertical hydraulic gradient and the collection of groundwater samples. During operations, this data will be supplemented by the direct measurement of groundwater quality in the seepage inflow to the pit (Section 3.2). Water sampling parameters will be consistent with the sump sampling and seepage surface parameters planned for the pit (Section 3.2.2).

Data collected during construction and operations phases will be used to develop an appropriate monitoring for closure and will be documented in the Interim Closure and Reclamation Plan.

3.2 GROUNDWATER QUANTITY AND QUALITY MONITORING

3.2.1 Water Quantity

Groundwater inflow to the open pit will be collected in sumps prior to being pumped to surface. Water collected in the sumps represents the bulk, or combined inflow to the open pit, and may include other sources of water, such as precipitation. During construction and operations, groundwater inflow to the pit will be evaluated four time per calendar year as per Water Licence 2AM-WTP1826 requirements. Management of the pumped-out water is described in the WMP.

The above flow monitoring will be supplemented by periodic seepage surveys to be conducted twice during the first year of mining and once a year thereafter. In the first year of pit development, one of the seepage surveys will be conducted in early summer, following snow melt and thawing of any ice in the pit walls, and then again in late August. In the following years of mining, one survey will be conducted in August of each year. The objective of the seepage surveys is to identify preferential groundwater flow paths in the walls of the open pit, if present, and to determine their relative contribution to the groundwater inflow to the pit with respect to water quantity and quality.

3.2.2 Water Quality

During the operations phase, the quality of water from the sumps (either at the sump or at end of pipe at the surface) will be monitored four time per calendar year as per Water Licence 2AM-WTP1826 requirements.

Water samples will also be collected from seeps in the pit walls if there is sufficient water for analysis and if access to the seep is possible.

For each sample, field parameters will be recorded (pH, turbidity, salinity and electrical conductivity). Analytical parameters will include:

- Total and Dissolved Metals: aluminium, antimony, arsenic, boron, barium, beryllium, cadmium, copper, chromium, iron, lithium, manganese, mercury, molybdenum, nickel, lead, selenium, tin, strontium, titanium, thallium, uranium, vanadium and zinc.
- Nutrients: ammonia-nitrogen, total kjeldahl nitrogen, nitrate nitrogen, nitrite-nitrogen, ortho-phosphate, total phosphorous, total organic carbon, total dissolved organic carbon and reactive silica.
- Conventional Parameters: bicarbonate alkalinity, chloride, carbonate alkalinity, conductivity, hardness, calcium, potassium, magnesium, sodium, sulphte, pH, total alkalinity, total dissolved solids, total suspended solids and turbidity.
- Total cyanide and free cyanide. If total cyanide is detected above 0.05 mg/L at a monitoring station in receiving environment; further analysis of Weak Acid Dissociable Cyanide will be triggered.

Additional chemical analyses may be required to more completely characterize the chemical loading from the mine water. The additional analyses will be dependent on monitoring results.

3.3 DATA COMPILATION AND UPDATES TO GROUNDWATER MODEL

Groundwater monitoring data will be compiled into a Project-specific database and evaluated for trends in groundwater data with respect to pit and underground inflow quantity and quality.

Measured groundwater inflow rates will be compared to model predictions on an annual basis. If significant variations from model predictions are observed, the assumptions behind the data will be reviewed and the analysis updated if required. In addition, updates to the groundwater model will be made if operational changes occur as the open pit advances which could significantly alter groundwater inflow or quality.

Variations that would be considered significant and would be triggers for review of the data include:

- Groundwater inflow quantity to the mine, based on rolling monthly average of inflow over six consecutive months, is 20% higher than predicted groundwater inflow. The six-month averaging period of observation is based on observed seasonal variations in inflow quantities in mines situated in continuous permafrost regions, where half the year there is virtually no surface water component of flow to the pit.
- Collected water samples that indicate that the TDS is more than 25% higher than the estimated water quality, based on a 6-month rolling average.
- Temperature profiles observed in the sentinel thermistors (AMQ17-1233 and AMQ17-337) located between Nemo Lake and Whale Tail Lake are showing sign of permafrost degradation below the active layer.
- Observed inflow quantity and quality is lower than expected would not be of concern and/or effect water management plans on-site. Model updates or analysis would therefore not be conducted if predicted inflow quantity and quality is higher than observed conditions.

If the first three variations are triggered, the groundwater and/ or permafrost data would be assessed to evaluate trends, the potential causes of the triggers and the potential for long-term effects associated with the variation. If for example, the greater than predicted inflows were correlated to a short-term effect such as freezing in the pit walls, changes in mining rate, freshet or transient drainage of a high storage feature, then further reassessment of groundwater inflows may not be required, and the adaptive management of these short-term effects would be evaluated under the Water Management Plan (WMP). However, if the effects of these variations is found to be potentially long term, this may warrant review of the model and/or permafrost calibration and predictions.

Table 4 presents the adaptive management plan with respect to groundwater monitoring. The design of the water management infrastructure includes contingencies in case of unplanned events. The Whale Tail attenuation pond can handle higher groundwater inflows and the Operation Water Treatment Plan (O-WTP) is designed to handle total flow rates 60% higher than planned (including surface and groundwater inflows reporting to the Attenuation Pond). O-WTP has the capacity to treat more than a five times increase in groundwater inflows from the one predicted during operation. Moreover, if the inflows are greater than this then there is the capacity to store water within the pit and adjust the mining plan to deal with extra inflows. In any case, all contact water will be managed within the pit area.

The groundwater management strategies: the ponds, sumps and water conveyance strategies around the pit can be modified to mitigate the effect of additional groundwater volume or salinity prior to treatment and discharge. The water conveyance strategy will be evaluated and optimized during operations and closure to maintain post-closure commitments. Other engineering solutions such as depressurization wells, grouting and thermosiphons may be considered, if warranted.

If one of the thresholds in Table 4 is triggered and it is found to be a potentially long-term effect, then hydrogeological and thermal analyses will be required to define the best solution to address the exceedance. Agnico Eagle considers that adaptive management must be based on well informed decisions and may include re-calibration of the thermal and hydrogeological models, predictions based on these re-calibrations, and revised Site-Wide water balance and Site-Wide water quality forecasts.

Table 4: Groundwater Adaptive Management Plan

Threshold	Consequence	Likelihood	Adaptive Management
Tillesiloid	Consequence	Likeiiilood	Adaptive management
Groundwater inflows to the mine, based on rolling monthly average of inflow over six consecutive months, is 20% higher than predicted groundwater inflow	Higher water volume to treat during operation Potential to compromise storage capacity of the attenuation pond Impact on mining sequence	Low	O-WTP have 60% contingency to manage higher inflow to attenuation pond (forecasted peak operation flow in the water balance is 1,300m³/h during 12h a day vs treatment capacity of 1,800 m³/h during 24h per day); O-WTP have the capacity to treat more than five times increase in groundwater inflows from the one predicted during operation; Attenuation pond has 50% contingency to manage higher groundwater inflow; Assess situation by performing additional inspection, monitoring and field investigation; Review hydrogeological model, Site-wide water balance and Site-wide water quality forecast with updated data; Review water management strategy (e.g. temporary storing water in the pit); Evaluate potential long-term mitigations (e.g., grouting);
Collected groundwater samples that indicate that the TDS is more than 25% higher than the estimated groundwater quality, Based on rolling monthly average over 6 consecutive months	Higher TDS water quality to treat during operation Compromise storage capacity of the attenuation pond Potential to reduce water treatment efficiency and management plan if not meeting Metal and Diamond Mining Effluent Regulations Impact on mining sequence	Low	Review water management strategy. O-WTP have 60% contingency to manage higher inflow to attenuation (forecasted peak operation flow in the water balance is 1,300m3/h during 12h a day vs treatment capacity of 1,800m3/h during 24h per day); O-WTP have the capacity to treat more than five times increase in groundwater inflows from the one predicted during operation; Flow to the pit is dominated by seepage loss from the Attenuation Pond and seepage from the South Basin of Whale Tail Lake. As the groundwater inflow to the pit is representing a small ratio of the overall water inflows in the attenuation pond, water treatment efficiency should not be impacted significantly by uncertainty in the groundwater

I			TDS;
			Assess situation by performing additional inspection, monitoring and field investigation;
			Review hydrogeological model, Site-wide water balance and site-wide water quality forecast with updated data;
			Evaluate additional treatment and storage capacity required to manage flow in operation (e.g. storing water in the pit);
			Evaluate potential long term mitigations (e.g. grouting, thermosiphon);
			Review water management strategy.
Temperature profile observed in the sentinel	Horizontal groundwater flow observed between Whale Tail Pit north wall		Assess situation by performing additional inspection, monitoring and field investigation;
thermistors (AMQ17-1233 and AMQ17-	and Nemo Lake.Potential for groundwater seepage to pit sump/pit		Review thermal model, hydrogeological model, Site-wide water balance and site-wide water quality forecast with updated data;
337) located between Nemo Lake and Whale Tail Lake are	lake.Increased water treatment requirement.	Unlikely	Install new thermistor(s) to evaluate the extent of the permafrost degradation;
showing sign of permafrost degradation			Evaluate additional treatment and storage capacity required to manage flow in operation (e.g. storing water in the pit);
below the active layer.			Evaluate potential long-term mitigations as depressurization wells, grouting, thermosiphon Review water management strategy.

4 QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES

Quality Assurance (QA) refers to plans or programs that encompass a wide range of internal and external management and technical practices designed to ensure the collection of data of known quality that matches the intended use of the data. Quality Control (QC) is a specific aspect of QA that refers to the internal techniques used to measure and assess data quality. Specific QA and QC procedures that will be followed during sampling performed for the GWMP are described in Section 4.1 and 4.2.

4.1 QUALITY ASSURANCE

Quality assurance protocols will be diligently followed so data are of known, acceptable, and defensible quality. There are three areas of internal and external management, which are outlined in more detail below.

4.1.1 Field Staff Training and Operations

To make certain that field data collected are of known, acceptable, and defensible quality, field staff will be trained to be proficient in standardized field groundwater sampling procedures, data recording, and equipment operations applicable to the GWMP. All field work will be completed according to specified instructions and established technical procedures for standard sample collection, preservation, handling, storage and shipping protocols.

4.1.2 Laboratory

To make sure that high quality data are generated, accredited laboratories that will be selected for sample analysis. Accreditation programs are utilised by the laboratories so that performance evaluation assessments are conducted routinely for laboratory procedures, methods, and internal quality control.

4.1.3 Office Operations

A data management system will be utilized so that an organized consistent system of data control, data analysis, and filing will be applied to the GWMP. Relevant elements will include, but are not limited to the following:

- all required samples are collected;
- chain-of-custody and analytical request forms are completed and correct;
- proper labelling and documentation procedures are followed, and samples will be delivered to the appropriate locations in a timely manner;
- laboratory data will be promptly reviewed once they are received to validate data quality;
- sample data entered into a Mine-specific groundwater quality database will be compared to final laboratory reports to confirm data accuracy; and
- appropriate logic checks will be completed to ensure the accuracy of the calculations.

4.2 QUALITY CONTROL

The QC component will consist of applicable field and sample handling procedures, and the preparation and submission of two types of QC samples to the various laboratories involved in the program. The QC samples include blanks (e.g., travel, field, equipment) and duplicate/split samples.

Sample bottle preparation, field measurement and sampling handling QC procedures include the following:

- Sample bottles will be kept in a clean environment, capped at all times, and stored in clean shipping containers. Samplers will keep their hands clean, wear gloves, and refrain from eating or smoking while sampling.
- Where sampling equipment must be reused at multiple sampling locations, sampling equipment will be cleaned appropriately between locations.
- Temperature, pH, and specific conductivity will be measured in the field using hand held meters (e.g., YSI water quality sondes).
- Samples will be cooled to between 4°C and 10°C as soon as possible after collection. Care will be taken when packaging samples for transport to the laboratory to maintain the appropriate temperature (between 4°C and 10°C) and minimize the possibility of rupture. Where appropriate, samples will be treated with preservatives to minimize physical, chemical, biological processes that may alter the chemistry of the sample between sample collection and analysis.
- Samples will be shipped to the laboratory as soon as reasonably possible to minimize sample hold times. If for any reason, samples do not reach the laboratory within the maximum sample hold time for individual parameters, the results of the specific parameters will be qualified, or the samples will not be analysed for the specific parameters.
- Chain of custody sample submission forms will be completed by field sampling staff and will be submitted with the samples to the laboratory.
- Only staff with the appropriate training in the applicable sampling techniques will conduct water sampling.

Quality control procedures implemented will consist of the preparation and submission of QA/QC samples, such as field blanks, trip blanks, and split/duplicate water samples. These are defined as follows:

- Field Blank: A sample will be prepared in the field using laboratory-provided deionized water
 to fill a set of sample containers, which will then be submitted to the laboratory for the same
 analysis as the field water samples. Field blanks will be used to detect potential sample
 contamination during collection, shipping and analysis.
- Travel Blank: A sample will be prepared and preserved at the analytical laboratory prior to the sampling trip using laboratory-provided deionized water. The sample will remain unopened throughout the duration of the sampling trip. Travel blanks will be used to detect potential sample contamination during transport and storage.

 Duplicate Sample: Two samples will be collected from a sampling location using identical sampling procedures. They will be labelled, preserved individually and submitted for identical analyses. Duplicate samples will be used to assess variability in water quality at the sampling site. Duplicate will be collected and submitted for analyses at approximately, 10% of sampling locations. For smaller batches of samples (less than 10), at least one duplicate will be collected and submitted for analysis.

Additional QA/QC procedures that will be applied to the seepage survey component of the GWMP will include:

- Location Universal Transverse Mercator (UTM) coordinates of seepage will be defined through the use of a hand-held Global Positioning System (GPS) unit and will be recorded in the field log book with a photograph of each pit wall.
- Sample Labels appropriate sample nomenclature will be assigned to the sample labels that will define sample locations, sample type, year, and designation. These labels will distinguish between samples collected from seeps versus samples collected from sumps.

5 REFERENCES

- Agnico Eagle (Agnico Eagle Mines Limited). 2017. Whale Tail Pit Water Management Plan. Version 1. January 2017.
- Agnico Eagle. 2018. Whale Tail Pit Thermal Monitoring Plan. Version 1. May 2018.
- Burn, C.R. 2002. Tundra lakes and permafrost, Richards Island, western Arctic coast, Canada. Can J Earth Sci 39: 1281-1298.
- Burt, T.P. and Williams, P.J. 1976. Hydraulic Conductivity in Frozen Soils, Earth Surface Processes, Volume 1, John Wiley, pp. 349-360.
- Golder (Golder Associates Ltd.). 2016a. Westbay System Installation Summary Whale Tail Pit Project, Nunavut. Dated 7 July 2016.
- Golder. 2016b. Groundwater Quality Investigation, Amaruq, Nunavut. Dated 31 November 2016.
- Golder. 2017. Hydrogeological and Permafrost Field Investigation, Amaruq Project 2017 Factual Report. 31 July 2017.
- Golder. 2018a. Whale Tail Pit Project, Post-closure Hydrogeological Assessment for the Whale Tail Open Pit. Reference No. 1789310-180-TM. 27 June 2018.
- Golder. 2018b. Whale Tail Pit Post Closure Pit Lake Thermal Assessment. 30 July 2018.
- Golder. 2018c, in preparation. Whale Tail Pit Project, Hydrodynamic Modelling of Whale Tail Pit Lake. Reference No. 1789310-181-TM.
- Golder. 2019. 2018 Westbay System Groundwater Monitoring Investigation. 8 February 2019.
- Knight Piesold Ltd. 2016. Geomechanical Site Investigation Summary, 12 December 2016.
- McCauley, C.A, White, D.M, Lilly, M.R., and Nyman, DM. 2002. A comparison of hydraulic conductivities, permeabilities and infiltration rates in frozen and unfrozen soils. Cold Regions Science and Technology 34(2002). PP. 117-125.
- SNC Lavalin. 2017. Preliminary Studies for the Water Management and Geotechnical Infrastructures at Amaruq, 2017 Geotechnical Investigation Factual Report. Dated 25 May 2017.

APPENDIX A - WHALE TAIL PIT POST-CLOSURE PIT LAKE THERMAL ASSESSMENT

TECHNICAL MEMORANDUM

DATE 30 July 2018

1789310-174-TM-Rev0

TO

Jamie Quesnel

Agnico Eagle Mines Limited

CC

Michel Groleau, Valérie Bertrand

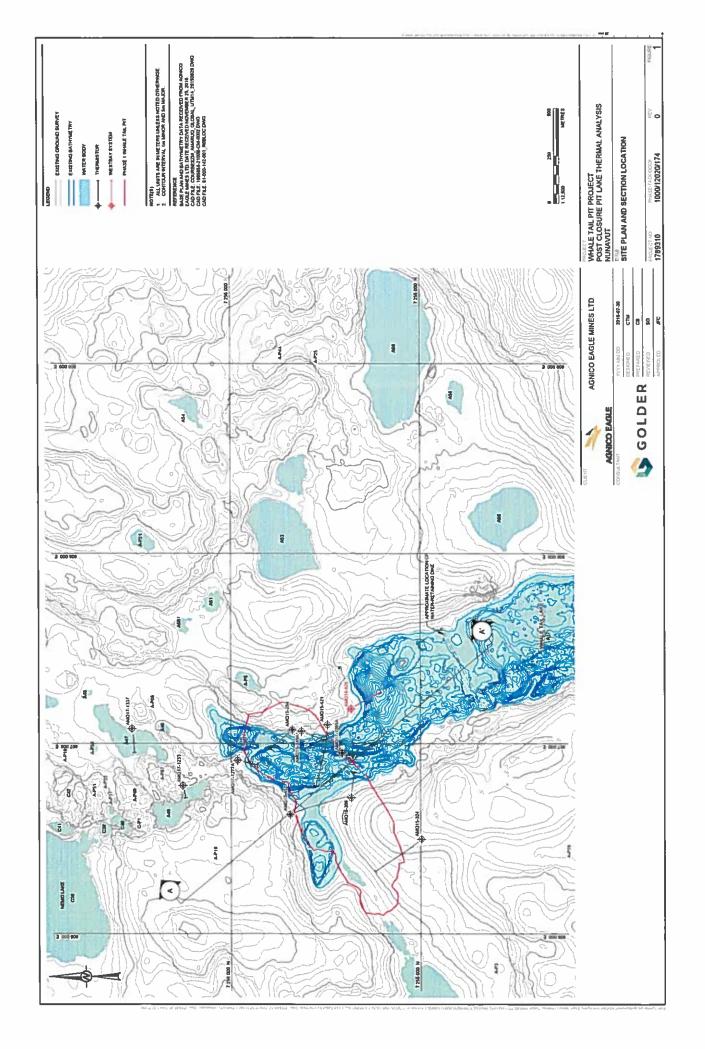
FROM

Colin McGrath, Jianfeng Chen, Don Chorley, and Serge Ouellet

EMAIL

Jianfeng_Chen@golder.com

WHALE TAIL PIT
POST-CLOSURE PIT LAKE THERMAL ASSESSMENT


1.0 INTRODUCTION

Agnico Eagle Mines Limited (Agnico Eagle) is currently evaluating the potential development for mining the Whale Tail Pit Project (Project), a satellite deposit located on the Amaruq exploration property in Nunavut. The Amaruq property is a 408 km² site located in Inuit Owned Land approximately 150 km north of the hamlet of Baker Lake and approximately 50 km northwest of Agnico Eagle's operating Meadowbank Mine.

The following technical memorandum presents the assumptions and results of two-dimensional (2D) thermal analysis that was conducted in support of post-closure hydrogeological modelling for the Whale Tail Pit (Golder 2018a). The thermal analysis was conducted to evaluate how quickly the permafrost below Whale Tail Pit could melt following the formation of the Whale Tail Pit Lake during closure. The location of Whale Tail Pit is presented on Figure 1.

The thermal assessment included a review of the original Whale Tail Lake talik formation estimation based on available thermistor data at the time of the FEIS, the previous assessment completed by Golder (2017a), the current ground thermal conditions in the Whale Tail Lake area, and thermal changes during and after flooding the Whale Tail Pit.

This technical memorandum presents a summary of the updated evaluation of permafrost conditions based on the available thermistor data to October 2017, and the numerical modelling results of predicted thermal conditions under the Whale Tail Pit Lake post-closure.

2.0 BACKGROUND

The Project is located in the zone of continuous permafrost. The land surface of the Project is underlain by permafrost except under the lake where water is too deep to freeze to the bottom during winter. Taliks (areas of unfrozen ground) are expected beneath a water body where the water depth is greater than the ice thickness. Closed talik formations consist of a depression in the permafrost table below relatively shallower and smaller lakes. Open talik formations that penetrate through the permafrost and connect the lake waterbody with the subpermafrost hydrogeological regime are to be expected for relatively deeper and larger lakes in the Project area.

A previous site investigation on the Project completed by Knight Piésold (Knight Piésold 2015) between June and October of 2015 included the installation of six thermistors in the vicinity of the proposed development of Whale Tail Lake to collect ground temperature data.

The project site permafrost conditions were initially assessed by Knight Piésold (2015). A further review on site thermistor data was carried out by Golder during the thermal assessment for the Whale Tail Lake, with a summary of the thermal conditions presented in Golder (2017a). An additional four thermistors were installed within the vicinity of Whale Tail Lake in 2017 by Golder.

Based on site investigation data, soils in the project area are typically medium to coarse grained glacial till and colluvium with high coarse fragment content overlying bedrock at shallow depths. The six thermistor boreholes drilled in 2015 indicated soil thicknesses varying from 6.1 to 12.4 m. Review of existing data indicates the soil thicknesses varying from about 1 m to 12 m in the proposed waste rock storage facility area located northwest of the proposed pit. Underlying the soil, bedrock in the area generally consists of a stratigraphic sequence of greywacke, komatiite, and ultramafics, with varying thicknesses.

A mean annual air temperature for the site is of -11.3 °C, based on climate data provided by Agnico Eagle (Golder 2016a, Agnico Eagle 2016). Climate normal for Baker Lake between 1981 and 2000 shows a mean annual air temperature of -11.2 °C (Golder 2017b). Table 1 presents a summary of average air temperature at the site and at the Baker Lake climate station. The mean monthly temperatures of the two sets of data are similar. Mean monthly temperatures from Meadowbank site based on camp site data from 1997 to 2003 is included in the table for comparison (Golder 2003). The Meadowbank data gives a similar annual average of -11.1 °C.

Table 1: Mean Monthly Air Temperatures

	Whale Tail Project (Golder 2016a, Agnico Eagle 2016)	Meadowbank Project (1997 - 2003) (Golder 2003)	Baker Lake Climate Normal (1981 to 2000)
Unit	•c	•c	·c
January	-31.3	-31,6	-31.2
February	-31.1	-31.7	-31.0
March	-26.3	-25.5	-26.2
April	-17.0	-17.2	-17.0
May	-6.4	-5.6	-6.3
June	4.9	3.8	4.8
July	11.6	12.4	11.6
August	9.8	9.9	9.8
September	3.1	3.3	3.1
October	-6.5	-7.6	-6.4
November	-19.3	-18.0	-19.3
December	-26.8	-25.6	-26.5
Average	-11.3	-11.1	-11.2

3.0 SITE PERMAFROST CONDITIONS

The following sections present a summary of site-specific permafrost conditions based on the available thermistor data.

3.1 Thermistor Installation

The locations of the existing thermistors are shown in Figure 1; Table 2 presents a summary of thermistor data obtained to date.

Table 2: Thermistor Location and Installation Summary

	Collar Coordinates						Thermistor	
Borehole	Northing	Easting	Elevation	Inclination (deg)	Azimuth (deg)	Drilled Length (m)	Depth Below Ground Surface (m)	Status ^(c)
AMQ15-294	607,073.2	7,255,676.1	155.9	-45.18	322.7	220.5	144.4	Functioning
AMQ15-306	606,714.8	7,255,363.8	154.9	-45.41	96.3	201.0	141.5	Functioning(b)
AMQ15-324	606,496.8	7,254,995.2	161.8	-55.46	325.5	505.0	317.4	Functioning
AMQ15-349A	607,064.9	7,255,627.5	155.3	-45.32	204.4	202.5	140.6	Not functioning
AMQ15-421	607,098.3	7,255,490.8	155.1	-51.31	273.9	501.0	388.3	Not functioning
AMQ15-452	606,627.2	7,255,687.9	156.2	-49.98	159.5	501.0	382.3	Functioning
AMQ17-1265A	606,950.1	7,255,413.6	152.5	-80.0	196.0	425.0	349.6 ^(a)	Functioning
AMQ17-1233	606,777.7	7,256,253.8	161.9	-59.06	252.7	156.0	132.4	Functioning
AMQ17-1337	607,078.4	7,256,522.0	155.2	-59.62	260.4	250.0	218.0	Functioning
AMQ17-1277A	606,911.1	7,255,963.6	153.2	-60.17	193.1	250.0	217.4	Functioning

a) Depth below take water (ice) level.

3.2 Thermistor Data Summary

Table 3 presents a summary of the permafrost information estimated from the ten thermistors on site. The parameters were estimated using average values from September 2015 to October 2017. Ground temperature plots for the thermistor data is presented in Attachment 1.

Based on the thermistor data, the findings on the permafrost characteristics in the project area remain similar to those presented in Golder (2017a), with following updates:

- The thermistor AMQ17-1337 suggested deeper permafrost in the area away from deep lakes of up to 495 m, compared to the 427 m depth from the thermistor AMQ15-324
- The temperatures at the depths of zero amplitude changed slightly, they are now in the range of -3.0 °C to -8.4 °C (-3.1 °C to -8.6 °C reported in Golder 2017a)
- The thermistor AMQ17-1265A installed within the lake suggests the talik depth at this location is about 112 m from the lake water level

No additional groundwater quality and freezing point depression data were provided during this assessment; these are assumed to remain unchanged since the last assessment (Golder 2016b).

b) Only the top node is functioning.

c) Based on information provided by Agnico Eagle in April 2018

30 July 2018

Table 3: Summary of Permafrost Conditions from Site Thermistors

Agnico Eagle Mines Limited

Jamie Quesnel

Hole ID	Approx. Collar	Thermistor	Zero Annual Amplitude	itude	Mean Annual	Geothermal	Estimated Permafrost
	Distance to Lake (m)	Location	Approximate Depth (m)	Approximate Temperature (°C)	Ground Temperature (°C) ^(a)	Gradient ("C/m)	Depth (metres below ground or lake surface)
AMQ15-294	31	Beneath Whale Tail Lake	19	-3.0	-3.5	Insufficient depth	Insufficient depth
AMQ15-306	ស្ត	Beneath Whale Tail Lake	20	-7.4	-8.1	Insufficient depth	Insufficient depth
AMQ15-324	370	On land	35	-8.4	-9.9	0.025(b)	427
AMQ15-349A	40	Beneath Whale Tail Lake	18	-5.2	-5.2	Insufficient depth	Insufficient depth
AMQ15-421	40	Beneath Whale Tail Lake	24	-3.6	-3.9	0.005(c)	445
AMQ15-452	50	Beneath Whale Tail Lake	23	-3.6	-3.4	0.011(4)	468
AMQ17- 1265A	0 (within Whale Tail Lake)	Beneath Whale Tail Lake	N/A	N/A	N/A	0.016(*)	343 (including 112 m lake talik)
AMQ17-1233	21	Beneath A49 Lake	Insufficient depth	Insufficient depth	Insufficient depth	Insufficient depth	Insufficient depth
AMQ17-1337	12	Beneath A47 Lake	Insufficient depth	Insufficient depth	-9.5	0.019(1)	495
AMQ17- 1277A	29	Beneath Whale Tail Lake	Insufficient depth	Insufficient depth	Insufficient depth	Insufficient depth	Insufficient depth
a) Estimated by b) Based on the c) Based on the d) Based on the e) Based on the f) Based on the	Estimated by projecting best fit line to surface. Based on thermistor data from 105.1 to 282.1 m Based on thermistor data below 271.8 m depth. Based on thermistor data below 248.4 m depth. Based on thermistor data below 290.5 m depth. Based on thermistor data below 166.2 m depth.	Estimated by projecting best fit line to surface. Based on thermistor data from 105.1 to 282.1 m depth. Based on thermistor data below 271.8 m depth. Based on thermistor data below 248.4 m depth. Based on thermistor data below 290.5 m depth. Based on thermistor data below 166.2 m depth.					

4.0 PIT LAKE THERMAL MODEL

Two-dimensional thermal modelling was carried out using the finite element program, TEMP/W, of GeoStudio 2007 (Ver. 7.23), developed by GEO-SLOPE International Ltd. This section presents the model scenarios, input parameters, and assumptions.

Golder previously conducted thermal modelling to evaluate the permafrost and talik conditions in the Whale Tail Lake and project area (Golder 2017a), and conducted thermal modelling for the cover of the Whale Tail waste rock storage facility (Golder 2017b, 2018b). A number of model parameters used in these assessments were adopted for this pit lake thermal modelling.

For the purpose of providing input to the pit hydrogeological modelling, the section A shown in Figure 1 was selected for thermal modelling of the post-closure pit lake. The modelling included the following steps.

- Evaluate the current condition of permafrost regime under Whale Tail Lake by reviewing of the existing thermistor data and the 2017 Whale Tail Lake thermal assessment results (Golder 2017a).
- Estimate the ground thermal conditions when the Whale Tail Pit is mined out, for use as the initial condition.
- Run a transient thermal model with the pit being flooded based on the proposed flooding schedule, to estimate the evolution of the permafrost regime during flooding at closure. The model stops when most of the permafrost under the pit lake thaws.
- Continue running the model to evaluate long-term permafrost regime, after the water-retaining dike is breached, and the Whale Tail Lake (South Basin) and the fully flooded Whale Tail Pit Lake are merged.
- Run a steady-state thermal model for the pit lake to estimate the ultimate permafrost regime.

4.1 Material Properties

Consistent with Golder (2017a), for the purposes of this thermal assessment, each model assumed a uniform thickness of 12 m of till overlying bedrock both on land and under the lake, except the pit lake. No lake bed sediment or weathered bedrock materials were included in the models. It is expected that the material properties of the bedrock will have a more significant effect on the thermal conditions than the soil due to the relative thickness of the soil compared to the bedrock. Material properties and depths used in the thermal models are summarized in Table 4. The material thermal properties were referenced from typical values presented in Andersland and Ladanyi (2004) and are consistent with Golder (2017a and b).

Table 4: Material Thermal Properties Used in the Models

Material	Material Assumed Volumetric Water Content		Thermal Conductivity (W/m-°C)		Volumetric Heat Capacity (MJ/m³-°C)		
Water Content		Frozen	Unfrozen	Frozen	Unfrozen	surface (m)	
Till	30%	1.8	1.5	2.0	2.5	0 to 12	
Bedrock	1%	3.0	3.0	2.0	2.0	>12	

The thermal models were solved considering groundwater with a phase change temperature of 0 °C. The addition of salinity in the groundwater would result in a freezing point depression and could lower the phase change temperature to below 0 °C if salinity is high enough. The freezing point depression was not modelled directly. A Westbay well system is installed in borehole AMQ16-626. Groundwater samples collected from the Westbay system at depths from 276 m to 392 m indicated a salinity range of 0.3% to 0.4% (Golder 2016b). This salinity level indicates an approximate 0.2 °C of freezing point depression and is considered to have minor impact to the evolution of the thermal regime around the pit lake.

4.2 Boundary Conditions

4.2.1 Ground Surface Temperature

The monthly ground surface temperature function was estimated through numerical modelling using daily climate data from Baker Lake, and review of existing thermistor data from the Whale Tail site (Golder 2017b). Ground surface temperatures are often observed to be warmer than the air temperatures in permafrost regions. Figure 2 shows the ground surface temperature function used in the model, as well as the Baker Lake normal air temperatures from 1981 to 2010. The mean annual ground temperature is about -7.3 °C, which lies in the range of -3.4 to -9.9 °C, projected from the thermistor data (Table 3) and is considered to be reasonable for use in the transient model.

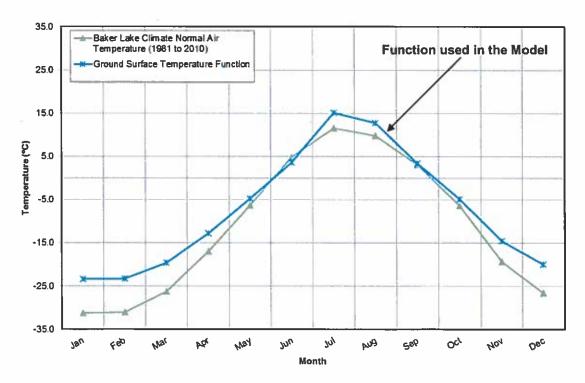


Figure 2: Monthly Air and Ground Surface Temperature Functions

4.2.2 Geothermal Gradient

A geothermal heat flux of 0.048 J/sec was applied to the models as the lower boundary condition based on the assumed bedrock thermal conductivity of 3.0 W/m-*C and a geothermal gradient of 0.016*C/m (Golder 2017a). This thermal gradient is consistent with the one estimated during the Meadowbank Project baseline study (Golder 2003).

4.2.3 Pit Lake Bottom Temperature

Typically, a mean annual lake bottom temperature is related to water depth in a permafrost region: the deeper the lake, the higher the expected mean annual lake bottom temperature. The mean annual lake bottom temperature is typically higher than the mean annual ground surface temperature in a permafrost region.

Deep pit lake temperatures tend to stabilize near +4°C at which the maximum water density typically occurs for fresh water and low salinity water. An assessment of the variation of the pit lake temperature was not carried out at this stage. A review of measured pit lake bottom temperatures from Pieters and Lawrence (2014) and Crusius et al. (2002) indicates the following:

- +3.5°C at about 110 m depth for Zone 2 Pit Lake at Colomac Mine located 250 km north of Yellowknife, NWT
- +4.5°C at about 60 m depth for Grum Pit Lake at Faro Mine near Faro, Yukon
- +4.2°C at about 50 m depth for Vangorda Pit Lake at Faro Mine near Faro, Yukon
- +5.2°C at about 120 m depth at Main Zone Pit Lake at Equity Mine near Houston, BC
- +5.5°C at about 40 m depth at Waterline Pit Lake at Equity Mine near Houston, BC

For the purpose of the modelling, the Whale Tail Pit Lake was assumed to have a constant mean annual bottom temperature of +4°C in all models based on the above review. Due to the depth of the proposed Whale Tail Pit Lake, meromictic conditions are expected to develop. When meromictic conditions are present, mixing of the surface and deep water is inhibited (stratification) which results in a stable bottom temperature.

For the relatively shallow lake area near the proposed water-retaining dike (Whale Tail Dike), a constant temperature of +2°C was assumed for the lake bottom.

4.3 Model Scenario and Assumptions

Pit flooding was adopted according to the mine schedule adopted in the 3D hydrogeological model at the time of the FEIS (Appendix 6-B of the FEIS). This 3D hydrogeological model also forms the basis of the post-closure prediction of groundwater inflows to the flooded pit lake. This thermal model was designed to provide reasonable assumptions for a conservative approach to melting of permafrost for the groundwater modelling. Since the FEIS, some changes in filling schedule have been potentially identified; however, for the scale of analysis being adopted and evaluated in the post-closure hydrogeological analysis, these changes will not significantly affect predictions of groundwater inflow quantity and quality to the pit lake. Pit flooding was assumed in the FEIS to commence in 2022 and was expected to reach the top of the pit / base of Whale Tail Lake (138 masl) in 2025. Subsequent reflooding of Whale Tail Lake (North Basin) will continue until 2028. The assumed yearly water elevations during flooding is shown in Figure 3, and Table 5.

Figure 3: Whale Tail Pit Flooding Schedule from FEIS

The modelling scenario was developed to simulate the proposed Whale Tail Pit flooding elevations from years 1 to 7 as presented in Table 5.

Table 5: Thermal Model Back-Flooding Elevations

Year	Whale Tail Pit Back-Flooding Elevation (masl)
1	112
2	122
3	131
4	138
7	152.5

The post-closure pit lake and Whale Tail Lake are assumed to maintain the elevation of 152.5 masl.

The modelling was completed up to 300 years from start of flooding for the section through the centreline of the ultimate pit configuration. The model used the ground surface temperature function and a daily time step without consideration for any climate change. This hypothetical scenario assumed climatic conditions in 300 years remain similar to current site conditions.

The thermal modelling was completed to support the post-closure groundwater modelling in which the time to penetrate through the permafrost beneath the proposed Whale Tail Pit Lake was required. Climate change may accelerate slightly the warming progress of the upper ground thermal regime. This is considered to be insignificant for the purpose of supporting the hydrogeological study and therefore consideration for climate change was not included in the thermal model.

4.4 Thermal Conditions Prior to Flooding

Section A is located within Whale Tail Lake, in the longitudinal direction. Modelling the entire section is not expected to be appropriate to estimate the initial thermal conditions before pit flooding, as the lateral thermal impacts from surrounding colder ground cannot be accounted for in two dimensions. Instead, the initial thermal regime along section A was interpolated by modelling a steady-state condition of the northern terrace at the proposed Whale Tail Pit, the ground temperature data from thermistor AMQ17-1265A, and previous thermal analysis of the Whale Tail Lake completed by Golder (2017a). Based on the ground temperature profile from AMQ17-1265A, the extent of permafrost is expected to occur from El. 40.8 masl to -191 masl at the southeast side of the pit on section A. The assumed initial conditions are presented on Figure 2-1 of Attachment 2.

For the purpose of this assessment, the majority of the thermal regime prior to mining was assumed to be the same as when the mining is complete due to the short duration of mining. Some freeze-back during the pit mining is expected and was estimated to form a part of the initial thermal condition for the post-closure period.

5.0 SUMMARY OF MODEL RESULTS FOR THE POST-CLOSURE PERIOD

Post closure thermal modelling and hydrogeological analysis was not completed as part of the FEIS. In response to an information request regarding post closure groundwater flow, thermal modelling has been carried out to provide input to the hydrogeological study for post closure. The modelling was specifically conducted to evaluate how quickly the permafrost below Whale Tail Pit could melt following the formation of the Whale Tail Pit Lake during closure.

Several assumptions were made for the thermal modelling to evaluate when the permafrost below the pit could melt. The model results are presented in Figures 2-1 to 2-6 of Attachment 2 including:

- The assumed initial thermal conditions prior to pit flooding.
- Thermal conditions during the pit flooding in closure.
- Zero degree isolines at select years of post-closure, up to year 300.
- Steady-state thermal conditions for the post-closure pit lake.

The following findings are based on the model results:

- During pit flooding, the warm pit lake temperature impacts mostly the upper portion of the permafrost under the pit, and talik zones starts to occur around the pit wall and floor.
- The permafrost under the pit lake continues to thaw during the long term post-closure stage, and the open talik expands from the lake side (south) to the land side (north). The majority of the permafrost under the pit lake is thawed 300 years after closure.

The steady-state model indicates the pit lake would thaw the permafrost in the long-term, and eventually reduce the permafrost depth under the ground northwest of the pit. A significantly longer time (in the order of 10,000 years) is likely required for the pit lake to reach the steady-state thermal conditions.

6.0 CLOSURE

The reader is referred to the Study Limitations, which follows the text and forms an integral part of this technical memorandum.

We trust this document satisfies you current requirements. If you have any questions or require further assistance, please do not hesitate to contact the undersigned.

GOLDER ASSOCIATES LTD.

Colin McGrath
Junior Geotechnical Specialist

Jianfeng Chen, M.Sc., P.Eng. (NT/NU) Geotechnical Engineer

J.F. CHEN

Don Chorley, M.Sc., P.Geo. Senior Hydrogeologist

CM/JFC/DC/VJB/jr

Attachments: Study Limitations

Attachment 1: Thermistor Readings
Attachment 2: Thermal Model Results

Serge Ouellet, Ph.D., P.Eng. (NT/NU) Senior Environmental Engineer

PERMIT TO PRACTICE GOLDER ASSOCIATES LTD.

