AGNICO EAGLE MINES LTD MEADOWBANK DIVISION

WHALE TAIL HAUL ROAD

MARCH 26, 2019 CONFIDENTIAL

WHALE TAIL HAUL ROAD CONSTRUCTION REPORT AGNICO EAGLE MINES LTD

CONFIDENTIAL

PROJECT NO.: 171-17523-00 CLIENT REF: 6103-E-132-001 DATE: MARCH 26, 2019

WSP 3, RUE PRINCIPALE NORD, BUREAU 200 AMOS (QUÉBEC) J9T 2K5 CANADA

WSP.COM

REVISION HISTORY

FIRST ISSUE

2019-03-26	Final					
Prepared by	Reviewed by	Approved By (WSP)	Approved by (AEM)			
Youssef Hessani	Stéphan Dupuis, P.Eng.	Stéphan Dupuis, P.Eng	Julie Bélanger, Project Superintendent - Amaruq			

SIGNATURES

PREPARED BY
Youssef Hessani
APPROVED¹ BY (WSP)
Stéphan Dupuis, P.Eng.
APPROVED ² BY (AEM)
Julie Bélanger, Project Superintendent -

WSP prepared this report solely for the use of the intended recipient, AGNICO EAGLE MINES LTD, in accordance with the professional services agreement. The intended recipient is solely responsible for the disclosure of any information contained in this report. The content and opinions contained in the present report are based on the observations and/or information available to WSP at the time of preparation. If a third party makes use of, relies on, or makes decisions in accordance with this report, said third party is solely responsible for such use, reliance or decisions. WSP does not accept responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken by said third party based on this report. This limitations statement is considered an integral part of this report.

The original of this digital file will be conserved by WSP for a period of not less than 10 years. As the digital file transmitted to the intended recipient is no longer under the control of WSP, its integrity cannot be assured. As such, WSP does not guarantee any modifications made to this digital file subsequent to its transmission to the intended recipient

WHALE TAIL HAUL ROAD Project No. 171-17523-00

AGNICO EAGLE MINES LTD

TABLE OF CONTENTS

1	INTRODUCTION	1
2	SUMMARY OF CONSTRUCTION	2
2.1	Site Location Plan	2
2.2	Construction schedule	3
2.2.1	Exploration road	3
2.2.2	Operation road	4
2.3	Exploration road Construction	4
2.3.1	Road backfill	5
2.3.2	Culvert installation	6
2.3.1	Geotextile and geogrid	9
2.4	Bridges	11
2.4.1	Construction	11
2.4.2	Load limitation	12
2.5	Road Widening	12
2.5.1	Road backfill	12
2.5.2	High backfills	15
2.5.3	Culvert installation	16
2.6	Drawings and photographs	17
3	MAIN MODIFICATIONS	18
3.1	Exploration road Construction	18
3.1.1	Culvert	18
3.1.2	Geotextile and geogrid	19
3.2	Road Widening	20

TABLES

TABLE 1: ROCKFILL SCHEDULE	3
TABLE 2: BRIDGE CONSTRUCTION SCHEDULE	3
TABLE 3: ROCKFILL SCHEDULE	4
TABLE 4: DRILLING AND BLASTING SCHEDULE	4
TABLE 5: TYPE AND QUANTITIES OF USED	
MATERIEL	
TABLE 6: CULVERTS WITH FISH HABITAT	6
TABLE 7: SPECIFIED VS AS BUILT CULVERTS	
LENGTH	
TABLE 8: GEOTEXTILE AND GEOGRID LOCATION	9
TABLE 9: BRIDGE LOCATIONS	
TABLE 10: SPECIFIED VS AS SURVEYED MATERIA	
TYPE	
TABLE 11: USED VOLUME	
TABLE 12: BACKFILL HIGHER THAN 3 M	.15
TABLE 13: REQUIRED VS AS BUILT CULVERTS	
LENGTH	
TABLE 14: CANCELLED CULVERTS	
TABLE 15: NOC SUMMARY	.21

FIGURES

FIGURE 1: LOCATION PLAN......2

APPENDIX

- A DRAWINGS
- B PHOTOGRAPHS
- C CULVETS
- D OTHER CHANGES
- E BRIDGE INSPECTION REPORTS
- F BRIDGES DRAWING

1 INTRODUCTION

To expand its activities, Agnico Eagle Mines undertook the construction of a new 64 km road, linking up the Meadowbank site to a new exploitation site, Amaruq, located in the Northern territory of Canada, in Nunavut. AEM delegated WSP to provide professional services in engineering and produce plans and technical specifications for the required work to build the Amaruq exploration access road, to be able to reach and explore the Amaruq site. After completing the construction of Amaruq access road, AEM retained WSP to provide detailed engineering for widening the Amaruq access road and to build the production road, Whale tail haul road. It also includes the improvement of the road design by softening slopes and correcting profile to ensure the security of users and allow an easy crossing for wildlife.

