

Construction Summary Report IVR Diversion Channel

Agnico Eagle Mines Ltd

Report

6127-695-132-REP-012_R2 February 16, 2021

Prepared by:

Denis Bédard

Authorized Signatory:

Executive summary

SNC-Lavalin Stavibel Inc. was retained by Agnico Eagle Mines Limited to prepare a construction summary (as built) report for the IVR Diversion Channel project which will divert non-contact water away from the IVR Pit at the Whale Tail Gold Project Expansion, Nunavut.

SNC-Lavalin previously prepared a detailed engineering design report for the IVR Diversion Channel as requested by the amended Water Licence 2AM-WTP-1830 Part D Item 1, including construction drawing and technical specifications to support the construction activities.

SNC-Lavalin Stavibel Inc. wasn't involved in the construction of the IVR Diversion channel, the information presented in this report was provided in part by Agnico Eagle.

The construction of the IVR Diversion Channel was completed in October 2020. The construction monitoring and quality assurance was managed by Agnico Eagle.

This report summarizes the construction as-built information for the IVR Diversion Channel project.

Revision list

Revi	sion		Pages revised	Comments	
#	Par	Date			
0	IG/DB	December 2020	all	For internal review	
1	IG/DB	January 2021	all	Comments for approval	
2	IG/DB	February 2021	all	Final version	

Table of contents

1.	Introduction		2
2.	Project Descripti	on Summary	2
	2.1 Site location	plan	2
	2.2 IVR Diversio	n Channel design basis	3
	2.3 Diversion Ali	gnment	6
3.	Construction Act	ivities & Schedule Summary	6
	3.1 Roles and R	esponsibilities	6
	3.2 Overall Proje	ect Schedule	6
	3.3 Construction	steps	7
	3.4 QA/QC Prog	ram	9
	3.5 Design Char	nges	10
	3.6 Field Decision	ns and Mitigation Measures	12
	3.7 As-Built Drav	wings and photographs	12
Fig	ure 2– IVR Diver	rsion Locationsion - Typical Sectionsion Design – Profile View	3
Ap	pendix		
	Appendix A	Final construction drawing	
	Appendix B	QA/QC	
		B1 QA Summary Report IVR Diversion Channel Construction	
		B2 QA Daily Reports	
		B3 Daily QC Field Reports	
		B4 Approval Forms	
		B5 Laboratory Results	
		B6 Construction Weekly Minutes of Meeting	
	Appendix C	Design changes records	
	Appendix D	As-built drawings	

1. Introduction

Agnico Eagle Mines Limited, Meadowbank Division (AEM) is developing the Whale Tail Project, a satellite deposit located on the Amaruq property (Kivalliq Region of Nunavut, Canada). As part of the expansion project, the surface water management and geotechnical infrastructure required for the Amaruq site include the IVR Diversion. This document presents the IVR Diversion Channel construction summary report required by the Water Licence 2 AM-WTP1830 Part D Item 16. As required by Water Licence Schedule D, this report contains the final design and construction drawings, a summary of construction activities including photographic records before, during and after construction. The as-built drawings, detailed explanation of field decision to reflect any deviations from the original construction drawings/plans and a discussion of the mitigation measures implemented during construction are also presented.

2. Project Description Summary

2.1 Site location plan

Agnico Eagle is developing the Whale Tail Project in the Kivalliq Region of Nunavut (65°24'25" N, 96°41'50" W). The 99,878-hectare Amaruq property is located on Inuit-owned and federal crown land, approximately 55 km north of the Meadowbank Mine.

The principal purpose of the IVR Diversion is to collect and divert the runoff (non-contact water) from the North East watershed into Nemo Lake. The watershed is located just north of the IVR WRSF and east of the IVR Pit, and it has an approximate area of 68.2 ha (with the IVR Diversion in place).

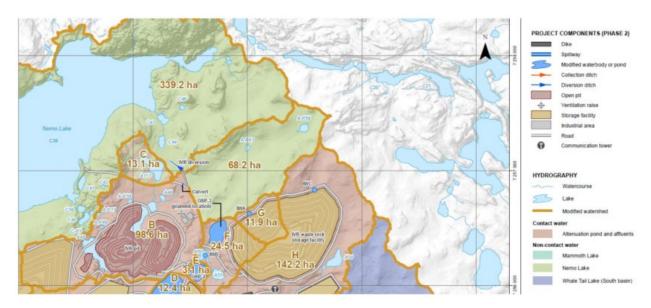


Figure 1 – IVR Diversion Location

2.2 IVR Diversion Channel design basis

The detailed Engineering of the channel was performed by SNC-Lavalin and is described in detail in the Design Report for IVR Diversion document (AEM Reference 6127-695-132-REP-004). The diversion system consists of a trapezoidal section channel in combination with a pervious perimeter berm that is delimiting the west boundary of the channel. The trapezoidal section consists of a layer of fine filter material placed on top of the excavated foundation followed by geotextile and overlain by riprap. The berm is part of the hydraulic section that provides the extra capacity for the system (IVR Diversion) to properly reroute the runoff volumes from the 68.2 ha-watershed during flood events (i.e. 1:100-Yr Flood). This berm is also used as an access road for inspection and maintenance of the infrastructure. The access road has a minimum height of 1.5 m as per the minimum requirement for access roads at the Amaruq site. The IVR Diversion is a temporary structure that is required for the duration of operations at the IVR pit, from 2021 to 2025. The Figure 2 shows a typical section of the IVR Diversion.

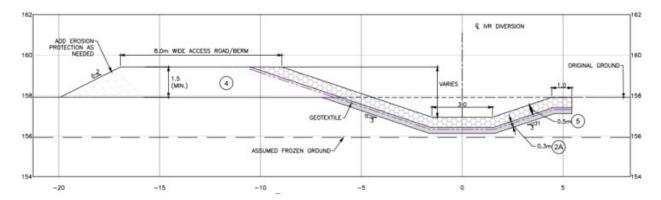


Figure 2- IVR Diversion - Typical Section

The IVR Diversion final length is 300 m with an average invert slope of approximately 0.36%, which is slightly steeper than the minimum slope established in Table 1. This is acceptable since the IVR Diversion is expected to have good hydraulic performance with this slightly steeper slope. The IVR Diversion invert profile is shown in Figure 3.

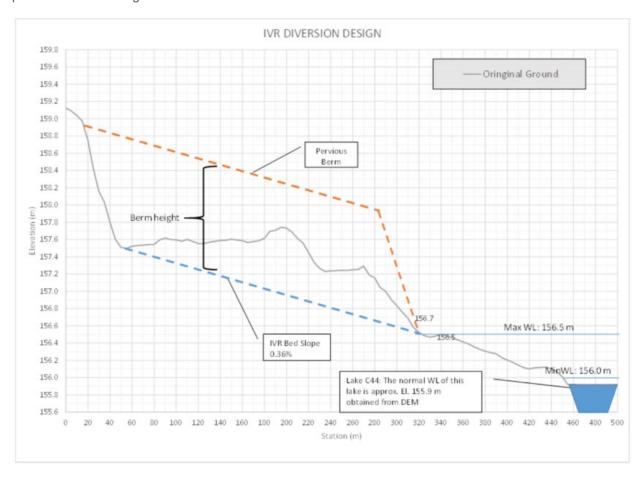


Figure 3 - IVR Diversion Design - Profile View

The Table 1 below presents the design basis related to hydraulic aspects of the IVR Diversion Channel.

Table 1 – Hydraulic Design Basis for IVR Diversion

Parameters	Values
Design Flood	
Design Flood Event	1:100 Storm Flood
Rain Data	From I-D-F Curves from Baker Lake A Station (Update version from the IDF-CC Tool)
Watershed's physical characteristics	Will be obtained from terrain model, DEM 1.0 m resolution
Runoff Coefficient "C" = 1.0	Assuming saturated conditions of the soil
Time of concentration	Bransby Williams for C>0.4, MTQ (2014)
Peak Inflow	Rational Method, MTQ (2014)
Diversion's physical characteristics	
Manning "n" roughness	Based on rip-rap revetment - Typical value "n"= 0.033 (Chow, 1959)
Freeboard	0.3 m
Side slope	Between 2H:1V to 3H:1V
Width of the base	3.0 m ¹
Bed slope	Minimum 0.3% ²
Flow velocities	Based on hydraulics equations for trapezoidal section
Water levels	Based on hydraulics equations for trapezoidal section
Rip-Rap: Rip-rap size will be obtained	following the recommendations in USACE (1994)
D50	Based on Maximum Velocities in the diversion
Rip-Rap Layer thickness	USACE (1994) and MTQ (2014)
Rip-Rap Gradation	Typical

2.3 Diversion Alignment

The location of the IVR Diversion was determined based on observations of the terrain, digital elevation model (DEM) and where the diversion will be able to intersect the runoff volumes from the 68.2 ha-watershed. Once that was determined, the alignment was optimized based on terrain elevations with the objective to minimize excavation.

The final construction drawings of the IVR Diversion can be found in Appendix A.

3. Construction Activities & Schedule Summary

3.1 Roles and Responsibilities

The engineering design and construction documents of the IVR Diversion Channel were developed by SNC-Lavalin. The owner, Agnico Eagle Mines Limited (AEM) was responsible for managing all the related construction activities .

Table 2 provides a summary of the general roles and responsibilities for each party involved during the channel construction activities.

Company	Role	Responsibility	Key Personnel	Position
Agnico Eagle Ltd	Owner	> Responsible> Owner representative	Patrice GagnonLaurier Collette	Geotechnical Specialist Geotechnical Engineer
Agnico Eagle Ltd	Owner	> Construction site supervision	> Jean-François Béland	> Site construction supervisor
Agnico Eagle Ltd	Owner	> Project Management	> Marc-André Beaudet	> Project Manager
Agnico Eagle Ltd	Owner	> QA Representative	Patrice GagnonLaurier Collette	> Geotechnical Specialist> Geotechnical Engineer
WSP	QC Control	> QC Representative	> Mikaël Turcotte	> Resident Engineer
KCG	Contractor	Carry out construction activityWork supervision	> Manuel Bussières	> Contractor supervisor
SNC-Lavalin	Designer	> Provide engineering report & construction	> Anh-Long Nguyen	> Designer Project Manager

Table 2 – Roles, responsibilities and key personnel

3.2 Overall Project Schedule

The construction activities of the IVR Diversion s were performed from September 19, 2020, until October 6, 2020, for a total of 18 days. The general schedule of activities for the construction of the IVR Diversion Channel was the following:

- Rock fill placement between September 19 and 22, 2020
- Excavation and foundation:
 - o Invert and East Slope between September 22 and 30, 2020

- West Slope between September 2 and October 4,2020
- Fine filter placement:
 - o Invert and East Slope between September 24 and 30, 2020
 - West Slope between October 3 to 5, 2020
- Geotextile Placement:
 - o Invert and East Slope installed between September 27 to 30, 2020
 - West Slope, Channel Outlet and Channel Inlet installed between October 3 and 5, 2020
- Riprap placement was performed between September 27 and 30, 2020

3.3 Construction steps

The following section summarizes the construction steps realized in order to accomplish the final IVR Diversion Channel implementation. More details are available in the QA Summary reports (Appendix B1) and the Construction Weekly Minutes of Meeting Reports (Appendix B6).

Rock fill placement

For the initial fine rockfill (September 19th to September 22, 2020), a rock type ultramafic, was placed with a dozer. The material was well graded with particle size approx. 0-600. Larger particles were put aside by operator.

The compaction achieved by trucks and dozer. Haul truck operators were instructed to vary the wheel passage to compact the entire platform. It worked well and eliminated the ruts.

No rockfill was placed between 0+011 and 0+026 intentionally to let water flow in a natural stream on the tundra. That way, unnecessary water management was avoided.

Once the construction of the invert and east side of the channel were completed, a second road lift (October 1st to October 2, 2020) of about 0.5 m was added to the access road to raise the platform and proceed to sloping of the west side of the channel. This lift has been added on the entire length of the road. Adequate Non-PAG material was used. The particles size generally varied between 0 mm and 500 mm. Larger boulders were put on the side while placing the material with a dozer and with the excavator at the time of sloping the west side of the channel. Proper compaction was achieved by loaded and unloaded 50t haul trucks, dozer, excavator rolling on the surface and light vehicle traffic.

Excavation and Foundation

The channel was constructed in 2 stages. First, the invert and the east slope of the channel were completed (September 22nd to September 30, 2020). Secondly, the west slope was completed (October 2nd to October 4, 2020) after the road was lifted.

All the excavated material was removed and disposed of in an appropriate area of the IVR WRSF.

Three foundation test pits were dug into the foundation of the channel to assess the water presence/material quality. No test pits were dug deeper than the channels' final depth. Material varied from cobbles and blocks to glacial till, damp to wet. Three (3) water content samples were collected by QC. Results are available in the Laboratory Results in Appendix B5.

A complete detailed description of the excavation work for each stage of the channel construction is available in the QA Summary report in Appendix B1.

Fine Filter Placement

A total of eight samples of fine filter (FF) material were taken from the stockpile at the beginning of the project to ensure compliance with the specifications. Sample FF-01 and FF-02 were slightly on the coarse side. Overall, the fine filter material is considered compliant. Complete lab results are available in Appendix B5.

- a) Channel invert & East Slope Fine Filter (September 24 to September 30· 2020)

 First loads of fine filter were a bit too coarse. The loader operator was instructed the proper loading method. Loads were compliant from that point onwards. A sample was taken to confirm compliance. The material was properly placed and compacted with the excavator bucket, according to QA and QC observations.
- b) West Stope Fine Filter (October 3rd to October 5, 2020)

Visual inspection during fine filter material placement confirmed a proper gradation. The material was properly placed and compacted with the excavator bucket. Excessive compaction was avoided to minimize potential pore water movement in the surrounding high moisture content natural ground. The challenge of placing FF on the west slope was the limitation for the operator to handle material at the toe of the dike. Given that the channel was built in two steps, the FF, geotextile and riprap were already in place at the channel invert at the time of placing FF on the west slope. In prevision of that, the excavation and FF layer were extended as much as possible on the west side to allow more flexibility and the riprap layer was not fully completed on the west side of the invert. The geotextile rolls were left rolled at the end of the riprap and sometimes pulled up on top of it. All in all, the surveyor confirmed the toe of the slope before and after FF placement. The only potential limitation is that the material could not be compacted as much or sometimes at all, at the junction with the invert FF layer, to avoid damaging to the geotextile.

Geotextile placement

The geotextile placement was carried out in two stages. First, the geotextile was installed on the channel invert and on the eastern slope section (from September 27 to September 30, 2020). The Geotextile sheets were installed from downstream to upstream so that any upstream sheet was on top of the downstream one. Overlap was compliant. Two layers were installed as agreed with the designer since the product used has different properties than the design specifications. The second layer was placed on top of the first one with a 2.5m overlap. The product used was Novatex V from approximately 0+060 to 0+285 and Mirafi 1100N from -0+015 to approximately 0+060.

The second phase of the geotextile installation took place from October 3 to October 5, 2020 and included the following areas:

a) Geotextile unrolled up the west slope

After fine filter approval, geotextile rolls were unrolled all the way up the slope. The same sequence and overlap were used as in the channel (sheets installed from downstream to upstream so that any upstream sheet was on top of the downstream one). Overlap was compliant, always over 600 mm. Overlap was greater in the 0+140 area because of the change in channel orientation. Two layers were placed at all times, as per agreement with the designer (continuation of the rolls placed on the invert and east slope). At some locations, the geotextile was damaged during the slope

excavation and fine filter placement. Sometimes, the textile was ripped between the riprap stones and the excavator bucket. At these locations, proper corrective measures were taken. Rip holes were located at the toe of the west slope. When unrolling the rolls, full width geotextile patches were added in a way that the patch covered a zone of 1-2 m around the damaged area when possible. When the damaged area was too close to the toe, the covering offset was less on the side of the channel invert because of the riprap already in place. On that side, the patch covered an area of about 0.3 m beyond the damaged zone. Riprap material was moved manually to allow such an overlap. Also, the damaged geotextile was folded over 1-2 m as an additional protection to ensure that the tear holes were properly patched.

b) Channel Outlet

Geotextile was put in place at the channel outlet beyond the energy dissipator. Only one layer was installed, with same overlap as anywhere in the channel.

c) Channel Upstream End (Inlet)

A geotextile was put in place at the upstream end of the channel in a way that it covered the natural ground slope. It was not possible to achieve any overlap with the geotextile of the channel, as it was already buried under riprap.

Riprap placement

Riprap placement on the invert and east slope was performed from September 27, 2020, until September 30, 2020. Riprap was placed to proper elevation. The material particles size utilized was conformed according to visual inspection, except some non-compliant loads. Some riprap loads dumped in the afternoon of 2020-09-30 were found to contain material finer than 100 mm (fine particles and gravel size particles). The stockpile was checked so the best material is loaded. Operators placing the material was notified and adapted their method. On the access road prior to placement in the channel, fines were segregated as much as possible using wind while dropping bucketloads from higher up. Also, while placing the material, the operator shook the bucket, which left the fine material in the bucket. The fine material was disposed of on the road rather than in the channel. The few spots that needed manual clean up to remove finer material (0+045, 0+078, 0+140, 0+196) were cleaned by hand on 2020-10-06 to QA satisfaction.

Riprap placement on the west slope, inlet and outlet was performed from October 3rd until October 6th. The material was placed with the proper gradation. No particles finer than 100 mm were present, despite stockpile depletion, except for normal amount of dust from crushing and handling. A layer of about 300-400 mm was placed at the outlet of the channel, beyond the energy dissipator, over and beyond the geotextile to properly merge with the natural ground and minimize the risks of erosion from water exiting the channel. At the upstream end of the channel, approximately 300 mm to 600 mm of riprap was placed over and beyond the underlying geotextile to reduce erosion from runoff.

3.4 QA/QC Program

As already mentioned in the previous section, during the construction period, AEM performed a full QA oversight of all construction activities, including:

- Participation to daily construction meetings;
- Periodic observation of construction activities at IVR DC work site and material stockpile areas and communication of these observations to stakeholders via a daily QA report;
- Approval (foundation, fill placement, geotextile placement);

- Provide guidance and instructions for field adjustment;
- Facilitate communication with the Designer for design changes;
- Request or proceed to sampling;
- Review laboratory test results completed by QC representative;
- Review QC activities and documentation.

The QA Summary Report monitoring all construction activities conducted during the completion of the IVR Diversion Channel project can be found in Appendix B1. The laboratory and tests results performed on the different types of materials can be found in Appendix B5.

During the construction period, QA representatives conducted daily site visits. Daily QA reports including pictures are available in Appendix B2.

QC activities were performed daily to ensure that construction conformed to the design and to correct any design variations. Daily QC field reports including pictures are available in Appendix B3.

Approval forms are available in Appendix B4.

Construction Weekly Minutes of Meeting reports are available in Appendix B6.

3.5 Design Changes

Design changes were required and agreed upon with the designer (SNC) during the construction of the channel. The designer provided approval either by email or verbally during a call or a meeting. All changes were tracked in AEM change log and a memo was also issued by SNC to summarize the design changes. These two documents can be found in Appendix C.

The following summarizes the design changes from the original design:

Access road material (Change 01)

It was agreed with the designer to build the access road with ultramafic soapstone rockfill material having a 0-600 mm granulometry instead of with esker material. Ultramafic rockfill material used for this road is very fine and easily degrade under compaction which make it a low permeability element. As a result, it is considered that this material substitution will not impact the performance of the channel.

Geotextile products (Change 02 & 06)

There had been delays for the product ordered (Mirafi 1600) to be delivered to site on time. Other available geotextile products were readily available on site but did not fully comply with the technical specifications. The products (Novatex V and Mirafi 1100N) are thinner and weaker than the required product. To ensure the project could be completed on schedule, it was agreed to use the Novatex V and Mirafi 1100N if two layers were installed instead of a single one, to increase the robustness of this element.

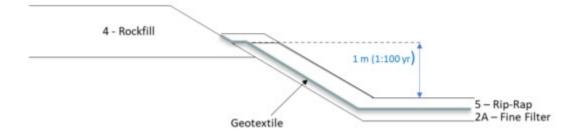
East crest (Change 03)

The design specifies a 1 m wide flat crest at the top of the east slope, all along the channel. However, there was some limitation to do so, between 0+143 and 0+281, because of the maximum excavator reach. It was agreed to continue the slope over 1 m wide (instead of a flat crest) so that the top of the Fine Filter layer merges with the top of natural saturated ground material. Riprap layer on top was to follow the resulting fine filter slope and to merge with the boulder field surface. The change was not executed since the operator was finally able to build the east side of the channel as per the initial design.

Ice-rich till foundation (Change 04)

From sta. 0+235 to 0+260, 0+125 to 0+90 and 0+70 to 0+29 ice rich material were encountered. To improve the performance of the structure this material was removed to a total depth of 1.8 m which is 1.2 m deeper than the design. The ice rich material was replaced by esker and compacted to the design elevation

Channel inlet (Change 05)


Field conditions at the start of the project, such as natural water ponds in the tundra, suggested benefits of extending the IVR diversion channel about 15 m further back. The channel was extended from 0+000 to -0+015 following the design parameters (0.3% slope, layer of fine filter, geotextile, riprap). The riprap layer thickness was kept to about 200-300 to properly merge with the natural ground surface. This Change will improve the performance of the channel.

Channel outlet (Change 07)

A temporary sump was placed at the downstream end of the structure, a few meters beyond the designed energy dissipator, for the early stages of construction. Once pumping was over, it was backfilled with the original ground material. On top, a thin layer of fine filter was placed to fill the local depressions between larger boulders. The final FF elevation corresponds to the natural ground elevation (156.0 m) at the exit of the energy dissipator. Geotextile (two layers of Mirafi 1100N) was put on top, with a final layer of riprap holding it in place and extending beyond the geotextile. As the sump was backfilled at the end of construction this change will not impact the performance of the channel

West slope cross-section update (Change 08)

It was decided and agreed to stop end the fine filter layer at the elevation corresponding to 1 m above the invert of the channel, so it contains the 1:100 yr flood water level. Geotextile and riprap were placed on top of the fine filter material and did not continue further up. Refer to the sketch below:

3.6 Field Decisions and Mitigation Measures

The following summarizes the field adjustments during construction of the IVR Diversion:

Water management sumps

A temporary sump was dug in the upstream area of the channel, on the east side, to intercept runoff and ponding water in the area before it reaches the excavation. Water was pumped to IVR Pit Water management infrastructure. as per agreement with Env. A temporary esker road was built to access the sump. At the end of the project the sump was backfilled with esker material and all the esker from the road was removed. A sump was dug at the downstream end of the channel, around STA 0+286. Pumped water was discharged to IVR Pit Water management infrastructure. The natural ground removed for the excavation of the sump was used to backfill it when the pump was removed. A bit of fine filter material was put on top of the till and handled organic matter to minimize TSS when water would flow there. The final backfilled surface was at natural ground elevation. It was covered with geotextile and riprap as detailed in the channel outlet section below. Other temporary sumps were dug in the channel during the excavation process. The sumps were properly backfilled with esker prior to placing the fine filter material.

Access roads

An access road was built from Nemo Road to where the channel changes orientation, at about 0+150. This access road is permanent.

Upstream end of the channel

The upstream end of the channel was improved to limit risks of erosion. The natural ground has been gently sloped with the back of the bucket (no material was removed) and a geotextile placed on top. It was not possible to have any kind of overlap with the channel geotextile because of the riprap already in place. For finishing, enough riprap has been placed to hold the geotextile in place and minimize potential superficial erosion in the area.

3.7 As-Built Drawings and photographs

The final as-built drawings including related pictures are available in Appendix D.

APPENDIX A

FINAL CONSTRUCTION DRAWING

MG. MISSN CHIMAGE MI.61-695-230-201 100 200 300mm NRDC.TP8 0/S = E.71. 7,257,200 10 140 W.L. = 15 -JULY 2020 CHANNEL INVERT -EXISTING GROUND SNC-LEVALIN SAND BOLLD Hong & Britishings Mills, Sen (Lemma Buck, Sun. 1955, Statton Shadon's, Careele, SN & Leanthysen (ESE SP-7765, Face 1955 SF)-1967 -0.36% (0.3% AS M LAKE C44 MAXIMUMAW.L. 156.5m AND SAND 790JECT No SUBDIVISION SUBJECT SERV. NEW 568281 7000 NC ED 0001 01 EXCAVATION LIMIT BOULDERS AND SAND AND ICE PELLETS NOTES GENERALES / GENERAL NOTES ICE PELLETS CLAY SOTE MUTE SAND WITH CLAY (CHUNKY ENERGY DISSIPATER SNOW/ICE SAND AND ICE PELLETS WORKS SHOWN ON THIS DRAWING SHALL BE EXECUTED IN ACCORDANCE WITH APPLICABLE TECHNICAL SPECIFICATIONS ENERGY DISSIPATER (SEE DETAIL 1) 2. ALL ELEVATIONS, DIMENSIONS AND COORDINATES ARE IN WEITERS UNLESS NOTED OTHERWISE.

ASSUNCE BENEDO

SAND

SECTION

0.3m(2A) ASSUMED FROZEN GROUND -20 -15 B MATERIAL LEGEND (A) FINE FILTER (BECDING) (4) ESKER SILT/SAND/GRAVEL (5) RIPRAP (100-250 mm) (5)0.5m CECTEXTILE STRATIGRAPHY LEGEND 5 ORGANICS POOR BEDROCK CEOTEXTILE-SECTION SCALE= 1:50 SAND AND GRAVEL GOOD BEDROCK OVERBURDEN D/S CFFSE DSTANCE FROM CHANNEL
CENTER LINE
E - EAST OF CENTER LINE
W = WEST OF CENTER LINE FTOP OF BERM EXISTING GROUND-

| PLAN VIEW | SCREE = 113333 | SCOPE | OT SLOPE | OT SL

SCALE= 1:75

6127 R1

1. COMPACTOR PLET VERRY ALL DIMENSIONS
AND COMMINIONS ON SITE BEFORE
PROCEEDING WITH ANY POPTION OF THIS
WORK, PETPROJUCTION OF THIS DIMENSION REPORT
TO CORPHIC SOLE DO NOT SOLE
DIMENSIONS TO COMPANION.

ALL DRAWINGS SHOULD BE READ IN COMMUNICATION WITH TECHNICAL SPECIFICATIONS DOC NO.6127-C-230-003-SPT-002

IN COMMENT OF IN PARTY OF MANINE IS ASSESSED FOR THE PARTY OF THE PART

DESSINS EN REFERENCE / REFERENCE DRAWING

AGNICO EAGLE

REVISIONS

AGNICO EAGLE - AMARUD DIVISION

PERMIT TO PRACTICE

APPENDIX B QA/QC

APPENDIX B1

QA Summary Report IVR Diversion Channel Construction

QA SUMMARY REPORT							
Date	2020-10-10						
Prepared by	Laurier Collette						
Reviewed by	Patrice Gagnon						
Client	Agnico Eagle Mines						
Consultant	SNC-Lavalin						
Contractor	KCG						

Project:

IVR Diversion Channel Construction

SUMMARY OF QA ACTIVITIES

The activities of AEM QA representative during the 18-day construction of the IVR Diversion Channel (IVR DC) include the following:

- Participation to daily construction meetings
- Periodic observation of construction activities at IVR DC work site and material stockpile areas and communication of these observations to stakeholders via a daily QA report
- Approvals (foundation, fill placement, geotextile placement)
- Provide guidance and instructions for field adjustment
- Facilitate communication with the Designer for design changes
- Request or proceed to sampling
- Review laboratory test results completed by QC representative
- Review QC activities and documentation

Following is a list of the key personnel involved in the project.

Responsible Person representatives (AEM): Patrice Gagnon and Laurier Collette

Site supervisor (AEM Construction):
 Project Manager (AEM Construction):
 Designer project manager (SNC):
 Jean-François Béland
 Marc-André Beaudet
 Anh-Long Nguyen

QA representative (AEM):
 Patrice Gagnon and Laurier Collette

QC representative (WSP): Mikaël Turcotte
 Contractor representative (KCG): Manuel Bussières

The table below summarizes the construction and QA/QC activities during the project.

Table 1. Summary of QA inspection activities and approvals

				Observations & insp	pections				
Date	Rock fill placement	Excavation & foundation	Esker placement	FF placement	Geotextile placement	Rip rap placement	Sampling	Approvals	Other
2020-09-19	0+000 to 0+011 0+023 to 0+111								No backfill between 0+011 and 0+023 to let a natural water stream flow
2020-09-20	0+111 to 0+260						FF-01 to 08		
					Channel invert and east slop	е			
2020-09-21	0+250 to 0+260 (1st lift) 0+024 to 0+170 (2 nd lift) Access 0+150 to Nemo road	0+232, 0+223, 0+115					0+232, 0+223, 0+115		
2020-09-22	0+170 to 0+260 (2 nd lift)	0+223 to 0+260	0+000 to 0+100						
2020-09-23		0+143 to 0+243							
2020-09-24		0+035 to 0+139		0+147 to 0+205			EX-01 to 07 EX-03-01 to 03-04 FF-09	FDN-01	
2020-09-25	0+011 to 0+026	0+035 to 0+139	0+235 to 0+260	0+147 to 0+205			EX-08, 09, 10	FDN-02, FDN-03	Backfilling of the opening left for water stream in the tundra
2020-09-26		-0+015 to 0+024 0+029 to 0+070 0+090 to 0+125	0+235 to 0+260	0+235 to 0+281			ES-01	FDN-04, FDN-05	
2020-09-27		0+090 to 0+125 0+029 to 0+070	0+090 to 0+125	Energy dissipator (0+281 to 0+285)	0+152 to 0+285	0+152 to 0+285	EX-11 to 14	FDN-06, FF-01, GT-01	
2020-09-28		0+070 to 0+090 0+125 to 0+143	0+029 to 0+070 0+090 to 0+125	0+090 to 0+143	0+139 to 0+152	0+139 to 0+285	EX-15	FDN-07, FDN-08	
2020-09-29		-0+015 to 0+029	0+032 to 0+130	0+029 to 0+080	0+032 to 0+139	0+032 to 0+139	ES-02	FDN-09, FF-02, FF-03, GT-02	QA crew change day Geotextile material change from Novatex V to Mirafi 1100N
2020-09-30		-0+015 to 0+029	0+020 to 0+029 -0+015 to -0+013	-0+015 to 0+029	-0+015 to 0+032 Outlet	-0+015 to 0+032 Outlet	EX-16 EX-02	FDN-10, FF-04, GT-03, RR-01	
					West slope				
2020-10-01	0+047 to 0+110 0+162 to 0+285	0+162 to 0+190							
2020-10-02	0+000 to 0+047 0+110 to 0+162	0+190 to 0+280		0+155 to 0+220				FDN-11	
2020-10-03		-0+015 to 0+190		0+090 to 0+155 0+220 to 0+285	0+140 to 0+285	0+140 to 0+285	EX-17	FDN-12, FDN-13, FF-05, GT-04	
2020-10-04		-0+015 to 0+190		-0+015 to 0+190	-0+015 to 0+140	-0+015 to 0+140		FDN-14, FF-06, GT-05	
2020-10-05					-0+015 to 0+285 Inlet & outlet	-0+015 to 0+285 Inlet & outlet			
2020-10-06	Clean up of the road surface and sloping the east side					-0+015 to 0+285		RR-02	Backfilling of the main dewatering sump Removal of esker temporary dewatering road

FIELD ADJUSTMENTS & DESIGN CHANGES

FIELD ADJUSTMENTS

Water management sumps

A temporary sump was dug in the upstream area of the channel, on the east side, to intercept runoff and ponding water in the area before it reaches the excavation. Pumped water was discharged to A47 watershed with as per agreement with Env. A temporary esker road was built to access the sump. At the end of the project the sump was backfilled with esker material and all the esker from the road was removed.

A sump was dug at the downstream end of the channel, around STA 0+286. Pumped water was discharged to A47 watershed with a 3" hose, as per agreement with Env. The natural ground removed for the excavation of the sump was used to backfill it when the pump was removed. A bit of fine filter material was put on top of the till and handled organic matter to minimize TSS when water would flow there. Final backfill surface was at natural ground elevation. It has eventually been covered with geotextile and rip rap as detailed in the channel outlet section below.

Other temporary sumps were dug in the channel during the excavation process. That have all been properly backfilled with esker prior to placing the fine filter material.

Access roads

An access road was built from Nemo road to where the channel changes orientation, at about 0+150. This access road will remain permanent.

Upstream end of the channel

Upstream end of the channel has been improved to limit risks of erosion. The natural ground has been gently sloped with the back of the bucket (no material was removed) and a geotextile placed on top. It was not possible to have any kind of overlap with the channel geotextile because of the rip rap already in place. For finishing, enough rip rap has been placed to hold the geotextile in place and minimize potential superficial erosion in the area.

DESIGN CHANGES

Below are some details about the design changes that were agreed upon with the designer (SNC) during the construction of the channel. The designer provided approval either by email or verbally during a call or a meeting. All changes were tracked in AEM change log (document attached to this report). A memo was also issued by SNC to summarize the design changes.

Access road material (Change 01)

It has been agreed with the designer to build the access road with ultramafic soapstone rockfill material instead of with esker material. To ensure a proper thermal capping effect, the final road thickness should be minimum 2m since rockfill is used.

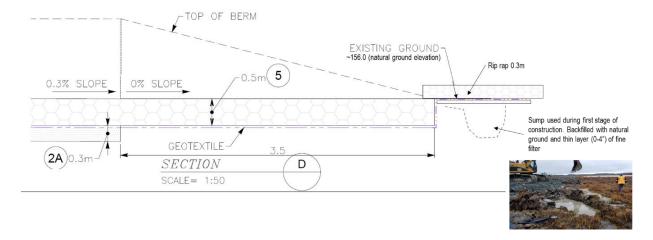
Geotextile products (Change 02 & 06)

There had been delays for the product ordered (Mirafi 1600) to be delivered to site on time. Other available geotextile products were readily available on site but did not fully comply to the technical specifications. The products (Novatex V and Mirafi 1100N) are thinner and weaker than the required product. To ensure the project could be completed on schedule, it was agreed to use the Novatex V and Mirafi 1100N if two layers were installed instead of a single one, to increase the robustness of this element.

East crest (Change 03)

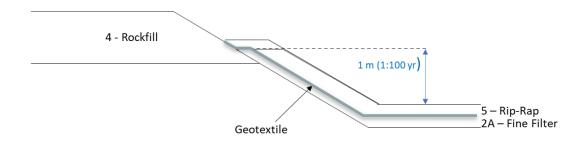
The design specifies a 1m wide flat crest at the top of the east slope, all along the channel. However, there was some limitation to do so, between 0+143 and 0+281, because of the maximum excavator reach. It has been agreed to continue the slope over 1m wide (instead of a flat crest) so that the top of the Fine Filter layer merges with the top of natural saturated ground material. Rip rap layer on top was to follow the resulting fine filter slope and to merge with the boulder field surface. The change was not executed since the operator was finally able to build the east side of the channel as per the initial design.

Ice-rich till foundation (Change 04)


All ice-rich material encountered in the foundation shall be excavated and removed. All over-excavations shall be backfilled by compacted esker material. In the case where conditions are not improving beyond 1.2m below grade, the excavation shall stop and be backfilled. The resulting foundation improvement is expected to maintain year-round freezing conditions in the underlying material and thus minimize the risks of foundation degradation.

Channel inlet (Change 05)

Field conditions at the start of the project, such as natural water ponds in the tundra, suggested benefits of extending the IVR diversion channel about 15m further back. The channel was extended from 0+000 to -0+015 following the design parameters (0.3% slope, layer of fine filter, geotextile, rip rap). The rip rap layer thickness was kept to about 200-300 to properly merge with the natural ground surface.


Channel outlet (Change 07)

A temporary sump was in place at the downstream end of the structure, a few meters beyond the designed energy dissipator, for the early stages of construction. Once pumping was over, it has been backfilled with the original ground material. On top, a thin layer of fine filter was placed to fill the local depressions between larger boulders. The final FF elevation corresponds to natural ground elevation (156.0) at the exit of the energy dissipator. Geotextile (two layers of Mirafi 1100N) has been put on top, with a final layer of rip rap holding it in place and extending beyond the geotextile. Refer to the sketch below.

West slope cross-section update (Change 08)

It has been decided and agreed to stop end the fine filter layer at the elevation corresponding to 1m above the invert of the channel, so it contains the 1:100 yr flood water level. Geotextile and rip rap were placed following on top of the fine filter material and did not continue further up. Refer to the sketch below.

ROCKFILL PLACEMENT

2020-09-19 to 2020-09-22

Initial road lift

Fine rockfill, rock type ultramafic, was placed with a dozer. The material was well graded with particle size approx. 0-600. Larger particles were put aside by operator. Compaction achieved by trucks and dozer. Haul truck operators were instructed to vary the wheel passage to compact the entire platform. It worked well and eliminated the ruts.

At several locations, the first lift of rockfill in the very soft swampy tundra required to be thick enough to prevent equipment from sinking into the softer material and getting caught. More material than expected was needed to reach the desired elevation and ensure a stable road.

No rockfill was placed between 0+011 and 0+026 intentionally to let water flow in a natural stream on the tundra. That way, unnecessary water management was avoided.

2020-09-25

Backfill stream

Rockfill placement to finish the part of the access road that was left open for water management, from about 0+011 to 0+026. Compliant soapstone material and compaction.

2020-10-01 to 2020-10-02:

Second road lift

Once the construction of the invert and east side of the channel were completed, a rockfill lift of about 0.5m was added to the access road to rise the platform and proceed to sloping of the west side of the channel. This lift has been added on the entire length of the road.

Adequate Non-PAG material was used. The particles size generally varied between 0 and 500mm. Larger boulders were put on the side while placing the material and with the excavator at the time of sloping the west side of the channel. Proper compaction was achieved by loaded and unloaded 50t haul trucks, dozer, excavator rolling on the surface and light vehicle traffic.

To be completed in winter:

Final lift (thermal capping completion)

Because the road was built in rockfill material rather than in esker, it has been previously discussed with the designer that an additional 0.5m lift of rockfill should be added to the road to ensure that the thermal capping effect of the road is effective. Upon completion, the road should be 2m thick, 2m above the initial natural ground elevation.

EXCAVATION & FOUNDATION PREPARATION

The channel was constructed in 2 stages First, the invert and the east slope of the channel have been completed while the excavator could reach that side. In a second time, the west slope was completed after the road was lifted. Such a sequence allowed all construction to be done from the west side of the channel, leaving the water collecting area free of material or any disturbance.

All the excavated material was removed and disposed of in an appropriate area of the IVR WRSF.

2020-09-21

TEST PITS

Three foundation test pits were dug into the foundation of the channel to assess the water presence/material quality. None were dug deeper than the channel final depth. Material varied from cobbles and blocks to glacial till, damp to soaked. 3 samples taken by QC for water content:

Table 2. Test pit sample result	Table	2.	Test	pit sa	ample	results
---------------------------------	-------	----	------	--------	-------	---------

Sample ID	fines	sand	gravel	Ice content (%)	Moisture content (%)	Compliance	Chainage	Elevation	Date sampled
IVR-EX-01	23	20	58	-	7.0		0+232		2020-09-21
IVR-EX-02	35	16	49		7.4		0+223		2020-09-21
IVR-EX-03-01	52	41	7	-	18.4		0+115		2020-09-21
IVR-EX-03-02	51	42	7	-	18.4		0+115		2020-09-21
IVR-EX-03-03	51	42	7	-	18.4		0+115		2020-09-21
IVR-EX-03-04	52	42	7	-	18.4		0+115		2020-09-21

2020-09-22 to 2020-09-30

CHANNEL INVERT AND EAST SLOPE FOUNDATION

At the time of year the construction happened is the period where the active layer is at his deepest, therefore all the surficial material found at the channel surface is thawed and saturated with water. 2 type of glacial deposits were encountered during the excavation; boulder fields and glacial till. The boulder field is composed of saturated sandy gravel with blocks and is entirely thawed from surface to the required excavation depth. 65% of the channel path crosses boulder fields saturated with water at surface. Areas of till are swampy and very soft at surface, thawed over 0.8 to 1m then frozen for the remainder of the excavation.

The works started at the North end of the channel by the excavation of a permanent sump to control water encountered in the channel. Due to the nature of the materials encountered at surface, the excavation started at the outlet going towards the south and was done in at least 2 steps; 1- a first layer of around 0.5m was removed to allow surficial drainage of the tundra, boulder fields and swamps, to flow towards the sump and 2- a second pass was necessary to reach the required excavation depth. With the temperature being above freezing point during the works, pumping was required until the area was covered with aggregates. More excavation was required in the frozen icerich till areas, as described below. Other water management temporary sumps were built at St.0+140, 0+073 and

0+030 to manage water from the bottom of the excavation. One major stream located at St.0+080 was bringing most of the water in the excavation.

A start of the excavation of the materials, the newly built downstream berm was still soft and compaction of the slope had not reached its optimal. Therefore, excavation of the plateau on the East slope could not be performed safely as excavator could not safely reach this far area. A request for a design change was asked to Designer in order to change the shape of the slope, which was agreed. Finally, a couple days later, natural drainage induced more consolidation of the downstream platform and the excavator could reach out farther and the plateau was built as intended on the construction drawings. In the ice-rich till areas, portions of the East slope plateau melted between the time plateau was created and when it was time to cover it with aggregates. Therefore, as replacement solution, a new plateau was created in these sections with compacted esker material and covered with aggregates.

When encountered during the excavation of the foundation, all deleterious materials were removed as needed such as large boulders, improper particles, and organic matter.

Ice-rich frozen till areas

Ice-rich frozen till was encountered in between Stations 0+235 and 0+260. The till was tested at surface (sample IVR-EX-04) and returned more than 92% of total moisture content, therefore classified as ice-rich. A field decision was therefore made to continue the excavation to remove the first 600mm of ice-rich till below the channel planned excavation then reassess the situation after the clean-up. Visually there was little to no changes, so QA asked that another 600mm was removed from the bottom of the excavation. Another visual assessment of the foundation revealed a slight improvement in the material. A sample was taken for analysis and turned out to be ice-rich also. In the meantime, it was decided to stop the excavation and backfill it for the following reasons:

- for safety reasons, the excavation was more than 2m high and the downstream berm could not be properly sloped to preserve excavator reach.
- A total of 1.8m to 2m of material will be sitting over the ice-rich till at the channel invert once channel will be completed. With 2 layers of finer grained esker, well compacted, the material should freeze over winter and degradation of the foundation is less likely.
- In section 0+235 to 0+0260, bedrock was encountered in about 10% of the surface excavated, so bedrock is believed to be somewhat close to the bottom of the excavation.