PERMIT NUMBER: P 049

NT/I/U Association of Professional Engineers and Geoscientists

https://goiderassociales.sharepoint.com/sites/19830g/1000_phase1com/nitmonts/reports_aff subphases/thermal modelling/rev0/1789310-174-tm-rev0-phase1whaletalipit post-closurethermal.docx

REFERENCES

- Agnico Eagle (Agnico Eagle Mines Limited). 2016. Meadowbank Mine Amendment/Reconsideration of the Project Certificate (No.004/File No. 03MN107) and Amendment to the type A Water Licence (No. 2AM-MEA1525). Volume 8, Appendix 8-B.2. Submitted to the Nunavut Impact Review Board, 30 June 2016.
- Andersland, O.B. and Ladanyi, B. 2004. Frozen Ground Engineering. 2nd edition, John Wiley & Sons, Inc.
- Crusius J, Pieters R, Leung A, Whittle P, Pedersen T, Lawrence ĜA, McNee JJ. 2002. A Tale of Two Pit Lake: Initial Results of a Three-Year Study of the Main Zone and Waterline Pit Lakes Near Houston, BC. 2002 SME Annual Meeting, Feb. 25 – 27, Phoenix Arizona, USA.
- Golder (Golder Associates Ltd.). 2003. Report on Permafrost Thermal Regime Baseline Studies,
 Meadowbank Project, Nunavut. Golder Project No. 03-1413-078. Prepared for Cumberland Resources
 Ltd. Submitted 18 December 2003.
- Golder. 2016a. Water Management and Water Balance Related to Amaruq Exploration Portal/Ramp Program, Quarry and Advanced Underground Exploration and Bulk Sample, Amaruq Exploration Site, Nunavut. Golder Doc. No. 069-1665859 Ver 0. Prepared for Agnico Eagle Mines Ltd. Submitted 15 November 2016.
- Golder. 2016b. Groundwater Quality Investigation, Amaruq, Nunavut. Golder Document No. 080-1649355.

 Prepared for Agnico Eagle Mines Ltd. Submitted 15 November 2016.
- Golder. 2017a. Whale Tail Lake Thermal Assessment. Golder Reference No. 1665859-085-TM-Rev0-5100.

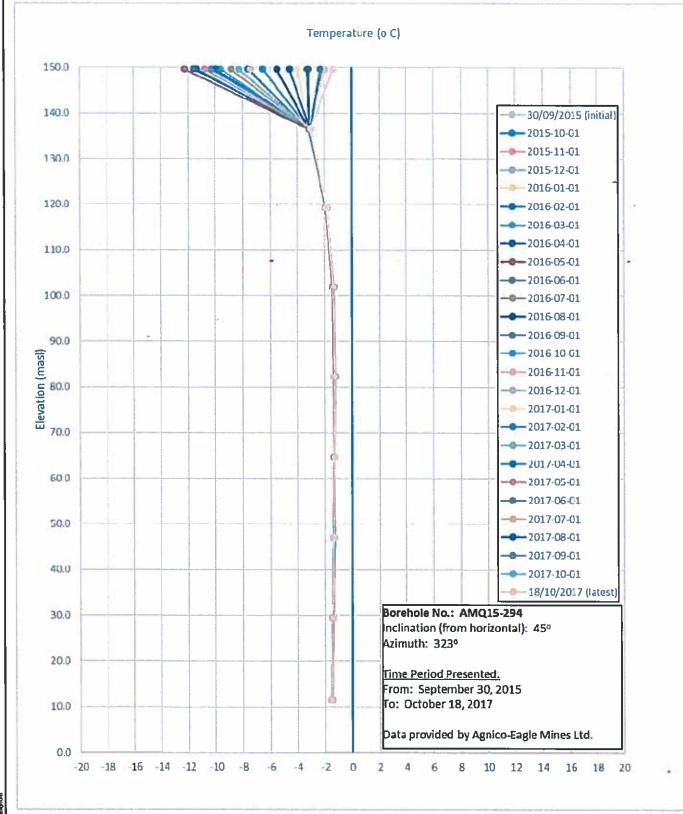
 Prepared for Agnico Eagle Mines Ltd. Submitted 22 February 2017.
- Golder. 2017b. Commitment 39: Whale Tail Pit Project Waste Rock Storage Facility Cover Thermal Assessment.

 Golder Reference No. 1774579-124-TM-Rev0-2500. Prepared for Agnico Eagle Mines Ltd. Submitted 10 July 2017.
- Golder. 2018a. Whale Tail Pit Post-closure Hydrogeological Assessment for the Whale Tail Open Pit. Reference No. 1789310-180-TM. June 2018.
- Golder. 2018b. Whale Tail Pit Project Waste Rock Storage Facility Cover Thermal Assessment. Reference No. 1789310_177_TM_Rev0. June 2018
- Knight Piésold. 2015. Agnico Eagle Mines Ltd.: Meadowbank Division Whale Tail Pit Permafrost and Hydrogeological Characterization. Submitted 24 November 2015.
- Pieters R, Lawrence GA. 2014. Physical Processes and Meromixis in Pit Lakes Subject to Ice Cover. Canadian Journal of Civil Engineering. 41(6):569-578.

STUDY LIMITATIONS

Golder Associates Ltd. (Golder) has prepared this document in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practising under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this document. No warranty, express or implied, is made.

This document, including all text, data, tables, plans, figures, drawings and other documents contained herein, has been prepared by Golder for the sole benefit of Agnico Eagle Mines Limited It represents Golder's professional judgement based on the knowledge and information available at the time of completion. Golder is not responsible for any unauthorized use or modification of this document. All third parties relying on this document do so at their own risk.


The factual data, interpretations, suggestions, recommendations and opinions expressed in this document pertain to the specific project, site conditions, design objective, development and purpose described to Golder by Agnico Eagle Mines Limited, and are not applicable to any other project or site location. In order to properly understand the factual data, interpretations, suggestions, recommendations and opinions expressed in this document, reference must be made to the entire document.

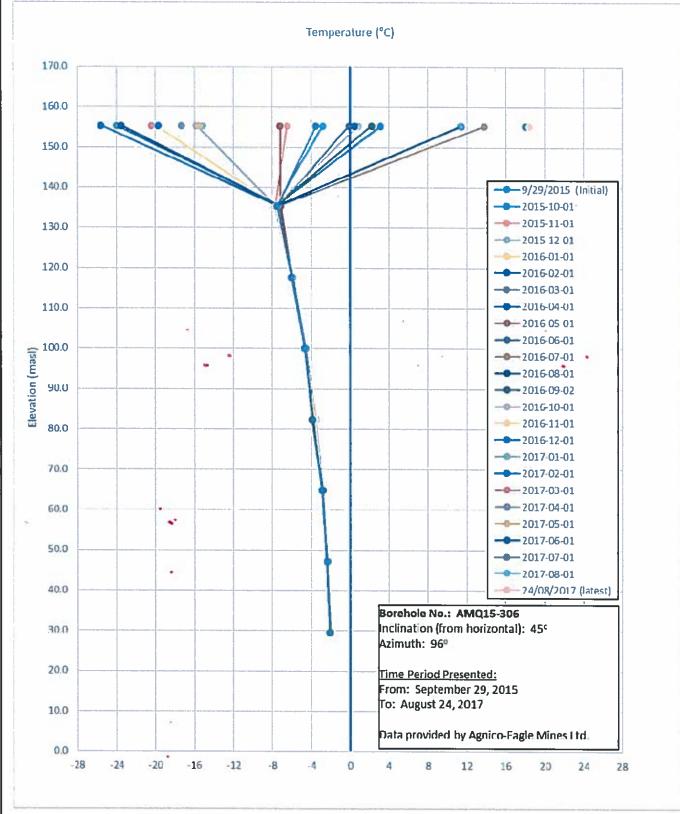
This document, including all text, data, tables, plans, figures, drawings and other documents contained herein, as well as all electronic media prepared by Golder are considered its professional work product and shall remain the copyright property of Golder. Agnico Eagle Mines Limited, may make copies of the document in such quantities as are reasonably necessary for those parties conducting business specifically related to the subject of this document or in support of or in response to regulatory inquiries and proceedings. Electronic media is susceptible to unauthorized modification, deterioration and incompatibility and therefore no party can rely solely on the electronic media versions of this document.

ATTACHMENT 1

Thermistor Readings

AGNICO EAGLE MINES LTD.

CONSULTANT



YYYY-MM-DD	2018-01-19	
PREPARED	СТМ	_
DESIGN	СТМ	
REVIEW	so	
APPROVED	JFC	

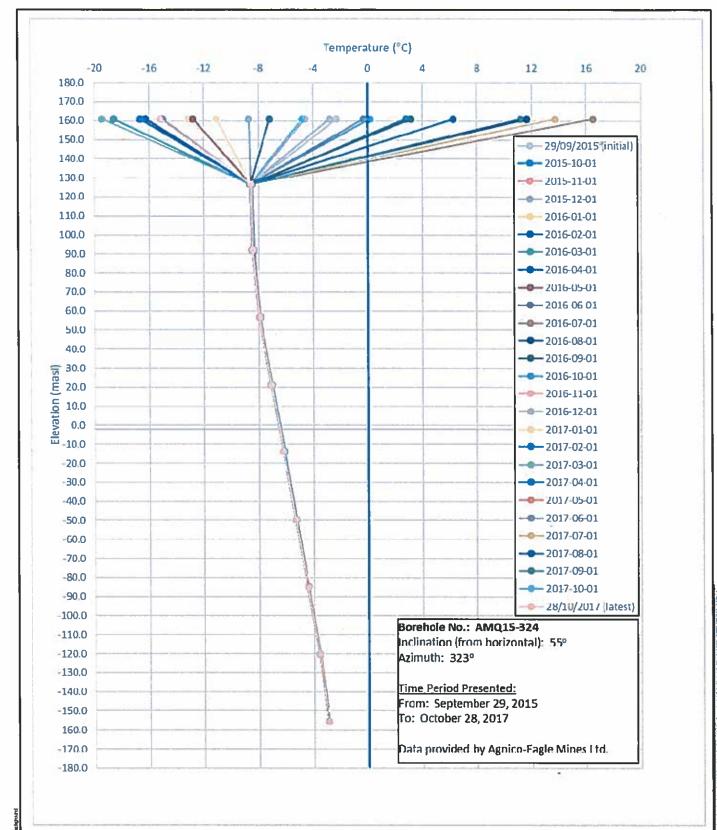
WHALE TAIL PIT PROJECT
WHALE TAIL LAKE THERMAL ASSESSMENT
NUNAVUT

THERMISTOR AMQ15-294 2015/2017 READINGS

1789310	1000/12020	0	1-1
PROJECT No.	PHASE/TASK	Bev	FIGURE

AGNICO EAGLE MINES LTD.

CONSULTANT



YYYY-MM-DD	2018-01-19
PREPARED	СТМ
DESIGN	СТМ
REVIEW	so
APPROVED	JFC

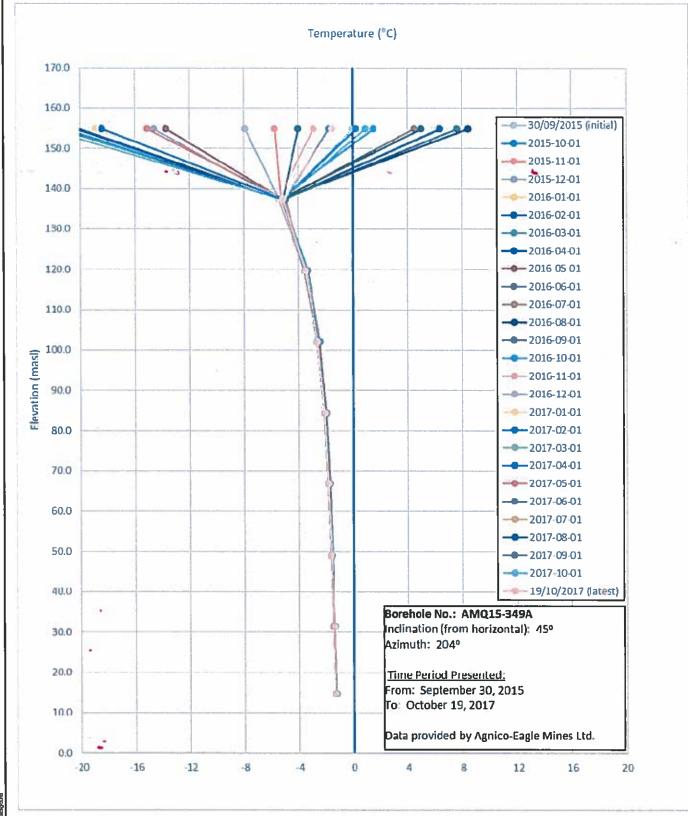
WHALE TAIL PIT PROJECT
WHALE TAIL LAKE THERMAL ASSESSMENT
NUNAVUT

THERMISTOR AMQ15-306 2015/2017 READINGS

PROJECT No.	PHASE/TASK	Rev	FIGURE
1789310	1000/12020	0	1-2

AGNICO EAGLE MINES LTD.

CONSULTANT



DG-MM-YYYY	2018-01-19	
PREPARED	СТМ	
DESIGN	СТМ	
REVIEW	so	
APPROVED	JFC	

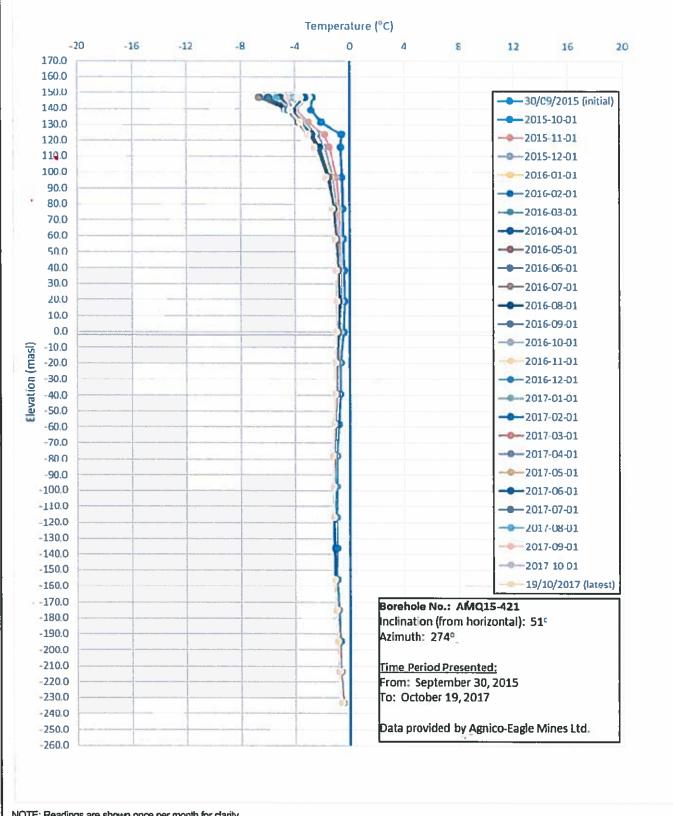
WHALE TAIL PIT PROJECT
WHALE TAIL LAKE THERMAL ASSESSMENT
NUNAVUT

THERMISTOR AMQ15-324 2015/2017 READINGS

1700012020	1-3
1789310 1000/12020 0	4 2
FROJECT No PHASE/TASK Ruy	FIGURE

AGNICO EAGLE MINES LTD.

CONSULTANT


S GOLDER

YYYY-MM-DD	2018-01-19
PREPARED	СТМ
DESIGN	CTM
REVIEW	SO
APPROVED	JFC

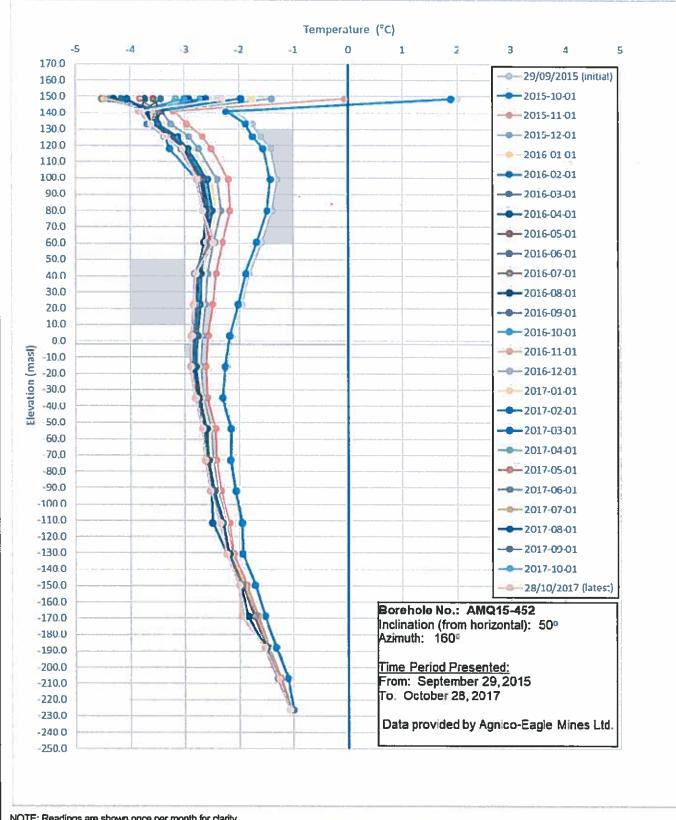
WHALE TAIL PIT PROJECT
WHALE TAIL LAKE THERMAL ASSESSMENT
NUNAVUT

THERMISTOR AMQ15-349A 2015/2017 READINGS

PROJECT No PHASE/TASK Rev FIGURE 1789310 1000/12020 0 1-4

AGNICO EAGLE MINES LTD.

CONSULTANT



YYYY-MM-DD	2018-01-19	
PREPARED	СТМ	
DESIGN	СТМ	
REVIEW	SO	
APPROVED	JFC	

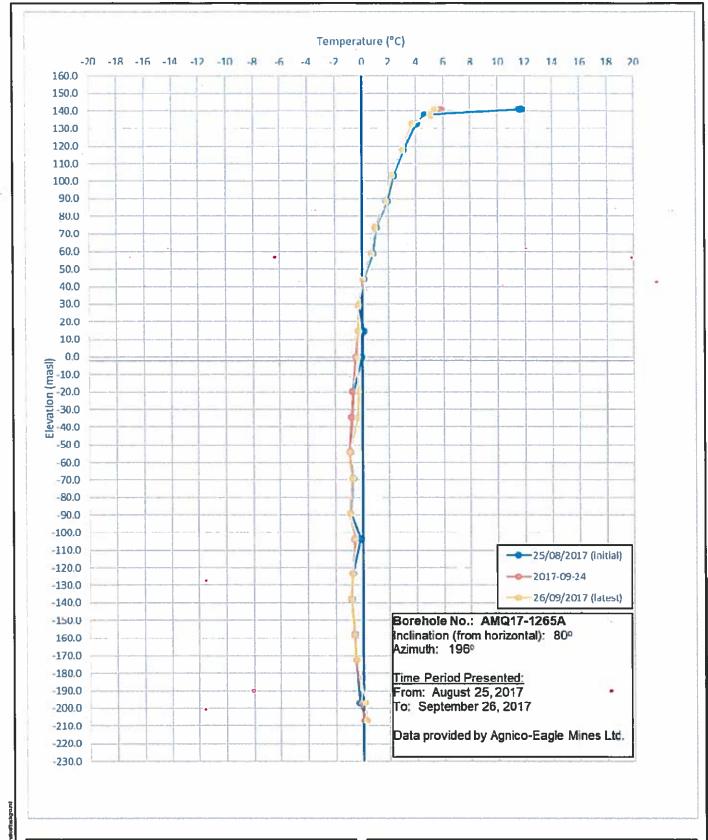
WHALE TAIL PIT PROJECT WHALE TAIL LAKE THERMAL ASSESSMENT NUNAVUT

THERMISTOR AMQ15-421 2015/2017 READINGS

PROJECT No 1789310	PHASE/TASK 1000/12020	Rev	FIGUR
1108310	1000/12020	U	1-3

AGNICO EAGLE MINES LTD.

CONSULTANT



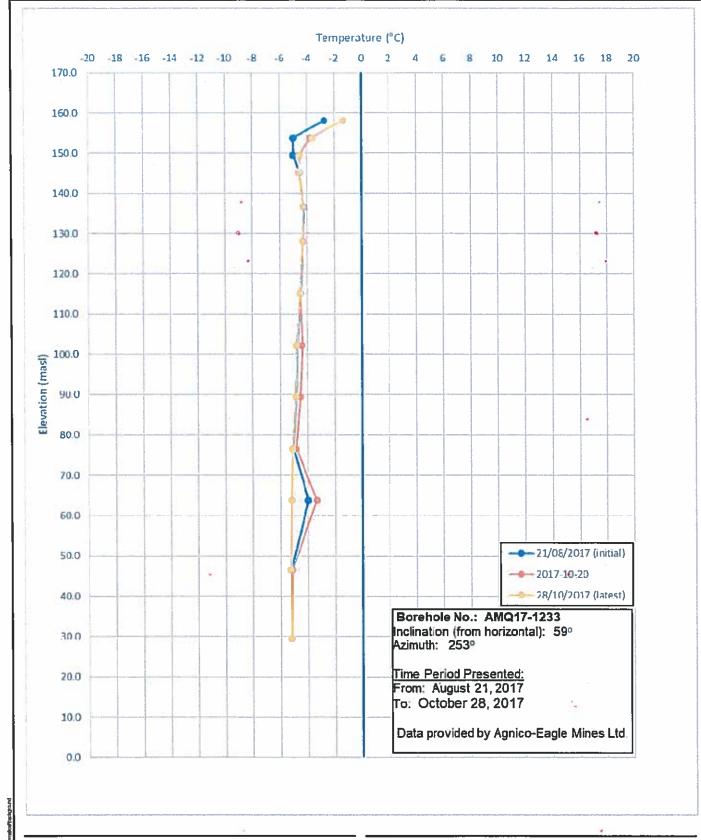
YYYY-MM-DD	2018-01-19
PREPARED	СТМ
DESIGN	СТМ
REVIEW	so
APPROVED	JFC

WHALE TAIL PIT PROJECT WHALE TAIL LAKE THERMAL ASSESSMENT NUNAVUT

THERMISTOR AMQ15-452 2015/2017 READINGS

1789310	1000/12020	0	1-6
PROJECT No	PHASE/TASK	Roy	FIGURE
		Trail Trail	

CONSULTANT



YYYY-MM-DD	2018-01-19	2
PREPARED	СТМ	
DESIGN	СТМ	
REVIEW	50	
APPROVED	JFC	

WHALE TAIL PIT PROJECT WHALE TAIL LAKE THERMAL ASSESSMENT NUNAVUT

THERMISTOR AMQ17-1265A 2017 READINGS

1789310	1000/12020	0	1-7
PROJECT No	PHASE/TASK	Rev	FIGURE

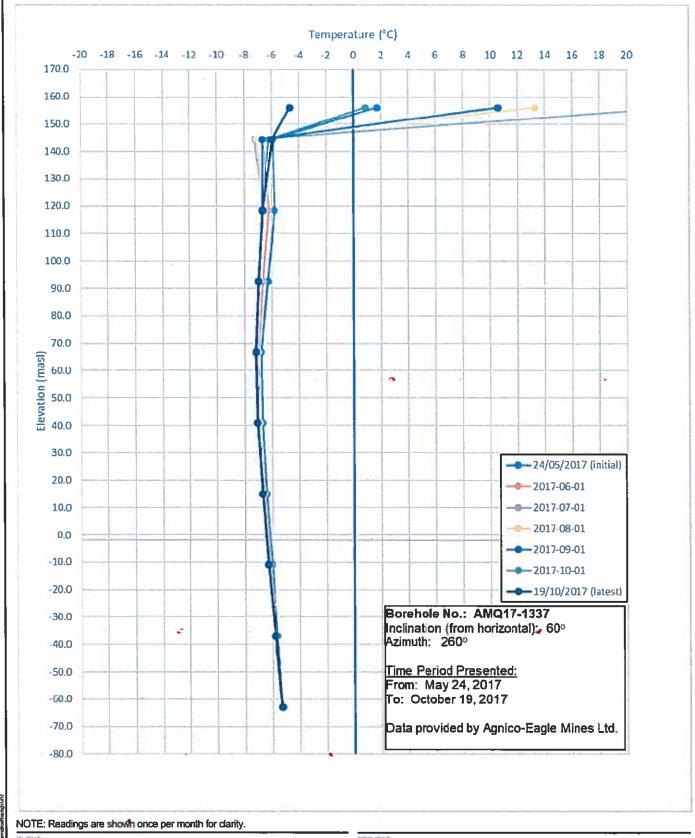
CONSULTANT

S GOLDER

 YYYY-MM-DD
 2018-01-19

 PREPARED
 CTM

 DESIGN
 CTM


 REVIEW
 SO

 APPROVED
 JFC

WHALE TAIL PIT PROJECT
WHALE TAIL LAKE THERMAL ASSESSMENT
NUNAVUT

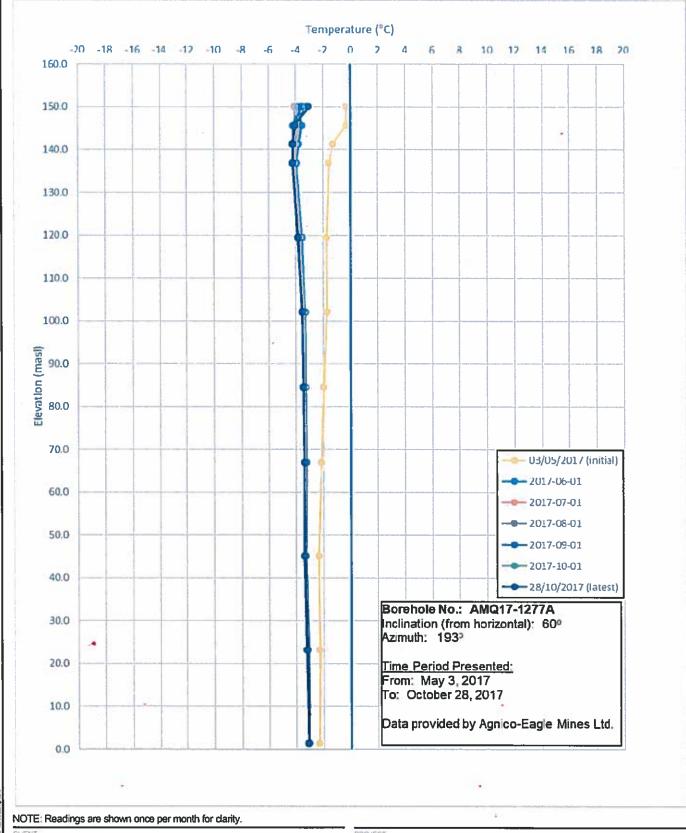
THERMISTOR AMQ17-1233 2017 READINGS

FROJECT No PHASE/TASK Rey FIGURE 1789310 1000/12020 0 1-8

CONSULTANT

GOLDER

YYYY-MM-DD	2018-01-19	
PREPARED	СТМ	
DESIGN	CTM	
REVIEW	SO	
APPROVED	JFC	


WHALE TAIL PIT PROJECT

WHALE TAIL LAKE THERMAL ASSESSMENT

NUNAVUT

THERMISTOR AMQ17-1337 2017 READINGS

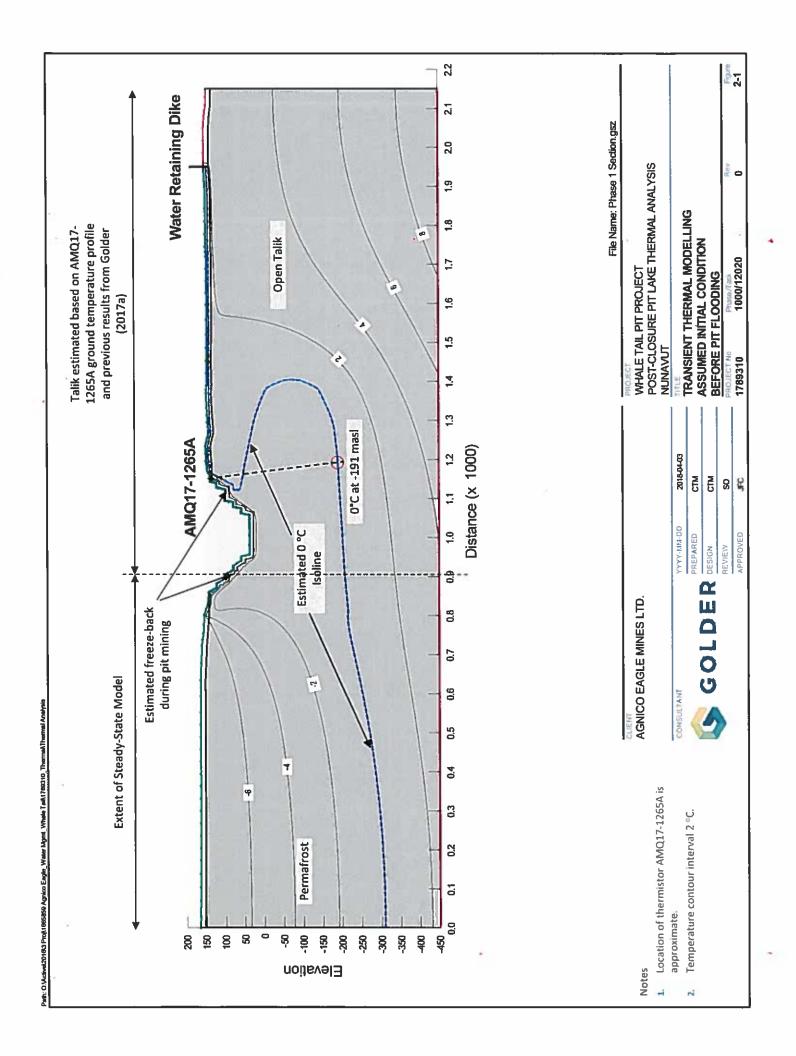
PROJECT No.	PHASE/TASK	Rev	FIGURE
1789310	1000/12020	0	1-9

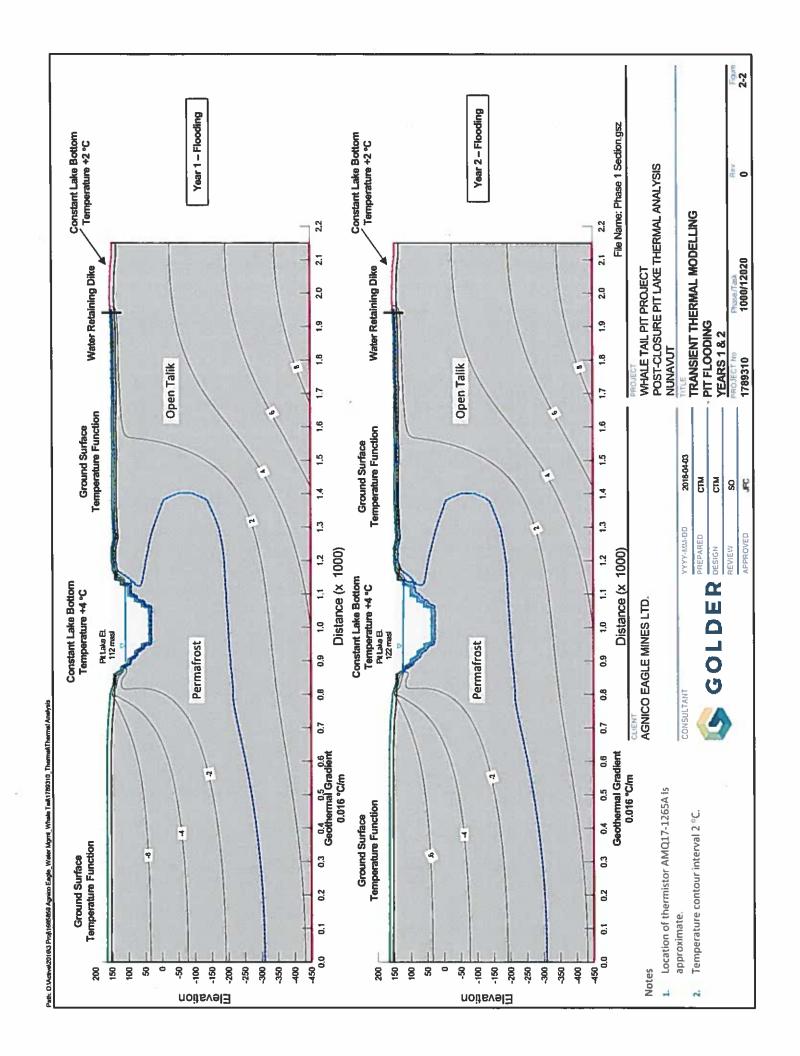
CONSULTANT

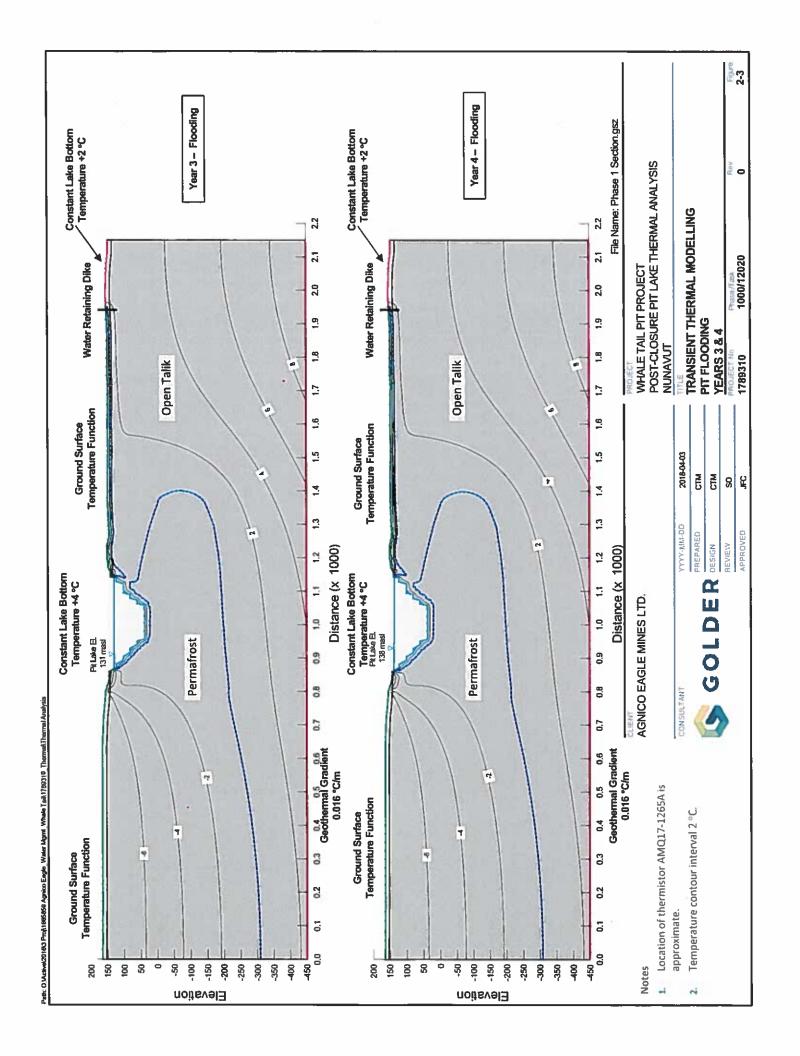
🕓 GOLDER

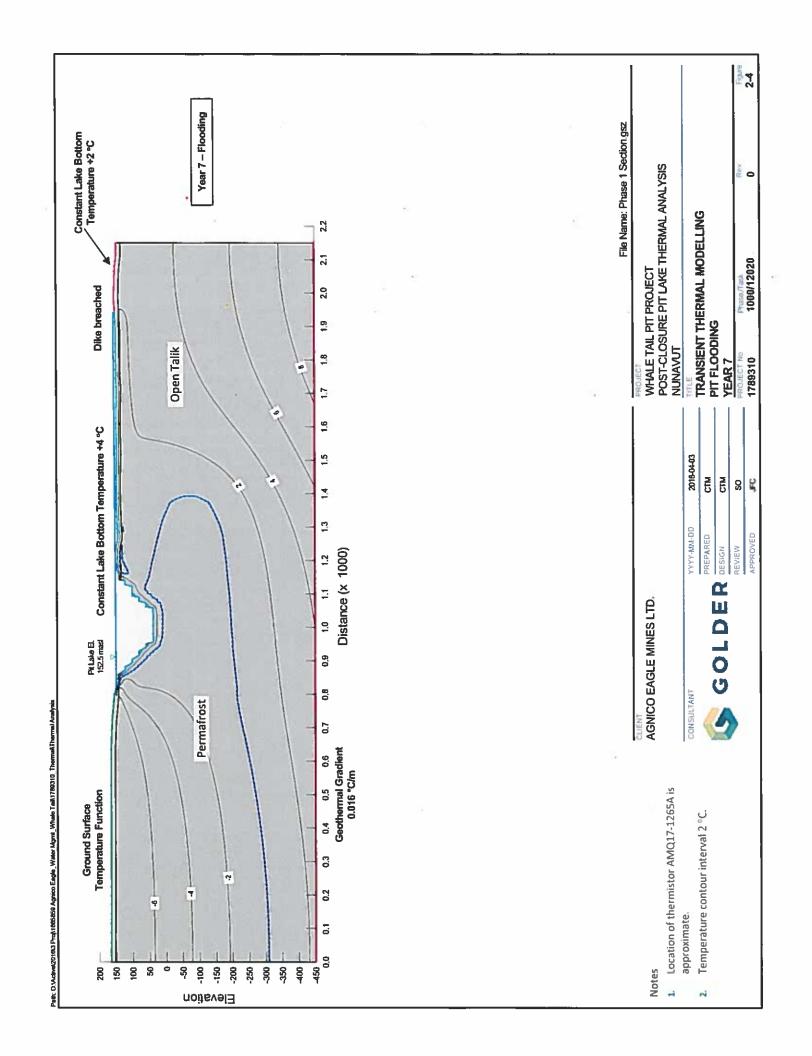
YYYY-MM-DD	2018-01-19	
PREPARED	СТМ	
DESIGN	СТМ	
REVIEW	SO	
APPROVED	JFC	

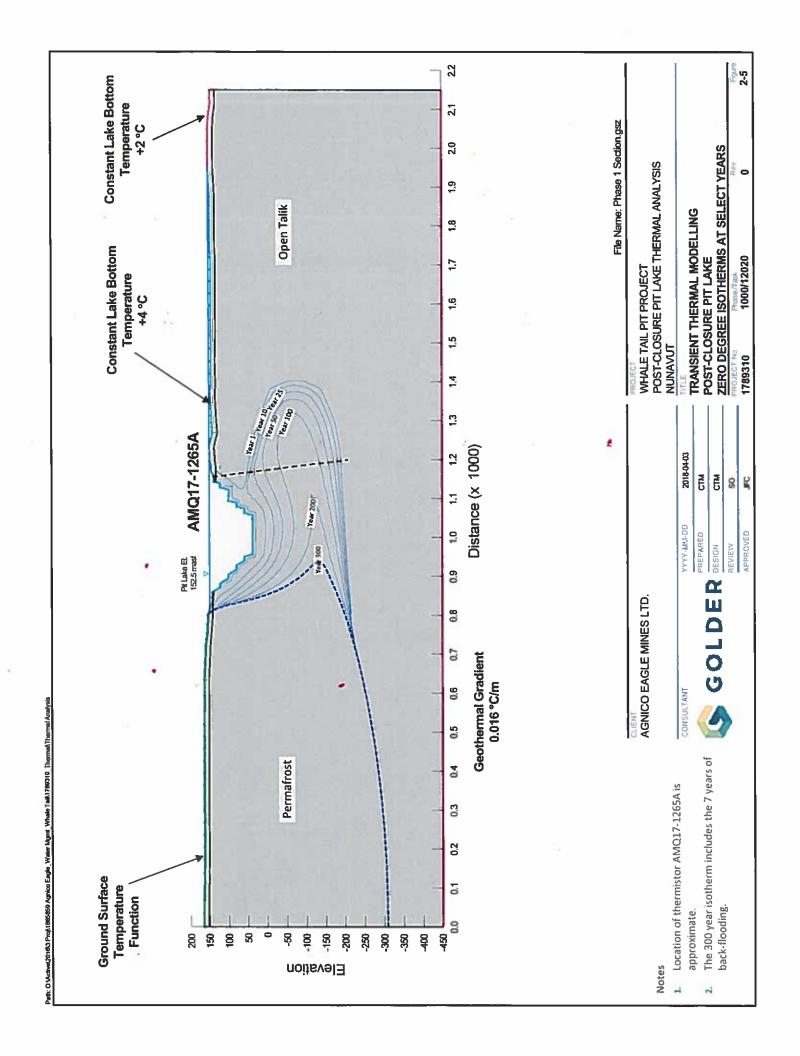
WHALE TAIL PIT PROJECT
WHALE TAIL LAKE THERMAL ASSESSMENT
NUNAVUT

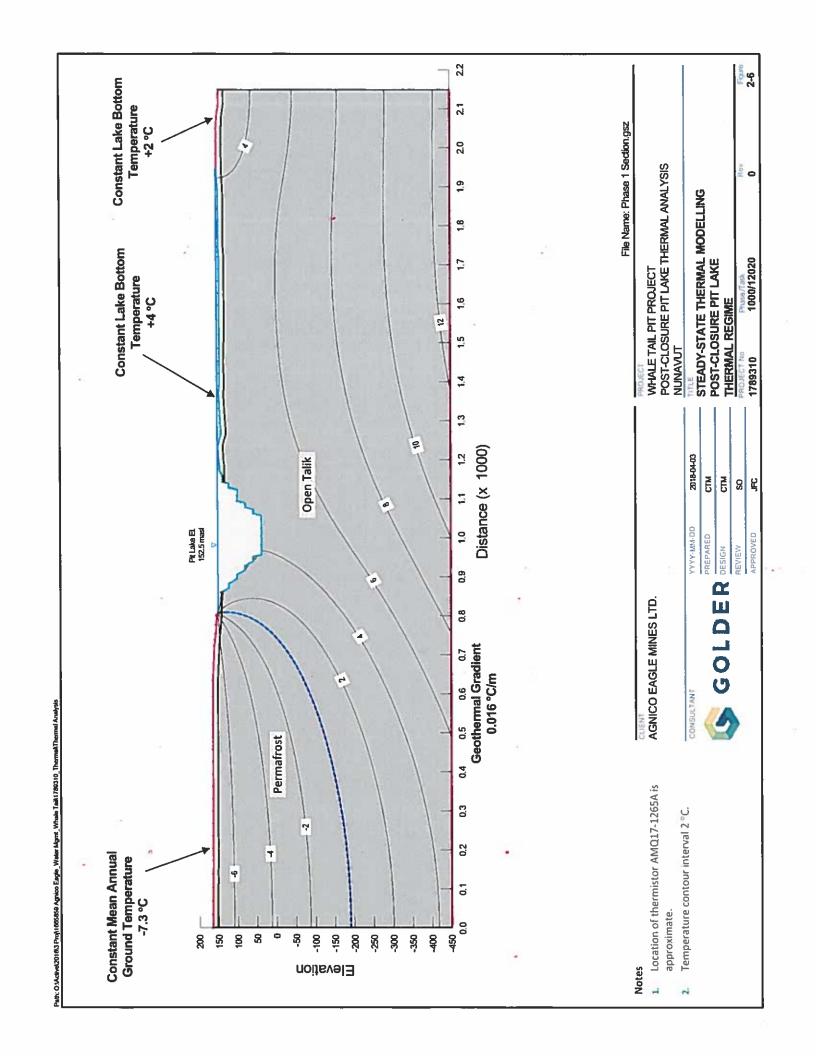

THERMISTOR AMQ17-1277A 2017 READINGS


PROJECT No. PHASE/TASK Raty FIGURE 1789310 1000/12020 0 1-10


ATTACHMENT 2


Thermal Model Results





APPENDIX B -2018 WESTBAY SYSTEM GROUNDWATER MONITRORING INVESTIGATION

TECHNICAL MEMORANDUM

DATE February 8, 2019

Project No. 1789310-244-TM-Rev0

TO

Michel Groleau

Agnico-Eagle Mines Ltd.