The following Construction Summary Report was prepared in accordance with NWB Water License 2AM-WTP1826 Part D, Item 16. It summarizes the activities of the Amaruq access road and the Whale tail haul road construction and includes a site location plan, construction schedule, summary of quantities, a list of the main modifications made during construction, photos of different construction activities and an «as survey» drawings of the road, based on information provided by AEM. Construction activities were supervised by AEM staff and the contractor KCG (Kivalliq Contractors Group).

2 SUMMARY OF CONSTRUCTION

2.1 SITE LOCATION PLAN

The following figure shows the road location plan.

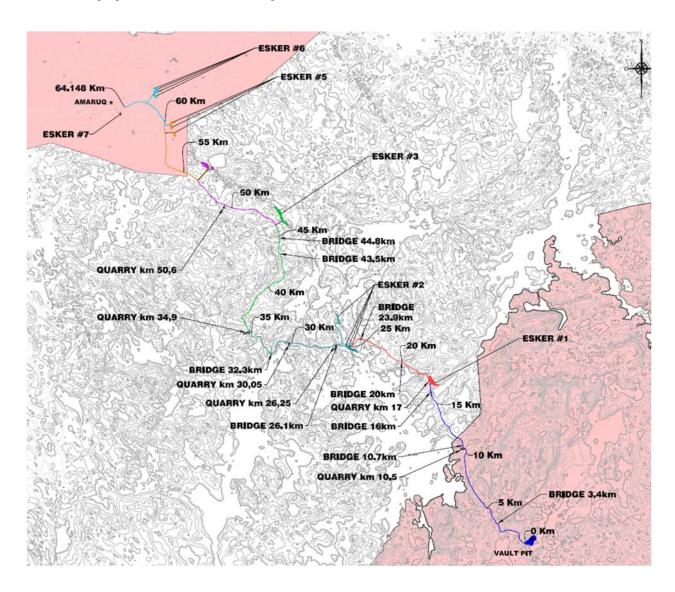


Figure 1: Location Plan

2.2 CONSTRUCTION SCHEDULE

Construction activities were completed by Contractor KCG, and supervised by AEM staff. The exploration access road was built in 2016-2017 and the operation road was built in 2018. Construction activities include drilling and blasting to prepare rockfill, culvert installation, bridge construction and rockfill activities.

2.2.1 EXPLORATION ROAD

Exploration road construction was divided into five activities:

• Rockfill activities

Table 1: Rockfill schedule

Section	Location	Schedule
Section #1	1+000 @ 16+800	2016/02/22 to 2016/09/30
Section #2	16+800 @ 25+000	2016/10/21 to 2016/12/21
Section #3	25+000 @ 35+000	2016/12/23 to 2017/05/18
Section #4	35+000 @ 43+000	2017/05/14 to 2017/05/13
Section #5	43+000 @ 52+500	2017/06/05 to 2017/07/08
Section #6	52+500 @ 57+500	2017/07/09 to 2017/08/05
Section #7	57+500 @ 64+135	2017/08/6 to 2017/08/18

Bridge construction

Table 2: Bridge construction schedule

Location	From	То
Bridge km 3.5 (10.88 m)	2016-10-14	2017-02-05
Bridge km 10.7 (10.88 m)	2016-09-26	2017-01-10
Bridge km 16.0 (45 m)	2016-10-24	2017-04-17
Bridge km 20.0 (10.88 m)	2017-03-07	2017-04-28
Bridge km 23.9 (66 m)	2017-02-13	2017-07-04
Bridge km 26.1 (10.88 m)	2017-03-07	2017-05-20
Bridge km 32.3 (45 m)	2017-03-07	2017-06-28
Bridge km 43.5 (10.88 m)	2017-04-23	2017-07-19
Bridge km 44.8 (45 m)	2017-05-01	2017-07-18

2.2.2 OPERATION ROAD

Operation road construction was divided into four activities:

- Culvert activities: from April 24th, 2018 to October 8, 2018
- Rockfill activities:

Table 3: Rockfill Schedule

Section	Location	Schedule
Section #1	1+000 @ 16+800	2018/05/06 to 2018/06/20
Section #2	16+800 @ 25+000	2018/06/22 to 2018/07/10
Section #3	25+000 @ 35+000	2018/07/11 to 2018/09/10
Section #4	35+000 @ 43+000	2018/09/10 to 2018/10/09
Section #5	43+000 @ 52+500	2018/10/09 to 2018/10/21
Section #6	52+500 @ 57+500	2018/10/21 to 2018/10/26
Section #7	57+500 @ 64+500	2018/10/26 to 2018/10/31

Drill and blast activities: from May 9th, 2018 to October 9th, 2018

Table 4: Drilling and blasting schedule

Location	Schedule
Quarry Km 10.5	2018/05/09 to 2018/06/08
Quarry Km 17	2018/06/09 to 2018/06/23
Quarry Km 26	2018/06/30 to 2018/07/15
Quarry Km 30	2018/07/15 to 2018/08/18
Quarry Km 36	2018/08/20 to 2018/09/26
Quarry Km 50.5	2018/09/26 to 2018/10/09

• Final layer: from July 11, 2018 to November 12, 2018

2.3 EXPLORATION ROAD CONSTRUCTION

The exploration road, Amaruq access road, was built to reach the Amaruq site, it is 6.5 metes wide and contains about 290 water crossings, including 9 bridges and 19 culverts with fish habitat. This section sums up the activities of Amaruq access road, according to information given by AEM. It describes the material used in road backfill, a summary of culverts installed and a comparison between specified and as surveyed quantities.

2.3.1 ROAD BACKFILL

The road backfill was done with two different materials. Rock from quarries and material from Eskers.

This section sums up the quantities and type of used material for road backfill according to as survey drawings and count truck.

Table 5: Type and quantities of used materiel

Chaining		Type of Backfill	Volume (m³)
0+000	5+000	Rock	
5+000	16+000	Rock	336 877
16+000	16+750	Rock	
16+750	17+600	Esker	
17+600	18+950	Esker	188 789
18+950	21+000	Rock	
21+000	23+900	Rock	
24+000	25+100	Rock	
25+100	26+000	Esker	
26+000	26+280	Rock	
26+280	28+050	Esker	
28+050	28+600	Rock	
28+600	30+350	Esker	
30+350	30+500	Mix	260 449
30+500	31+810	Esker	
31+810	32+450	Rock	
32+450	33+350	Mix	
33+350	33+780	Esker	
33+780	34+840	Rock	
34+840	35+000	Mix	
35+000	39+080	Mix	
39+080	40+200	Rock	
40+200	41+790	Mix	
41+790	41+900	Rock	
41+900	43+200	Mix	186 312
43+200	43+500	Esker	
43+500	43+900	Rock	
43+900	44+725	Mix	
44+725	46+070	Rock	
46+070	52+420	Esker	114 718
52+420	53+700	Rock	

Chai	ning	Type of Backfill	Volume (m³)
53+700 59+800		Rock	82 298
59+800	64+150	Esker	73 604

2.3.2 CULVERT INSTALLATION

Culverts construction was done by KCG and supervised by AEM staff. The following tables show information on culverts with fish habitat based on information given by AEM and a comparison between specified and as surveyed culvert lengths. More culvert details are presented in appendix C.

Table 6: Culverts with fish habitat

No.	Location (KM)	Crossing structure	Culvert/Bridge length (m)	Flow characteristics	Channel configuration	Dominant habitat	Fish habitat assessment
1	2.1	#8, #8-2. 900 mm	27	No surface flow. May be interstitial flow	Single	Boulder	May not provide fish habitat most of the time due to lack of flow. Fish passage also unlikely.
		#20 20 2	21;				
3	8	#30, 30-2, 31. 900 mm	18 for #31	Surface flow, but diffuse in places	Multiple/ Diffuse	Graminoid	May provide seasonal small fish habitat.
4	8.4	#32, 33, 34, 34-2. 900 mm	18	Surface flow at crossing. Only interstitial flow in boulder section downstream in 2014 and 2015	Multiple	Graminoid	May provide seasonal small- bodied fish habitat only. Upstream migration by large- bodied fish unlikely. Only small lake upstream.
			21;				No Arctic Grayling was
6	11.1	#47, 47-2, 47-3, 47-4. 900 mm	24 for #47-3	Surface flow	Single	Graminoid	observed, but provides seasonal habitat for juvenile Arctic Char and likely also provides seasonal habitat for small-bodied fishes.
7	12.8	#58, 59, 60. 900 mm	18	Surface flow, but diffuse in places	Multiple	Graminoid	May provide seasonal small- bodied fish habitat only. No upstream migration of large fish likely, due to wetland character of connection and lack of upstream lake habitat.

