

2AM-WTP1830 Design Report GSP-2 Storage Pond – Clarifications

To: Andrew Keim <andrew.keim@rcaanc-circnac.gc.ca>

Cc: Richard Dwyer <richard.dwyer@nwb-oen.ca>, Abid Jan <abid.jan@nwb-oen.ca>, Ali Shaikh <ali.shaikh@nwb-oen.ca>, Meadowbank Environment Supervisors <meadowbank.environmentsupervisors@agnicoeagle.com>

From: Eric Haley <eric.haley@agnicoeagle.com>

Date: January 22nd, 2026

Site Selection & Geotechnical Review

Agnico Eagle referenced historical oriented diamond drill hole (DDH) information to estimate the overburden in the proposed footprint areas. 54 holes and 16 holes were evaluated in the original GSP-2 and newly-proposed GSP-2 footprint areas, respectively. The tables below present the average overburden (OVB) depth in locations within the originally proposed GSP-2 location by Atkins Realis and the updated location. It's worth noting that these drill holes are not only within the surface area of the original and proposed location, but also the immediate vicinity. Due to the holes being oriented, the tables provide 2 information, drill-oriented depth, and interpreted vertical depth.

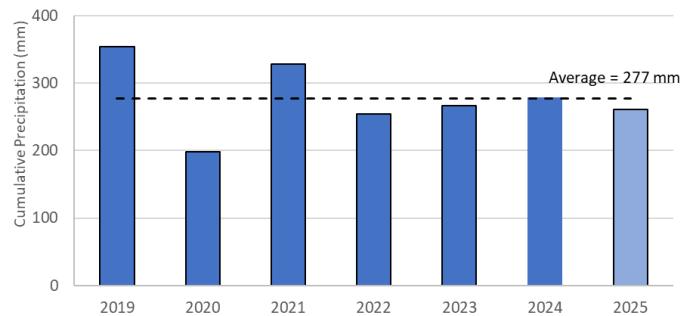
Table 1 – Original GSP-2 Location and Drill Hole Information

OVB Depth, Oriented (m)	OVB Depth, Vertical (m)
7.3	6.0
12.0	9.8
5.9	4.8
8.6	7.0
8.6	7.0
13.9	11.4
6.9	5.7
7.8	6.4
8.6	7.0
6.8	5.6
14.0	11.5
17.5	14.3
11.0	9.0
11.5	9.4
12.0	9.8
11.4	9.3
12.0	9.8
10.8	8.8
15.0	12.3
9.8	8.0
10.1	8.3
13.5	11.1
15.6	12.8
6.7	5.5
12.0	9.8
4.8	3.9
4.7	3.9
5.0	4.1
4.9	4.0
9.0	7.4
10.4	8.5
5.0	4.1
12.0	9.8
7.5	6.1
10.7	8.8
4.8	3.9
7.9	6.5
21.0	17.2
7.9	6.5
9.0	7.4
10.2	8.4
7.0	5.7
14.0	11.5
10.2	8.4
9.0	7.4
7.5	6.1
4.5	3.7
12.0	9.8
7.8	6.4
Average	8.0
Maximum	17.2
Minimum	3.7
Median	7.7

Table2 – Proposed GSP-2 Location and DDH Information

OVB Depth, Oriented (m)	OVB Depth, Vertical (m)
6.0	4.6
9.5	7.3
6.0	4.6
4.5	3.4
4.3	3.3
4.5	3.4
5.6	4.3
7.5	5.7
10.6	8.1
4.0	3.1
7.5	5.7
10.5	8.0
6.1	4.7
7.0	5.4
9.0	6.9
11.5	8.8
Average	5.5
Maximum	8.8
Minimum	3.1
Median	5.0

As can be seen from the table, the updated location allows to minimize overburden excavation, by an expected average of 2.5 to 3m. Depth of overburden is important due to having to be sloped 2H:1V at the crest to prevent sloughing at thaw, or until a cap is placed if required, as mentioned in response 1.1. Furthermore, a few holes generate significant concerns, including a hole that interpreted the overburden depth to 17.2 meters, while the new location has no holes showing overburden deeper than 9m. Ultimately, due to these constraints, and the inability to extend the original footprint due to the proximity of GSP-1, IVR WRSF and UG WRSF, the original location of GSP-2 was discarded as an option.


The favorable overburden depth at the newly proposed location, proximity to disturbed area (IVR Pit) while remaining within an operational range of underground water management infrastructure led to the selection of the newly proposed location.

A stitched surface was created from the holes in the proposed project area, which led to an average overburden thickness of 6.0 m across the area. A 1.0 m of contingency was considered for uncertainty and topographical variability.