The same procedure was followed for other areas where ice-rich till was also encountered in the foundation (0+125 to 0+090, 0+070 to 0+029). For the complete procedure with photos, please refer to the QA Daily reports from Sept 25th to 27th.

Ice lenses were removed from the foundation in those areas during the excavation of the bottom of the channel. The largest was found at 0+247 and was removed up to the toe of the key trench downstream slope and replaced with esker material. Other lenses were left in place under the toe of the existing slope but were removed during the 3in1 sloping of the downstream of the key trench, as described in the next section.

Sample ID	fines	sand	gravel	Ice content (%)	Moisture content (%)	Compliance	Chainage	Elevation	Date sampled
IVR-EX-04	-	-	-	-	92.2	Ice rich	0+240		2020-09-24
IVR-EX-05	43	33	24	-	13.9	Compliant	0+120		2020-09-24
IVR-EX-06	36	47	17	-	11.8	Compliant	0+100		2020-09-24
IVR-EX-07	15	30	55	-	9.5	Compliant	0+181		2020-09-24
IVR-EX-08	35	31	34	-	48.4	Ice rich	0+238		2020-09-25
IVR-EX-09	34	29	37	-	42.2	Ice rich	0+240 to 0+260		2020-09-25
IVR-EX-10	37	34	29	-	33.1	Ice rich	0+250		2020-09-25

IVR-EX-11	39	59	2	-	93.94	Ice rich	0+090 to 0+125	155.3	2020-09-27
IVR-EX-12	25	35	40	22.85	11.06	Ice rich	0+115	155.975	2020-09-27
IVR-EX-13	31	39	30	27.33	15.84	Ice rich	0+090 to 0+125	155.425	2020-09-27
IVR-EX-14	26	39	35	29.70	12.55	Ice rich	0+090 to 0+125	155.3	2020-09-27
IVR-EX-15	33	38	29	-	28.11	Compliant	0+050		2020-09-28
IVR-EX-16	36	33	31	-	15.82	Compliant	0+000 to 0+030	156.5	2020-09-30

Table 4. Foundation approvals for channel invert and east slope.

Approval doc number	Chainage	Location	Item approved	Date	Comments
20200924-FDN-01	0+149 to 0+205	Invert & East slope	Foundation	2020-09-24	
20200925-FDN-02	0+205 to 0+234	Invert & East slope	Foundation	2020-09-25	
20200925-FDN-03	0+235 to 0+262	Invert & East slope	Foundation	2020-09-25	
20200926-FDN-04	0+234 to 0+260	Invert & East slope	Foundation	2020-09-26	
20200926-FDN-05	0+260 to 0+285	Invert & East slope	Foundation	2020-09-26	
20200927-FDN-06	0+090 to 0+125	Invert & East slope	Foundation	2020-09-27	
20200928-FDN-07	0+090 to 0+149	Invert & East slope	Foundation	2020-09-28	
20200928-FDN-08	0+029 to 0+070	Invert & East slope	Foundation	2020-09-28	
20200929-FDN-09	0+029 to 0+090	Invert & East slope	Foundation	2020-09-29	
20200930-FDN-10	-0+015 to 0+029	Invert & East slope	Foundation	2020-09-30	Improper material removed to expose acceptable foundation

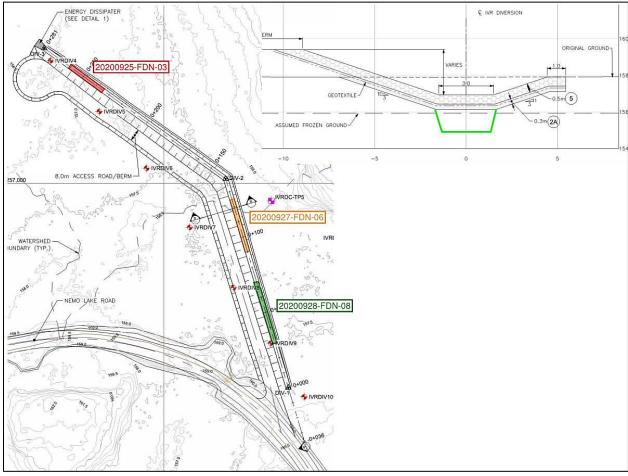


Figure 1. Plan view of the over-excavation resulting of ice & ice-rich material removal

2020-10-02 to 2020-10-04

WEST SLOPE FOUNDATION

The foundation preparation of the west slope took place in multiple steps as described below.

<u>Initial sloping</u>: the excessive rockfill material from the last road lift has been removed as well as the natural ground material.

<u>Final sloping:</u> proper sloping was executed with assistance of the surveyor.

Correction of adverse foundation conditions:

At several locations along the toe of the slope, pockets of soft and oversaturated material were observed. The size of these zones varied from 1 to 5m by 1m wide. All of them were properly marked with spray paint and then removed with the excavator until satisfactory foundation material was exposed (dryer and sufficiently competent material). Material exposed after digging was found to be more competent and to contain acceptable moisture content. The resulting over-excavations (depth varied between 0 and 1.2m) were then backfilled with fine filter material properly compacted (excavator bucket compaction). Affected zones: 0+130, 0+140, 0+150, 0+155, 0+166, 0+195, 0+205, 0+230, 0+240.

Some of the soft and over-saturated material zones were caused by localized water preferential flow path within the natural ground (at 0+145, 0+085, 0+154, 0+202, 0+198). Over-excavations at these corrected zones were surveyed and immediately filled with FF material, properly compacted with the excavator bucket.

Since the invert of the channel was over-excavated between 0+234 and 0+261 due to ice content, two spot checks (0+250, 0+260) were done at the toe of the slope to assess the material conditions 0.3m below grade. FF material was used to backfill these over-excavations

- 0+260: Mix of dryer and damper till. No ice lenses, ice nor oversaturated material.
- 0+250: No significant ice lenses. Fine material with some ice content was observed but not considered to be in excess from visual inspection (less than 10% visible ice). A sample was taken at that location to confirm ice content. The results summarized in the table below show that moisture content is slightly in excess with respect to the specification (over 30%). The amount of ice is higher than expected. No ice was present elsewhere on the foundation, but the results indicates that presence of ice-rich material is possible at depth. This area will have to be monitored.

Table 5. West slope foundation sample results

Sample ID	Fines-sand-gravel	Ice content	Moisture content	Compliance	Chainage	Location	Date sampled
IVR-EX-17	-	26.51%	30.38%	Ice rich	0+250	west slope toe	2020-10-03

Ice lenses were found at the toe between 0+230 and 0+240. Lenses were about 1-2cm thick only with a lateral extent of 0.1-0.5m. The soil also contained some ice pockets of a few centimeter wide (less than 10cm) and areas of icerich material. Non-compliant material containing ice was removed until acceptable ice-poor foundation was found. Enough material was removed until no more ice lenses or pocket were present in the soil. The over excavation ended up being about 0.2 to 1.2m deep.

When encountered on the foundation, other deleterious materials were removed as needed such as large boulders, improper particles, and organic matter. Excess of organic matter was found between 0+050 and 0+085.

<u>Cleaning</u>: Any pebbles or other materials that fell down to the toe of the slope during slope excavation was all removed by hand to leave the foundation free of debris and rocks prior to placing the fine filter material.

<u>Water management:</u> Some ponding water at the toe of the slope was observed on about 30% of the channel length. Ponding was a few centimeter-thick only. The water was properly pushed away while placing the fine filter material on the slope. Between 0+015 and 0+025, the amount of water was more significant, it has been pumped out before placing FF.

Table 6. West slope foundation approvals

Approval doc number	Chainage	Location	Item approved	Date	Comments
20201002-FDN-11	0+155 to 0+240	West slope	Foundation	2020-10-02	Improper material removed to expose acceptable foundation
20201003-FDN-12	0+240 to 0+285	West slope	Foundation	2020-10-03	Ice-rich frozen material at 0+250. Other Improper material removed to expose acceptable foundation
20201003-FDN-13	0+090 to 0+155	West slope	Foundation	2020-10-03	Improper material removed to expose acceptable foundation
20201004-FDN-14	-0+015 to 0+090	West slope	Foundation	2020-10-04	Improper material removed to expose acceptable foundation

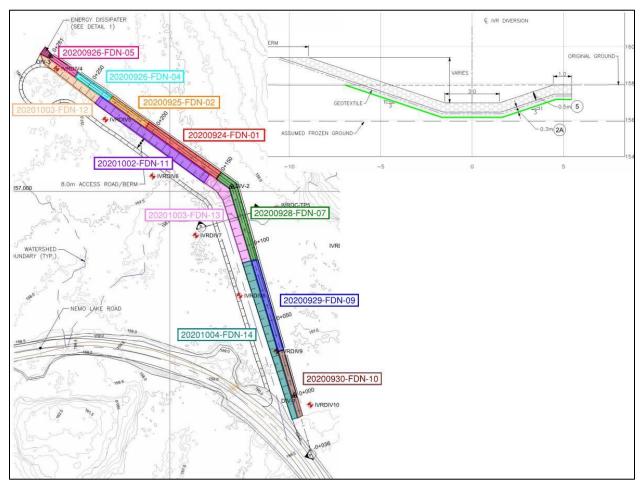


Figure 2. Plan view of all foundation approvals

FINE FILTER PLACEMENT

2020-09-20

STOCKPILE

A total of eight samples of FF material were taken at the beginning of the project to ensure compliance to the specifications. Sample FF-01 and FF-02 are just slightly on the coarse side. Overall, the fine filter material is considered compliant.

Table 7. Lab results for fine filter samples taken at the crusher stockpile.

Sample ID	fines	sand	gravel	Ice content	Moisture content	Compliance	oliance Chainage		Date sampled
IVR-FF-01	8	24	68	-	3.46 %	Partially compliant	-	Stockpile	2020-09-20
IVR-FF-02	6	18	76	-	3.78 %	Partially compliant	-	Stockpile	2020-09-20
IVR-FF-03	7	26	67	-	1.27 %	Compliant	-	Stockpile	2020-09-20
IVR-FF-04	8	42	50	-	1.01 %	Compliant	-	Stockpile	2020-09-20
IVR-FF-05	11	32	58	-	4.9 %	Compliant	-	Stockpile	2020-09-20
IVR-FF-06	9	24	67	-	4.7 %	Compliant	-	Stockpile	2020-09-20
IVR-FF-07	11	35	55	-	5.2 %	Compliant	-	Stockpile	2020-09-20
IVR-FF-08	10	39	51	-	2.7 %	Compliant	-	Stockpile	2020-09-20

2020-09-24 to 2020-09-30

CHANNEL INVERT & EAST SLOPE FINE FILTER

First loads of fine filter were a bit too coarse. The loader operator was instructed the proper loading method. Loads were compliant from that point onwards. A sample was taken to confirm compliance. The material was properly placed and compacted with the excavator bucket, according to QA and QC observations.

Table 8. Lab results for fine filter sample taking on site

Sample ID	fines	sand	gravel	Ice content	Moisture content	Compliance	Chainage	Location	Date sampled
IVR-FF-09	9	33	58	-	5.5 %	Compliant	0+147 to 0+205	Invert & east slope	2020-09-24

2020-10-03 to 2020-10-05

WEST SLOPE FINE FILTER

Visual inspection during fine filter material placement confirmed a proper gradation. The material was properly placed and compacted with the excavator bucket. Excessive compaction was avoided to minimize potential pore water movement in the surrounding high moisture content natural ground.

When water was present at the toe of the slope, it was properly pushed away as the fine filter material was slowly and directionally placed in the excavation. Otherwise, water was pumped out prior to FF placement (refer to previous section).

The challenge of placing FF on the west slope was the limitation for the operator to handle material at the toe of the dike. Given that the channel was built in two steps, the FF, geotextile and rip rap were already in place at the channel invert at the time of placing FF on the west slope. In prevision of that, the excavation and FF layer were extended as much as possible on the west side to allow more flexibility and the rip rap layer was not fully completed on the west side of the invert. The geotextile rolls were left rolled at the end of the rip rap and sometimes pulled up on top of it.

Some of them had to be warmed up, because frozen, before the laborer could move them to leave more room for FF placement.

All in all, the surveyor confirmed the toe of the slope before and after FF placement. The only potential limitation is that the material could not be compacted as much or sometimes at all, at the junction with the invert FF layer, to avoid damaging to the geotextile.

Table 9. Fine Filter approvals

Approval doc number	Chainage	Location	Item approved	Date	Comments
20200927-FF-01	0+149 to 0+285	Invert & East slope	Fine filter	2020-09-27	Compliant
20200929-FF-02	0+090 to 0+149	Invert & East slope	Fine filter	2020-09-29	Compliant. Inspection by QC only
20200929-FF-03	0+029 to 0+090	Invert & East slope	Fine filter	2020-09-29	Compliant. Inspection by QC only
20200930-FF-04	-0+015 to 0+029	Invert & East slope	Fine filter	2020-09-30	Compliant
20201003-FF-05	0+140 to 0+285	West slope	Fine filter	2020-10-03	Compliant
20201004-FF-06	-0+015 to 0+140	West slope	Fine filter	2020-10-04	Compliant

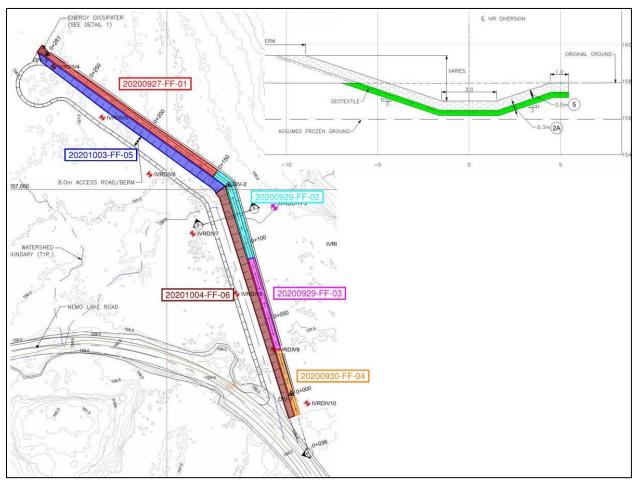


Figure 3. Plan view of the fine filter approvals

GEOTEXTILE PLACEMENT

2020-09-27 to 2020-09-30

CHANNEL INVERT & EAST SLOPE

Geotextile sheets installed from downstream to upstream so that any upstream sheet is on top of the downstream one. Overlap was compliant. Two layers were installed as agreed with designer since product used has different properties than design specifications. The second layer was placed on top of the first one but with a 2.5m overlap.

The product used was Novatex V from about 0+060 to 0+285 and Mirafi 1100N from -0+015 to about 0+060.

2020-10-03 to 2020-10-05

GEOTEXTILE UNROLLED UP THE WEST SLOPE

After Fine filter approval, geotextile rolls were unrolled all the way up the slope. The same sequence and overlap were used as in the channel (sheets installed from downstream to upstream so that any upstream sheet is on top of the downstream one). Overlap was compliant, always over 600mm. Overlap was greater in the 0+140 are because of the change in channel orientation. Two layers were placed at all times, as per agreement with the designer (continuation of the rolls placed on the invert and east slope).

At some locations, the geotextile has been damaged during the slope excavation and fine filter placement. Sometimes, the textile was ripped between the rip rap stones and the excavator bucket. At these locations, proper corrective measures were taken. Rip holes were located at the toe of the west slope. When unrolling the rolls, full width geotextile patches were added in a way that the patch covered a zone of 1-2m around the damaged area when possible. When the damaged area was too close to the toe, the covering offset was less on the side of the channel invert because of the rip rap already in place. On that side, the patch covered an area of about 0.3m beyond the damaged zone. Rip rap material was moved manually to allow such an overlap. Also, the damaged geotextile was folded over 1-2m as an additional protection to ensure that the tear holes were properly patched.

CHANNEL OUTLET

Geotextile was put in place at the channel outlet beyond the energy dissipator. Only one layer was installed, with same overlap as anywhere in the channel.

CHANNEL UPSTREAM END (INLET)

A geotextile was put in place at the upstream end of the channel in a way that it covered the natural ground slope. It was not possible to achieve any overlap with the geotextile of the channel, that was already buried under rip rap.

Table 10. Geotextile approvals

Approval doc number	Chainage	Location	Item approved	Date	Comments
20200927-GT-01	0+149 to 0+285	Invert & east slope	Geotextile	2020-09-27	Compliant
20200929-GT-02	0+032 to 0+149	Invert & east slope	Geotextile	2020-09-29	Compliant
20200930-GT-03	-0+015 to 0+032	Invert & east slope	Geotextile	2020-09-30	Compliant
20201003-GT-04	0+140 to 0+285	West slope	Geotextile	2020-10-03	Compliant
					Satisfactory corrective measure for damaged geotextile
20201004-GT-05	-0+015 to 0+140	West slope	Geotextile	2020-10-04	Compliant
					Satisfactory corrective measure for damaged geotextile

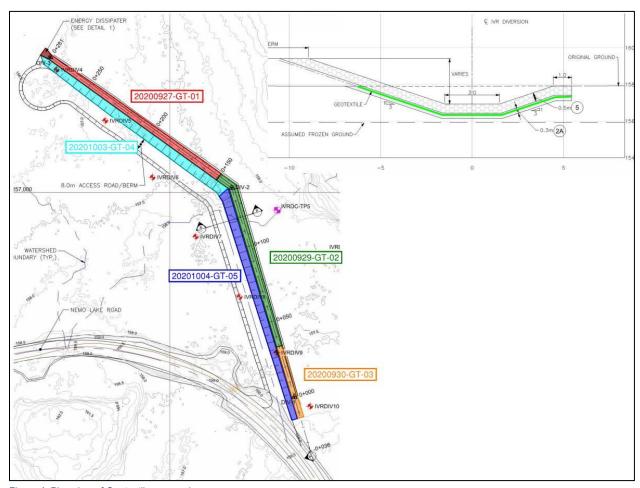


Figure 4. Plan view of Geotextile approvals

RIP RAP PLACEMENT

2020-09-27 to 2020-09-30

RIP RAP PLACEMENT ON THE INVERT & EAST SLOPE

Rip rap placement to proper elevation. Proper particle size from visual inspection except some non-compliant loads. Some rip rap loads dumped in the afternoon of 2020-09-30 were found to contain material finer than 100mm (fine particles and gravel size particles). The stockpile has been checked so the best material is loaded. Operators placing the material have been notified and adapted their method. On the access road prior to placement in the channel, fines were segregated as much as possible using wind while dropping bucket loads from higher up. Also, while placing the material, the operator shakes the bucket and leaves the finer material in the bucket. It is disposed of on the road rather than in the channel. The few spots that needed manual clean up to remove finer material (0+045, 0+078, 0+140, 0+196) were cleaned by hand on 2020-10-06 to QA satisfaction.

2020-10-03 to 2020-10-06

RIP RAP PLACEMENT ON WEST SLOPE, INLET AND OUTLET

Proper gradation. No particles finer than 100mm, despite stockpile depletion, except for normal amount of dust from crushing and handling. Most of the dust is blown away by the wind as the material is placed on the geotextile.

CHANNEL OUTLET

A layer of about 300-400mm was placed at the outlet of the channel, beyond the energy dissipator, over and beyond the geotextile to properly merge with the natural ground and minimize the risks of erosion from water exiting the channel.

CHANNEL INLET

At the upstream end of the channel, about 300 to 600mm of rip rap was placed over and beyond the underlying geotextile so that erosion from runoff water on the natural slope reporting to the channel is minimized.

Table 11. Rip rap approvals

Approval doc number	Chainage	Location	Item approved	Date	Comments
20200930-RR-01	-0+015 to 0+285	Invert &	Rip Rap	2020-09-30	Compliant.
		East slope			Non-compliant material has been removed by hand
20201006-RR-02	-0+015 to 0+285	West slope	Rip Rap	2020-10-06	Compliant

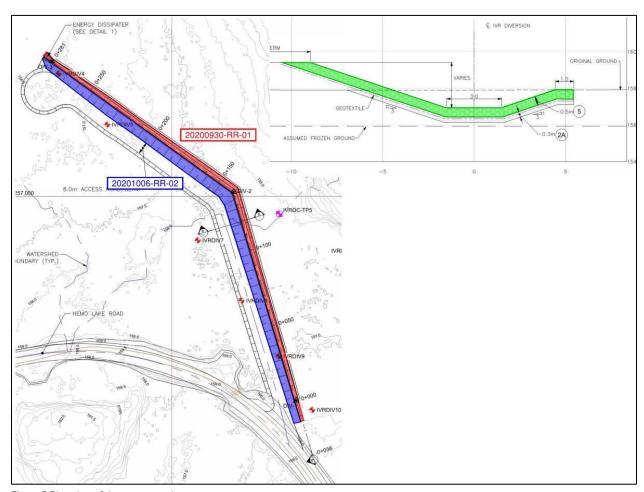


Figure 5.Plan view of rip rap approvals

APPENDIX B2

QA Daily Reports

QA SITE REPORT

(Detailed)

SNC·LAVA	LIN A	GNICO E	AGLE							2020)0919-DS	S
										ocument n YYYMMDD-		
		ı		ı	1							
2020-09-19		6 :30 AM	6 :30 PM						Pat	rice Gagnon		
Visit date Time (Start/E nd)				Project No.				pared by				
IVR Diversio	n Chanr	nel Const	ruction	l					Agnico Ea	gle		
Project				1				Cl	ient			
SNC Lavalin	(Design	er); WSP	(QC)					KCG				
Consultants								Contract	or			
Weather:				Sunny	Cloud	ly	Rain	Storm		Snow	Gla	ze
Wind:			□None Strong, gusts	⊠Light		Moderate			Temperat ure:	6	_ °C	
Comments												
Appendix:	Yes	⊠No	Pic	tures				Yes	⊠No	Inspection re other:	eport or	
Pictures in the folder	⊠Yes	□ No)									
	ACTIVI	TIES PER	RFORMI	ED BY AEM Q	A REPRES	ENT.	ATIVE (ind	icate if te	est forms	were used)		
Activities			Appr	oximate lo	cation	Vis	sual obse	ervatio	n durir	ng field visi	t ¹	
Excavation	Yes	⊠No										
Snow cleaning	□Yes	⊠No										
Esker placement	Yes	⊠No										
Fine filter placement	Yes	⊠No										
Coarse filter placement	Yes	⊠No										
Geotextile and rip rap	Yes	⊠No										

Rockfill placement	⊠Yes [□No	Between St. 0+000 to 0+011 & 0+023.6 to 0+111	Fine rockfill, rock type soapstone, placed with dozer, well graded, approx. 0-600, larger particles put aside by operator, compaction achieved by trucks and dozer.
Approval	☐Yes [⊠No		
Sampling	∐Yes [⊠No		
RFI completed	☐Yes [⊠No		
Other	☐Yes [⊠No		

- 1. Segregation, compaction, presence of frozen material and etc for esker, fine and coarse filter placement;
- 2. Minimum overlap, geotextile damage, etc for geotextile;
- 3. Overall rock (100-300 mm), if the rocks are clean, etc for rip rap placement;
- 4. If there is too much fine content and presence of large rock size for rock placement; and
- 5. To support the observation with photos

First lift of rockfill in the very soft swampy area will be thicker than the Specs for safety reason, to avoid equipment sinking into the softer material and getting caught.

The d/s platform was left intentionally open in order to let the water pass into its original stream between 0+011 and 0+023.6 to avoid blocking water flow and unnecessary water management. It will be completed later on, before the excavation of the channel then compacted accordingly.

¹ Note: Visual observation during field visit may include a check

	LEMENTS VERIFIED	
Elements	Location	Scope and comments
Rockfill	d/s platform-berm	<u>ok</u>
SAFE AND	SAFETY REMARKS	
Very soft fo	oundation, tundra saturated, potential hazard for the hea	vy equipment travelling over it
ssued by :	Dag	2020-09-20
ssued by :	Signature	
ssued by :	Signature	

Photo 1: Close view of rockfill, at Station 0+005 to show grain size distribution of the material. Note: rockfill not compacted yet with haul trucks in this area as it is not connecting qith the main berm seen on top of the photo.

Photo 2: Construction of the d/s berm with rockfill, station 0+026. First lift slightly over the specified thickness as soft foundation encountered in the wet flat area between 0+000 and 0+125.

INFORMATION PROVIDED TO AEM		
Elements	Yes/No	Description/Comments
AEM Daily Meeting Report	No	Meeting not started yet
AEM QC Daily Report	Yes	
QC Sample Test Result	<u>-</u>	
Approval Form	-	
Photos	Yes	
As-built data (PDF)	-	
RFI	<u>-</u>	
Other document	-	
Issued by AEM QA Representative :	Signature	
Reviewed by SNC-Lavalin (Designer) :	3 3 3 3 3 3	
	Signature	Date

	SITE REPORT
C-LAVALIN (DESIGNER) DAILY NOTES ON REMOTE SUPPORT	

(Detailed)

20200920-DS

										Document n (YYYYMMDD-	umber
2020-09-19		6 :30 AM	6 :30 PM					Pat	rice Gagnon		
Visit date		Time (Start/E nd)		Project No.					pared by		
IVR Diversio	n Chann	el Const	ruction					Agnico Ea	igle		
Project								Client			
SNC Lavalin	(Designe	er); WSP	(QC)				ı	KCG			
Consultants							(Contractor			
Weather:			[Sunny	⊠Cloud	ly	Rain	Storm	Snow	☐Gla:	ze
Wind:			[None	⊠Li	ght	∏Mod	. Strong,	Temp:	4	_ °C
Comments	Tempe	rature al	bove fre	ezing all day	, rain star	ted a	t night and I	asts until morn			
Appendix:	Yes	⊠No	Pict	ures			[Yes No	Inspection other:	report or	
Pictures in the folder	⊠Yes	□ No)								
	ACTIVIT	TIES PER	FORME	D BY AEM Q	A REPRES	SENT/	ATIVE (indica	ate if test forms	s were used)		
Act	ivities		Appro	oximate lo	cation		Visual c	bservation	during fie	ld visit ¹	
Excavation	Yes	⊠No									
Snow cleaning	Yes	⊠No									
Esker placement	Yes	⊠No									
Fine filter placement	Yes	⊠No									
Coarse filter placement	Yes	⊠No									

Geotextile and rip rap	Yes	⊠No		
Rockfill placement	⊠Yes	□No	Between St. 0+111 to 0+260	Fine rockfill, rock type soapstone, placed with dozer, well graded, approx. 0-600, larger particles put aside by operator, compaction achieved by trucks and dozer.
Approval	Yes	⊠No		
Sampling	Yes	⊠No		
RFI completed	Yes	⊠No		
Other	Yes	⊠No		
 Segr Min Ove 	egation, imum ov rall rock	compa erlap, g (100-30	geotextile damage, etc for geot 00 mm), if the rocks are clean, o	erial and etc for esker, fine and coarse filter placement; extile;

- If there is too much fine content and presence of large rock size for rock placement; and
- 5. To support the observation with photos

First lift of rockfill in another very soft saturated area, we tried to build a 500mm lift on that section (0+150 to 0+250) but material was sinking as foundation is too soft, came back from 0+150 then add another 500mm to have a more stable plateform.

Compaction achived by means of haul trucks trafficking, operators instructed to vary the wheel passage to compact the entire platform, worked well no more ruts.

Entire foundation still saturated, sumps will likely be required to try and remove some water before excavation.

SPECIFIC E	LEMENTS VERIFIED	
Elements	Location	Scope and comments
Rockfill	d/s plateform-berm	ok
SAFE AND	SAFETY REMARKS	
Very soft fo	oundation, tundra saturated, potential hazard for the h	eavy equipment travelling over it
Issued by :	A.G.	2020-09-21
	Signature	Date
Verified by :		
verified by .		

Photo 1: Close view of downstream plateform, 0+075 looking South, compaction of the entire width achieved by haul trucks.

Photo 2: Station 0+200 looking North. Softer material from foundation protruding through the rockfill layer that was too thin. Before it got out of control, QA asked to retreat 50m from there and restarted with another lift 500mm over the existing one. Material shown was on the downstream end of the platform and it was left in place and covered.

INFORMATION PROVIDED TO AEM		
Elements	Yes/No	Description/Comments
AEM Daily Meeting Report	Yes	
AEM QC Daily Report	Yes	
QC Sample Test Result	-	
Approval Form	-	
Photos	Yes	
As-built data (PDF)	-	
RFI	-	
Other document	-	
	A	
Issued by AEM QA Representative :	Signature	
Reviewed by		
SNC-Lavalin SNC-Lavalin		
(Designer):		
	Signature	Date

SNC-LAVALIN (DESIGNER) DAILY NOTES ON REMOTE SUPPORT		SITE REPORT
	SNC-LAVALIN (DESIGNER) DAILY NOTES ON REMOTE SUPPORT	

(Detailed)

20200921-DS

Document number

						(YYYYMMDD-DS-SR)
2020-09-19	6 :30 AM	6 :30 PM			Pat	rice Gagnon	
Visit date	Time (Start/E nd)	Project No.			Prep	pared by	
IVR Diversion Ch	nannel Const	ruction			Agnico Ea	gle	
Project					Client		
SNC Lavalin (Des	signer); WSP	(QC)			KCG		
Consultants					Contractor		
Weather:		Sunny	Cloud	⁄ ⊠Rain	Storm	Snow	Glaze
Wind:		☐ None gusts	⊠Lig	ht Mo	od. Strong,	Temp:	4 °C
Comments Ter	mperature a	bove freezing all day,	, rain start	ed stopped in	morning.		
Appendix:	Yes No	Pictures			□Yes ⊠No	Inspection other:	report or
Pictures in \(\subseteq \) the folder	Yes No)					
AC	TIVITIES PER	FORMED BY AEM Q	A REPRES	E NTATIVE (indi	cate if test forms	were used)	
Activit	ies	Approximate lo	ocation	Visual	observation	during fiel	d visit ¹
Excavation]Yes ⊠No	0+232, 0+223 &	0+115	channel to a None were Material varie	test pits were du assess the water e dug deeper than d from cobbles an amples taken by (presence/man the channel nd blocks to g	terial quality. final depth. glacial till, damp
Snow cleaning	Yes No						
Esker placement	Yes 🔲 No						
Fine filter placement	Yes \(\sum \)No						

Coarse filter placement	Yes	⊠No		
Geotextile and rip rap	Yes	⊠No		
Rockfill placement	⊠Yes	□No	1 st lift 0+250 to 0+260 2 nd lift plateform between St. 0+024 to 0+170 D/s access road from Nemo road to platform at St. 0+150	Fine rockfill, rock type soapstone, placed with dozer, well graded, approx. 0-600, larger particles put aside by operator, compaction achieved by trucks and dozer.
Approval	Yes	⊠No		
Sampling	∐Yes	⊠No		
RFI completed	Yes	⊠No		
Other	Yes	⊠No		

- 1. Segregation, compaction, presence of frozen material and etc for esker, fine and coarse filter placement;
- 2. Minimum overlap, geotextile damage, etc for geotextile;
- 3. Overall rock (100-300 mm), if the rocks are clean, etc for rip rap placement;
- 4. If there is too much fine content and presence of large rock size for rock placement; and
- 5. To support the observation with photos

- 1 of the 3 pits will be turned into a sump, submersible pump installed into 0+223 to drain the surrounding boulder field. 3" pump is enough to empy the sump and manage the water arrival into the hole. Water redirected into the lake A47 waterdhed as per ENV. recommendations.
- 2nd lift of muck added to the downstream plateform between 0+026 to 0+170, proper muck size and compaction. Still more to add on the section 0+170 to 0+260.
- Second access road from the Nemo Road added downstream of the plateform to connect at station 0+150. This access will allow more flexibility to construction activities.
- A pumping station will be added upstream of the construction zone to rempve as much water from the foundation as possible for the section 0+100 to 0+000. ENV Dept gave approval for a temporary access road to this area. Road to be built with esker and remove at the end of works.

¹ Note: Visual observation during field visit may include a check

ments		
Ok, meets Specs.		

SAFE AND SAFETY REMARKS

Co-activity leading to construction site on Nemmo road $-150\,\mathrm{T}$ truck from Mine were using the same access to go to IVR Waste dump in the afternoon. KCG notified their operators.

Issued by :	A.C.	2020-09-22
	Signature	Date
Verified by :		
	Signature	Date

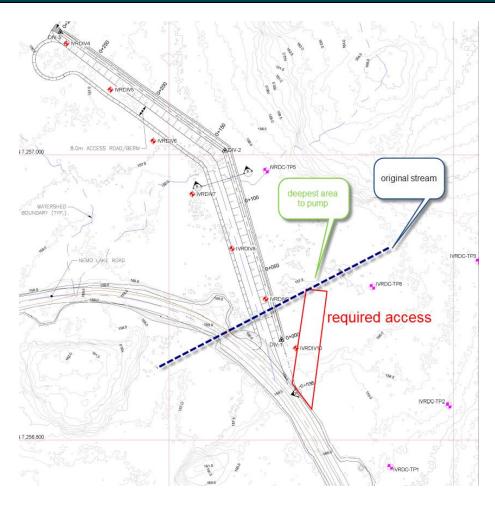


Photo 1: temporary access to new pumping station in upstream deepest spot to manage water between 0+100 and 0+000.

Photo 2: exemples of variety of material found in the excavation of the channel.

Left: St.0+115, silty brown material, almost dry overlying a damp grey till at the bottom

Right: soaked sand, gravel and blocks, depleted in fines from St.0+223. Visually a boulder field at surface.

Photo 3: water management in the foundation. To drain the water contained in the boulder field to allow for a proper excavation, a sump was dug into the channel footprint and water redirected downstream of the Construction site. Pumping was effective to drain most of the boulder field after one night of continuous dewatering.

INFORMATION PROVIDED TO AEM	VI	
Elements	Yes/No	Description/Comments
AEM Daily Meeting Report	Yes	
AEM QC Daily Report	Yes	
QC Sample Test Result	-	
Approval Form	-	
Photos	Yes	
As-built data (PDF)	-	
RFI	-	
Other document	-	
Issued by AEM QA	DE-	
Representative :	Simologia	2020-09-22
Participal his	Signature	Date
Reviewed by SNC-Lavalin		
(Designer) :		
	Signature	Date

(Detailed)

20200922-DS

										(YYYYMMDD-DS-SR)
2020-09-19		6 :30 AM	6 :30 PM					Pat	rice Gagnon	
Visit date		Time (Start/E		Project No.				Prep	pared by	
IVR Diversio	n Chann	^{nd)} el Const	Agnico Eagle							
Project								Client		
SNC Lavalin	(Designe	er); WSP	(QC)				KCG			
Consultants				'			Contr	ractor		
Weather:			[Sunny	Cloud	y]Storm	Snow	Glaze
Wind:				⊠None	Li	ght _N	∕lod.	Strong, gu	ıst Temp:	°C
Comments	Overca	st all day	y							
Appendix:	Yes	⊠No	Pict	ures			Y	es 🛮 No	Inspection other:	report or
Pictures in	⊠Yes	□ No)							
the folder										
	VCTIVI:	TIES DER	EORME	D RV AEM O	Λ REDRES	ENTATIVE (in	dicata i	f tast forms	wara usad)	
	ACTIVI		I OKIVIE	D DI ALIVI Q	A INCI INCO	LIVIATIVE (III)	ulcate i	r test forms	were useur	
Act	ivities		Appro	oximate lo	cation	Visua	al obs	ervation	during fie	ld visit ¹
Excavation	∏Yes	⊠No		0+260 to 0+2	22		the cha	annel footp	rint to collec	sump was dug t all the water
Excavation				01200 10 012	Ice rich material was encountered in the foundation fr st.0+263 to 0+243 on the first pass to remove water fr top surface.					
Snow cleaning	Yes	⊠No								
Esker placement	⊠Yes	□No		0+000 to 0+1	00	_		_		of channel to ter on during
Fine filter	1									

Coarse filter placement	☐Yes ⊠No		
Geotextile and rip rap	□Yes ⊠No		
Rockfill placement	⊠Yes □No	2 nd lift 0+170 to 0+260	Fine rockfill, rock type soapstone, placed with dozer, well graded, approx. 0-600, larger particles put aside by operator, compaction achieved by trucks and dozer. 3 soft pockets of overburden protruding through the rockfill. They were removed and replaced by good rockfill.
Approval	∐Yes ⊠No		
Sampling	∏Yes ⊠No		
RFI completed	☐Yes ⊠No		
Other	∐Yes ⊠No		

¹ Note: Visual observation during field visit may include a check

- 1. Segregation, compaction, presence of frozen material and etc for esker, fine and coarse filter placement;
- 2. Minimum overlap, geotextile damage, etc for geotextile;
- 3. Overall rock (100-300 mm), if the rocks are clean, etc for rip rap placement;
- 4. If there is too much fine content and presence of large rock size for rock placement; and
- 5. To support the observation with photos

ADDITIONNAL COMMENTS:

- Started excavation to almost final elevation from 0+281 to 0+243, water management through the sump at 0+281 redirected to A47 watershed.
- Ice rich till encountered into the foundation between 0+243 and 0+263. First 50cm of surface material was scraped and left to thaw for the night.

•

SPECIFIC	ELEMENTS VERIFIED	
Elements	Location	Scope and comments
Rockfill	d/s plateform-berm St.0+200, soft belly in plateform	Not meeting Specs.
	Material was later excavated then replaced with muck	Ok
		_
CAFFAN	D CAFETY DEMANUS	
	D SAFETY REMARKS Il personnel should stay away from the reach of the excavator, even	survevor.
	, , , , , , , , , , , , , , , , , , , ,	
Issued by :	DE	2020-09-23
	Signature	Date
Verified by :		
	Signature	Date
DHOTOS/DICTLIBES		

Photo 1: water management road built upstream of channel to control water contained within sector 0+000 to 0+100. Original stream was not blocked by this access.

Photo 2: first pass of the excavation of the channel to drain surface water, 0+250 looking north at the sump at the end of the channel. $\pm 0.5m$ of original tundra was removed on that picture.

Photo 3: 1 of the 3 soft spots in the plateform at St.0+225, overburden protruding through the rockfill. Soft materials were excavated and replaced with muck and compacted with the bucket of the excavator.

Photo 4: ice rich till in the foundation of the channel St. 0+245 looking North. Summary removal was completed without the presence of QA or QC. Ice situation will be reassessed tomorrow morning and complete removal will be performed if required, as per Specifications.

	24 /24	5	
Elements	Yes/No	Description/Comments	
AEM Daily Meeting Report	Yes		
AEM QC Daily Report	Yes		
QC Sample Test Result	<u>-</u>		
Approval Form			
Photos	Yes		
As-built data (PDF)	-		
RFI	-		
Other document			
		_	
Issued by AEM QA			
Representative :	14010	2020-09-23	
	Signature	Date	
Reviewed by SNC-Lavalin			
(Designer) :			
	Signature	Date	
SNC-LAVALIN (DESIGNER) DAILY N			

(Detailed)

20200923-DS

										Document number (YYYYMMDD-DS-SR)
		6 :30	6 :30							
2020-09-19		AM	0 .30 PM					Pat	rice Gagnon	
Visit date		Time		Project No.	I				pared by	
	(Start/E nd)									
IVR Diversio	n Chann	el Const	ruction					Agnico Ea	gle	
Project							1	Client		
SNC Lavalin	(Designe	er); WSP	(QC)				KCG			
Consultants							Contra	ctor		
Weather:			[Sunny	Cloud	y Rain		Storm	Snow	Glaze
Wind:				⊠None	Li	ght \square M	lod.	Strong, gu	ıst Temp:	°C
Comments	Overca	st all da	y							
Appendix:	Yes	⊠No	Pict	ures			Yes	s 🖂 No	Inspection other:	report or
Pictures in the folder	⊠Yes	□ No	0							
	ACTIVI'	TIES PER	RFORME	D BY AEM Q	A REPRES	ENTATIVE (ind	licate if	test forms	s were used)	
				,					,	
Act	ivities		Appro	oximate lo	cation	Visua	l obse	rvation	during fie	ld visit ¹
Excavation	∐Yes	⊠No	0	+243 to 0+0+	-143	Ice rich till fro Ice lens at 0+ was entirely r	247.5 (1	2m long	x 0,4m wide	
Snow cleaning	Yes	⊠No								
Esker placement	⊠Yes	□No								
Fine filter	Tyes	⊠No								
placement		<u>~</u> 3,40								
Coarse filter	□Vec	⊠No								
placement		∠J, 10								
Geotextile and rip rap	Yes	⊠No								

Rockfill placement	⊠Yes	□No	
Approval	Yes	No	
Sampling	Yes	⊠No	
RFI completed	Yes	⊠No	
Other	Yes	⊠No	

- 1. Segregation, compaction, presence of frozen material and etc for esker, fine and coarse filter placement;
- 2. Minimum overlap, geotextile damage, etc for geotextile;
- 3. Overall rock (100-300 mm), if the rocks are clean, etc for rip rap placement;
- 4. If there is too much fine content and presence of large rock size for rock placement; and
- 5. To support the observation with photos

Continued the excavation to almost final elevation from 0+243 to 0+143, water management through the sump at 0+281 redirected to A47 watershed.

- Ice rich till encountered into the foundation between 0+235 and 0+263. Excavated to almost grade with difficulty. Sample taken to evaluate ice content = 93%. Material will be removed until proper material found.
- Large ice lense removed from the base of the d/s slope. Entirely removed under QA supervision and replaced with proper muck.
- Started dewatering the section between 0+000 and 0+100. Pump installed on the temporary access and water directed towards A47.

¹ Note: Visual observation during field visit may include a check

SPECIFIC ELEN	MENTS VERIFIED	
Elements	Location	Scope and comments
	Ice lens found in natural ground under the rockfill	
Rockfill/natural ground	platform. All ice removed and replaced by muck.	Not meeting specs
	Ice rich till was found in foundation – Sample revealed	
	93% ice content. Material will be excavated until proper	
Excavation/foundation	material met.	Not meeting Specs.
		-
SAFE AND SAI	EETV DEMADVS	
	FETY REMARKS	
Excavation started – All pers	sonnel should stay away from the reach of the excavator, even s	urveyor.
Issued by :	D) Cog	2020-09-24
	Signature	Date
Verified by :		

Signature

PHOTOS/PICTURES

Date

Photo 1: water management upstream of channel to control water contained within sector 0+000 to 0+100.