	Location	Crossing	Culvert/Bridge	Flow	Channel	Dominant	Fish habitat
No.	(KM)	structure	length (m)	characteristics	configuration	habitat	assessment
9	18.6	#74, 74-2. 900 mm	21	Mainly interstitial flow in the fall of 2014	Single	Boulder	Small wetted channel within the larger feature may provide seasonal habitat for small-bodied fishes only. High flows may be infrequent. Not an upstream migration route for large-bodied fish during spring freshet due to sections with only interstitial flow.
			18;	Surface flow at			May provide seasonal small-
11	22.1	#94, 94-2, 94-3, 95, 95-2. 900 mm	21 for #95 and 95-2	crossing location, but only interstitial flow in both 2014 and 2015 where boulders dominate downstream of proposed crossing	Multiple/Diffuse	Graminoid	bodied fish habitat only. Upstream migration likely not possible or important due to channel configuration and flow volume. Upstream pond is shallow.
14	28.3	#121, 121- 2, 121-3. 900 mm	45	Surface flow in some sections and only interstitial flow in others in June 2015	Single	Boulder	May not provide fish habitat due to lack of surface flow. Fish passage is unlikely.
15	30.4	#129. 1200 mm	51	No surface flow in 2014 or 2015. Interstitial flow only in 2015	Single	Boulder	Provides seasonal fish habitat and seasonal fish passage between ponds. Migration of large-bodied fish unlikely due to shallow nature of small pond south of alignment.
17	36.2	#150, 150- 2, 150-3, 150-4, 150- 5. 900 mm	18	Surface flow	Single	Boulder	Likely does not provide fish habitat. Surface flow is unlikely except possibly during an extreme flowgenerating event. Fish passage is likely not an issue due the lack of surface flow in the watercourse.
18	41.8	#167. 600 mm	33	No surface flow at crossing in 2014. May be interstitial flow	Single	Boulder	Likely does not provide fish habitat. Surface flow is unlikely except possibly during an extreme flowgenerating event. Fish passage is likely not an issue due the lack of flow in the watercourse. Recommendation is precautionary.

No.	Location	Crossing	Culvert/Bridge	Flow	Channel	Dominant	Fish habitat
NO.	(KM)	structure	length (m)	characteristics	configuration	habitat	assessment
20	44.4	#173, 173- 2, 173-3. 1000 mm	36	Surface flow at crossing and other discrete locations, but interstitial flow through much of watercourse in 2014. More surface flow in 2015	Single	Boulder	May provide seasonal small-bodied fish habitat only. Upstream migration probably not important due shallowness of small upstream lake. No spawning habitat for large-bodied fish downstream of crossing due to lack of suitable substrate.
22	46.1	#182, #183, #183-2, #184. 800 mm	18 for #182; 24 for #183 and 184; 21 for #183-2	Surface flow	Single	Graminoid	May provide seasonal small- bodied fish habitat only, Upstream migration for large-bodied fishes unlikely due to section of interstitial flow downstream. Only shallow pond upstream.
23	49.4	#208, 209, 210. 900 mm	18	Surface flow at crossing but diffuse in some locations and interstitial section downstream in 2014 and 2015	Single	Boulder	May provide seasonal habitat for small-bodied fish. Migration of large-bodied fish unlikely due to nature of channel, and lack of surface flow in many places.
24	51.2	#218, 218- 2, 218-3, 218-4. 900 mm	18	Surface flow, but diffuse or interstitial in many locations in 2014 and 2015	Single	Boulder	May not provide fish habitat most of the time. May never be sufficient water to allow large-bodied fish passage.
25	51.8	#221, 221- 2, 221-3. 900 mm	24	No surface flow in 2014 or 2015. May be interstitial flow	Single	Boulder	Probably no connection to lakes to north. May provide seasonal habitat for small fishes when flooded in spring.
26	56.9	#253, 253- 2, 253-3. 900 mm.	18	No surface water in 2014. Surface water, but appears to be standing water, in 2015.	Single	Boulder	Provides small-bodied fish habitat and passage between lakes when flooded in spring.
27	59.7	#267. 900 mm.	18	Surface water at crossing in 2015, but appears to be due to high levels in adjacent lakes. Probably dry most of the year	Single	Boulder	May provide seasonal habitat for small-bodied fishes.
28	63.1	#284, 284- 2, 284-3. 900 mm.	24	Some surface flow at crossing and other discrete location in 2015, but does not appear to be a surface connection to upstream ponds	Single. Poorly defined	Boulder	May provide seasonal habitat for small-bodied fishes. No upstream lake.