FROM

Valerie Bertrand, Dale Holtze, Jennifer Levenick

EMAIL vbertrand@golder.com

2018 WESTBAY SYSTEM GROUNDWATER MONITORING INVESTIGATION

1.0 INTRODUCTION

Agnico Eagle Mines Limited – Meadowbank Division (Agnico Eagle) is developing the Whale Tail Pit Project that was approved by the Nunavut Impact Review Board (NIRB). The property is a 408 square kilometre (km²) site located on Inuit Owned Land approximately 150 kilometres (km) north of the hamlet of Baker Lake and approximately 50 km northwest of the Meadowbank Mine in the Kivalliq Region of Nunavut.

As part of the Approved Project baseline studies, groundwater samples were collected from a Westbay monitoring well installed in borehole AMQ16-626, drilled in March and April 2016 targeting the area of the talik zone below Whale Tail Lake near future mine developments. Agnico Eagle retained Nuqsana Golder Engineering and Environmental Inc. (Nuqsana Golder) to complete a groundwater monitoring program in November 2018. The objective of the program was to obtain additional pre-development hydraulic head and groundwater quality data in support of the Whale Tail Pit Project Certificate No. 008, Term and Condition No. 15 (TC15) (NIRB 2018).

This technical memorandum provides an interpretation of the data collected from AMQ16-626 in November 2018 with respect to hydraulic gradients and groundwater quality. The collected data was reviewed in the context of conceptual and numerical model predictions for the Whale Tail Pit Project to evaluate if follow-up assessment is required (i.e., if significant differences in the model assumptions or predictions was indicated by the collected data).

2.0 BACKGROUND

2.1 Westbay Well Installation

A Westbay groundwater well system was installed on site between March and April in 2016 to obtain groundwater quality and verify the vertical hydraulic gradient within the talik zone of Whale Tail Lake, in the area of future mine development, to define future effects of the mine workings on the groundwater flow regime and overall site water quality from development to post-closure.

The well was installed in the purpose-specific borehole (AMQ16-626) which was drilled at an inclination of -69 degrees, an azimuth of 152.6 degrees and advanced to a depth of 499 m along the borehole, through massive diorite throughout the borehole. The Westbay well was designed to tap discrete zones of unfrozen bedrock and, if encountered, zones of higher hydraulic conductivity that were observed during drilling and well testing conducted prior to well installation. Six sampling ports were installed at and below the depth of anticipated ramp development (0 to 385 metres below ground surface [mbgs]), listed in Table 1. Borehole drilling, packer test results along the borehole and well installation details are documented in another report (Golder 2016b). A schematic of the Westbay well instrument that was installed in borehole AMQ160626 is included in Appendix A for reference.

Table 1: Borehole AMQ16-626 Westbay System Zones

Sampling Interval	Depth Along	Borehole		Interval Depth Vertical Depth			
	From	То	Length	From	То	Thickness	
	(mah)	(mah)	(m)	(mbgs)	(mbgs)	(m)	
Zone 6	276	287.4	11.4	257.7	268.3	10.6	
Zone 5	298.9	310.3	11.4	279.0	289.7	10.6	
Zone 4	349.3	359.1	9.8	326.1	335.2	9.1	
Zone 3	381.3	392.7	11.4	356.0	366.6	10.6	
Zone 2	440.8	452.2	11.4	411.5	422.2	10.6	
Zone 1	488.1	499.0	10.9	455.7	465.9	10.2	

Notes: Depth values were provided by Westbay Instruments Completion Report.

m = metres; mah = metres along the hole, relative to ground surface; mbgs = metres below ground surface.

Upon completion of the installation in 2016, the well was used to collect groundwater samples from select intervals that were within and below the proposed development; Ports 3, 4, and 6 ranging in depths from 276 m to 392 m. Sampling methods, data interpretation and water quality results were presented in Golder 2016a. The total dissolved solids (TDS) content in the Formation groundwater was determined to range between 3,198 mg/L and 4,042 mg/L (Golder 2016a).

The groundwater quality were used to predict groundwater inflow quantity into future mine developments (Golder 2016d), which were used as input to operational and post-closure hydrogeological and permafrost models (Golder 2018a) and into the Whale Tail pit lake hydrodynamic model (Golder 2018b). These models were ultimately used to assess effects of hydrogeological processes on site contact water quality during development, operations and closure and on pit lake water quality during closure and post-closure.

The results of the compendium of these studies for the Whale Tail Pit Project indicated that mass transfer from the pit to the pit lake is very low, that groundwater seepage into and out of the pit lake are negligible in volume, particularly compared to surface water exchanged annually post-closure when flows are re-established based on average climate year watershed runoff. The combination of results corroborates to support that the hydrogeological regime around the pit lake is not critical to pit lake water quality post-closure.

The data collected as part of the 2018 monitoring program aim to add to the pre-operational database of results and to verify model inputs and model outcomes obtained to date.

2.2 The Groundwater Monitoring Program

The 2018 groundwater monitoring program was completed to support the requirements of the Groundwater Monitoring Program stated in TC15 (NIRB 2018). TC15 requirements were as follows:

Subject to the additional direction and requirements of the Nunavut Water Board, the Proponent shall prepare and implement a Groundwater Monitoring Plan that, at a minimum includes:

 The collection of additional site-specific hydraulic data (e.g., from new monitoring wells) in key areas during the pre-development, construction and operation phases;

- February 8, 2019
- Definition of vertical and horizontal groundwater flows in the project development areas;
- Delineates monitoring plans for both vertical and horizontal ground water; and
- Thresholds that will trigger the implementation of adaptive management strategies that reflect sitespecific conditions encountered at the project site.

The groundwater monitoring program documented in this technical memorandum consisted of measurements of hydraulic head (vertical gradients) and sampling of the formation groundwater to evaluate groundwater quality with depth.

2.3 Thresholds for Additional Assessment or Adaptive Management

Groundwater monitoring data being collected in the pre-development phase is being compiled into a Project-specific data and will be used in combination with future data collected during operational and closure phases of the Project to evaluate trends in groundwater data with respect to pit inflow quantity and quality.

Measured groundwater inflow rates and groundwater quality will be compared to model predictions on an annual basis. If significant variations from model predictions are observed, the assumptions behind the data will be reviewed and the analysis updated if required. In addition, updates to the groundwater model will be made if operational changes occur as the open pit advances which could significantly alter groundwater inflow or quality.

Variations that would be considered significant include:

- Groundwater inflows to the mine, based on rolling monthly average of inflow over six consecutive months, is 20% higher than predicted groundwater inflow.
- Collected water samples that indicate that the concentration of total dissolved solids (TDS) is more than 25% higher than the estimated water quality.

If the above variations are observed, the groundwater data (quantity and quality) would be assessed to evaluate trends, the potential causes of the greater than expected groundwater inflow quantity or quality, and the potential for long-term effect associated with the groundwater flow or quality. If the greater than predicted flows were correlated to a short-term effect such as freezing in the pit walls, changes in mining rate, freshet or transient drainage of a high storage feature, then further reassessment of groundwater inflows may not be required, and the adaptive management of these short-term effects would be evaluated under the Water Management Plan.

If the greater than predicted flows or quality would be considered as potentially long term, consideration will be given to reviewing the model calibration. The six-month averaging period of observation is based on observed seasonal variations in inflow quantities in mines situated in permafrost regions.

If model re-calibration is deemed necessary, future groundwater inflow quantity and quality would be predicted using this re-calibrated model and new results will be considered as part of the adaptive management of the groundwater quantity contribution to the Water Management Plan.

Modification of groundwater management strategies: the ponds, sumps and water conveyance strategies around the pit can be modified to mitigate the effect of additional groundwater volume or salinity prior to treatment and discharge. The water conveyance strategy will be evaluated and optimized during operations and closure to maintain post-closure commitment.

Groundwater monitoring data collected at this stage is representative of the pre-development condition of the project, and therefore an evaluation of trends in flow quantity and quality is not possible for the operational and closure phases. Results of the monitoring has been compared to assumptions adopted in the initial conditions for groundwater conceptual and numerical models and has been used to assess if the post-closure predictions are likely reasonable in consideration of the observed vertical hydraulic gradients and flow directions in the November 2018 monitoring program.

3.0 2018 GROUNDWATER MONITORING PROGRAM

3.1 Objectives

The objectives of the program are as follows:

- To collect site specific hydraulic head data during Project pre-development through the measurement of the hydrostatic pressure profile from the existing Westbay well.
- Assess the vertical hydraulic gradient and groundwater flow direction in that location of the Whale Tail Lake talik.
- Collect groundwater samples from the Westbay Well for chemical analysis, adding to the database of groundwater quality results.
- Compared water quality results to the threshold adopted for additional assessment and adaptive management.

3.2 Monitoring Methods

3.2.1 Hydraulic Head Measurements and Assessment of Vertical Hydraulic Gradients

Hydraulic heads were derived from the formation pressures measured at each monitoring port installed along the Westbay system. The formation pressure for each monitoring port was measured on November 9, 2018 using the Mosdax sampler manufactured and supplied by Westbay Instruments (refer to Appendix B for instrument calibration record).

3.2.2 Groundwater Sampling

Groundwater samples were collected from fixed ports in the Westbay well system that are positioned at different intervals along the hole to assess baseline groundwater chemistry with depth. Ports 6, 4 and 3, which are located within the anticipated ramp development zone (0 to 385 m), were targeted for sampling because these intervals had been previously developed (drill water had been largely removed from the interval) in 2016. Port 2 was also sampled although it was less developed than the other sample intervals in 2016 in order to verify if the aquifer was naturally flushed of the drilling water. Information on each of the Ports that were purged is presented in Table 2.

Fluorescein tracer was added to the 2016 drilling water to differentiate between the drilling fluid and the formation water. It is assumed that the only source of fluorescein was introduced during the 2016 drilling activities of borehole AMQ16-626 such that it is a reliable tracer of introduced water into the Formation.

Table 2: 2018 AMQ16-626 Westbay Well Development and Groundwater Sampling Information

Sample Port	Sampling Interval (mah)		Volume of	Groundwater Parameters at Sampling Period (field measured)				
	From	То	Water Removed in 2018 (L)	Sample Date	Residual Fluorescein (ppb)	Conductivity (mS/cm)	TDS (ppm)	рН
6	276.0	287.4	8.25	13-Nov-18	83.54	9.02	4543	6.37
4	349.3	359.1	13.25	11-Nov-18	66.21	14.56	7275	7.50
3	381.3	392.7	12.5	12-Nov-18	100.05	7.50	3765	8.33
2	440.8	452.2	6.25	10-Nov-18	73.30	17.52	8825	8.90
1	488.1	499.0	0.25	not sampled	-	-	-	-

m = metres, mah = metres along hole, relative to ground surface; L = litres, TDS = total dissolved solids

Throughout the development and upon water sample collection, field chemical parameters (pH, conductivity, TDS, fluorescein content and temperature) were measured in order to track the fluid introduced into the Formation by drilling and to follow the removal of this fluid from the Formation during development and sampling of groundwater. Fluorescein content was measured using the AquaFluor handheld Fluorometer manufactured by Turner Designs. Temperature, pH, TDS and electrical conductivity values were measured with a Hanna Combo tester (HI 98130). A drilling water content of less than 5% (estimated using fluorescein content) is targeted in order to provide a reliable estimate of formation groundwater quality. Higher residual drilling fluid content can be used for this purpose but decreases the precision of the calculation of groundwater quality.

Groundwater sampling was preformed using the Westbay Mosdax sampler in a similar fashion as the initial development and sampling program completed in 2016. The Mosdax sampler collects 1 Litre of groundwater at a time (per sampling instrument descent into the well); multiple sampler runs were carried out to collect one complete groundwater sample set from each interval. Calibration reports of the Mosdax sampler probe are included in Appendix B.

Groundwater samples were collected from Intervals 6, 4, 3, and 2 in triplicate. Groundwater samples were filtered and preserved in the field, as required, and collected in laboratory-supplied bottles which were packed and shipped to the analytical laboratory following the collection of each sample. Duplicate samples collected from Ports 6, 4, 3, and 2 were submitted for analysis, while the third sample set was kept on site as backup and disposed of upon receipt of the samples by the analytical laboratory. An equipment and field blank were also collected for quality assurance/quality control (QA/QC) purposes. Analysis of general chemistry was completed at ALS Environmental (ALS) in Vancouver for the following parameters:

- Physical tests, including hardness, pH, conductivity, total suspended solids and total dissolved solids
- Anions and nutrients, including alkalinity, ammonia, bicarbonate, bromide, carbonate, chloride, fluoride, nitrate, nitrite, phosphorus (total and dissolved) and sulphate
- Metals (dissolved and total), including aluminum, antimony, arsenic, barium, beryllium, bismuth, boron, cadmium, calcium, chromium, cobalt, copper, iron, lead, lithium, magnesium, manganese, mercury, molybdenum, nickel, selenium, silicon, silver, sodium, strontium, sulfur, tellurium, thallium, tin, titanium, uranium, vanadium and zinc. Additional metals were also analyzed by the analytical laboratory as part of the metals package, however they are not of interest to the project and will not be discussed herein out: cesium, rhenium, rubidium, sulfur, thorium, tungsten, yttrium and zirconium

Certificates of analysis from ALS are included in Appendix C.

3.3 Evaluation of Formation Water Quality

To properly assess the quality and salinity of true rock formation groundwater, the drilling fluid present in the sampling interval must be removed as much as possible by purging. The amount of drilling fluid present in the Formation is estimated from the concentration of fluorescein in the raw groundwater sample at each interval, compared to the fluorescein content of the drilling fluid used during drilling of the borehole. In 2016 upon well installation, the sampling intervals were purged to remove as much of the drilling fluid as possible within the task schedule, prior to collecting a sample for chemical analysis.

In 2018, the fluorescein, electrical conductivity and TDS of groundwater was monitored during sampling and compared to data from the end of development in 2016 to assess whether the interval remained purged and still reflected true Formation groundwater quality. Fluorescein and conductivity were within the range of values recorded in 2016 and groundwater samples were collected and submitted for chemical analysis.

The following summarizes the calculations made to estimate true Formation water quality and TDS from field measurements of electrical conductivity and laboratory analytical results of raw groundwater samples in 2018 and drilling water fluid in 2016.

1) Estimation of the chemistry of the drilling fluid introduced in the Formation during the 2016 well borehole drilling and installation activities. The drilling fluid consisted of very low TDS lake water to which was added a concentrated brine. The range of composition of the drill fluid (the dilute brine) was estimated by comparing both the initial and maximum conductivity values measured in samples from the Formation (for each port 6, 4, 3, and 2; conductivity varied between sampling ports) against the conductivity of the concentrated brine¹. This Dilute Brine Factor was used to calculate composition of the drilling fluid introduced into the sampling interval during the 2016 drilling and well installation activities as per equation (1) below.

(1) Dilute Brine Factor_{Port i} =
$$\frac{Field\ Conductivity_{Port\ i}}{Brine\ Conductivity_{calculated}}$$

This calculation assumes an insignificant proportion of formation water is present immediately after drilling, which is a fair assumption given that a high volume of drilling water was lost to the Formation (Golder, 2016a).

The drilling brine composition for each parameter was calculated from the product of the dilution brine factors and the chemistry of the drilling brine fluid for each port per equation (2).

- (2) Dilute $Brine_{Porti} = Laboratory Result_{Brine} \times Dilution Brine Factor_{Porti}$
- 2) Calculation of the proportion of drill brine remaining in the Formation upon sampling. This was calculated based on the amount of residual fluorescein measured upon sample collection at each port in 2018 compared to the initial fluorescein content of the drilling fluid measured in 2016 (i.e. 512.7 ppb).
- 3) Removal of the drilling fluid chemistry from the raw groundwater sample analysis. The concentration of constituents from the drilling fluid are removed from the reported analytical results for each chemical constituent per the below equation (3). The November 2018 laboratory results are provided in Appendix C.
- (3) Groundwater Quality_{calculated} = Laboratory Result $-\frac{Proportion\ of\ Drill\ Brine \times Dilute\ Brine\ Chemistry}{Proportion\ of\ Formation\ Water}$

¹ Brine conductivity was estimated from the calculated TDS of the drilling brine fluid using a conversion factor of 0.75 which is appropriate for brine solutions (Rusydi, 2017). Brine TDS was calculated based on constituent concentrations (refer to Table 3 and Appendix C). Laboratory-reported TDS and conductivity were not reliable as they exceeded instrument calibration.

The estimated drilling brine chemistry, proportion of residual drilling brine and Formation water for each sampling port are summarized in Table 4. The calculated groundwater quality for Ports 6, 4, 3 and 2 are summarized in Table 5.

4.0 RESULTS AND DISCUSSION

4.1 Hydraulic Head Profile and Groundwater Flow Direction Below Whale Tail Lake

The planned Whale Tail Pit sits within the closed talik below the North Basin of Whale Tail Lake. The closed talik is inferred to transition to open talik below the South Basin due to the increased width and depth of the lake towards the south. The water table below both basins will be equivalent to the lake surface elevation.

Permafrost underlies the land surrounding the lake, which restricts the lateral flow of groundwater to the talik and restricts the recharge of the sub-permafrost groundwater flow system by precipitation. Groundwater flow is controlled by surface water elevations in lakes with open talik; water moves vertically through the open talik to the underlying sub-permafrost groundwater flow system. In effect, lakes with open taliks in continuous permafrost regions are equivalent to large monitoring wells.

AMQ16-626 was installed to evaluate groundwater quality in the unfrozen bedrock and to verify the hydraulic gradient that exists below Whale Tail Lake. The hydraulic gradient, in combination with the bedrock hydraulic conductivity, will control the potential flux to or from Whale Tail Lake, and the flooded Whale Tail Pit post-closure.

Table 3 summarizes the calculated hydraulic heads based on the measured pressure in each of the ports. Although Zone 6 (shallowest port) is included in Table 3, it is suspected that this port may be in permafrost or near the permafrost contact, which could affect the measured hydraulic head. This inference is supported by the measured formation temperature, which is less than zero. Although the measured hydraulic head in the shallowest port is consistent with the overall trend, data from the deeper ports, which are confirmed to be in unfrozen rock by the formation temperature, were used to assess the vertical gradient.

Table 3: AMQ16-626 Westbay Well Hydraulic Heads and Formation Temperatures (November 9, 2018)

Port/	Inte	rement rval ah)		rement (mbgs)	Port Depth	Port Depth	Calculated Depth to	Calculated Hydraulic	Formation Temperature
Zone	From	То	From	То	(mah)	(mbgs)	Water (mbgs)	Head (masi)	
6	276.0	287.4	257.7	268.3	276.2	257.9	1.9	154.0	-0.17
4	349.3	359.1	326.1	335.2	349.5	326.3	1.6	153.6	0.24
3	381.3	392.7	356.0	366.6	381.5	356.2	1.1	153.4	0.36
2	440.8	452.2	411.5	422.2	441.0	411.7	0.9	152.9	0.87
1	488.1	499.0	455.7	465.9	488.3	455.9	0.5	152.6	1.29

Source: Golder (2016a).

m = metres; mah = metres along hole relative to ground surface (borehole angled to surface); mbgs = metres below ground surface (vertical down from surface); masl = metres above sea level (elevation)

The data collected at AMQ16-626, indicates the presence of a downward hydraulic gradient. Assuming the measured hydraulic head is representative of the midpoint of the measurement interval, the downward gradient between Port 1 and Port 4 is 0.008 m/m. This gradient is consistent with the estimated gradient derived from looking at the relative elevation of Whale Tail Lake and DS1 (0.008 m/m), as reported in Agnico Eagles response to TC15 (Agnico Eagle 2018). DS1 is the predicted receptor from water in the area of Whale Tail Pit and Underground (Golder 2016c).

For the depth interval over which the hydraulic head was measured (326 to 456 mbgs), the estimated hydraulic conductivity of the bedrock for the FEIS for the Whale Tail Pit Project was 1 x10-8 to 3 x 10-8 m/s (Golder 2016c). In support of TC15 and the development of the Project, additional packer testing was conducted subsequent to the FEIS and the data indicate the hydraulic conductivity of bedrock over this depth interval is likely lower (1 x 10-9 m/s based on the geometric average of the test data) (Golder 2018a). Considering the measured gradient (0.008), the historical range of bedrock hydraulic conductivity adopted in the FEIS (1 x10-8 to 3 x 10-8) and the now refined hydraulic conductivity (1 x 10-9 m/s) and an assumed effective porosity of 0.001 (Maidment 1992; Stober and Bucher 2007), the estimated downward groundwater flow velocity is between approximately 0.25 m/yr and 8 m/yr. The lower bound of this range is considered more reasonable, as it uses the refined hydraulic conductivity data discussed above, which is based on the geometric mean of all the packer test measurements (pre- and post-FEIS).

Gradients measured during this monitoring program are considered a reasonable interpretation of what long-term gradients could be post-closure following the formation of the pit lake. Recharge and discharge from the base of Whale Tail Lake or a flooded pit lake will be controlled by the vertical hydraulic gradients and the bedrock hydraulic conductivity near the base of the permafrost. Considering the approximate area of the Whale Tail Pit (0.5 km²), the range in bedrock hydraulic conductivity (1 x 10⁻⁹ to 3 x 10⁻⁸ m/s), and the measured downward gradient (0.008), the data would indicate long-term groundwater flux would be approximately 0.3 m³/day to 11 m³/day. Similar to the estimated groundwater velocity, the lower bound of this range is considered more reasonable, as it uses the refined estimate of hydraulic conductivity. Overall, the estimated flux is similar to the long-term predicted discharge from the pit lake at post-closure (1.7 m³/day; Golder 2016c) and supports the conclusion in the FEIS that long-term predicted flows from the pit lake to the groundwater flow system will be negligible relative to the surface water exchange into the pit lake (Golder 2018c).

4.2 Groundwater Quality

Field measurements of electrical conductivity and fluorescein concentration serve, in part, to evaluate whether the groundwater accessed via the Westbay well sampling ports continues to be representative of Formation groundwater quality.

The 2016 and 2018 electrical conductivity and fluorescein trends measured throughout the sampling program in Ports 6, 4, 3, 2, and 1 are summarized in Figures 1 and 2, respectively. Groundwater samples were collected from Ports 6, 4, 3, and 2. Port 1 groundwater quality was deemed not representative of Formation groundwater and was not sampled. The field measurements of electrical conductivity, TDS and fluorescein recorded at the time of sampling are summarized in Table 3. The values are averages from the subsamples collected to obtain the required volume of water for analysis.

Port 6

The temperature measured by the Mosdax sampler during the pressure profile and sampling at Port 6 was below zero (-0.17 °C, refer to Table 3) and slush was present in the sampling canister from this Port. The cryopeg zone (temperature below 0 degrees, but not frozen) is interpreted to extend to at least 258 m depth (top interval of Port 6) within the vicinity of the Westbay well. Groundwater from the cryopeg (Port 6) could have a heterogenous composition (non-saline ice and slightly saline groundwater) where free water is primarily transmitted through the more permeable unfrozen zones. Groundwater collected from Port 6 is interpreted to be located within the cryopeg have the potential to yield variable water quality even following periods of sufficient development.

Notwithstanding this, the estimation of true Formation groundwater quality was still completed per the method described in Section 2.3. Table 5 presents the minimum and maximum range of calculated concentrations of formation water at each port sampled in 2018 and 2016 for comparison.

The 2018 field-measured groundwater fluorescein content and electrical conductivity at the port remained within the same range albeit slightly higher than values recorded at the end of the well development period in 2016. This suggests that groundwater quality at that location remained representative of true Formation water since it was last sampled in 2016. The results of the 2018 groundwater quality estimation (Table 5) are also within the same order of magnitude but slightly higher than those reported in 2016 suggesting that residual drilling brine fluid is still present in Formation water at a proportion slightly higher than at the end of development in 2016. This can occur where drilling fluid that is still present in undeveloped zones in the aquifer (for example, in zones between sampling Ports) migrates back into the developed zones tapped by the sampling Ports following the normal movement of groundwater along the downward vertical gradient.

The estimated Formation groundwater minimum and maximum TDS concentrations in 2018 are 25% and 38% higher than the minimum and maximum TDS values estimated in 2016. The difference is higher than the TDS variability threshold of 25%. This is attributed to the higher proportion of drilling brine fluid in the Formation at Port 6 collected in 2018.

Arsenic concentration in groundwater at Port 6 is estimated to be low based on 2018 calculations, within the range of 2016 estimation.

The 2016 data is considered potentially more accurate, but 2018 data is still valid. The initial model input is still considered accurate and the new data does not warrant revising the conceptual model of groundwater TDS.

Ports 3 and 4

The 2018 field-measured groundwater fluorescein content and electrical conductivity at these sampling ports were similar (slightly higher) to measured values recorded at the end of the well development period in 2016, suggesting that groundwater quality remained representative of true Formation water at these zones. These slightly higher 2018 readings suggest that a small influx of drilling fluid that was still present in undeveloped zones migrated back into the developed zones as for Port 6. The higher proportion of drilling brine fluid in the Formation and in the samples collected may result in a lower accuracy of calculated groundwater quality from samples collected in 2018 compared to those collected in 2016 after a more complete purge; nonetheless, the data is still considered valid.

Figure 2 illustrates how electrical conductivity and fluorescein concentrations evolved in parallel during the short development period at Ports 3 and 4, inferring that groundwater in the vicinity of the Westbay well has not been affected by an outside brine source that could have originated from salt water used in exploration drilling nearby, approximately 26 metres from the Westbay well.

Estimated true Formation groundwater quality is shown in Table 5 presenting the minimum and maximum range of calculated concentrations of Formation water at each port sampled in 2018 and 2016. The results of the 2018 groundwater quality data are within the same order of magnitude to those reported in 2016 albeit slightly higher than in 2016. Port 3 minimum and maximum estimated TDS values are 35% and 28% higher than the calculated minimum and maximum values from 2016 data. At Port 4, they are 76% and 86% higher than the calculated minimum and maximum values from 2016 data. Variability is higher than the threshold of 25%. This is attributed to the higher proportion of drilling brine fluid in the Formation collected in 2018 compared to 2016.

Arsenic concentrations at both Ports 4 and 3 are estimated to be in the same order of magnitude as concentration ranges calculated in 2016.

The 2016 data is considered potentially more accurate, but 2018 data is still valid. The initial model input is still considered accurate and the new data does not warrant revising the conceptual model of groundwater TDS.

Port 2

Due to time constraints in 2016, this Port had not been extensively developed, leaving a higher proportion of drilling brine in the groundwater prior to sampling. A groundwater sample was collected in 2018 to verify the progression of water quality at that location; to assess whether drilling brine might have flushed out of the horizon since 2016 through natural groundwater flow. The 2018 field-measured groundwater fluorescein content and electrical conductivity were within a similar range than after development in 2016. Values were slightly lower than in 2016 but the trend was rising throughout the brief purging period in 2018. Electrical conductivity and fluorescein progressed at different rates during purging (conductivity rose faster than fluorescein; Figure 2) suggesting interference by a source of saline water that is not tagged with fluorescein, such as possibly, adjacent exploration borehole drilling water. Given the continued high proportion of drilling brine potentially mixed with another source of saline water that cannot be quantified at this time, a proper estimation of true Formation groundwater quality is not deemed possible for from this Port.

Summary

The higher TDS values calculated at Ports 6, 4, and 3 in 2018 are above the threshold value of 25%. These higher values are attributed to the presence of a higher content of non-Formation drilling brine in groundwater in 2018 compared to 2016. Consequently, the initial model input is still considered accurate and the new data does not warrant revising the conceptual model of groundwater TDS.

Arsenic concentration at all sampling ports is still low, the maximum calculated to be at Port 6 measured in 2016. Based on the results of the groundwater sampling completed to date, arsenic presence is low in the formation water.

5.0 QUALITY ASSURANCE/QUALITY CONTROL

Groundwater samples were collected from each interval in triplicate and submitted in duplicate for analysis to the analytical laboratory as part of the quality assurance/quality control ('QA/QC') protocol. In addition, field and equipment blanks were also submitted for analysis of select parameters. The analytical laboratory performs equipment blanks as a method of internal QA/QC verification.

Analytical repeatability was tested by assessing the similarity between duplicate pairs of results. For each duplicate pairs of analysis where both results were higher than 5 times the method detection limit (MDL), the relative percent difference (RPD) was calculated as follows:

RPD = <u>absolute [difference (concentration of a given parameter)]</u> x 100 [average (concentration of a given parameter)]

Per USEPA recommended methods (USEPA, 1994), an RPD of 20% or less was considered acceptable. Where one or both results of the duplicate pair were less than 5 times the MDL, a margin of +/- MDL was considered acceptable.

Table 6 presents the RPD or =/- MDL value calculated from the duplicate pair of results. Approximately 50% of duplicate pairs of analyses had one or both results below the method detection limit and consequently could not be assessed for repeatability. QA/QC results for the duplicate samples were within acceptable tolerance limits (RPD or +/- MDL) with the exception of duplicate concentrations of total suspended solids in Port 4 as well as duplicate concentrations of total chromium and nickel in Port 3. Trace components and major elements for all samples are considered adequately repeatable.

Groundwater samples were analyzed for TDS in the field and in 2018 by the analytical laboratory (ALS). The original brine fluid was analyzed by Multilab analytical laboratory. TDS values were also calculated from the laboratory results in order to assess potential discrepancies between the ionic balance and uncertainty of the results (refer to Tables 4 and 6). The results of the field, calculated, and laboratory measured values were within reasonable range limits for all

samples, with the exception of the brine fluid. The TDS result reported for the brine fluid (36,946 mg/L) was significantly less than the calculated value (130,500 mg/L). The laboratory measured TDS and consequently electrical conductivity (55.42 mS/cm) of the brine fluid were deemed unreliable due to the ionic imbalance discrepancy. This assumption was confirmed during a telephone discussion between Nuqsana Golder and the analytical laboratory (H2Lab, formerly Multilab chemist Jean-Francois Bouffard) on January 15, 2019, where the chemist indicated the TDS and electrical conductivity values reported for the brine fluid were outside the suitable range for the analytical instrument and may not be accurate. The certificate of analysis for the brine fluid is included in Appendix D. The calculated TDS of the brine fluid was used to correct the groundwater quality data as discussed in Section 2.3 of the report.

Uncertainty in the calculated groundwater water quality results from the variability in drill water composition augmented by probable mixing between aquifer zones having different levels of development (purging of drill water); this has a higher potential influence on the accuracy of 2018 calculated groundwater quality because of the higher proportion of drilling brine fluid remaining in the raw water samples compared to 2016 samples; thus while 2018 data remain valid to estimate water quality at Port 3, 4 and 6, 2016 results may be a more accurate representation of Formation groundwater quality than 2018 data.

6.0 CONCLUSION

The 2018 Westbay Well field program was carried out in support of the Whale Tail Pit Project Certificate No. 008, Term and Condition No. 15, to obtain additional pre-development groundwater quality data and to verify the hydraulic gradient. These data were used to verify modelling assumptions related to the groundwater quality and the hydraulic gradient near the mine development areas.

Hydraulic head measurements indicate that a downward vertical hydraulic gradient is present in the North Basin of Whale Tail Lake, which is consistent with the conceptual understanding of groundwater flow directions and the predicted conditions post-closure following the formation of the Whale Tail Pit Lake. Revisions to the numerical or conceptual models is not considered necessary based on the vertical gradients as the data is consistent the model assumptions.

Groundwater quality was estimated from the samples collected, removing the anticipated proportion of residual drilling water in the Formation (in the raw water sample). The 2018 program estimated groundwater quality at Ports 6, 4, and 3 are in the same range as previously estimated. The calculated groundwater TDS are slightly higher in 2018; the calculated increase in TDS ranges from 25% to 86% which is above the threshold value of 25% variability for TDS. The variation is attributed to the higher proportion of residual drilling water in the sample. In consideration that higher TDS is not considered to represent an increase in Formation water TDS, the assumptions for the conceptual model, which are based on the more reliable and applicable 2016 data, are still considered to be appropriate. Therefore, adaptive management is not considered necessary at this time.

The concentrations of metals and arsenic are low. The maximum calculated arsenic concentration remains similar to what was calculated for Port 6 in 2016. Given that the arsenic concentrations are similar to the assumptions adopted in the geochemical models (low arsenic in Formation groundwater), groundwater arsenic content is still not likely to have a significant effect on mine surface water quality.

7.0 STUDY LIMITATIONS

This technical memorandum was prepared for the exclusive use of Agnico Eagle Mines Limited. The technical memorandum, which specifically includes all tables and attachments, is based on data and information collected by Golder Associates Ltd. and is based solely on the conditions of the property at the time of the work, supplemented by historical information and data obtained by Golder Associates Ltd. as described in this technical memorandum.

Golder Associates Ltd. has relied in good faith on all information provided and does not accept responsibility for any deficiency, misstatements, or inaccuracies contained in the technical memorandum as a result of omissions, misinterpretation, or fraudulent acts of the persons contacted or errors or omissions in the reviewed documentation.

The services performed, as described in this technical memorandum, were conducted in a manner consistent with that level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions, subject to the time limits and financial and physical constraints applicable to the services.

Any use which a third party makes of this technical memorandum, or any reliance on, or decisions to be made based on it, are the responsibilities of such third parties. Golder Associates Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this technical memorandum.

The findings and conclusions of this technical memorandum are valid only as of the date of this technical memorandum and for the locations investigated. If new information is discovered in future work, including excavations, borings, or other studies, Golder Associates Ltd. should be requested to re-evaluate the conclusions of this technical memorandum and provide amendments as required.

Project No. 1789310-244-TM-Rev0

February 8, 2019

8.0 CLOSURE

We trust this report meets your needs at this time. Should you have any questions, please do not hesitate to contact the undersigned.

Golder Associates Ltd.

Dale Holtze, M.Sc. Hydrogeologisi

Jennifer Levenick, M.Sc. Senior Hydrogeologist V.J. DEGTRAND CO CICENSEE CO

Valerie Bertrand, M.A.Sc., P.Geo. (NT, NU) Associate, Senior Geochemist

PERMIT TO PRACTICE GOLDER ASSOCIATES LTD.

Signature

Date 2019-02-08

PERMIT NUMBER: P 049

NT/NU Association of Professional Engineers and Geoscien sts

DH/VJB/JL/jr

https://goldenassociales.sharepoint.com/sites/19830g/9100_westbay/deliverables/rev0/1789310-244-bn-westbay.gw moreigning_rev0.docx

Attachments: Tables 4, 5, 6

Figure 1 - 2016 and 2018 Development Record

Figure 2 - 2018 Development Record

Appendix A - AMQ160626 Westbay System Installation Details

Appendix B - Westbay Instruments Mosdax Sampler Calibration Reports

Appendix C - 2018 Laboratory Certificates of Analysis

Appendix D - 2016 Laboratory Certificate of Analysis - Brine Fluid

9.0 REFERENCES

- Agnico Eagle (Agnico Eagle Mines Limited). 2018. Whale Tail Pit Management Plans AEM RESPONSES TO ECCC & CIRNAC Reply Waste Rock Management Plan, Water Management Plan, Water Quality and Flow Monitoring Plan. November 23 2018.
- Golder (Golder Associates Ltd.). 2016a. Groundwater Quality Investigation, Amaruq, Nunavut. Technical Memorandum 1649355-080 prepared for Agnico Eagle Mines Ltd. November 15, 2016.
- Golder. 2016b. Westbay System Installation Summary Whale Tail Pit Project, Nunavut. Technical Memorandum 1649355-033-TM-Rev0-4000 prepared for Agnico Eagle Mines Ltd. July 7, 2016.
- Golder. 2016c. Hydrogeological Model Pre-Mining, During Mining, and Closure. Submitted as Volume 6, Appendix 6-B in the Whale Tail Pit and Haul Road Final Environmental Impact Statement. June 2016.
- Golder. 2016d. Hydrogeology Baseline Report Whale Tail Project. Submitted as Volume 6, Appendix 6-A in the Whale Tail Pit and Haul Road Final Environmental Impact Statement, June 2016.
- Golder. 2018a. Hydrogeological Assessment and Modelling, Whale Tail Pit Expansion Project. Submitted to Agnico Eagle Mines Limited. Ref. 1789310-213-RPT-Rev0. November 2018.
- Golder. 2018b. Whale Tail Pit Project, Hydrodynamic Modelling of Whale Tail Pit Lake. Submitted to Agnico Eagle Mines Limited. Ref. 1789310-181-TM-Rev0. June 26, 2018.
- Golder. 2018c. Whale Tail Pit Post-Closure Hydrogeological Assessment for the Whale Tail Open Pit. Dated 27 June 2018.
- Maidment, D.R. 1992. Handbook of Hydrology. McGraw-Hill, New York, USA
- NIRB (Nunavut Impact Review Board). 2018. Whale Tail Pit Project, NIRB Project Certificate No.: 008. Issued March 15, 2018.
- Rusydi, A. 2017. Correlation between conductivity and total dissolved solids in various types of water: A review.

 Global Colloquium on GeoSciences and Engineering 2017. IOP Conf. Series: Earth and Environmental Science 118 (2018) 012019. IOP Publishing. Pp. 1-6.