Photo 2: first pass of the excavation of the channel completed from 0+143 to +0281. Water from boulder fields along the channel and foundation still draining.

Photo 3: ice rich frozen till in the foundation of the channel between St. 0+235 and 0+260. Ice content sample revealed 93% water. Material to be excavated and replaced by esker in the next days.

Photo 4: ice crystals and inclusion in till, from foundation at St. 0+243.

Photo 5: partial view of the ice lens found under the rockfill at the base of the slope St. 0+243, original size 1.2m long x 0.9m deep x 0.6 m wide. Lens was entirely removed and replaced with rockfill.

INFORMATION PROVIDED TO AEM	M	
Elements	Yes/No	Description/Comments
AEM Daily Meeting Report	Yes	
AEM QC Daily Report	Yes	
QC Sample Test Result	yes	Ice content in frozen till – 93%
Approval Form	-	
Photos	Yes	
As-built data (PDF)		
RFI	-	
Other document		
	_ /	
Issued by AEM QA	MC	
Representative :	MICE	2020-09-24
	Signature	Date
Reviewed by		
SNC-Lavalin (Designer) :		
(Designer).	Signature	Date

(Detailed)

20200924-DS

									Document number (YYYYMMDD-DS-SR)
		6 :30	6 :30						
2020-09-24		AM	PM					rice Gagnon	
Visit date		Time (Start/E		Project No.			Prep	ared by	
		nd)							
IVR Diversio	n Chann	el Const	ruction				Agnico Ea	gle	
Project							Client	6.0	
SNC Lavalin	/Design	or). \//SE	(OC)				KCG		
Consultants	(Designi	zij, vvor	(QC)				Contractor		
Weather:			[Sunny	Cloud	y Rain	Storm	Snow	Glaze
						_	<u> </u>	_	_
Wind:				⊠None	Li	ght Mo	od. Strong, gu	st Temp:	2-3°C
Comments	Overca	st all da	У						
								Inspection	report or
Appendix:	Yes	\boxtimes No	Pict	ures			☐Yes ⊠No	other:	
Pictures in	⊠Yes	No	ס						
the folder									
	ACTIVI	TIES PEF	REORME	D BY AEM O	A REPRES	ENTATIVE (indi	icate if test forms	were used)	
	ACTIVI	TIES PEF	RFORME	D BY AEM Q	A REPRES	ENTATIVE (indi	icate if test forms	were used)	
Acti		TIES PEF							ld visit ¹
Acti	ivities	TIES PEF		D BY AEM Q			icate if test forms observation		ld visit ¹
Act		TIES PEF				Visual	observation	during fie	
	ivities		Appro	oximate lo	ocation	Visual First pass of e	observation	during fie	erial from
Act		∏No	Appro		ocation	Visual First pass of e	observation	during fie	erial from
Excavation	ivities	□No	Appro	oximate lo	ocation	Visual First pass of e	observation	during fie	erial from
Excavation Snow	ivities		Appro	oximate lo	ocation	Visual First pass of e	observation	during fie	erial from
Excavation	ivities ⊠Yes □Yes	□No	Appro	oximate lo	ocation	Visual First pass of e	observation	during fie	erial from
Excavation Snow cleaning	ivities ⊠Yes □Yes	□No	Appro	oximate lo	ocation	Visual First pass of e	observation	during fie	erial from
Excavation Snow cleaning Esker placement	ivities	□No ⊠No ⊠No	Appro	oximate lo	ocation	Visual First pass of example and properties and properties and properties are also because the properties are also because th	observation Excavation ro temo comote drainage	during fie ove soft mate of the surfac	erial from ee and material er operator was
Excavation Snow cleaning Esker placement Fine filter	ivities ⊠Yes □Yes	□No	Appro	oximate lo	ocation 035	First pass of essurface and professional first loads of finstructed the	observation Excavation ro temo romote drainage	during fie ove soft mate of the surfac	erial from e and material er operator was
Excavation Snow cleaning Esker placement Fine filter placement	ivities	□No ⊠No ⊠No	Appro	0+139 to 0+0	ocation 035	Visual First pass of example and properties and properties and properties are also because the properties are also because th	observation Excavation ro temo comote drainage	during fie ove soft mate of the surfac	erial from e and material er operator was
Excavation Snow cleaning Esker placement Fine filter placement Coarse	ivities	□No □No □No	Appro	0+139 to 0+0	ocation 035	First pass of essurface and professional first loads of finstructed the	observation Excavation ro temo comote drainage	during fie ove soft mate of the surfac	erial from e and material er operator was
Excavation Snow cleaning Esker placement Fine filter placement Coarse filter	ivities	□No ⊠No ⊠No	Appro	0+139 to 0+0	ocation 035	First pass of essurface and professional first loads of finstructed the	observation Excavation ro temo comote drainage	during fie ove soft mate of the surfac	erial from e and material er operator was
Excavation Snow cleaning Esker placement Fine filter placement Coarse	ivities	□No □No □No	Appro	0+139 to 0+0	ocation 035	First pass of essurface and professional first loads of finstructed the	observation Excavation ro temo comote drainage	during fie ove soft mate of the surfac	erial from e and material er operator was
Excavation Snow cleaning Esker placement Fine filter placement Coarse filter	ivities Yes Yes Yes Yes Yes	□No □No □No	Appro	0+139 to 0+0	ocation 035	First pass of essurface and professional first loads of finstructed the	observation Excavation ro temo comote drainage	during fie ove soft mate of the surfac	erial from e and material er operator was
Excavation Snow cleaning Esker placement Fine filter placement Coarse filter placement	ivities	□No □No □No	Appro	0+139 to 0+0	ocation 035	First pass of essurface and professional first loads of finstructed the	observation Excavation ro temo comote drainage	during fie ove soft mate of the surfac	erial from e and material er operator was

				F			R	

Rockfill placement	⊠Yes	
Approval	☐Yes ⊠No	
Sampling	☐Yes ⊠No	
RFI completed	☐Yes ⊠No	
Other	☐Yes ⊠No	

¹ Note: Visual observation during field visit may include a check

- 1. Segregation, compaction, presence of frozen material and etc for esker, fine and coarse filter placement;
- 2. Minimum overlap, geotextile damage, etc for geotextile;
- 3. Overall rock (100-300 mm), if the rocks are clean, etc for rip rap placement;
- 4. If there is too much fine content and presence of large rock size for rock placement; and
- 5. To support the observation with photos

ADDITIONNAL COMMENTS:

- Foundation approval #1 from 0+147 to 0+205 (document to come). Foundation material was scraped until proper and dry foundation. Some area required water\mud to be pushed with the bucket of the excavator. It was completed by adding FF to the wet foundation then pushing the mixed material towards the slope of the channel with the side of the bucket.
- Fine filter placement in the approved foundation from 0+147 to 0+205.
- Excavation first pass between 0+035 and 0+139. Sump was dug at 0+139 for water management through the sump at 0+000. Material is a largely very soft yellow sand and gravel, saturated in water. Foundation sample taken, results to come.

•

SPECIFIC ELEN	MENTS VERIFIED	
Elements	Location	Scope and comments
Rockfill/natural ground		Not meeting specs
Excavation/foundation		Not meeting Specs.
SAFE AND SA	FETY REMARKS	
Excavation started – All per	sonnel should stay away from the reach of the exc	cavator, even surveyor.
Issued by:	D. Cay	2020-09-25
	Signature	Date
Verified by :		
	Signature	Date

Photo 1: Foundation approved for the station 0+143 to 0+181. A final clean-up is done with the lip of the bucket then material is covetred by 300mm of Fine Filter.

Photo 2: for the section where water keeps coming at the bottom of the excavation, mud and water is mixed with FF then material is pushed away by the side of the excavator bucket bucket.

Photo 3: Fine filter almost to final grade between Stations 0+147 and 0+181.

Photo 4: first pass of excavation for the South sector. St.0+139 looking towards 0+035. Lots of water draining from the tundra is managed through series of sumps.

INFORMATION PROVIDED TO AEM		
Elements	Yes/No	Description/Comments
AEM Daily Meeting Report	Yes	
AEM QC Daily Report	Yes	
QC Sample Test Result	yes	Ice content in frozen till – 93%
Approval Form	-	
Photos	Yes	
As-built data (PDF)	-	
RFI	-	
Other document	-	
	1	
Issued by AEM QA Representative :	Signature	2020-09-25 Date
Reviewed by	Ç	

		SITE REPORT
SNC-Lavalin (Designer):		
	Signature	Date
SNC-LAVALIN (DESIGNER	R) DAILY NOTES ON REMOTE SUPPORT	

(Detailed)

20200925-DS

Document number (YYYYMMDD-DS-SR)

		6 :30	6 :30				_		
2020-09-25 Visit date		AM Time	PM	Project No.	Patrice Gagnon Prepared by				
		(Start/E nd)		•					
IVR Diversio	n Chann	•	ruction				Agnico Ea	gle	
Project					-		Client		
SNC Lavalin	(Designe	er); WSP	(QC)		KCG				
Consultants						C	ontractor		
Weather:			[Sunny	⊠Cloud	ly 🛛 Rain	Storm	Snow	Glaze
Wind:			[None	⊠Li	ght Mod.	Strong, gu	st Temp:	°C
Comments	Overca	st all day	y, rain at	t night of 24 th	h to 25 th				
Appendix:	Yes	⊠No	Pict	ures			_Yes ⊠No	Inspection rother:	eport or
Pictures in the folder									
	ACTIVI'	TIFS PFR	REORME	D BY AFM O	Δ RFPRFS	SENTATIVE (indica	te if test forms	were used)	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						te ii test 1511115	were asea,	
Act	ivities		Appro	oximate lo	cation	Visual o	bservation	during fiel	d visit ¹
Excavation	⊠Yes	□No	(0+139 to 0+0)35	Soft material ren management	noval continue	d as well as w	rater
Snow cleaning	Yes	⊠No							
Esker placement	⊠Yes	□No		0+235-0+26	0	Esker comprise r presence of cobb till excavation to compacted with	oles and boulde backfill hole. P	ers. Placed int Placed in 2 lift	to the ice rich s of 600mm
Fine filter placement	⊠Yes	□No	()+147 to 0+2	05	First loads of FF vinstructed the proconform		•	•
Coarse filter placement	Yes	⊠No							

Geotextile and rip rap	∐Yes	⊠No		
Rockfill placement	⊠Yes	□No	0+026 to 0+011	Finish the plateform that was left open for water management. Soapstone used, material and compaction according to Specs.
Approval	⊠Yes	□No	0+205 to 0+235	Foundation approval for FF placement
Sampling	⊠Yes	□No	0+240, 0+250, + 1 composite of all foundation	Taken in the ice rich till after excavation for moisture content.
RFI completed	Yes	⊠No		
Other	Yes	⊠No		

¹ Note: Visual observation during field visit may include a check

- 1. Segregation, compaction, presence of frozen material and etc for esker, fine and coarse filter placement;
- 2. Minimum overlap, geotextile damage, etc for geotextile;
- 3. Overall rock (100-300 mm), if the rocks are clean, etc for rip rap placement;
- 4. If there is too much fine content and presence of large rock size for rock placement; and
- 5. To support the observation with photos

- Note: water content stated since beginning of the project was not right as per definition, total moisture content was falsely reported as water content. Sorry for the confusion. From now on, water content from the foundation will be measured appriopriately to qualify material as ice rich or poor.
- Foundation approval #2 from 0+205 to 0+235 (documentation to come).
- Ice-rich till removal from 0+235 to 0+260. Removal was done in 2 passes of 600 mm with the help of a hydraulic hammer to remove as much ice rich material as possible. Bottom of excavation was 1200mm below the one of the planned excavation. Till found at the bottom of the excavation contains visually less ice than at surface but still ice lenses present (around 10-15% ice/snow at surface). Bedrock seems to have been encountered in around 10% of the excavated surface. Total moisture content of the 3 samples taken in the foundation are 48, 42 and 33%, from 93% at planned surface before removal. As per gradation, the 3 samples present clay and silt content between 15 to 50%, therefore falling into the ice-poor category. After consulting with the Engineer of Record, decision was taken to stop excavation there and backfill the area with dry esker material. Rationale behind that decision is three fold. 1) at that depth it is not safe to send surveyor or QC in the excavation while the d/s plateform is not properly sloped, 2) there will be 2m of material overlying the ice rich till at channel completion therefore less chances of foundation settlement caused by melting in the next years and 3) bedrock seems not too far away from the bottom of excavation as per field observations.
- Ice rich till section replaced by fine esker material (0-200) placed from the bottom of the excavation in 2 separate layers of 600mm thick, well compacted with the bucket of the excavator.
- Completed the rockfill plateform between 0+026 and 0+011. Material is conform with the rest of the plateform and compaction was achieved by the dozer and trucks trafficking over the area.
- Continued clean-up in section 0+139 to 0+024.

SPECIFIC ELEMENTS VERIFIED				
Elements	Location	Scope and comments		
Rockfill/natural ground	Plateform	Meets Specs		
Excavation/foundation	Frozen ice-rich till removed	Gradation indicate good foundation material		
Esker	Replacement of ice-rich till	Gradation ongoing		

SAFE AND SAFETY REMARKS

Excavation started – All personnel should stay away from the reach of the excavator, even surveyor.

Issued by:	D. Cog	2020-09-26	
	Signature	Date	
Verified by :			

Signature Date

Photo 1:Ice rich till section between 0+235 and 0+260, after clean up and before hammering. Unsuitable foundation material visible ice greater than 10% of the surface, presence of ice lenses.

Photo 2: Ice lenses present after the first hammer pass at Station, Sta. 0+240 to 0+260.

Photo 3: 2nd pass of the removal of the ice rich till with hydraulic hammer, Sta. 0+260 looking South-East.

Photo 4: bedrock foud at St.0+255. Estimate that about 10% of the surface was on bedrock.

Photo 5: bottom of the ice rich section once all accessible till removed, St 0+255 looking S-E towards 0+235. Esker placement started by dropping loads of esker material with excavator and compacting it.

INFORMATION PROVIDED TO AEM		
Elements	Yes/No	Description/Comments
AEM Daily Meeting Report	Yes	
AEM QC Daily Report	Yes	
		Moisture content of ice rich till – 48, 42 and 33%, clay
QC Sample Test Result	Yes	and silt content - 35, 34 and 37%.
Approval Form		
Photos	Yes	
As-built data (PDF)	-	
RFI	-	
Other document	-	
	<u></u>	
Issued by AEM QA Representative:	Dag	2020-09-26
-	Signature	Date
Reviewed by SNC-Lavalin (Designer):		
	Signature	Date

	SITE REPORT
C-LAVALIN (DESIGNER) DAILY NOTES ON REMOTE SUPPORT	

(Detailed)

20200926-DS

									(YYYYMIMDD-DS-SK)
		6 :30	6 :30							
2020-09-26		AM	PM					Pat	rice Gagnon	
Visit date		Time	ı	Project No.				Prep	ared by	
		(Start/E nd)								
IVR Diversion Channel Construction								Agnico Ea	gle	
Project Project					'			Client	<u> </u>	
SNC Lavalin	(Designe	er); WSP	(QC)				KCG	3		
Consultants	SNC Lavalin (Designer); WSP (QC) Consultants						Cont	tractor		
Weather:				Sunny	Cloud	y		Storm	Snow	Glaze
Wind:				None	⊠Lię	ght \square M	lod.	Strong, gu	st Temp:	°C
Comments	Overcas	st morni	ing, sunny	afternoon						
Appendix:	Yes	⊠No	Pictu	res			Y	∕es ⊠No	Inspection other:	report or
Pictures in	⊠Yes	□No)							
the folder										
	ACTIVIT	TIFS PER	REORMED	BY AFM O	Δ RFPRFS	E NTATIVE (inc	licate	if test forms	were used)	
	7.011111	TEG I EI		DI MEM Q	A NEI NES		reace	11 (636 1011113	Were asea,	
Act	ivities		Approx	kimate lo	cation	Visua	lobs	servation	during fiel	d visit ¹
			0-	015 to 0+0	24	Soft material management		val continue	d as well as v	vater
Excavation	⊠Yes	□No		-125 to 0+0 -070 to 0+0				•		er. Ice rich till n to continue.
Snow cleaning	Yes	⊠No								
Esker placement	⊠Yes	□No	0	+235-0+260	0	Finished 2 nd li Specs.	ift, coı	mpacted and	l approved a	ccording to
Fine filter placement	⊠Yes	□No	0+	235 to 0+2	81	Material and	comm	npaction was	conform as	verified by QC
Coarse filter placement	Yes	⊠No								

Geotextile and rip rap	Yes	⊠No		
Rockfill placement	Yes	⊠No		
Approval	⊠Yes	□No	0+205 to 0+235	Foundation approval for FF placement
Sampling	⊠Yes	□No	Esker ES-01, ice rich till at 0+120, first lift of hammering, EX-11	Taken in the ice rich till after excavation for water content.
RFI completed	Yes	⊠No		
Other	Yes	⊠No		

- 1. Segregation, compaction, presence of frozen material and etc for esker, fine and coarse filter placement;
- 2. Minimum overlap, geotextile damage, etc for geotextile;
- 3. Overall rock (100-300 mm), if the rocks are clean, etc for rip rap placement;
- 4. If there is too much fine content and presence of large rock size for rock placement; and
- 5. To support the observation with photos

- Foundation approval #3 from 0+235 to 0+260 and #4, 0+260 to 0+281 (documentation to come).
- Ice-rich till removal from 0+125 to 0+090 & 0+070 to 0+029. Removal was done in 1 pass of 500 mm with the help of a hydraulic hammer to remove as much ice rich material as possible. Till found at the bottom of the excavation contains visually less ice than at surface but still ice lenses present (visually around 40% ice for 0+125 to 0+090 and 90% ice in 0+070-0+029). Water content of the sample taken in the foundation at 0+120 yield 31% water by mass, granulometry results to come.
- Fine filter placed from 0+228 to 0+281, material placement and compaction conformity checked by QC.
- First excavation of the overburden between 0-015 and 0+024. The 15m section passed the beginning of the channel excavated to match natural topography.
- Continued clean-up in section

¹ Note: Visual observation during field visit may include a check

SPECIFIC ELEM	IENTS VERIFIED	
Elements	Location	Scope and comments
Rockfill/natural ground	Plateform	Meets Specs
Excavation/foundation	Frozen ice-rich till removed	Gradation indicate good foundation material
Esker	Replacement of ice-rich till	Gradation ongoing

SAFE AND SAFETY REMARKS

Verified by:

Excavation started – All personnel should stay away from the reach of the excavator, even surveyor.

Issued by:

Signature

2020-09-27

Date

Signature Date

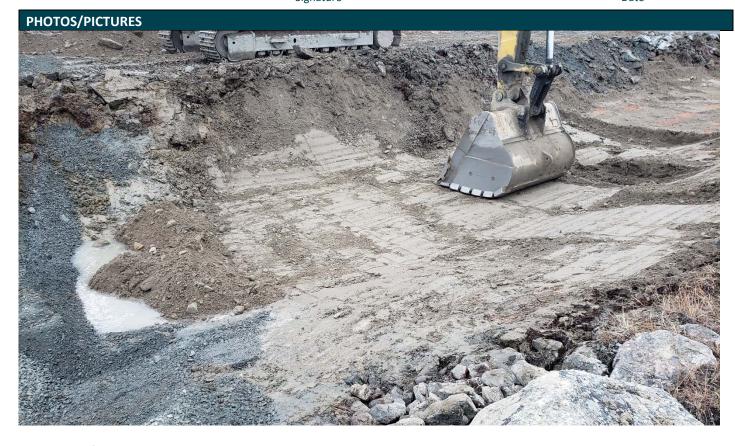


Photo 1:2nd lift of esker fine material in replacement of ice-rich till St. 0+235 looking North. Material placed in 600mm lifts compacted with the bucket of the excavator.

Photo 2: Fine filter placement on top of the esker, from St.0+200 looking North.

Photo 3: hammering of the frozen till to reach proper foundation grade in ice rich sector 0+125 to 0+090, taken from St.0+100 looking North.

Photo 4: hammering of the first 400mm of frozen till, St.0+125 looking South. Clean up and assessment needs to be done.

INFORMATION PROVIDED TO AEI		
Elements	Yes/No	Description/Comments
AEM Daily Meeting Report	Yes	_
AEM QC Daily Report	Yes	
		Moisture content of ice rich till – 48, 42 and 33%, clay
QC Sample Test Result	Yes	and silt content - 35, 34 and 37%.
Approval Form	<u>-</u>	_
Photos	Yes	
As-built data (PDF)		
RFI	<u>-</u>	
Other document	<u>-</u>	
	1	
Issued by AEM QA	AG	2020 00 27
Representative :	Signature	
Reviewed by SNC-Lavalin (Designer):	Signature	Date
	Signature	Date

	SITE REPORT
SNC-LAVALIN (DESIGNER) DAILY NOTES ON REMOTE SUPPORT	

(Detailed)

20200927-DS

									((YYYYMMDD-DS-SR)		
		6 :30	6 :30									
2020-09-27		AM	PM					Р	atrice Gagnon			
Visit date		Time (Start/E		Project No.			Prepared by					
		nd)			I							
IVR Diversio	n Chann	el Const	truction					Agnico	Eagle			
Project							ı	Client				
SNC Lavalin Consultants	(Designe	er); WSP) (QC)				KC	ntractor				
Consultants							CO	IIII actor				
Weather:			[Sunny	⊠Cloud	dy 🔲 Ra	ain	Storm	Snow	Glaze		
Wind:			[None	⊠L	ight [Mod.	Strong,	gust Temp:	5 °C		
			_	<u> </u>	_		_		,			
Comments	Overca	st entire	day									
A a ali			D: -4				_	J	Inspection	report or		
Appendix:	Yes	⊠No	PICT	cures			L	Yes No	o other:			
Pictures in	⊠Yes		_									
i ictai es iii	\ res	No	0									
the folder	Mres		0									
				D BY AEM QA	A REPRES	SENTATIVE	(indicat	e if test forr	ns were used)			
				D BY AEM QA	A REPRES	SENTATIVE	(indicat	e if test forr	ns were used)			
the folder			RFORME	D BY AEM QA					ns were used) n during fie	ld visit ¹		
the folder	ACTIVIT		RFORME							ld visit ¹		
the folder	ACTIVIT		Appro		cation	Vis	sual ob	servatio	n during fie	d 1200mm		
the folder	ACTIVIT		Appro	oximate lo 0+125 to 0+0	cation	Vis	sual ob	servatio	n during fie ammer, reache 2 pass of hamr	d 1200mm		
Act	ACTIVIT	TIES PER	Appro	oximate lo	cation	Visue Ice rich ti deep at 0 0+070 to	sual ob II excava 0+125 – 0 0+029. E	eservation tion with had 0+090. First Excavation t	n during fie ammer, reache 2 pass of hamr	d 1200mm ner done from		
Act Excavation	ACTIVIT	TIES PER	Appro	oximate lo 0+125 to 0+0	cation	Visue Ice rich ti deep at 0 0+070 to	sual ob II excava 0+125 – 0 0+029. E	eservation tion with had 0+090. First Excavation t	n during fie ammer, reache 2 pass of hamr o continue.	d 1200mm ner done from		
Act Excavation Snow	ACTIVIT	TIES PER	Appro	oximate lo 0+125 to 0+0	cation	Visue Ice rich ti deep at 0 0+070 to	sual ob II excava 0+125 – 0 0+029. E	eservation tion with had 0+090. First Excavation t	n during fie ammer, reache 2 pass of hamr o continue.	d 1200mm ner done from		
Act Excavation Snow cleaning Esker	ivities Yes	□No	Appro	0+125 to 0+0 0+070 to 0+0	90 29	Ice rich ti deep at 0 0+070 to Ice rich ti	sual ok excava +125 – 0 0+029. E sample	tion with had the second to th	n during fie ammer, reache 2 pass of hamr o continue.	d 1200mm ner done from ults to come.		
Act Excavation Snow cleaning Esker placement	ivities Yes	TIES PER	Appro	oximate lo 0+125 to 0+0	90 29	Ice rich ti deep at 0 0+070 to Ice rich ti	sual ok excava +125 – 0 0+029. E sample	tion with had the second to th	n during fied ammer, reache 2 pass of hamr o continue. oth sectors, res	d 1200mm ner done from ults to come.		
Act Excavation Snow cleaning Esker	ivities Yes	□No	Appro	0+125 to 0+0 0+070 to 0+0	90 29	Ice rich ti deep at 0 0+070 to Ice rich ti 2 lifts of 6 Specs.	II excava 0+125 – 0 0+029. E II sample	tion with had 0+090. First excavation to taken in bottompacted a	n during fied ammer, reache 2 pass of hamr o continue. oth sectors, res	d 1200mm ner done from ults to come.		
Act Excavation Snow cleaning Esker placement Fine filter placement Rip rap	ivities Yes Yes Yes	□No □No □No	Appro	0+125 to 0+0 0+070 to 0+0 0+125 to 0+0 0+125 to 0+09 nergy dissipatenergy disspip	90 29 tor	Ice rich ti deep at 0 0+070 to Ice rich ti 2 lifts of 6 Specs. Material a	II excava 0+125 – 0 0+029. E II sample	tion with had 0+090. First excavation to taken in both	ammer, reache 2 pass of hamr o continue. oth sectors, res	d 1200mm ner done from ults to come. according to		
Act Excavation Snow cleaning Esker placement Fine filter placement	ivities Yes Yes	□No □No	Appro	0ximate lo 0+125 to 0+0 0+070 to 0+0 0+125 to 0+09 nergy dissipa	90 29 tor	Ice rich ti deep at 0 0+070 to Ice rich ti 2 lifts of 6 Specs. Material 3	II excava 0+125 – 0 0+029. E II sample	tion with had 0+090. First excavation to taken in both	ammer, reache 2 pass of hamro continue. oth sectors, res	d 1200mm ner done from ults to come. according to		
Excavation Snow cleaning Esker placement Fine filter placement Rip rap placement	ivities Yes Yes Yes Yes Yes	No No No	Appro (C	0+125 to 0+0 0+070 to 0+0 0+125 to 0+0 0+125 to 0+09 nergy dissipatenergy disspip	90 29 tor	lce rich ti deep at 0 0+070 to lce rich ti 2 lifts of 6 Specs. Material a First layer place	Il excava 0+125 – 0 0+029. Ell sample and com	tion with had 10+090. First Excavation to taken in both compacted at 200-300m	ammer, reache 2 pass of hamro continue. oth sectors, res	d 1200mm ner done from ults to come. according to erified by QA geotextile in		
Excavation Snow cleaning Esker placement Fine filter placement Rip rap	ivities Yes Yes Yes	□No □No □No	Appro (C	0+125 to 0+0 0+070 to 0+0 0+070 to 0+0 0+125 to 0+09 nergy dissipatenergy disspipatenergy diss	90 29 tor	lce rich ti deep at 0 0+070 to lce rich ti 2 lifts of 6 Specs. Material a First layer place	Il excava 0+125 – 0 0+029. Ell sample and com r of abou	tion with had 1+090. First excavation to taken in both compacted at paction was at 200-300m	ammer, reache 2 pass of hamro continue. oth sectors, research and approved a sconform as vento hold the	d 1200mm ner done from ults to come. according to erified by QA geotextile in		

Rockfill placement	☐Yes ⊠No		
Approval	⊠Yes	0+281 to energy dissipator	Foundation approval for FF placement
Sampling	⊠Yes □No	Ex-11 to 14	Taken in the ice rich till top and after excavation for water content and gradation. Section 0+125 to 0+090.
RFI completed	☐Yes ⊠No		
Other	□Yes ⊠No		

- 1. Segregation, compaction, presence of frozen material and etc for esker, fine and coarse filter placement;
- 2. Minimum overlap, geotextile damage, etc for geotextile;
- 3. Overall rock (100-300 mm), if the rocks are clean, etc for rip rap placement;
- 4. If there is too much fine content and presence of large rock size for rock placement; and
- 5. To support the observation with photos

- Energy dissipator excavated and backfilled with FF.
- Final approval for FF done from 0+149 to energy dissipator.
- Geotextile installed from 0+152 to end of channel at energy dissipator. Overlapping of 600mm conform, as verified by QC
- Excavation ice-rich till in section 0+125 to 0+090. Hydraulic hammer used to break the ice from the planned surface to 1200mm below. Material found at bottom of excavation is still ice-rich but was covered with 2 layers of fine esker material compacted, as specified in 20200926-DS.
- Excavation of almost pure ice mixed with silty sand at St.0+070 to 0+029. Hydraulic hammer removed first 600mm of icy material under lots of water. To be reassessed tomorrow after second step of clean up.

¹ Note: Visual observation during field visit may include a check

SPECIFIC ELEN	IENTS VERIFIED	
Elements	Location	Scope and comments
Excavation/foundation	Frozen ice-rich till removed	Gradation ongoing
Esker	Replacement of ice-rich till	Gradation ongoing

SAFE AND SAFETY REMARKS

Excavation started – All personnel should stay away from the reach of the excavator, even surveyor.

Issued by:	D. Cog	2020-09-28
	Signature	Date
Verified by :		
	Signature	Date

Photo 1:energy dissipator excavation. Line and grades checked by QA. St.0+281 looking North

Photo 2: energy dissipator covered with Fine filter adjusted to match actual topography and surrounding boulder fields.

Photo 3: hammering of the frozen till to reach proper material in ice-rich sector 0+125 to 0+090, taken from St.0+125 looking South. With depth the till had gotten more ice-rich than at surface, ice lenses appeared in foundation (right). Excavation was stopped as it had reached maximum depth allowed for safety and was covered by fine esker material. Results of the water content of 3 till samples taken from that section, 20 (planned elevation), 24 and 25% (bottom of excavation), gradation on materials ongoing.

Photo 4: fine filter placement completed on the upstream tablet, St.0+240 looking South. Tablet was built on the entire length between 0+281 to 0+139.

Photo 5: geotextile placement of 2 layers of Novatex V. Bottom layer overlap of 600mm respected, top layer overlapping the first layer by half a roll.

Photo 6: geotextile placement, exemple of a completed section St.0+150. Flow of the channel towards left of photo.

Photo 6: rip rap placement over the geotextile to hold it in place. Final riprap thickness to be adjusted and profiled, St.0+150 looking North.

	-			_	_	$\overline{}$		_
•		-	ĸ	-	יט	1	ĸ	- 1
J		Ε	ı١	┕	Г'	U	ı١	- 1

IFORMATION PROVIDED TO AEM ements	Yes/No	Description/Comments	
EM Daily Meeting Report	Yes		
EM QC Daily Report	Yes		
QC Sample Test Result	No No		
Approval Form	-		
Photos	Yes		
As-built data (PDF)	-	_	
RFI			
Other document	-		
		_	
ssued by AEM QA	D(B)	_	
Representative :	6; i		020-09-28
	Signature		Date
Reviewed by SNC-Lavalin			
Designer) :			
	Signature		Date
SNC-LAVALIN (DESIGNER) DAILY N	IOTES ON REMOTE SUI	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	IOTES ON REMOTE SUI	PPORT	
NC-LAVALIN (DESIGNER) DAILY N	IOTES ON REMOTE SUI	PPORT	
NC-LAVALIN (DESIGNER) DAILY N	IOTES ON REMOTE SUI	PPORT	
NC-LAVALIN (DESIGNER) DAILY N	IOTES ON REMOTE SUI	PPORT	
NC-LAVALIN (DESIGNER) DAILY N	IOTES ON REMOTE SU	PPORT	
NC-LAVALIN (DESIGNER) DAILY N	IOTES ON REMOTE SUE	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	IOTES ON REMOTE SUI	PPORT	
NC-LAVALIN (DESIGNER) DAILY N	IOTES ON REMOTE SUE	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	IOTES ON REMOTE SUE	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUE	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUE	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUE	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUE	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUE	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUE	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	IOTES ON REMOTE SUE	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUE	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUE	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUE	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUE	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUE	PPORT	

(Detailed)

20200928-DS

2020 00 20		6 :30	6 :30					5.		
2020-09-28		AM	PM	Duntant Na					ice Gagnon	
Visit date		Time (Start/E		Project No.				Prepa	ared by	
		nd)								
IVR Diversio	n Chann	el Const	ruction					Agnico Eag	gle	
Project					1			Client		
SNC Lavalin	/Dociano	۰۲)، ۱۸/CD	(00)				KCG			
SNC Lavalin Consultants	(Designe	er), vv sp	(QC)				Contra	actor		
Consultants							Contra	actor		
Weather:			[Sunny	Cloud	ly Rain		Storm	Snow	Glaze
Wind:			[None	⊠Li	ght \square M	od.	Strong, gus	t Temp:	5 °C
Comments	Overcas	st entire	day							
Appendix:	Yes	⊠No	Pict	ures			∐Ye:	s 🛛 No	Inspection other:	report or
Pictures in the folder	⊠Yes	☐ No	O							
	ACTIVIT	TIES PER	FORME	D BY AEM Q	A REPRES	ENTATIVE (ind	icate if	test forms	were used)	
Acti	ivities		Appro	oximate lo	cation	Visual	l obse	ervation o	during fie	ld visit ¹
Excavation	⊠Yes	□No		0+143 to 0+1 0+090 to 0+0		Final clean up unfrozen	done i	n foundatio	on, sand and	gravel,
Snow cleaning	Yes	⊠No								
Esker placement	⊠Yes	□No		0+125 to 0+0 0+070 to 0+0		Finalizing the according to S		•		•
Fine filter placement	⊠Yes	No	()+143 to 0+0	90	Material and	compa	ction was co	onform as ve	erified by QC
Rip rap placement	⊠Yes	No	From 6	energy disspi 0+139	pator to	Finalizing the thickness, slop	•	•	ed to the pr	oper 500mm
Geotextile	⊠Yes	□No		From 0+139	to	Overlap confo 2.5m overlap		•	•	another with a yer

Rockfill placement	Yes	⊠No		
Approval	⊠Yes	No	0+143 to 0+125 0+070 to 0+090	Foundation approval for FF placement.
Sampling	⊠Yes	□No	Ex-11 to 14	Taken in the ice rich till top and after excavation for water content and gradation. Section 0+125 to 0+090.
RFI completed	Yes	⊠No		
Other	Yes	⊠No		

- 1. Segregation, compaction, presence of frozen material and etc for esker, fine and coarse filter placement;
- 2. Minimum overlap, geotextile damage, etc for geotextile;
- 3. Overall rock (100-300 mm), if the rocks are clean, etc for rip rap placement;
- 4. If there is too much fine content and presence of large rock size for rock placement; and
- 5. To support the observation with photos.

- Final approval for excavation done from 0+149 to 0+090. Foundation on thawed sand and gravel material. St.0+070 to 0+090 approved on ice-poor till frozen foundation. Final approval in section 0+070 to 0+029 in iced sandy silt (sample Ex-15). Sample returned 40% water content, gradation ongoing.
- Backfilling in section 0+125 to 0+090 and 0+070 to 0+029 with fine esker material placement, compacted, as specified in previous reports.
- Fine filter placement 0+149 to 0+80

¹ Note: Visual observation during field visit may include a check

SPECIFIC ELEN	SPECIFIC ELEMENTS VERIFIED					
Elements	Location	Scope and comments				
Excavation/foundation	Frozen ice-rich material removed	Gradation ongoing				
Esker	Replacement of ice-rich material excavated	Gradation ongoing				

SAFE AND SAFETY REMARKS

Excavation started – All personnel should stay away from the reach of the excavator, even surveyor.

Issued by:	D. Gag	2020-09-28
	Signature	Date
Verified by :		
	Signature	Date

Photo 1:Frozen silty sand at the bottom of the excavation after material removal. Visually the material is ice-poor so it was accepted as is and covered with 2 layers of esker. Sample Ex-15 was taken for water content.

Photo 2: view of the bottom of the approved excavation at St.0+090 looking South.

Photo 3: view of the same area after till placement, final grading ongoing.

Photo 4: view of the esker placement completed & the upstream tablet built, St.0+090 looking North to 0+125.

Photo 5: view of the thawed sand and gravel foundation from St.0+125 looking North to 0+150.

Photo 6: rip rap placement over the geotextile, final thickness adjusted and profiled, St.0+150 looking North.

INFORMATION PROVIDED TO AEM		
Elements	Yes/No	Description/Comments
AEM Daily Meeting Report	Yes	
AEM QC Daily Report	Yes	
QC Sample Test Result	No	
Approval Form		
Photos	Yes	
As-built data (PDF)	-	
RFI		
Other document		
Issued by AEM QA Representative :	Signature	
Reviewed by SNC-Lavalin (Designer):		

		SITE REPORT
	Signature	Date
SNC-LAVALIN (DESIGNER)	DAILY NOTES ON REMOTE SUPPORT	

(Detailed)

20200929-DS

2020-09-29 Visit date IVR Diversio Project SNC Lavalin Consultants			ruction	Project No.					Prepa gnico Eag ent	ier Collette red by le		
Weather:				Sunny	⊠Cloud'	y 🔲 F	Rain	□St	orm	Snow	∏Gl	laze
Wind:				None	⊠Lię	ght	☐Mod.		Strong, gust	Temp:	0	°C
Comments	QA crev	w chang	e day									
Appendix:	Yes	⊠No	Pictur	es				Yes	⊠No	Inspection other:	report or	
Pictures in the folder	⊠Yes	☐ No)									
the rolaer							- 6					
	ACTIVIT	TIES PER	FORMED I	BY AEM Q	A REPRES	ENTATIV	E (indicat	te if te	est forms v	were used)		
Act	ivities		Approx	imate lo	cation	V	isual ol	bser	vation d	luring fie	ld visit [:]	1
Excavation	⊠Yes	□No	-0+	·015 to 0+0)29		•			on, sand and er ponding	•	dra
Snow cleaning	Yes	⊠No										
Esker placement	⊠Yes	□No	0+0	032 to ~0+:	130	than 100 Placed r on the g	Omm (granaterial is eotextile d excess o	avel & s ok. S while	fines) obs some dust e rip rap m	e zones of merved in the common that is a common that is placed in the rip r	e load pile nount, is v aced. Two	e. visible o
Fine filter placement	Yes	⊠No										
Rip rap placement	Yes	⊠No										

			n	D	
					7

Geotextile	Yes	⊠No	
Rockfill placement	Yes	⊠No	
Approval	Yes	⊠No	
Sampling	Yes	⊠No	
RFI completed	Yes	⊠No	
Other	Yes	⊠No	

1 Note: Visual observation during field visit may include a check

- 1. Segregation, compaction, presence of frozen material and etc for esker, fine and coarse filter placement;
- 2. Minimum overlap, geotextile damage, etc for geotextile;
- 3. Overall rock (100-300 mm), if the rocks are clean, etc for rip rap placement;
- 4. If there is too much fine content and presence of large rock size for rock placement; and
- 5. To support the observation with photos.

- Designer confirmation (over phone discussion, 2020-09-29, 4:38pm) that geotextile Tencate Mirafi 1100N can be used instead of Novatex V as long as same installation method is used (two geotextile layers)
- Work has been done to control localized runoff from the tundra around 0+100 prior to QA visit. Result is a upstream platform slightly bigger than 1m. Water flow seems to behave properly and seep in the rip rap towards the bottom of the channel.
- Water management at time of visit includes two water collection sumps with active pumping (0+028, -0+015)
- Localized excess of finer material in rip rap at 0+140 & 0+045 to be removed.

SPECIFIC E	LEMENTS VERIFIED	
Elements	Location	Scope and comments
Rip rap material	0+029 to 0+100	Only clean material should be used
	SAFETY REMARKS	
All personnel should sta	y away from the reach of the excavator, even surveyo	r.
Issued by :	Signature	2020-09-29 Date
Verified by :	, and the second	
	Signature	Date

Photo 1: view of the bottom of the excavation, not final, at St.-0+015 looking North. Sump located at the upstream end of the channel at -0+015. Water in the excavation is coming from tundra runoff. Final excavation clean up to do prior to placing fine filter material.

Photo 2: view of the same area. Looking South from Sta 0+029 where second active sump is located.

Photo 3: Localized excess of finer material in rip rap at 0+140 & 0+045 to be removed.

Photo 4: rip rap placement over the geotextile, St.0+035 looking North.

Photo 5: rip rap load containing a localized amount of finer material. This amount is rejected and tossed away. Such finer material shall not be placed in the channel. If it is so, it will need to be cleaned manually, to minimize risks of damaging the geotextile liner.

Photo 6: Rip rap placement on geotextile. Sta 0+070 loking north west. Water ingress (tundra runoff) at around 0+100 is visible on the photo. Water is properly flowing within the rip rap material, over the geotextile.