Table 7: Specified vs as built culverts length

Culvert diameter (mm)	Specified length (m)	As surveyed length (m)
300	657	636
450	534	558
600	1674	2136
700	115	201
710	186	237
800	228	376
900	1584	2387
1000	72	129
1200	90	189

According to the table above, there are some differences between specified and as surveyed lengths. Those differences are due to some changes done on site. Some culverts were cancelled while others were added, profile was raised in some locations that may contains culverts.

2.3.1 GEOTEXTILE AND GEOGRID

The table bellow shows locations where geotextile and geogrid were required. The information in the table is based on specification provided by WSP. Some modifications made on site are presented in section 3.

Table 8: Geotextile and geogrid location

Start	End	Length (m)
2+150	2+250	100
2+725	2+877	152
2+950	3+160	210
3+475	3+560	85
3+620	3+680	60
5+880	5+975	95
6+375	6+550	175
6+840	6+940	100
7+145	8+722	1577
8+930	9+080	150
9+150	13+150	4000
13+225	13+300	75
13+340	13+480	140
13+620	13+990	370
14+275	15+400	1125
15+640	16+780	1140
17+080	17+240	160
18+600	18+950	350

Start	End	Length (m)
19+475	20+300	825
20+820	21+000	180
21+610	21+860	250
22+160	22+200	40
22+690	22+720	30
23+800	23+840	40
24+850	24+980	130
32+050	32+175	125
32+225	32+350	125
32+400	32+500	100
33+520	33+700	180
34+875	35+050	175
35+400	35+700	300
35+750	35+775	25
36+310	36+325	15
36+550	36+675	125
36+950	36+995	45
37+075	37+100	25
37+200	37+300	100
37+475	37+500	25
37+750	37+800	50
41+775	41+900	125
43+275	43+600	325
43+800	43+850	50
44+250	45+225	975
44+320	44+379	59
46+200	46+550	350
48+425	48+500	75
49+370	49+400	30
49+600	49+725	125
51+190	51+225	35
51+325	51+625	300
51+790	51+875	85
52+175	52+550	375
52+650	53+125	475
55+446	56+475	1029
56+525	56+550	25
57+730	57+775	45
57+880	57+975	95
58+350	58+370	20

Start	End	Length (m)
58+375	58+457	82
59+275	59+332	57
59+600	59+650	50
59+697	59+800	103
59+997	60+088	91
60+975	61+200	225
61+375	61+680	305
62+200	62+859	659
63+500	64+025	525

2.4 BRIDGES

2.4.1 CONSTRUCTION

During the construction of exploration road, there were 9 bridges built. The construction was done by KCG and supervised by AEM staff. the 44 and 66 meters long bridges were built on the shores and then launched on the abutments. Before launching the bridges, WSP staff inspected bolting procedure on splices that join the beams. The abutments were made by corrugated steel boxes filled with granular material. After launching each bridge, the concrete slabs were placed and joined with concrete slurry. The contractor planned dispositions for pouring during cold weather.

The following table shows some bridge information. More information about fish habitat in bridge location are shown in appendix D.

Table 9: Bridge locations

Bridge	Location	Length (m)
1	Km 3.4	13.88
2	Km 10.7	13.88
3	Km 16	44.87
4	Km 20	13.88
5	Km 23.9	66
6	Km 26.1	13.88
7	Km 32.3	44.87
8	Km 43.5	13.88
9	Km 44.8	44.87

Most of bridges were installed in extreme low temperature during winter time. When temperature raised during summer, many problems were detected on different parts of bridges. An inspection was done by Associated engineers who made some recommendations to fix the defects.

The first defect was buckling on beams and noticed by AEM staff on bridges km 23.9 and km 16. The maximum deflection measured was 25 mm during high temperature. Those deflections were less important when temperature was lower. According to the Associated Engineers' Inspection report, the deformations are the result of unbalanced welding shrinkage that occurred during fabrication. The thermic effects of welding cannot be completely avoided, but those deformations have no structural capacity implications. The inspection revealed other defects which were repaired by the contractor:

- Some loose-bolted connections on diaphragm bracing
- Bearing guide plate at the end of slot: this problem was faced in many inspected bridges. The possible cause was the temperature during installation or the fact that backfill on the approach was completely done in one side before the other, which made the bridge move and hit the end of slot
- Some spall on concrete slab
- Some granular material loses at the end of concrete slab

2.4.2 LOAD LIMITATION

Bridges were designed for mine haulage operation. A load evaluation of bridges was done by associated Engineering. Five load cases were considered in the evaluations completed on January 5 and April 13, 2018:

- Caterpillar 6020B (224 000 kg)
- Caterpillar 6030 (294 000 kg)
- Caterpillar 785 / Caterpillar 6020B on Sleipner E250 Tow Haul (378 000 kg)
- Caterpillar 777G (182 420 kg)
- Caterpillar 785D (249 480 kg)

The Sleipner Tow Haul is not able to cross the bridges because its wheels are wider than the deck.