Table 4
Drilling Brine Composition
Westbay Well in Whale Tail Lake Talik
Whale Tail Project, Nunavut

Sample		Brine Fluid	Calculated Drill	Calcutated Drilling Brine Port 6	Calculated Drill	Calculated Drilling Brine Port 4	Calculated Drill	Calculated Drilling Bring Port 3
		11.	Initial Brine	Maximum Brine	Initial Brine	Maximum Brine	Initial Brine	Maximum Brine
Date		17-Apr-16	21-101-16	21-Jul-15	24-Apr-16	27-Apr-16	02-Sep-16	02-Sep-16
field measured parameters	Units							
Fluorescein Concentration	mz/1	512.70	138.00	158.10	512.70	341.90	445.90	437.20
Drilling Fluid Proportion		1.00	0.27	0.31	1.00	0.67	0.87	0.85
Formation Water Proportion		00.0	0.73	69.0	0.00	0.33	0.13	0.15
Initial Conductivity Reading	m2/cm	0	10240	12210	3810	19400	52280	53800
Dilution of Brine Factor in Port		00:00	0.06	20:0	0.02	0.11	0.30	0.31
Conventional Parameters								All the second second
Total dissolved solids (calculated)	mg/t	005088	7680	3122	2858	14550	39210	40350
Total dissolved solids (lab)	ጠይ/ኒ	36946						٠
Н	5.U.	10	11.25	7.40	12	11	11	11
Conductivity (lab)	uS/cm	55420		•			,	
Conductivity (calculated)	uS/cm	174000	10240	4684	3810	19400	52280	53800
Reported Hardness	mg CaCO _y /L	105554	6212	2230	. 2311	11769	31715	32637
Alkalinity	mg CaCO _J /L	145.0	8.5	38.0	3.2	16.2	43.6	44.8
Bicarbonate (HCO3)	πg CaCO√L	27.0	1.6	38.0	9.0	3.0	8.1	6.00
Majorions	THE RESERVE THE PERSON NAMED IN	The second second		Commence of the last	Street Street	Contract of the Contract of th	Company of the last of the las	Section in the second
Calcium (Ca)	π ₂ /1	42266	2487	2966	928	4712	12699	13068
Magnesium (Mg)	mg/L	3.92	0.23	0.28	60:0	0.44	1.18	1.21
Potassium (K)	mg/l	7171	101	120	38	191	516	531
Sodium (Na)	mg/L	838	49	59	18	66	252	259
Bromide (Br)	mg/L	1066	63	75	23	119	320	330
Chloride (CI)	mg/l	83700	4926	5873	1833	9332	25149	25880
Fluoride (F)	mg/L	0.060	0.004	0.004	0.001	0.007	0.018	0.019
Sulphate (504)	mg SO _s /L	<0.6	0	0	0	0	0	0
Nutrients	THE RESIDENCE OF THE PARTY OF T					AND PERSONS ASSESSED.	Market Committee of	
Nitrates (ND3)	mg N/L	0.540	0.032	0.038	0.012	090'0	0.162	0.167
Nitrites (NO2)	mg N/L	090:0	0.004	0.004	0.001	0.007	0.018	0.019

Page 2 of 5

Table 4
Drilling Brine Composition
Westbay Well in Whale Tail Lake Talik
Whale Tail Project, Nunavut

Sample		District Leading	TO DESIGNATION	California of ming British Full B	Calculated Dry	Calculated Drilling Brine Port 4	Coloniated Willing Bridge Coll 5	
			Initial Brine	Maximum Brine	Initial Brine	Manhmum Brine	Initial Brine	Maximum Brine
Date		17-Apr-16	21-Jul-16	21-Jul-16	24-Apr-16	27-Apr-16	02-5ep-16	02-Sep-16
Field measured parameters	Units			Contract of the last			Company of the Compan	Section and Parket
Fluorescein Concentration	mg/l.	512.70	138.00	158.10	\$12.70	341.90	445.90	437.20
Drilling Fluid Proportion		1.00	0.27	0.31	1.00	29.0	0.87	0.85
Formation Water Proportion	S 150 CONT. S.	0.00	0,73	69:0	000	0.33	0.13	0.15
Initial Conductivity Reading	us/cm	0	10240	12210	3810	19400	52280	53800
Dilution of Brine Factor in Port		00'0	0.06	0.07	0.02	0.11	0.30	0.31
Metals (dissolved)								
Aluminium (Al)	mg/t	0.498	0.0293	0.0349	0.0109	0.0555	0.1496	0.154
Antimony (5b)	mg/L	0.0354	0.0021	0.0025	0.0008	0.0039	0.0106	0.0109
Silver (Ag)	mg/L	100000>	0.0	0.0	0.0	0.0	0.0	0.0
Arsenic (As)	mg/L	0.766	0.045	0.054	0.017	0.085	0.23	0.237
Barium (Ba)	mg/L	0.113	0.007	0.008	0.002	0.013	0.034	0.035
Berillium (Be)	mg/L	<0.0005	0.0	0.0	0.0	0.0	0.0	0.0
Bismuth (Bi)	mg/L	<0.0005	0.0	0.0	0.0	0.0	0.0	0.0
Boron (8)	mg/L	13.2	0.8	6:0	0.3	1.5	4.0	4.1
Cadmium (Cd)	1/8111	<0.00002	0.0	0.0	0.0	0:0	0.0	0.0
Chromium (Cr)	mg/L	<0.0006	0.0	0.0	0.0	0.0	0:0	0.0
Cobsit (Co)	mg/l.	0.0406	0.0024	0.0028	0.0009	0.0045	0.0122	0.0126
Copper (Cu)	mg/k	0.0039	0.0002	0.0003	0.0001	0.0004	0.0012	0.0012
Tin (Sn)	mg/L	<0.001	0	0	0	0	0	0
(fe)	mg/L	2.6	0.15	0.18	0.06	0.29	0.78	9.0
Lithium (U)	mg/L	34.52	2.03	2.42	0.76	3.85	10.37	10.67
Manganese (Mn)	mg/l.	<0.0005	0	0	0	0	0	0
Mercury (Hg)	1/3m	0.0	0.00002	0.00003	0.00001	0.00004	0.00012	0.00012
Dissolved Mercury (Hg)	mg/L		0.00002	0.00003	0.00001	0.00004	0.00012	0.00012
Molybdenum (Mo)	I/Sm	<0.0005	0	0	0	0	0	0
Nickel (Ni)	mg/L	1.35	0.08	60:0	0.03	0.15	0.41	0.42
Lead (Pb)	mg/t	<0.0003	0	0	0	0	0	0
Selenium (Se)	mg/L	3.83	0.23	0.27	0.08	0.43	1.15	1,18
Silica (Si)	mg/t.	2.93	0.17	0.21	0.06	0.33	0.88	0.91
Strontium (Sr)	mg/t	656.0	38.61	46.03	14.36	73.14	197.1	202.83
Telluride (Te)	1/\$m	<0.0005	0	0	0	0	0	0
The Bium (TI)	mg/L	<0.002	0	0	0	0	0	0
Titanium (Ti)	mg/L	45.2	2.66	3.17	0.99	5.04	13.58	13.98
Uranium (U)	mg/t	7	0	0	0	0	0	0
Vanadium (V)	mg/L	<0.001	0	0	0	0	0	0
Zinc (2n)	mg/L	<0.0005	0	0	0	0	0	0
QA/QC	Security of the second second	S. Contraction of				A		
Calculated TDS (lab)	,	130500				-	-	
Lab measured vs Cakulated TDS	ı	28%						٠
Lab measured TDS vs Conductivity		0.67						

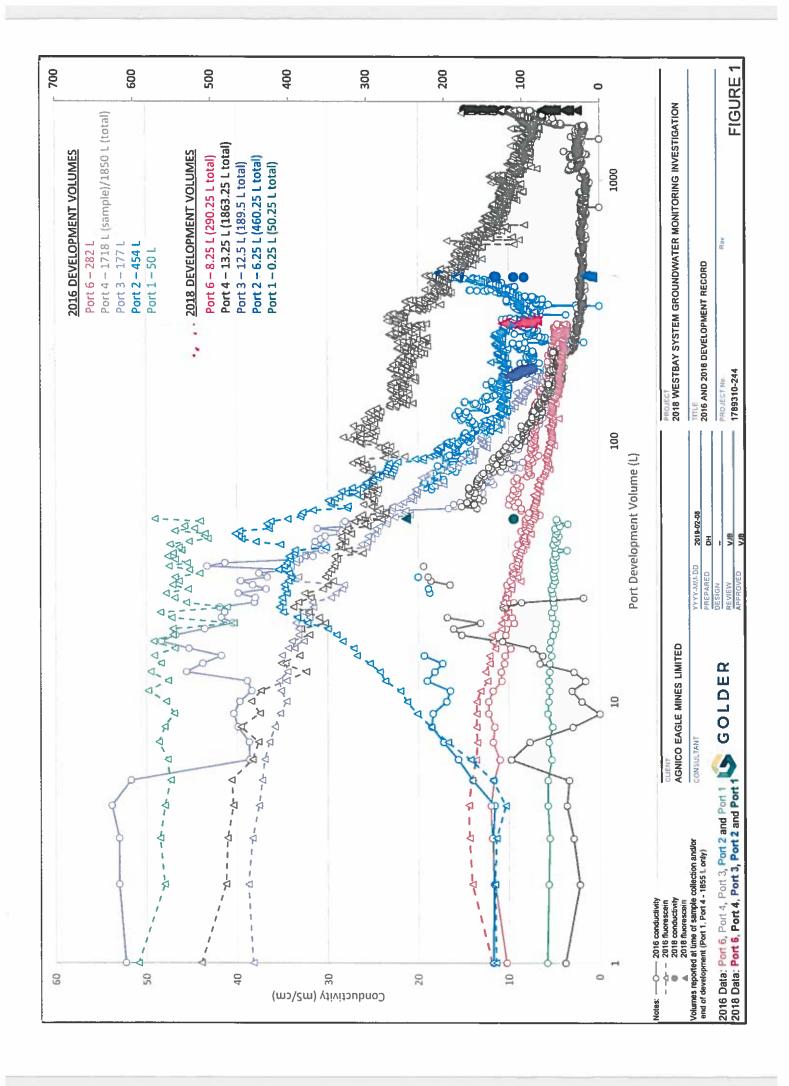
Table 5
Rock Formation Groundwater Quality Corrected to Remove Residual Drilling Water
Whale Tail Lake Talik
Whale Tail Project, Nunavut

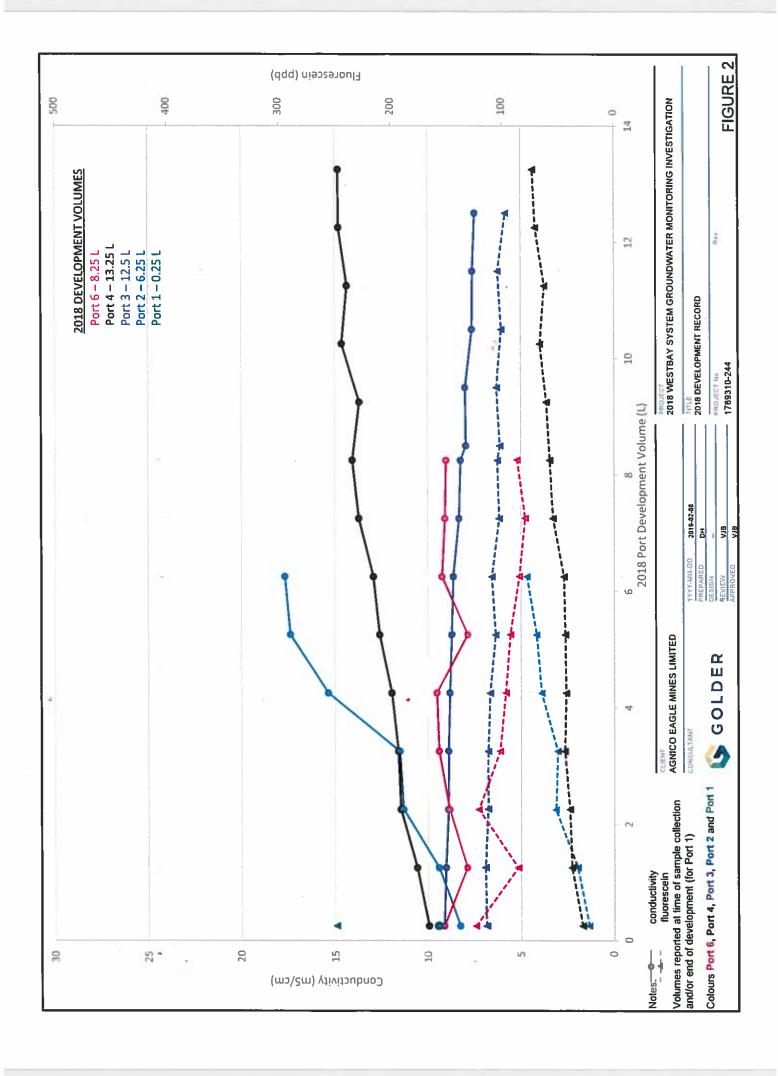
Sample			ů	Port 6			-	Port 4			PR	Port 3	
Date		2-Au	2-Aug-2016	13-No	13-Nov-2018	20-Ju	20-Jul-2016	11-80	11-Nov-2018	14-5eg	14-Sep-2016	12-No	12-Nov-2018
Drilling Fluid Proportion		0.04	0.24	Ö	0.16	60:0	0.18	0	0.13	0.08	0.18	0.	0.20
Formation Water Proportion		96'0	0.76	Ó	0.84	0.91	0.82	0.	0.87	0.92	0.82	0.0	0.80
Sampling interval depth (metres along borehole)	le)		274.0 m	274.0 m - 287.4 m			349.3 m	349.3 m - 359.1 m			381.3 m	381.3 m - 392.7 m	
Sampling interval vertical depth (metres)			257.7 0	257.7 m - 268.3 m	100 Miles	77	326.1 m	326.1 m - 335.2 m			356.0 m	356.0 m - 366.6 m	
Estimated concentration range (calculated)		minimum	тахітит	minimum	тахітит	minimum	maximum	minimum	maximum	mininum	maximum	minimum	maximum
Average Field measured parameters			7	, - ×									
Fluoroscein	qdd	43	41.77	83	83.54	93	93.00	99	66.21	06'18	90	100	100.05
Total dissolved solids	mg/L	0.40	,	45	4543	S 17 618		72	7275			37	3765
Hd	5.0.			9	6.36		5 00 00	7	7.50		Sec. 1.	8	8.35
Conductivity	uS/cm	4	4610	96	9083	99	6650	14	14555	44	4450	75	7500
Estimated Water Quality	1 5.5 SHE					A 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			- Sept		6.	0.00	
Conventional parameters			Q and a second								Contraction of the Contraction o		A COLUMN TO THE PARTY OF
Total dissolved solids	mg/L	3198	4042	4681	5171	3581	3966	7970	9945	3483	3918	<4980	<5100
Hd	5.0.	7.41	7.27	6.50	6.57	7.87	7.82	6.88	6.91	7.96	7.91	7.31	7.41
Conductivity	m2/cm	4797	6042	8041	8496	2366	5938	13084	15511	5220	5866	<7350	<7530
Reported Hardness	mg CaCO ₃ /L	2397	3030	2883	3127	2627	2910	4169	5582	1680	1881	<2500	<2740
Atkalinity	T/*OD₹3 ∄W	40	5.1	30	11	18	20	a	11	52	58	51	52
Bicarbonate (HCO3)	mg CaCO _J /L	40	51	31	32	18	20	11	12	52	58	99	61
Majorions		I							I			I	
Calcium (Ca)	mgA	960	1213	1071	1164	1032	1143	1563	2125	671	756	<1040	<1090
Magnesium (Mg)	mg/L	22	22	51	51	12	14	62	99	1	1	1	1
Potassium (K)	mg/l.	89	10	<20	<20	38	42	67	67	16	13	-GB	<40
Sodium (Na)	mg/l	232	293	287	293	267	296	341	365	306	344	285	313
Bromide (Br)	mg/L	25	32	34	37	32	35	51	11	22	25	<32.5	<32.7
Chloride (CI)	mg/L	2089	2641	2453	2697	2582	2860	3818	5722	1714	1929	<2700	<2700
Fluoride (F)	mp/L	0.21	0.27	<1.0	<1.0	0.5	0.5	<1.0	<1.0	1.1	1.2	<1.0	<1.0
Sulphate (504)	1/°05 Jm			<15	<15	5.40	4.	<15	<15			<15	<15
Nutrients	Action Assessed to the last		STREET, SQUARE,		Santa Santa	A COLUMN TO SERVICE SE		Contract Contract		No. of London	Commence of the last		STREET,
Ammonia N (NH3+NH4)	mg N/L			<0.437	<0.443			0.180	0.181			0.169	0.173
Nitrates (NO3)	mg N/L	0.063	0.079	<0.25	<0.25	90.0	90.0	<0.25	<0.25	0.016	0.018	<0.25	<0.25
Nitrites (NO2)	mg N/L	0.010	0.013	<0.050	<0.050	0.011	0.012	<0.050	<0.050	0.038	0.043	<0.050	<0.050
Total Phosphorous (P)	mg P/L	0.021	0.026	<0.0043	<0.0043	0.011	0.012	0.01	0.01	0.049	0.055	10.0	0.01

Table 5
Rock Formation Groundwater Quality Corrected to Remove Residual Drilling Water
Whale Tail Lake Talik
Whale Tail Project, Nunavut

Sample	The State of the S			Port 6	W. C. W. W.		ě	Port 4			P.	Fort 3	
Date		2,Au	2,Aug-2016	13-No	13-Nov-2018	Z0-Jul	20-Jul-2016	11-No	11-Nov-2018	14-Sep	14-Sep-2016	12-No	12-Nov-2018
Drilling Fluid Proportion		0.04	0.24	0	0.16	60:0	0.18	0.	0.13	0.08	0.18	Ö.	0.20
Formation Water Proportion		96.0	0.76		0.84	0.91	0.82	0.	0.87	0.92	0.82	0.	0.80
Sampling interval depth (metres along borehole)	[e]		274.0	274.0 m - 287.4 m			349.3 m	349.3 m - 359.1 m	7.50		381.3 m	381.3 m - 392.7 m	
Sampling interval vertical depth (metres)			257.7 (257.7 m - 268.3 m			326.1 m	326.1 m - 335.2 m			356.0 m	356.0 m - 366.6 m	
Estimated concentration range (calculated)		тіпітит	maximum	minimum	maximum	minimum	maximum	minimum	тахітит	тіліпит	тахітит	minimum	maximum
Dissolved Metals									A STATE OF THE PARTY OF				
Aluminium (Al)	mg/l	>0.006	<0.006	<0.0050	<0.0050	100		0.000	0.008	-	10 mg	<0.0115	<0.0126
Antimony (Sb)	mg/l	0.0002	0.0003	0.001	0.001	0.003	0.004	0.001	0.002	0.0026	0.0029	0.001	0.001
Silver (Ag)	mg/k	<0.0001	<0.0001	<0.00010	<0.00010	<0.0001	<0.0001	<0.00010	<0.00010	<0.0001	<0.0001	<0.00010	<0.00010
Arsenic (As)	mg/L	0:0020	0.0063	<0.0021	<0.0024	0.0031	0.0035	<0.0020	<0.0020	<0.0005	<0.0005	<0.0034	<0.0034
Barium (Ba)	T/Zm	0.528	0.667	0.947	0.976	0.134	0.148	0.533	0.561	0.057	0.065	0.098	0.104
Berillium (Be)	mg/L	<0.0005	<0.0005	<0.00050	050000:0>	<0.0005	<0.0005	<0.00050	<0.00050	<0.0005	<0.000\$	<0.00050	<0.00050
Bismuth (Bi)	mg/L	<0.000\$	<0.0005	<0.000050	<0.00050	<0.0005	<0.0005	<0.00050	<0.00050	<0.0005	<0.0005	<0.00050	<0.00050
Boron (B)	mg/L	0.30	0.38	0.24	0.28	0.58	0.64	0.82	1.05	0.53	09'0	0.28	0.33
Cadmium (Cd)	mg/L		0.000033	<0.000050	<0.0000050	<0.00002	<0.00002	<0.0000050	<0.0000050	<0.00002	<0.00002	<0.0000050	<0.0000050
Chromium (Cr)	mg/L	0.0070	0.0089	<0.000050	<0.00050	0.0054	0.0060	<0.00050	<0.00050	0.0048	0.0055	<0.00050	<0.00050
Cobalt (Co)	mg/L	0.0015	0.0019	<0.000050	<0.000050	0.0017	0.0018	<0.0000050	<0.000050	0.0011	0.0012	<0.000050	<0.000050
Cupper (Cu)	mg/l.	0.0055	0.0069	<0.00050	<0.00050	0.0020	0.0023	<0.00050	<0.00050	0.0046	0.0052	<0.00050	<0.00050
Tin (Sn)	mg/L	0.0010	<0.001	<0.0010	<0.0010	0.0011	0.0012	<0.0010	<0.0010	<0.001	<0.001	<0.0010	<0.0010
Iron (Fe)	mg/l.	0.17	0.21	0.264	0.276	0.15	0.16	0.078	0.120	0.08	60.0	<0.018	<0.019
Cithium (U)	mg/L	0.33	0.41	0.15	0.24	0.64	0.71	1.06	1.63	0.31	0.34	<0.749	c0.779
Manganese (Mn)	mg/L	0.04	0.05	0.115	0,116	0.022	0.024	0.093	0.095	0.008	600:0	0.022	0.023
Mercury (Hg)	mg/L	0.0008	0.0010	<0.000010	<0.000010	0.0028	0.0031	<0.000010	<0.000010	0.00215	0.00242	<0.000010	<0.000010
Dissolved Mercury (Hg)	mg/L	0.0005	0.0006	<0.0000010	<0.000010	0.0031	0.0034	<0.000010	<0.000010	0.00217	0.00244	<0.000010	<0.000010
Molybdenum (Mo)	mg/L	0.02	0.02	0.029	0.031	0.0062	0.0068	0.013	0.013	0.019	0.021	0.018	0.019
Nickel (Ni)	mg/L	0.05	0.06	<0.000050	<0.00050	0.05	0.05	<0.00050	<0.00050	0.04	0.05	<0.00050	<0.00050
Lead (Pb)	mg/L	<0.0003	<0.0003	<0.00030	<0.00030	0.0027	0.0030	<0.00030	<0.00030	<0.0003	<0.0003	<0.00030	<0.00030
Selenium (Se)	mg/L	0.11	0.14	<0.0020	<0.0020	0.12	0.13	<0.0020	<0.0020	0.08	0.09	<0.0020	<0.0020
Silica (Si)	mg/L	4.00	5.06	3.19	3.31	4.18	4.63	2.48	2.63	4.29	4.82	3.51	3.51
Strontium (5r)	mg/l	13.2	16.7	14.3	16.0	18.9	20.9	27.7	36.5	12.7	14.2	<16.9	<17.2
Telluride (Te)	mg/l.	<0.0005	<0.0005	<0.00050	<0.00050	<0.0005	<0.0005	<0.00050	<0.00050	<0.0005	<0.0005	<0.00050	<0.00050
Thallium (TI)	mg/l.	<0.0008	<0.0008	<0.000050	<0.000050	<0.0008	<0.0008	<0.000050	<0.0000050	<0.0008	<0.0008	<0.000050	<0.000050
Titanium (Ti)	mg/l.	0.350	0.442	<0.0050	<0.0050	0.336	0.373	<0.0050	<0.0050	0.229	0.257	<0.0050	<0.0050
Uranium (U)	mg/l.	<0.001	<0.001	0.025	0.026	<0.001	<0.001	0.051	0.052	0.064	0.072	0.085	0.090
Vanadium (V)	mg/L	0.002	0.002	<0.000050	<0.000050	<0.0005	<0.0005	<0.000050	<0.0000050	100.0>	<0.001	0.00020	0.00020
Zinc (Zn)	mg/L	13	1.7	<0.00050	<0.00050	0.63	0.70	<0.00050	<0.00050	<0.0005	<0.0005	<0.00050	<0.00050

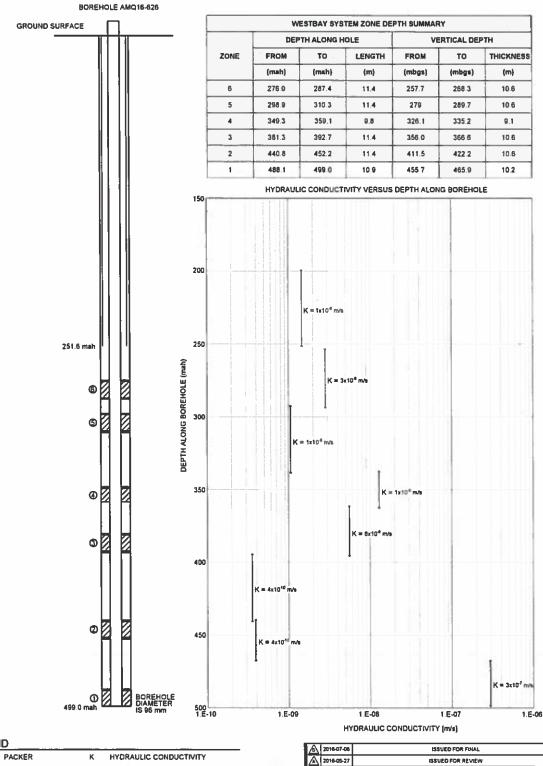
Table 6 QA/QC of Rock Formation Groundwater Quality Whale Tell Lake Talk Whale Tell Project, Numarut


1,787335 244


Sample				red to					Fart 4			Fort 3	
Date Certificate Na Semple ID Premittee	Charled Security (1997)	1	13-Nav2016 (2190127-1 1.7196 Zene 6 Zene	13-New-2016 1219017-1 12190121-2 2000 6 Zeno 66	5. 5.	Method Detection() Im.(Cata	11-10 13197643-3 2pmg-4	11-199-2018 13197643-3 (2797641-4 2eme-4 Zone-44	RPD	12-He (219/641-5 Zane 3	1246e-2016 (2197641-5 12197641-6 Zone 3 Zone 33	74 0
Physical Insta [Water]		ı	Ì		Ĭ	I		١	Ì	ı			I
Completions	7	m2/5m	8770	8780	×	~	мУсы	13900	1.4(000	1%	7530	7350	¥.
	2 .	ī.	3 -	59 5	<u>e</u>]	10.	ij	269	2 5	6 3	9.	9 .	ž ž
Tetal Darolerd Solution	. 9	No.	5540	MID	×		5	9030	8870	X.	\$100	g	ž
Andrew and Norteents		I			ı	ŀ	ı			I			ŀ
Manual Control of Cardinia		ži	77	200	E.		5 5	010	410	Ę :	919	9 9	2
ALASA Hydroude (as CaCD3)		Ž	015	410	i		Ş	410	410	E	q1>	910	1
Market, Total (is CaCO3)	-	ş	77	×	E	J	ş	10	9	ĸ	23	2	£
Accounts, Total (se 90)	0000	F	0443	0437	35	5000	ş	0.157	0.150	ž.	0.139	0 336	ž.
Premide (Br)	52	ş	17	=	2	900	ş	2	8	15%	= !	2	ž į
D)	и.	5	3010	3080	E	300	5	0775	45.00	g	27/E		5
America (2)	- ×	5 5	2 8 2 8	2 8		0000	í	2 8	2.8	Ü	8 8	A S	1
Marine (m. 17)	800	1	O DE	0000	1	1000	5	40.050	40.050	1	OUTO	40000	ì
Photogramme (P). Total	0,000	Ş	9000	5000	E	7000	Ş	10.0	100	13%	9000	0.000	·/- MDI
(NO4)	15	ř	51>	415		0 3	Ş,	<15	415	1	cdS	cts	1
Personal feets		i			Į,	ı		0913	Six	E	adm)	2740	į
Constitution (Constitution)			200					п					
demonster (A) Danoberd	9000	ş	050000	00000	×	9000	Ş	0.0005	9/00/0	11%	92100	00115	K
Internety (Sb) Deserved	0,0000	ş	40,000,50	\$0000	*/- MADI.	90000	ş	0.00163	0,000,72	ķ	000000	6000	ž
Vramm (Ac) Denotered	0 000	ş	12000	00004	K	2000	Ş	40,000	00000	1	MODO T	00034	ĕ
Spenier (Ra) Outschool	1000	5	0.010	2	Z,	100	5	0.066	0.479	ŝ	COMME	NAME OF THE PERSON	r c
Beryflam (Re) Ousseheed	occos	2	000000	domoso.	-	S S S S S S S S S S S S S S S S S S S	5	900000	domoso.	1	or or or or	S COLUMN	-
Married II (194) Childrend	010	5 5	W. O.	0.00	2	0.1	1	6	0.95	35	104	100	K
Administra (Cd) Described	0 00000	F	-c000000	4000000	1	CONTRACTOR	Ş	-Occoogo	-000000s		40 0000050	40 DESTRUCTOR	1
Latines (Ca) Dasabard	•	5	1380	1360	É	-	2	1970	1970	ğ	1040	1030	25
System (Cs) Dissebuted	OCCOS	Ş	-0 000050	40 00050	1	0 cross	Ş	000015	0.00074	ğ	40,00000	40,00050	1
Denomina (Cr) Described	00000	ş	-0.000%	-0 000050	1	90000	5	90000	e0 000050	1	-0 00000	40 000050	1
obolt (Co) Outsuberd	OCCOUNT	Ş	90000000	40 0000050	į.	S C C C C C C C C C C C C C C C C C C C	5	4000000	- Connoco	ij	domon o	SQUARE OF THE PARTY OF THE PART	
Agreem (Cut) Distracted	90000	5	900000	9	1	00000	i	domoso.	OCHIDO OCHIDO		O CHARLES	of french	1
The first Described	000	1	0.251	9570	É	000	1	0.112	610	89	6000	6100	35
and (Ph) Onsolved	10000	ş	000000	000000		00000	Ş	0600000	OECUDD)	1	<0.000000	0000000	1
Bleven (14 Descheral	2000	5	0.533	250	K	000	ž	142	31	Ľ	0.779	0.749	Ę
Augmentum (Mg) Dissabred		Ş	42.8	42.1	ğ		ş	22.1	513	ž	12	2	ğ
Aprend (14n) Drashed	0 (111)	5	19600	2600	NF OF	0.0000	5	9000	00013	4	00184	19100	£
Aeroany (Ng) Desembed		5	edicocotic	0000000	2	0.0000	51		Spericy of	1 1	O DOUGH	00000	1
Andreas May Described		5	ODDS/	COUNTS.	800	0000	5	O DELLE	of the o	ę	S COMPAN	on more	3
Personal Property of the Personal Property of	900	í	0000	9000	di	900	1	0000	0000	1	0000	40050	
Odanami (1) Deserved	02	200	029	2,	1	Q	A.	63	3	K	#	6	35
Stemmen (Re) Dayschood	00000	ş	40 00050	0,0000	t	00005	S	Q.00050	40 DODG0	1	000000	damp	ī
Laborate (Rh) Databard	0.005	ş	15100	99100	H	6005	MES	0.0091	00914	£	0.0549	82500	Ŕ
etenesis (Se) Disselved	0.002	ş	020000	oping	1	0,003	ž	<0.0000p	40,000	1	00 ED 00	9000	3
Algeria (Sa) Describerd	-	ş	2.8	2.3	Ę	-	ž	53	27	ξ	~		É
Ante (Ag) Desaived	10000	ş	*0.00010	40 00000	2	COUNT	ž	40 000000	«D 000010	1	40,00010	000000	1
seleen (Na) Datebook	2	5	253	2	20 3	2	5	6	210	E i	9 5	ā :	e j
disseller (N) Datolved	900	5	130	200	A	600	5	110	33.6	ŝ	76.0	770	2
Married (Ta) Decoderate	O O O O	1	COLUMBIA	an more		0 cross	1	e0 (0x0) 0s	6000000	0.1	000000	operator of	1
The Carlotter	OCCUPA	1	of many	O CHILDREN		Octube		9000000	900000	ľ	opinios -	4000000	1
Davison (Thi Daycolous)	0,000%	1	0,0000	40 DEEPS	1	0,0005	Ý	40 000050	0500000	1	Olimbo	<0.000050	1
in (Sa) Distailed	1000	Ş	010000	40000	1	10070	Ş	40 DD10	40,000		01000	0,0000	1
4.angen (14-Desolved	0000	Ş	90000	40,0050	-	0000	ş	-00000p		1	90000	90000	1
langston (W) Dissalved	0000	ş	0.0214	90200	ž	1000	Š	0.0455	_	Z.	0.0723	0.00687	28
Famous (U) Dissolved	OUTUS	ş	d from the	0500000	1	000000	51	OCCUPANT OF	OCCUPANT OF	ř	argona de	OCCUPANA CONTROL	É
Andrew IV) Datewed	OTTO	1	o de la constante de la consta	O COLUMN	Į.	0,000	i	OCCUPANT OF			OCCUPANT OF THE PARTY OF THE PA	000000	
The state of the s	0000	í	00000	1000	100	0000	i	O COMPA	000	Š	O COUNTY	ch (m) do	ŀ
Transmitted December	noon	í	OUTLO	O marco		90000	i	-O DOORD	90000		40,0000	0500000	1
Ansk					I		۱			Ì			ı
Calculated TDS (Lab)	-	194	4779	4876				1749	3050	ı	4165	4237	٠
ab measured vs Calculated TDS	100		1561	167%				154%	157%	-	146%	148%	-
the name and other or owner, the party		ma/you	ь	90				90	90		0.7	0.7	

Makes

Concernitation or mod, unless officerus name.


* Per Fault application of the base officerus name of the particular of the base of

APPENDIX A

AMQ160626 Westbay System Installation Details

LEGEND

① 🛭 STEEL CASING

WESTBAY MONITORING ZONE

METRES ALONG BOREHOLE, RELATIVE TO GROUND SURFACE

mbgs METRES BELOW GROUND SURFACE

m/s METRES PER SECOND

NOTES

ALL UNITS ARE IN METERS UNLESS OTHERWISE NOTED
PERMAFROST ASSUMED 200 m ALONG HOLE ALIGNMENT.
DRILL RODS TO 251.8 m ALONG HOLE.
BOREHOLE LOCATED IN UTM NAD 83 ZONE 14, N =7255383.5 E = 607181.68
ELEVATION = 154.46 m.
AVERAGE BOREHOLE INCLINATION IS 69°.

NOT TO SCALE SCHEMATIC ONLY

\triangle	2016-07-06	ISSUED FOR FINAL	'n	PP	DV	DC
\triangle	2016-05-27	ISSUED FOR REVIEW	'n	PP		
REV	DATE	REVISION DESCRIPTION	DES	CADD	CHK	Row

PROJECT 🍆

AGNICO EAGLE MINES LIMITED WHALE TAIL PIT PROJECT NUNAVUT, CANADA

AGNICO EAGLE TITLE

AMQ16-626 WESTBAY SYSTEM INSTALLATION DETAILS

1	PROJECT	ła. 164935	5.4000.3000	FILE No.	1649355-4000-3000-03
ı	DESIGN	ม	2016-07-08	SCALE	NOT TO SCALE
ı	CADD	PP	2016-07-06	FIGURE	
ı	CHECK	DV	2018-07-06		3
J	REVIEW	DC	2015-07-05		

APPENDIX B

Westbay Instruments Mosdax Sampler Calibration Reports

MOSDAX Calibration Report 1: EMS - 1764 Module 323

Full Scale: 2000 (psia)