NFORMATION PROVIDED TO AEM		Description /Const
Elements	Yes/No	Description/Comments
AEM Daily Meeting Report	Yes	_
AEM QC Daily Report	Yes	_
QC Sample Test Result	No	_
Approval Form	<u>-</u>	
Photos	Yes	
As-built data (PDF)	-	
RFI	-	
Other document	<u>-</u>	
ssued by AEM QA	0	
Representative :	Market .	2020-10-01
	Signature	Date
eviewed by		
NC-Lavalin		
Designer):		
	Signature	Date
NC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUP	PORT
_		

(Detailed)

20200930-DS

							,	,
		6 :30	6 :30					
		AM	PM		Laurier Collette			
Visit date Time (Start/E		Project No).	Prepared by				
		nd)		1				
IVR Diversio	n Chann	el Const	ruction		Agnico Eagle			
Project					Client			
SNC Lavalin	(Designe	er); WSP	(QC)		KCG			
Consultants					Contractor			
Weather:			Sunny	⊠Cloud	y	Storm	Snow	Glaze
Wind:			None	⊠Liį	ght Mo	od. Strong,	gust Temp :	1-2°C
Comments All observations and approvals of this report refers to the channel invert and east slope								
Appendix:	Yes	⊠No	Pictures			☐Yes ⊠No	Inspection re	port or other:
Pictures in No No the folder								
	ACTIVIT	TIES PER	FORMED BY AEM	I QA REPRES	ENTATIVE (indi	cate if test form	ns were used)	
Activities		Approximate	location	Visual observation during field visit 1				
Excavation	⊠Yes	□No	0+029 to -(0+015	Final clean up done in foundation, ice poor till, sand and gravel. Sample EX-16 taken in section 0+000 to 0+029. Water and wet & unfrozen superficial material has been removed.			
Snow cleaning	Yes	⊠No						
Esker	I IXIYes INo I			About 200mm to 0 to backfill overexcavation in that area				
placement -0+013 to -0+015 Backfill of si			p at upstream					
Fine filter placement	⊠Yes	□No	0+029 to -0)+015	Material and compaction was conform as verified by QC (bucket compaction). QA spot check confirmed proper compaction.		•	
	⊠Yes	□No	From 0+029 to	0+029 to -0+015 Rip rap placement to proper elevation.				
Rip rap placement			From 0-015 to dissipat		grade. Slope ir (afternoon) co	rip rap layer alro mproved. Clean ontained materi o additional con	rocks overall b al finer than 10	ut some loads

Geotextile	⊠Yes	□No	From 0+029 to -0+015 At outlet energy dissipator (0+284.5 to ~ 0+287)	Overlap conform, 2 layers added on top of another with a 2.5m overlap for the start for the second layer. Product used is Tencate Mirafi 1100N
Rockfill placement	Yes	⊠No		
Approval	⊠Yes	□No	0+029 to -0+015	Foundation approval for FF placement. FF placement approval Geotextile placement approval
			-0+015 to 0+281	Rip rap placement approval (conditional to removing finer material at identified locations)
Sampling	⊠Yes	No	EX-16 ES-02	Taken in the foundation material (ice poor till) for water content and gradation. Section 0+000 to 0+029 Esker sample
RFI completed	Yes	⊠No		
Other	Yes	⊠No		

1 Note: Visual observation during field visit may include a check

- 1. Segregation, compaction, presence of frozen material and etc for esker, fine and coarse filter placement;
- 2. Minimum overlap, geotextile damage, etc for geotextile;
- 3. Overall rock (100-300 mm), if the rocks are clean, etc for rip rap placement;
- $\ \, \text{4.} \quad \, \text{If there is too much fine content and presence of large rock size for rock placement; and }$
- 5. To support the observation with photos.

- Some rip rap loads dumped in the afternoon were found to contain material finer than 100mm (fine particles and gravel size particles). The stockpile has been checked so the best material is loaded. Operators placing the material have been notified and adapted their method. On the access road prior to placement in the channel, fines were segregated as much as possible using wind while dropping bucket loads from higher up. Also, while placing the material, the operator shakes the bucket and leaves the finer material in the bucket. It is disposed of on the road rather than in the channel. Few spots will need manual clean up to remove finer material: 0+045, 0+078, 0+140, 0+196.
- Final approval for excavation done from -0+015 to 0+029. Foundation on ice-poor till material. Sample taken in the 0+000 to 0+029 area (EX-16).
- No survey data received yet. Final approval documents will be issued out once survey data is received.
- Upstream end of the channel has been built following discussion with the designer in the morning: FF layer from 300mm at 0+000 to 150mm at 0-015 following the channel slope, a layer of geotextile and rip rap on top.
- Sumps at 0+028 and 0-015 were backfilled with esker material. Pump started in at the downstream end of the channel, 0+281.
- More work was performed at the downstream of the designed energy dissipator. Some 0-3/4" material was removed to keep the minimum amount and geotextile was placed on top of it. A partial single layer of rip rap was placed on top to ensure that the geotextile iremains in place. More work to be done there for completion including rip rap placement.

SPECIFIC ELEMENTS VERIFIED							
Elements	Location	Scope and comments					
Excavation/foundation	Water and wet material removed	Gradation ongoing					
Fine filter placement	-0+015 to 0+032	Proper compaction					
Geotextile placement	-0+015 to 0+032	Proper overlap					
Rip rap placement	All long the channel	Only clean material should be used					

SAFE AND SAFETY REMARKS

All personnel should stay away from the reach of the excavator, even surveyor.

Temperature oscillating around freezing point: extra caution for ice patches, proper footware.

Moving geotextile rolls partially soaked in water: workers to have proper footwatre (rubber boots)

Photo 1. Bottom of the exvaction from -0+015 to 0+029 before final clean up. Looking north. Water in the excavation is coming from tundra runoff and has been removed, along with superficial thawed material, prior to approval.

Photo 2. Bottom of the excavation from -0+015 to 0+029 after final clean up, looking north. Superficial thawed soil and water removed prior to backfilling FF.

Photo 3. Close up view on foundation material in 0+000 to 0+029 area. Ice poor material, mix of sand, gravel and finer material. Superficial thawed soil and water removed prior to backfilling FF. Sample EX-15 taken in that area.

Photo 4. Completion of Fine filter material placement. Compaction with excavator bucket.

Photo 5.Geotextile installation on top of FF layer. Two layers of Tencate Mirafi 1100N with proper overlaps. Looking north from 0+020.

Photo 6. Rip rap placement, STA -0+015 to 0+032. Looking south

Photo 7. Rip rap placed to final grade on the invert and east slope, looking north from -0+015.

Photo 8. Final sloping, profiling and grading of the rip rap layer, invert and east slope. Photo taken around 0+160 looking north.

 $Photo \ 9. \ Non-compliant \ rip \ rap \ load, \ containing \ fines \ and \ gravel < 100mm. \ Material \ on \ the \ photo \ has \ not \ been \ placed \ on \ the \ channel.$

Photo 10. Non-compliant rip rap material containing fines and gravel <100mm. Excavator were told not to place any material of that kind. Manual cleaning will be required at some location along the channel where finer material was observed within the rip rap. Refer to comment section above.

Photo 11. Downstream area of the energy dissipator. Thin layer of fine filter material placed on top of backfilled downstream sump. Top of fine filter material is at natural ground elevation.

Photo 12. Two layers of geotextile placed on top of fine filter material (Photo 11). Rip rap placement ongoing on top of geotextile. Thin layer of rip rap will be placed to hold geotextile in place.

NFORMATION PROVIDED TO AEM	1		
Elements	Yes/No	Description/Comments	
AEM Daily Meeting Report	Yes		
AEM QC Daily Report	Yes		
QC Sample Test Result	No		
Approval Form	<u>-</u>		
Photos	Yes		
As-built data (PDF)	-		
RFI	-		
Other document	-		
	<u> </u>		
ssued by AEM QA	A. III		
Representative :	1000	2020-10-01	
	Signature	Dai	te
Reviewed by SNC-Lavalin			
Designer) :			
	Signature	Da	te
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUI	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUI	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUI	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUI	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUI	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUI	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUI	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUI	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUI	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUI	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUI	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUI	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUI	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUI	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUI	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUI	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUI	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUI	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUI	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUI	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUI	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUI	PORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUI	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SUI	PPORT	

(Detailed)

20201001-DS

									Document number (YYYYMMDD-DS-SR)
		6 :30	6 :30						
2020-10-01		AM	PM					Laurier Collette	
Visit date		Time (Start/E		Project No.				Prepared by	
		nd)			ı				
IVR Diversio	n Chann	el Const	ruction				Agnico	Eagle	
Project				1		1	Client		
SNC Lavalin	(Designe	er); WSP	(QC)				KCG		
Consultants							Contractor		
M/o o the own			г	¬c	⊠clad	. Doin	Chama	□ c	
Weather:			L	Sunny	Cloud	y Rain	Storm	Snow	Glaze
Wind:				None	⊠Liį	ght \square M	od. Strong	g, gust Temp:	0-5 °C
Comments	Observ	ations i	n this re	port refers t	to the acce	ess road and W	est slope of th	ne channel	
		-	5						
Appendix:	Yes	⊠No	Pict	ures			☐Yes ⊠No	Inspection re	eport or other:
Pictures in	⊠Yes	□ No	2						
the folder	⊠163		J						
				D DV 4514.0				15	
	ACTIVI	TIES PER	RFORME	D BY AEM Q	A REPRES	ENTATIVE (ind	icate if test for	ms were used)	
A ot	ivitios		Annr	ovimata k	ocation	Vieus	l absantatio	n durina fia	ld visit 1
ACI	ivities		Appro	oximate lo	ocation	VISUa	observatio	on during fie	iu visit
						Initial excavat	ion of the wes	t slope of the cl	nannal Tha
								ground, glacial	
Excavation	∑Yes	□No	Fro	m 0+162 to (0+188			e top. The till is	
								olf of the slope i	s in the initial
<u> </u>						road lift (soap	stone rockfill).		
Snow cleaning	Yes	⊠No							
Esker									
placement	Yes	⊠No							
Fine filter	□Yes	⊠No							
placement									
Rip rap placement	Yes	⊠No							
placement									
Geotextile	Yes	⊠No							
JCOTCATHE									

Rockfill placement	⊠Yes	□No	From 0+162 to 0+285 From 0+047 to 0+110	Access road was lifted to final elevation with Non-PAG soapstone type material. Material put in place by dozer. Particle size between 0 and 500 approximately. Larger boulders were put on the side and are moved away by the excavator at the time of digging the west slope of the channel. Compaction achieved by trucks, dozer and excavator moving on the surface.
Approval	Yes	⊠No		
Sampling	Yes	⊠No		
RFI completed	Yes	⊠No		
Other	Yes	⊠No		

- 1. Segregation, compaction, presence of frozen material and etc for esker, fine and coarse filter placement;
- 2. Minimum overlap, geotextile damage, etc for geotextile;
- 3. Overall rock (100-300 mm), if the rocks are clean, etc for rip rap placement;
- 4. If there is too much fine content and presence of large rock size for rock placement; and
- 5. To support the observation with photos.

ADDITIONNAL COMMENTS:

- Installation of frost-fighter and tarps to avoid freezing of the geotextile rolls that remain to be moved on top of the rip rap to allow more space for excavating the west slope
- Slope excavation: final survey check required to confirm grade. Assessement of foundation material to be done.
- Pebbles and material falling down the slope as excavation goes, close to the geotextile rolls. Final clean up will be required before unrolling the rolls.
- Small amount of water at the bottom of the exaction, ponding on the fine filter, will have to be managed when placing the fine filter layer in the slope.

SPECIFIC ELEMENTS VERIFIED				
Elements	Location	Scope and comments		
Rockfill	Access road – final lift	Proper placement, adequate rolling surface		
Excavation	West slope of the channel 0+160 to 0+180	Proper sloping		

SAFE AND SAFETY REMARKS

All personnel should stay away from the reach of the excavator, even surveyor.

Temperature oscillating around freezing point: extra caution for icy areas, proper footware & cleats

 $Photo\ 1.\ Rockfill\ placement\ for\ final\ lift\ of\ the\ access\ road\ along\ the\ west\ side\ of\ the\ channel\ looking\ south\ from\ around\ 0+200$

Photo 2. Final access road rockfill lift. Surface compaction with dozer and truck traffic. Adequate rolling surface. Looking North, STA 0+200

Photo 3. Excavation of the side of the road to prepare west slope of the channel, looking north STA 0+160. Some water ponding on top of the invert fine filter layer. Rolls of remaining geotextile moved on the rip rap to leave as much room as possible for the excavator to work the slope.

Photo 4. Ongoing slope excavation. Natural ground material. Till with gravel, sand, boulders and some organic matter in the upper portion.

Material is dryer towards the top and more humid at the toe

Photo 5. Tarps and frost-fighter installed at the downstream end of the channel to keep water and geotextile rolls above the freezing point.

INFORMATION PROVIDED TO AEM	Л	
Elements	Yes/No	Description/Comments
AEM Daily Meeting Report	Yes	
AEM QC Daily Report	Yes	
QC Sample Test Result	No	
Approval Form	<u>-</u>	
Photos	Yes	
As-built data (PDF)		
RFI	-	
Other document	-	
	A	
Issued by AEM QA	Arah	
Representative :	Signature	2020-10-01 Date
Reviewed by	Signature	Juli
SNC-Lavalin		
(Designer):		
	Signature	Date
SNC-LAVALIN (DESIGNER) DAILY N	IOTES ON REMOTE SU	PPORT

(Detailed)

20201002-DS

Document number (YYYYMMDD-DS-SR)

							,	YYYYMINIDD-DS-SK)
		6 :30	6 :30	1				
2020-10-02		AM	PM			Lau	rier Collette	
Visit date	·	Time (Start/E	Project No.			Prep	ared by	
		nd)						
IVR Diversio	n Chann	el Const	ruction			Agnico Eag	gle	
Project			1		1	Client		
SNC Lavalin	(Designe	er); WSP	(QC)		ксо	<u> </u>		
Consultants					Con	tractor		
Weather:			Sunny	Cloudy	Rain	Storm	Snow	Glaze
Wind:			None	⊠Lig	nt Mod.	Strong, gu	st Temp:	°C
Comments	Observ	ations i	n this report refers t	to the acce	ss road and West	slope of the c	hannel	
Appendix:	Yes	⊠No	Pictures			∕es ⊠No I	Inspection re	port or other:
Pictures in the folder	⊠Yes	□ No)					
	ACTIVIT							
	ACIIVI	TIES PER	REORMED BY AEM C	A REPRESE	NTATIVE (indicat	e if test forms	were used)	
	ACTIVIT	TIES PER	FORMED BY AEM C	QA REPRESE	NTATIVE (indicat	e if test forms	were used)	
Act	ivities	TIES PER	Approximate lo			se if test forms		d visit ¹
Act Excavation				ocation 280		etion of the we the natural gro natter at the to ne upper half o ne rockfill). So here the mate	est slope of the bund, glacial sop. The till is of the slope is me areas at trial was soft	ne channel. The till with some dryer in the initial the of the slope
Excavation Snow cleaning	ivities		Approximate le	ocation 280	Visual of Continued excava bottom half is in trace of orcanic nupper portion. Throad lift (soapstowere removed w	etion of the we the natural gro natter at the to ne upper half o ne rockfill). So here the mate	est slope of the bund, glacial sop. The till is of the slope is me areas at trial was soft	ne channel. The till with some dryer in the initial the of the slope
Excavation	ivities	□No	Approximate le	ocation 280	Visual of Continued excaval bottom half is in trace of orcanic nupper portion. Throad lift (soapstowere removed with oversaturated or	etion of the we the natural gro natter at the to ne upper half o ne rockfill). So here the mate contained ice.	during field est slope of the bund, glacial op. The till is of the slope is me areas at the rial was soft and the slope is the slope is the slope is the slope is the areas at the slope is the slope is the slope is the areas at the slope is	ne channel. The till with some dryer in the initial the of the slope and
Excavation Snow cleaning Esker	ivities \[\text{Yes} \]	□No	Approximate le	ocation 280	Visual of Continued excava bottom half is in trace of orcanic nupper portion. Throad lift (soapstowere removed w	ation of the weather natural gromatter at the to the upper half of the rockfill). So here the mate contained ice.	est slope of the bund, glacial op. The till is of the slope is me areas at trial was soft a spection. Prohe mean of t	ne channel. The till with some dryer in the in the of the slope and

Geotextile	Yes	⊠No		
Rockfill placement	⊠Yes	□No	From 0+000 to 0+047 From 0+110 to 0+162	Access road was lifted to final elevation with Non-PAG soapstone type material. Material put in place by dozer. Particle size between 0 and 500 approximately. Larger boulders were put on the side and are moved away by the excavator at the time of digging the west slope of the channel. Compaction achieved by trucks, dozer and excavator moving on the surface. Survey check required to ensure that the road is at proper final elevation.
Approval	⊠Yes	□No	0+155 to 0+240	Foundation approval. Overall conform foundation. Soft oversaturated material and ice lenses were found at some locations (details below). This material has been removed until foundation to QA satisfaction.
Sampling	Yes	⊠No		
RFI completed	Yes	⊠No		
Other	Yes	⊠No		

- 1. Segregation, compaction, presence of frozen material and etc for esker, fine and coarse filter placement;
- 2. Minimum overlap, geotextile damage, etc for geotextile;
- 3. Overall rock (100-300 mm), if the rocks are clean, etc for rip rap placement;
- 4. If there is too much fine content and presence of large rock size for rock placement; and
- 5. To support the observation with photos.

ADDITIONNAL COMMENTS:

- The geotextile remaining to install has been damaged at some locations during slope excavation and FF placement. Corrective measure required when the remaining geotextile will be unrolled on the FF.
- Geotextile at the downstream end of the channel (0+235 to 0+285) successfuly warmed above freezing point with frost fighter set up so it was possible to move the rolls on top of the rip rap. This provided more room for the excavator for sloping.
- Water level in the energy dissipator drawn down to minimal level.
- Pebbles and material that fell down the slope close to the geotextile rolls during slope excavation: Pebbles and debris were removed manually prior to the FF material placement.
- The small amount of water ponding at the toe of the exaction was properly pushed away while placing the fine filter material on the slope. Refer to photos.
- West slope foundation: overall, the natural ground (sand, gravel & pebble till, some areas of finer material) with a naturally high moisture content.
- West slope foundation: zones of oversaturated material (only present at the toe of the slope at some specific locations) have been identified and removed. Depending on locations, from 0 to 0.5m thick material was removed to reach an acceptable foundation. Material exposed after digging was found to be more competent and to contain acceptable moisture content. Some of the soft and oversatured material zones were caused by localized water preferential flowpath within the natural ground (at 0+154, 0+202, 0+198). Over-excavations at these corrected zones were immediately filled with FF material, properly compacted with the excavator bucket.

wide (less than 10cm) and areas of ice-rich material. A bucket with theet was used to dig deeper and remonon-compliant material containing ice. The hammer was not necessary for that. Enough material was remountil no more ice lense or pocket were present in the soil. The over excavation ended up being about 0.2 to 1.2m deep.
The state of the s

Location Access road – final lift	Scope and comments
Access road – final lift	
Access road marme	compliant
West slope of the channel 0+155 to 0+240	Proper sloping, acceptable foundation material
West slope of the channel 0+155 to 0+240	Compliant

SAFE AND SAFETY REMARKS

All personnel should stay away from the reach of the excavator, even surveyor.

Temperature oscillating around freezing point: extra caution for icy areas, proper footware & cleats

Photo 1. Rockfill placement for final lift of the access road along the west side of the channel looking south from around 0+050

Photo 2. West slope at around 0+160. Zones with soft oversaturated material maked with spay paint, to be removed prior to FF placement

Photo 3. Soft oversaturated material starting to be removed by the excavator

Photo 4. Ongoing process of removal of soft oversaturated material at the toe of the slope. About 0.1 to 0.3m removed in the center of the photo. Exposed material is much dryer and competent. Marked material on the right hand side remains to be excavated.

 $Photo \ 5. \ Ice \ lenses \ (A), \ ice \ pockets \ and \ ice \ rich \ material \ (B) \ observed \ between \ 0+230 \ and \ 0+240. \ All \ this \ material \ has \ been \ removed.$

Photo 6. Looking at foundation material once ice-rich material removed (0+230 to 0+240). There was no more ice in the material at the excavated level. White spots on the photos are broken rocks, not ice.

Photo 7. Fine filter placed in a way to push water further down the channel. Preliminary FF filling of the overexcavation where ice was found, STA 0+235

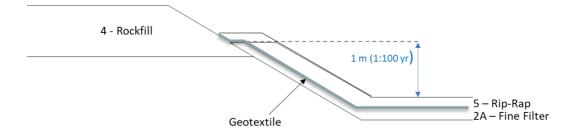
Photo 8. Fine filter placement, Looking north from around 0+225

NFORMATION PROVIDED TO AEM	1		
Elements	Yes/No	Description/Comme	ents
AEM Daily Meeting Report	Yes		
AEM QC Daily Report	Yes		
QC Sample Test Result	No		
Approval Form	-		
Photos	Yes		
As-built data (PDF)	-		
RFI	-		
Other document	-		
	<u> </u>		
Issued by AEM QA	AA		
Representative :	Signature.		2020-10-03
	Signature		Date
Reviewed by SNC-Lavalin			
(Designer) :			
	Signature		Date
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SU	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SU	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SU	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SU	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SU	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SU	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SU	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SU	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SU	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SU	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SU	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SU	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SU	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SU	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SU	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SU	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SU	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SU	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SU	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SU	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SU	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SU	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SU	PPORT	
SNC-LAVALIN (DESIGNER) DAILY N	OTES ON REMOTE SU	PPORT	

(Detailed)

20201003-DS

Document number (YYYYMMDD-DS-SR)


									`	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	55 511,
		6 :30	6 :30								
2020-10-03		AM	PM					Lau	rier Collette		
Visit date		Time (Start/E		Project No.				Prep	pared by		
		nd)			1						
IVR Diversion Channel Construction								Agnico Ea	gle		
Project				1		,	(Client			
SNC Lavalin	(Designe	er); WSP	(QC)				KCG				
Consultants							Contracto	or			
Weather:				Sunny	⊠Cloud	ly Rain		Storm	Snow	☐Glaz	ze
Wind:			[None	⊠Li	ght \square M	lod.	Strong, gu	ıst Temp:	2	_ °C
Comments	Observ	ations i	n this re	port refers t	o the acc	ess road and V	Vest slo	oe of the	channel		
Appendix:	Yes	⊠No	Pict	ures			Yes	⊠No	Inspection re	port or oth	er:
Pictures in the folder	⊠Yes	□ No)								
	ACTIVI	TIES PER	REORME	D BY AFM O	A REPRES	SENTATIVE (inc	dicate if	test forms	were used)		
	7.01171		OTHIVIE	D D1 ALM Q	A REI RES	Zivivivi (iiic	arcate ii	iest forms	were asca _j		
Act	ivities		Appro	oximate lo	cation	Visua	l obse	rvation	during fie	ld visit ¹	
Excavation	⊠Yes	□No	-(0+015 to 0+1	.90	Continued ex the upstream 0+050 to 0+0 interface. The amount of bo	n part. M 85 section e rockfill	lore orgar on, at the material	nic matter ob rockfill-natur exposed cont	served in the al ground tains a grea	ie
Snow cleaning	Yes	⊠No									
Esker placement	Yes	⊠No									
Fine filter placement	⊠Yes	□No		0+220 to 0+2 0+090 to 0+1		Negligible am the day befor Proper grada compaction of bucket. Adeq the one at ch	re. tion fror on the slouate & s	n visual in ope with t sufficient o	spection. Pro the mean of t	per he excavat	or
Rip rap placement	Yes	⊠No	()+140 to 0+2	85	Partial placer gradation. No	-	_		•	

			from crushing and handling. Most of the dust is blown away by the wind as the material is placed on the geotextile.
Geotextile	⊠Yes □No	0+140 to 0+285	Unrolling geotextile up the slope. Frozen rolls thawed out with warm air blow by frost-fighter. Compliant placement of the two layers and proper overlap. Some rip rap placed shortly after geotextile unrolled so it does not move away with the wind. Adequate corrective measure taken where geotextile was damaged (geotextile patch – refer to additional comments below).
Rockfill placement	☐Yes ⊠No		
Approval	⊠Yes □No	0+220 to 0+285 0+090 to 0+155 0+130 to 0+155	Foundation approval. Overall conform foundation. Soft oversaturated zones were removed until foundation to QA satisfaction. FF material used to backfill these overexcavations. Fine Filter approval.
Sampling	☐Yes ⊠No		
RFI completed	☐Yes ⊠No		
Other	☐Yes ⊠No		

- 1. Segregation, compaction, presence of frozen material and etc for esker, fine and coarse filter placement;
- Minimum overlap, geotextile damage, etc for geotextile;
- 3. Overall rock (100-300 mm), if the rocks are clean, etc for rip rap placement;
- 4. If there is too much fine content and presence of large rock size for rock placement; and
- 5. To support the observation with photos.

ADDITIONNAL COMMENTS:

• Agreement regarding the dispositions of layers (FF, geotextile and rip rap) at the top of the slope: The fine filter material placed on the est slope of the channel shall end at 1m above the elevation of the invert of the channel (top of rip rap layer on the invert). Geotextile is to be extended as shown on the skech below, and rip rap material to be placed to hold the geotextile.

- Since the invert of the channel was overexcavated between 0+234 and 0+261 due to ice content, two spot checks (0+250, 0+260) were done at the toe of the slope to assess the material conditions 0.3m below grade. FF material was used to backfill these overexcavations.
 - 0+260: Mix of dryer and damp till. No ice lense, ice or oversaturated material.

- 0+250: No significant ice lense. Fine material with some ice content (ice poor). Sample taken at that location to confirm ice content.
- Adequate corrective measures were taken for the geotextile that has been damaged during FF placement.
 Tear holes were located at the toe of the west slope. When unrolling the rolls, full width geotextile patches
 were added in a way that the the patch covered a zone of 1-2m around the damaged area when possible.
 When the damaged area was too close to the toe, the covering offset was less on the side of the channel
 invert because of the rip rap already in place. On that side, the patch covered an area of about 0.3m beyond
 the damaged zone.
- Pebbles and material that fell down the slope close to the geotextile rolls during slope excavation: Pebbles and debris were removed manually prior to the FF material placement.
- Frost fighter and tarp setup used when needed to unfreeze the geotextile rolls.
- The small amount of water ponding at the toe of the exaction was properly pushed away while placing the fine filter material on the slope.
- West slope foundation: overall, the natural ground (sand, gravel & pebble till, some areas of finer material) with a naturally high moisture content.
- West slope foundation: zones of oversaturated material (only present at the toe of the slope at some specific locations) have been identified and removed. Depending on locations, from 0 to 0.5m thick material was removed to reach an acceptable foundation. Material exposed after digging was found to be more competent and to contain acceptable moisture content. Some of the soft and oversatured material zones were caused by localized water preferential flowpath within the natural ground (at 0+145, 0+085). Over-excavations at these corrected zones were surveyed and immediately filled with FF material, properly compacted with the excavator bucket.

SPECIFIC ELEMENTS VERIFIED					
Location	Scope and comments				
West slope of the channel 0+220 to 0+285 & 0+090 to 0+155	Proper sloping, acceptable foundation material after correction				
West slope of the channel 0+155 to 0+240	Compliant				
West slope of the channel 0+140 to 0+285	Compliant after correction				
	West slope of the channel 0+220 to 0+285 & 0+090 to 0+155 West slope of the channel 0+155 to 0+240				

SAFE AND SAFETY REMARKS

All personnel should stay away from the reach of the excavator, even surveyor.

Temperature oscillating around freezing point: extra caution for icy areas, proper footware & cleats

Photo 1. Fine filter placement at the downstream end of the channel. STA 0+250 looking north. Excess of snow was removed.

Photo 2. Foundation spot check STA 0+260, about 0.3m below grade. Visible presence of ice. Some ice lenses at mm scale and an isolated 1cm thick one.

Photo 3. Foundation spot check STA 0+250, about 0.3m below grade. some ice visible at mm scale. Sample taken to confirm ice content.

Photo 4. Geotextile placement at 0+150. Roll on the photo was partially damp and frozen

Photo 5. Rip rap placed to hold the geotextile on the west slope before completion of rip rap final layer. Visible on the photo is a fold in the geotextile at the toe of the slope, where the water within the geotextile remain frozen, because the rolls were on the invert side during sloping. Fine filter material underneath is at grade. As rip rap is placed in this zone, the geotextile levels to the top of the fine filter layer.

Photo 6. Paint marking a zone of soft and oversaturated material at 0+150. Material has been removed un

Photo 7. Fine filter layer at grade. From about 0+200, looking south

Photo 8. A) patch installed on the slope to cover the damaged geotextile. B) Close up on the damaged geotextile found the day before.

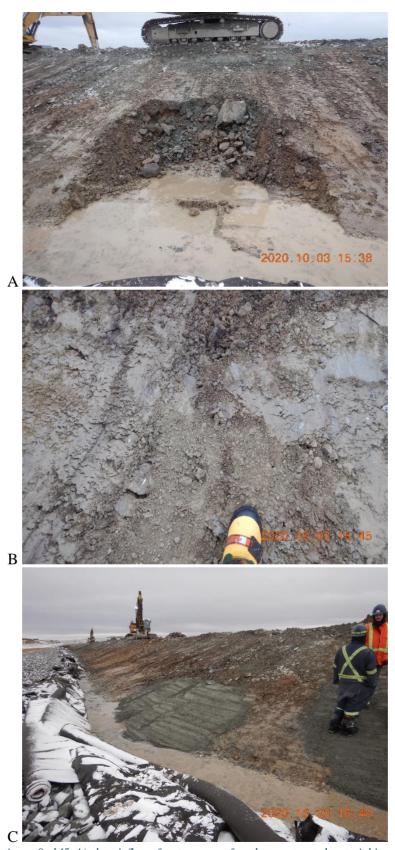


Photo 9. Photos showing correction at 0+145. A) clear inflow of water once soft and oversaturated material is removed. B) Foundation material after clean up with bucket, before water comes in. C) corrected foundations. 0+145 is where the workers are standing. FF material is not placed directly in the water, it is placed in such a way that water is pushed away while the material is placed (refer to photo 7 in report 20201002-DS, showing a snapshot of the maneuver). Photo C also shows the foundation of surface on the west slope of the channel, from 0+145 looking south

Photo 10. Remaining material from initial road lift being removed for the slope profiling. 0+070 looking south.

Photo 11. Geotextile being unrolled on the fine filter layer, 0+130 looking south

INFORMATION PROVIDED TO AEM		
Elements	Yes/No	Description/Comments
AEM Daily Meeting Report	Yes	
AEM QC Daily Report	Yes	
QC Sample Test Result	No	
Approval Form	-	
Photos	Yes	
As-built data (PDF)	-	
RFI	-	
Other document	-	
Issued by AEM QA	Arm	2020-10-04
Representative :	Signature	Date
Reviewed by	Signature	bute
SNC-Lavalin		
(Designer) :		
	Signature	Date
SNC-LAVALIN (DESIGNER) DAILY NOTE	S ON REMOTE SUPP	PORT

(Detailed)

20201004-DS

Document number

										(YYYYMMDD-DS-SR)
	ı	C -20	c .20		ı					
2020-10-04		6 :30 AM	6 :30 PM					La	urier Collett	e
Visit date		Time		Project No.	Prepared by					
		(Start/E nd)								
IVR Diversio	n Chann	el Const	ruction			Agnico Eagle				
Project								Client		
SNC Lavalin	(Designe	er); WSP	(QC)			кс				
Consultants						Contractor				
Weather:			[Sunny	⊠Cloud	dy Rain	[Storm	Snow	Glaze
Wind:				None	⊠L	ight []	Mod.	Strong,	gust Temp :	°C
Comments	Observ	ations i	n this re	port refers t	o the We	st slope of the	e chan	nel		
Appendix:	Yes	⊠No	Pict	ures			∐Y∈	es 🛮 No	Inspection	report or other:
Pictures in the folder	⊠Yes	□ No)							
	A CT1) //3	FIEC DED	SCORAC	D DV AFAA O	A DEDDE	CENTATIVE /:	معمدال	:6++ 6		
	ACTIVI	HES PER	RFORME	D BY AEM Q	A REPRE	SENTATIVE (in	dicate	if test form	is were used	.)
Act	ivities		Appro	oximate lo	ocation	Visua	al ob	servatior	n during fi	eld visit ¹
Excavation	⊠Yes	□No	-(0+015 to 0+1	190	in the upstre 0+085) was	eam pa remov erexac	art. Organic ed prior to cation was l	matter in ex foundation a	pe of the channel ccess (0+050 to approval. th FF material.
Snow cleaning	Yes	⊠No								
Esker placement	Yes	⊠No								
Fine filter placement	⊠Yes	□No	-(0+015 to 0+0)90	•	on the	e slope with & sufficient	the mean o	Proper f the excavator of the FF lift with
Rip rap placement	⊠Yes	□No	-(0+015 to 0+1	140	gradation. N from crushir	lo part ng and	icles finer t handling. N	han 100m ex Most of the c	n place. Proper kcept for dust lust is blown away ne geotextile.

Geotextile	⊠Yes	□No	-0+015 to 0+140	Unrolling geotextile up the slope. Compliant placement of the two layers and proper overlap. Some rip rap placed shortly after geotextile unrolled so it does not move away with the wind. Adequate corrective measure taken where geotextile was damaged (geotextile patch – refer to additional comments below).
Rockfill placement	Yes	⊠No		
Approval	⊠Yes	□No	-0+015 to 0+090	Foundation approval. Overall conform foundation. Soft oversaturated zones, organic matter and boulders were removed until foundation to QA satisfaction. FF material used to backfill these overexcavations.
			-0+015 to 0+140	Fine Filter approval.
Sampling	Yes	⊠No		
RFI completed	Yes	⊠No		
Other	Yes	⊠No		

- 1. Segregation, compaction, presence of frozen material and etc for esker, fine and coarse filter placement;
- 2. Minimum overlap, geotextile damage, etc for geotextile;
- 3. Overall rock (100-300 mm), if the rocks are clean, etc for rip rap placement;
- 4. If there is too much fine content and presence of large rock size for rock placement; and
- To support the observation with photos.

ADDITIONNAL COMMENTS:

- When required, small amount of water ponding at the toe of the exaction was properly pushed away while placing the fine filter material on the slope. At chainage 0+015 to 0+025, ponding water was pumped out of the toe of the slope with a 2" pump before placing the FF material.
- Adequate corrective measures were taken for the geotextile that has been damaged during FF placement.
 Tear holes were located at the toe of the west slope. When unrolling the rolls, full width geotextile patches
 were added in a way that the the patch covered a zone of 1-2m around the damaged area when possible.
 When the damaged area was too close to the toe, the covering offset was less on the side of the channel
 invert because of the rip rap already in place. On that side, the patch covered an area of about 0.3m beyond
 the damaged zone. Rip rap material was moved manually to allow such an overlap. Also, the damaged
 geotextile was folded over 1-2m as an adittional protection to ensure that the tear holes were properly
 patched.
- Pebbles and material that fell down the slope close to the geotextile rolls during slope excavation: Pebbles and debris were removed manually prior to the FF material placement.
- West slope foundation conditions: overall, the natural ground (sand, gravel & pebble till, some areas of finer material) with a naturally high moisture content. In the -0+015 to 0+090 sector, a the upper part of the foundation was mostly rockfill from the road access.
- West slope foundation: zones of oversaturated material (only present at the toe of the slope at some specific locations) have been identified and removed. Depending on locations, from 0 to 0.5m thick material was removed to reach an acceptable foundation. Material exposed after digging was found to be more competent and to contain acceptable moisture content. Some of the soft and oversatured material zones were caused by

			n		

localized water preferential flowpath within the natural ground (at 0+145, 0+085). Over-excavations at these corrected zones were surveyed and immediately filled with FF material, properly compacted with the excavator bucket.

Some loads of FF contained chunks (likely material in the part of the stockpile exposed to rain, with slightly

• Some loads of FF contained chunks (likely material in the part of the stockpile exposed to rain, with slightly higher content, that froze overnight). The chunks were easily crushed with the bucket during compaction.

Frost fighter and tarp setup used when needed to unfreeze the geotextile rolls.

/ERIFIED	
Location	Scope and comments
West slope of the channel -0+015 to 0+090	Proper sloping, acceptable foundation material after corrections
West slope of the channel -0+015 to 0+140	Compliant
West slope of the channel -0+015 to 0+140	Compliant after corrections
	West slope of the channel -0+015 to 0+090 West slope of the channel -0+015 to 0+140

HEALTH AND SAFETY REMARKS

All personnel should stay away from the reach of the excavator

Temperature oscillating around freezing point: extra caution for icy areas, proper footware & cleats

Photo 1. West slope excavation on going. Organic matter and boulders being removed to expose adequate foundation. Looking west between 0+050 to 0+090.

Photo 2. Organic matter removed from the foundation (west slope between 0+000 to 0+090)

Photo 3. Foundation after corrections (boulder, soft pockets and organic matter removal), Sta 0+050 looking south

Photo 4. Water being pumped at slope toe prior to FF placement, STA 0+015 to 0+025

Photo 5. Fine filter with some chunks that were crushed during compaction.

Photo 6. Frost fighter and tarp setup used when needed to unfreeze the geotextile rolls.

Photo 7. Ongoing finishing of the FF at the toe of the slope to ensure adequate continuity with invert FF layer and to allow easier geotextile unrolling

Photo 8. Damaged geotextile. Rip rap material has been manually removed at the toe to allow proper overlap of the patch to be installed

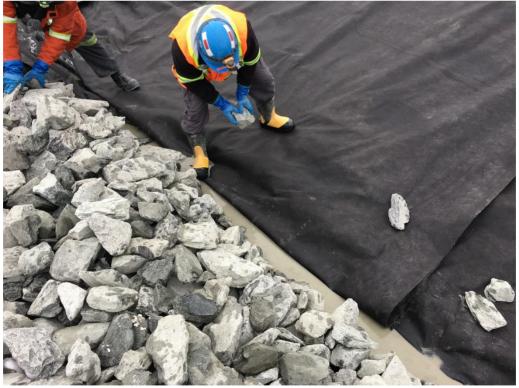


Photo 9. On going process of patching the damaged geotextile. The sheet has been folded on over a 1m to ensure proper overlap of the damaged area.

Photo 10. Upstream end of the channel. FF and Rip Rap placement. Sta -0+015 looking north

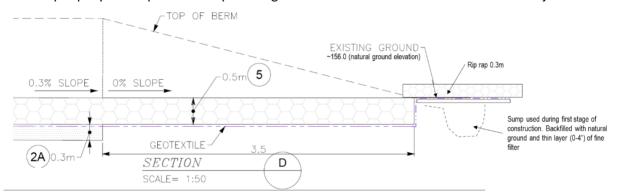
INFORMATION PROVIDED TO AEM	М	
Elements	Yes/No	Description/Comments
AEM Daily Meeting Report	Yes	
AEM QC Daily Report	Yes	
QC Sample Test Result	No	
Approval Form		
Photos	Yes	
As-built data (PDF)		
RFI	<u> </u>	
Other document	-	
Issued by AEM OA	2	
Issued by AEM QA Representative:	Ann	2020-10-06
	Signature	Date
Reviewed by		
SNC-Lavalin		
(Designer):	Cignoturo	Date
	Signature	Date
SNC-LAVALIN (DESIGNER) DAILY N	NOTES ON REMOTE SUPPO	PRT

QA SITE REPORT

(Detailed)

20201005-DS

										Document number (YYYYMMDD-DS-SR)
		6 :30	6 :30							
2020-10-05		AM	PM						urier Collette	<u> </u>
Visit date		Time (Start/E		Project No.				Pre	pared by	
		nd)			1					
IVR Diversio	n Chann	el Const	truction					Agnico Ea	agle	
Project								Client		
SNC Lavalin	(Designe	er); WSF	(QC)				KCG			
Consultants							Contracto	or		
Weather:				Sunny	⊠Cloud	dy Rain		Storm	Snow	Glaze
Wind:				None	⊠L'	ight \[\] \	/lod.	Strong, g	ust Temp:	°C
Comments										
Comments										
Appendix:	Yes	⊠No	Pict	ures			Yes	⊠No	Inspection re	eport or other:
Pictures in	⊠Yes	□N	0							
the folder										
				D DV 45140						
	ACTIVI	HES PER	KFORIVIE		A DEDDE	CENTATIVE /: .				
A at				D BY AEM Q	A REPRES	SENTATIVE (in	dicate if	test form	s were used)	
ACI										1 هنوند اواد
1	ivities			oximate lo					s were used) during fie	eld visit ¹
Everyation		MNo								eld visit ¹
Excavation	Yes	⊠No								eld visit ¹
Snow		⊠No ⊠No								eld visit ¹
	☐Yes ☐Yes	⊠No								eld visit ¹
Snow cleaning Esker placement	Yes									eld visit ¹
Snow cleaning Esker placement Fine filter	☐Yes ☐Yes	⊠No								eld visit ¹
Snow cleaning Esker placement	☐Yes ☐Yes ☐Yes	⊠No ⊠No	Appro	oximate lo	ocation	Visua	al obse	rvation	during fie	
Snow cleaning Esker placement Fine filter	☐Yes ☐Yes ☐Yes ☐Yes	⊠No ⊠No ⊠No	Appro	0+015 to 0+2	ocation	Visua Proper grada	al obse	rvation	during fie	OOmm, despite ust from crushing
Snow cleaning Esker placement Fine filter placement	☐Yes ☐Yes ☐Yes	⊠No ⊠No	Appro	Dximate lo	eastion 285	Proper grada stockpile cor and handling	ation. No	particles epletion, f the dust	finer than 10 except for du	OOmm, despite
Snow cleaning Esker placement Fine filter placement Rip rap	☐Yes ☐Yes ☐Yes ☐Yes	⊠No ⊠No ⊠No	Appro	0+015 to 0+2	eastion 285	Proper grada stockpile cor and handling as the mater	ation. No nplete de g. Most o ial is place	particles epletion, f the dust	finer than 10 except for due is blown away geotextile.	DOmm, despite ust from crushing ray by the wind
Snow cleaning Esker placement Fine filter placement Rip rap	☐Yes ☐Yes ☐Yes ☐Yes	⊠No ⊠No ⊠No	Appro	0+015 to 0+2 Upstream er ownstream e	285 nd end	Proper grada stockpile cor and handling as the mater Geotextile sh	ation. No nplete de g. Most o ial is place	particles epletion, f the dust	finer than 10 except for due is blown away geotextile.	DOmm, despite ust from crushing
Snow cleaning Esker placement Fine filter placement Rip rap placement	☐Yes ☐Yes ☐Yes ☐Yes ☐Yes	No No No No	Appro	Dximate lo	285 nd end	Proper grada stockpile cor and handling as the mater	ation. No nplete de g. Most o ial is place	particles epletion, f the dust	finer than 10 except for due is blown away geotextile.	DOmm, despite ust from crushing ray by the wind
Snow cleaning Esker placement Fine filter placement Rip rap	☐Yes ☐Yes ☐Yes ☐Yes	⊠No ⊠No ⊠No	Appro	0+015 to 0+2 Upstream er ownstream e	285 nd end	Proper grada stockpile cor and handling as the mater Geotextile shoff.	ation. No nplete de g. Most o ial is place	particles epletion, f the dust ced on the ending be	finer than 10 except for duties blown away geotextile.	DOmm, despite ust from crushing ray by the wind prap were cut
Snow cleaning Esker placement Fine filter placement Rip rap placement	☐Yes ☐Yes ☐Yes ☐Yes ☐Yes	No No No No	Appro	0+015 to 0+2 Upstream er ownstream e	285 nd end	Proper grada stockpile cor and handling as the mater Geotextile shoff. An aditionna	ation. No nplete de g. Most o ial is plac neets ext	particles epletion, of the dust ced on the ending be	finer than 10 except for due is blown away e geotextile. Eyond the rip	DOmm, despite ust from crushing ray by the wind prap were cut


Rockfill placement	☐Yes ⊠	No	
Approval	☐Yes 🖂	No	
Sampling	☐Yes 🖂	No	
RFI completed	☐Yes ⊠	No	
Other	☐Yes ⊠	No	

1 Note: Visual observation during field visit may include a check

- 1. Segregation, compaction, presence of frozen material and etc for esker, fine and coarse filter placement;
- 2. Minimum overlap, geotextile damage, etc for geotextile;
- 3. Overall rock (100-300 mm), if the rocks are clean, etc for rip rap placement;
- 4. If there is too much fine content and presence of large rock size for rock placement; and
- 5. To support the observation with photos.