For more information and specifications, please see reports in appendix E.

2 5 ROAD WIDENING

Whale Tail Haul road, was built for production activities. By widening the access road, the Whale Tail Haul road has 9.6 meters wide that allows fluid circulation of haul trucks. The construction included profile corrections, and slope softening to increase security of users and allow an easy crossing of wildlife where backfill is higher than 3 meters.

This section sums up the activities of the Whale Tail Haul road, according to information given by AEM. It describes the material used in road backfill, a summary of culverts installed and a comparison between specified and as surveyed quantities.

2.5.1 ROAD BACKFILL

This section sums up the quantities and type of used material for road backfill according to as survey drawings and count truck.

Table 9 shows a comparison between specified and as surveyed material type and volume. Table 10 shows volumes used in each source of material.

Table 10: Specified vs as surveyed material type

		Sı	pecified	As surveyed		
Ch	aining	Type of Backfill	Volume (m³)	Source	Type of Backfill	Volume (m³)
0+000	5+000	Rock	23900	Transit Pad - Vault Pit	Rock	138 097
5+000	16+000	Rock	83888	Transit Pad - Vault Pit - Quarry KM10 & 17	Rock	
16+000	16+750	Rock	1837	Quarry Km17	Rock	75 474
16+750	17+600	Esker	22912	Esker 1	Esker	
17+600	18+950	Esker	1	Quarry Km17	Rock	
18+950	21+000	Rock	20938	Quarry Km17	Rock	
21+000	23+900	Rock	19493	Quarry km17	Rock	
24+000	25+100	Rock	187657	12,5% Esker 2a	Mix	211 196
25+100	26+000	Esker	1	&2b		
26+000	26+280	Rock	1	26,7% Quarry		
26+280	28+050	Esker	-	Km 26 58% Quarry Km 30 2,5% Quarry km17& Km 35		
28+050	28+600	Rock	1			
28+600	30+350	Esker	1			
30+350	30+500	Mix	1			
30+500	31+810	Esker]			
31+810	32+450	Rock]			
32+450	33+350	Mix				
33+350	33+780	Esker]			
33+780	34+840	Rock]			
34+840	35+000	Mix				
35+000	39+080	Mix	88132	27,5% Esker 3	Rock:35+000	99 451
39+080	40+200	Rock]	16,5% Quarry	to 43+200	
40+200	41+790	Mix]	km30	Esker:	
41+790	41+900	Rock]	56% Quarry km	43+000 to	
41+900	43+200	Mix		35	45+900	
43+200	43+500	Esker				
43+500	43+900	Rock	1			
43+900	44+725	Mix				
44+725	46+070	Rock				
46+070	52+420	Esker	35067.47	77% Esker 3	Esker	48 957
52+420	53+700	Rock	6483.19	- 14% Esker 5 9% Quarry Km 35		

		Sp	ecified	P	s surveyed	
Chaining		Type of Backfill	Volume (m³)	Source	Type of Backfill	Volume (m³)
53+700	59+800	Rock	28810.59	70% Esker 3 3% Esker 5 3% Esker 7 12% Quarry km 35 12% Quarry Km 50	Esker	30 211
59+800	64+150	Esker	22112.41	64% Esker 5 11% Quarry Km 35 25% Quarry Km 50	Mix	17 159

Table 11: Used Volume

Source of material	Used volume (m³)
Esker #1	33808.5
Esker #2a	23224.5
Esker #2b	7627.5
Esker #3	76981.5
Esker #5	19606.5
Esker #6	2029.5
Esker #7	1044
Quarry KM 10	86872.5
Quarry KM 17	54246.5
Quarry KM 26	59112
Quarry KM 30	139932
Quarry KM 35	57514.5
Quarry KM 50	8532
Stock Pile KM 17	11763
Stock Pile KM 35	15862
Transit pad	55849.5
Vault Pit	5616

According to the truck count, there are 660 000 m³ of used material from quarries and Eskers. However, there were only 621 131 m³ that was used for the road. The rest of materiel was used for road maintenance, bridge approach, culvert construction, access roads for Eskers, riprap and material for abutment.