File: E4DATA/CAL/U-2018/2000/26JAN2-1/01764

Pressure Reference: Paroscientific Model 42K-101 S/N 59937

Range: 2K PSI

Date of last reference to traceable standard: Oct 5 2017-

Range 4 Temp 29.9° C Range 5 Temp 39.9° C	Range 1 Tem	an 26 17:09: p 3.1° C	22 20 10	Range 2 Terri		09 2018	EMS - 1764 Ja Range 3 Terr		9 2018
193.345 -0.073 -0.004	el Pres (psia)	Error (psia)	(% FS)	Ref Pres (psia)	Error (psia)	(% FS)	Ref Pres (psia)	Error (psia)	(% FS)
393.816	14.817	0.208	0.010	14.763	0.210	0.011	14.745	0.228	0.011
\$88,887							193.251		
787.108							392.313		
992.089 -0.024 -0.001									
1191.192									
1390,713							988.877		
1589,940									
1781.966									
1987.965									
1817.144									
1413,125 0.180 0.009 1209.052 0.204 0.010 1209.054 0.151 0.008 1009.488 0.089 0.004 1008.134 0.118 0.006 1007.771 0.668 0.003 807.541 -0.027 -0.001 809.316 -0.034 -0.002 807.386 -0.029 -0.001 406.828 -0.184 -0.009 406.467 -0.147 -0.007 407.925 -0.205 -0.010 205.695 -0.015 -0.001 205.759 -0.012 -0.001 205.759 -0.012 -0.001 14.824 0.214 0.011 14.783 0.231 0.012 14.730 0.212 0.011 14.783 0.231 0.012 14.730 0.212 0.011 14.664 0.129 0.006 808.60 -0.147 -0.095 0.003 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.0	1817.144		-0.001		0.061	0.003	1807.379		
1213.194									
1009,488 0.089 0.004 1008,134 0.118 0.006 807,386 -0.027 -0.001 809,316 -0.034 -0.002 807,386 -0.029 -0.001 606,650 -0.114 -0.006 608,601 -0.077 -0.004 608,200 -0.110 -0.005 406,828 -0.184 -0.009 406,467 -0.147 -0.007 407,925 -0.205 -0.010 205,695 -0.015 -0.001 205,759 -0.012 -0.001 206,304 -0.075 -0.004 14,824 0.214 0.011 14,783 0.231 0.012 14,730 0.212 0.011 14,730 0.212 0.011 14,730 0.212 0.011 14,730 0.212 0.011 14,730 0.212 0.011 14,730 0.212 0.011 14,730 0.212 0.011 14,730 0.212 0.011 14,730 0.212 0.011 14,664 0.129 0.006 14,630 0.147 0.007 193,274 -0.098 -0.005 392,551 -0.259 -0.013 393,384 -0.239 -0.012 590,683 -0.199 -0.010 590,646 -0.204 -0.010 790,879 -0.111 -0.006 792,587 -0.140 -0.007 993,404 -0.070 -0.003 989,121 -0.059 -0.003 188,900 -0.088 -0.004 1188,417 -0.084 -0.004 1383,144 -0.060 -0.000 1390,226 0.040 0.002 1582,510 -0.017 -0.001 1582,457 -0.233 -0.013 1583,117 -0.170 -0.008 1783,077 -0.054 -0.003 1817,923 -0.145 -0.007 1809,812 -0.012 -0.001 1612,561 0.048 0.002 1612,027 0.084 0.004 140,796 0.050 0.003 1410,658 0.064 0.003 1208,930 0.011 0.001 1207,895 0.018 0.001 1007,679 0.074 -0.006 608,401 -0.142 -0.007 408,285 -0.237 -0.012 -0.001 408,285 -0.237 -0.012 -0.001 408,285 -0.237 -0.012 -0.001 408,285 -0.037 -0.007 408,285 -0.237 -0.012 -0.007 408,285 -0.237 -0.012 -0.007 408,285 -0.237 -0.012 -0.007 408,285 -0.237 -0.012 -0.007 408,285 -0.237 -0.012 -0.007 408,285 -0.237 -0.012 -0.007 408,285 -0.237 -0.012 -0.007 408,285 -0.237 -0.012 -0.007 408,285 -0.237 -0.012 -0.007 408,285 -0.237 -0.012 -0.007 408,285 -0.237 -0.007 408,285 -0.237 -0.012 -0.007				1410.177					
807.541									
606.650									
406.828 -0.184 -0.009									
205.695									
14.824									
Range 4 Temp 29.9° C Ref Pres (psia) Error (psia) (% FS) 14.664									
193.289 -0.074 -0.004 193.274 -0.098 -0.005 392.551 -0.259 -0.013 393.384 -0.239 -0.012 590.683 -0.199 -0.010 590.646 -0.204 -0.010 790.879 -0.111 -0.006 792.587 -0.140 -0.007 989.404 -0.070 -0.003 989.121 -0.059 -0.003 188.900 -0.088 -0.004 1188.417 -0.084 -0.004 1383.144 0.006 0.000 1390.226 0.040 0.002 1582.510 -0.017 -0.001 1582.457 0.023 0.001 1783.117 -0.170 -0.008 1783.077 -0.054 -0.003 1990.420 -0.360 -0.018 1990.337 -0.125 -0.006 1817.923 -0.145 -0.007 1809.812 -0.012 -0.001 1612.561 0.046 0.002 1612.027 0.084 0.004 1409.796 0.050 0.003 1410.656 0.064 0.003 1208.930 0			38 2018			50 2018			
193.289 -0.074 -0.004 193.274 -0.098 -0.005 392.551 -0.259 -0.010 393.384 -0.239 -0.012 590.683 -0.199 -0.010 590.646 -0.204 -0.010 790.879 -0.111 -0.006 792.587 -0.140 -0.007 989.404 -0.070 -0.003 989.121 -0.059 -0.003 188.900 -0.088 -0.004 1188.417 -0.084 -0.004 1383.144 0.006 0.000 1390.226 0.040 0.002 1582.510 -0.017 -0.001 1582.457 0.023 0.001 1783.117 -0.170 -0.008 1783.077 -0.054 -0.003 1990.420 -0.360 -0.018 1990.337 -0.125 -0.006 1817.923 -0.145 -0.007 1612.027 0.084 0.004 1409.796 0.050 0.003 1410.656 0.064 0.003 1208.930 0.011 0.001 1007.484 0.004 0.000 807.799 -0.0	Range 4 Ter	np 29.9° C		Range 5 Ten	np 39.9* C				
392.551 -0.259 -0.013 393.384 -0.239 -0.012 590.683 -0.199 -0.010 590.646 -0.204 -0.010 790.879 -0.111 -0.006 792.587 -0.140 -0.007 989.404 -0.070 -0.003 989.121 -0.059 -0.003 1188.900 -0.088 -0.004 1188.417 -0.084 -0.004 1383.144 0.006 0.000 1390.226 0.040 0.002 1582.510 -0.017 -0.001 1582.457 0.023 0.001 1783.117 -0.170 -0.008 1783.077 -0.054 -0.003 1817.923 -0.145 -0.007 1809.812 -0.012 -0.001 1612.551 0.046 0.002 1612.027 0.084 0.004 1409.796 0.050 0.003 1410.656 0.064 0.003 1208.930 0.011 0.001 1207.895 0.018 0.001 1007.679 -0.074 -0.004 807.295 -0.056 -0.003 607.517 -0.1	Range 4 Ter Ref Pres (psia)	np 29.9° C Error (psia)) (% FS)	Range 5 Ten	np 39.9° C Eποr (psia) (% FS)			
590.683 -0.199 -0.010 590.646 -0.204 -0.010 790.879 -0.111 -0.006 792.587 -0.140 -0.007 989.404 -0.070 -0.003 989.121 -0.059 -0.003 1188.900 -0.088 -0.004 1188.417 -0.084 -0.004 1383.144 0.006 0.000 1390.226 0.040 0.002 1582.510 -0.017 -0.001 1582.457 0.023 0.001 1783.117 -0.170 -0.008 1783.077 -0.054 -0.003 1890.420 -0.360 -0.018 1990.337 -0.125 -0.006 1817.923 -0.145 -0.007 1809.812 -0.012 -0.001 1612.561 0.046 0.002 1612.027 0.084 0.004 1409.796 0.050 0.003 1410.656 0.064 0.003 1208.930 0.011 0.001 1207.895 0.018 0.001 1007.679 0.001	Range 4 Ter Ref Pres (psia) 14.664	np 29.9° C Error (psia) 0.129	(% FS)	Rel Pres (psia)	пр 39.9° C Епог (psia) 0.147) (% FS)			
790.879 -0.111 -0.006 792.587 -0.140 -0.007 989.404 -0.070 -0.003 989.121 -0.059 -0.003 1188.900 -0.088 -0.004 1188.417 -0.084 -0.004 1383.144 0.006 0.000 1390.226 0.040 0.002 1582.510 -0.017 -0.001 1582.457 0.023 0.001 1783.117 -0.170 -0.008 1783.077 -0.054 -0.003 1890.420 -0.360 -0.018 1990.337 -0.125 -0.006 1817.923 -0.145 -0.007 1809.812 -0.012 -0.001 1612.561 0.046 0.002 1612.027 0.084 0.004 1409.796 0.050 0.003 1410.656 0.064 0.003 1208.930 0.011 0.001 1207.895 0.018 0.001 1007.679 0.001 0.004 807.295 -0.056 -0.003 607.517 -0.125	Range 4 Ter Ref Pres (psia) 14.664 193.289	np 29.9° C Error (psia) 0.129 -0.074	0.006 -0.004	Rel Pres (psia) 14.630 193.274	пр 39.9° С Епог (psia) 0.147 -0.098	0.007 -0.005			- 4
989.404 -0.070 -0.003 989.121 -0.059 -0.003 1188.900 -0.088 -0.004 1390.226 0.040 0.002 1582.510 -0.017 -0.001 1582.457 0.023 0.001 1783.117 -0.170 -0.008 1783.077 -0.054 -0.003 1990.420 -0.360 -0.018 1990.337 -0.125 -0.006 1817.923 -0.145 -0.007 1809.812 -0.012 -0.001 1612.561 0.048 0.002 1612.027 0.084 0.004 1409.796 0.050 0.003 1410.656 0.064 0.003 1208.930 0.011 0.001 1207.895 0.018 0.001 1007.679 0.001 0.000 1007.484 0.004 0.000 807.799 -0.074 -0.004 807.295 -0.056 -0.003 607.517 -0.125 -0.006 608.401 -0.142 -0.007 406.301 -0.139 -0.007 406.285 -0.237 -0.012 -0.007 406.285 -0.237 -0.012 -0.007 -0.004 -0.002 205.685 -0.138 -0.007	Ref Pres (psia) 14.664 193.289 392.551	0.129 -0.074 -0.259	0.906 -0.004 -0.013	Rel Pres (psla) 14.530 193.274 393.384	пр 39.9° С Епог (psia) 0.147 -0.098 -0.239	0.007 -0.005 -0.012			
1188.900 -0.088 -0.004 1188.417 -0.084 -0.004 1383.144 0.006 0.000 1390.226 0.040 0.002 1582.510 -0.017 -0.001 1582.457 0.023 0.001 1783.117 -0.170 -0.008 1783.077 -0.054 -0.003 1990.420 -0.360 -0.018 1990.337 -0.125 -0.006 1817.923 -0.145 -0.007 1809.812 -0.012 -0.001 1612.561 0.048 0.002 1612.027 0.084 0.004 1409.796 0.050 0.003 1410.656 0.064 0.003 1208.930 0.011 0.001 1207.895 0.018 0.001 1007.679 0.001 0.000 1007.484 0.004 0.000 807.799 -0.074 -0.004 807.295 -0.056 -0.003 607.517 -0.125 -0.006 608.401 -0.142 -0.007 406.301 -0.139 -0.007 406.285 -0.237 -0.012 205.701 -0.04	Ref Pres (psia) 14.664 193.289 392.551 590.683	пр 29.9° С Епот (psia) 0.129 -0.074 -0.259 -0.199	0.006 -0.004 -0.013 -0.010	Ref Pres (psla) 14.530 193.274 393.384 590.646	пр 39.9° С Еггог (psia) 0.147 -0.098 -0.239 -0.204	0.007 -0.005 -0.012 -0.010			
1582.510 -0.017 -0.001 1582.457 0.023 0.001 1783.117 -0.170 -0.008 1783.077 -0.054 -0.003 1990.420 -0.360 -0.018 1990.337 -0.125 -0.006 1817.923 -0.145 -0.007 1809.812 -0.012 -0.001 1612.561 0.046 0.002 1612.027 0.084 0.004 1409.796 0.050 0.003 1410.656 0.064 0.003 1208.930 0.011 0.001 1207.895 0.018 0.001 1007.679 0.001 0.000 1007.484 0.004 0.000 807.799 -0.074 -0.004 807.295 -0.056 -0.003 607.517 -0.125 -0.006 608.401 -0.142 -0.007 406.301 -0.139 -0.007 406.285 -0.237 -0.012 205.701 -0.048 -0.002 205.685 -0.138 -0.007	Ref Pres (psia) 14.664 193.289 392.551 590.683 790.879	0.129 -0.074 -0.259 -0.119 -0.111	0.006 -0.004 -0.013 -0.010 -0.008	Ref Pres (psla) 14.630 193.274 393.384 590.646 792.587	0.147 -0.098 -0.239 -0.204 -0.140	0.007 -0.005 -0.012 -0.010 -0.007			
1783.117 -0.170 -0.008 1783.077 -0.054 -0.003 1990.420 -0.360 -0.018 1990.337 -0.125 -0.006 1817.923 -0.145 -0.007 1809.812 -0.012 -0.001 1612.561 0.046 0.002 1612.027 0.084 0.004 1409.796 0.050 0.003 1410.656 0.064 0.003 1208.930 0.011 0.001 1207.895 0.018 0.001 1007.679 0.001 0.000 1007.484 0.004 0.000 807.799 -0.074 -0.004 807.295 -0.056 -0.003 607.517 -0.125 -0.006 608.401 -0.142 -0.007 406.301 -0.139 -0.007 408.285 -0.237 -0.012 205.701 -0.048 -0.002 205.685 -0.138 -0.007	Range 4 Ter Ref Pres (psia) 14.664 193.289 392.551 590.683 790.879 989.404 1188.900	0.129 -0.074 -0.259 -0.199 -0.111 -0.070 -0.088	0.006 -0.004 -0.013 -0.010 -0.008 -0.003 -0.004	Range 5 Ten Rel Pres (psia) 14.630 193.274 393.384 590.646 792.587 989.121 1188.417	0.147 -0.098 -0.239 -0.204 -0.140 -0.059 -0.084	0.007 -0.005 -0.012 -0.010 -0.007 -0.003 -0.004			
1990.420 -0.360 -0.018 1990.337 -0.125 -0.006 1817.923 -0.145 -0.007 1809.812 -0.012 -0.001 1612.561 0.048 0.002 1612.027 0.084 0.004 1409.796 0.050 0.003 1410.656 0.064 0.003 1208.930 0.011 0.001 1207.895 0.018 0.001 1007.679 0.001 0.000 1007.484 0.004 0.000 807.799 -0.074 -0.004 807.295 -0.056 -0.003 607.517 -0.125 -0.006 608.401 -0.142 -0.007 406.301 -0.139 -0.007 406.285 -0.237 -0.012 205.701 -0.048 -0.002 205.685 -0.138 -0.007	Range 4 Ter Ref Pres (psia) 14.664 193.289 392.551 590.683 790.879 989.404 1188.900 1383.144	0.129 -0.074 -0.259 -0.199 -0.111 -0.070 -0.088 0.006	0.906 -0.004 -0.013 -0.010 -0.006 -0.003 -0.004 0.000	Range 5 Ten Rel Pres (psla) 14.630 193.274 393.384 590.646 792.587 989.121 1188.417 1390.226	0.147 -0.098 -0.239 -0.204 -0.140 -0.059 -0.084 0.040	0.007 -0.005 -0.012 -0.010 -0.007 -0.003 -0.004 0.002			
1817.923 -0.145 -0.007 1809.812 -0.012 -0.001 1612.561 0.046 0.002 1612.027 0.084 0.004 1409.796 0.050 0.003 1410.656 0.064 0.003 1208.930 0.011 0.001 1207.895 0.018 0.001 1007.679 0.001 0.000 1007.484 0.004 0.000 807.799 -0.074 -0.004 807.295 -0.056 -0.003 607.517 -0.125 -0.006 608.401 -0.142 -0.007 406.301 -0.139 -0.007 406.285 -0.237 -0.012 205.701 -0.048 -0.002 205.685 -0.138 -0.007	Range 4 Ter Ref Pres (psia) 14.664 193.289 392.551 590.683 790.879 989.404 1188.900 1383.144 1582.510	0.129 -0.074 -0.259 -0.111 -0.070 -0.088 -0.006 -0.017	0.906 -0.004 -0.013 -0.010 -0.006 -0.003 -0.004 0.000 -0.001	Range 5 Ten Rel Pres (psla) 14.630 193.274 393.384 590.646 792.587 989.121 1188.417 1390.226 1582.457	ол 39.9° С Еггог (psia) 0.147 -0.098 -0.239 -0.204 -0.140 -0.059 -0.084 0.040 0.023	0.007 -0.005 -0.012 -0.010 -0.003 -0.003 -0.004 0.002 0.001			
1612.561 0.048 0.002 1612.027 0.084 0.004 1409.796 0.050 0.003 1410.656 0.064 0.003 1208.930 0.011 0.001 1207.895 0.018 0.001 1007.679 0.001 0.000 1007.484 0.004 0.000 807.799 -0.074 -0.004 807.295 -0.056 -0.003 607.517 -0.125 -0.006 608.401 -0.142 -0.007 406.301 -0.139 -0.007 406.285 -0.237 -0.012 205.701 -0.048 -0.002 205.685 -0.138 -0.007	Range 4 Ter Ref Pres (psia) 14.664 193.289 392.551 590.683 790.879 989.404 1188.900 1383.144 1582.510 1783.117	0.129 -0.074 -0.259 -0.199 -0.111 -0.070 -0.088 -0.006 -0.017 -0.170	0.006 -0.004 -0.013 -0.010 -0.008 -0.003 -0.004 0.000 -0.001 -0.008	Range 5 Ten Ref Pres (psla) 14.630 193.274 393.384 590.646 792.587 989.121 1188.417 1390.226 1582.457 1783.077	ол 39.9° С Еггог (psia) 0.147 -0.098 -0.239 -0.204 -0.140 -0.059 -0.084 0.040 0.023 -0.054	0.007 -0.005 -0.012 -0.010 -0.003 -0.004 0.002 0.001 -0.003			
1409.796 0.050 0.003 1410.656 0.064 0.003 1208.930 0.011 0.001 1207.895 0.018 0.001 1007.679 0.001 0.000 1007.484 0.004 0.000 807.799 -0.074 -0.004 807.295 -0.056 -0.003 607.517 -0.125 -0.006 608.401 -0.142 -0.007 406.301 -0.139 -0.007 406.285 -0.237 -0.012 205.701 -0.048 -0.002 205.685 -0.138 -0.007	Range 4 Ter Ref Pres (psia) 14.664 193.289 392.551 590.683 790.879 989.404 1188.900 1383.144 1582.510 1783.117 1990.420	0.129 -0.074 -0.259 -0.111 -0.070 -0.088 -0.006 -0.017 -0.170 -0.360	0.006 -0.004 -0.013 -0.010 -0.008 -0.003 +0.004 0.000 -0.001 -0.008 -0.018	Range 5 Ten Rel Pres (psla) 14.630 193.274 393.384 590.646 792.587 989.121 1188.417 1390.226 1582.457 1783.077 1990.337	0.147 -0.098 -0.239 -0.204 -0.140 -0.059 -0.084 0.040 0.023 -0.054 -0.125	0.007 -0.005 -0.012 -0.010 -0.007 -0.003 -0.004 0.002 0.001 -0.003 -0.006			
1208.930	Range 4 Ter Ref Pres (psia) 14.664 193.289 392.551 590.683 790.879 989.404 1188.900 1383.144 1582.510 1783.117 1990.420 1817.923	0.129 -0.074 -0.259 -0.111 -0.070 -0.088 0.006 -0.017 -0.170 -0.360 -0.145	0.006 -0.004 -0.013 -0.006 -0.003 -0.004 0.000 -0.001 -0.001 -0.008 -0.008 -0.007	Range 5 Ten Rel Pres (psia) 14.630 193.274 393.384 590.645 792.587 989.121 1188.417 1390.226 1582.457 1783.077 1990.337 1809.812	0.147 -0.098 -0.239 -0.204 -0.140 -0.059 -0.084 0.040 0.023 -0.054 -0.125 -0.012	0.007 -0.005 -0.012 -0.010 -0.007 -0.003 -0.004 0.002 0.001 -0.003 -0.006 -0.001			
1007.679 0.001 0.000 1007.484 0.004 0.000 807.799 -0.074 -0.004 807.295 -0.056 -0.003 607.517 -0.125 -0.006 608.401 -0.142 -0.007 406.301 -0.139 -0.007 406.285 -0.237 -0.012 205.701 -0.048 -0.002 205.685 -0.138 -0.007	Range 4 Ter 14.664 193.289 392.551 590.683 790.879 989.404 1188.900 1383.144 1582.510 1783.117 1990.420 1817.923 1612.561	0.129 -0.074 -0.259 -0.111 -0.070 -0.088 -0.006 -0.017 -0.170 -0.360 -0.145 -0.046	0.006 -0.004 -0.013 -0.010 -0.006 -0.003 -0.004 -0.001 -0.001 -0.008 -0.018 -0.007 -0.002	Range 5 Ten Rel Pres (psla) 14.630 193.274 393.384 590.646 792.587 989.121 1188.417 1390.226 1582.457 1783.077 1990.337 1809.812 1612.027	0.147 -0.098 -0.239 -0.204 -0.140 -0.059 -0.084 0.040 0.023 -0.054 -0.125 -0.012	0.007 -0.005 -0.012 -0.010 -0.003 -0.004 0.002 0.001 -0.003 -0.006 -0.001 0.004			
807.799 -0.074 -0.004 807.295 -0.056 -0.003 607.517 -0.125 -0.006 608.401 -0.142 -0.007 408.301 -0.139 -0.007 406.285 -0.237 -0.012 205.701 -0.048 -0.002 205.685 -0.138 -0.007	Range 4 Ter Ref Pres (psia) 14.664 193.289 392.551 590.683 790.879 989.404 1188.900 1383.144 1582.510 1783.117 1990.420 1817.923 1612.561 1409.796	0.129 -0.074 -0.259 -0.111 -0.070 -0.088 -0.006 -0.017 -0.170 -0.360 -0.145 -0.046 -0.050	0.906 -0.004 -0.013 -0.010 -0.003 -0.003 -0.004 -0.000 -0.001 -0.008 -0.018 -0.007 -0.002 -0.003	Range 5 Ten Rel Pres (psla) 14.630 193.274 393.384 590.646 792.587 989.121 1188.417 1390.226 1582.457 1783.077 1990.337 1809.812 1612.027 1410.656	ол 39.9° С Еггог (psia) 0.147 -0.098 -0.239 -0.204 -0.140 -0.059 -0.084 0.040 0.023 -0.054 -0.125 -0.012 0.084 0.064	0.007 -0.005 -0.012 -0.010 -0.003 -0.004 0.002 0.001 -0.003 -0.006 -0.001 0.004 0.0001			
406.301 -0.139 -0.007 406.285 -0.237 -0.012 205.701 -0.048 -0.002 205.685 -0.138 -0.007	Range 4 Ter Ref Pres (psia) 14.664 193.289 392.551 590.683 790.879 989.404 1188.900 1383.144 1582.510 1783.117 1990.420 1817.923 1612.561 1409.796 1208.930	0.129 -0.074 -0.259 -0.199 -0.111 -0.070 -0.088 -0.006 -0.017 -0.170 -0.360 -0.145 0.046 0.050 0.011	0.006 -0.004 -0.013 -0.010 -0.008 -0.004 -0.004 -0.001 -0.008 -0.018 -0.007 -0.007 -0.002 -0.003 -0.003	Range 5 Ten Ref Pres (psla) 14.630 193.274 393.384 590.646 792.587 989.121 1188.417 1390.226 1582.457 1783.077 1990.337 1809.812 1612.027 1410.656 1207.895	ол 39.9° С Еггог (psia) 0.147 -0.098 -0.239 -0.204 -0.140 -0.059 -0.084 0.040 0.023 -0.054 -0.125 -0.012 0.084 0.064 0.064 0.018	0.007 -0.005 -0.012 -0.010 -0.003 -0.004 0.002 0.001 -0.003 -0.006 -0.001 0.004 0.003 0.004			
205.701 -0.048 -0.002 205.685 -0.138 -0.007	Range 4 Ter Ref Pres (psia) 14.664 193.289 392.551 590.683 790.879 989.404 1188.900 1383.144 1582.510 1783.117 1990.420 1817.923 1612.561 1409.796 1208.930 1007.679	0.129 -0.074 -0.259 -0.199 -0.111 -0.070 -0.088 -0.006 -0.017 -0.170 -0.360 -0.145 0.046 0.050 0.011	0.006 -0.004 -0.013 -0.010 -0.008 -0.004 0.000 -0.001 -0.008 -0.018 -0.002 0.002 0.003 0.001 0.000	Range 5 Ten Rel Pres (psla) 14.630 193.274 393.384 590.646 792.587 989.121 1188.417 1390.226 1582.457 1783.077 1990.337 1809.812 1612.027 1410.658 1207.895 1007.484	ол 39.9° С Еггог (psia) 0.147 -0.098 -0.239 -0.204 -0.140 -0.059 -0.084 0.040 0.023 -0.054 -0.125 -0.012 0.084 0.004	0.007 -0.005 -0.012 -0.010 -0.003 -0.004 0.002 0.001 -0.003 -0.006 -0.001 0.004 0.003 0.001 0.0001			
	Range 4 Ter Ref Pres (psia) 14.664 193.289 392.551 590.683 790.879 989.404 1188.900 1383.144 1582.510 1783.117 1990.420 1817.923 1612.561 1409.796 1208.930 1007.679 807.799 607.517	0.129 -0.074 -0.259 -0.199 -0.111 -0.070 -0.088 0.006 -0.017 -0.170 -0.360 -0.145 0.046 0.050 0.011 0.001 -0.074 -0.125	0.906 -0.004 -0.013 -0.010 -0.006 -0.003 -0.001 -0.008 -0.001 -0.002 0.003 0.001 0.002 0.003 0.001 0.000 -0.001	Range 5 Ten Rel Pres (psla) 14.630 193.274 393.384 590.646 792.587 989.121 1188.417 1390.226 1582.457 1783.077 1990.337 1809.812 1612.027 1410.656 1207.895 1007.895 1007.895 608.401	0.147 -0.098 -0.239 -0.204 -0.140 -0.059 -0.084 0.040 0.023 -0.054 -0.125 -0.012 0.084 0.018 0.004 -0.056 -0.142	0.007 -0.005 -0.012 -0.010 -0.003 -0.004 0.002 0.001 -0.003 -0.006 -0.001 0.004 0.003 0.001 0.000 -0.003			
14.666 0.149 0.00/ 14.645 0.098 0.005	Range 4 Ter Ref Pres (psia) 14.664 193.289 392.551 590.683 790.879 989.404 1188.900 1383.144 1582.510 1783.117 1990.420 1817.923 1612.561 1409.796 1208.930 1007.679 807.799 607.517 406.301	0.129 -0.074 -0.259 -0.111 -0.070 -0.088 0.006 -0.017 -0.170 -0.360 -0.145 0.046 0.050 0.011 0.001 -0.074 -0.125 -0.139	0.906 -0.004 -0.013 -0.010 -0.003 -0.003 -0.001 -0.008 -0.018 -0.007 0.002 0.003 0.001 0.000 -0.001 -0.004 -0.004 -0.004 -0.005 -0.007	Range 5 Ten Rel Pres (psla) 14.630 193.274 393.384 590.646 792.587 989.121 1188.417 1390.226 1582.457 1783.077 1990.337 1809.812 1612.027 1410.656 1207.895 1007.484 807.295 608.401 406.285	0.147 -0.098 -0.239 -0.204 -0.140 -0.059 -0.084 -0.040 -0.023 -0.054 -0.125 -0.012 -0.084 -0.018 -0.004 -0.056 -0.142 -0.237	0.007 -0.005 -0.012 -0.010 -0.003 -0.004 -0.002 -0.001 -0.003 -0.006 -0.001 0.000 -0.003 -0.0001 -0.0003 -0.0001 -0.0003 -0.0007 -0.0007			
	Range 4 Ter Ref Pres (psia) 14.664 193.289 392.551 590.683 790.879 989.404 1188.900 1383.144 1582.510 1783.117 1990.420 1817.923 1612.561 1409.796 1208.930 1007.679 807.799 607.517 406.301 205.701	0.129 -0.074 -0.259 -0.199 -0.111 -0.070 -0.088 -0.006 -0.017 -0.170 -0.360 -0.145 -0.046 -0.050 -0.011 -0.074 -0.125 -0.139 -0.048	0.006 -0.004 -0.013 -0.010 -0.008 -0.003 -0.001 -0.001 -0.001 -0.008 -0.018 -0.007 0.002 0.003 0.001 0.000 -0.004 -0.004 -0.005 -0.007 -0.002	Range 5 Ten Ref Pres (psla) 14.630 193.274 393.384 590.646 792.587 989.121 1188.417 1390.226 1582.457 1783.077 1990.337 1809.812 1612.027 1410.658 1207.895 1007.484 807.295 608.401 406.285 205.685	ол 39.9° С Еггог (psia) 0.147 -0.098 -0.239 -0.204 -0.140 -0.059 -0.084 0.040 0.023 -0.054 -0.125 -0.012 0.084 0.064 0.018 0.004 -0.056 -0.142 -0.237 -0.138	0.007 -0.005 -0.012 -0.010 -0.003 -0.004 0.002 0.001 -0.003 -0.001 0.000 -0.001 0.000 -0.003 -0.001 -0.003 -0.001 -0.003			

Issued by UBILIM

MOSDAX Calibration Report 2: EMS - 1764 Module 323

Full Scale: 2000 (psia)

File: E-IDATA/CAL/0-2018/2000/26JAN2-1/01764

Pressure Reference: Paroscientific Model 42K-101 S/N 59937

Range: 2K PSI

Date of last reference to traceable standard: Oct 5 2017

Plot of Error vs. Reference Pressure

EMS - 1764 Module 323

Issued by

Chill

Document: SCAL 9807 Page 2 of 2

As Received MOSDAX Cal. Report 2: EMS - 1764 Module 323

Full Scale: 2000 (psia)

File: E-IDATA/CAL/0-2018/2006/26JAN2-1/01764

Pressure Reference: Paroscientific Model 42K-101 S/N 59937

Range: 2K PSI

Date of last reference to traceable standard: Oct 5 2017

Plot of Error vs. Reference Pressure

EMS - 1764 Module 323

Page 2 of 2

Issued by

l Bill

Document: SCAL 9607

As Received MOSDAX Cal. Report 1: EMS - 1764 Module 323

Fuil Scale: 2000 (psia)

File: E1DATA/CAL\0-2016/2009/25JAN2-1\01764

Pressure Reference: Paroscientific Model 42K-101 S/N 59937

Range: 2K PSI

Date of last reference to traceable standard: Oct 5 2017

Range 1 Tem	an 26 17:09:5 ip 3.1° C	52 2018	EMS - 1764 Ja Range 2 Tem		09 2018	EMS - 1764 Ja Range 3 Terr		9 2018
el Pres (psia)	Error (psia)	(% FS)	Ref Pres (psia)	Error (psia)	(% FS)	Ref Pres (psia)	Error (psia)	(% FS)
14.817	0.330	0.016	14.763	0.276	0.014	14.745	0.240	0.012
193.345	0.046	0.002	193.566	-0.061	-0.003	193,251		-0.003
393.618	-0.152	-0.008	392.913	-0.123	-0.006	392.313		-0.011
589.887	-0.055	-0.003	591.481	-0.147	-0.007	591.070	-0.165	-0.008
787.108	0.031	0.002	790.656	-0.043	-0.002	790.016	-0.146	-0.007
992.089	0.136	0.007	990.073	0.140	0.007	988.877	0.020	0.001
1191.192	0.219	0.011	1184.170	0.188	0.009	1189.677	0.022	0.001
1390.713	0.343	0.017	1382.638	0.231	0.012	1383,376	0.095	0.005
1589.940	0.337	0.017	1583.021	0.331	0.017	1582.918	0.179	0.009
1781.966	0.285	0.014	1783.679	0.185	0.009	1783.642	0.037	0.002
1987.965 1817.144	·0.022 0.265	-0.001 0.013	1991.373	0.007	0.000	1990.362		-0.010
1618.742	0.265	0.013	1816.737 1611.101	0.223 0.363	0.011 0.018	1807.379 1611.387	0.021 0.194	0.001
1413.125	0.394	0.020	1410.177	0.394	0.020	1410.184	0.194	0.010 0.007
1213.194	0.296	0.015	1209.052	0.302	0.015	1209.054	0.180	0.007
1009.488	0.252	0.013	1008.134	0.201	0.010	1007.771	0.089	0.004
807.541	0.117	0.006	809.316	0.037	0.002	807.386	-0.013	-0.001
606.650	0.016	0.001	608.601	-0.013	-0.001	608.200	-0.098	-0.005
406.828	-0.062	-0.003	406.467	-0.087	-0.004	407.925	-0.194	-0.010
205.695	0.104	0.005	205.759	0.050	0.002	206.304	-0.064	-0.003
14.824	0.336	0.017	14.783	0.297	0.015	14.730	0.225	0.011
EMS - 1764 J		38 2018	EMS - 1764 J Range 5 Ten	2.5	50 2018		2,553.35	
EMS - 1764 J Range 4 Ten Ref Pres (psia)	np 29.9° C		EMS - 1764 J Range 5 Ten Ref Pres (psia)	np 39.9° C				
Range 4 Ten	np 29.9° C		Range 5 Ten	np 39.9° C				
Range 4 Ten Ref Pres (psia) 14.664	пр 29.9° С Ептог (psia) 0.116	(% FS)	Rei Pres (psia)	np 39.9° C Error (psia) 0.132) (% FS)			
Range 4 Ten Ref Pres (psia) 14.664 193.289	np 29.9° C Error (psia) 0.116 -0.086	(% FS) 0.006 -0.004	Rei Pres (psia) 14.630 193.274	Error (psia) 0.132 -0.112	0.007 -0.006			
Range 4 Ten Ref Pres (psla) 14.664 193.289 392.551	0.116 -0.086 -0.268	(% FS) 0.006 -0.004 -0.013	Ref Pres (psia) 14.630 193.274 393.384	error (psia) 0.132 -0.112 -0.250	0.007 -0.006 -0.013			
Range 4 Ten Ref Pres (psla) 14.664 193.289 392.551 590.683	0.116 -0.086 -0.268 -0.206	0.006 -0.004 -0.013 -0.010	Range 5 Ten Ref Pres (psia) 14.630 193.274 393.384 590.646	9.9° C Error (psia) 0.132 -0.112 -0.250 -0.212	0.007 -0.006 -0.013 -0.011			
Range 4 Ten Ref Pres (psla) 14.664 193.289 392.551 590.683 790.879	пр 29.9° С Епог (psia) 0.116 -0.086 -0.268 -0.206 -0.114	0.006 -0.004 -0.013 -0.010 -0.006	Ref Pres (psla) 14.630 193.274 393.384 590.646 792.587	9.9° C Error (psia) 0.132 -0.112 -0.250 -0.212 -0.146	0.007 -0.006 -0.013 -0.011 -0.007			
Range 4 Ten Ref Pres (psia) 14.664 193.289 392.551 590.683 790.879 989.404	0.116 -0.086 -0.268 -0.206 -0.114 -0.069	0.006 -0.004 -0.013 -0.010 -0.006 -0.003	Ref Pres (psia) 14.630 193.274 393.384 590.646 792.587 989.121	9.9° C Error (psia) 0.132 -0.112 -0.250 -0.212 -0.146 -0.063	0.007 -0.006 -0.013 -0.011 -0.007 -0.003			
Range 4 Ten Ref Pres (psla) 14.664 193.289 392.551 590.883 790.879	0.116 -0.086 -0.268 -0.206 -0.114 -0.069 -0.084	0.006 -0.004 -0.013 -0.010 -0.006 -0.003 -0.004	Rei Pres (psia) 14.630 193.274 393.384 590.646 792.587 989.121 1188.417	0.132 -0.112 -0.250 -0.212 -0.146 -0.063 -0.088	0.007 -0.006 -0.013 -0.011 -0.007 -0.003 -0.004			
Range 4 Ten 14.664 193.289 392.551 590.683 790.879 989.404 1188.900	0.116 -0.086 -0.268 -0.206 -0.114 -0.069	0.006 -0.004 -0.013 -0.010 -0.006 -0.003	Ref Pres (psia) 14.630 193.274 393.384 590.646 792.587 989.121	9.9° C Error (psia) 0.132 -0.112 -0.250 -0.212 -0.146 -0.063	0.007 -0.006 -0.013 -0.011 -0.007 -0.003			
14.654 193.289 392.551 590.883 790.879 989.404 1188.900 1383.144	0.116 -0.086 -0.268 -0.206 -0.114 -0.069 -0.084 0.013	0.006 -0.004 -0.013 -0.010 -0.003 -0.004 0.004 0.001 0.000 -0.008	Ref Pres (psia) 14.630 193.274 393.384 590.646 792.587 989.121 1188.417 1390.226	9.9° C Error (psia) 0.132 -0.112 -0.250 -0.212 -0.146 -0.063 -0.088 0.034	0.007 -0.006 -0.013 -0.011 -0.007 -0.003 -0.004 0.002			
14.664 193.289 392.551 590.683 790.879 989.404 1188.990 1383.144 1582.510 1783.117 1990.420	0.116 -0.086 -0.268 -0.206 -0.114 -0.069 -0.084 0.013 -0.007 -0.157 -0.345	0.006 -0.004 -0.013 -0.010 -0.008 -0.003 -0.004 0.001 0.000 -0.008 -0.008	Range 5 Ten Ref Pres (psla) 14.630 193.274 393.384 590.646 792.587 989.121 1188.417 1390.226 1582.457 1783.077 1990.337	0.132 -0.112 -0.250 -0.212 -0.146 -0.063 -0.088 0.034 0.014 -0.071 -0.153	0.007 -0.006 -0.013 -0.011 -0.007 -0.003 -0.004 0.002 0.001			
14.654 193.289 392.551 590.883 790.879 989.404 1188.900 1383.144 1582.510 1783.117 1990.420 1817.923	0.116 -0.086 -0.268 -0.206 -0.114 -0.069 -0.084 0.013 -0.007 -0.345 -0.132	0.006 -0.004 -0.013 -0.010 -0.006 -0.003 -0.004 0.001 0.000 -0.008 -0.017 -0.007	Ref Pres (psia) 14.630 193.274 393.384 590.646 792.587 989.121 1188.417 1390.226 1582.457 1783.077 1990.337 1609.812	0.132 -0.112 -0.112 -0.250 -0.212 -0.146 -0.063 -0.088 0.034 0.014 -0.071 -0.153 -0.030	0.007 -0.006 -0.013 -0.011 -0.007 -0.003 -0.004 -0.002 -0.001 -0.008 -0.008			
14.654 193.289 392.551 590.883 790.879 989.404 1188.900 1383.144 1582.510 1783.117 1990.420 1817.923 1612.561	0.116 -0.086 -0.268 -0.206 -0.114 -0.069 -0.084 0.013 -0.007 -0.157 -0.345 -0.132 0.056	0.006 -0.004 -0.013 -0.010 -0.006 -0.003 -0.004 0.001 0.000 -0.008 -0.017 -0.007 0.003	Ref Pres (psia) 14.630 193.274 393.384 590.646 792.587 989.121 1188.417 1390.226 1582.457 1783.077 1990.337 1809.812 1612.027	9.9° C Error (psia) 0.132 -0.112 -0.250 -0.212 -0.146 -0.063 -0.088 0.034 0.014 -0.071 -0.153 -0.030 0.074	0.007 -0.006 -0.013 -0.011 -0.007 -0.003 -0.004 0.002 0.001 -0.004 -0.008 -0.002 0.004			
14.654 193.289 392.551 590.883 790.879 989.404 1188.900 1383.144 1582.510 1783.117 1990.420 1817.923 1612.561 1409.796	0.116 -0.086 -0.268 -0.268 -0.114 -0.069 -0.013 -0.007 -0.157 -0.345 -0.132 0.058	0.006 -0.004 -0.013 -0.010 -0.006 -0.003 -0.004 -0.001 -0.008 -0.017 -0.007 -0.003 0.003	Range 5 Ten Ref Pres (psia) 14.630 193.274 393.384 590.646 792.587 989.121 1188.417 1390.226 1582.457 1783.077 1990.377 1899.812 1612.027 1410.656	0.132 -0.112 -0.112 -0.250 -0.212 -0.146 -0.063 -0.088 0.034 0.014 -0.071 -0.153 -0.030 0.074	0.007 -0.006 -0.013 -0.011 -0.007 -0.003 -0.004 -0.002 -0.004 -0.008 -0.008 -0.002 0.001			
14.654 193.289 392.551 590.683 790.879 989.404 1188.900 1383.144 1582.510 1783.117 1990.420 1817.923 1612.561 1409.796 1208.930	0.116 -0.086 -0.268 -0.268 -0.206 -0.114 -0.069 -0.013 -0.007 -0.157 -0.345 -0.132 0.058 0.058	0.006 -0.004 -0.013 -0.010 -0.005 -0.003 -0.004 0.001 0.000 -0.008 -0.017 -0.007 0.003 0.003 0.001	Range 5 Ten Ref Pres (psia) 14.630 193.274 393.384 590.646 792.587 989.121 1188.417 1390.226 1582.457 1783.077 1990.337 1809.812 1612.027 1410.656 1207.895	0.132 -0.112 -0.250 -0.212 -0.146 -0.063 -0.088 0.034 0.014 -0.071 -0.153 -0.030 0.074 0.058	0.007 -0.006 -0.013 -0.011 -0.007 -0.004 0.002 0.001 -0.004 -0.008 -0.002 0.001 0.001			
14.664 193.289 392.551 590.683 790.879 989.404 1188.900 1383.144 1582.510 1783.117 1990.420 1817.923 1812.561 1409.796 1208.930 1007.679	0.116 -0.086 -0.268 -0.206 -0.114 -0.069 -0.084 0.013 -0.007 -0.157 -0.345 -0.132 0.058 0.058 0.015	0.006 -0.004 -0.013 -0.010 -0.008 -0.004 0.004 0.001 -0.008 -0.017 -0.007 0.003 0.003 0.001 0.000	Range 5 Ten Ref Pres (psla) 14.630 193.274 393.384 590.646 792.587 989.121 1188.417 1390.226 1582.457 1783.077 1990.337 1809.812 1612.027 1410.656 1207.895 1007.484	0.132 -0.112 -0.112 -0.250 -0.212 -0.146 -0.063 -0.088 0.034 -0.071 -0.153 -0.030 0.074 0.058 0.014	0.007 -0.006 -0.013 -0.011 -0.007 -0.003 -0.004 -0.004 -0.008 -0.002 0.001 -0.004 0.002 0.001 0.0004			
14.664 193.289 392.551 590.683 790.879 989.404 1188.900 1383.144 1582.510 1783.117 1990.420 1817.923 1612.561 1409.796 1208.930 1007.679 807.799	0.116 -0.086 -0.268 -0.206 -0.114 -0.069 -0.084 0.013 -0.007 -0.157 -0.345 -0.132 0.058 0.058 0.058 0.015	0.006 -0.004 -0.013 -0.010 -0.008 -0.003 -0.004 0.001 -0.008 -0.017 -0.007 0.003 0.003 0.001 0.000 -0.003	Range 5 Ten Ref Pres (psla) 14.630 193.274 393.384 590.646 792.587 989.121 1188.417 1390.226 1582.457 1783.077 1990.337 1809.812 1612.027 1410.656 1207.895 1007.484 807.295	0.132 -0.112 -0.112 -0.250 -0.212 -0.146 -0.063 -0.088 0.034 0.014 -0.071 -0.153 -0.030 0.074 0.058	0.007 -0.006 -0.013 -0.011 -0.007 -0.003 -0.004 -0.002 -0.004 -0.008 -0.002 0.001 0.003 0.001 0.003 0.001 0.000			
14.664 193.289 392.551 590.683 790.879 989.404 1188.900 1383.144 1582.510 1783.117 1990.420 1817.923 1612.561 1409.796 1208.930 1007.679 607.799 607.517	0.116 -0.086 -0.268 -0.268 -0.206 -0.114 -0.069 -0.084 0.013 -0.007 -0.132 0.056 0.058 0.015 0.0015 -0.0017 -0.077 -0.131	0.006 -0.004 -0.013 -0.010 -0.006 -0.003 -0.004 -0.001 0.000 -0.008 -0.007 -0.003 0.003 0.001 0.000 -0.004 -0.004 -0.007	Range 5 Ten Ref Pres (psla) 14.630 193.274 393.384 590.646 792.587 989.121 1188.417 1390.226 1582.457 1783.077 1990.337 1809.812 1612.027 1410.656 1207.895 1007.484 807.295 608.401	9.9° C Error (psia) 0.132 -0.112 -0.250 -0.212 -0.146 -0.063 -0.088 0.034 0.014 -0.071 -0.153 -0.030 0.074 0.058 0.014 0.000 -0.062 -0.150	0.007 -0.006 -0.013 -0.011 -0.007 -0.003 -0.004 -0.002 -0.004 -0.008 -0.002 0.001 0.003 0.001 0.003 -0.003			
14.654 193.289 392.551 590.883 790.879 989.404 1188.900 1383.144 1582.510 1783.117 1990.420 1817.923 1612.561 1409.796 1208.930 1007.679 607.517 406.301	0.116 -0.086 -0.268 -0.268 -0.206 -0.114 -0.069 -0.084 0.013 -0.007 -0.345 -0.132 0.058 0.058 0.015 0.001 -0.007 -0.131	0.006 -0.004 -0.013 -0.010 -0.006 -0.003 -0.004 -0.001 -0.008 -0.017 -0.003 0.003 0.003 0.003 0.003 0.003 -0.004 -0.007 -0.007	Range 5 Ten Ref Pres (psia) 14.630 193.274 393.384 590.646 792.587 989.121 1188.417 1390.226 1582.457 1783.077 1990.337 1809.812 1612.027 1410.656 1207.895 1007.484 807.295 608.401 406.285	0.132 -0.112 -0.250 -0.212 -0.146 -0.063 -0.088 0.034 -0.071 -0.153 -0.030 0.074 0.058 0.014 0.000 -0.052 -0.150 -0.249	0.007 -0.006 -0.013 -0.011 -0.007 -0.003 -0.004 -0.002 -0.004 -0.008 -0.002 0.001 0.0001 0.0001 -0.0003 -0.0003 -0.0007 -0.0012			
14.664 193.289 392.551 590.683 790.879 989.404 1188.900 1383.144 1582.510 1783.117 1990.420 1817.923 1612.561 1409.796 1208.930 1007.679 607.799 607.517	0.116 -0.086 -0.268 -0.268 -0.114 -0.069 -0.084 -0.013 -0.007 -0.132 -0.056 0.058 0.015 -0.001 -0.001 -0.001	0.006 -0.004 -0.013 -0.010 -0.003 -0.003 -0.004 -0.001 -0.007 -0.007 -0.003 -0.004 -0.001 -0.003 -0.004 -0.007 -0.007 -0.007	Range 5 Ten Ref Pres (psla) 14.630 193.274 393.384 590.646 792.587 989.121 1188.417 1390.226 1582.457 1783.077 1990.337 1809.812 1612.027 1410.656 1207.895 1007.484 807.295 608.401	9.9° C Error (psia) 0.132 -0.112 -0.250 -0.212 -0.146 -0.063 -0.088 0.034 0.014 -0.071 -0.153 -0.030 0.074 0.058 0.014 0.000 -0.062 -0.150	0.007 -0.006 -0.013 -0.011 -0.007 -0.003 -0.004 -0.002 -0.004 -0.008 -0.002 0.001 -0.002 0.001 -0.003 -0.003 -0.003 -0.003 -0.007 -0.008			
Range 4 Ten Ref Pres (psla) 14.664 193.289 392.551 590.683 790.879 989.404 1188.990 1383.144 1582.510 1783.117 1990.420 1817.923 1612.561 1409.796 1208.930 1007.679 607.799 607.517 406.301 205.701	0.116 -0.086 -0.268 -0.268 -0.268 -0.114 -0.069 -0.084 0.013 -0.007 -0.157 -0.345 -0.132 0.058 0.015 0.001 -0.077 -0.131 -0.148 -0.059	0.006 -0.004 -0.013 -0.010 -0.006 -0.003 -0.004 -0.001 -0.008 -0.017 -0.003 0.003 0.003 0.003 0.003 0.003 -0.004 -0.007 -0.007	Range 5 Ten Ref Pres (psia) 14.630 193.274 393.384 590.646 792.587 989.121 1188.417 1390.226 1582.457 1783.077 1990.337 1809.812 1612.027 1410.656 1207.895 1007.484 807.295 608.401 406.285 205.685	0.132 -0.112 -0.112 -0.250 -0.212 -0.146 -0.063 -0.088 0.034 -0.071 -0.153 -0.030 0.074 0.058 0.014 0.000 -0.062 -0.150 -0.249 -0.152	0.007 -0.006 -0.013 -0.011 -0.007 -0.003 -0.004 -0.002 -0.004 -0.008 -0.002 0.001 0.0001 0.0001 -0.0003 -0.0003 -0.0007 -0.0012			

espillh Issued by

MOSDAX Calibration Report 1: EMS - 2652 Module 3008

Full Scale: 2000 (psia)