ADDITIONNAL COMMENTS:

• Downstream end of the channel has been finished on the west side the same way it was done on the invert & east side: Exceeding material above natural ground was removed. A sheet of geotextile (Mirafi 1100N) was placed on top of the natural ground elevation (natural ground with some FF material), with sufficient overlap. A final rip rap layer was placed on top of the geotextile. The sketch below summarizes the job done.

- Upstream end of the channel has been improved to limit risks of erosion. The natural ground has been gently profiled with the back of the bucket (no material was removed) and a geotextile placed on top. It was not possible to have any kind of overlap with the channel geotextile because of the rip rap already in place. For finishing, enough rip rap has been placed to hold the geotextile in place and minimize potential superficial erosion in the area.
- Before final approval of the rip rap placement, finer material needs to be removed at specific locations.

SPECIFIC ELEMENTS VERII Elements	FIED Location	Scope and comments
Geotextile & rip rap placement	Downstream end, upstream end	Adequate execution of field fit to QA satisfaction

HEALTH AND SAFETY REMARKS

PHOTOS/PICTURES

Photo 1. Preparing surface to lay geotextile on. Exceeding mterial removed to remain at natural ground elevation. There is a natural slope from west to east. Photo is looking at west side of the channel downstream end

Photo 2. Rip rap placement at downstream end of the channel. Geotextile laying at natural ground elevation. Looking South-East.

Photo 3. Finished downstream end of the channel, looking North-West

Photo 4. Exceeding geotextile removal,0+200 looking South.

Photo 5. Geotextile placed over the natural slope at the upstream end of the channel.

Photo 6. Finished upstream end of the channel with rip rap layer

Photo 7. Finished rip rap placement, STA -0+010 looking North

INFORMATION PROVIDED TO AE	EM .	
Elements	Yes/No	Description/Comments
AEM Daily Meeting Report	Yes	
AEM QC Daily Report	Yes	
QC Sample Test Result	No	
Approval Form	-	
Photos	Yes	
As-built data (PDF)	-	
RFI	-	
Other document	-	
Issued by AEM QA	ta u	2020-10-06
Representative :	Signature	
Reviewed by	3 0 1 11 1	
SNC-Lavalin		
(Designer):		
	Signature	Date
SNC-LAVALIN (DESIGNER) DAILY	NOTES ON REMOTE SUP	PORT

QA SITE REPORT

(Detailed)

										2	02010	MO-D2	,
												ıment n	
											(YYYY)	MMDD-	DS-SR)
	6 :30	6 :30											
2020-10-05	AM	PM						l	Laurier	Collett	е		
Visit date	Time		Project No.					F	Prepared	by			
	(Start/E												
	nd)												
IVR Diversion Chann	el Const	ruction						Agnico	Eagle				
Project			1					Client					
SNC Lavalin (Design	er); WSP	(QC)					KCG						
Consultants							Contra	actor					
Weather:		Г	Sunny	⊠Clou	ıdv	Rain	Γ	Storm		Snow		Glaz	ze
		_			- /								
Wind:		Г	None	\boxtimes	Light	Пмо	od.	Strong	g, gust T	emp:		-5	°C
									, 6				_
Comments Channe	al consti	uction o	completed										
Comments Chaine	ei consti	uction	ompieteu										
Appendix: Yes	⊠No	Pict	ures				Ye	s 🖂 No	Insp	ection	report	or oth	er:
									_				
Pictures in ∑Yes	□ No)							_				
Pictures in ⊠Yes the folder	□ No	0							_				
the folder			D DV AFAA O	A DEDD	-65217	A TO 15 ()							
the folder			D BY AEM Q	(A REPRE	SENT	ATIVE (indi	icate	if test for	ms wer	re used)		
the folder			D BY AEM Q	A REPRE	SENT	ATIVE (indi	icate	if test for	ms wer	re used)		
the folder	TIES PER	RFORME	D BY AEM Q					if test for				isit ¹	
the folder ACTIVI	TIES PER	RFORME										isit ¹	
ACTIVI Activities	TIES PER	RFORME										isit ¹	
ACTIVITATION Yes	TIES PER	RFORME										isit ¹	
ACTIVITATION ACTIVITIES Excavation Yes Snow Yes	TIES PER	RFORME										isit ¹	
ACTIVITATION ACTIV	TIES PER	RFORME										isit ¹	
ACTIVITATION ACTIV	TIES PER	RFORME										isit ¹	
ACTIVITATION ACTIV	No ⊠No	RFORME										isit ¹	
ACTIVITATION ACTIV	TIES PER	RFORME										isit ¹	
ACTIVITATION ACTIV	No No	RFORME			1	Visual	obs	servatio	on dur			isit ¹	
ACTIVITATION ACTIV	No No	Appro		ocation	Fina	Visual	obs	he west s	on dur	ing fi		isit ¹	
ACTIVITATION ACTIV	No No	Appro	oximate lo	ocation	Fina	Visual	obs	he west s	on dur	ing fi		isit ¹	
Activities Excavation Yes Snow cleaning Esker placement Fine filter placement Rip rap placement Rip rap placement	No No No No No	Appro	oximate lo	ocation	Fina	Visual	obs	he west s	on dur	ing fi		isit ¹	
ACTIVITATION ACTIV	No No	Appro	oximate lo	ocation	Fina	Visual	obs	he west s	on dur	ing fi		isit ¹	
Activities Excavation Yes Snow cleaning Esker placement Fine filter placement Rip rap placement Rip rap placement	No No No No No	Appro	oximate lo	ocation	Fina	Visual	obs	he west s	on dur	ing fi		isit ¹	
Activities Excavation Yes Snow cleaning Esker placement Fine filter placement Rip rap placement Geotextile Yes	No No No No No	Appro	oximate lo	ocation	Fina	Visual	obs	he west s	on dur	ing fi		isit ¹	
ACTIVITATION ACTIV	No No No	Appro	oximate lo	ocation	Fina	Visual	obs	he west s	on dur	ing fi		isit ¹	
Activities Excavation Yes Snow cleaning Esker placement Fine filter placement Rip rap placement Rip rap placement Geotextile Yes Pockfill	No No No No No	Appro	oximate lo	ocation	Fina	Visual	obs	he west s	on dur	ing fi		isit ¹	

			\cap		

Approval	Yes	⊠No	-0+015 to 0+285	Rip rap layer compliant.
Sampling	Yes	No		
RFI completed	Yes	⊠No		
Other	Yes	No		

1 Note: Visual observation during field visit may include a check

- 1. Segregation, compaction, presence of frozen material and etc for esker, fine and coarse filter placement;
- 2. Minimum overlap, geotextile damage, etc for geotextile;
- 3. Overall rock (100-300 mm), if the rocks are clean, etc for rip rap placement;
- 4. If there is too much fine content and presence of large rock size for rock placement; and
- 5. To support the observation with photos.

ADDITIONNAL COMMENTS:

- Temporary esker dewatering road was removed, sump at the end of the road was properly backfilled with esker.
- Leftover material has been placed on the road, and the west side of the road was cleaned and profiled.
- The construction of the IVR diversion channel is completed. Water is already flowing through the rip rap and discharging in the tundra at the outlet.
- One last thing remaining: a final 0.5m lift of the road is required because the road was made of rockfill rather than esker, to ensure proper thermal caping. This work will be done in the winter or early spring.
- Survey is catching up on the documentation backlog. All approval forms will be issued out shortly
- Last samples being processed at the lab

•

Elements	Location	Scope and comments
Rip rap layer	All channel	Corrections completed
Material removal	Temporary esker road	No comment
sloping and material removal	Access road	No comment

HEALTH AND SAFETY REMARKS

PHOTOS/PICTURES

Figure 1. Temporary esker dewatering road removed

Figure 2. Main dewatering sump used during construction has been backfilled with esker material

Figure 3. Sloping west side of the access road, reusing leftover material including esker. Sta 0+250 looking South

Figure 4. Zones in rip rap layer containing material finer than 100mm. (gravel, sand and finer material) that has been removed

Figure 5. Rip rap fine particle cleaning by hand. A few bucket full of fines were successfully removed. STA 0+050 looking North.

Figure 6. finished channel, 0+250 looking South

Figure 7. Downstream end of the channel. Water flowing through the rip rap layer and seeping out in the tundra at different locations (yellow arrows). Looking North.

INFORMATION PROVIDED TO AEM	И	
Elements	Yes/No	Description/Comments
AEM Daily Meeting Report	Yes	
AEM QC Daily Report	Yes	
QC Sample Test Result	No	
Approval Form	-	
Photos	Yes	
As-built data (PDF)	-	
RFI	<u>-</u>	
Other document	-	
Issued by AEM QA	-	
Representative :	Thereof	2020-10-07
	Signature	Date
Reviewed by		
SNC-Lavalin		
(Designer):	Signature	Date
	Signature	Date
SNC-LAVALIN (DESIGNER) DAILY N	NOTES ON REMOTE SUP	PPORT

APPENDIX B3

QA Daily QC Field Reports

Client AEM	Inspection Date 2020-09-19 Day
Site Amaruq	☐ Drill and Blast ☐ Expertise
Project IVR Diversion channel	☐ Foundation Prep. ☐ Vibration Monitoring ☐ Rock Fill Placement ☐ Water Management
Project TVIX DIVERSION CHAINCE	☐ Sampling ☐ Grout curtain
	☐ Compaction ☐ Liner / Geotextile
D : AND	Gradations
Project N°:	Other (specify):
I HAVE: ☐ my JSEAs ☐ my PPE ☐ Proper Training I SEE: ☐ Unexpected Hazards I NEED: ☐ an S-RAF	7 °C
	ion). This replacement is approved by SNC Lavalin (memo to
follow).	
The rockfill is placed using a dozer. The target lift thickness.	ess is 0.5m, but some parts may require to be thicker for the first
layer because of the soft sub-soil of the tundra. (Figure 2)	
	The required compaction will be achieved with the heavy
·	The required compaction will be achieved with the heavy
machinery circulation.	
The visual quality of the rockfill is good. The material is visual quality of the rockfill is good.	well mixed and placed. (Figure 2)
The rockfill placement and compaction methods have be	een approved by the QA representative (Patrice Gagnon).
The rockfill is placed from stations 0+00 to 0+11 and 0+2	23.6 to 0+111.
•	
•	
Corrective action to be taken:	
• n/a	
•	
Follow up visit required:	Yes ⊠ No □
Site Representative : Patrice Gagnon	Inspector : Mikaël Turcotte
	(Print Name)
From: AEM	Signature*: //likail worto
Project Manager : Marc-André Beaudet	Time on site : 12h

Figure 1: The thickness of the rockfill road is uniform and conforms to the requirements

Figure 2: Visual gradation of the rockfill at the surface

Client AEM	Inspection Date 2020-09-20 Day
Site Amaruq	☐ Drill and Blast ☐ Expertise
Project IVR Diversion channel	☐ Foundation Prep. ☐ Vibration Monitoring ☐ Rock Fill Placement ☐ Water Management
	⊠ Sampling ☐ Grout curtain
	☐ Compaction ☐ Liner / Geotextile ☐ Gradations
Project Nº:	Other (specify):
I HAVE: ⊠ my JSEAs ⊠ my PPE ⊠ Proper	6°C
Training	
■ I SEE: Unexpected Hazards I NEED: □ an S-RAF ■ Rockfill placement continued. The material quality and	d visual gradation are good. The bigger rocks are put on the side of the
	m of the access road will be removed in the sloping process. The big
rocks on the downstream side might stay, depending	on if the access road is sloped or not on this side.
Samples have been taken from the stockpile of fine fill	ter material. (Figure 2 and 3)
The first lift from station 0+024 to 0+140 is well compared.	acted and stable. (Figure 4)
The soil condition of the tundra from 0+140 ongoing to	owards the end of the access road was expected to be better than for
the first part (0+024 to 0+140), so the thickness of the	e lift was decreased to obtain the optimal lift thickness (0.5m).
However, the tundra soil was not as good as expected	d, and the lift ended up sinking partially. Because of the excessive
	n that the rockfill became saturated and some organic material was
	•
	rial has not been removed because the amount observed was small
,	the access road. Rockfill was added over the first layer between
stations 0+140 and 0+200 to stabilize the access road	d and stop the excessive settlement and pumping action.
The remaining part of the access road (0+200 to 0+26)	60) was continued with a higher thickness to account for settlement
issues.	
The first lift of the access road was completed up to s	tation 0+260 at the end of the day. (Figure 6)
A pipe is laying on the ground at the end of the access	s road (station 0+280). The pipe is interfering with the location of the
access road. (Figure 7)	
An important water accumulation has been observed	at the end of the access road (between sta.0+260 and 0+280). (Figure 7
& 8)	
Compatible patients had always	
Corrective action to be taken:	
Remove the pipe interfering with the access road.	
Wait until the water situation is properly managed be	fore continuing work on the access road between 0+260 and 0+280.
Follow up visit required:	Yes ⊠ No □
Site Representative : Patrice Gagnon	Inspector : Mikaël Turcotte
	(Print Name)
From: AEM	Signature*: //lukail wrotto
Project Manager : Marc-André Beaudet	Time on site : 12h

Figure 1: The larger boulders are discarded at each side of the access road

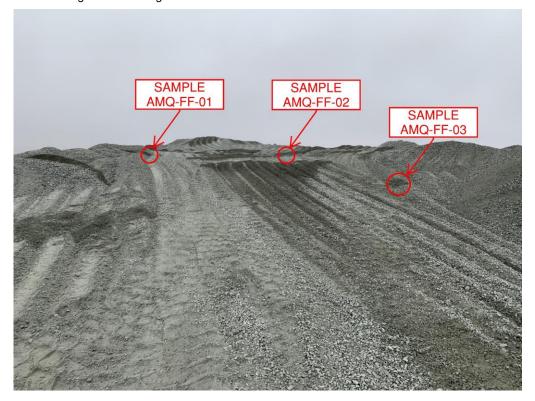


Figure 2: Location of the first three samples in the fine filter stockpile

Figure 3: Location of the fourth sample in the fine filter stockpile

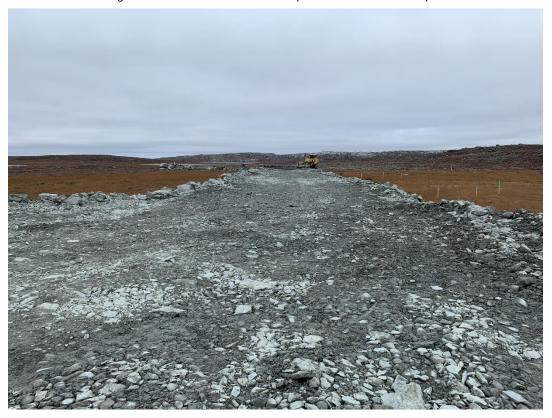


Figure 4: The first part of the access road is well compacted and stable (0+024 to 0+111)

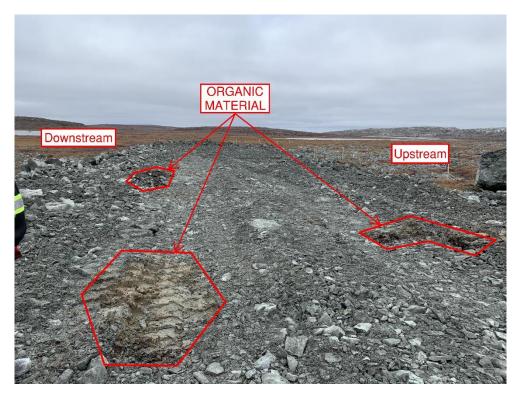


Figure 5: Organic material observed on the access road

Figure 6: The access road segment from sta. 0+140 to 0+260

Figure 7: The pipe at the end of the access road (water accumulation can also be seen)

Figure 8: Water accumulation at the end of the access road

Client AEM	1	Inspection Date	2020-09-21 D	ay		
Site Ama	aruq	☐ Drill and Blast		Expertise		
	- 1	☐ Foundation Prep.		Vibration Monitoring		
Project IVR	Diversion channel		nt 🖂	Water Management		
				Grout curtain		
		☐ Compaction		Liner / Geotextile		
		□ Gradations				
Project N°: 61	27	☐ Other (specify):				
I HAVE: My JSE	EAs 🛛 my PPE 🖾 Proper			4 °C		
Training I SEE: □ Unexp	ected Hazards I NEED : an S-RAF					
		ump the water out of the	downstream p	art of the channel. (Figure 1)		
The first lift	of the access road is complete. Visual gra	dation is good. (Figure 2)				
The temporary access road is complete. (Figure 3)						
A second lift (thickness of approximately 0.5m) has started on the access road. The stability of the access road						
considerabl	y increased. Visual gradation is good and	the material is compacted	d uniformly. Th	e second lift is complete from		
sta. 0+024 t	to 0+170. (Figure 4)					
			000 10 44	- (E. E)		
Sampling of	the tundra soil under the channel has been	en done at sta. U+232, U+	223 and 0+118	o. (Figure 5)		
Four more s	samples have been taken with QA represe	ntative at fine filter stockp	oile (samples A	MQ-FF-05 to AMQ-FF-08).		
Gradation o	f AMQ-FF-01, AMQ-FF-02 and AMQ-FF-0	3 is ongoing.				
•						
Corrective action to	he taken:					
Corrective action to	be taken.					
• n/a						
•						
Follow up visit requir	ed:	Yes 🗵	7	No □		
				_		
Site Representative :	Patrice Gagnon	Inspec	tor: Mikaël	Turcotte (Print Name)		
			//	M.		
From :	AEM	Sig	nature* ://	Mkail wests		
Project Manager :	Marc-André Beaudet	Time	on site :	12h		

Figure 1: Sump pump at station 0+223

Figure 2: The first lift is done

Figure 3: The temporary access road

Figure 4: Visual gradation of the second lift

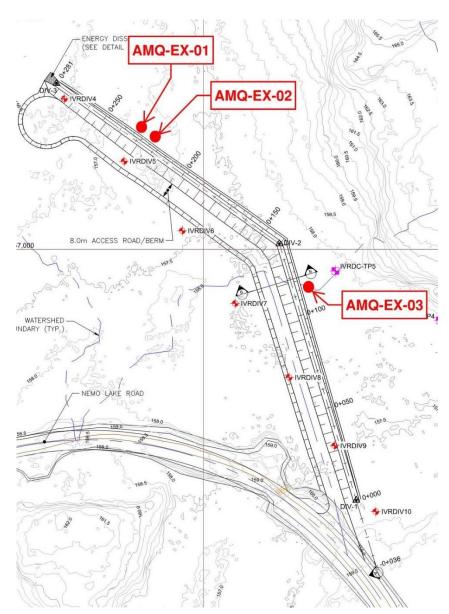


Figure 5: Test holes location

	Client AEM	1	Inspection Date	2020-09-22	2 Day		
	Site Ama	aruq	☐ Drill and Blast		Expertise		
"	Project IVR	Diversion channel		ent			
			☐ Sampling		☐ Grout curtain		
			☐ Compaction		☐ Liner / Geotextile		
Project Nº: 6127			☐ Other (specify):				
I HA	•	EAs 🛛 my PPE 🖾 Proper			5 °C		
Training I SEE: □ Unexpected Hazards I NEED: □ an S-RAF							
	•	been dug downstream of the channel to	evacuate the water durin	g the excava	ation. (Figure 1) The water		
	•	-		_	,		
	managemer	nt is effective. The foundation is expected	to be dry tomorrow mon	iirig.			
	 The second 	lift from 0+170 to 0+281 is done. Visual g	radation is good and the	material is o	compacted uniformly. (Figure 2)		
	• Excavation	of the channel has begun. (Figure 3) The	first excavation is rough	and its main	purpose is to evacuate the water.		
	Sloping of th	ne sides of the channel and excavation to	grade will be completed	once the wa	ater is completely evacuated. The		
			•		nor to compristely evaluation.		
	preliminary	excavation is complete from 0+223 to 0+2	81.				
Gradation of finer filter samples from stockpile and test holes samples is ongoing.							
	 Ice has bee 	n observed at the end of the shift. A follow	up is required tomorrow	v to better as	sess the visible quantity of ice at the		
	bottom of th	e excavation.					
Corrective action to be taken:							
	• n/a						
	•						
Follow up visit required:		Yes [\boxtimes	No 🗌			
Site Representative : Patrice Gagnon		Inspe	ctor: Mika	aël Turcotte			
					(Print Name)		
From :		AEM	Się	gnature* :	Makael Turcotto		
Project	t Manager :	Marc-André Beaudet	Tim	e on site :	12h		

Figure 1: Sump downstream of the channel (approximately at station 0+290)

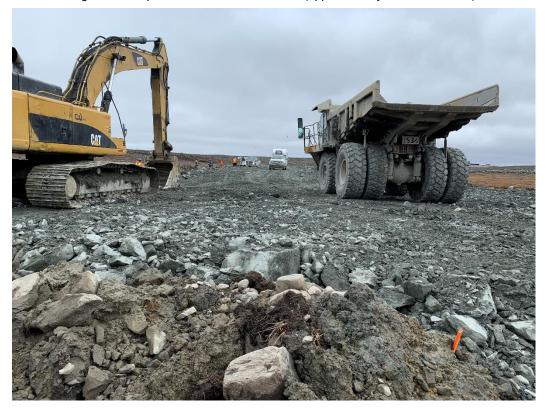


Figure 2: The second lift is complete

Figure 3: Excavation of the channel has begun

Client AEI	VI	Inspection Date	2020-09-23 [Day		
Site Am	aruq	☐ Drill and Blast		Expertise		
				Vibration Monitoring		
Project IVF	R Diversion channel	☐ Rock Fill Placeme	nt 🗵	Water Management		
		☐ Sampling		Grout curtain		
		☐ Compaction		Liner / Geotextile		
Project N°: 6	127	☐ Other (specify):				
I HAVE: My JS	SEAs 🛛 my PPE 🖾 Proper	4 °C				
Training I SEE: Unex	pected Hazards I NEED : ☐ an S-RAF					
Channel ex	xcavation is ongoing. Preliminary excavation	n is complete from 0+28	4.5 to 0+145. (Figure 1)		
Gradation	ongoing. The gradation results for the fine	riiter at stockpile are out.	The material is	s conform.		
A pumping station has been installed at the upstream part of the channel approximately at 0+030. (Figure 2)						
Permafrost has been observed between 0+235 and 0+260 (ice-rich till). (Figure 3) This material is too hard to be removed by						
an excava	tor, so it will stay in place as approved by C	λ Α.				
	imp has been removed under the access ro					
 Water from 	n the tundra is flowing in the channel at stat	ion 0+175 and 0+213. Tl	he situation wil	be closely monitored, and if		
necessary	the water flow will be stoppered to let the b	oottom of the channel dry	for foundation	approval.		
•						
Corrective action to	be taken:					
• n/a						
•						
Follow up visit required:		Yes [\boxtimes	No 🗆		
Site Representative :	Patrice Gagnon	Inspe	ctor : Mikaël	Turcotte (Print Name)		
			,	1/1/-1		
From:	AEM	Sig	gnature* :/	Mekael wests		
Project Manager :	Marc-André Beaudet	Time	e on site :	12h		

Figure 1: The preliminary excavation is complete between station 0+145 and 0+284.5

Figure 2: Pumping station for the upstream part of the channel

Figure 3: Ice-rich material at the bottom of the excavation

Figure 4: A ice lump has been removed and replaced by rockfill

Client AEM	1	Inspection Date	2020-09-24 🗅	day		
Site Ama	arua	☐ Drill and Blast		Expertise		
				Vibration Monitoring		
Project IVR	Diversion channel		nt 🖂	Water Management		
		Sampling		Grout curtain		
		☐ Compaction		Liner / Geotextile		
Project N°: 61	27	☐ Other (specify):				
I HAVE: My JSE	As 🛛 my PPE 🖾 Proper			7 °C		
Training			A			
•	ected Hazards I NEED: an S-RAF		<i>////</i>			
Channel exc	cavation is ongoing. Preliminary excavatio	n is in progress between	0+035 and 0+	139. (Figure 1)		
Gradation of	f fine filter material sampled at the stockpi	le is completed. The ma	terial is accepta	ble. Gradation of foundation		
samples is o	ongoing. So far, the foundation is acceptal	ole everywhere except b	etween 0+235 a	and 0+260 (92.2% water		
content).						
Foundation	approval between 0+149 and 0+205. (Fig	ure 2 & 3)				
Fine filter fill	 Fine filter fill placement between 0+149 and 0+205. The fine filter is not completely placed. Sloping of the access road is 					
required. (Fi	igure 4)					
Water from	the tundra is flowing in the channel between	en 0+081 and 0+087. Th	ne situation will	be monitored closely before the		
fine filter pla	cement.					
•						
Corrective action to	be taken:					
Remove the	e ice-rich material between 0+235 and 0+	260 and replace it by es	ker.			
•						
Follow up visit require	Follow up visit required: Yes ⊠ No □					
Site Representative :	Patrice Gagnon	Inspe		Turcotte		
ratice dayion			- IVIINAEI	(Print Name)		
From .	۸۵۸	Qi,	gnature* :	Mile of Turnetto		
From:	AEM	<u></u>		/ Wrace wood		
Project Manager:	Marc-André Beaudet	Time	e on site :	12h		

Figure 1: Preliminary excavation between 0+035 and 0+139

Figure 2: Foundation approval between 0+149 and 0+181

Figure 3: Foundation approval between 0+181 and 0+205

Figure 4: Fine filter fill between 0+149 and 0+205

	Client AEM	1	Inspection Date	2020-09-25 D	ay	
	Site Ama	aruq	☐ Drill and Blast		Expertise	
		·			Vibration Monitoring	
	Project IVR	Diversion channel		nt 🖂	Water Management	
			Sampling		Grout curtain	
			Compaction		Liner / Geotextile	
Project N°: 6127			Gradations			
_			Other (specify):	-		
Trair	VE : 🛛 my JSE	EAs 🛛 my PPE 🖾 Proper	مهمر ا	0 000	4 °C	
I SEI	_	ected Hazards I NEED: an S-RAF				
		approval from 0+205 to 0+234. (Figure 1)		/; ! i		
'	Gradation re	esults of foundation sample at 0+223 are a	available. The foundation	n material is con	forming with a water content	
	of 7.35% an	d a clay/silt content of 35%.				
	Ice has bee	n broken down and removed between 0+2	235 and 0+261. (Figure 2	2) The average t	thickness removed is 1.2m.	
	The bottom	of the excavation has been sampled. Esk	er placement began befo	ore the end of th	e dav.	
 Completion of access road rockfill between 0+011 and 0+024. (Figure 3) 						
	 Water from 	the tundra is flowing in the channel at 0+0	67. (Figure 4) A pump w	ill be installed a	t this location.	
	Ice has bee	n observed from 0+110 to +120.				
	 Preliminary 	excavation completed between 0+024 and	d 0+035. (Figure 5)			
Cor	rective action to	ha takan:				
			400			
	Remove tn	e ice-rich material between 0+110 and 0+	120.			
	•					
Follo	w up visit require	ed:	Yes [\boxtimes	No 🗌	
Site Representative : Patrice Gagnon		Inspector: Mikaël Turcotte				
		_		(Print Name)		
From :		AEM	Siç	gnature * :/	Mikael Turcotto	
Projec	t Manager :	Marc-André Beaudet	Time	e on site :	12h	

Figure 1: Foundation approval between 0+205 and 0+234

Figure 2: Ice removed between 0+235 and 0+261

Figure 3: Access road completed between 0+011 and 0+024

Figure 4: Water flowing in the channel at 0+067

Figure 5: Preliminary excavation completed between 0+024 and 0+035

Client AEM	1	Inspection Date	2020-09-26 D	ay	
Site Ama	arua	☐ Drill and Blast		Expertise	
	- 1			Vibration Mor	nitoring
Project IVR	Diversion channel		\boxtimes	Water Manage	ement
		⊠ Sampling		Grout curtain	
		☐ Compaction		Liner / Geotex	tile
Project N°: 61	27	☐ Other (specify):			
I HAVE: My JSE	As 🛛 my PPE 🖾 Proper				5 °C
Training I SEE: Unexp	ected Hazards I NEED: an S-RAF			L	
	n replaced by esker. Foundation approval	from 0+234 to 0+260. (F	Figure 1)		
Foundation	approval from 0+260 to 0+281. (Figure 2)				
Preliminary	channel excavation between 0+134 and 0)+149. (Figure 3)			
Preliminary	channel excavation between 0-015 and 0-	+024. The channel has b	een excavated	beyond its plan	ned length to
efficiently di	rain the water out from the tundra. (Figure	4)			
 Ice-rich material found at the bottom of excavation from 0+029 to 0+070 and from 0+090 to 0+125. Ice removal is ongoing. 				al is ongoing.	
(Figure 5 &	6). A sample of ice-rich material of this se	ction has been taken.			
Fine filter fill	between 0+234 and 0+281. (Figure 7)				
Gradations	of foundation and fine filter samples taken	on site on 2020-09-24 a	and 2020-09-25	done by geoted	hnical technician.
The results	were sent directly to the QA representativ	e.			
Corrective action to	be taken:				
• n/a					
•					
Follow up visit require	ed:	Yes [\boxtimes	No 🗌	
Site Representative :	Patrice Gagnon	Inspe	ctor : Mikaël	Turcotte	
				(Print Nar	me)
From:	AEM	Się	gnature* :/	Mikael Turc	otto
Project Manager :	Marc-André Beaudet	Tim	e on site :	12h	

Figure 1: Foundation approval between 0+234 and 0+260

Figure 2: Foundation approval between 0+260 and 0+281

Figure 3: Preliminary excavation between 0+134 and 0+149

Figure 4: Preliminary excavation between 0-015 and 0+024

Figure 5: A layer of hammered ice-rich material between 0+090 and 0+125

Figure 6: A layer of hammered ice-rich material between 0+029 and 0+070

Figure 7: Fine filter fill between 0+234 and 0+281 (ongoing)

	_				
Client AEN	1	Inspection Date	2020-09-27 Day		
Site Ama	aruq	☐ Drill and Blast	☐ Expertise		
 			☐ Vibration Mo	_	
Project IVR	Diversion channel	Fill Placement	⊠ Water Manag	=	
		SamplingCompaction	☐ Grout curtai		
		☐ Compaction	⊠ Lillei / Geote	extile.	
Project N°: 61	27	☐ Other (specify):			
I HAVE: My JSE	EAs 🛛 my PPE 🖾 Proper			6 °C	
Training			\approx		
	ected Hazards I NEED: an S-RAF		<i>── //!!</i>		
The energy	dissipator has been dug between 0+281 a	and 0+284.5. (Figure 1)			
Geotextile p	placement from 0+284.5 to 0+152. (Figure	2) The geotextile used is	the Novatex V because the I	Mirafi is not on	
site. The ge	otextile is placed from downstream to ups	tream with 2 layers overla	apping at least 600mm at join	ts as per SNC's	
technical re	commendations. (Figure 3)				
A layer of rij	prap has been added on top of the geotex	tile to hold it in place. Rip	rap placement to grade will b	e completed	
later. (Figur	e 4)				
		denth of A Are below the	hattara of accounting /Figure	- C \ T b - :	
	 Ice removal between 0+090 and 0+125 at an average depth of 1.1m below the bottom of excavation. (Figure 5) The ice 				
removed wa	as replaced by esker. (Figure 6)				
Sampling of	f the foundation at different depths betwee	n 0+090 and 0+125.			
•					
•					
•					
Corrective action to	be taken:				
• n/a					
•					
Follow up visit require	ed:	Yes 🖸	No □]	
Site Representative :	Patrice Gagnon	Inspec	etor: Mikaël Turcotte		
			(Print N	ame)	
From:	AEM	Sig	nature*: Mukael Tur	cotto	
Project Manager :	Marc-André Beaudet	_ Time	on site :	h	

Figure 1: Energy dissipator

Figure 2: Geotextile placement between 0+284.5 and 0+152

Figure 3: The geotextile overlaps were all above 600mm

Figure 4: Preliminary riprap placement over the geotextile to hold it in place

Figure 5: Ice removed (average thickness removed= 1.1m) between 0+090 and 0+125

Figure 6: Esker placement between 0+090 and 0+125

	Client AEM	1	Inspection Date	2020-09-28 Da	ay
	Site Ama	aruq	□ Drill and Blast☑ Foundation Prep.		Expertise Vibration Monitoring
'	Project IVR	Diversion channel	☑ Fill Placement☑ Sampling		Water Management Grout curtain
			☐ Compaction☐ Gradations		Liner / Geotextile
Project N°: 6127		○ Other (specify):	Surveying		
I HAVE: ⊠ my JSEAs ⊠ my PPE ⊠ Proper Training I SEE: □ Unexpected Hazards I NEED: □ an S-RAF • Riprap placement to grade between 0+155 and 0+284			1.5. (Figure 1) Small corr	rections will be d	4 °C
	approval.				
	lce removed	d and replaced by esker between 0+029 a	nd 0+070. The average	thickness remov	ed is 1.2m. (Figure 2)
—	Foundation	approval between 0+090 and 0+149.(Fig	ure 3)		
ļ ,	Fine filter fill	between 0+090 and 0+149. (Figure 4)			
Sampling of ice-rich material at foundation at 0+050.					
-	•				
	•				
Com	roativo action to	ha takan			
Con	rective action to	ре такеп:			
	• n/a				
	•				
Follo	w up visit require	ed:	Yes [\boxtimes	No 🗌
Site Representative : Patrice Gagnon		Inspe	ctor : Mikaël		
				1	(Print Name)
From:		AEM	Sig	gnature* : ///	Whael westo
Project	: Manager :	Marc-André Beaudet	Time	e on site :	12h

Figure 1: Riprap placement to grade between 0+155 and 0+284.5

Figure 2: Ice removed between 0+029 and 0+070

Figure 3: Foundation approval between 0+090 and 0+149

Figure 4: Fine filter fill beween 0+090 and 0+149

Client	AEM	Inspection Date	2020-09-29 Day		
Site	Amaruq	☐ Drill and Blast ☐ Foundation Pre	☐ Expertise ☐ Vibration Monitoring		
Projec	t IVR Diversion channel	☑ Fill Placement☑ Sampling	☑ Water Management☐ Grout curtain		
		☐ Compaction☐ Gradations			
Project Nº:	6127	☐ Other (specify):			
I HAVE: Training	my JSEAs my PPE Proper	.pΛψ.	3 °C		
I SEE:] Unexpected Hazards I NEED: ☐ an S-RA	AF			
• For	undation approval between 0+029 and 0+070. N	Minimal amount of snow w	as present on the foundation, so it was		
scr	apped with the excavator bucket as needed. (F	Figure 1 & 2)			
• Fo	undation approval between 0+070 and 0+090. ((Figure 3) An important wa	ater entry from the tundra is present at this		
loc	ation. As approved by QA Patrice Gagnon befo	ore his fly out, a thicker lay	er of fine filter (about 150mm thicker than		
des	sign requirements) was provided for this part. The	he channel (fine filter, geo	textile and riprap) is also extended further in the		
tun	dra at this location to better collect the water. (F	Figure 4)			
• Fin	e filter placement approval between 0+029 and	d 0+149. Fine filter betwee	n 0+029 and 0+080 placed during the day.		
(Fig	gure 5, 6 and 7)				
• Ge	Geotextile and preliminary riprap placement (to hold the geotextile in place) between 0+032 and 0+149. (Figure 8 & 9)				
• Rip	Riprap with too much fines observed at 3 locations in the channel (the amount corresponds to 3 excavator buckets through the				
250	Om length completed so far). (Figure 10) This si	ituation is observable on a	surface representing less than 1% of the portion		
cor	mpleted so far. The overall quality of the riprap i	is thus acceptable overall	and the amount of fines present in the riprap		
sho	ould have a negligible effect on quality of the wa	ater coming out of the cha	nnel. Nonetheless, a final inspection of the riprap		
will	be done once it will be finalized and all the sec	ctions with too much fine n	naterial will be sorted by hand.		
•					
•					
Corrective	action to be taken:				
• n/a	a				
•					
Follow up vi	sit required:	Yes	s⊠ No □		
Site Represer	ntative : Patrice Gagnon	Insp	pector : Mikaël Turcotte		
From :	AEM	\$	(Print Name) Signature*: Mikail Turotto		
Project Manag	ger : Marc-André Beaudet	 Ti	me on site : 12h		

Figure 1: Foundation approval between 0+029 and 0+070

Figure 2: Fill placement in progress between 0+029 and 0+070

Figure 3: Foundation approval between 0+070 and 0+090

Figure 4: Channel extending further in the tundra at station 0+073

Figure 6: Fine filter approval between 0+070 and 0+090

Figure 7: Fine filter approval between 0+029 and 0+070

Figure 8: Geotextile between 0+029 and 0+070

Figure 9: Geotextile and preliminary riprap between 0+034

Figure 10: Riprap with too much fine material

	Client AEM	Inspection Date 2020-09-30 Day			
	Site Amaruq Project IVR Diversion channel	□ Drill and Blast □ Expertise □ Foundation Prep. □ Vibration Monitoring □ Fill Placement □ Water Management □ Sampling □ Grout curtain □ Compaction □ Liner / Geotextile □ Gradations			
Proje	ct Nº : 6127	☑ Other (specify): Surveying			
I HAN Traini I SEE	MEED: ☐ Unexpected Hazards I NEED: ☐ an S-RA Foundation approval between 0-015 and 0+029. (F Sampling of foundation and esker material Fine filter placement approval between 0-015 and 0+032. (I Riprap finalized and approved for the entire length the exterior slope (on the side of the tundra) and at The downstream end of the channel is completed (the fines at the end of the channel. (Figure 7) Ripra Pumps haven been added at the bottom of the cha water to lake A-53 while the 2-inch pump was only geotextiles are soaked, so they are hard to move a should help improving the situation. Riprap material coming on site was not acceptable	Figure 1 & 2) (Figure 4) In of the channel (between 0-015 and 0+284.5). The riprap is only finalized on at the bottom of the channel. (Figure 5 & 6) (0+284.5 to 0+290). Two geotextile layers were added to avoid washing out rap was also added on top to hold the geotextile in place. In annel to pump the water out of it. (Figure 8) The 3-inch pump is pumping the y temporary to manage the water until the 3-inch pump was installed. The away from the slope and removing the water accumulated at the bottom The at the end of the afternoon. Too much fines were present in it. (Figure 9).			
		but the stockpile of riprap is next to a stockpile of 0-3/4" material, so there ap. The excavator operators on site have a good method to scoop the riprap.			
•	They are not scraping the access road material and they leave a good floor of riprap. The excavator operators were asked to filter the riprap by dropping buckets of riprap on the ground to let the fines go at the bottom. The material placed from the nor conforming loads was appropriately sorted by the excavator operators, except for a few buckets that had too much fines in it. The sections with too much fine material will be corrected by hand to avoid ripping the geotextile. • Gradations of foundation material and esker samples are ongoing.				
Corr	ective action to be taken:				
	• n/a				
	•				
Follow	w up visit required:	Yes ⊠ No □			
Site Re	presentative : Patrice Gagnon	Inspector : Mikaël Turcotte			
From :	AEM	Signature*: Mikail Turcotto			
Project	Manager : Marc-André Beaudet	Time on site: 12h			

Figure 1: Foundation approval between 0-010 and 0+029

Figure 2: Foundation approval between 0-010 and 0-015

Figure 3: Fine filter fill approval between 0-015 and 0+029

Figure 4: Geotextile placement between 0-015 and 0+032

Figure 5: Riprap approval between 0-015 and 0+140

Figure 6: Riprap approval between 0+140 and 0+284.5

Figure 7: Geotextile placement at the downstream end between 0+284.5 and 0+290

Figure 8: Pumps added at the end of the channel (0+284.5)

Figure 9: Non-conforming load of riprap

Client AEM	Inspection Date 2020-10-01 Day					
Site Amaruq	☐ Drill and Blast ☐ Expertise					
·						
Project IVR Diversion channel						
	☐ Sampling ☐ Grout curtain					
	☐ Compaction ☐ Liner / Geotextile					
	☐ Gradations					
Project N°: 6127	Other (specify):					
I HAVE: ⊠ my JSEAs ⊠ my PPE ⊠ Proper	2 °C					
Training I SEE: Unexpected Hazards I NEED: an S-RAF						
Gradations of foundation samples and esker are ongo	oing.					
Final road lift to grade done between 0+047 and 0+11	10 and between 0+162 and 0+284.5. (Figure 1)					
Sloping of the access road on the side of the channel	between 0+162 and 0+188. (Figure 2)					
Heating provided to prevent the geotextiles from freez	zing overnight between 0+235 and 0+284.5. (Figure 3)					
•						
•						
•	•					
•						
•						
Corrective action to be taken:						
• n/a						
•						
Follow up visit required: Yes ☑ No □						
Site Representative : Laurier Collette	Inspector : Mikaël Turcotte					
	(Print Name)					
From: AEM	Signature*: Mikail Turcotto					
Project Manager : Marc-André Beaudet	Time on site : 12h					

Figure 1: Final access road lift between 0+162 and 0+284.5

Figure 2: Slope completed between 0+162 and 0+188

Figure 3: Heating provided between 0+235 and 0+284.5 to avoid freezing of wet geotextile

Client AEM	1	Inspection Date	2020-10-02 D	ay		
Site Ama	aruq	☐ Drill and Blast ☐ Foundation Prep.		Expertise Vibration Monitoring		
Project IVR	Diversion channel		\boxtimes	Water Management		
		☐ Sampling		Grout curtain		
		☐ Compaction ☐ Gradations		Liner / Geotextile		
Project N°: 61	27	☐ Other (specify):				
I HAVE: My JSE	EAs 🛛 my PPE 🔀 Proper			2 °C		
Training	and Hararda INFED. Tar C DAF					
•	ected Hazards I NEED: an S-RAF of foundation samples and esker are ongo	oina	'/i!			
		g.				
	ft of the entire access road is completed.					
 Sloping of the 	ne access road on the side of the channel	between 0+188 and 0+2	284.5. (Figure 1			
Foundation	approval between 0+162 and 0+250. The	approval is ongoing with	the fine filter p	lacement progression. Non-		
conforming	material is identified, removed and replace	ed continuously.				
Fine filter pl	acement in the slope between 0+162 and	0+230. Visual gradation	is good. (Figure	e 2)		
Soft spots o	of oversaturated material in the foundation	are identified and remov	red before fine f	ilter placement. (Figure 3 & 4)		
	al removed is replaced by well compacted			,		
			nlaced by fine f	ilter (Figure C)		
	nd in the slope around station 0+230. The					
The arrange	The arrangement of the fine filter/road interface has been modified. The plans provided are not practical in application as					
the fine filte	r in the road slope is supposed to be unde	r the road. Therefore, th	e fine filter goes	s up to elevation 158, which		
creates a bu	ump in the slope. (Figure 2) So far, the bur	mp is constant at elevati	on 158, but this	may change as the QA looked		
for the poss	ibility of letting the bump follow the natural	ground profile starting f	rom 0+200.			
The possibil	lity of not putting riprap all the way up to th	e road elevation is being	g considered by	the engineering team on site. So		
far, the char	nnel construction continues following the p	lans provided by SNC.	The only modific	cation thus far is the bump in the		
slope at ele	vation 158.					
•						
•						
•						
Corrective action to	be taken:					
• n/a						
•						
Follow up visit require	ed:	Yes [\boxtimes	No 🗌		
Site Representative :	Laurier Collette	Inspe	ctor: Mikaël	Turcotte		
		<u> </u>		(Print Name)		
From:	AEM	Się	gnature * : //	Makael Turcotto		
Project Manager :	Marc-André Beaudet	 Tim	e on site :	12h		

Figure 1: Access road slope completed between 0+188 and 0+284.5

Figure 2: Fine filter placed between 0+162 and 0+230

Figure 3: Soft spot identified

Figure 4: Soft spot excavated

Figure 5: Excavated soft spot filled with well compacted fine filter

Figure 6: Ice excavated out of the foundation at 0+230

Client AEM	1	Inspection Date	2020-10-03 Day	
Site Ama	aruq	☐ Drill and Blast	☐ Expertise	
1) / [D: : I I		☐ Vibration Mon	_
Project IVR	Diversion channel	Fill Placement		
		☐ Sampling	☐ Grout curtain	
		☐ Compaction☐ Gradations	∠ Liner / Geotex	ttile
Project Nº: 61	27	Other (specify):		
I HAVE: My JSE	EAs 🛛 my PPE 🔀 Proper			-1 °C
Training				
I SEE: Unexpe	ected Hazards I NEED: an S-RAF		 ////	
 Slope prepa 	ration from 0-015 to 0+160. (Figure 1 & 2))		
Foundation	approval from 0+220 to 0+284.5 and from	0+090 to 0+155. Non-co	onforming material was approp	riately
identified, re	emoved and replaced by fine filter following	g the same procedure illu	ustrated in the report of 2020-10	0-02. (Figure 3
to 6)				
Sampling of	ice-rich material in the slope (IVR-EX-17)	at 0+250 to obtain ice a	and moisture content.	
Fine filter place	acement and approval from 0+220 to 0+2	84.5 and from 0+140 to 0	0+155. (Figure 7 to 9)	
Geotextile a	nd preliminary riprap placement between	0+160 and 0+284.5. (Fig	gure 10 & 11)	
The overlap	s of the different geotextile layers are med	eting the minimum accep	otable overlap length. (Figure 12	2)
Some geote	xtiles were damaged during the installation	on of the fine filter at the l	bottom. When holes are spotted	d in the
geotextile, the	ney are appropriately patched by putting a	big piece of geotextile o	over the holes. (Figure 13) The	holes are all
less than 25	mm in diameter, so the patches are more	than sufficient to provide	e additional protection at the loc	cation of the
holes.				
•				
Corrective action to	be taken:			
• n/a				
•				
Follow up visit require	ed:	Yes [⊠ No □	
Site Representative :	Laurier Collette	Inspe		
			(Print Nar	me)
From :	AEM	Sig	gnature*: //likail Turc	otto
Project Manager :	Marc-André Beaudet		e on site : 12h	

By signing this form I acknowledge that I have consulted the appropriate documentation for the current project and I am in compliance with the procedures and work methods for this site at this time.