2.5.2 HIGH BACKFILLS

In some locations, backfill is high. To ensure security of users and allow an easy crossing for wildlife, the slopes are softened from 2:1 to 4:1 when backfill is higher than 3 meters. The table bellow shows locations where slopes are softened.

Table 12: Backfill higher than 3 m

Chai	ning	length (m)	Max height (m)
1+510	1+530	20	3
2+110	2+195	85	4
2+650	2+680	30	3
3+360	3+425	65	4.8
3+440	3+560	120	4.8
4+710	4+780	70	3.5
5+320	5+345	25	3.8
5+530	5+625	95	5
5+895	5+960	65	3.8
6+520	6+595	75	3.8
7+200	7+225	25	3.5
10+655	10+710	55	4.75
10+730	10+810	80	4.75
15+830	16+040	210	6.25
16+095	16+150	55	5.25
17+390	17+420	30	4.2
18+025	18+180	155	9
18+310	18+590	280	3.8
19+620	19+660	40	3.2
19+910	19+960	50	4
19+980	20+090	110	4.5
20+305	20+390	85	4
23+515	23+560	45	3.5
23+700	23+890	190	6.8
23+960	24+040	80	6.8
24+940	25+070	130	8.2
26+050	26+110	60	7
26+130	26+190	60	6.5
27+175	27+200	25	3.5
27+360	27+390	30	3.2
27+755	27+800	45	3.25
27+990	28+050	60	6

Chai	ning	length (m)	Max height (m)
28+225	28+490	265	8
28+545	28+600	55	5.2
29+940	30+000	60	5.25
30+320	30+515	195	9.2
30+740	30+830	90	6.5
30+925	31+060	135	7.5
31+775	31+900	125	8
32+350	32+470	120	7.75
33+250	33+310	60	3.25
33+700	33+825	125	5.8
35+640	35+820	180	7
41+825	41+930	105	5.2
43+540	43+575	35	4
43+590	43+675	85	4.8
44+730	44+820	90	5.2
44+875	44+955	80	5.8
46+575	46+640	65	5
61+760	61+825	65	4
63+050	63+150	100	4
63+410	63+490	80	4.75

2.5.3 CULVERT INSTALLATION

This section presents a comparison between specified and as surveyed culverts installed during construction.

Table 13: Required vs as built culverts length

Culvert (Galvanized sheet metal pipe)	Required 6m sections	Required 9m sections	Required 12m sections	Total required length (m)	As surveyed length (m)
300 mm diameter	30	3	1	221	282
450 mm diameter	35		2	238	252
600 mm diameter	101	9	4	743	863
700 mm diameter	26	1		165	240
800 mm diameter	15	2	3	150	240
900 mm diameter	86	31	11	949	1038
1000 mm diameter	4			24	36
1200 mm diameter	4	3	1	65	72
			Total	2555	3023

According to the table above, there are some differences between specified and as surveyed lengths. Those differences are due to some changes done on site. Some culverts were cancelled while others were added, profile was raised in some locations that may contains culverts.

2.6 DRAWINGS AND PHOTOGRAPHS

Based on a survey provided by AEM, an as survey drawing was produced for the exploration road and for the production road. The drawings are presented in appendix A.

Technical drawing for bridges are presented in appendix F.

Photographs of road backfill, drilling and blasting quarries and culvert installation are shown in appendix B.

3 MAIN MODIFICATIONS

Based on information and surveys given by AEM, this section sums up the main modifications made during construction.

3.1 EXPLORATION ROAD CONSTRUCTION

Many changes were made during the access road construction, such as geotextile addition or removal, profile raising, changing culvert location, or culvert cancellation. Those changes were made according to site conditions.

3.1.1 CULVERT

The following table shows cancelled culverts. More culvert details are presented in appendix C.

Table 14: Cancelled culverts

Number	Location	Diameter
#4	1+325	800
#6	1+792	600
#16	5+040	300
#29	7+785	900
#29-2	7+787	900
#44	9+487	300
#49	11+407	450
#51	11+902	300
#71	18+287	450
#72	18+350	450
#127	29+336	300
#128	29+522	300
#172	44+436	600
#200	48+420	600
#228	53+020	710
#229	53+272	300
#257	57+550	600
#258	57+900	600
#278-2	61+898	600
#282	62+898	450
#285	63+253	300
#286	63+408	200

3.1.2 GEOTEXTILE AND GEOGRID

The following table sums up the main modifications made for geotextile and geogrid installation. According to site conditions, there are some locations where geotextile was added and other where removed.