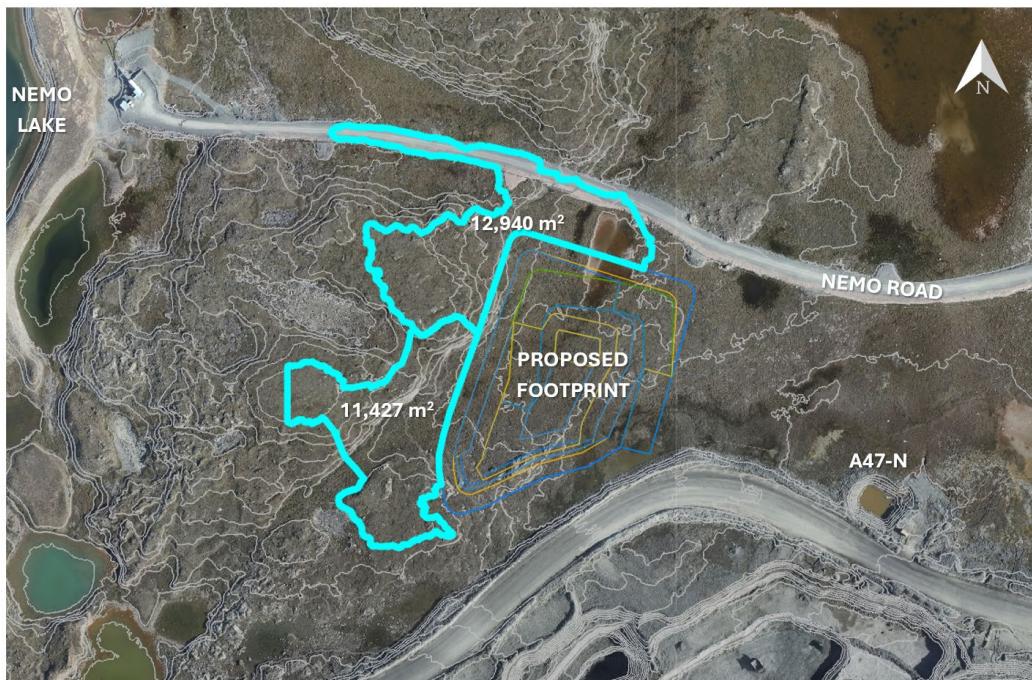
Climate Evaluation and Catchment Runoff

Agnico Eagle collects precipitation data at both the Meadowbank and Whale Tail sites. Historic precipitation data at the Whale Tail site since 2019 is shown in Figure 1. Estimated climate information included in the Whale Tail Mine Water Management Plan (2025) and provided by SNC (2015) is shown in Table 3. For the purposes of this evaluation, Agnico Eagle used the higher value of measured average yearly cumulative precipitation of 277 mm, compared to the lower estimated climate average of 249 mm, while ignoring evaporation and sublimation loss to increase conservatism.

Figure 3 – Average Whale Tail Yearly Cumulative Precipitation

Table 3 – Estimated Mine Site Monthly Mean Climate Characteristics

Month ^a	Mean Air Temp. (°C) ^a	Monthly Precipitation (mm) ^a			Losses ^a		
		Rainfall (mm)	Snowfall Water Equivalent (mm)	Total Precip. (mm)	Lake Evap. (mm)	Evapo-transpiration (mm)	Snow Sublimation (mm)
January	-31.3	0	7	7	0	0	9
February	-31.1	0	6	6	0	0	9
March	-26.3	0	9	9	0	0	9
April	-17.0	0	13	13	0	0	9
May	-6.4	5	8	13	0	0	9
June	4.9	18	3	21	9	3	0
July	11.6	39	0	39	99	32	0
August	9.8	42	1	43	100	32	0
September	3.1	35	7	42	40	13	0
October	-6.5	6	22	28	0	0	9
November	-19.3	0	17	17	0	0	9
December	-26.8	0	10	10	0	0	9
Annual	-11.3	146	103	249	248	80	72


^aSNC (2015).

^aC = degrees Celsius; mm = millimetre.

The catchment area upstream of the proposed GSP-2 area was evaluated using AutoCAD Civil3D and the most recent site topographic survey from August 2025. There is a natural ridge directly northwest of the project area, which minimizes the catchment area and separates the project area from the Nemo Lake watershed. The two contributing sub-catchments areas of 12,940 m² and 11,427 m² are shown in Figure 2, and cumulate to a total catchment area of 24,367 m², or approximately 25,000 m². All runoff southeast of the proposed footprint naturally flows towards the existing A47-N sump.

The saline water stored in GSP-2 is planned to be returned underground at the end of the life of mine. Assuming this will be completed within 2 years, this provides a 5 year life span for the structure (2026-2030). Assuming 277 mm of annual precipitation across an area of 25,000 m², an additional volume of 34,625 m³ is required, alternatively presented as approximately 35,000 m³.

Figure 4 – Catchment Area Plan View

Lastly, as mentioned in Section 3.1 of the design report, should at any point the Whale Tail site require storage of saline water exceeding the capacity of GSP-2, Agnico Eagle will consider alternatives to manage saline water, including the construction of GSP-3.

References

Agnico Eagle (Agnico Eagle Mines Limited). 2025. Whale Tail GSP-2 Storage Pond Design Report, Meadowbank Complex, November 2025.

Agnico Eagle (Agnico Eagle Mines Limited). 2025. Whale Tail Mine Water Management Plan, version 14, Meadowbank Division, March 2025.

SNC (SNC Lavalin Inc.). 2015. Whale Tail Pit Project Permitting Level Engineering, Geotechnical and Water Management Infrastructure, A Technical Report Submitted to Agnico Eagle Mines Ltd. by SNC Lavalin, December 2015.