Figure 1: Slope preparation between 0-015 and 0+140

Figure 2: Slope preparation between 0+140 and 0+160

Figure 3: Foundation approval between 0+140 and 0+155

Figure 4: Foundation approval between 0+090 and 0+140

Figure 5: Foundation approval between 0+220 and 0+260

Figure 6: Foundation approval between 0+260 and 0+284.5

Figure 7: Fine filter approval between 0+140 and 0+155

Figure 8: Fine filter approval between 0+260 and 0+284.5

Figure 9: Fine filter approval between 0+160 and 0+220

Figure 10: Geotextile placement between 0+160 and 0+284.5

Figure 11: Geotextile and preliminary riprap between 0+160 and 0+284.5

Figure 12: All the overlaps measured are conforming to minimum requirement of 600

Figure 13: Holes in the geotextile are appropriately patched

	Client AEM	1	Inspection Date	2020-10-05 Day	
	Site Ama	aruq	☐ Drill and Blast	☐ Expertise	
		'	☐ Foundation Prep.	☐ Vibration M	lonitoring
'	Project IVR	Diversion channel			agement
			☐ Sampling	☐ Grout curta	in
			☐ Compaction	☐ Liner / Geo	textile
			☐ Gradations		
Proje	ect N°: 61	27	Other (specify):		_
IHA		EAs 🛛 my PPE 🖾 Proper			-2 °C
Trair	~	_			
ISE		ected Hazards I NEED: an S-RAF		<i>'//!i</i>	_
	 Final riprap 	placement at the energy dissipator between	en 0+281 and 0+290. (F	igure 1)	
	 Geotextile a 	and riprap placement at the entrance of the	e channel (station 0-015)). (Figure 2 & 3)	
	 Final riprap 	placement along the entire length of the c	hannel. (Figure 4 & 5) O	only small modifications rema	in before final
	approval.				
	At the end of	of the day, the final loads of riprap were co	ntaminated by 0-3/4 mat	terial because they were con	ning from the
	bottom of th	e stockpile. During transportation, all the f	ine material segregated	at the bottom of the truck be	d, so the
	operators w	ere asked to dump their loads in two parts	. The first half of the load	d was conforming riprap mat	erial without
	traces of co	ntamination because it was coming from t	he top material in the tru	ick bed. (Figure 6) The secor	nd half of the load
	was contam	inated by the fine material. This dumping	method saved considera	able time for the operators wh	no did not have to
	sort as muc	h non-conforming material as if the load w	as dumped in one motio	on.	
	•				
Cor	rective action to	be taken:			
	• n/a				
	11/4				
	•				
Follo	w up visit require	ed:	Yes [⊠ No	
Site R	epresentative :	Laurier Collette	Inspe		Name)
				1M-1 -	/
From :		AEM	s	Signature: //wkail w	realto
Projec	t Manager :	Marc-André Beaudet	Time	e on site : 1	2h

* By signing this form I acknowledge that I have consulted the appropriate documentation for the current project and I am in compliance with the procedures and work methods for this site at this time.

Figure 1: Final riprap placement at the energy dissipator (0+281 to 0+290)

Figure 2: Geotextile placement at the entrance of the channel (0-015)

Figure 3: Final riprap placement at the entrance of the channel (0-015)

Figure 4: Riprap to final grade between 0-015 and 0+140

Figure 5: Riprap to final grade between 0+140 and 0+290

Figure 6: Riprap from the first half dumping process

APPENDIX B4

Approval Forms

PROJECT :		IVR Diversion Construction					
PROJECT #:		6127		DATE:	2020-09-27		
DOCUMENT #:		20200927-F	F-01	TIME:	10:00		
	(YYYYN shift	MMDD-DS/NS-01) DS	/NS = Day/Night		(24 hour clock)		
COMPLETED BY (AEM QA REPRESENTATIVE):	Patrice	Gagnon					
APPROVAL FOR:		☐ Foundation approval (trench bottom and slopes)					
	\checkmark	Fill placement a	oproval: <u>Fine Filter</u>				
		Other:					
LOCATION			PREVIOUS APPROVAL	<u>s</u>			
Station 0+149 to 0+284.5		Station:		n/a			
Inclination:			Details:				
ELEVATION : varies		m					

COMPLIANCE WITH TECHNICAL SPECIFICATIONS:	VERIFICATIONS DONE BY						
(Add additional items if needed)		QA AEM		QC AEM			
	Y	N	Υ	N			
Lines and Grades	✓		✓				
2. Free of ice/snow/water		✓		✓			
Cleaning of excavation bottom	✓		√				
4. Fill gradation (visual)	✓		√				
5. Placement (lift thickness, segregation, etc.)	✓		√				
6. Compaction	✓		√				
7. As-built survey completed	✓		√				
8.							
9.							
10.							
11.							
12.							
13.							

DETAILS		<u>A</u>	PPRO	VED BY	<u>′:</u>
(Refer to	Refer to list above for item #)		QA AEM		1
ITEM		Υ	N	Υ	N
2	Presence of water at the bottom part of the fine filter. A small amount of fine filter was added on top of the material already in place to absorb part of the water and avoid disturbing the material already in place.	✓		✓	

APPROVED BY:	<u>NAME</u>	SIGNATURE	DATE
CONTRACTOR REPRESENTATIVE	MANUEL BUSSIÈRES	Wene	2020-09-27
AEM QC REPRESENTATIVE	MIKAËL TURCOTTE	Mikail Turcotto	2020-09-27
AEM QA REPRESENTATIVE	PATRICE GAGNON		2020-09-27
OWNER'S REPRESENTATIVE	PATRICE GAGNON		

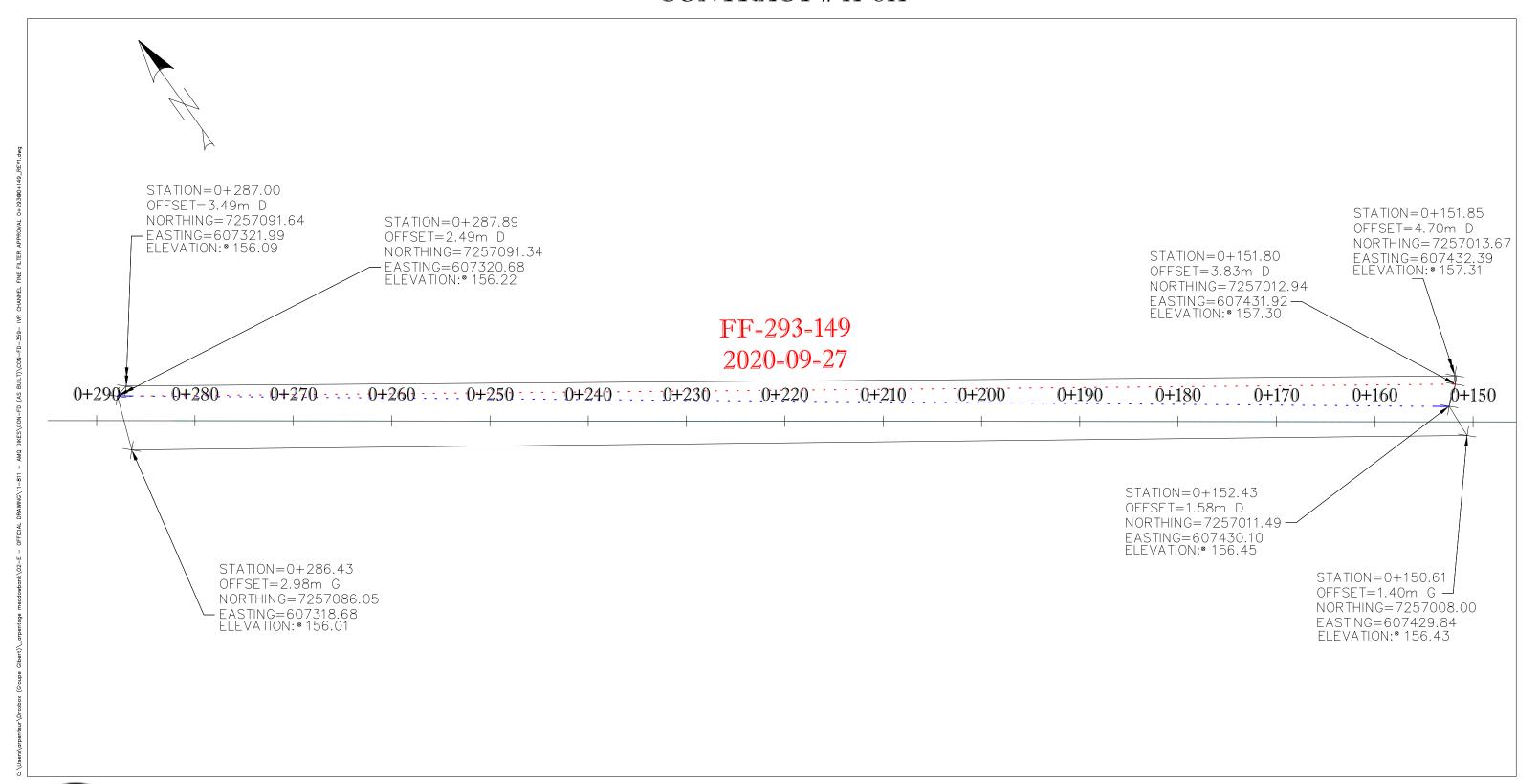


Figure 1: Approval between 0+149 and 0+260

Figure 2: Approval between 0+260 and 0+285

FINE FILTER APPROVAL - 0+293 @ 0+149 IVR DIVERSION CHANNEL CONTRACT # 11-811

PREPARED BY : FRANCIS PAULIN DATE : 08-10-2020 CON-FD-359 REV1

PROJECT:	IVR Diversion Construction					
PROJECT #:		6127	,	DATE:	2020-09-29	
DOCUMENT #:		20200929-	FF-02	TIME:	8:00	
	(YYYYN shift	1MDD-DS/NS-01) D	S/NS = Day/Night	•	(24 hour clock)	
COMPLETED BY (AEM QA REPRESENTATIVE):	Laurier	Collette				
APPROVAL FOR :		Foundation approval (trench bottom and slopes)				
	\checkmark	Fill placement approval: Fine Filter				
		Other:	-			
LOCATION			PREVIOUS APPROVAL	<u>s</u>		
Station	0+090 to	0+149	Station:	0-	+149 to 0+284.5	
Inclination:			Details:	2	0200927-FF-01	
ELEVATION varies		m				

COMPLIANCE WITH TECHNICAL SPECIFICATIONS:		VERIFICATIONS DONE BY:				
(Add additional items if needed)	QA AEM		QC AEM		N/A	
	Υ	N	Υ	N		
Lines and Grades	✓		✓			
2. Free of ice/snow/water	✓		✓			
Cleaning of excavation bottom	✓		✓			
4. Fill gradation (visual)	✓		✓			
5. Placement (lift thickness, segregation, etc.)	✓		√			
6. Compaction	✓		√			
7. As-built survey completed	✓		✓			
8.						
9.						
10.						
11.						
12.						
13.						

DETAILS		<u>A</u>	PPRO	VED BY	<u>/:</u>
(Refer to	Refer to list above for item #)		QA AEM		; /
ITEM		Y	N	Υ	N
2	Foundation has not water at this location because the section between 0+090 and 0+125 is composed of esker fill from ice removal and a pump was located at 0+149 to drain the water out of the channel.	✓		✓	

APPROVED BY:	<u>NAME</u>	SIGNATURE	DATE
CONTRACTOR REPRESENTATIVE	MANUEL BUSSIÈRES	Weng	2020-09-29
AEM QC REPRESENTATIVE	MIKAËL TURCOTTE	Mikail Turcotto	2020-09-29
AEM QA REPRESENTATIVE	LAURIER COLLETTE		2020-09-29
OWNER'S REPRESENTATIVE	LAURIER COLLETTE		

PROJECT:		ľ	VR Diversion Constr	uction		
PROJECT #:		6127		DATE:	2020-09-29	
DOCUMENT #:		20200929-F	F-03	TIME:	15:45	
	(YYYYN shift	MMDD-DS/NS-01) DS	S/NS = Day/Night		(24 hour clock)	
COMPLETED BY (AEM QA REPRESENTATIVE):	Laurier	Collette				
APPROVAL FOR :		Foundation approval (trench bottom and slopes)				
	\checkmark	Fill placement approval: Fine Filter				
		Other:				
LOCATION			PREVIOUS APPROVAL	<u>s</u>		
Station 0+029 to 0+09		0+090	Station:	C	+090 to 0+149	
Inclination:			Details:	2	0200929-FF-02	
ELEVATION : varies		m				

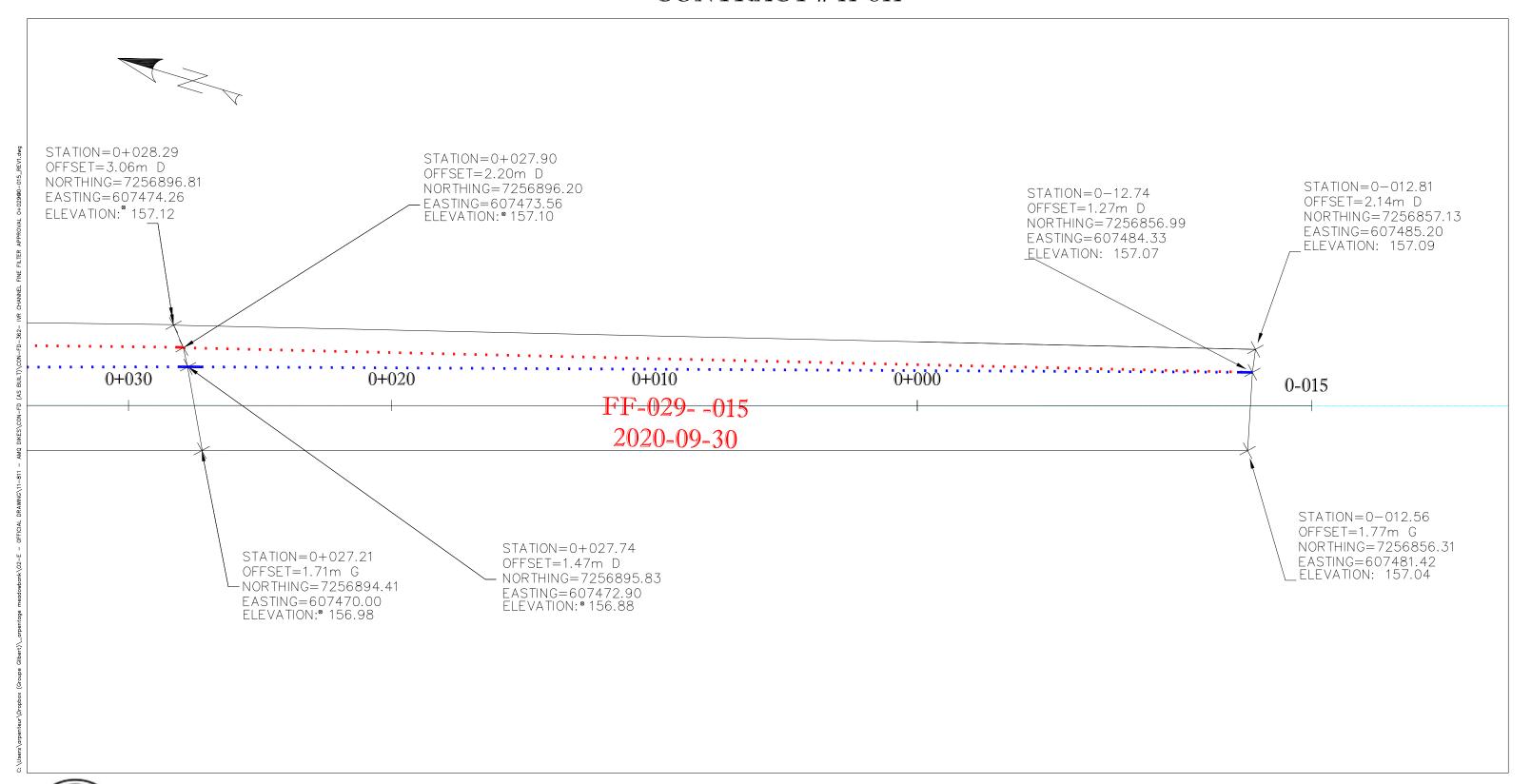
COMPLIANCE WITH TECHNICAL SPECIFICATIONS:		VERIFICATIONS DONE BY:				
(Add additional items if needed)	QA AEM		QC AEM		N/A	
	Υ	N	Υ	N		
Lines and Grades	✓		✓			
2. Free of ice/snow/water		✓		✓		
Cleaning of excavation bottom	✓		√			
4. Fill gradation (visual)	√		√			
5. Placement (lift thickness, segregation, etc.)	✓		√			
6. Compaction	✓		✓			
7. As-built survey completed	√		√			
8.						
9.						
10.						
11.						
12.						
13.						

DETAILS	<u>DETAILS</u>		PPRO	OVED BY:	
(Refer to list above for item #)			QA AEM		1
ITEM		Y	N	Υ	N
2	Water is present on the foundation. As usual, the water is pushed out of the way before fine filter placement. A important water entry is located at 0+073, so the pump at this location was removed at the last moment possible before fine filter placement.	✓		✓	

APPROVED BY:	<u>NAME</u>	SIGNATURE	DATE
CONTRACTOR REPRESENTATIVE	MANUEL BUSSIÈRES	Wanner !	2020-09-29
AEM QC REPRESENTATIVE	MIKAËL TURCOTTE	Mikail Tarcotto	2020-09-29
AEM QA REPRESENTATIVE	LAURIER COLLETTE		2020-09-29
OWNER'S REPRESENTATIVE	LAURIER COLLETTE		

PROJECT:		IVR Diversion Construction					
PROJECT #:		6127		DATE:	2020-09-30		
DOCUMENT #:		20200930-F	F-04	TIME:	11:00		
	(YYYYN shift	1MDD-DS/NS-01) DS	/NS = Day/Night		(24 hour clock)		
COMPLETED BY (AEM QA REPRESENTATIVE):	Laurier (Collette					
APPROVAL FOR :		☐ Foundation approval (trench bottom and slopes)					
	V	Fill placement a	oproval: Fine Filter				
		Other:					
LOCATION			PREVIOUS APPROVAL	<u>s</u>			
Station	0-015 to	0+029	Station:	C	+029 to 0+149		
Inclination:			Details:	2	0200929-FF-02		
ELEVATION : varies		m					

COMPLIANCE WITH TECHNICAL SPECIFICATIONS:			VERIFICATIONS DONE BY:					
(Add additional items if needed)	QA AEM		· ·		QC AEM		N/A	
	Υ	N	Υ	N				
Lines and Grades	✓		√					
2. Free of ice/snow/water		✓		✓				
Cleaning of excavation bottom	✓		√					
4. Fill gradation (visual)	✓		✓					
5. Placement (lift thickness, segregation, etc.)	✓		✓					
6. Compaction	✓		✓					
7. As-built survey completed	√		√					
8.								
9.								
10.								
11.								
12.								
13.								


DETAILS		APPROVED BY:			
(Refer to	(Refer to list above for item #)		/	QC AEM	
ITEM		Y N		Υ	N
2	Water on the foundation. All the water was pushed towards the pump at 0+029 and the mud created was removed and replaced by fine filter.	✓		✓	

APPROVED BY:	<u>NAME</u>	SIGNATURE	DATE
CONTRACTOR REPRESENTATIVE	MANUEL BUSSIÈRES	Wang)	2020-09-30
AEM QC REPRESENTATIVE	MIKAËL TURCOTTE	Mikail Tarcotto	2020-09-30
AEM QA REPRESENTATIVE	LAURIER COLLETTE		2020-09-30
OWNER'S REPRESENTATIVE	LAURIER COLLETTE		

Figure 1: Approval between 0-015 and 0+029

FINE FILTER APPROVAL - 0+029 @ 0-015 IVR DIVERSION CHANNEL CONTRACT # 11-811

PREPARED BY : FRANCIS PAULIN DATE : 08-10-2020 CON-FD-362 REV1

PROJECT:			ľ	VR Diversion Constr	ruction	
PROJECT #:			6127		DATE:	2020-10-03
DOCUMENT #	t:		20201003-F	F-05	TIME:	17:00
		(YYYYN shift	MMDD-DS/NS-01) DS	NS = Day/Night	_	(24 hour clock)
COMPLETED QA REPRESE		Laurier (Collette			
APPROVAL F	OR :		Foundation app	roval (trench bottom a	and slop	es)
			Fill placement a	pproval: <u>Fine Filter</u>		_
			Other:			
LOCATION				PREVIOUS APPROVAL	<u>.S</u>	
Station	0	+140 to	0+284.5	Station:		Varies
Inclination:				Details:	2	0200927-FF-01
momation:				Details:	2	0200929-FF-02
ELEVATION :	✓ varies		m			

COMPLIANCE WITH TECHNICAL SPECIFICATIONS:	<u>\</u>	VERIFICATIONS DONE E						
(Add additional items if needed)	QA AEI		QC AEI	N/A				
	Y	N	Υ	N				
1. Lines and Grades	✓		✓					
2. Free of ice/snow/water		✓		✓				
3. Cleaning of excavation bottom	✓		√					
4. Fill gradation (visual)	✓		√					
5. Placement (lift thickness, segregation, etc.)	✓		√					
6. Compaction					✓			
7. As-built survey completed	✓		√					
8.								
9.								
10.								
11.								

<u>DETAILS</u>		APPROVED BY:		<u>':</u>	
(Refer to	list above for item #)	QA AEN		QC AEN	
ITEM		Υ	N	Υ	N
2	Water is present at the bottom of the slope. Material is placed such that the water is pushed away, and the fine filter can connect well with the other fine filter already placed at the bottom of the foundation. Water was coming through the fine filter at 0+145, but no other traces of water was observed on top of the fine filter. Small layer of snow over the fine filter, but the amount of snow observed is negligible.	✓		✓	
6	It was not always possible to place the fine filter all the way down to the bottom of the slope using the excavator bucket without damaging the geotextile. Final placement at the toe of the slope at these locations was done by hand with limited compaction, but the amount of material placed by hand is negligible and overall compaction is acceptable. This method has been used over a length of approximately 30m for this approval.	✓		✓	

APPROVED BY:	<u>NAME</u>	SIGNATURE	<u>DATE</u>
CONTRACTOR REPRESENTATIVE	MANUEL BUSSIÈRES	Wang)	2020-10-03
AEM QC REPRESENTATIVE	MIKAËL TURCOTTE	Mikail Turcotto	2020-10-03
AEM QA REPRESENTATIVE	LAURIER COLLETTE		2020-10-03
OWNER'S REPRESENTATIVE	LAURIER COLLETTE		

Figure 1: Approval between 0+140 and 0+155

Figure 2: Approval between 0+155 and 0+180

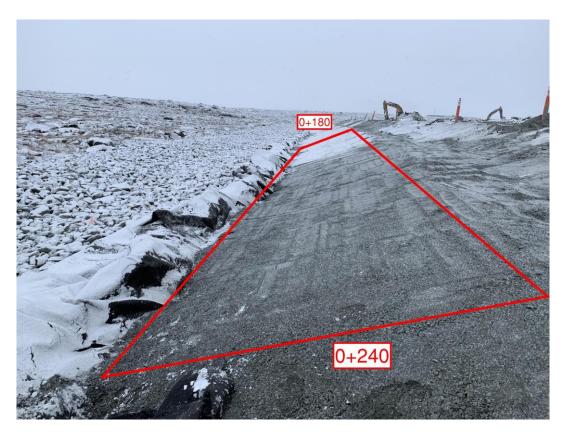


Figure 3: Approval between 0+180 and 0+240

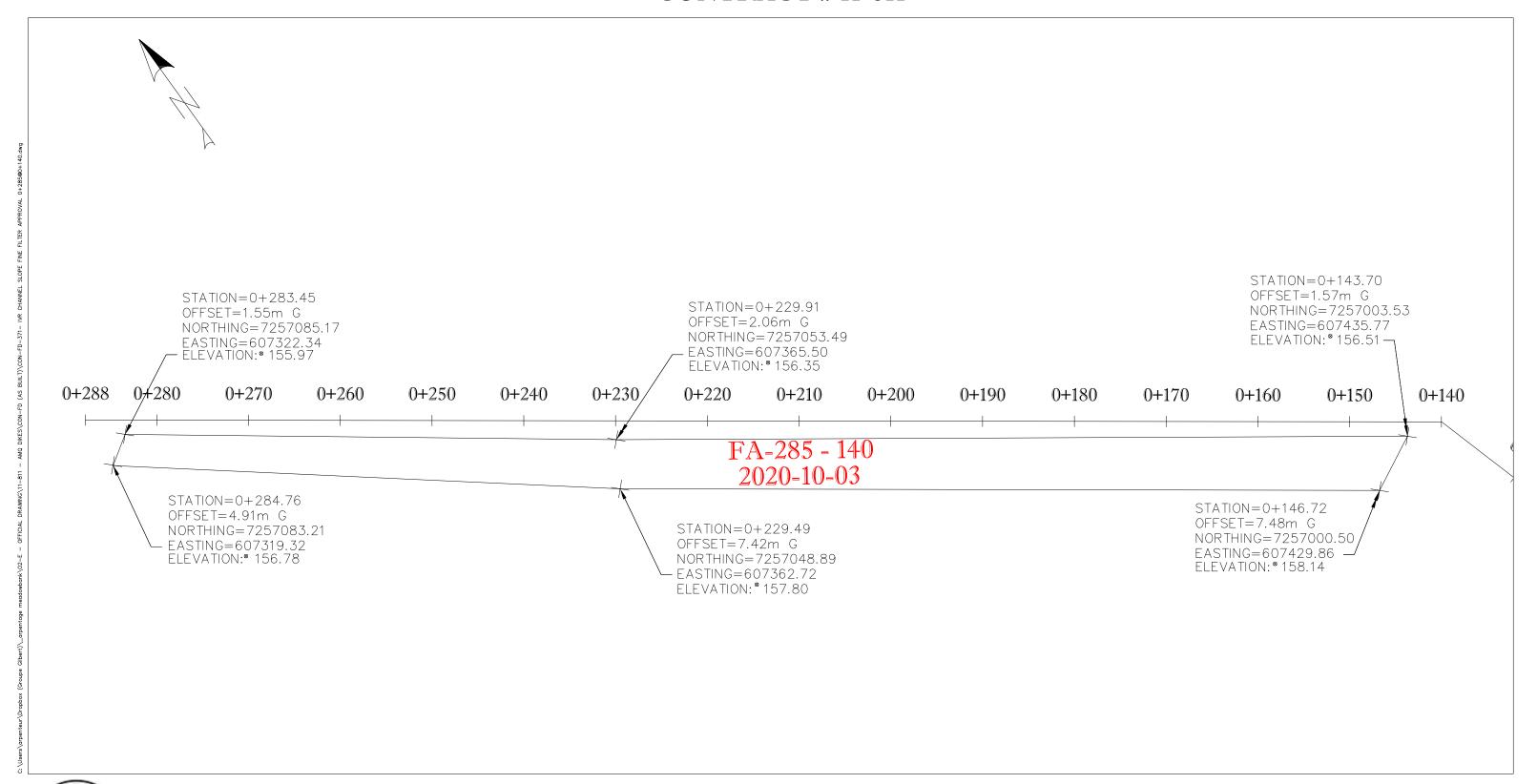


Figure 4: Approval between 0+240 and 0+260

Figure 5: Approval between 0+260 and 0+285

SLOPE FINE FILTER APPROVAL - 0+285 @ 0+140 IVR DIVERSION CHANNEL CONTRACT # 11-811

PREPARED BY : FRANCIS PAULIN DATE : 07-10-2020 CON-FD-371

PROJECT:			יו	VR Diversion Constr	ruction	
PROJECT #:			6127		DATE:	2020-10-04
DOCUMENT #	:		20201004-F	F-06	TIME:	17:00
		(YYYYN shift	MMDD-DS/NS-01) DS	NS = Day/Night	_	(24 hour clock)
COMPLETED QA REPRESE		Laurier	Collette			
APPROVAL FOR :				roval (trench bottom a	and slope	es)
			Other:			
LOCATION				PREVIOUS APPROVAL	<u>.s</u>	
Station	1	0-015 to	0+140	Station:		Varies
					2	0200929-FF-02
Inclination:				Details:	2	0200929-FF-03
					2	0200930-FF-04
ELEVATION :	varies		m			

COMPLIANCE WITH TECHNICAL SPECIFICATIONS:	<u> </u>	VERIFICATIONS DONE BY					
(Add additional items if needed)		QA AEM		QC AEM			
	Υ	N	Υ	N			
1. Lines and Grades	✓		✓				
2. Free of ice/snow/water		✓		✓			
Cleaning of excavation bottom	✓		✓				
4. Fill gradation (visual)	✓		✓				
5. Placement (lift thickness, segregation, etc.)	✓		✓				
6. Compaction					✓		
7. As-built survey completed	✓		✓				
8.							
9.							
10.							
11.							

<u>DETAILS</u>		APPROVED BY:			
(Refer to list above for item #)		QA AEM		QC AEM	
ITEM		Υ	N	Υ	N
2	Water is present at the bottom of the slope. Material is placed such that the water is pushed away, and the fine filter can connect well with the other fine filter already placed at the bottom of the foundation. A pump was placed near station 0+010 to remove water accumulation between 0+000 and 0+020. No water coming through the fine filter material has been observed.	✓		√	
6	It was not always possible to place the fine filter all the way down to the bottom of the slope using the excavator bucket without damaging the geotextile. Final placement at the toe of the slope at these locations was done by hand with limited compaction, but the amount of material placed by hand is negligible and overall compaction is acceptable. This method has been used over a length of approximately 20m for this approval.	✓		✓	

APPROVED BY:	<u>NAME</u>	SIGNATURE	<u>DATE</u>
CONTRACTOR REPRESENTATIVE	MANUEL BUSSIÈRES	Wares	2020-10-04
AEM QC REPRESENTATIVE	MIKAËL TURCOTTE	Mikail Turotto	2020-10-04
AEM QA REPRESENTATIVE	LAURIER COLLETTE		2020-10-04
OWNER'S REPRESENTATIVE	LAURIER COLLETTE		

Figure 1: Approval between 0-015 and 0+020

Figure 2: Approval between 0+020 and 0+060

Figure 3: Approval between 0+060 and 0+100

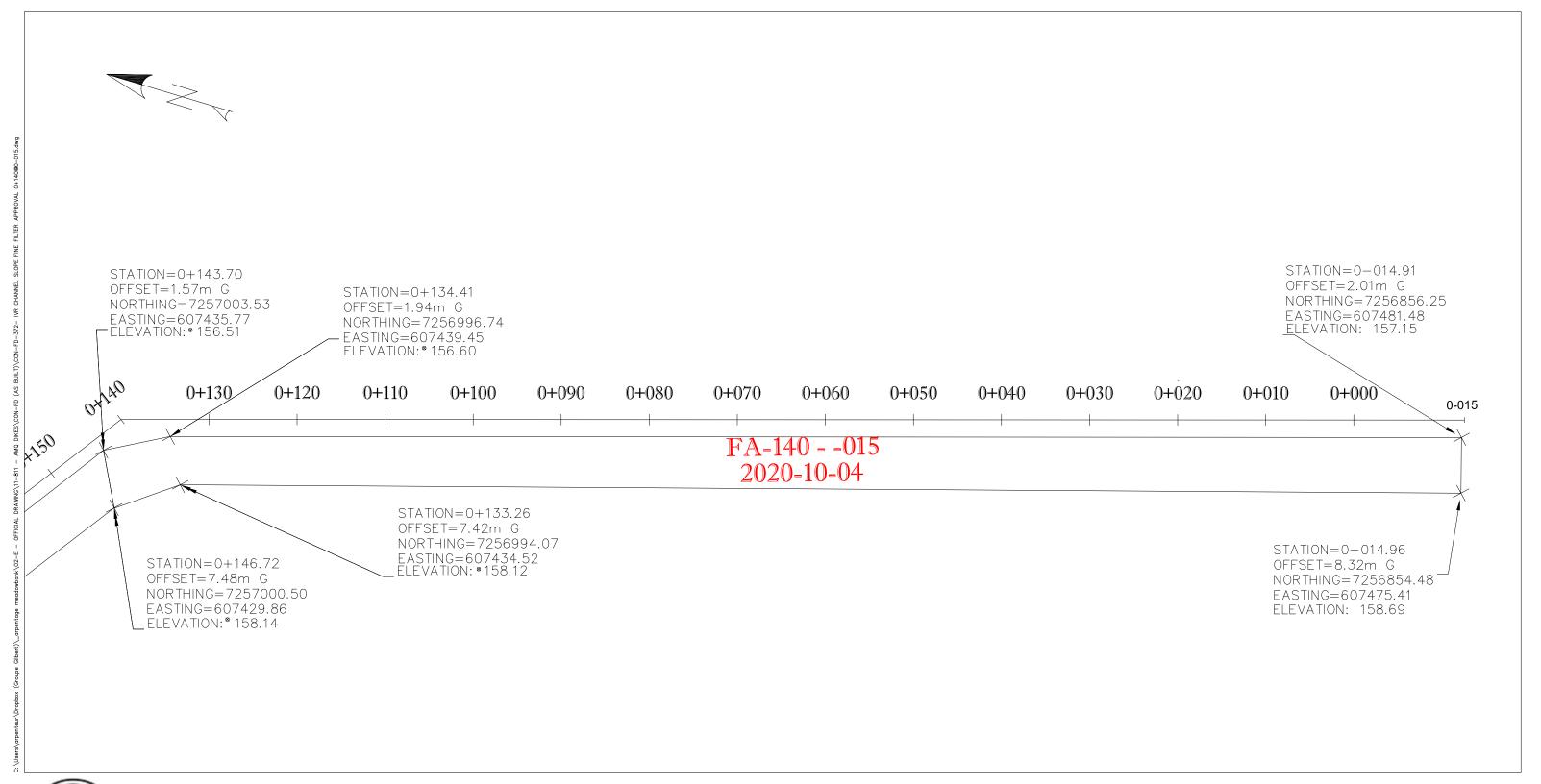


Figure 4: Approval between 0+100 and 0+120

Figure 5: Approval between 0+120 and 0+140

SLOPE FINE FILTER APPROVAL - 0+140 @ 0-015 IVR DIVERSION CHANNEL CONTRACT # 11-811

PREPARED BY : FRANCIS PAULIN DATE : 07-10-2020 CON-FD-372

PROJECT:		ľ	VR Diversion Constr	uction		
PROJECT #:		6127		DATE:	2020-09-24	
DOCUMENT #:		20200924-FI	DN-01	TIME:	16:21	
	(YYYYN shift	MMDD-DS/NS-01) DS	/NS = Day/Night	<u> </u>	(24 hour clock)	
COMPLETED BY (QA REPRESENTA		Gagnon				
APPROVAL FOR :	\square	☑ Foundation approval (trench bottom and slopes)				
		Fill placement a	oproval:			
		Other:				
LOCATION			PREVIOUS APPROVAL	<u>s</u>		
Station	0+149 to	0+205	Station:		n/a	
Inclination:			Details:			
ELEVATION :	varies	m				

COMPLIANCE WITH TECHNICAL SPECIFICATIONS:		VERIFICATIONS DONE BY:			
(Add additional items if needed)	QA AEM		QC AEM		N/A
	Υ	N	Υ	N	
Lines and Grades	✓		✓		
2. Free of ice/snow/water		✓		✓	
Cleaning of excavation bottom	✓		√		
4. Fill gradation (visual)					✓
5. Placement (lift thickness, segregation, etc.)					✓
6. Compaction					✓
7. As-built survey completed	✓		√		
8.					
9.					
10.					
11.					
12.					
13.					