Chaining		Type of change	Note	
7+420	7+501	Addition	with geogrid	
16+758	18+100	Removal		
17+080	17+240	Addition		
18+850	18+951	Addition		
19+835	19+860	Addition	with geogrid	
20+575	20+820	Removal		
20+820	21+060	Removal		
21+610	21+859	Addition		
22+040	22+160	Removal		
22+160	22+200	Addition		
22+200	22+292	Removal		
22+540	22+620	Removal		
22+720	22+780	Removal		
23+400	23+800	Removal		
24+575	24+650	Removal		
25+231	25+361	Removal		
26+680	26+885	Removal		
28+300	28+317	Removal		
28+525	28+585	Removal		
31+950	32+050	Removal		
32+175	32+225	Removal		
32+350	32+400	Removal		
32+500	33+115	Removal		
33+900	34+875	Removal		
35+210	35+400	Removal		
35+700	35+750	Removal		
36+130	36+310	Removal		
36+900	36+950	Removal		
36+995	37+075	Removal		
37+185	37+265	Removal		
37+435	37+475	Removal		
41+775	41+850	Addition	with geogrid	
43+600	43+800	Removal		
44+320	44+370	Addition		
46+112	46+142	Removal		

Chaining		Type of change	Note	
49+171	49+370	Removal		
51+075	51+190	Removal		
51+150	52+599	Removal		
51+790	51+810	Addition		
52+695	52+720	Addition	with geogrid	
52+900	52+980	Addition	with geogrid	
55+511	55+710	Removal		
55+800	56+446	Removal		
57+016	57+730	Removal		
57+775	57+880	Removal		
58+220	58+320	Removal		
58+350	58+370	Addition		
58+457	58+975	Removal		
59+125	59+275	Removal		
59+332	59+603	Removal		
59+650	59+697	Removal		
59+697	59+740	Addition		
59+780	59+795	Addition		
59+866	59+997	Removal		
59+997	60+088	Addition		
60+088	60+245	Removal		
60+625	60+775	Removal		
60+680	60+940	Removal		
61+200	62+340	Removal		
61+900	62+210	Removal		
52+859	62+990	Removal		

3.2 ROAD WIDENING

Note that chaining used in drawing and tables presented in this report are not the same as what displayed on the road. Chaining on site considers that the road begins from Baker Lake, which is 115 km away from Vault pit, the beginning of road chaining on drawing.

By drawing the «as survey» plans, we have noticed that the road is wider than what specified in plans for construction.

However, the road footprint was similar. The reason is that the final layer was thinner or partially missing. According to given information, the road backfill material was enough and there was no need to put a final layer. Therefore, the road profile, as surveyed, is lower than what specified in construction plans. Also, the final layer is missing in some locations because the material used for backfilling which was from Esker was good enough and there was no need to put 0-3/4 gravel.

Some other modifications are presented in the table below:

Table 15: NOC Summary

NOC	Title	Details		
001	Culvert #21 6+314 - French Drain	— French drain added		
002	Bridge ApproachEnvironment	— Approach bridge in 3+440		
003	Culvert #77 - 19+003 - Cancellation	The extension is replaced by a french drain due to existing roc on the extension side		
004	- Culvert Change 32+146	 Culvert #133 extension cannot be realised on the left side. The culvert will be extended 6 meters on the right side 		
005	- Slope 41 - 15+850 @ 15+950	No detailscurve radius raised		
006	 Road alignment modification between 18+240 @ 18+560 			
	— Final Layer reduction	Modification of backfill materiel		
		- 34+840 - 39+080 - Mix - Esker layer on top of a Rockfill foundation		
007		- 40+200 - 41+790 - Mix - Esker layer on top of a Rockfill foundation		
		- 41+900 - 43+200 - Mix - Esker layer on top of a Rockfill foundation		
		- 43+900 - 44+725 - Mix - Esker layer on top of a Rockfill foundation		
008	- Road alignment modification 27+100 @ 27+500	— curve radius raised		
009	- Culvert #134 - 32+400 - Cancellation			

NOC	Title	Details	
010	Bridge approach KM 43.5 and KM 44.7	— Backfill with rock 20 meters both sides of the bridge and then backfill from esker 3	
011	KM 53+500 curve modification	curve radius raised	
012	— Road 1m wider 59+800 @ 64+000	— 1m wider to avoid incident caused by shoulder softness	