File: E-DATA/CAL/0-2018/2000/2JUNE2-1/02652

Pressure Reference: Paroscientific Model 42K-101 S/N 59937

Range: 2K PSI

Date of last reference to traceable standard: Oct 5 2017

EMS - 2652 J Range 1 Ten		14 2018	EMS - 2652 Ji Range 2 Terr		36 2018	EMS - 2652 Ja Range 3 Tem		0 2018
tef Pres (psia)	Error (psia)	(% FS)	Ref Pres (psia)	Error (psia)	(% FS)	Ref Pres (psia)	Error (psia)	(% FS)
14.846		-0.007	14.855	-0.105	-0.005	14.842	-0.118	-0.006
192.843	-0.001	0.000	192.231	-0.010	-0.001	194.509		-0.005
393.849	0.122	0.006	393.607	0.068	0.003	390.935	0.064	0.003
587.948 791.882		-0.001 -0.001	593,420 792,296	0.070 0.087	0.003 0.004	592.897	0.002	0.000
990.911		-0.003	991.833	0.075	0.004	791.655 991.348	0.062 0.019	0.003
1190.327		-0.009	1191.049	-0.061	-0.003	1190.921		-0.006
1390.264	-0.181	-0.009	1390.953	-0.006	0.000	1390.842		-0.002
1589.406	-0.082	-0.004	1589.174	0.014	0.001	1589.397		-0.001
1781.525	0.044	0.002	1781.549	0.156	0.008	1781.207	0.088	0.004
1989.515	0.123	0.006	1989.230	0.324	0.016	1989.355	0.295	0.015
1818.398	0.071	0.004	1818.861	0.206	0.010	1816.258	0.129	0.006
1619.022 1412.880	-0.012 -0.003	-0.001 0.000	1618.518	0.147 0.075	0.007	1618.089	0.091	0.005
1211.907	-0.003	-0.002	1415.894 1212.127	0.075	0.004 0.005	1413.069 1212.924	0.081 0.023	0.004 0.001
1009.806	0.075	0.004	1010.514	0.213	0.003	1009.965	0.189	0.009
808.334	0.096	0.005	808.014	0.218	0.011	807.813	0.215	0.011
606.956	0.169	0.008	606.949	0.179	0.009	606.634	0.213	0.011
406.373	0.123	0.006	406.191	0.137	0.007	407.189	0.192	0.010
205.741 14.848	0.110 -0.083	0.006 -0.004	206.072 14.863	0.110 -0.040	0.005 -0.002	205.699 14.852	0.162 -0.051	0.008 -0.003
EMS - 2652	lun 01 22:31:	07 2018	EMS - 2652 J	un 01 17:53:	01 2018			
EMS - 2652 . Range 4 Ter		07 2018	EMS - 2652 J Range 5 Ten		01 2018			
Range 4 Ter	np 30.0° C		12	np 39.8° C		94		
	np 30.0° C		Range 5 Ten	np 39.8° C			ANALONI SE LA DEL LA PERSONA ANTI	
Range 4 Ter Ref Pres (psia) 14.847 194.042	np 30.0° C Error (psia) -0.019 -0.002	-0.001 0,000	Range 5 Ten Ref Pres (psia) 14.838 194.229	np 39.8° C Error (psia) -0.006 0.072	0.000 0.004		ANAMATI ANI ANI ANI ANI ANI ANI ANI ANI ANI AN	
Range 4 Ter Ref Pres (psia) 14.847 194.042 393.209	np 30.0° C Error (psia) -0.019 -0.002 0.097	-0.001 0.000 0.005	Range 5 Ten Ref Pres (psia) 14.838 194.229 393.823	-0.006 0.072 0.095	0.000 0.004 0.005			and province and an experience of
Range 4 Ter Ref Pres (psia) 14.847 194.042 393.209 593.265	пр 30.0° С Епот (psia) -0.019 -0.002 0.097 0.087	-0.001 0.000 0.005 0.004	Range 5 Ten Ref Pres (psia) 14.838 194.229 393.823 592.922	-0.006 0.072 0.095	0.000 0.004 0.005 0.005		AND	Adjusting hard plate a
Range 4 Ter Ref Pres (psia) 14.847 194.042 393.209 593.265 792.056	-0.019 -0.002 0.087 0.052	-0.001 0.000 0.005 0.004 0.003	Range 5 Ten Ref Pres (psia) 14.838 194.229 393.823 592.922 792.743	-0.006 0.072 0.095 0.066	0.000 0.004 0.005 0.005 0.003			
Range 4 Ter Ref Pres (psia) 14.847 194.042 393.209 593.265 792.056 991.614	-0.019 -0.002 0.087 0.052 0.043	-0.001 0.000 0.005 0.004 0.003 0.002	Range 5 Ten Ref Pres (psia) 14,838 194,229 393,823 592,922 792,743 991,261	-0.006 0.072 0.095 0.066 0.057	0.000 0.004 0.005 0.005 0.003 0.003			
Range 4 Ter Ref Pres (psia) 14.847 194.042 393.209 593.265 792.056 991.614 1189.236	-0.019 -0.002 -0.097 -0.052 0.052 0.043 -0.151	-0.001 0.000 0.005 0.004 0.003 0.002 -0.008	Range 5 Ten Ref Pres (psia) 14.838 194.229 393.823 592.922 792.743 991.261 1190.280	-0.006 0.072 0.095 0.099 0.066 0.057 -0.056	0.000 0.004 0.005 0.005 0.003 -0.003			Albumingan handindara u
Range 4 Ter Ref Pres (psia) 14.847 194.042 393.209 593.265 792.056 991.614 1189.236 1389.839	-0.019 -0.002 0.097 0.087 0.052 0.043 -0.151 -0.128	-0.001 0.000 0.005 0.004 0.003 0.002 -0.008 -0.006	Ref Pres (psia) 14.838 194.229 393.823 592.922 792.743 991.261 1190.280 1389.590	-0.006 0.072 0.095 0.066 0.057 -0.056 -0.057	0,000 0,004 0,005 0,005 0,003 0,003 -0,003 -0,003			Andrewsgan handsgated as
Range 4 Ter Ref Pres (psia) 14.847 194.042 393.209 593.265 792.056 991.614 1189.236	-0.019 -0.002 -0.097 -0.052 0.052 0.043 -0.151	-0.001 0.000 0.005 0.004 0.003 0.002 -0.008	Range 5 Ten Ref Pres (psia) 14.838 194.229 393.823 592.922 792.743 991.261 1190.280	-0.006 0.072 0.095 0.099 0.066 0.057 -0.056	0.000 0.004 0.005 0.005 0.003 -0.003			
Range 4 Ter Ref Pres (psia) 14.847 194.042 393.209 593.265 792.056 991.614 1189.236 1389.839 1588.713 1788.124 1989.624	-0.019 -0.002 -0.087 -0.052 -0.043 -0.151 -0.128 -0.048	-0.001 0.000 0.005 0.004 0.003 0.002 -0.008 -0.006 -0.002 0.003 0.010	Range 5 Ten Ref Pres (psia) 14.838 194.229 393.823 592.922 792.743 991.261 1190.280 1389.590 1588.437	-0.006 0.072 0.095 0.099 0.066 0.057 -0.056 -0.057	0.000 0.004 0.005 0.005 0.003 0.003 -0.003 -0.003			
Range 4 Ter Ref Pres (psia) 14.847 194.042 393.209 593.265 792.056 991.614 1189.236 1389.839 1588.713 1788.124 1989.624 1817.189	-0.019 -0.002 -0.087 -0.052 0.043 -0.151 -0.128 -0.048 0.061 0.201	-0.001 0.000 0.005 0.004 0.003 0.002 -0.006 -0.002 0.003 0.010 0.007	Range 5 Ten Ref Pres (psia) 14.838 194.229 393.823 592.922 792.743 991.261 1190.280 1389.590 1588.437 1789.309 1989.755 1818.126	-0.006 0.072 0.095 0.066 0.057 -0.056 -0.057 0.020 0.187 0.368 0.224	0.000 0.004 0.005 0.005 0.003 -0.003 -0.003 -0.003 0.001 0.001 0.009			
Range 4 Ter Ref Pres (psia) 14.847 194.042 393.209 593.265 792.056 991.614 1189.236 1389.839 1588.713 1788.124 1989.624 1817.189 1616.308	-0.019 -0.002 0.087 0.052 0.043 -0.151 -0.128 -0.048 0.061 0.201 0.140 0.001	-0.001 -0.000 0.005 0.004 0.003 0.002 -0.008 -0.006 -0.002 0.003 0.010 0.007 0.007	Range 5 Ten Ref Pres (psia) 14.838 194.229 393.823 592.922 792.743 991.261 1190.280 1389.590 1588.437 1789.309 1989.755 1818.126 1615.388	-0.006 0.072 0.095 0.099 0.066 0.057 -0.056 -0.057 0.020 0.187 0.368 0.224 0.129	0.000 0.004 0.005 0.005 0.003 -0.003 -0.003 -0.003 0.001 0.001 0.009 0.018 0.011			AND THE RESIDENCE OF THE PROPERTY OF THE PROPE
Range 4 Ter Ref Pres (psia) 14.847 194.042 393.209 593.265 792.056 991.614 1189.236 1389.839 1588.713 1788.124 1989.624 1817.189 1616.308 1412.900	-0.019 -0.002 0.097 0.087 0.052 0.043 -0.151 -0.128 -0.048 0.061 0.201 0.140 0.001	-0.001 0.000 0.005 0.004 0.003 0.002 -0.008 -0.006 -0.002 0.003 0.010 0.007 0.000 0.001	Ref Pres (psia) 14.838 194.229 393.823 592.922 792.743 991.261 1190.280 1389.590 1588.437 1789.309 1989.755 1818.126 1615.388 1413.930	-0.006 0.072 0.095 0.099 0.066 0.057 -0.056 -0.057 0.020 0.187 0.368 0.224 0.129	0.000 0.004 0.005 0.005 0.003 -0.003 -0.003 -0.003 0.001 0.001 0.009 0.018 0.011			
Range 4 Ter Ref Pres (psia) 14.847 194.042 393.209 593.265 792.056 991.614 1189.236 1389.839 1588.713 1788.124 1989.624 1817.189 1616.308 1412.900 1212.611	-0.019 -0.002 0.087 0.052 0.043 -0.151 -0.128 -0.048 0.061 0.201 0.140 0.001 0.0022 0.060	-0.001 0.000 0.005 0.004 0.003 0.002 -0.008 -0.002 0.003 0.010 0.007 0.007 0.000 0.001	Ref Pres (psia) 14.838 194.229 393.823 592.922 792.743 991.261 1190.280 1389.590 1588.437 1789.309 1989.755 1818.126 1615.388 1413.930 1208.395	-0.006 0.072 0.095 0.095 0.095 0.057 -0.056 -0.057 0.020 0.187 0.368 0.224 0.129 0.177	0.000 0.004 0.005 0.005 0.003 0.003 -0.003 -0.003 0.001 0.009 0.018 0.011 0.009 0.009			
Range 4 Ter Ref Pres (psia) 14.847 194.042 393.209 593.265 792.056 991.614 1189.236 1389.839 1588.713 1788.124 1989.624 1817.189 1616.308 1412.900 1212.611 1009.750	-0.019 -0.002 0.097 0.087 0.052 0.043 -0.151 -0.128 -0.048 0.061 0.201 0.140 0.001 0.002 0.050 0.246	-0.001 0.000 0.005 0.004 0.003 0.002 -0.008 -0.002 -0.003 0.010 0.007 0.000 0.001 0.003 0.012	Range 5 Ten Ref Pres (psia) 14.838 194.229 393.823 592.922 792.743 991.261 1190.280 1389.590 1588.437 1789.309 1989.755 1818.126 1615.388 1413.930 1208.395 1009.785	-0.006 0.072 0.095 0.095 0.057 -0.056 -0.057 0.020 0.187 0.368 0.224 0.129 0.177 0.080	0.000 0.004 0.005 0.005 0.003 0.003 -0.003 -0.003 0.001 0.009 0.018 0.011 0.006 0.009 0.004 0.015			
Range 4 Ter Ref Pres (psia) 14.847 194.042 393.209 593.265 792.056 991.614 1189.236 1389.839 1588.713 1788.124 1989.624 1817.189 1616.308 1412.900 1212.611	-0.019 -0.002 0.087 0.052 0.043 -0.151 -0.128 -0.048 0.061 0.201 0.140 0.001 0.0022 0.060	-0.001 0.000 0.005 0.004 0.003 0.002 -0.008 -0.002 0.003 0.010 0.007 0.007 0.000 0.001	Range 5 Ten 14.838 194.229 393.823 592.922 792.743 991.261 1190.280 1389.590 1588.437 1789.309 1989.755 1818.126 1615.388 1413.930 1208.395 1009.785 808.128	-0.006 0.072 0.095 0.095 0.057 -0.056 -0.057 0.020 0.187 0.368 0.224 0.129 0.177 0.080 0.309	0.000 0.004 0.005 0.005 0.003 -0.003 -0.003 -0.003 0.001 0.009 0.018 0.011 0.006 0.009 0.009 0.004 0.015			
Range 4 Ter Ref Pres (psia) 14.847 194.042 393.209 593.265 792.056 991.614 1189.236 1389.839 1588.713 1788.124 1989.624 1817.189 1616.308 1412.900 1212.611 1009.750 808.478	-0.019 -0.002 0.097 0.087 0.052 0.043 -0.151 -0.128 -0.048 0.061 0.201 0.140 0.001 0.022 0.060 0.246 0.183 0.225 0.233	-0.001 0.000 0.005 0.004 0.003 0.002 -0.006 -0.005 0.003 0.010 0.007 0.000 0.001 0.003 0.012 0.009	Range 5 Ten Ref Pres (psia) 14.838 194.229 393.823 592.922 792.743 991.261 1190.280 1389.590 1588.437 1789.309 1989.755 1818.126 1615.388 1413.930 1208.395 1009.785	-0.006 0.072 0.095 0.095 0.057 -0.056 -0.057 0.020 0.187 0.368 0.224 0.129 0.177 0.080	0.000 0.004 0.005 0.005 0.003 0.003 -0.003 -0.003 0.001 0.009 0.018 0.011 0.006 0.009 0.004 0.015			
Range 4 Ter Ref Pres (psia) 14.847 194.042 393.209 593.265 792.056 991.614 1189.236 1389.839 1588.713 1788.124 1989.624 1817.189 1616.308 1412.900 1212.611 1009.750 808.478 606.817 406.968 205.745	-0.019 -0.002 0.097 0.087 0.052 0.043 -0.151 -0.128 -0.048 0.061 0.201 0.140 0.001 0.022 0.060 0.246 0.183 0.225 0.233 0.163	-0.001 0.000 0.005 0.004 0.003 0.002 -0.006 -0.002 0.003 0.010 0.007 0.000 0.001 0.003 0.012 0.009 0.011 0.012 0.009	Range 5 Ten Ref Pres (psia) 14.838 194.229 393.823 592.922 792.743 991.261 1190.280 1389.590 1588.437 1789.309 1989.755 1818.126 1615.388 1413.930 1208.395 1009.785 808.128 606.791 407.604 206.494	-0.006 0.072 0.095 0.099 0.066 0.057 -0.056 -0.057 0.020 0.187 0.368 0.224 0.129 0.177 0.080 0.309 0.308 0.317 0.144 0.092	0.000 0.004 0.005 0.005 0.003 -0.003 -0.003 -0.001 0.001 0.001 0.009 0.018 0.015 0.005 0.005			
Range 4 Ter Ref Pres (psia) 14.847 194.042 393.209 593.265 792.056 991.614 1189.236 1389.839 1588.713 1788.124 1989.624 1817.189 1616.308 1412.900 1212.611 1009.750 808.478 606.817 406.966	-0.019 -0.002 0.097 0.087 0.052 0.043 -0.151 -0.128 -0.048 0.061 0.201 0.140 0.001 0.022 0.060 0.246 0.183 0.225 0.233	-0.001 0.000 0.005 0.004 0.003 0.002 -0.008 -0.006 -0.002 0.003 0.010 0.007 0.000 0.001 0.003 0.012 0.009 0.011	Ref Pres (psia) 14.838 194.229 393.823 592.922 792.743 991.261 1190.280 1389.590 1588.437 1789.309 1989.755 1818.126 1615.388 1413.930 1208.395 1009.785 808.128 606.791 407.604	-0.006 0.072 0.095 0.099 0.066 0.057 -0.056 -0.057 0.020 0.187 0.368 0.224 0.129 0.177 0.080 0.309 0.308 0.317 0.144	0.000 0.004 0.005 0.005 0.003 -0.003 -0.003 -0.003 0.001 0.009 0.018 0.011 0.006 0.009 0.004 0.015 0.015 0.007			

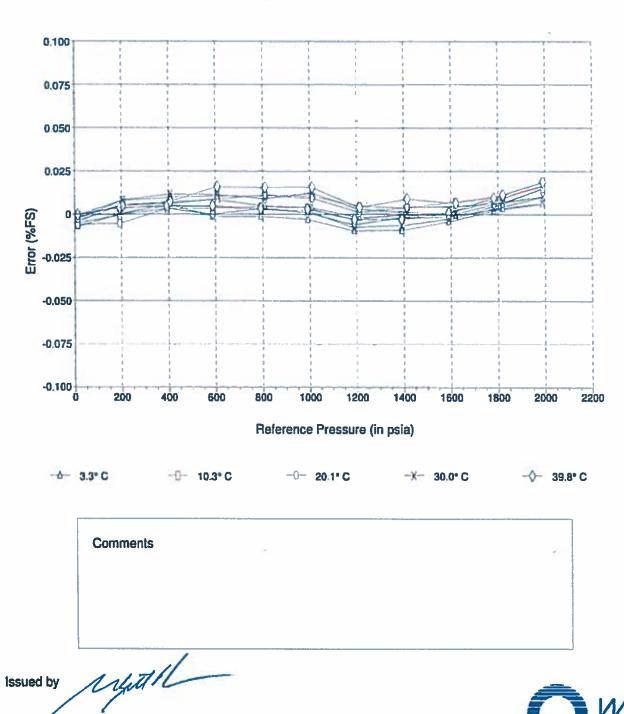
Issued by Askill

Document: SCAL 9607

MOSDAX Calibration Report 2: EMS - 2652 Module 3008

Full Scale: 2000 (psia)

File E (DATA/CALVO-2018/2000/2JUNE2-1/02652


Pressure Reference: Paroscientific Model 42K-101 S/N 59937

Range: 2K PSI

Date of last reference to traceable standard: Oct 5 2017

Plot of Error vs. Reference Pressure

EMS - 2652 Module 3008

Issued by

Document: SCAL 9607

Page 2 of 2

As Received MOSDAX Cal. Report 1: EMS - 2652 Module 3008

Full Scale: 2000 (psia)

File: E \DATA\CAL\0-2018\2000\2JUNE2-1\02852

Pressure Reference: Paroscientific Model 42K-101 S/N 59937

Date of last reference to traceable standard: Oct 5 2017

Range: 2K PSI

range i rem	p 3.3° C	4 2018	EMS - 2652 Ji Range 2 Tem		36 2018	EMS - 2652 Ju Range 3 Tem		2018
Rel Pres (psia)	Error (psia)	(% FS)	Ref Pres (psia)	Error (psia)	(% FS)	Ref Pres (psia)	Error (psia)	(% FS)
14.846	0.013	0.001	14.855	0.042	0.002	14.842	0.032	0.002
192.843	0.170	0.008	192.231	0.155	800.0	194.509	0.061	0.003
393.849	0.313	0.016	393.607	0.255	0.013	390.935	0.244	0.012
587.948	0.190	0.009	593.420	0.277	0.014	592.897	0.196	0.010
791.882	0.218	0.011	792.296	0.315	0.016	791.655	0.268	0.013
990.911	0.211	0.011	991.833	0.321	0.016	991.348	0.236	0.012
1190.327	0.110	0.005	1191.049	0.204	0.010	1190.921	0.105	0.005
1390.264	0.152	800.0	1390.953	0.279	0.014	1390.842	0.196	0.010
1589.406	0.286	0.014	1589.174	0.318	0.016	1589.397	0.211	0.011
1781.525	0.449	0.022	1781.549	0.476	0.024	1781.207	0.331	0.017
1989.515	0.569	0.028	1989.230	0.662	0.033	1989.355	0.540	0.027
1818.398	0.484	0.024	1818.861	0.530	0.027	1816.258	0.372	0.019
1619.022	0.362	0.018	1618.518	0.453	0.023	1618.089	0.330	0.013
1412.880	0.333	0.017	1415.894	0.362	0.018	1413.069	0.314	0.016
1211.907	0.264	0.013	1212.127	0.362	0.018	1212.924	0.250	0.013
1009.806	0.346	0.017	1010.514	0.462	0.023	1009.965	0.407	0.020
808.334	0.338	0.017	808.014	0.447	0.022	807.813	0.422	0.021
606.956	0.385	0.019	606.949	0.388	0.019	606.634	0.408	0.020
406.373	0.315	0.016	406.191	0.325	0.015	407.189	0.373	0.019
205.741	0.282	0.014	206.072	0.277	0.014	205.699	0.378	0.016
14.848	0.072	0.004	14.863	0.107	0.005	14.852	0.098	0.005
EMS - 2652 J	un 01 22:31:	07 2018	EMS - 2652 J	un 01 17:53:	01 2018			
Range 4 Ten	np 30.0° C		Range 5 Ten	np 39.8° C				
		(% FS)	Range 5 Ten		(% FS)			
		0.007		Error (psia)	(% FS)			
Ref Pres (psia)	Error (psia) 0.148 0.167		Ref Pres (psia)	Error (psia)	5550 EW			
Ref Pres (psia)	Error (psia)	0.007	Ref Pres (psia)	Error (psia)	0.010			
Ref Pres (psia) 14.847 194.042	Error (psia) 0.148 0.167	0.007 0.008	Ref Pres (psia) 14.838 194.229	Error (psia) 0.193 0.252	0.010 0.013			
14.847 194.042 393.209	0.148 0.167 0.270 0.263 0.233	0.007 0.008 0.013	Ref Pres (psia) 14.838 194.229 393.823 592.922 792.743	0.193 0.252 0.259	0.010 0.013 0.013			
14.847 194.042 393.209 593.265	Епог (psia) 0.148 0.167 0.270 0.263	0.007 0.008 0.013 0.013	Ref Pres (psia) 14.838 194.229 393.823 592.922	0.193 0.252 0.259 0.253 0.216 0.209	0.010 0.013 0.013 0.013			
14.847 194.042 393.209 593.265 792.056	0.148 0.167 0.270 0.263 0.233	0.007 0.008 0.013 0.013 0.012	Ref Pres (psia) 14.838 194.229 393.823 592.922 792.743	0.193 0.252 0.259 0.253 0.216 0.209 0.104	0.010 0.013 0.013 0.013 0.011			
14.847 194.042 393.209 593.265 792.056 991.614	0.148 0.167 0.270 0.263 0.233 0.229	0.007 0.008 0.013 0.013 0.012 0.011	Ref Pres (psia) 14.838 194.229 393.823 592.922 792.743 991.261	0.193 0.252 0.259 0.253 0.216 0.209	0.010 0.013 0.013 0.013 0.011 0.010			
14.847 194.042 393.209 593.265 792.056 991.614 1189.236 1389.839 1588.713	0.148 0.167 0.270 0.263 0.233 0.229 0.040 0.070 0.156	0.007 0.008 0.013 0.013 0.012 0.011	14.838 194.229 393.823 592.922 792.743 991.261 1190.280	0.193 0.252 0.259 0.253 0.216 0.209 0.104	0.010 0.013 0.013 0.013 0.011 0.010 0.005			
14.847 194.042 393.209 593.265 792.056 991.614 1189.236 1389.839	0.148 0.167 0.270 0.263 0.233 0.233 0.229 0.040 0.070	0.007 0.008 0.013 0.013 0.012 0.011 0.002 0.003	14.838 194.229 393.823 592.922 792.743 991.261 1190.280 1389.590	0.193 0.252 0.259 0.253 0.216 0.209 0.104 0.117	0.010 0.013 0.013 0.013 0.011 0.010 0.005 0.008			
14.847 194.042 393.209 593.265 792.056 991.614 1189.236 1389.839 1588.713	0.148 0.167 0.270 0.263 0.233 0.229 0.040 0.070 0.156	0.007 0.008 0.013 0.013 0.012 0.011 0.002 0.003 0.008	14.638 194.229 393.823 592.922 792.743 991.261 1190.280 1389.590 1588.437	0.193 0.252 0.259 0.253 0.216 0.209 0.104 0.117 0.215	0.010 0.013 0.013 0.013 0.011 0.010 0.005 0.008 0.011			
14.847 194.042 393.209 593.265 792.056 991.614 1189.236 1389.839 1588.713 1788.124 1989.624 1817.189	0.148 0.167 0.270 0.263 0.233 0.229 0.040 0.070 0.156 0.271 0.418 0.351	0.007 0.008 0.013 0.013 0.012 0.011 0.002 0.003 0.008 0.014	14.838 194.229 393.823 592.922 792.743 991.261 1190.280 1389.590 1588.437 1789.309	0.193 0.252 0.259 0.253 0.216 0.209 0.104 0.117 0.215 0.410 0.624 0.450	0.010 0.013 0.013 0.013 0.011 0.010 0.005 0.008 0.011			
14.847 194.042 393.209 593.265 792.056 991.614 1189.236 1389.839 1588.713 1788.124 1989.624	0.148 0.167 0.270 0.263 0.233 0.229 0.040 0.070 0.156 0.271 0.418	0.007 0.008 0.013 0.013 0.012 0.011 0.002 0.003 0.008 0.014 0.021	14.838 194.229 393.823 592.922 792.743 991.261 1190.280 1389.590 1588.437 1789.309 1989.755	0.193 0.252 0.259 0.253 0.216 0.209 0.104 0.117 0.215 0.410 0.624	0.010 0.013 0.013 0.013 0.011 0.010 0.005 0.008 0.011 0.020 0.031			
14.847 194.042 393.209 593.265 792.056 991.614 1189.236 1389.839 1588.713 1788.124 1989.624 1817.189	0.148 0.167 0.270 0.263 0.233 0.229 0.040 0.070 0.156 0.271 0.418 0.351 0.205	0.007 0.008 0.013 0.013 0.012 0.011 0.002 0.003 0.008 0.014 0.021 0.018 0.010	Ref Pres (psia) 14.638 194.229 393.823 592.922 792.743 991.261 1190.280 1389.590 1588.437 1789.309 1989.755 1818.126	0.193 0.252 0.259 0.253 0.216 0.209 0.104 0.117 0.215 0.410 0.624 0.450	0.010 0.013 0.013 0.013 0.011 0.010 0.005 0.006 0.011 0.020 0.031 0.023			
14.847 194.042 393.209 593.265 792.056 991.614 1189.236 1389.839 1588.713 1788.124 1989.624 1817.189 1616.308	0.148 0.167 0.270 0.263 0.233 0.229 0.040 0.070 0.156 0.271 0.418 0.351 0.205	0.007 0.008 0.013 0.013 0.012 0.011 0.002 0.003 0.008 0.014 0.021 0.018	Ref Pres (psia) 14.838 194.229 393.823 592.922 792.743 991.261 1190.280 1389.590 1588.437 1789.309 1989.755 1818.126 1615.388 1413.930 1208.395	0.193 0.252 0.259 0.253 0.216 0.209 0.104 0.117 0.215 0.410 0.624 0.450 0.327	0.010 0.013 0.013 0.013 0.011 0.010 0.005 0.008 0.011 0.020 0.031 0.023 0.016			
14.847 194.042 393.209 593.265 792.056 991.614 1189.236 1389.839 1588.713 1788.124 1989.624 1817.189 1616.308 1412.900	О.148 О.167 О.270 О.263 О.233 О.229 О.040 О.070 О.156 О.271 О.418 О.351 О.205 О.220 О.252	0.007 0.008 0.013 0.013 0.012 0.011 0.002 0.003 0.008 0.014 0.021 0.018 0.010	Ref Pres (psia) 14.838 194.229 393.823 592.922 792.743 991.261 1190.280 1389.590 1588.437 1789.309 1989.755 1818.126 1615.388 1413.930	0.193 0.252 0.259 0.253 0.216 0.209 0.104 0.117 0.215 0.410 0.624 0.450 0.327	0.010 0.013 0.013 0.013 0.011 0.010 0.005 0.008 0.011 0.020 0.031 0.023 0.016 0.018			
14.847 194.042 393.209 593.265 792.056 991.614 1189.236 1389.839 1588.713 1788.124 1989.624 1817.189 1616.308 1412.900 1212.611	0.148 0.167 0.270 0.263 0.233 0.229 0.040 0.070 0.156 0.271 0.418 0.351 0.205 0.220	0.007 0.008 0.013 0.013 0.012 0.011 0.002 0.003 0.008 0.014 0.021 0.018 0.010 0.011 0.013 0.022	Ref Pres (psia) 14.638 194.229 393.823 592.922 792.743 991.261 1190.280 1389.590 1588.437 1789.309 1989.755 1818.126 1615.388 1413.930 1208.395 1009.785 808.128	0.193 0.252 0.259 0.253 0.216 0.209 0.104 0.117 0.215 0.410 0.624 0.450 0.327 0.354 0.241	0.010 0.013 0.013 0.013 0.011 0.010 0.005 0.008 0.011 0.020 0.031 0.023 0.016 0.018 0.012 0.023			
14.847 194.042 393.209 593.265 792.056 991.614 1189.236 1389.839 1588.713 1788.124 1989.624 1817.189 1616.308 1412.900 1212.611 1009.750	О.148 О.167 О.270 О.263 О.233 О.229 О.040 О.070 О.156 О.271 О.418 О.351 О.205 О.220 О.252	0.007 0.008 0.013 0.013 0.012 0.011 0.002 0.003 0.008 0.014 0.021 0.018 0.010 0.011 0.013	Ref Pres (psia) 14.838 194.229 393.823 592.922 792.743 991.261 1190.280 1389.590 1588.437 1789.309 1989.755 1818.126 1615.388 1413.930 1208.395 1009.785	0.193 0.252 0.259 0.253 0.216 0.209 0.104 0.117 0.215 0.410 0.624 0.450 0.327 0.354 0.241	0.010 0.013 0.013 0.013 0.011 0.010 0.005 0.005 0.008 0.011 0.020 0.031 0.023 0.016 0.018 0.012			
14.847 194.042 393.209 593.265 792.056 991.614 1189.236 1389.839 1588.713 1788.124 1989.624 1817.189 1616.308 1412.900 1212.611 1009.750 808.478	Спот (psia) 0.148 0.167 0.270 0.263 0.233 0.229 0.040 0.070 0.156 0.271 0.418 0.351 0.205 0.220 0.252 0.432 0.364 0.403 0.406	0.007 0.008 0.013 0.013 0.012 0.011 0.002 0.003 0.008 0.014 0.021 0.018 0.010 0.011 0.013 0.022 0.022 0.020	Ref Pres (psia) 14.638 194.229 393.823 592.922 792.743 991.261 1190.280 1389.590 1588.437 1789.309 1989.755 1818.126 1615.388 1413.930 1208.395 1009.785 808.128	0.193 0.252 0.259 0.253 0.216 0.209 0.104 0.117 0.215 0.410 0.624 0.450 0.327 0.354 0.462 0.462	0.010 0.013 0.013 0.013 0.011 0.010 0.005 0.008 0.011 0.020 0.031 0.023 0.016 0.018 0.012 0.023 0.012 0.023			
14.847 194.042 393.209 593.265 792.056 991.614 1189.236 1389.839 1588.713 1788.124 1989.624 1817.189 1616.308 1412.900 1212.611 1009.750 808.478 606.817	0.148 0.167 0.270 0.263 0.233 0.229 0.040 0.070 0.156 0.271 0.418 0.351 0.205 0.220 0.252 0.432 0.403	0.007 0.008 0.013 0.013 0.012 0.011 0.002 0.003 0.008 0.014 0.021 0.018 0.010 0.011 0.013 0.022 0.018 0.022 0.020 0.020	14.838 194.229 393.823 592.922 792.743 991.261 1190.280 1389.590 1588.437 1789.309 1989.755 1818.126 1615.388 1413.930 1208.395 1009.785 808.128 606.791	0.193 0.252 0.259 0.253 0.216 0.209 0.104 0.117 0.215 0.410 0.624 0.450 0.327 0.354 0.241 0.462 0.458	0.010 0.013 0.013 0.013 0.011 0.010 0.005 0.008 0.011 0.023 0.016 0.018 0.012 0.023 0.023 0.023			
14.847 194.042 393.209 593.265 792.056 991.614 1189.236 1389.839 1588.713 1788.124 1989.624 1887.189 1616.308 1412.900 1212.611 1009.750 808.478 606.817 406.966	Спот (psia) 0.148 0.167 0.270 0.263 0.233 0.229 0.040 0.070 0.156 0.271 0.418 0.351 0.205 0.220 0.252 0.432 0.364 0.403 0.406	0.007 0.008 0.013 0.013 0.012 0.011 0.002 0.003 0.008 0.014 0.021 0.018 0.010 0.011 0.013 0.022 0.022 0.020	14.838 194.229 393.823 592.922 792.743 991.261 1190.280 1389.590 1588.437 1789.309 1989.755 1818.126 1615.388 1413.930 1208.395 1009.785 808.128 606.791 407.604	0.193 0.252 0.259 0.253 0.216 0.209 0.104 0.117 0.215 0.410 0.624 0.450 0.327 0.354 0.241 0.462 0.458 0.471	0.010 0.013 0.013 0.013 0.011 0.010 0.005 0.008 0.011 0.020 0.031 0.023 0.016 0.018 0.012 0.023 0.012 0.023			
14.847 194.042 393.209 593.265 792.056 991.614 1189.236 1389.839 1588.713 1788.124 1989.624 1817.189 1616.308 1412.900 1212.611 1009.750 808.478 606.817 406.966 205.745	Спот (psia) 0.148 0.167 0.270 0.263 0.233 0.229 0.040 0.070 0.156 0.271 0.418 0.351 0.205 0.220 0.252 0.432 0.364 0.403 0.406 0.332	0.007 0.008 0.013 0.013 0.012 0.011 0.002 0.003 0.008 0.014 0.021 0.018 0.010 0.011 0.013 0.022 0.018 0.022 0.020 0.020	Ref Pres (psia) 14.838 194.229 393.823 592.922 792.743 991.261 1190.280 1389.590 1588.437 1789.309 1989.755 1818.126 1615.388 1413.930 1208.395 1009.785 808.128 608.791 407.604 206.494	0.193 0.252 0.259 0.253 0.216 0.209 0.104 0.117 0.215 0.410 0.624 0.450 0.327 0.354 0.241 0.462 0.458 0.471	0.010 0.013 0.013 0.013 0.011 0.010 0.005 0.008 0.011 0.020 0.031 0.023 0.016 0.012 0.023 0.023 0.023 0.023 0.023			

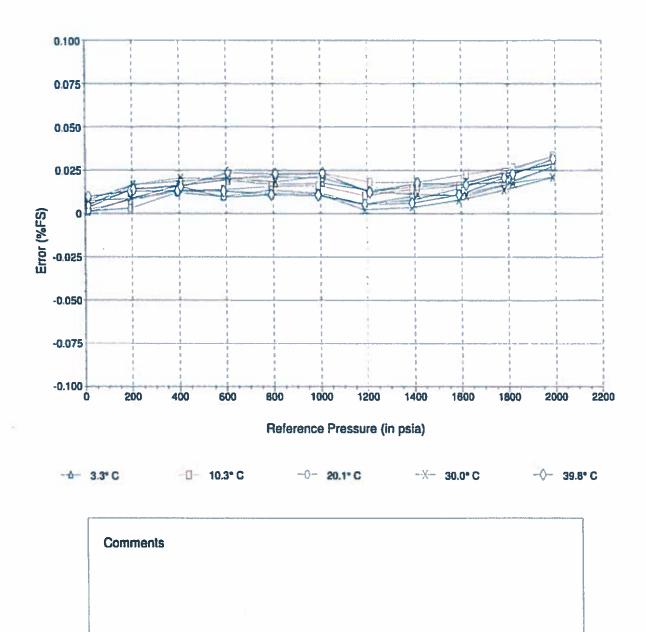
Issued by

usid!