DETAILS		<u>A</u>	PPRO	VED BY	<u>′:</u>
(Refer to	o list above for item #)		QA AEM		; /
ITEM		Y	N	Υ	N
2	Presence of water at the bottom of excavation. Fill placement from upstream to downstream to push the water out before placing the material. Remove and replace the fill by appropriate material when it becomes oversaturated with water/mud.	✓		✓	

APPROVED BY:	<u>NAME</u>	SIGNATURE	DATE
CONTRACTOR REPRESENTATIVE	MANUEL BUSSIÈRES	Wene	2020-09-24
AEM QC REPRESENTATIVE	MIKAËL TURCOTTE	Mikail Turcotto	2020-09-24
AEM QA REPRESENTATIVE	PATRICE GAGNON		2020-09-24
OWNER'S REPRESENTATIVE	PATRICE GAGNON		

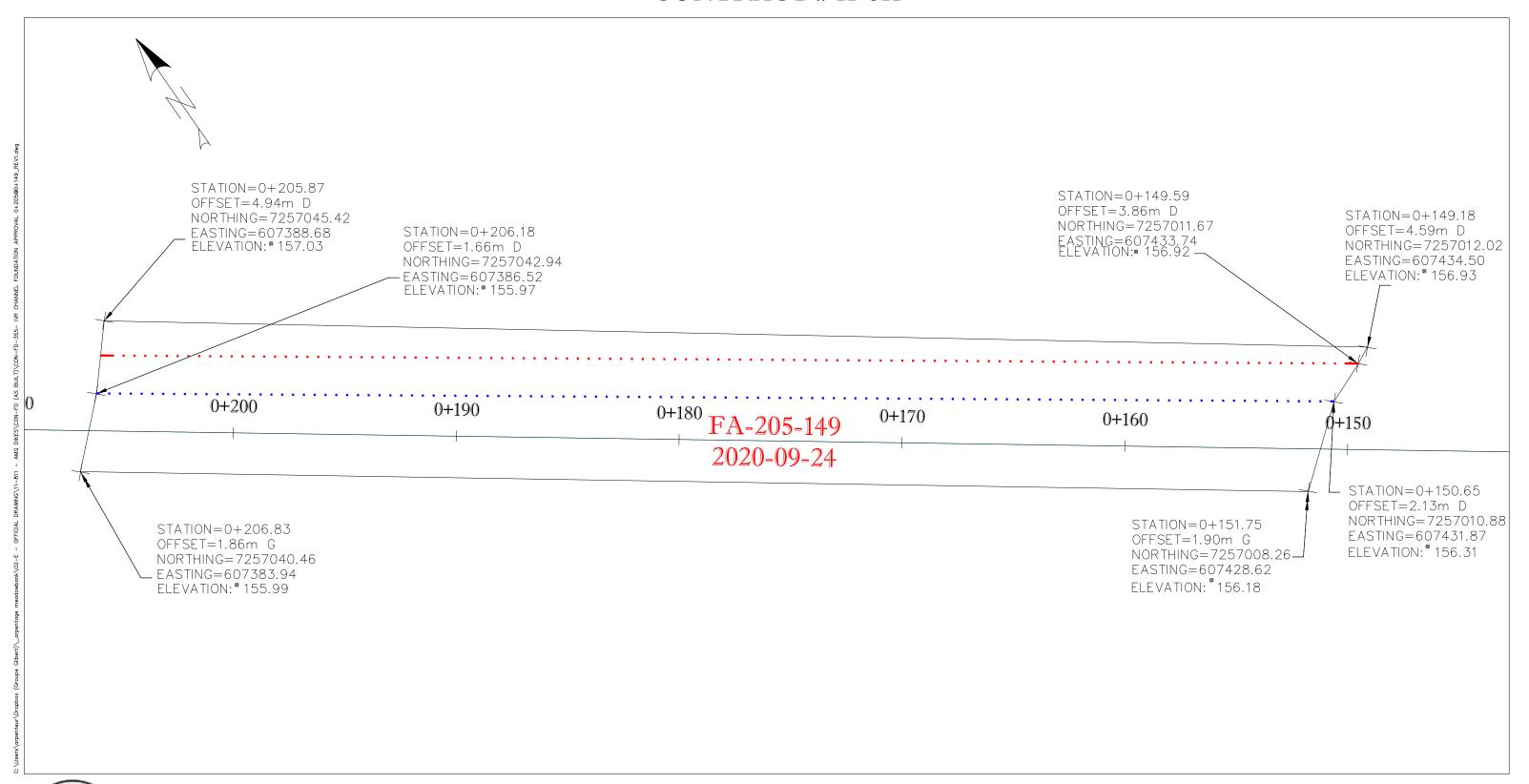


Figure 1: Foundation approval between 0+149 and 0+181

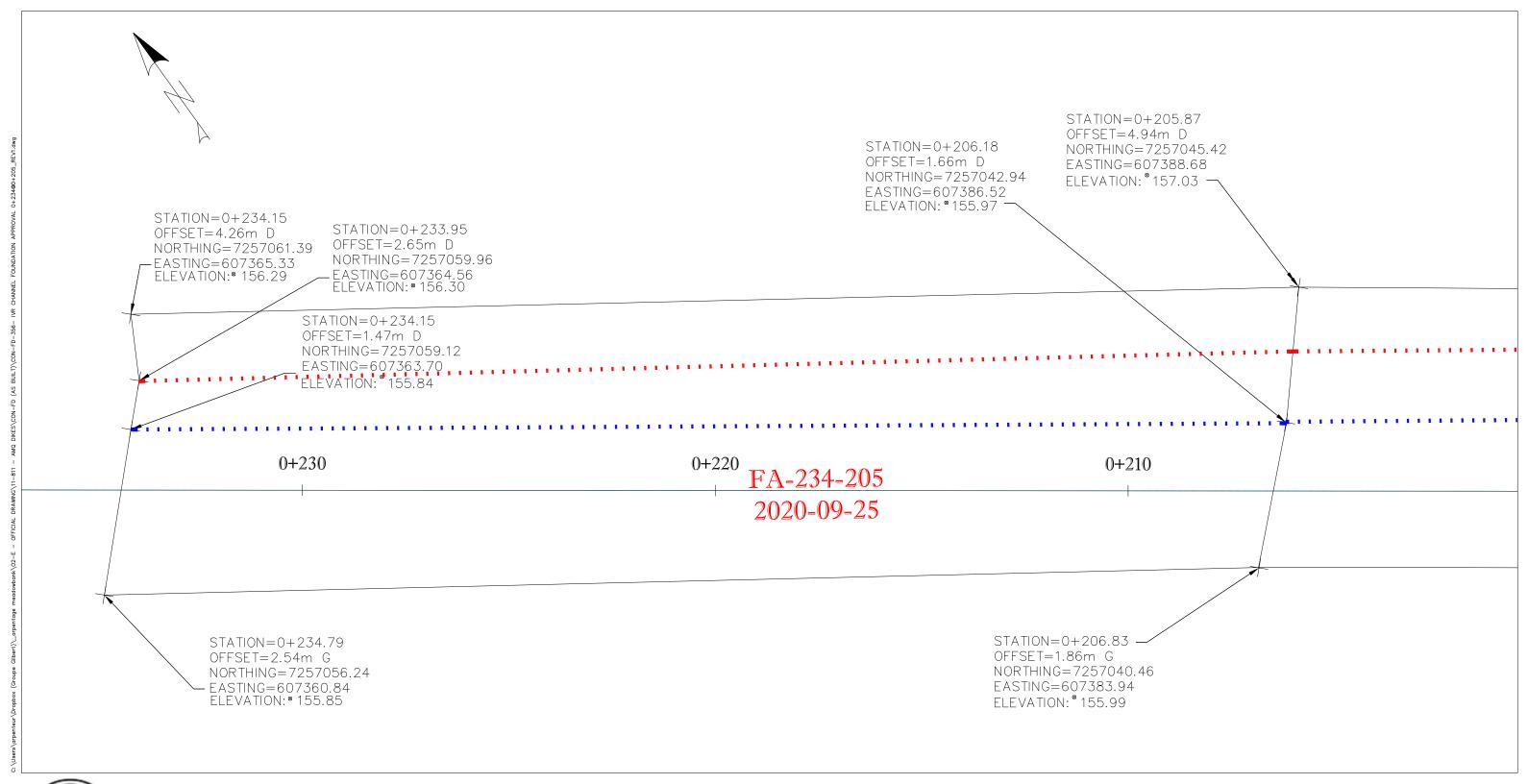
Figure 2: Foundation approval between 0+181 and 0+205

FOUNDATION APPROVAL - 0+205 @ 0+149 IVR DIVERSION CHANNEL CONTRACT # 11-811

PREPARED BY : FRANCIS PAULIN DATE : 07-10-2020 CON-FD-355 REV1

PROJECT:		ľ	VR Diversion Constr	uction		
PROJECT #:		6127		DATE:	2020-09-25	
DOCUMENT #:		20200925-FI	DN-02	TIME:	8:00	
	(YYYYN shift	MMDD-DS/NS-01) DS	S/NS = Day/Night	-	(24 hour clock)	
COMPLETED BY (A QA REPRESENTAT		Gagnon				
APPROVAL FOR :		Foundation approval (trench bottom and slopes)				
		Fill placement a	pproval:			
		Other:				
LOCATION			PREVIOUS APPROVAL	<u>s</u>		
Station	0+205 to	0+234	Station:	0-	+149 to 0+205	
Inclination:			Details:	202	200924-FDN-01	
ELEVATION :	varies	m				

COMPLIANCE WITH TECHNICAL SPECIFICATIONS:		VERIFICATIONS DONE BY:			
(Add additional items if needed)	QA AEM		QC AEM		N/A
	Υ	N	Υ	N	
Lines and Grades	✓		✓		
2. Free of ice/snow/water		✓		✓	
Cleaning of excavation bottom	✓		√		
4. Fill gradation (visual)					✓
5. Placement (lift thickness, segregation, etc.)					✓
6. Compaction					✓
7. As-built survey completed	✓		√		
8.					
9.					
10.					
11.					
12.					
13.					


DETAILS		<u>A</u>	PPRO	VED BY	<u>′:</u>
(Refer to	to list above for item #)		QA AEM		1
ITEM		Υ	N	Υ	N
2	Presence of water at the bottom of excavation. Fill placement from upstream to downstream to push the water out before placing the material. Remove and replace the fill by appropriate material when it becomes oversaturated with water/mud.	✓		✓	

APPROVED BY:	<u>NAME</u>	SIGNATURE	DATE
CONTRACTOR REPRESENTATIVE	MANUEL BUSSIÈRES	Wanner !	2020-09-25
AEM QC REPRESENTATIVE	MIKAËL TURCOTTE	Mikail Tarcotto	2020-09-25
AEM QA REPRESENTATIVE	PATRICE GAGNON		2020-09-25
OWNER'S REPRESENTATIVE	PATRICE GAGNON		

Figure 1: Foundation approval between 0+205 and 0+234

FOUNDATION APPROVAL - 0+234 @ 0+205 IVR DIVERSION CHANNEL CONTRACT # 11-811

PREPARED BY : FRANCIS PAULIN DATE : 07-10-2020 CON-FD-356 REV1

PROJECT:		ľ	VR Diversion Constr	uction		
PROJECT #:		6127		DATE:	2020-09-25	
DOCUMENT #:	-	20200925-FI	DN-03	TIME:	17:30	
	(YYYYN shift	1MDD-DS/NS-01) DS	i/NS = Day/Night	_	(24 hour clock)	
COMPLETED BY (AI QA REPRESENTATI		Gagnon				
APPROVAL FOR :		☑ Foundation approval (trench bottom and slopes)				
		Fill placement a	oproval:			
		Other:				
LOCATION			PREVIOUS APPROVAL	<u>s</u>		
Station	0+235 to	0+262	Station:		n/a	
Inclination:			Details:			
ELEVATION : V	raries	m				

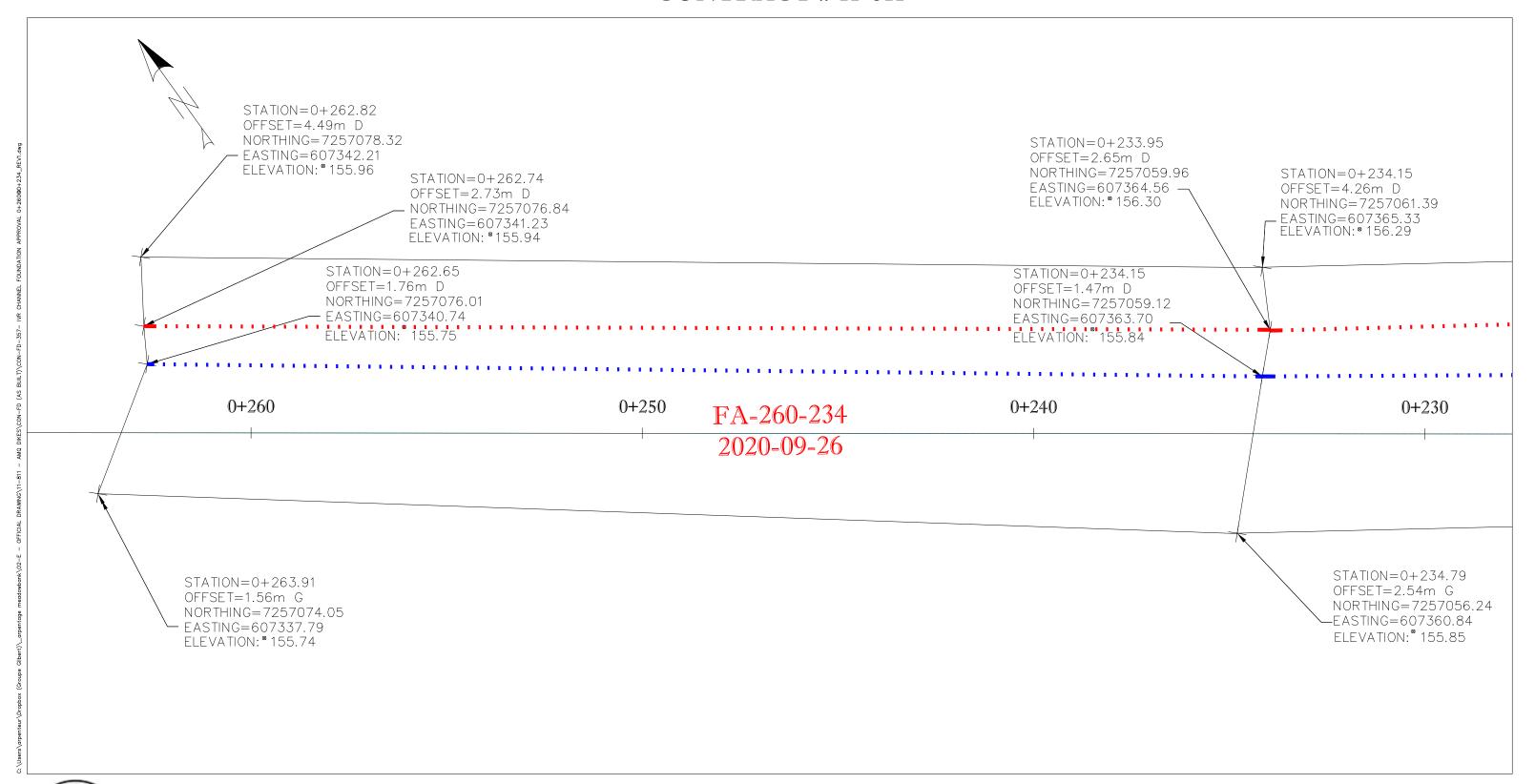
COMPLIANCE WITH TECHNICAL SPECIFICATIONS:		VERIFICATIONS DONE BY:			
(Add additional items if needed)	QA AEM		QC AEM		N/A
	Υ	N	Υ	N	
Lines and Grades	✓		✓		
2. Free of ice/snow/water		✓		✓	
Cleaning of excavation bottom	✓		√		
4. Fill gradation (visual)					✓
5. Placement (lift thickness, segregation, etc.)					✓
6. Compaction					✓
7. As-built survey completed	✓		√		
8.					
9.					
10.					
11.					
12.					
13.					

DETAILS		<u>A</u>	PPRO'	VED BY	<u>':</u>
(Refer to	list above for item #)		QA AEM		1
ITEM		Υ	N	Υ	N
2	The bottom of the excavation is composed of ice-rich till. The ice-rich till has been excavated to an average depth of 1.2m below the normal elevation of the bottom of the channel. The excavation could not have been done deeper due to safety reasons. The ice-rich material removed will be replaced by esker.	✓		√	

APPROVED BY:	<u>NAME</u>	<u>SIGNATURE</u>	<u>DATE</u>
CONTRACTOR REPRESENTATIVE	MANUEL BUSSIÈRES	(Jana)	2020-09-25
AEM QC REPRESENTATIVE	MIKAËL TURCOTTE	Mikail Turcotto	2020-09-25
AEM QA REPRESENTATIVE	PATRICE GAGNON		2020-09-25
OWNER'S REPRESENTATIVE	PATRICE GAGNON		

PROJECT:	IVR Diversion Construction					
PROJECT #:		6127		DATE:	2020-09-26	
DOCUMENT #:		20200926-FI	DN-04	TIME:	11:30	
	(YYYYN shift	MMDD-DS/NS-01) DS	/NS = Day/Night	(24 hour clock)		
COMPLETED BY (AEM QA REPRESENTATIVE):	Patrice (Gagnon				
APPROVAL FOR :		Foundation approval (trench bottom and slopes)				
		Fill placement approval:				
		Other:				
LOCATION			PREVIOUS APPROVAL	<u>s</u>		
Station	0+234 to	0+260	Station:	C)+205 to 0+234	
Inclination:			Details:	20	200925-FDN-02	
ELEVATION : varies		m				

COMPLIANCE WITH TECHNICAL SPECIFICATIONS:		VERIFICATIONS DONE BY:			
(Add additional items if needed)	QA AEM		QC AEM		N/A
	Υ	N	Υ	N	
Lines and Grades	✓		✓		
2. Free of ice/snow/water	✓		✓		
Cleaning of excavation bottom	✓		✓		
4. Fill gradation (visual)					✓
5. Placement (lift thickness, segregation, etc.)					✓
6. Compaction					✓
7. As-built survey completed	✓		✓		
8.					
9.					
10.					
11.					
12.					
13.					


DETAILS		<u>A</u>	PPRO	VED BY	<u>/:</u>
(Refer to	list above for item #)	QA AEN		QC AEM	
ITEM		Υ	N	Υ	N
2	Ice-rich material removed over an average depth of 1.2m and replaced by esker. Refer to 20200925-FDN-03 for details.	✓		✓	

APPROVED BY:	<u>NAME</u>	SIGNATURE	<u>DATE</u>
CONTRACTOR REPRESENTATIVE	MANUEL BUSSIÈRES	Wang)	2020-09-26
AEM QC REPRESENTATIVE	MIKAËL TURCOTTE	Mikael Tarcotto	2020-09-26
AEM QA REPRESENTATIVE	PATRICE GAGNON		2020-09-26
OWNER'S REPRESENTATIVE	PATRICE GAGNON		

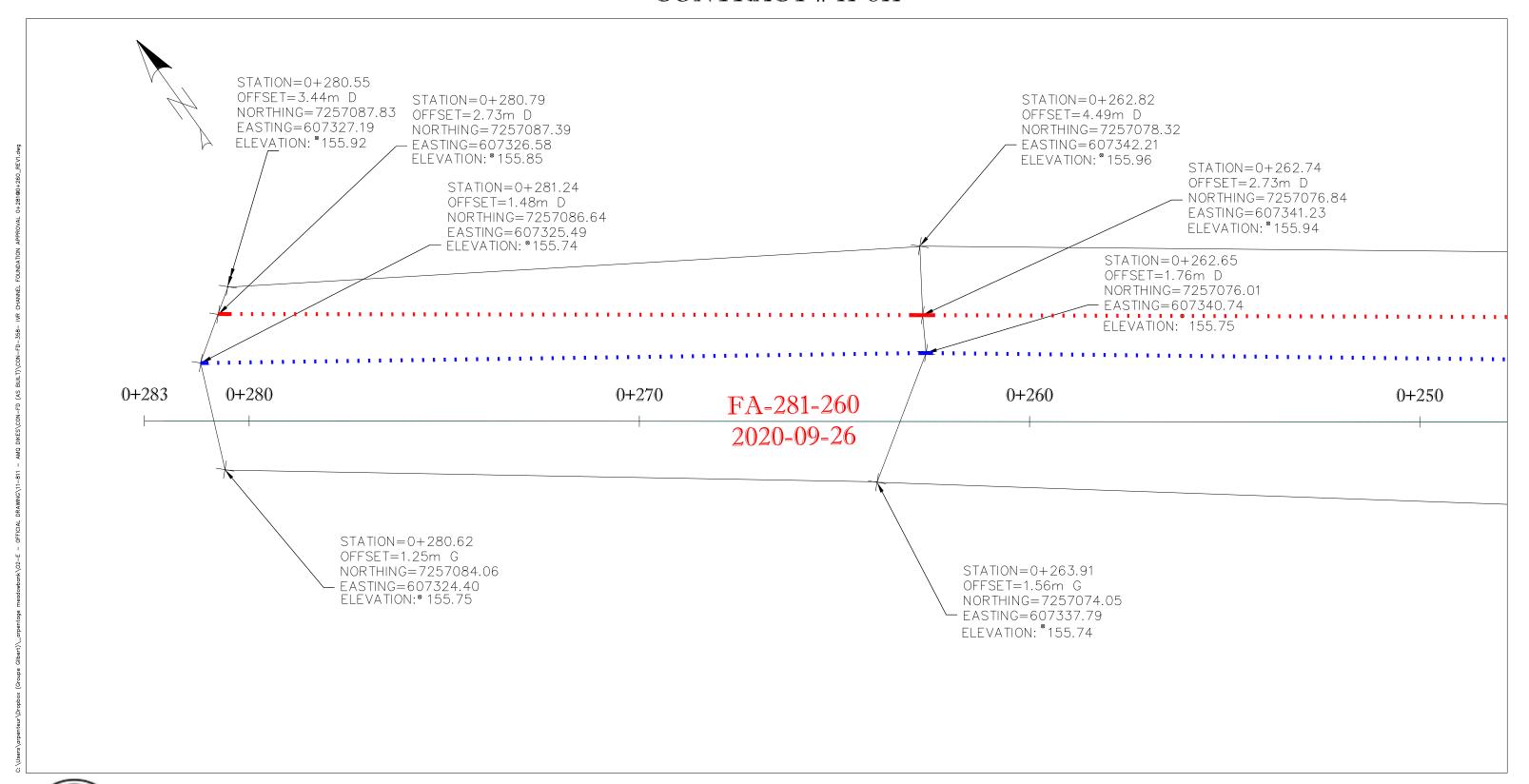
Figure 1: Foundation approval between 0+234 and 0+260

FOUNDATION APPROVAL - 0+260 @ 0+234 IVR DIVERSION CHANNEL CONTRACT # 11-811

PREPARED BY : FRANCIS PAULIN DATE : 07-10-2020 CON-FD-357 REV1

PROJECT :	IVR Diversion Construction					
PROJECT #:	-	6127		DATE:	2020-09-26	
DOCUMENT #:		20200926-FI	DN-05	TIME:	17:00	
	(YYYYN shift	MMDD-DS/NS-01) DS	i/NS = Day/Night	(24 hour clock)		
COMPLETED BY (AEM QA REPRESENTATIVE):	Patrice (Gagnon				
APPROVAL FOR:	\checkmark	Foundation appr	Foundation approval (trench bottom and slopes)			
		Fill placement a	oproval:			
		Other:				
LOCATION			PREVIOUS APPROVAL	<u>.s</u>		
Station 0	+260 to	0+284.5	Station:	0	+234 to 0+260	
Inclination:			Details:	20	200926-FDN-04	
ELEVATION		m				

COMPLIANCE WITH TECHNICAL SPECIFICATIONS:		VERIFICATIONS DONE BY:			
(Add additional items if needed)	QA AEM		QC AEM		N/A
	Υ	N	Υ	N	
Lines and Grades	✓		✓		
2. Free of ice/snow/water		✓		✓	
Cleaning of excavation bottom	✓		√		
4. Fill gradation (visual)					✓
5. Placement (lift thickness, segregation, etc.)					✓
6. Compaction					✓
7. As-built survey completed	✓		√		
8.					
9.					
10.					
11.					
12.					
13.					


DETAILS		<u>A</u>	PPRO'	VED BY	<u>/:</u>
(Refer to	tefer to list above for item #)		QA AEM		; /I
ITEM		Υ	N	Y	N
2	Presence of water at the bottom of excavation. Fill placement from upstream to downstream to push the water out before placing the material. Remove and replace the fill by appropriate material when it becomes oversaturated with water/mud.	✓		✓	

APPROVED BY:	<u>NAME</u>	SIGNATURE	DATE
CONTRACTOR REPRESENTATIVE	MANUEL BUSSIÈRES	West	2020-09-26
AEM QC REPRESENTATIVE	MIKAËL TURCOTTE	Mikail Tarcotto	2020-09-26
AEM QA REPRESENTATIVE	PATRICE GAGNON		2020-09-26
OWNER'S REPRESENTATIVE	PATRICE GAGNON		

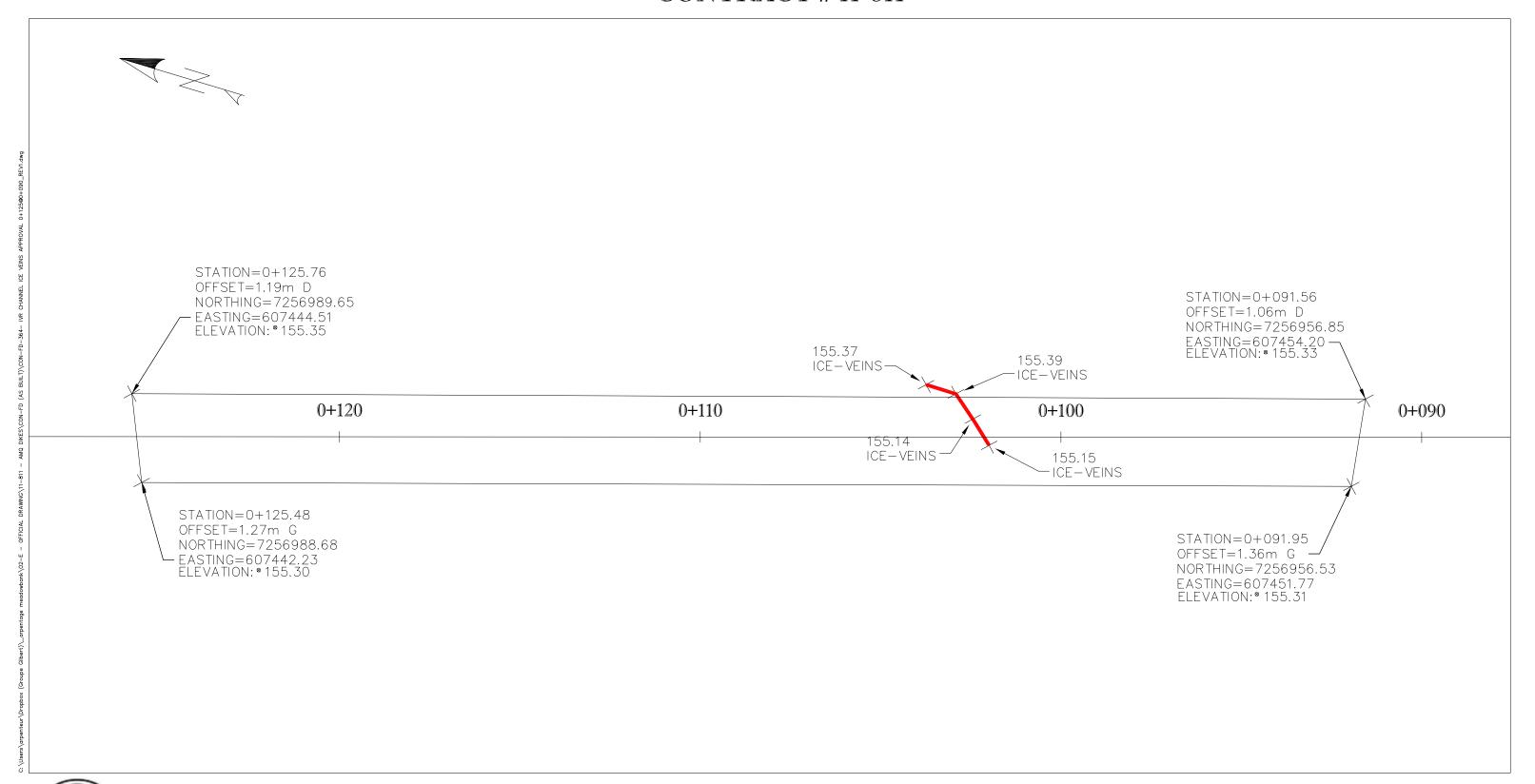
Figure 1: Foundation approval between 0+260 and 0+285

FOUNDATION APPROVAL - 0+281 @ 0+260 IVR DIVERSION CHANNEL CONTRACT # 11-811

PREPARED BY : FRANCIS PAULIN DATE : 07-10-2020 CON-FD-358 REV1

PROJECT:		ľ	VR Diversion Constr	uction		
PROJECT #:		6127		DATE:	2020-09-27	
DOCUMENT #:	-	20200927-FI	DN-06	TIME:	15:00	
	(YYYYM shift	MMDD-DS/NS-01) DS	/NS = Day/Night	<u> </u>	(24 hour clock)	
COMPLETED BY (AEI QA REPRESENTATIV		Gagnon				
APPROVAL FOR :	\checkmark	☑ Foundation approval (trench bottom and slopes)				
		Fill placement approval:				
		Other:				
LOCATION			PREVIOUS APPROVAL	<u>s</u>		
Station	0+090 to	0+125	Station:		n/a	
Inclination:			Details:			
ELEVATION : va	ries	m				

COMPLIANCE WITH TECHNICAL SPECIFICATIONS:		VERIFICATIONS DONE BY:			
(Add additional items if needed)	QA AEM		QC AEM		N/A
	Υ	N	Υ	N	
Lines and Grades	✓		√		
2. Free of ice/snow/water		✓		✓	
Cleaning of excavation bottom	√		✓		
4. Fill gradation (visual)					✓
5. Placement (lift thickness, segregation, etc.)					✓
6. Compaction					✓
7. As-built survey completed	√		✓		
8.					
9.					
10.					
11.					
12.					
13.					


DETAILS		<u>A</u>	PPRO'	VED BY	<u>;;</u>
(Refer to	er to list above for item #)		QA AEM		1
ITEM		Υ	N	Υ	N
2	The bottom of the excavation is composed of ice-rich till. The ice-rich till has been excavated to an average depth of 1.1m below the normal elevation of the bottom of the channel. The excavation could not have been done deeper due to safety reasons. The ice-rich material removed will be replaced by esker.	✓		√	

APPROVED BY:	<u>NAME</u>	SIGNATURE	DATE
CONTRACTOR REPRESENTATIVE	MANUEL BUSSIÈRES	(Jane)	2020-09-27
AEM QC REPRESENTATIVE	MIKAËL TURCOTTE	Mikail Turcotto	2020-09-27
AEM QA REPRESENTATIVE	PATRICE GAGNON		2020-09-27
OWNER'S REPRESENTATIVE	PATRICE GAGNON		

Figure 1: Ice removal approval between 0+090 and 0+125

ICE VEINS APPROVAL - 0+125 @ 0+090 IVR DIVERSION CHANNEL CONTRACT # 11-811

PREPARED BY : FRANCIS PAULIN DATE : 08-10-2020 CON-FD-364_REV1

PROJECT:		ľ	VR Diversion Constr	uction	
PROJECT #:	-	6127		DATE:	2020-09-28
DOCUMENT #:	-	20200928-F	DN-07	TIME:	8:00
	(YYYYN shift	MMDD-DS/NS-01) DS	S/NS = Day/Night	-	(24 hour clock)
COMPLETED BY (AEM QA REPRESENTATIVE)): Patrice (Gagnon			
APPROVAL FOR :		Foundation app	roval (trench bottom a	nd slope	s)
		Fill placement a	pproval:		
		Other:			
LOCATION			PREVIOUS APPROVAL	<u>.s</u>	
Station	0+090 to	0+149	Station:	0	+149 to 0+205
Inclination:			Details:	202	200924-FDN-01
ELEVATION : Varie	es	m			

COMPLIANCE WITH TECHNICAL SPECIFICATIONS:		VERIFICATIONS DONE BY:			
(Add additional items if needed)	QA AEM		QC AEM		N/A
	Υ	N	Υ	N	
Lines and Grades	✓		✓		
2. Free of ice/snow/water	✓		✓		
Cleaning of excavation bottom	✓		✓		
4. Fill gradation (visual)					✓
5. Placement (lift thickness, segregation, etc.)					✓
6. Compaction					✓
7. As-built survey completed	✓		✓		
8.					
9.					
10.					
11.					
12.					
13.					

DETAILS	<u>DETAILS</u> <u>APPRO</u>		PPRO	OVED BY:		
(Refer to	list above for item #)	QA AEN		QC AEN		
ITEM		Υ	N	Υ	N	
2	Ice-rich material removed over an average depth of 1.1m and replaced by esker between 0+090 and 0+125. Refer to 20200927-FDN-06 for details.	✓		√		

APPROVED BY:	NAME	SIGNATURE	DATE
CONTRACTOR REPRESENTATIVE	MANUEL BUSSIÈRES	(Jane	2020-09-28
AEM QC REPRESENTATIVE	MIKAËL TURCOTTE	Mikail Tarcotto	2020-09-28
AEM QA REPRESENTATIVE	PATRICE GAGNON		2020-09-28
OWNER'S REPRESENTATIVE	PATRICE GAGNON		

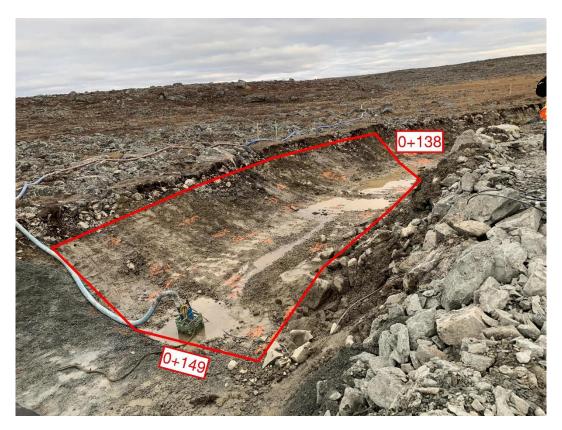


Figure 1: Foundation approval between 0+138 and 0+149

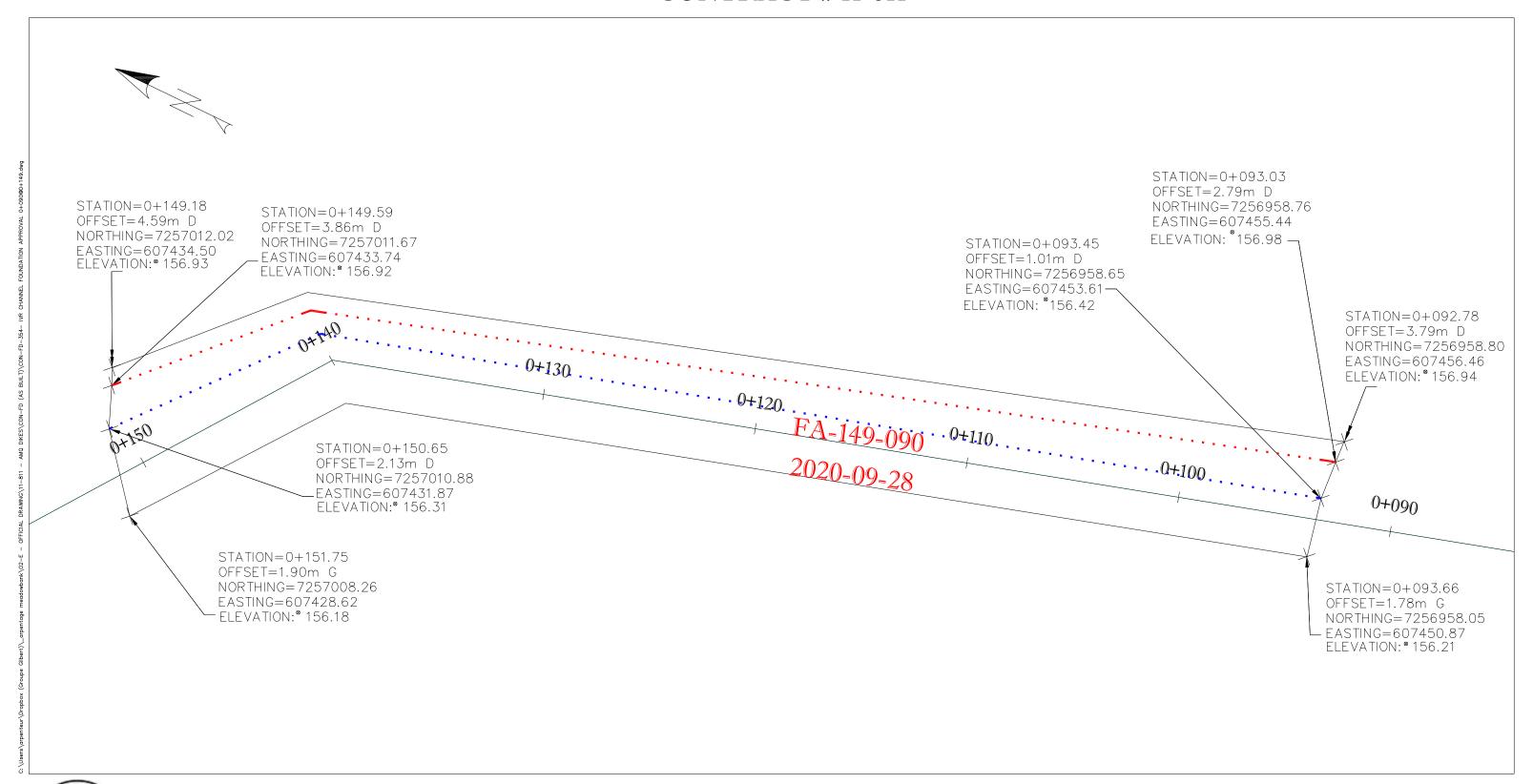


Figure 2: Foundation approval between 0+090 and 0+140

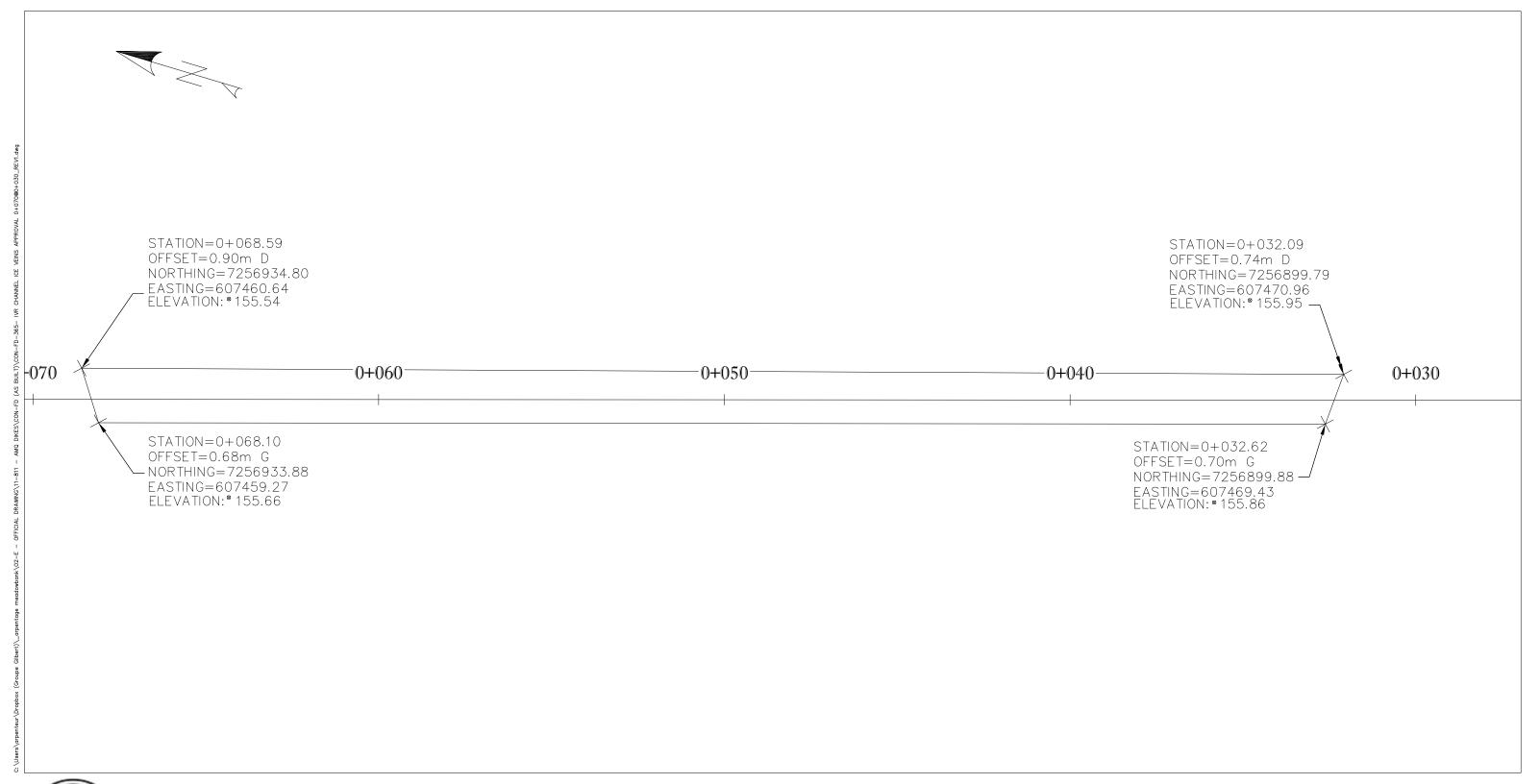
Figure 3: Foundation approval, different point of view

FOUNDATION APPROVAL - 0+149 @ 0+090 IVR DIVERSION CHANNEL CONTRACT # 11-811

PREPARED BY : FRANCIS PAULIN DATE : 07-10-2020 CON-FD-354 REV1

PROJECT:		IVR Diversion Construction				
PROJECT #:		6127		DATE:	2020-09-28	
DOCUMENT #:	-	20200928-FI	DN-08	TIME:	8:00	
	(YYYYN shift	MMDD-DS/NS-01) DS	/NS = Day/Night	_	(24 hour clock)	
COMPLETED BY (AE QA REPRESENTATI		Gagnon				
APPROVAL FOR :	$\overline{\checkmark}$	✓ Foundation approval (trench bottom and slopes)				
		Fill placement a	oproval:			
		Other:				
LOCATION			PREVIOUS APPROVAL	<u>s</u>		
Station	0+029 to	0+070	Station:		n/a	
Inclination:			Details:			
ELEVATION : V	aries	m				

COMPLIANCE WITH TECHNICAL SPECIFICATIONS:		VERIFICATIONS DONE BY:			
(Add additional items if needed)	QA AEM		QC AEM		N/A
	Υ	N	Υ	N	
Lines and Grades	✓		✓		
2. Free of ice/snow/water		✓		✓	
Cleaning of excavation bottom	✓		√		
4. Fill gradation (visual)					✓
5. Placement (lift thickness, segregation, etc.)					✓
6. Compaction					✓
7. As-built survey completed	✓		√		
8.					
9.					
10.					
11.					
12.					
13.					