As Received MOSDAX Cal. Report 2: EMS - 2652 Module 3008

Full Scale: 2000 (psia)

File E-IDATA/CAL/0 2018/2000/2JUNE2-1/02652


Pressure Reference: Paroscientific Model 42K-101 S/N 59937

Range: 2K PSI

Date of last reference to traceable standard: Oct 5 2017

Plot of Error vs. Reference Pressure

EMS - 2652 Module 3008

Issued by

2 34/1

APPENDIX C

2018 Laboratory Certificates of Analysis

Golder Associates Ltd. (Ottawa)

ATTN: Dale Holtze 1931 Robertson Road Ottawa ON K2H 5B7 Date Received: 16-NOV-18

Report Date: 22-NOV-18 16:58 (MT)

Version: FINAL REV. 2

Client Phone: 613-592-9600

Certificate of Analysis

Lab Work Order #: L2197641

Project P.O. #:

NOT SUBMITTED

Job Reference:

1789310

C of C Numbers:

17-720417

Legal Site Desc:

Comments:

ADDITIONAL 21-NOV-18 16:20

ADDITIONAL 19-NOV-18 17:56

Joanne Lee Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🏬

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L2197641 CONTD.... PAGE 2 of 12 22-NOV-18 16:58 (MT)

Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2197641-1 GW 10-NOV-18 17:30 ZONE 2	L2197641-2 GW 10-NOV-18 17:30 ZONE 22	L2197641-3 GW 11-NOV-18 17:30 ZONE 4	L2197641-4 GW 11-NOV-18 17:30 ZONE 44	L2197641-5 GW 12-NOV-18 17:30 ZONE 3
Grouping	Analyte					
SEAWATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	6260	6260	5160	5150	2600
Total Metals	Atuminum (AI)-Total (mg/L)	0.118	0.126	0.0140	0.0139	0.0128
	Antimony (Sb)-Total (mg/L)	0.00126	0.00129	0.00180	0.00186	0.00322
	Arsenic (As)-Total (mg/L)	<0.0020	<0.0020	0.0021	0.0022	0.0032
	Barium (Ba)-Total (mg/L)	0.102	0.0985	0.493	0.510	0.0918
	Beryllium (Be)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)-Total (mg/L)	1.86	1.72	0.97	1.00	1.10
	Cadmium (Cd)-Total (mg/L)	<0.000050	<0.000050	<0.000050	0.000055	<0.000056
	Calcium (Ca)-Total (mg/L)	2710	2580	2040	1920	991
	Cesium (Cs)-Total (mg/L)	0.00190	0.00184	0.00075	0.00077	<0.00050
	Chromium (Cr)-Total (mg/L)	0.00246	0.00119	0.0130	0.0127	0.00999
	Cobalt (Co)-Total (mg/L)	0.000120	0.000101	0.000237	0.000231	0.000166
	Copper (Cu)-Total (mg/L)	0.00272	0.00303	0.00113	0.00102	<0.00050
	Gallium (Ga)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Iron (Fe)-Total (mg/L)	0.555	0.584	0.366	0.354	0.076
	Lead (Pb)-Total (mg/L)	0.00460	0.00472	<0.00030	<0.00030	<0.00030
	Lithium (Li)-Total (mg/L)	2.33	2.14	1.48	1.65	0.802
	Magnesium (Mg)-Total (mg/L)	<1.0	<1.0	55.3	53.3	1.2
	Manganese (Mn)-Total (mg/L)	0.0215	0.0228	0.0816	0.0752	0.0181
	Mercury (Hg)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.00001
	Molybdenum (Mo)-Total (mg/L)	0.0096	0.0092	0.0130	0.0141	0.0172
	Nickel (Ni)-Total (mg/L)	0.00276	0.00190	0.00818	0.00817	0.00703
	Phosphorus (P)-Total (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Potassium (K)-Total (mg/L)	106	100	67.1	70.8	35.9
	Rhenium (Re)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Rubidium (Rb)-Total (mg/L)	0.171	0.171	0.0933	0.101	0.0559
	Selenium (Se)-Total (mg/L)	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	Silicon (Si)-Total (mg/L)	3.2	3.6	2.2	1.9	2.7
	Silver (Ag)-Total (mg/L)	0.00034	0.00038	<0.00010	<0.00010	<0.00010
	Sodium (Na)-Total (mg/L)	379	372	326	318	275
	Strontium (Sr)-Total (mg/L)	47.3	47.5	34.8	34.4	16.9
	Sulfur (S)-Total (mg/L)	<5.0	<5.0	<5.0	<5.0	<5.0
	Tellurium (Te)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Thalilum (TI)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.00005
	Thorium (Th)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Tin (Sn)-Total (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2197641 CONTD....

PAGE 3 of 12 22-NOV-18 16:58 (MT)

Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2197641-6 GW 12-NOV-18 17:30 ZONE 33			
Grouping	Analyte				
SEAWATER					
Physical Tests	Hardness (as CaCO3) (mg/L)	2740			
Total Metals	Aluminum (Al)-Total (mg/L)	0.0126			
	Antimony (Sb)-Total (mg/L)	0.00339			
	Arsenic (As)-Total (mg/L)	0.0038			
	Barium (Ba)-Total (mg/L)	0.0956			
	Beryllium (Be)-Total (mg/L)	<0.00050			
	Bismuth (Bi)-Total (mg/L)	<0.00050			
	Boron (B)-Total (mg/L)	1.19			
	Cadmium (Cd)-Total (mg/L)	<0.000050			
	Calcium (Ca)-Total (mg/L)	1080		j,	
	Cesium (Cs)-Total (mg/L)	<0.00050			
	Chromium (Cr)-Total (mg/L)	0.00674			
	Cobalt (Co)-Total (mg/L)	0.000111			
	Copper (Cu)-Total (mg/L)	<0.00050			
	Gallium (Ga)-Total (mg/L)	<0.00050			
	Iron (Fe)-Total (mg/L)	0.064			
	Lead (Pb)-Total (mg/L)	<0.00030			
	Lithium (Li)-Total (mg/L)	0.850			
	Magnesium (Mg)-Total (mg/L)	1.2			
	Manganese (Mn)-Total (mg/L)	0.0171			
	Mercury (Hg)-Total (mg/L)	<0.000010			
	Molybdenum (Mo)-Total (mg/L)	0.0184			
	Nickel (Ni)-Total (mg/L)	0.00436			
	Phosphorus (P)-Total (mg/L)	<0.050			
	Potassium (K)-Total (mg/L)	39.7			
	Rhenium (Re)-Total (mg/L)	<0.00050			
	Rubidium (Rb)-Total (mg/L)	0.0564			
	Selenium (Se)-Total (mg/L)	<0.0020			
	Silicon (Si)-Total (mg/L)	2.8			30
	Silver (Ag)-Total (mg/L)	<0.00010			
	Sodium (Na)-Total (mg/L)	300			
	Strontium (Sr)-Total (mg/L)	17.2			
	Sulfur (S)-Total (mg/L)	<5.0			10
	Tellurium (Te)-Total (mg/L)	<0.00050			
	Thallium (TI)-Totat (mg/L)	<0.000050			
	Thorium (Th)-Total (mg/L)	<0.00050			
	Tin (Sn)-Total (mg/L)	<0.0010			

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2197641 CONTD.... PAGE 4 of 12 22-NOV-18 16:58 (MT)

Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2197641-1 GW 10-NOV-18 17:30 ZONE 2	L2197641-2 GW 10-NOV-18 17:30 ZONE 22	L2197641-3 GW 11-NOV-18 17:30 ZONE 4	L2197641-4 GW 11-NOV-18 17:30 ZONE 44	L2197641-5 GW 12-NOV-18 17:30 ZONE 3
Grouping	Analyte		F			
SEAWATER						
Total Metals	Titanium (Ti)-Total (mg/L)	0.0070	0.0075	<0.0050	<0.0050	<0.0050
•	Tungsten (W)-Total (mg/L)	0.0815	0.0854	0.0470	0.0462	0.0736
	Uranium (U)-Total (mg/L)	0.000283	0.000304	<0.000050	<0.000050	0.000160
	Vanadium (V)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Yttrium (Y)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Total (mg/L)	0.0374	0.0410	0.0625	0.0605	0.0395
	Zirconium (Zr)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Aluminum (AI)-Dissolved (mg/L)	0.0219	0.0176	0.0085	0.0076	0.0126
	Antimony (Sb)-Dissolved (mg/L)	0.00125	0.00128	0.00163	0.00172	0.00308
	Arsenic (As)-Dissolved (mg/L)	<0.0020	<0.0020	<0.0020	<0.0020	0.0034
	Barium (Ba)-Dissolved (mg/L)	0.0986	0.0996	0.466	0.489	0.0902
	Beryllium (Be)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)-Dissolved (mg/L)	1.76	1.88	0.90	0.95	1.04
	Cadmium (Cd)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Calcium (Ca)-Dissolved (mg/L)	2510	2510	1970	1970	1040
	Cesium (Cs)-Dissolved (mg/L)	0.00189	0.00195	0.00075	0.00074	<0.00050
	Chromium (Cr)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Cobalt (Co)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Copper (Cu)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Gallium (Ga)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Iron (Fe)-Dissolved (mg/L)	0.013	0.013	0.112	0.105	0.018
	Lead (Pb)-Dissolved (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
	Lithium (Li)-Dissolved (mg/L)	2.25	2.16	1.42	1.52	0.779
	Magnesium (Mg)-Dissolved (mg/L)	<1.0	<1.0	57.8	53.9	1.2
	Manganese (Mn)-Dissolved (mg/L)	0.0171	0.0164	0.0836	0.0812	0.0184
	Mercury (Hg)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.00001
	Molybdenum (Mo)-Dissolved (mg/L)	0.0090	0.0093	0.0112	0.0116	0.0154
	Nickel (Ni)-Dissolved (mg/L)	0.00118	0.00122	<0.00050	<0.00050	<0.00050
	Phosphorus (P)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Potassium (K)-Dissolved (mg/L)	99	98	67	66	38
	Rhenium (Re)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Rubidium (Rb)-Dissolved (mg/L)	0.173	0.174	0.0891	0.0914	0.0549
	Selenium (Se)-Dissolved (mg/L)	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
	Silicon (Si)-Dissolved (mg/L)	2.8	2.7	2.3	2.2	3.0

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2197641 CONTD.... PAGE 5 of 12

22-NOV-18 16:58 (MT) Version: FINAL REV. 2

4000	Sample ID Description Sampled Date Sampled Time Client ID	L2197641-6 GW 12-NOV-18 17:30 ZONE 33		
Grouping	Analyte			
SEAWATER				
Total Metals	Titanium (Ti)-Total (mg/L)	<0.0050		
•	Tungsten (W)-Total (mg/L)	0.0756		
	Uranium (U)-Total (mg/L)	0.000164		
	Vanadium (V)-Total (mg/L)	<0.00050		
	Yttrium (Y)-Total (mg/L)	<0.00050		
	Zinc (Zn)-Total (mg/L)	0.0477		
	Zirconium (Zr)-Total (mg/L)	<0.00050		
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD		
	Dissolved Metals Filtration Location	FIELD		
	Aluminum (Al)-Dissolved (mg/L)	0.0115		
	Antimony (Sb)-Dissolved (mg/L)	0.00300		
	Arsenic (As)-Dissolved (mg/L)	0.0034		
	Barium (Ba)-Dissolved (mg/L)	0.0854		
	Beryllium (Be)-Dissolved (mg/L)	<0.00050		
	Bismuth (Bi)-Dissolved (mg/L)	<0.00050		
	Boron (B)-Dissolved (mg/L)	1.02		
	Cadmium (Cd)-Dissolved (mg/L)	<0.000050		
	Calcium (Ca)-Dissolved (mg/L)	1090		
	Cesium (Cs)-Dissolved (mg/L)	<0.00050		
	Chromium (Cr)-Dissolved (mg/L)	<0.00050		
	Cobalt (Co)-Dissolved (mg/L)	<0.000050		
	Copper (Cu)-Dissolved (mg/L)	<0.00050		
	Gallium (Ga)-Dissolved (mg/L)	<0.00050		
	Iron (Fe)-Dissolved (mg/L)	0.019		
	Lead (Pb)-Dissolved (mg/L)	<0.00030		
	Lithium (Li)-Dissolved (mg/L)	0.749		
	Magnesium (Mg)-Dissolved (mg/L)	1.2		
•	Manganese (Mn)-Dissolved (mg/L)	0.0181		
	Mercury (Hg)-Dissolved (mg/L)	<0.000010		
	Molybdenum (Mo)-Dissolved (mg/L)	0.0144		
	Nickel (Ni)-Dissolved (mg/L)	<0.00050		
	Phosphorus (P)-Dissolved (mg/L)	<0.050		
	Potassium (K)-Dissolved (mg/L)	40		
	Rhenium (Re)-Dissolved (mg/L)	<0.00050		
	Rubidium (Rb)-Dissolved (mg/L)	0.0528		
	Selenium (Se)-Dissolved (mg/L)	<0.0020		
	Silicon (Si)-Dissolved (mg/L)	3.0		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2197641 CONTD.... PAGE 6 of 12 22-NOV-18 16:58 (MT)

Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2197641-1 GW 10-NOV-18 17:30 ZONE 2	L2197641-2 GW 10-NOV-18 17:30 ZONE 22	L2197641-3 GW 11-NOV-18 17:30 ZONE 4	L2197641-4 GW 11-NOV-18 17:30 ZONE 44	L2197641-5 GW 12-NOV-18 17:30 ZONE 3
Grouping	Analyte					
SEAWATER						
Dissolved Metals	Silver (Ag)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Sodium (Na)-Dissolved (mg/L)	353	368	309	320	280
	Strontium (Sr)-Dissolved (mg/L)	44.9	45.3	33.6	33.6	16.9
	Sulfur (S)-Dissolved (mg/L)	<5.0	<5.0	<5.0	<5.0	<5.0
	Tellurium (Te)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Thallium (TI)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Thorium (Th)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Tin (Sn)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Titanium (Ti)-Dissolved (mg/L)	<0.0050	<0.0050	<0,0050	<0.0050	<0.0050
	Tungsten (W)-Dissolved (mg/L)	0.0806	0.0789	0.0455	0.0443	0.0722
	Uranium (U)-Dissolved (mg/L)	0.000235	0.000238	<0.000050	<0.000050	0.000160
	Vanadium (V)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Yttrium (Y)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Dissolved (mg/L)	<0.0030	<0.0030	0.0096	0.0100	<0.0030
	Zirconium (Zr)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2197641 CONTD....

PAGE 7 of 12 22-NOV-18 16:58 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: FINAL REV. 2 L2197641-6 Sample ID GW Description 12-NOV-18 **Sampled Date** 17:30 Sampled Time ZONE 33 Client ID Grouping **Analyte SEAWATER Dissolved Metals** Silver (Ag)-Dissolved (mg/L) < 0.00010 Sodium (Na)-Dissolved (mg/L) 301 Strontium (Sr)-Dissolved (mg/L) 17.2 Sulfur (S)-Dissolved (mg/L) <5.0 Tellurium (Te)-Dissolved (mg/L) < 0.00050 Thallium (TI)-Dissolved (mg/L) < 0.000050 Thorium (Th)-Dissolved (mg/L) < 0.00050 Tin (Sn)-Dissolved (mg/L) < 0.0010 Titanium (Ti)-Dissolved (mg/L) < 0.0050 Tungsten (W)-Dissolved (mg/L) 0.0687 Uranium (U)-Dissolved (mg/L) 0.000144 Vanadium (V)-Dissolved (mg/L) <0.00050 Yttrium (Y)-Dissolved (mg/L) < 0.00050 Zinc (Zn)-Dissolved (mg/L) < 0.0030 Zirconium (Zr)-Dissolved (mg/L) <0.00050

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2197641 CONTD.... PAGE 8 of 12 22-NOV-18 16:58 (MT)

Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2197641-1 GW 10-NOV-18 17:30 ZONE 2	L2197641-2 GW 10-NOV-18 17:30 ZONE 22	L2197641-3 GW 11-NOV-18 17:30 ZONE 4	L2197641-4 GW 11-NOV-18 17:30 ZONE 44	L2197641-5 GW 12-NOV-18 17:30 ZONE 3
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	16700	16800	13900	14000	7530
	pH (pH)	8.13	8.22	6.97	6.94	7.40
	Total Suspended Solids (mg/L)	17.3	32.5	24.3	20.3	7.9
	Total Dissolved Solids (mg/L)	10900	10800	9030	8820	5100
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	61.8	61.2	10.2	10.4	50.5
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<1.0	<1.0	<1.0	<1.0	<1.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<1.0	<1.0	<1.0	<1.0	<1.0
	Alkalinity, Total (as CaCO3) (mg/L)	61.8	61.2	10.2	10.4	50,5
	Ammonia, Total (as N) (mg/L)	0.142	0.141	0.157	0.158	0.139
	Bromide (Br) (mg/L)	76.1	76.8	69.7	60.1	32.7
	Chloride (CI) (mg/L)	5900	5910	5220 DLDS	4530	2700
	Fluoride (F) (mg/L)	<1.0	<1.0 OLDS	<1.0	<1.0	<1.0
	Nitrate (as N) (mg/L)	<0.25	<0.25	<0.25	<0.25	<0.25
	Nitrite (as N) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Phosphorus (P)-Total (mg/L)	0.0120	0.0132	0.0067	0.0059	0.0061
	Sulfate (SO4) (mg/L)	<15	<15	<15	<15 CLDS	<15

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2197641 CONTD.... PAGE 9 of 12

22-NOV-18 16:58 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2197641-6 GW 12-NOV-18 17:30 ZONE 33			
Grouping	Analyte				
WATER					
Physical Tests	Conductivity (uS/cm)	7350			
	pH (pH)	7.50			
	Total Suspended Solids (mg/L)	7.5			
	Total Dissolved Solids (mg/L)	4980			
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	50.1			
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<1.0			
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<1.0			
	Alkalinity, Total (as CaCO3) (mg/L)	50.1			
	Ammonia, Total (as N) (mg/L)	0.136			
	Bromide (Br) (mg/L)	32.5			
	Chloride (CI) (mg/L)	2700 DLDS			
	Fluoride (F) (mg/L)	<1.0 DLDS			
	Nitrate (as N) (mg/L)	<0.25 DLDS			
	Nitrite (as N) (mg/L) Phosphorus (P}-Total (mg/L)	<0.050			
	Sulfate (SO4) (mg/L)	0.0082 DLDS			
	Canada (CO4) (mg/L)	<15		25	
	3				
				4	
				9	

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2197641 CONTD.... PAGE 10 of 12 22-NOV-18 16:58 (MT)

Version: FINAL REV. 2

Reference Information

Qualifiers for Sample Submission Listed:

Qualifier	Description
WSMD	Water sample(s) for dissolved mercury analysis was not submitted in glass or PTFE container with HCl preservative. Results may be biased low.
WSMT	Water sample(s) for total mercury analysis was not submitted in glass or PTFE container with HCl preservative. Results may be biased low.
QC Samples witl	n Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L2197641-1, -2, -3, -4, -5, -6
Matrix Spike	Sodium (Na)-Dissolved	MS-B	L2197641-1, -2, -3, -4, -5, -6
Matrix Spike	Strontium (Sr)-Dissolved	MS-B	L2197641-1, -2, -3, -4, -5, -6
Matrix Spike	Calcium (Ca)-Total	MS-B	L2197641-1, -2, -3, -4, -5, -6
Matrix Spike	Lithium (Li)-Total	MS-B	L2197641-1, -2, -3, -4, -5, -6
Matrix Spike	Potassium (K)-Total	MS-B	L2197641-1, -2, -3, -4, -5, -6
Matrix Spike	Rubidium (Rb)-Total	MS-B	L2197641-1, -2, -3, -4, -5, -6
Matrix Spike	Sodium (Na)-Total	MS-B	L2197641-1, -2, -3, -4, -5, -6
Matrix Spike	Strontium (Sr)-Total	MS-B	L2197641-1, -2, -3, -4, -5, -6

Qualifiers for Individual Parameters Listed:

Qualifier	Description	
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.	
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.	

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**	
ALK-TITR-VA	Water	Alkalinity Species by Titration	APHA 2320 Alkalinity	

This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.

EPA 300.1 (mod)

Bromide in Water by IC (Low Level) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

CL-L-IC-N-VA Chloride in Water by IC (Low Level) EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

EC-PCT-VA Water Conductivity (Automated) APHA 2510 Auto. Conduc.

This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity

electrode.

EC-SCREEN-VA Conductivity Screen (Internal Use Only) **APHA 2510**

Qualitative analysis of conductivity where required during preparation of other tests - e.g. TDS, metals, etc.

F-IC-N-VA Water Fluoride in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

HARDNESS-CALC-VA Seawater Hardness **APHA 2340B**

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

Seawater Diss. Mercury in Seawater by CVAFS PUGET SOUND PROTOCOLS, EPA 245.7

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by filtration (EPA Method 3005A) and involves a cold-oxidation of the acidified seawater sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry or atomic absorption spectrophotometry (EPA Method 245.7).

HG-TOT-C-CVAFS-VA Total Mercury in Seawater by CVAFS Seawater PUGET SOUND PROTOCOLS, EPA 245.7

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedure involves a cold-oxidation of the acidified seawater sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry or atomic absorption spectrophotometry (EPA Method 245.7).

L2197641 CONTD.... PAGE 11 of 12 22-NOV-18 16:58 (MT) Version: FINAL REV. 2

Reference Information

MET-D-L-HRMS-VA

Seawater

Diss. Metals in Seawater by HR-ICPMS

EPA 200.8

Trace metals in seawater are analyzed by high resolution inductively coupled plasma mass spectrometry (HR-ICPMS) based on US EPA Method 200.8, (Revision 5.5). The procedures may involve laboratory sample filtration based on APHA Method 3030B.

MET-T-L-HRMS-VA

Seawater

Tot. Metals in Seawater by HR-ICPMS

EPA 200.8

Trace metals in seawater are analyzed by high resolution inductively coupled plasma mass spectrometry (HR-ICPMS) based on US EPA Method 200.8, (Revision 5.5). The procedures may involve preliminary sample treatment by acid digestion based on APHA Method 3030E.

NH3-F-VA

Water

Ammonia in Water by Fluorescence

J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et

NO2-L-IC-N-VA

Water

Nitrite in Water by IC (Low Level)

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

NO3-L-IC-N-VA

Water

Nitrate in Water by IC (Low Level)

EPA 300,1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

P-T-PRES-COL-VA

Water

Total P in Water by Colour

APHA 4500-P Phosphorus

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus", Total Phosphorus is determined colourimetrically after persulphate digestion of the sample.

Samples with very high dissolved solids (i.e. seawaters, brackish waters) may produce a negative blas by this method. Alternate methods are available for these types of samples.

Arsenic (5+), at elevated levels, is a positive interference on colourimetric phosphate analysis.

PH-PCT-VA

Water

pH by Meter (Automated)

APHA 4500-H pH Value

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

It is recommended that this analysis be conducted in the field.

SO4-IC-N-VA

Water

Sulfate in Water by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

TDS-LOW-VA

Water

Low Level TDS (3.0mg/L) by Gravimetric

APHA 2540C

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total dissolved solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius.

TCC.VA

Water

Total Suspended Solids by Gravimetric

APHA 2540 D - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code

Laboratory Location

VA

ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

17-720417

L2197641 CONTD.... PAGE 12 of 12 22-NOV-18 16:58 (MT) Version: FINAL REV. 2

Reference Information

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. mg/kg - milligrams per kilogram based on dry weight of sample. mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ALS) Environmental

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

JOC Number: 17-720417 -2197641-COFC

830An NUMBER OF CONTAINERS School Service Level Below - Contact your AM to confirm all E&P TATs (surcharges may apply) Same Day, Weekend or Statutory holiday [E2-200% | Laboratory opening fees may apply)] FINAL COOLER TEMPERATURES " AMPLES ON HOLD Standard TAT if received by 3 pm - business days - no surcharges apply INAL SHIPMENT RECEPTION (lab use only SAMPLE CONDITION AS RECEIVED (IED USE ONLY Nov 16/78 Indicate Figured (F), Preserved (P) or Filtered and Preserved (F/P) below for botal that can not be performed according to the service level selected, you will be contacted. 1 Business day [E-100%] Analysis Request ke Pacts | Le Cubes | Custody seal intact Un 3+33~ 7.5 WASTERN BUILLE COLEN TEMPERATURES TO Date and Time Required for all E&P TATE: X Regular (R) 4 day [P4-20%] 3 day [P3-25%] 2 day [P2-50%] | Received by: | Date: | Date: | Time: | Received by: | Date: | Time: | Received by: | Date: | Date: | Date: | Received by: | Date: | Received by: | Receive Assolved Salozzak O Salash X 3 × Stakow 7 \Rightarrow Email 1 or Fax di holtze @ goigle v. com Email 2 valerie - bartian @ goiglen com Sample Type 3 ALS CONDET: JOENNA, Let Sampler D. HoH24 Special Instructions / Specify Criteria to add on report by clicking on the drop-down list below (electronic COC only) INITIAL SHIPMENT RECEPTION (14b usa only) Select Invoice Distribution: A DUM | MA | FAX N POF X EXCE | | EDD (DYGTIAL) Compare Results to Oritoria on Report - provide details below if box checked Quality Control (QC) Report with Report 🔲 DHAR | | MAR 📋 FAX Edensial Salt concentration Willy (Brine) 17,370 mS/cm Oll and Gas Required Fields (client use) 2530 17:30 17:30 17:30 S : 5 Routing Code: Report Format / Distribution Time (hh:rt:m) 17:30 Invalce Distribution by 4thy ~ 14.8 mS/cm やるるつの 10-N03-18 11- Nov-18 3-200-21 12-19-18 - N. 25 12 88 Select Report Format: Select Distribution: Major/Minor Code: AFECOSI Center. Requisitioner Received by: Dr 2+22 Location: Email 2 Ernail 3 Sample Identification and/or Coordinates (This description will appear on the report) Consect and company name balow will appear on the final report 44 Zone 22 7 solder Mesociates Utal OH CES ☐ HO Company address below will appear on the final raport 22016 25.12 Sone 20ne 2006 lazi Reberkor Road Orlawa, ON Kah SB3 SHIPMENT RELEASE (cilent use) Dale Ho 174 Orinking Water (DW) Samples' (client use) Project Information 7439310 re samples taken from a Regulated DW System? Copy of Invoice with Report ALS Lab Work Order # (lab use only): www.alsglobal.com Are samples for human consumption/ use? Same as Report To | | YES | | ALS Account # / Quote #: **1500** ALS Sample # (leb use only) City/Province: Postal Code: nvoice To Company: Company PO/AFE Contact: Contact: Job #: Phone:

Golder Associates Ltd. (Ottawa)

ATTN: Dale Holtze 1931 Robertson Road Ottawa ON K2H 5B7 Date Received: 19-NOV-18

Report Date: 22-NOV-18 17:29 (MT)

Version: FINAL

Client Phone: 613-592-9600

Certificate of Analysis

Lab Work Order #: L2198327

Project P.O. #:

NOT SUBMITTED

Job Reference:

1789310

C of C Numbers:

18-1789310

Legal Site Desc:

Joanne Lee

Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700

ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🏬

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L2198327 CONTD....

PAGE 2 of 8

22-NOV-18 17:29 (MT)

Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L2198327-1 Groundwater 13-NOV-18 17:00 ZONE 6	L2198327-2 Groundwater 13-NOV-18 17:00 ZONE 66	L2198327-3 Groundwater 13-NOV-18 15:00 EB	L2198327-4 Groundwater 13-NOV-18 15:30	
Grouping	Analyte					
SEAWATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	3630	3620	<4.8	<4.8	
Total Metals	Aluminum (AI)-Total (mg/L)	0.0118	0.0127	<0.0050		
	Antimony (Sb)-Total (mg/L)	<0.00050	<0.00050	<0.00050		
	Arsenic (As)-Total (mg/L)	0.0024	0.0024	<0.0020		
	Barium (Ba)-Total (mg/L)	0.859	0.894	<0.0010		
	Beryllium (Be)-Total (mg/L)	<0.00050	<0.00050	<0.00050		
	Bismuth (Bi)-Total (mg/L)	<0.00050	<0.00050	<0.00050		
	Boron (B)-Total (mg/L)	0.41	0.40	<0.10		
	Cadmium (Cd)-Total (mg/L)	<0.000050	<0.000050	<0.000050		
	Calcium (Ca)-Total (mg/L)	1330	1370	<1.0		
	Cesium (Cs)-Total (mg/L)	<0.00050	<0.00050	<0.00050		
	Chromium (Cr)-Total (mg/L)	0.00383	0.00381	<0.00050		
	Cobalt (Co)-Total (mg/L)	0.000072	0.000093	<0.000050		
	Copper (Cu)-Total (mg/L)	<0.00050	<0.00050	<0.00050		
	Gallium (Ga)-Total (mg/L)	<0.00050	<0.00050	<0.00050		
	Iron (Fe)-Total (mg/L)	0.314	0.322	<0.010		
	Lead (Pb)-Total (mg/L)	<0.00030	<0.00030	<0.00030		
	Lithium (Li)-Total (mg/L)	0.558	0.563	<0.020		
	Magnesium (Mg)-Total (mg/L)	40.6	39.8	<1.0		
	Manganese (Mn)-Total (mg/L)	0.101	0.103	<0.00020		
	Mercury (Hg)-Total (mg/L)	<0.000010	<0.000010	<0.000010		
	Molybdenum (Mo)-Total (mg/L)	0.0279	0.0270	<0.0020		
	Nickel (NI)-Total (mg/L)	0.00288	0.00262	<0.00050		
	Phosphorus (P)-Total (mg/L)	<0.050	<0.050	<0.050		
	Potassium (K)-Total (mg/L)	9.7	10.1	<1.0		
	Rhenium (Re)-Total (mg/L)	<0.00050	<0.00050	<0.00050		
	Rubidium (Rb)-Total (mg/L)	0.0166	0.0164	<0.0050		
	Selenium (Se)-Total (mg/L)	<0.0020	<0.0020	<0.0020		
	Silicon (Si)-Total (mg/L)	2.6	2.5	<1.0		
	Silver (Ag)-Total (mg/L)	<0.00010	<0.00010	<0.00010		
	Sodium (Na)-Total (mg/L)	232	238	<1.0		
	Strontium (Sr)-Total (mg/L)	18.1	18.6	<0.010		
	Sulfur (S)-Total (mg/L)	<5.0	<5.0	<5.0		
	Tellurium (Te)-Total (mg/L)	<0.00050	<0.00050	<0.00050		
	Thallium (TI)-Total (mg/L)	<0.000050	<0.000050	<0.000050		
	Thorium (Th)-Total (mg/L)	<0.00050	<0.00050	<0.00050		
	Tin (Sn)-Total (mg/L)	<0.0010	<0.0010	<0.0010		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2198327 CONTD....

PAGE 3 of 8

22-NOV-18 17:29 (MT)

Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L2198327-1 Groundwater 13-NOV-18 17:00 ZONE 6	L2198327-2 Groundwater 13-NOV-18 17:00 ZONE 66	L2198327-3 Groundwater 13-NOV-18 15:00 EB	L2198327-4 Groundwater 13-NOV-18 15:30 TB	
Grouping	Analyte					
SEAWATER						
Total Metals	Titanium (Ti)-Total (mg/L)	<0.0050	<0.0050	<0.0050	100	
	Tungsten (W)-Total (mg/L)	0.0214	0.0223	<0.0010		
	Uranium (U)-Total (mg/L)	<0.000050	<0.000050	<0.000050		
	Vanadium (V)-Total (mg/L)	<0.00050	<0.00050	<0.00050		
	Yttrium (Y)-Total (mg/L)	<0.00050	<0.00050	<0.00050		
	Zinc (Zn)-Total (mg/L)	0.109	0.113	<0.0030		
	Zirconium (Zr)-Total (mg/L)	<0.00050	<0.00050	<0.00050		
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD	FIELD	FIELD	FIELD	
	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	
	Aluminum (Ai)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	
	Antimony (Sb)-Dissolved (mg/L)	<0.00050	0.00050	<0.00050	<0.00050	
	Arsenic (As)-Dissolved (mg/L)	0.0021	0.0024	<0.0020	<0.0020	
	Barium (Ba)-Dissolved (mg/L)	0.818	0.794	<0.0010	<0.0010	
	Beryllium (Be)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Bismuth (Bi)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Boron (B)-Dissalved (mg/L)	0.36	0.35	<0.10	<0.10	
	Cadmium (Cd)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Calcium (Ca)-Dissolved (mg/L)	1380	1380	<1.0	<1.0	
	Cesium (Cs)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Chromium (Cr)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
A	Cobalt (Co)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Copper (Cu)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Gallium (Ga)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Iron (Fe)-Dissolved (mg/L)	0.251	0.256	<0.010	<0.010	
	Lead (Pb)-Dissolved (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	
	Lithium (Li)-Dissolved (mg/L)	0.533	0.520	<0.020	<0.020	
	Magnesium (Mg)-Dissolved (mg/L)	42.8	42.8	<1.0	<1.0	
	Manganese (Mn)-Dissolved (mg/L)	0.0961	0.0970	<0.00020	<0.00020	
	Mercury (Hg)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	
	Molybdenum (Mo)-Dissolved (mg/L)	0.0257	0.0245	<0.0020	<0.0020	
	Nickel (Ni)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Phosphorus (P)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	
	Polassium (K)-Dissolved (mg/L)	<20	<20	<20	<20	
	Rhenium (Re)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Rubidium (Rb)-Dissolved (mg/L)	0.0151	0.0146	<0.0050	<0.0050	
	Selenium (Se)-Dissolved (mg/L)	<0.0020	<0.0020	<0.0020	<0.0020	
	Silicon (Si)-Dissolved (mg/L)	2.8	2.7	<1.0	<1.0	

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2198327 CONTD.... PAGE 4 of 8 22-NOV-18 17:29 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2198327-1 Groundwater 13-NOV-18 17:00 ZONE 6	L2198327-2 Groundwater 13-NOV-18 17:00 ZONE 66	L2198327-3 Groundwater 13-NOV-18 15:00	L2198327-4 Groundwater 13-NOV-18 15:30 TB	
Grouping	Analyte					
SEAWATER						
Dissolved Metals	Silver (Ag)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	
	Sodium (Na)-Dissolved (mg/L)	253	250	<20	<20	
	Strontium (Sr)-Dissolved (mg/L)	19.5	19.7	<0.050	<0.050	
	Sulfur (S)-Dissolved (mg/L)	<5.0	<5.0	<5.0	<5.0	
	Tellurium (Te)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Thallium (TI)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Thorium (Th)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Tin (Sn)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Titanium (Ti)-Dissolved (mg/L)	<0.0050	<0.0050	<0.0050	<0.0050	
	Tungsten (W)-Dissolved (mg/L)	0.0214	0.0208	<0.0010	<0.0010	
	Uranium (U)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Vanadium (V)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Yttrium (Y)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Zinc (Zn)-Dissolved (mg/L)	0.0244	0.0230	<0.0030	<0.0030	
	Zirconium (Zr)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2198327 CONTD.... PAGE 5 of 8 22-NOV-18 17:29 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

/ATER /hysical Tests	Analyte Conductivity (uS/cm) pH (pH) Total Suspended Solids (mg/L) Total Dissolved Solids (mg/L) Alkalinity, Bicarbonate (as CaCO3) (mg/L) Alkalinity, Carbonate (as CaCO3) (mg/L) Alkalinity, Hydroxide (as CaCO3) (mg/L)	8720 6.58 8.3 5580 27.2	8780 6.65 9.5 5410 26.4	<2.0 5.76 <3.0 <3.0	<2.0 5.98 <3.0	
hysical Tests	pH (pH) Total Suspended Solids (mg/L) Total Dissolved Solids (mg/L) Alkalinity, Bicarbonate (as CaCO3) (mg/L) Alkalinity, Carbonate (as CaCO3) (mg/L) Alkalinity, Hydroxide (as CaCO3) (mg/L)	6.58 8.3 5580 27.2	6.65 9.5 5410	5.76 <3.0	5.98 <3.0	
nions and	pH (pH) Total Suspended Solids (mg/L) Total Dissolved Solids (mg/L) Alkalinity, Bicarbonate (as CaCO3) (mg/L) Alkalinity, Carbonate (as CaCO3) (mg/L) Alkalinity, Hydroxide (as CaCO3) (mg/L)	6.58 8.3 5580 27.2	6.65 9.5 5410	5.76 <3.0	5.98 <3.0	
	Total Suspended Solids (mg/L) Total Dissolved Solids (mg/L) Alkalinity, Bicarbonate (as CaCO3) (mg/L) Alkalinity, Carbonate (as CaCO3) (mg/L) Alkalinity, Hydroxide (as CaCO3) (mg/L)	8.3 5580 27.2	9.5 5410	<3.0	<3.0	
	Total Dissolved Solids (mg/L) Alkalinity, Bicarbonate (as CaCO3) (mg/L) Alkalinity, Carbonate (as CaCO3) (mg/L) Alkalinity, Hydroxide (as CaCO3) (mg/L)	5580 27.2	5410		45.	
	Alkalinity, Bicarbonate (as CaCO3) (mg/L) Alkalinity, Carbonate (as CaCO3) (mg/L) Alkalinity, Hydroxide (as CaCO3) (mg/L)	27.2		<3.0		
	Alkalinity, Carbonate (as CaCO3) (mg/L) Alkalinity, Hydroxide (as CaCO3) (mg/L)		26.4		<3.0	
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	~1.0		<1.0	<1.0	
		<1.0	<1.0	<1.0	<1.0	
		<1.0	<1.0	<1.0	<1.0	
	Alkalinity, Total (as CaCO3) (mg/L)	27.2	26.4	<1.0	<1.0	
	Ammonia, Total (as N) (mg/L)	0.443	0.437	<0.0050	<0.0050	
	Bromide (Br) (mg/L)	40.9	41.4	<0.050	<0.050	
	Chloride (CI) (mg/L)	3010	3060	<0.50	<0.50	
	Fluoride (F) (mg/L)	<1.0 DLDS	<1.0	<0.020	<0.020	
	Nitrate (as N) (mg/L)	<0.25	OLDS <0.25	<0.0050	<0.0050	
	Nitrite (as N) (mg/L)	<0.050	OLDS <0.050	<0.0010	<0.0010	
	Phosphorus (P)-Total (mg/L)	0.0043	0.0052	<0.0020	<0.0020	
	Sulfate (SO4) (mg/L)	<15	<15 DLDS	<0.30	<0.30	

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected,

L2198327 CONTD.... PAGE 6 of 8 22-NOV-18 17:29 (MT)

FINAL

Version:

Reference Information

Qualifier	Description						
WSMD	Water sample(may be biased	s) for dissolved mercu low.	ıry analysis wa	s not submitted in	glass or PTFE container with HCl preservative. Results		
Qualifiers for Inc	dividual Samples List	ted:					
Sample Number	Client Sample ID	Qualifier	Description	-6			
L2198327-1	ZONE 6	WSMT			rcury analysis was not submitted in glass or PTFE ve. Results may be biased low.		
L2198327-2	ZONE 66	WSMT	Water sample(s) for total mercury analysis was not submitted in glass or PTFE container with HCl preservative. Results may be biased low.				
L2198327-3	EB	WSMT	Water sample(s) for total mercury analysis was not submitted in glass or PTFE container with HCl preservative. Results may be biased low.				
C Samples with	Qualifiers & Comme	nts:	- 1,59				
QC Type Descript	tion	Parameter		Qualifier	Applies to Sample Number(s)		
Matrix Spike	777.0879.00	Barium (Ba)-Diss	olved	MS-B	L2198327-1, -2, -3, -4		
Matrix Spike		Calcium (Ca)-Dis	solved	MS-B	L2198327-1, -2, -3, -4		
Matrix Spike		Sodium (Na)-Diss	olved	MS-B	L2198327-1, -2, -3, -4		
Matrix Spike		Strontium (Sr)-Di:	ssolved	MS-B	L2198327-1, -2, -3, -4		
Qualifiers for Inc	dividual Parameters I	isted:		1000			
Qualifier	Description				0=10		
DLDS	Detection Limit Raised	: Dilution required due	to high Disso	lved Solids / Electi	rical Conductivity.		

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**	
ALK-TITR-VA	Water	Alkalinity Species by Titration	APHA 2320 Alkalinity	

Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.

BR-L-IC-N-VA

MS-B

Water

Bromide in Water by IC (Low Level)

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

CL-IC-N-VA

Water

Chloride in Water by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

EC-PCT-VA

Water

Conductivity (Automated)

APHA 2510 Auto. Conduc.

This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode.

EC-SCREEN-VA

Water

Conductivity Screen (Internal Use Only)

APHA 2510

Qualitative analysis of conductivity where required during preparation of other tests - e.g. TDS, metals, etc.

F-IC-N-VA

Water

Fluoride in Water by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

HARDNESS-CALC-VA

Seawater

Hardness

APHA 2340B

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

-ig-dis-c-cvafs-va

Seawater

Diss. Mercury in Seawater by CVAFS

PUGET SOUND PROTOCOLS, EPA 245.7

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by filtration (EPA Method 3005A) and involves a cold-oxidation of the acidified seawater sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry or atomic absorption spectrophotometry (EPA Method 245.7).

HG-TOT-C-CVAFS-VA

Seawater

Total Mercury in Seawater by CVAFS

PUGET SOUND PROTOCOLS, EPA 245.7

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedure involves a cold-oxidation of the acidified seawater sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry or atomic absorption spectrophotometry (EPA Method

L2198327 CONTD.... PAGE 7 of 8 22-NOV-18 17:29 (MT) Version: FINAL

Reference Information

245.7).

MET-D-L-HRMS-VA

Seawater

Diss. Metals in Seawater by HR-ICPMS

EPA 200.8

Trace metals in seawater are analyzed by high resolution inductively coupled plasma mass spectrometry (HR-ICPMS) based on US EPA Method 200.8, (Revision 5.5). The procedures may involve laboratory sample filtration based on APHA Method 3030B.

MET-T-L-HRMS-VA

Seawater

Tot, Metals in Seawater by HR-ICPMS

EPA 200.8

Trace metals in seawater are analyzed by high resolution inductively coupled plasma mass spectrometry (HR-ICPMS) based on US EPA Method 200.8, (Revision 5.5). The procedures may involve preliminary sample treatment by acid digestion based on APHA Method 3030E.

NH3-F-VA

Water

Ammonia in Water by Fluorescence

J. ENVIRON, MONIT., 2005, 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al.

NO2-L-IC-N-VA

Mater

Nitrite in Water by IC (Low Level)

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

NO3-L-IC-N-VA

Water

Nitrate in Water by IC (Low Level)

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

P-T-PRES-COL-VA

Water

Total P in Water by Colour

APHA 4500-P Phosphorus

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus", Total Phosphorus is determined colourimetrically after persulphate digestion of the sample.

Samples with very high dissolved solids (i.e. seawaters, brackish waters) may produce a negative bias by this method. Alternate methods are available for these types of samples.

Arsenic (5+), at elevated levels, is a positive interference on colourimetric phosphate analysis.

PH-PCT-VA

Water

pH by Meter (Automated)

APHA 4500-H pH Value

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

It is recommended that this analysis be conducted in the field.

SO4-IC-N-VA

Water

Sulfate in Water by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

TDS-LOW-VA

. . .

Low Level TDS (3.0mg/L) by Gravimetric

APHA 2540C

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total dissolved solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius.

TSS-VA

Water

Total Suspended Solids by Gravimetric

APHA 2540 D - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees ceisius. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code

Laboratory Location

VA

ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

18-1789310

L2198327 CONTD....

PAGE 8 of 8

22-NOV-18 17:29 (MT)

Version: FINAL

Reference Information

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre. < - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR). N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC# 18-1789310

6

Also provided on another Excel tab are the ALS location addresses, phone numbers and sample container? preservation? holding time table for common analyses. TATALOGRAM OF Fresh 110 August 2017 4 က Number of Containers 4 ÷ If Yes add SIF Observations: Yes / No ? Please indicate below Filtered, Preserved or both (F. P. F/P) Service Requested (Rush for routine analysis subject to availability) Ginergency (1-2 Bus. Days) - 100% Surcharge - Contact ALS to Confirm TAT Orborty (2-4 Business Days) - 50% Surcharge - Contact, ALS to Confirm TAT Same Day or Weekend Emergency - Contact ALS to Confirm TAT Special Instructions / Regulations with water or land use (CCME-Freshwater Aquatic Life/BC CSR - Commercial/AB Tier 1 - Natural, etc) / Hazardous Detalls **Analysis Request** (Regular (Standard Tumanound Times - Business Days) Time: **SWILL** By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separato Excel tab. Date: SST , SOT , SHOI ROLAM SAMPLES ZONE 6' AND ZONE 86' HAVE ELEVATED TDS/CONDUCTIVTY. FIELD MEASURED CONDUCTIVITY RANGES BETWEEN 9 AND 9.1 mS/cm. Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. SUROHASOHA JATOT Verified by: TOTAL METALS DISSOVLED METALS ပွ Sample Type Temperature: Groundwater Groundwater Water Water Dale Holtze 6 Š Email 2: valerie bertrand@golder.com 17:00 08:30 Time (M:mm) 17:00 15:00 15:30 Sampler Jime: Report Format / Distribution Email 1: dholtze@golder.com Client / Project Information Date (dd-mmm-yy) 13-Nov-18 13-Nov-18 13-Nov-18 13-Nov-18 <u>o</u> Other Excel (ALS Joanne Lee Job #: 1789310 2 Quote #: Q70883 Date: PO / AFE: Standard Email 3: <u>ت</u>م <u>ت</u> CSD PAVL Received by: (This description will appear on the report) 8:00 Date (dd-mm-yy) 7(M8 (Nh-mm) HE SHIPMENT RELEASE (clent use) MILLEASE Fax: 613-592-9601 Sample Identification HSNA MAD Z ŝ Ě Punting 14-Nov-18 Fax: Z Yes O Ye GOLDER ASSOCIATES LTD 1931 Robertson Road Ottawa, ON K2H 5B7 Hardcopy of Invoice with Report? Same as Report ? 613-592-9800 Date Holtze 25. 和 Zone 66 A Zone 6 2 Sample 1000000 7.1 Released by: The second 100 27.7 の物典の必 ** Invoice To Dafe Hoftze Report To Company: Сотрапу: Address: Address: Contact: Contact: Phone: Phone:

APPENDIX D

2016 Laboratory Certificate of Analysis - Brine Fluid

Certificat d'analyse

Client: Agnico-Eagle CSD - Amaruq Study

Responsable : Mme Odrée-Maude Vachon

Adresse: CSD

tél.: (819) 759-3555 () fax.: (000) 000-0000

Numéro de projet : V-52584

Lieu de prélèvement : Brine Fluid

Échantillon : Brine Fluid

Nom du préleveur : N/D

Type d'échantillon : Eau surface

Réseau:

Date de prélèvement : 17 avril 2016

Heure de prélèvement : N/D

Date de réception : 19 avril 2016

Certificat corrigé, remplace le certificat V-52584 émis le 09 mai 2016

Les résultats ne se rapportent qu'aux échantillons soumis pour analyse.

Les échantillons seront conservés pendant 30 jours à partir de la date du rapport à moins d'avis écrit du client.

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

Toute reproduction, sinon en entier, est interdite sans l'autorisation écrite du laboratoire,

Certificat d'analyse

Numéro de projet : V-52584

Échantillon : Brine Fluid Date de prélèvement : 17 avril 2016

Lieu de prélèvement : Brine Fluid Heure de prélèvement : N/D

Partametres Resultation Aduminium (Al) 0.498 mg/L Sous-traitance/Multilab Direct 20 avril 2016 Antimoine (Sb) 0.0354 mg/L Sous-traitance/Multilab Direct 20 avril 2016 Argent (Ag) 6.0.0001 mg/L Sous-traitance/Multilab Direct 20 avril 2016 Argent (Ag) 6.0.0001 mg/L Sous-traitance/Multilab Direct 20 avril 2016 Baryum (Ba) 0.1126 mg/L Sous-traitance/Multilab Direct 20 avril 2016 Baryum (Ba) 0.1126 mg/L Sous-traitance/Multilab Direct 20 avril 2016 Baryum (Ba) 0.1126 mg/L Sous-traitance/Multilab Direct 20 avril 2016 Sous-traitance/Multilab Direct 20 avril 2016	Decembra e		neure de preievement : N/D	Data diametra
Antimoine (Sb)		Résultats	Méthode d'analyse	Date d'analyse
Argent (Ag)				
Arsenic (Ås) 0.7662 mg/L Sous-traitance-Multilab Direct 20 avril 2016 Baryum (Ba) 0.1126 mg/L Sous-traitance-Multilab Direct 20 avril 2016 Béryllium (Be) <0.0005 mg/L				20 avril 2016
Baryum (Ba)	• • •	The state of the s		20 avril 2016
Béryllium (Be)	Arsenic (As)			20 avril 2016
Bicarbonate (HCO3) 27 mg CaCO3/L M-TIT-1.0 19 avril 2016	Baryum (Ba)		Sous-traitance\Multilab Direct	20 avril 2016
Bismuth (Bi)	* *	<0.0005 mg/L	Sous-traitance\Multilab Direct	20 avril 2016
Bore (B)	Bicarbonate (HCO3)	27 mg CaCO3/L	M-TIT-1.0	19 avril 2016
Bromures	Bismuth (Bi)	<0.0005 mg/L	Sous-traitance\Multilab Direct	20 avril 2016
Cadmium (Cd) <0.00002 mg/L Sous-traitance-Multilab Direct 20 avril 2016 Calcium (Ca) 42266 mg/L Sous-traitance-Multilab Direct 20 avril 2016 Carbone inorganique total (C.I.T. 2.1 mg/L M-COT-1.0 19 avril 2016 Carbone organique total (C.O.T.) 83700 mg/L Sous-traitance-Multilab Direct 29 avril 2016 Chrome (Cr) <0.0006 mg/L	Bore (B)	13.2 mg/L	Sous-traitance\Multilab Direct	20 avril 2016
Calcium (Ca) 42266 mg/L Sous-traitance\Multilab Direct 20 avril 2016 Carbone inorganique total (C.O.T.) 2.1 mg/L M-COT-1.0 19 avril 2016 Carbone organique total (C.O.T.) 28.5 mg/L M-COT-1.0 19 avril 2016 Chlorure (Cl) 83700 mg/L Sous-traitance\Multilab Direct 29 avril 2016 Chrome (Cr) <0.0006 mg/L	Bromures	1066 mg/L	Sous-traitance\Multilab Direct	22 avril 2016
Carbone inorganique total (C.I.T. 2.1 mg/L M-COT-1.0 19 avril 2016 Carbone organique total (C.O.T.) 28.5 mg/L M-COT-1.0 19 avril 2016 Chlorure (CI) 83700 mg/L Sous-traitance\Multilab Direct 29 avril 2016 Chrome (Cr) <0.0006 mg/L	Cadmium (Cd)	<0.00002 mg/L	Sous-traitance\Multilab Direct	20 avril 2016
Carbone organique total (C.O.T.) 28.5 mg/L M-COT-1.0 19 avril 2016 Chlorure (CI) 83700 mg/L Sous-traitance\Multilab Direct 29 avril 2016 Chrome (Cr) <0.0006 mg/L	Calcium (Ca)	42266 mg/L	Sous-traitance\Multilab Direct	20 avril 2016
Chlorure (Cl) 83700 mg/L Sous-traitance\Multilab Direct 29 avril 2016 Chrome (Cr) <0.0006 mg/L	Carbone inorganique total (C.I.T.	2.1 mg/L	M-COT-1.0	19 avril 2016
Chrome (Cr) <0.0006 mg/L Sous-traitance\Multilab Direct 20 avril 2016 Cobalt (Co) 0.0406 mg/L Sous-traitance\Multilab Direct 20 avril 2016 Conductivité 155420 µmhos/cm M-TIT-1.0 19 avril 2016 Cuivre (Cu) 0.0039 mg/L Sous-traitance\Multilab Direct 20 avril 2016 Dureté 105554 mg CaCO3/L Sous-traitance\Multilab Direct 20 avril 2016 Étain (Sn) <0.001 mg/L	Carbone organique total (C.O.T.)	28.5 mg/L	M-COT-1.0	19 avril 2016
Cobalt (Co) 0.0406 mg/L Sous-traitance\Multilab Direct 20 avril 2016 Conductivité 55420 μmhos/cm M-TIT-1.0 19 avril 2016 Cuivre (Cu) 0.0039 mg/L Sous-traitance\Multilab Direct 20 avril 2016 Dureté 105554 mg CaCO3/L Sous-traitance\Multilab Direct 20 avril 2016 Étain (Sn) <0.001 mg/L	Chlorure (CI)	83700 mg/L	Sous-traitance\Multilab Direct	29 avril 2016
Conductivité (55420 µmhos/cm M-TIT-1.0 19 avril 2016 Cuivre (Cu) 0.0039 mg/L Sous-traitance\Multilab Direct 20 avril 2016 Dureté 105554 mg CaCO3/L Sous-traitance\Multilab Direct 20 avril 2016 Étain (Sn) <0.001 mg/L	Chrome (Cr)	<0,0006 mg/L	Sous-traitance\Multilab Direct	20 avril 2016
Cuivre (Cu) 0.0039 mg/L Sous-traitance\Multilab Direct 20 avril 2016 Dureté 105554 mg CaCO3/L Sous-traitance\Multilab Direct 20 avril 2016 Étain (Sn) <0.001 mg/L Sous-traitance\Multilab Direct 20 avril 2016 Fer (Fe) 2.60 mg/L Sous-traitance\Multilab Direct 22 avril 2016 Fluorures (F) 0.06 mg/L Sous-traitance\Multilab Direct 27 avril 2016 Lithium (Li) 34.52 mg/L Sous-traitance\Multilab Direct 22 avril 2016 Magnésium (Mg) 3.92 mg/L Sous-traitance\Multilab Direct 20 avril 2016 Manganèse (Mn) <0.0005 mg/L Sous-traitance\Multilab Direct 20 avril 2016 Mercure (Hg) 0.00039 mg/L Sous-traitance\Multilab Direct 20 avril 2016 Molybdene (Mo) <0.0005 mg/L Sous-traitance\Multilab Direct 20 avril 2016 NH3 (NH3 non-ionisé) 1.52 mg N/L Sous-traitance\Multilab Direct 20 avril 2016 NH4 0.67 mg N/L Sous-traitance\Multilab Direct 20 avril 2016 Nickel (Ni) (1.350 mg/L Sous-traitance\Multilab Direct 20 avril 2016	Cobalt (Co)	0.0406 mg/L	Sous-traitance\Multilab Direct	20 avril 2016
Dureté 105554 mg CaCO3/L Sous-traitance\Multilab Direct 20 avril 2016 Étain (Sn) <0.001 mg/L	Conductivité	55420 µmhos/cm	M-TIT-1.0	19 avril 2016
Étain (Sn) <0.001 mg/L Sous-traitance\Multilab Direct 20 avril 2016 Fer (Fe) 2.60 mg/L Sous-traitance\Multilab Direct 22 avril 2016 Fluorures (F) 0.06 mg/L Sous-traitance\Multilab Direct 27 avril 2016 Lithium (Li) 34.52 mg/L Sous-traitance\Multilab Direct 22 avril 2016 Magnésium (Mg) 3.92 mg/L Sous-traitance\Multilab Direct 20 avril 2016 Manganèse (Mn) <0.0005 mg/L	Cuivre (Cu)	0.0039 mg/L	Sous-traitance\Multilab Direct	20 avril 2016
Fer (Fe) 2.60 mg/L Sous-traitance\Multilab Direct 22 avril 2016 Fluorures (F) 0.06 mg/L Sous-traitance\Multilab Direct 27 avril 2016 Lithium (Li) 34.52 mg/L Sous-traitance\Multilab Direct 22 avril 2016 Magnésium (Mg) 3.92 mg/L Sous-traitance\Multilab Direct 20 avril 2016 Manganèse (Mn) <0.0005 mg/L	Dureté	105554) mg CaCO3/L	Sous-traitance\Multilab Direct	20 avril 2016
Fluorures (F) 0.06 mg/L Sous-traitance\Multilab Direct 27 avril 2016 Lithium (Li) 34.52 mg/L Sous-traitance\Multilab Direct 22 avril 2016 Magnésium (Mg) 3.92 mg/L Sous-traitance\Multilab Direct 20 avril 2016 Manganèse (Mn) <0.0005 mg/L	Étain (Sn)	<0.001 mg/L	Sous-traitance\Multilab Direct	20 avril 2016
Lithium (Li) 34.52 mg/L Sous-traitance\Multilab Direct 22 avril 2016 Magnésium (Mg) 3.92 mg/L Sous-traitance\Multilab Direct 20 avril 2016 Manganèse (Mn) <0.0005 mg/L Sous-traitance\Multilab Direct 20 avril 2016 Mercure (Hg) 0.00039 mg/L Sous-traitance\Multilab Direct 21 avril 2016 Molybdene (Mo) <0.0005 mg/L Sous-traitance\Multilab Direct 20 avril 2016 NH3 (NH3 non-ionisé) 1.52 mg N/L Sous-traitance\Multilab Direct 20 avril 2016 NH4 0.67 mg N/L Sous-traitance\Multilab Direct 20 avril 2016 Nickel (Ni) 1.350 mg/L Sous-traitance\Multilab Direct 20 avril 2016 Nitrates (NO3) 0.54 mg N/L Sous-traitance\Multilab Direct 19 avril 2016 Nitrites (NO2) 0.06 mg N/L Sous-traitance\Multilab Direct 21 avril 2016 Plomb (Pb) <0.0003 mg/L Sous-traitance\Multilab Direct 20 avril 2016 Potassium (K) 1717 mg/L Sous-traitance\Multilab Direct 20 avril 2016 Sélénium (Se) 3.83 mg/L Sous-traitance\Multilab Direct 20 avril 2016	Fer (Fe)	2.60 mg/L	Sous-traitance\Multilab Direct	22 avril 2016
Magnésium (Mg) 3.92 mg/L Sous-traitance\Multilab Direct 20 avril 2016 Manganèse (Mn) <0.0005 mg/L	Fluorures (F)	0.06 mg/L	Sous-traitance\Multilab Direct	27 avril 2016
Manganèse (Mn) <0.0005 mg/L	Lithium (Li)	34.52 mg/L	Sous-traitance\Multilab Direct	22 avril 2016
Mercure (Hg) 0.00039 mg/L Sous-traitance\Multilab Direct 21 avril 2016 Molybdene (Mo) <0.0005 mg/L	Magnésium (Mg)	3.92 mg/L	Sous-traitance\Multilab Direct	20 avril 2016
Molybdene (Mo) <0.0005 mg/L Sous-traitance\Multilab Direct 20 avril 2016 NH3 (NH3 non-ionisé) 1.52 mg N/L Sous-traitance\Multilab Direct 20 avril 2016 NH4 0.67 mg N/L Sous-traitance\Multilab Direct 20 avril 2016 Nickel (Ni) 1.350 mg/L Sous-traitance\Multilab Direct 20 avril 2016 Nitrates (NO3) 0.54 mg N/L Sous-traitance\Multilab Direct 19 avril 2016 Nitrites (NO2) 0.06 mg N/L Sous-traitance\Multilab Direct 21 avril 2016 pH 10.02 M-TIT-1.0 19 avril 2016 Plomb (Pb) <0.0003 mg/L	Manganèse (Mn)	<0.0005 mg/L	Sous-traitance\Multilab Direct	20 avril 2016
NH3 (NH3 non-ionisé) 1.52 mg N/L Sous-traitance\Multilab Direct 20 avril 2016 NH4 0.67 mg N/L Sous-traitance\Multilab Direct 20 avril 2016 Nickel (Ni) 1.350 mg/L Sous-traitance\Multilab Direct 20 avril 2016 Nitrates (NO3) 0.54 mg N/L Sous-traitance\Multilab Direct 19 avril 2016 Nitrites (NO2) 0.06 mg N/L Sous-traitance\Multilab Direct 21 avril 2016 pH 10.02 M-TIT-1.0 19 avril 2016 Plomb (Pb) <0.0003 mg/L	Mercure (Hg)	0.00039 mg/L	Sous-traitance\Multilab Direct	21 avril 2016
NH4 0.67 mg N/L Sous-traitance\Multilab Direct 20 avril 2016 Nickel (Ni) 1.350 mg/L Sous-traitance\Multilab Direct 20 avril 2016 Nitrates (NO3) 0.54 mg N/L Sous-traitance\Multilab Direct 19 avril 2016 Nitrites (NO2) 0.06 mg N/L Sous-traitance\Multilab Direct 21 avril 2016 pH 10.02 M-TIT-1.0 19 avril 2016 Plomb (Pb) <0.0003 mg/L	Molybdene (Mo)	<0.0005 mg/L	Sous-traitance\Multilab Direct	20 avril 2016
Nickel (Ni) 1.350 mg/L Sous-traitance\Multilab Direct 20 avril 2016 Nitrates (NO3) 0.54 mg N/L Sous-traitance\Multilab Direct 19 avril 2016 Nitrites (NO2) 0.06 mg N/L Sous-traitance\Multilab Direct 21 avril 2016 pH 10.02 M-TIT-1.0 19 avril 2016 Plomb (Pb) <0.0003 mg/L	NH3 (NH3 non-ionisé)	1.52 mg N/L	Sous-traitance\Multilab Direct	20 avril 2016
Nitrates (NO3) 0.54 mg N/L Sous-traitance\Multilab Direct 19 avril 2016 Nitrites (NO2) 0.06 mg N/L Sous-traitance\Multilab Direct 21 avril 2016 pH 10.02 M-TIT-1.0 19 avril 2016 Plomb (Pb) <0.0003 mg/L	NH4	0.67 mg N/L	Sous-traitance\Multilab Direct	20 avril 2016
Nitrites (NO2) 0.06 mg N/L Sous-traitance\Multilab Direct 21 avril 2016 pH 10.02 M-TIT-1.0 19 avril 2016 Plomb (Pb) <0.0003 mg/L	Nickel (Ni)		Sous-traitance\Multilab Direct	20 avril 2016
pH 10.02 M-TIT-1.0 19 avril 2016 Plomb (Pb) <0.0003 mg/L Sous-traitance\Multilab Direct 20 avril 2016 Potassium (K) 1717 mg/L Sous-traitance\Multilab Direct 20 avril 2016 Radium (RA 226) <0.066 Becquerels/L M-RA-2.0 02 mai 2016 Sélénium (Se) 3.83 mg/L Sous-traitance\Multilab Direct 20 avril 2016 Silice (Si) 2.93 mg/L Sous-traitance\Multilab Direct 20 avril 2016	Nitrates (NO3)	0.54 mg N/L	Sous-traitance\Multilab Direct	19 avril 2016
Plomb (Pb)<0.0003 mg/LSous-traitance\Multilab Direct20 avril 2016Potassium (K)1717 mg/LSous-traitance\Multilab Direct20 avril 2016Radium (RA 226)<0.066 Becquerels/L	Nitrites (NO2)	0.06 mg N/L	Sous-traitance\Multilab Direct	21 avril 2016
Plomb (Pb)<0.0003 mg/LSous-traitance\Multilab Direct20 avril 2016Potassium (K)1717 mg/LSous-traitance\Multilab Direct20 avril 2016Radium (RA 226)<0.066 Becquerels/L	• •		M-TIT-1.0	19 avril 2016
Potassium (K) Radium (RA 226) Sélénium (Se) Silice (Si) 1717 mg/L Sous-traitance\Multilab Direct 20 avril 2016 20 avril 2016 02 mai 2016 Sous-traitance\Multilab Direct 20 avril 2016 Sous-traitance\Multilab Direct 20 avril 2016 20 avril 2016	•			
Radium (RA 226) <0.066 Becquerels/L M-RA-2.0 02 mai 2016 Sélénium (Se) 3.83 mg/L Sous-traitance\Multilab Direct 20 avril 2016 Silice (Si) 2.93 mg/L Sous-traitance\Multilab Direct 20 avril 2016				
Sélénium (Se)3.83 mg/LSous-traitance\Multilab Direct20 avril 2016Silice (Si)2.93 mg/LSous-traitance\Multilab Direct20 avril 2016	• •		M-RA-2.0	
Silice (Si) 2.93 mg/L Sous-traitance\Multilab Direct 20 avril 2016				
	• •	Control of the Contro		
			Sous-traitance\Multilab Direct	

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

Toute reproduction, sinon en entier, est interdite sans l'autorisation écrite du laboratoire.

F-02-06

Version 3ieme: 26/10/2005

900, Sième avenue Val d'Or (Québec) J9P 1B9

Téléphone : (819) 874-0350 Fax / Téléc: (819) 874-0360 E-mail: valdor@multilab-direct.com Site web; www.multilab-direct.com

Certificat d'analyse

Numéro de projet : V-52584 Échantillon : Brine Fluid

Lieu de prélèvement : Brine Fluid

Date de prélèvement : 17 avril 2016

Heure de prélèvement : N/D

rien de breieverrie	nt. Dille Fluid	ricule de prejevenient. 1971	,
Paramètres	Résultats	Méthode d'analyse	Date d'analyse
Solides dissous	36946 mg/L	M-TIT-1.0	19 avril 2016
Solides totaux	149736 mg/L	M-SOLI-1.0	27 avril 2016
Strontium (Sr)	656 mg/L	Sous-traitance\Multilab Direct	22 avril 2016
Tellure (Te)	<0.0005 mg/L	Sous-traitance\Multilab Direct	20 avril 2016
Thallium (TI)	<0.002 mg/L	Sous-traitance\Multilab Direct	22 avril 2016
Titane (Ti)	45,2 mg/L	Sous-traitance\Multilab Direct	20 avril 2016
Uranium (U)	<0.001 mg/L	Sous-traitance\Multilab Direct	20 avril 2016
Vanadium (V)	<0.0005 mg/L	Sous-traitance\Multilab Direct	20 avril 2016
Zinc (Zn)	<0.001 mg/L	Sous-traitance\Multilab Direct	20 avril 2016
Alcalinité	145 mg CaCO3/L	M-TIT-1.0	20 avril 2016
Sulfate (SO4)	<0.6 mg SO4/L	Sous-traitance\Multilab Direct	12 mai 2016

Sauf indication contraire, tous les échantillons ont été reçus en bon état, Toute reproduction, sinon en entier, est interdite sans l'autorisation écrite du laboratoire.

F-02-06

Version 3^{ième}: 26/10/2005

Limite de détection rapportée

Numéro de projet : V-52584

Échantillon : Brine Fluid Date de prélèvement : 17 avril 2016

Lieu de prélèvement : Brine Fluid Heure de prélèvement : N/D

Lieu de prelevement : Brine	Fluid		Heure de prelevement : N/D	
Paramètre	Valeur	Unité	Méthode	Accréditation
Aluminium (Al)	0.006 m	ng/L	Sous-traitance	
Antimoine (Sb)	0.0001 n	ng/L	Sous-traitance	Oui
Argent (Ag)	0.0001 m	ng/L	Sous-traitance	Oui
Arsenic (As)	0.0005 n	ng/L	Sous-traitance	Oui
Baryum (Ba)	0.0005 n	ng/L	Sous-traitance	Oui
Béryllium (Be)	0.0005 n	ng/L	Sous-traitance	
Bicarbonate (HCO3)	2 n	ng CaCO3/L	M-TIT-1.0	
Bismuth (Bi)	0.0005 n	ng/L	Sous-traitance	
Bore (B)	0.01 n	ng/L	Sous-traitance	Oui
Bromures	0.01 n	ng/L	Sous-traitance	
Cadmium (Cd)	0.00002 n		Sous-traitance	Oui
Calcium (Ca)	0.03 n	ng/L	Sous-traitance	Oui
Carbone inorganique total (C.I.T.	0.2 n	_	M-COT-1.0	
Carbone organique total (C.O.T.)	0.2 n	-	M-COT-1.0	Oui
Chlorure (CI)	0.5 n		Sous-traitance	Qui
Chrome (Cr)	0.0006 n		Sous-traitance	Oui
Cobalt (Co)	0.0005 n	ng/L	Sous-traitance	
Conductivité	1 μ	ımhos/cm	M-TIT-1.0	Oui
Cuivre (Cu)	0.0005 n	ng/L	Sous-traitance	Oui
Dureté	1 n	ng CaCO3/L	Sous-traitance	
Étain (Sn)	0.001 n		Sous-traitance	Oui
Fer (Fe)	0.01 n	ng/L	Sous-traitance	Oui
Fluorures (F)	0.02 n	_	Sous-traitance	Oui
Lithium (Li)	0.005 n	ng/L	Sous-traitance	
Magnésium (Mg)	0.02 n	_	Sous-traitance	Oui
Manganèse (Mn)	0.0005 r		Sous-traitance	Oui
Mercure (Hg)	0.00001 n	ng/L	Sous-traitance	Oui
Molybdene (Mo)	0.0005 n	ng/L	Sous-traitance	Oui
NH3 (NH3 non-ionisé)	0.01 n	ng N/L	Sous-traitance	-
NH4		ng N/L	Sous-traitance	-
Nickel (Ni)	0.0005 r		Sous-traitance	Oui
Nitrates (NO3)		ng N/L	Sous-traitance	Oui
Nitrites (NO2)		ng N/L	Sous-traitance	Oui
pH		•	M-TIT-1.0	Oui
Plomb (Pb)	0.0003 r	mg/L	Sous-traitance	Oui
Potassium (K)	0.05 r		Sous-traitance	
Radium (RA 226)		Becquerels/L	M-RA-2.0	Oui
Sélénium (Se)	0.001 r		Sous-traitance	Oui
Silice (Si)	0.01 r	_	Sous-traitance	
Sodium (Na)	0.05 r	_	Sous-traitance	Oui

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

Toute reproduction, sinon en entier, est interdite sans l'autorisation écrite du laboratoire.

F-02-06

Version 3ieme: 26/10/2005

Limite de détection rapportée

Numéro de projet : V-52584

Échantillon : Brine Fluid Lieu de prélèvement : Brine Fluid

Date de prélèvement : 17 avril 2016 Heure de prélèvement : N/D

Lieu de preieverner	IL. DITTE FILIL	neure de preievement :	N/U
Paramètre	Valeur Unité	Méthode	Accréditation
Solides dissous	1 mg/L	M-TIT-1.0	
Solides totaux	2 mg/L	M-SOLI-1.0	Oui
Strontium (Sr)	0.005 mg/L	Sous-traitance	
Tellure (Te)	0.0005 mg/L	Sous-traitance	
Thallium (TI)	0.002 mg/L	Sous-traitance	
Titane (Ti)	0.01 mg/L	Sous-traitance	_
Uranium (U)	0.001 mg/L	Sous-traitance	
Vanadium (V)	0.0005 mg/L	Sous-traitance	Oui
Zinc (Zn)	0.001 mg/L	Sous-traitance	Oui
Alcalinitė	2 mg CaCO3/L	M-TIT-1.0	
Sulfate (SO4)	0.6 mg SO4/L	Sous-traitance	Oui

Sauf indication contraire, tous les échantillons ont été reçus en bon état. Toute reproduction, sinon en entier, est interdite sans l'autorisation écrite du laboratoire.

> F-02-06 Version 3^{ième}: 26/10/2005

Numéro de projet : V-52584

Échantillon : Brine Fluid Date de prélèvement : 17 avril 2016

Lieu de prélèvement : Brine Fluid Heure de prélèvement : N/D

Lieu de prélèvement	: Brine Fluid		Heure de prélèvement : N/D
Paramètres			
Alcalinité mg CaCO3/L	Nom Standard	STD alcalinité	
	Valeur obtenue	144	
	Justesse	99.3%	
	Intervalle	123 - 167	
Aluminium (Al) mg/L	Blanc	<0.006	
	Nom Standard	DMR-0009-2016-Eu	
	Valeur obtenue	6.82	
	Justesse	92.9%	
	Intervalle	5.10 - 7.64	
Antimoine (Sb) mg/L		<0.0001	
	Nom Standard	DMR-0009-2016-Eu	
	Valeur obtenue	0.2049	
	Justesse	92.3%	
	Intervalle	0.178 - 0.266	
Argent (Ag) mg/L	Blanc	<0.0001	
	Nom Standard	DMR-0009-2016-Ag	
	Valeur obtenue	0.6004	
	Justesse	82.9%	
	Intervalle	0.579 - 0.869	
Arsenic (As) mg/L	Blanc	<0.0005	
	Nom Standard	DMR-0009-2016-Eu	
	Valeur obtenue	0.2700	
	Justesse	95.4%	
		0.198 - 0.368	
Baryum (Ba) mg/L	Blanc	<0.0005	·
		DMR-0009-2016-Eu	
	Valeur obtenue		
	Justesse	94.2%	
		1.94 - 2.92	
Béryllium (Be) mg/L		<0.0005	
		DMR-0009-2016-Eu	
	Valeur obtenue		
	Justesse		
		1.36 - 2.04	
Bismuth (Bi) mg/L		<0.0005	
Bore (B) mg/L		<0.01	
		DMR-0009-2016-Eu	
	Valeur obtenue		
	Justesse		
	Intervalle	2.36 - 3.54	

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

Toute reproduction, sinon en entier, est interdite sans l'autorisation écrite du laboratoire.

F-02-06

Version 3ième: 26/10/2005

900, 5ième avenue Val d'Or (Québec) J9P 189

Téléphone : (819) 874-0350 Fax / Téléc: (819) 874-0360 E-mail: valdor@multilab-direct.com Site web; www.multilab-direct.com

Numéro de projet : V-52584

Échantillon : Brine Fluid

Lieu de prélèvement : Brine Fluid

Date de prélèvement : 17 avril 2016

Heure de prélèvement : N/D

Lieu de preievement	. Drine Fluid		meure de preievement : N/D
Paramètres		F5012301 - 71	
Bromures mg/L	Blanc	<0.01	
	Nom Standard	DMR-0123-2016-Br	
	Valeur obtenue	5.39	
	Justesse	95.7%	
	Intervalle	4.50 - 6.76	
Cadmium (Cd) mg/L	Blanc	<0.00002	
	Nom Standard	DMR-0009-2016-Eu	
	Valeur obtenue	0.89802	
	Justesse	99.8%	
	Intervalle	0.720 - 1.080	
Calcium (Ca) mg/L	Blanc	<0.03	
	Nom Standard	DMR-0009-2016-Eu	
	Valeur obtenue	17.1	
	Justesse	98.3%	
	Intervalle	13.9 - 20.9	
Chlorure (CI) mg/L	Blanc	<0.5	
· · · -	Nom Standard	DMR-0175-2016-CI	
	Valeur obtenue	53.7	
	Justesse	96.7%	
22	Intervalle	46 - 58	
Chrome (Cr) mg/L	Blanc	<0.0006	
	Nom Standard	DMR-0009-2016-Eu	
	Valeur obtenue	4.115	
	Justesse	98.4%	
	Intervalle	3.24 - 4.86	
Cobalt (Co) mg/L	Blanc	<0.0005	
	Nom Standard	DMR-0009-2016-Eu	
	Valeur obtenue	1.549	
	Justesse	99.9%	
	Intervalle	1.24 - 1.86	
Conductivité µmhos/cm	Nom Standard	STD cond maison	
	Valeur obtenue	1407	
	Justesse	99.4%	
	Intervaile	1203 - 1627	
Cuivre (Cu) mg/L		<0.0005	
	· · · · · · · · · · · · · · · · · · ·	DMR-0009-2016-Eu	
	Valeur obtenue		
	Justesse	94.7%	
		1.05 - 1.57	

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

Toute reproduction, sinon en entier, est interdite sans l'autorisation écrite du laboratoire.

F-02-06

Version 3^{ième}: 26/10/2005

900, Sième avenue Val d'Or (Québec) J9P 1B9

Téléphone : (819) 874-0350 Fax / Téléc: (819) 874-0360 E-mail: valdor@multilab-direct.com Site web; www.multilab-direct.com

Numéro de projet : V-52584

Échantillon : Brine Fluid Date de prélèvement : 17 avril 2016

Lieu de prélèvement : Brine Fluid Heure de prélèvement : N/D

Lieu de prélèvement	: Brine Fluid		Heure de prélèvement : N/D
Paramètres			
Fer (Fe) mg/L	Blanc	<0.01	···
	Nom Standard	DMR-0009-2016-Eu	
	Valeur obtenue	16.0	
	Justesse	88.1%	
	Intervalle	11.4 - 17.2	
Lithium (Li) mg/L	Blanc	<0.005	
	Nom Standard	DMR-0009-2016-Eu	
	Valeur obtenue	0.827	
	Justesse	97.8%	
	Intervalle	0.677 - 1.015	
Magnésium (Mg) mg/L	Blanc	<0.02	
	Nom Standard	DMR-0009-2016-Eu	
	Valeur obtenue	8.04	
	Justesse	89.4%	
	Intervalle	5.82 - 8.72	
Manganèse (Mn) mg/L	Blanc	<0.0005	
	Nom Standard	DMR-0009-2016-Eu	
	Valeur obtenue	3.781	
	Justesse	97.2%	
	Intervalle	3.11 - 4.67	
Mercure (Hg) mg/L	Blanc	<0.00001	
	Nom Standard	DMR-0123-2016-HgEu	J
	Valeur obtenue	0.00062	
	Justesse	93.9%	
	Intervalle	0.00040 - 0.00092	
Molybdene (Mo) mg/L	Blanc	<0.0005	
	Nom Standard	DMR-0009-2016-Eu	
	Valeur obtenue	0.6382	
	Justesse	90.1%	
		0.566 - 0.850	
Nickel (Ni) mg/L		<0.0005	
	Nom Standard	DMR-0009-2016-Eu	
	Valeur obtenue	1.110	
	Justesse	98.2%	
	Intervalle	0.90 - 1.36	
Nitrates (NO3) mg N/L		<0.01	
Nitrites (NO2) mg N/L		<0.01	
	Nom Standard	DMR-0175-2016-NO2	
	Valeur obtenue		
	Justesse	97.5%	

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

Toute reproduction, sinon en entier, est interdite sans l'autorisation écrite du laboratoire.

F-02-06

Version 3^{ième}: 26/10/2005

900, 5ième avenue Val d'Or (Québec) J9P 189

Jap 169 Téléphone : (819) 874-0350 Fax / Téléc: (819) 874-0360 E-mail: valdor@multilab-direct.com Site web: www.multilab-direct.com

Numéro de projet : V-52584

Échantillon : Brine Fluid

Lieu de prélèvement : Brine Fluid

Date de prélèvement : 17 avril 2016

Heure de prélèvement : N/D

Lieu de prélèvemei	nt : Brine Fluid		Heure de prélèvement : N/D
Paramètres			
177	Intervalle	1.72 - 2.32	in the second
рН	Nom Standard	STD pH 7.0	
	Valeur obtenue	7.01	
	Justesse	99.9%	
	Intervalle	6.96 - 7.04	
Plomb (Pb) mg/L	Blanc	<0.0003	
	Nom Standard	DMR-0009-2016-Eu	
	Valeur obtenue	0.9397	
	Justesse	96.6%	
	Intervalle	0.727 - 1.091	
Potassium (K) mg/L	Blanc	<0.05	
	Nom Standard	DMR-0009-2016-Eu	
	Valeur obtenue	20.2	
	Justesse	89%	
	Intervalle	14.6 - 21.8	
Radium (RA 226) Becque	erels/L Blanc	<0.002	
	Nom Standard	STD 45462	
	Valeur obtenue	0.0700	
	Justesse	85%	
	Intervalle	0.0700 - 0.0948	
Sélénium (Se) mg/L	Blanc	<0.001	
	Nom Standard	DMR-0009-2016-Eu	
	Valeur obtenue	1.33	
	Justesse	98.5%	
	Intervalle	1.08 - 1.62	
Sodium (Na) mg/L	Blanc	<0.05	
	Nom Standard	DMR-0009-2016-Eu	
	Valeur obtenue	29.0	
	Justesse	91%	
	Intervalle	21.3 - 31.9	
Solides totaux mg/L	Blanc	<2	
	Nom Standard	DMR-0124-2016-3	
	Valeur obtenue	289	
	Justesse	99%	
	Intervalle	243 - 329	
Strontium (Sr) mg/L	Blanc	<0.005	
	Nom Standard	DMR-0009-2016-Eu	
	Valeur obtenue	1.25	
	Justesse	97.7%	
	Intervalle	1.02 - 1.54	

Sauf indication contraire, tous les échantillons ont été reçus en bon état.

Toute reproduction, sinon en entier, est interdite sans l'autorisation écrite du laboratoire.

F-02-06

Version 3itme: 26/10/2005

900, 5ième avenue Val d'Or (Québec) J9P 1B9

Téléphone : (819) 874-0350 Fax / Téléc: (819) 874-0360 E-mail: valdor@multilab-direct.com Site web: www.multilab-direct.com

Numéro de projet : V-52584

Échantillon : Brine Fluid

Lieu de prélèvement : Brine Fluid

Date de prélèvement : 17 avril 2016

Heure de prélèvement : N/D

Lieu de prélèvement	: Brine Fluid	Heure de prélèvement : N/D
Paramètres		
Sulfate (SO4) mg SO4/L	Blanc	
	Nom Standard	DMR-0175-2016-SO4
	Valeur obtenue	71.2
	Justesse	93.7%
	intervalle	60.3 - 73.7
Tellure (Te) mg/L	Blanc	<0.0005
Thallium (Tl) mg/L	Blanc	<0.002
	Nom Standard	TI-S140909023-1000ppm
	Valeur obtenue	989
	Justesse	98.9%
	Intervalle	800 - 1200
Titane (Ti) mg/L	Blanc	<0.01
Uranium (U) mg/L	Blanc	<0.001
	Nom Standard	DMR-0009-2016-Eu
	Valeur obtenue	1.93
	Justesse	90.3%
	Intervalle	1.41 - 2.11
Vanadium (V) mg/L	Blanc	< 0.0005
	Nom Standard	DMR-0009-2016-Eu
	Valeur obtenue	2.023
	Justesse	98.3%
	Intervalle	: 1.59 - 2.39
Zinc (Zn) mg/L	Blanc	< 0.001
	Nom Standard	DMR-0009-2016-Eu
	Valeur obtenue	4.67
	Justesse	97.7%
	Intervalle	3.82 - 5.74

Sauf indication contraire, tous les échantillons ont été reçus en bon état. Toute reproduction, sinon en entier, est interdite sans l'autorisation écrite du laboratoire.

F-02-06

Version 3ième: 26/10/2005

900, Sième avenue Val d'Or (Québec) J9P 1B9

Téléphone : (819) 874-0350 Fax / Téléc: (819) 874-0360 E-mail: valdor@multilab-direct.com Site web: www.multilab-direct.com

Informations supplémentaires

Numéro de projet : V-52584

Échantillon : Brine Fluid

Lieu de prélèvement : Brine Fluid

Date de prélèvement : 17 avril 2016

Heure de prélèvement : N/D

Méthode laboratoire	Méthode de référence
M-MET-3.0	MA.200-Mét. 1.2
M-TIT-1.0	MA.303-Titr Auto 2.0
M-CL-2.0	MA.300-lons 1.3
M-CI-1.0	MA.300-Anions 1.0
M-NITR-2.0	MA.300-NO3 2.0
M-RA-2.0	APHA 7500-Ra B et EPA P.13 (EMSL-CI)
M-SOLI-1.0	MA.104-S.S. 1.1
M-SULF-2.0	MA.300-lons 1.3
1	

Sauf indication contraire, tous les échantiflons ont été reçus en bon état.

Toute reproduction, sinon en entier, est interdite sans l'autorisation écrite du laboratoire.

F-02-06 Version 3^{ième}: 26/10/2005