DETAILS	<u>DETAILS</u>		PPRO'	VED BY	<u>′:</u>
(Refer to	Refer to list above for item #)		QA AEM		1
ITEM		Υ	N	Υ	N
2	The bottom of the excavation is composed of ice-rich till. The ice-rich till has been excavated to an average depth of 1.2m below the normal elevation of the bottom of the channel. The excavation could not have been done deeper due to safety reasons. The ice-rich material removed will be replaced by esker.	√		√	

APPROVED BY:	<u>NAME</u>	<u>SIGNATURE</u>	<u>DATE</u>
CONTRACTOR REPRESENTATIVE	MANUEL BUSSIÈRES	Wene	2020-09-28
AEM QC REPRESENTATIVE	MIKAËL TURCOTTE	Mikail Turcotto	2020-09-28
AEM QA REPRESENTATIVE	PATRICE GAGNON		2020-09-28
OWNER'S REPRESENTATIVE	PATRICE GAGNON		

Figure 1: Ice removal approval between 0+029 and 0+070

ICE VEINS APPROVAL - 0+070 @ 0+030 IVR DIVERSION CHANNEL CONTRACT # 11-811

PREPARED BY : FRANCIS PAULIN DATE : 08-10-2020

DATE: 08-10-2020 CON-FD-365_REV1

PROJECT :	IVR Diversion Construction					
PROJECT #:		6127		DATE:	2020-09-29	
DOCUMENT #:		20200929-FI	DN-09	TIME:	11:30	
	(YYYYM shift	1MDD-DS/NS-01) DS	S/NS = Day/Night	-	(24 hour clock)	
COMPLETED BY (AEM QA REPRESENTATIVE):	Patrice (Gagnon				
APPROVAL FOR :	V	✓ Foundation approval (trench bottom and slopes)				
		Fill placement a	pproval:			
		Other:				
LOCATION			PREVIOUS APPROVAL	<u>s</u>		
Station	0+029 to	0+090	Station:	0	+090 to 0+149	
Inclination:			Details:	20:	200928-FDN-07	
ELEVATION		m				

COMPLIANCE WITH TECHNICAL SPECIFICATIONS:		VERIFICATIONS DONE BY:			
(Add additional items if needed)	QA AEM		QC AEM		N/A
	Υ	N	Υ	N	
Lines and Grades	✓		✓		
2. Free of ice/snow/water		✓		✓	
Cleaning of excavation bottom	✓		√		
4. Fill gradation (visual)					✓
5. Placement (lift thickness, segregation, etc.)					✓
6. Compaction					✓
7. As-built survey completed	✓		√		
8.					
9.					
10.					
11.					
12.					
13.					

DETAILS	<u>APP</u>		PPRO	ROVED BY:		
(Refer to	list above for item #)	QA AEM		QC AEN		
ITEM		Υ	N	Υ	N	
2	Slight presence of snow on the foundation between 0+029 and 0+070. The amount is negligible and was removed progressively during fine filter placement.	~		✓		
2	Frozen material has been observed at station 0+073. The situation is localized only near the road on a small section. The frozen material was removed such that the bottom of the excavation is at the appropriate elevation, but no excess excavation was requested. From the results of the material testing done on frozen material of this section, the material is not ice-rich. Visual inspection also shows less than 10% visible ice.	✓		✓		

APPROVED BY:	<u>NAME</u>	SIGNATURE	<u>DATE</u>
CONTRACTOR REPRESENTATIVE	MANUEL BUSSIÈRES	Weng	2020-09-29
AEM QC REPRESENTATIVE	MIKAËL TURCOTTE	Mikail Turcotto	2020-09-29
AEM QA REPRESENTATIVE	PATRICE GAGNON		2020-09-29
OWNER'S REPRESENTATIVE	PATRICE GAGNON		

PROJECT:		IVR Diversion Construction				
PROJECT #:		6127		DATE:	2020-09-30	
DOCUMENT #:		20200930-F	DN-10	TIME:	8:00	
	(YYYYN shift	MMDD-DS/NS-01) DS	S/NS = Day/Night	(24 hour clock)		
COMPLETED BY (AEM QA REPRESENTATIVE):	Laurier (Collette				
APPROVAL FOR :	V	Foundation approval (trench bottom and slopes)				
		Fill placement approval:				
		Other:				
LOCATION			PREVIOUS APPROVAL	<u>s</u>		
Station	0-015 to	0+029	Station:	C	+029 to 0+090	
Inclination:			Details:	20	200929-FDN-09	
ELEVATION : varies		m				

COMPLIANCE WITH TECHNICAL SPECIFICATIONS:			VERIFICATIONS DONE BY:			
(Add additional items if needed)	QA AEM		QC AEM		N/A	
	Υ	N	Υ	N		
Lines and Grades	✓		✓			
2. Free of ice/snow/water		✓		✓		
Cleaning of excavation bottom	✓		√			
4. Fill gradation (visual)					✓	
5. Placement (lift thickness, segregation, etc.)					✓	
6. Compaction					✓	
7. As-built survey completed	✓		√			
8.						
9.						
10.						
11.						
12.						
13.						

DETAILS		<u>A</u>	PPRO	VED BY	<u>′:</u>
(Refer to	Refer to list above for item #)		QA AEM		1
ITEM		Υ	N	Υ	N
2	Presence of water at the bottom of excavation. Fill placement from upstream to downstream to push the water out before placing the material. Remove and replace the fill by appropriate material when it becomes oversaturated with water/mud.	✓		✓	

APPROVED BY:	<u>NAME</u>	SIGNATURE	DATE
CONTRACTOR REPRESENTATIVE	MANUEL BUSSIÈRES	Wene	2020-09-30
AEM QC REPRESENTATIVE	MIKAËL TURCOTTE	Mikail Turcotto	2020-09-30
AEM QA REPRESENTATIVE	LAURIER COLLETTE		2020-09-30
OWNER'S REPRESENTATIVE	LAURIER COLLETTE		

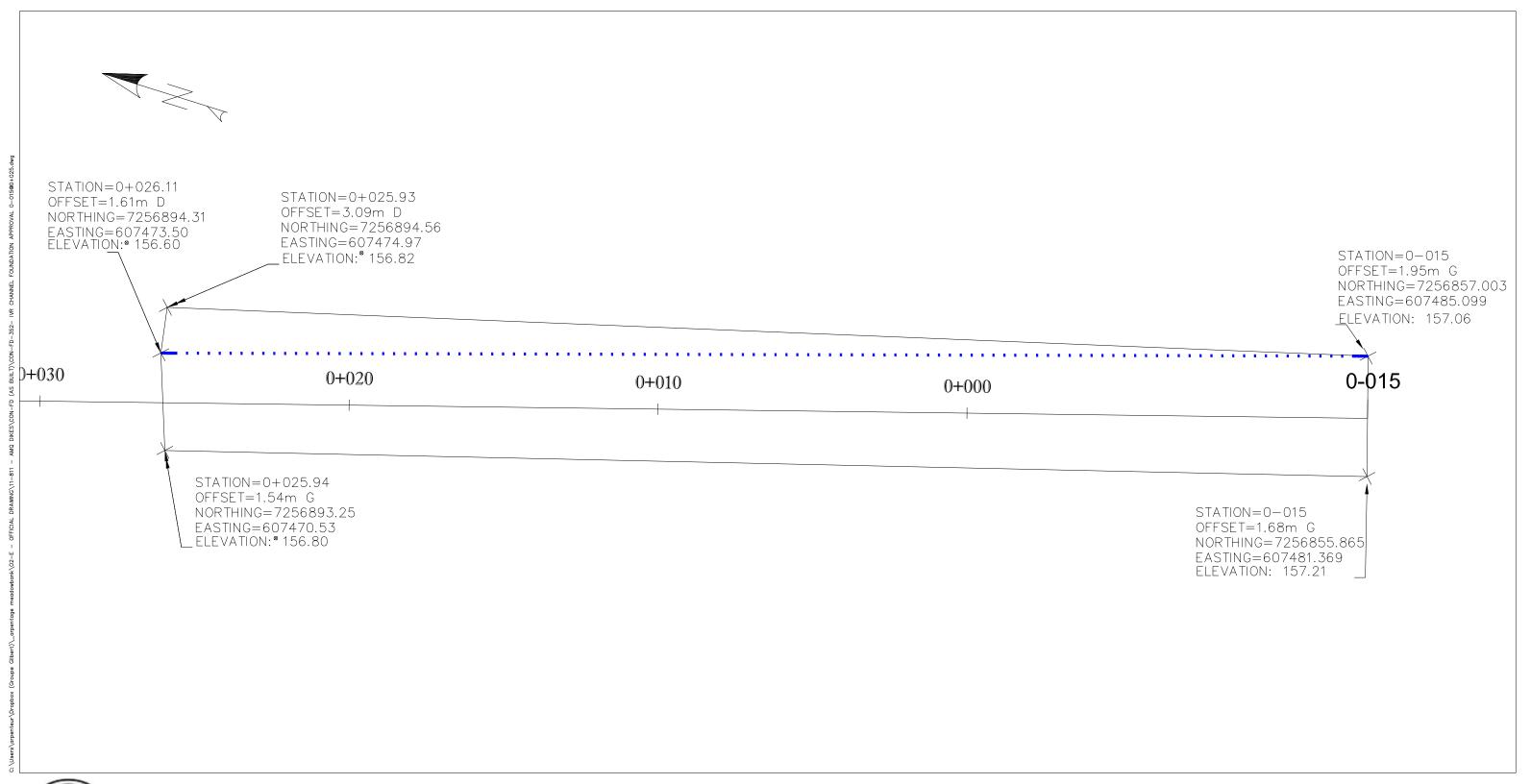


Figure 1: Foundation approval between 0-010 and 0+029

Figure 2: Approval between 0-015 and 0-010

FOUNDATION APPROVAL - 0+026 @ 0-015 IVR DIVERSION CHANNEL CONTRACT # 11-811

PREPARED BY : FRANCIS PAULIN DATE : 07-10-2020 CON-FD-352_REV1

				VD D1	4.		
PROJECT:			ľ	VR Diversion Construction			
PROJECT #:			6127		DATE:	2020-10-02	
DOCUMENT #	:		20201002-F	DN-11	TIME:	18:00	
		(YYYYN shift	MMDD-DS/NS-01) DS	S/NS = Day/Night	-	(24 hour clock)	
COMPLETED QA REPRESE		Laurier (Collette				
APPROVAL F	OR :	V	Foundation app	roval (trench bottom a	nd slop	es)	
			Fill placement a	pproval:			
			Other:				
LOCATION				PREVIOUS APPROVAL	<u>.s</u>		
Station	(0+155 to	0+240	Station:		varies	
					2	0200924-FDN-01	
Inclination:				Details:	20	0200925-FDN-02	
					20	0200926-FDN-04	
ELEVATION :	✓ varies		m				

COMPLIANCE WITH TECHNICAL SPECIFICATIONS:	VERIFICATIONS DONE BY					
(Add additional items if needed)	-	QA AEM		QC AEM		
	Υ	N	Υ	N		
1. Lines and Grades	✓		✓			
2. Free of ice/snow/water		√		✓		
3. Cleaning of excavation bottom	✓		✓			
4. Fill gradation (visual)					✓	
5. Placement (lift thickness, segregation, etc.)					✓	
6. Compaction					✓	
7. As-built survey completed	✓		✓			
8.						

DETAILS	<u>ETAILS</u>		PPRO	ROVED BY:	
(Refer to	o list above for item #)	QA AEM		QC AEM	
ITEM		Y	N	Υ	N
2	Presence of water at the bottom of the slope. The remaining part of the slope is free from ice, snow and water.	✓		✓	
3	Slope is well cleaned, rocks over the top of the slope were removed by hand. Non-conforming material like organic material or soaked material has been excavated and replaced by well-compacted fine filter. The locations at which material was removed and replaced by fine filter are from 0+155 to 0+166, 0+195 to 0+205 and 0+230 to 0+240.	~		✓	

APPROVED BY:	<u>NAME</u>	<u>SIGNATURE</u>	<u>DATE</u>
CONTRACTOR REPRESENTATIVE	MANUEL BUSSIÈRES	Weng	2020-10-02
AEM QC REPRESENTATIVE	MIKAËL TURCOTTE	Mikail Tarcotto	2020-10-02
AEM QA REPRESENTATIVE	LAURIER COLLETTE		2020-10-02
OWNER'S REPRESENTATIVE	LAURIER COLLETTE		

Figure 1: Approval between 0+155 and 0+165

Figure 2: Approval between 0+165 and 0+230

Figure 3: Approval between 0+230 and 0+240

SLOPE EXCAVATION APPROVAL - 0+240 @ 0+155 IVR DIVERSION CHANNEL CONTRACT # 11-811

PREPARED BY : FRANCIS PAULIN DATE : 07-10-2020 CON-FD-367

PROJECT :			ľ	VR Diversion Const	ruction		
PROJECT #:			6127		DATE:	2020-10-03	
DOCUMENT #	t:		20201003-F	DN-12	TIME:	8:00	
		(YYYYN shift	MMDD-DS/NS-01) DS	S/NS = Day/Night	(24 hour clock)		
COMPLETED QA REPRESE		Laurier	Collette				
Fill placement				roval (trench bottom a		·	
			Other.				
LOCATION				PREVIOUS APPROVAL	<u>.s</u>		
Station	0-	+240 to	0+284.5	Station:		varies	
					2	0200926-FDN-04	
Inclination:				Details:	2	0200926-FDN-05	
					2	0201002-FDN-11	
ELEVATION :	varies		m				

COMPLIANCE WITH TECHNICAL SPECIFICATIONS:		VERIFICATIONS DONE BY						
(Add additional items if needed)	-	QA AEM		QC AEM				
	Υ	N	Υ	N				
1. Lines and Grades	✓		✓					
2. Free of ice/snow/water		√		✓				
3. Cleaning of excavation bottom	✓		√					
4. Fill gradation (visual)					✓			
5. Placement (lift thickness, segregation, etc.)					✓			
6. Compaction					✓			
7. As-built survey completed	✓		√					
8.								

DETAILS	DETAILS Refer to list above for item #)		PPRO	VED BY	<u>/:</u>
(Refer to			QA AEM		; VI
ITEM		Y	N	Υ	N
2	Presence of water at the bottom of the slope and snow on the foundation. The snow layer thickness on top of the foundation is so small that it can be neglected.	✓		✓	
2	Frozen material was found at 0+250. The sample IVR-EX-17 has been taken to the lab for ice content analysis. The ice content of the sample was less than 30%, but the decision was already taken to leave the material in place because the amount of frozen material found was minimal.	√		√	
3	Slope is well cleaned, rocks over the top of the slope were removed by hand.	✓		✓	

APPROVED BY:	<u>NAME</u>	SIGNATURE	DATE
CONTRACTOR REPRESENTATIVE	MANUEL BUSSIÈRES	Wene	2020-10-03
AEM QC REPRESENTATIVE	MIKAËL TURCOTTE	Mikael Turcotto	2020-10-03
AEM QA REPRESENTATIVE	LAURIER COLLETTE		2020-10-03
OWNER'S REPRESENTATIVE	LAURIER COLLETTE		

PROJECT:			ľ	VR Diversion Constr	uction	
PROJECT #:			6127		DATE:	2020-10-03
DOCUMENT #	ŧ	-	20201003-F	DN-13	TIME:	15:30
		(YYYYN shift	MMDD-DS/NS-01) DS	S/NS = Day/Night	•	(24 hour clock)
COMPLETED QA REPRESE		Laurier (Collette			
APPROVAL F	OR :	V	Foundation appr	roval (trench bottom a	nd slop	es)
			Fill placement a	pproval:		
			Other:			
LOCATION				PREVIOUS APPROVAL	<u>s</u>	
Station	(0+090 to	0+155	Station:		varies
					20)200924-FDN-01
Inclination:				Details:	20)200928-FDN-07
					20)201002-FDN-11
ELEVATION :	varies		m			

COMPLIANCE WITH TECHNICAL SPECIFICATIONS:	<u>\</u>	VERIFICATIONS DONE BY						
(Add additional items if needed)	QA AEM		QC AEM	N/A				
	Υ	N	Υ	N				
1. Lines and Grades	✓		√					
2. Free of ice/snow/water		√		✓				
3. Cleaning of excavation bottom	✓		✓					
4. Fill gradation (visual)					✓			
5. Placement (lift thickness, segregation, etc.)					✓			
6. Compaction					√			
7. As-built survey completed	✓		√					
8.								

DETAILS	ì	APPROVE		/ED BY:		
(Refer to	o list above for item #)	QA AEN		QC AEM		
ITEM		Υ	N	Υ	N	
2	Presence of water at the bottom of the slope. Water entry from under the road at 0+145. Material has been excavated and replaced by well compacted fined filter. Water was still coming out, but the flow was considerably reduced.	✓		✓		
3	Slope is well cleaned, rocks over the top of the slope were removed by hand. Nonconforming material like oversaturated mud and organic material was identified (Figure 1), removed (Figure 2) and replaced by well compacted fine filter (Figure 3). Material was removed and replaced by fine filter from 0+130 to 0+140 and from 0+145 to 0+150.	✓		✓		

APPROVED BY:	<u>NAME</u>	SIGNATURE	<u>DATE</u>
CONTRACTOR REPRESENTATIVE	MANUEL BUSSIÈRES	Weng	2020-10-03
AEM QC REPRESENTATIVE	MIKAËL TURCOTTE	Mikail Turcotto	2020-10-03
AEM QA REPRESENTATIVE	LAURIER COLLETTE		2020-10-03
OWNER'S REPRESENTATIVE	LAURIER COLLETTE		

Figure 1: Approval between 0+140 and 0+155

Figure 2: Material excavated near 0+140

Figure 3: Excavated material replaced by well-compacted fine filter

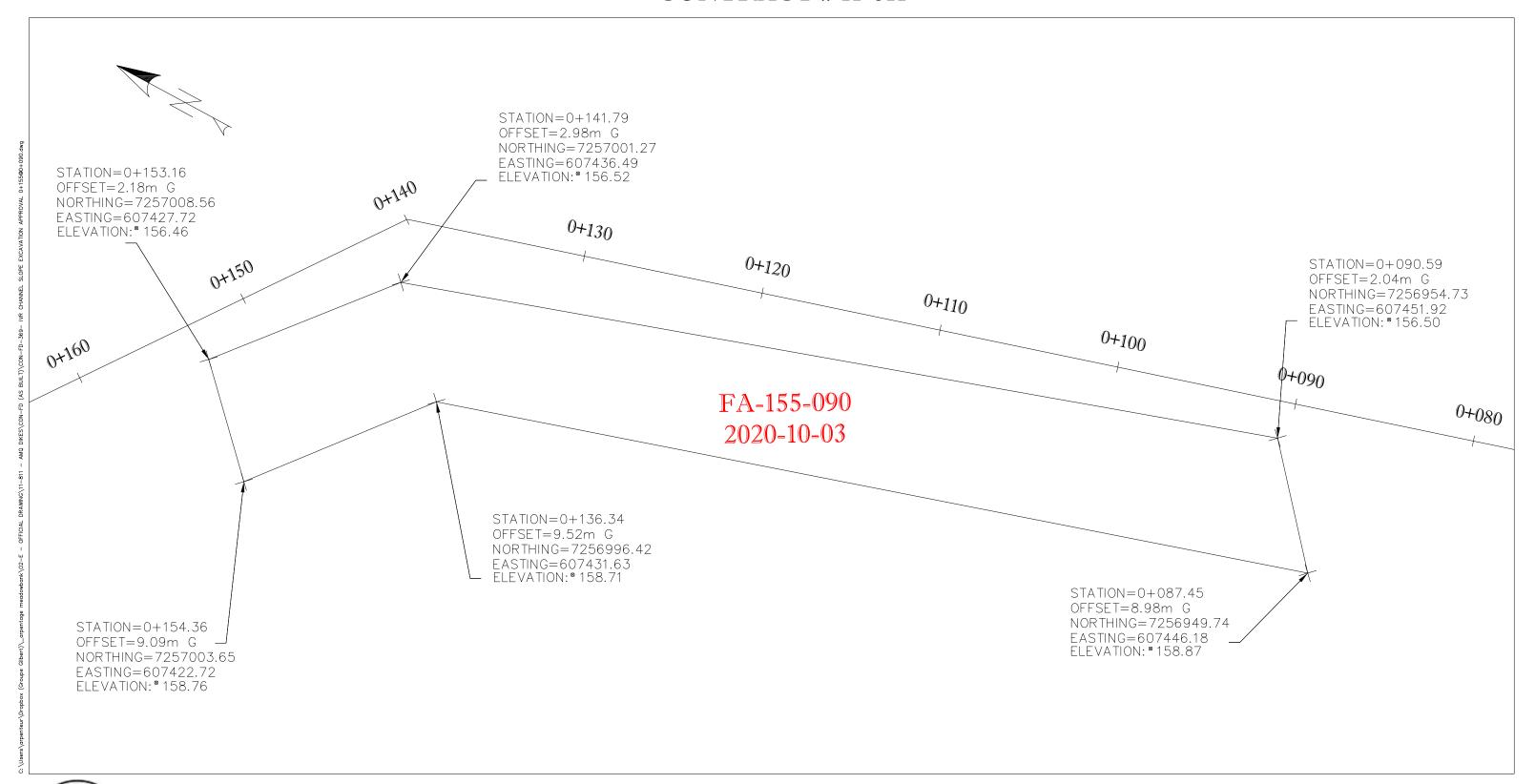


Figure 4: Approval between 0+090 and 0+140

Figure 5: Alternate view of approval between 0+090 and 0+130

SLOPE EXCAVATION APPROVAL - 0+155 @ 0+090 IVR DIVERSION CHANNEL CONTRACT # 11-811

PREPARED BY : FRANCIS PAULIN DATE : 07-10-2020 CON-FD-369

PROJECT :			ľ	VR Diversion Constr	uction		
PROJECT #:			6127	VIC DIVERSION CONST	DATE:	2020-10-04	
DOCUMENT #	:	-	20201004-F	DN-14	TIME:	10:30	
		(YYYYN	MMDD-DS/NS-01) DS	NS = Day/Night	-	(24 hour clock)	
COMPLETED QA REPRESE		Laurier (Collette				
APPROVAL F	OR :	☑ Foundation approval (trench bottom and slopes)					
			Fill placement a	pproval:			
			Other:				
LOCATION				PREVIOUS APPROVAL	<u>.S</u>		
Station		0-015 to	0+090	Station:		varies	
					20	0200929-FDN-09	
Inclination:				Details:	20	0200930-FDN-10	
					20	0201003-FDN-13	
ELEVATION :	✓ varies		m				

COMPLIANCE WITH TECHNICAL SPECIFICATIONS:			VERIFICATIONS DONE BY:				
(Add additional items if needed)	QA AEN		QC AEM		N/A		
	Υ	N	Υ	N			
1. Lines and Grades	✓		✓				
2. Free of ice/snow/water		✓		✓			
Cleaning of excavation bottom	✓		✓				
4. Fill gradation (visual)					✓		
5. Placement (lift thickness, segregation, etc.)					✓		
6. Compaction					✓		
7. As-built survey completed	✓		✓				
8.							

DETAIL	<u>ILS</u>		PPRO	VED BY	ED BY:	
(Refer t	o list above for item #)	QA AEN		QC AEM		
ITEM		Υ	N	Υ	N	
2	Presence of water at the bottom of the slope. A pump was placed near 0+010 to remove excess water before fine filter placement. (Figure 5)	✓		✓		
3	Slope is well cleaned, rocks over the top of the slope were removed by hand. Nonconforming material like oversaturated mud and organic material was identified, removed and replaced by well compacted fine filter from 0+010 to 0+040 and from 0+080 to 0+090.	✓		✓		

APPROVED BY:	<u>NAME</u>	<u>SIGNATURE</u>	<u>DATE</u>
CONTRACTOR REPRESENTATIVE	MANUEL BUSSIÈRES	(Jana)	2020-10-04
AEM QC REPRESENTATIVE	MIKAËL TURCOTTE	Mikail Turcotto	2020-10-04
AEM QA REPRESENTATIVE	LAURIER COLLETTE	·	2020-10-04
OWNER'S REPRESENTATIVE	LAURIER COLLETTE		

Figure 1: Approval between 0+080 and 0+090

Figure 2: Approval between 0+070 and 0+080

Figure 3: Approval between 0+040 and 0+080

Figure 4: Approval between 0-015 and 0+040

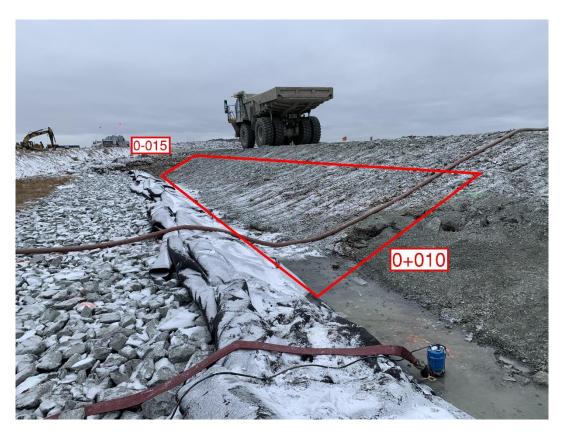


Figure 5: Approval between 0-015 and 0+010

Figure 6: Material removed between 0+010 and 0+030

SLOPE EXCAVATION APPROVAL - 0+090 @ 0-015 IVR DIVERSION CHANNEL CONTRACT # 11-811

PREPARED BY : FRANCIS PAULIN DATE : 07-10-2020 CON-FD-370

PROJECT:		IVR Diversion Construction					
PROJECT #:		6127		DATE:	2020-09-27		
DOCUMENT #:		20200927-0	ST-01	TIME:	15:30		
	(YYYYN shift	MMDD-DS/NS-01) DS	/NS = Day/Night	_	(24 hour clock)		
COMPLETED BY (AEM QA REPRESENTATIVE)	: Patrice	Gagnon					
APPROVAL FOR :		Foundation appr	oval (trench bottom a	nd slope	s)		
		Fill placement ap	oproval:				
	$\overline{\checkmark}$	Other: Geotexti	le				
LOCATION			PREVIOUS APPROVAL	<u>.s</u>			
Station	0+149 to	0+284.5	Station:		n/a		
Inclination:			Details:				
ELEVATION	es	m					

COMPLIANCE WITH TECHNICAL SPECIFICATIONS:			VERIFICATIONS DONE BY:			
(Add additional items if needed)	QA AEM		QC AEM		N/A	
	Y	N	Υ	N		
Lines and Grades	✓		✓			
2. Free of ice/snow/water		✓		✓		
Cleaning of excavation bottom	✓		√			
4. Fill gradation (visual)					✓	
5. Placement (lift thickness, segregation, etc.)					✓	
6. Compaction					✓	
7. As-built survey completed	✓		✓			
8. Overlaps continuous and over 600mm	✓		✓			
9. Free of defects/holes	✓		✓			
10.						
11.						
12.						
13.						

DETAILS	<u>ETAILS</u>		PPRO	/ED BY:		
(Refer to	list above for item #)	QA AEN		QC AEM		
ITEM		Y	N	Υ	N	
2	Presence of water at some locations.	✓		✓		
N/A	2 layers of Novatex V	✓		✓		

APPROVED BY:	<u>NAME</u>	SIGNATURE	DATE
CONTRACTOR REPRESENTATIVE	MANUEL BUSSIÈRES	Wener)	2020-09-27
AEM QC REPRESENTATIVE	MIKAËL TURCOTTE	Mikail Turcotto	2020-09-27
AEM QA REPRESENTATIVE	PATRICE GAGNON		2020-09-27
OWNER'S REPRESENTATIVE	PATRICE GAGNON		

Figure 1: Overlaps are conforming to technical requirements

Figure 2: Geotextile between 0+225 and 0+240

Figure 3: Geotextile between 0+190 and 0+220

Figure 4: Global view of the geotextile between 0+149 and 0+285

PROJECT:	IVR Diversion Construction					
PROJECT #:		6127		DATE:	2020-09-27	
DOCUMENT #:		20200929-0	GT-02	TIME:	15:30	
	(YYYYN shift	1MDD-DS/NS-01) DS	/NS = Day/Night	•	(24 hour clock)	
COMPLETED BY (AEM QA REPRESENTATIVE):	Mikaël ⁻	Turcotte				
APPROVAL FOR :		Foundation approval (trench bottom and slopes)				
		Fill placement a	oproval:			
	\checkmark	Other: Geotexti	le			
LOCATION			PREVIOUS APPROVAL	<u>s</u>		
Station	0+032 to	0+149	Station:	0+	-149 to 0+284.5	
Inclination:			Details:	20	0200927-GT-01	
ELEVATION : varies		m				

COMPLIANCE WITH TECHNICAL SPECIFICATIONS:			VERIFICATIONS DONE BY:			
(Add additional items if needed)	QA AEM		QC AEM		N/A	
	Υ	N	Υ	N		
Lines and Grades			✓			
2. Free of ice/snow/water				✓		
Cleaning of excavation bottom			✓			
4. Fill gradation (visual)					✓	
5. Placement (lift thickness, segregation, etc.)					✓	
6. Compaction					✓	
7. As-built survey completed			✓			
8. Overlaps continuous and over 600mm			√			
9. Free of defects/holes			√			
10.						
11.						
12.						
13.						

DETAIL	<u>rails</u>		PPRO	OVED BY:	
(Refer to	o list above for item #)	QA AEM		QC AEM	
ITEM		Υ	N	Υ	N
2	Presence of water at some locations.	✓		√	
N/A	2 layers Novatex V used for most of the approval 2 layers of Mirafi 1100N used near 0+060. Only 3-4 pieces were used for this section.	~		✓	

APPROVED BY:	<u>NAME</u>	SIGNATURE	<u>DATE</u>
CONTRACTOR REPRESENTATIVE	MANUEL BUSSIÈRES	Weng	2020-09-29
AEM QC REPRESENTATIVE	MIKAËL TURCOTTE	Mikail Tarcotto	2020-09-29
AEM QA REPRESENTATIVE	LAURIER COLLETTE		2020-09-29
OWNER'S REPRESENTATIVE	LAURIER COLLETTE		

Figure 1: Geotextile between 0+120 and 0+130

Figure 2: Geotextile between 0+090 and 0+110

Figure 3: Geotextile between 0+032 and 0+070

PROJECT:		IVR Diversion Construction				
PROJECT #:		6127		DATE:	2020-09-30	
DOCUMENT #:		20200930-0	ST-03	TIME:	11:00	
	(YYYYN shift	MMDD-DS/NS-01) DS	i/NS = Day/Night		(24 hour clock)	
COMPLETED BY (AEM QA REPRESENTATIVE):	Laurier (Collette				
APPROVAL FOR :		Foundation approval (trench bottom and slopes)				
		Fill placement a	oproval:			
	\checkmark	Other: Geotexti	le			
LOCATION			PREVIOUS APPROVAL	<u>s</u>		
Station	0-015 to	0+032	Station:	0	+032 to 0+149	
Inclination:			Details:	20	0200929-GT-02	
ELEVATION : varies		m				

COMPLIANCE WITH TECHNICAL SPECIFICATIONS:			VERIFICATIONS DONE BY:					
(Add additional items if needed)		QA AEM		; VI	N/A			
	Y	N	Υ	N				
1. Lines and Grades	✓		✓					
2. Free of ice/snow/water	✓		✓					
Cleaning of excavation bottom	✓		✓					
4. Fill gradation (visual)					✓			
5. Placement (lift thickness, segregation, etc.)					✓			
6. Compaction					✓			
7. As-built survey completed	✓		✓					
8. Overlaps continuous and over 600mm	✓		√					
9. Free of defects/holes	✓		√					
10.								
11.								
12.								
13.								

DETAILS	<u>ETAILS</u>		PPRO	VED BY:		
(Refer to	list above for item #)		QA AEM		; VI	
ITEM		Y	N	Υ	N	
N/A	2 layers of Mirafi 1100N used for this approval.	✓		✓		

APPROVED BY:	<u>NAME</u>	SIGNATURE	DATE
CONTRACTOR REPRESENTATIVE	MANUEL BUSSIÈRES	Wene	2020-09-30
AEM QC REPRESENTATIVE	MIKAËL TURCOTTE	Mikail Turcotto	2020-09-30
AEM QA REPRESENTATIVE	LAURIER COLLETTE		2020-09-30
OWNER'S REPRESENTATIVE	LAURIER COLLETTE		

Figure 1: Final geotextile between 0-015 and 0+032

PROJECT:				VR Diversion Const	ruction	
PROJECT #:			6127		DATE:	2020-10-03
DOCUMENT #	ŧ		20201003-0	GT-04	TIME:	17:00
		(YYYYN shift	MMDD-DS/NS-01) D	S/NS = Day/Night	_	(24 hour clock)
COMPLETED QA REPRESE		Laurier (Collette			
APPROVAL F	OR:	0	Foundation app	roval (trench bottom	and slop	es)
		$\overline{\checkmark}$	Other: Geotext	• •		
				1		
LOCATION				PREVIOUS APPROVA	<u>LS</u>	
Station	0	+140 to	0+284.5	Station	:	Varies
Inclination:				- Details:		20200927-GT-01
incimation.				Details		20200929-GT-02
ELEVATION :	✓ varies		m	1		

COMPLIANCE WITH TECHNICAL SPECIFICATIONS:	<u>v</u>	VERIFICATIONS DONE BY:					
(Add additional items if needed)	· ·	QA AEM		; VI	N/A		
	Υ	N	Υ	N			
Lines and Grades	✓		✓				
2. Free of ice/snow/water		✓		✓			
Cleaning of excavation bottom	✓		✓				
4. Fill gradation (visual)					✓		
5. Placement (lift thickness, segregation, etc.)					✓		
6. Compaction					✓		
7. As-built survey completed	✓		√				
8. Overlaps continuous and over 600mm	✓		√				
9. Free of defects/holes		✓		√			
10.							
11.							
12.							
13.							

DETAILS	i	APPROVE QA AEM		VED BY	/ED BY:		
(Refer to	o list above for item #)			QC AEM			
ITEM		Y	N	Υ	N		
2	Presence of water at the bottom of the slope. Some geotextile rolls were frozen and needed to be thawed before unrolling.	✓		√			
9	Holes observed at some locations. All the holes identified are appropriately patched.	✓		✓			
N/A	2 layers of Novatex V						

APPROVED BY:	<u>NAME</u>	SIGNATURE	DATE
CONTRACTOR REPRESENTATIVE	MANUEL BUSSIÈRES	(Jana)	2020-10-03
AEM QC REPRESENTATIVE	MIKAËL TURCOTTE	Mikail Turcotto	2020-10-03
AEM QA REPRESENTATIVE	LAURIER COLLETTE		2020-10-03
OWNER'S REPRESENTATIVE	LAURIER COLLETTE		

PROJECT:			ľ	VR Diversion Cons	truction		
PROJECT #:			6127		DATE:	2020-10-04	
DOCUMENT #	:		20201004-0	GT-05	TIME:	17:00	
		(YYYYN shift	MMDD-DS/NS-01) DS	S/NS = Day/Night		(24 hour clock)	
COMPLETED BY (AEM QA REPRESENTATIVE):		Laurier (Collette				
APPROVAL FOR :			Foundation app	roval (trench bottom	and slop	es)	
			Fill placement approval:				
		$\overline{\checkmark}$	Other: Geotextile				
LOCATION				PREVIOUS APPROVA	LS		
Station		0-015 to	0+140	Station	:	Varies	
Inclination:				Details	2	20200929-GT-02	
micimation.				Details	. 2	20200930-GT-03	
ELEVATION :	✓ varies		m				

VERIFICATIONS DONE BY:				
QA AEM		QC AEM		N/A
Y	N	Υ	N	
✓		✓		
	✓		✓	
✓		✓		
				✓
				✓
				✓
✓		√		
✓		√		
	✓		√	
	QA AEM Y	QA AEM Y N ✓ ✓ ✓	QA AEM AEM Y N Y ✓ ✓ ✓ ✓ ✓ ✓	QA

DETAILS		<u>A</u>	PPRO'	VED BY	<u>/:</u>
(Refer to	Refer to list above for item #)		QA AEM		; VI
ITEM		Υ	N	Υ	N
2	Presence of water at the bottom. Some geotextile rolls were frozen and needed to be thawed before unrolling.	✓		✓	
9	Holes observed at some locations. All the holes identified are appropriately patched.	✓		✓	
N/A	2 layers of novatex V for most of the section between 0+032 and 0+140. 2 layers of Mirafi 1100N from 0-015 to 0+032 and 3-4 pieces used near 0+060.	✓		✓	

APPROVED BY:	<u>NAME</u>	SIGNATURE	<u>DATE</u>
CONTRACTOR REPRESENTATIVE	MANUEL BUSSIÈRES	Wenn	2020-10-04
AEM QC REPRESENTATIVE	MIKAËL TURCOTTE	Mikail Turcotto	2020-10-04
AEM QA REPRESENTATIVE	LAURIER COLLETTE		2020-10-04
OWNER'S REPRESENTATIVE	LAURIER COLLETTE		

Figure 1: Geotextile between 0-015 and 0+020

Figure 2: Geotextile between 0+050 and 0+090

PROJECT:		IVR Diversion Construction					
PROJECT #:		6127		DATE:	2020-09-30		
DOCUMENT #:		20200930-R	R-01	TIME:	17:00		
	(YYYYN shift	MMDD-DS/NS-01) DS	/NS = Day/Night		(24 hour clock)		
COMPLETED BY (AEM QA REPRESENTATIVE):	Laurier (Collette					
APPROVAL FOR :		Foundation appr	oval (trench bottom a	nd slope	s)		
		Other:					
LOCATION			PREVIOUS APPROVAL	<u>s</u>			
Station)-015 to	0+284.5	Station:		n/a		
Inclination:			Details:				
ELEVATION varies		m					

COMPLIANCE WITH TECHNICAL SPECIFICATIONS:		VERIFICATIONS DONE BY:			
(Add additional items if needed)	QA AEM		QC AEM		N/A
	Υ	N	Y	N	
Lines and Grades	√		✓		
2. Free of ice/snow/water	✓		√		
Cleaning of excavation bottom	✓		√		
4. Fill gradation (visual)		√		√	
5. Placement (lift thickness, segregation, etc.)	√		✓		
6. Compaction					✓
7. As-built survey completed	✓		√		
8.					
9.					
10.					
11.					
12.					
13.					

DETAILS		APPRO		OVED BY:		
(Refer to	list above for item #)				QC AEM	
ITEM		Υ	N	Υ	N	
4	Too much fines at some locations. The situation is not generalized, but before the final approval all the fine material visible will have to be removed by hand.	✓		✓		
5	Placement at both ends of the channel needs to be finalized before final approval.	✓		✓		

APPROVED BY:	<u>NAME</u>	SIGNATURE	DATE
CONTRACTOR REPRESENTATIVE	MANUEL BUSSIÈRES	Wang)	2020-09-30
AEM QC REPRESENTATIVE	MIKAËL TURCOTTE	Mikail Turcotto	2020-09-30
AEM QA REPRESENTATIVE	LAURIER COLLETTE		2020-09-30
OWNER'S REPRESENTATIVE	LAURIER COLLETTE		

Figure 1: Nonconforming material to be removed before final approval

Figure 2: Riprap between 0-015 and 0+140

Figure 3: Riprap between 0-015 and 0+130

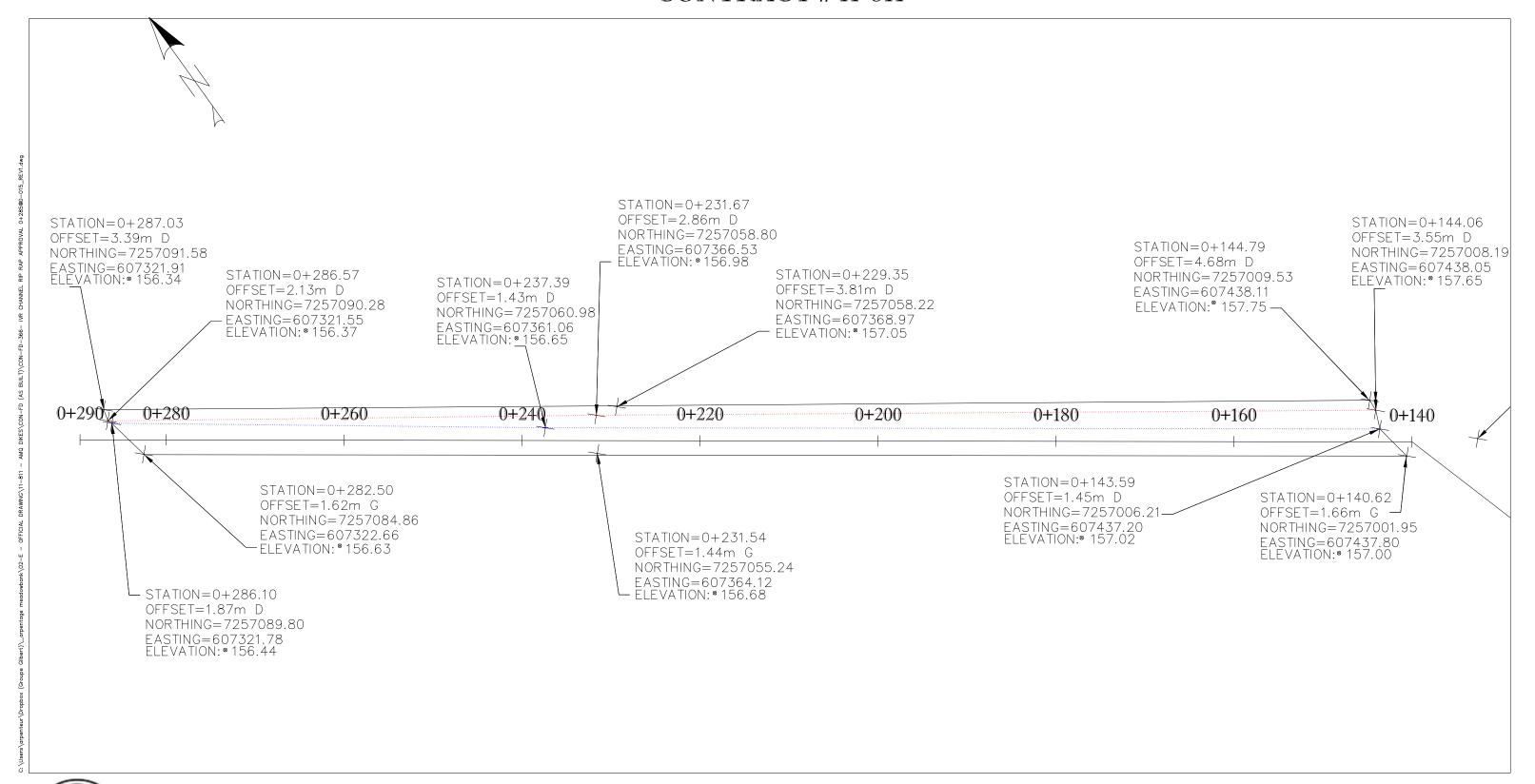
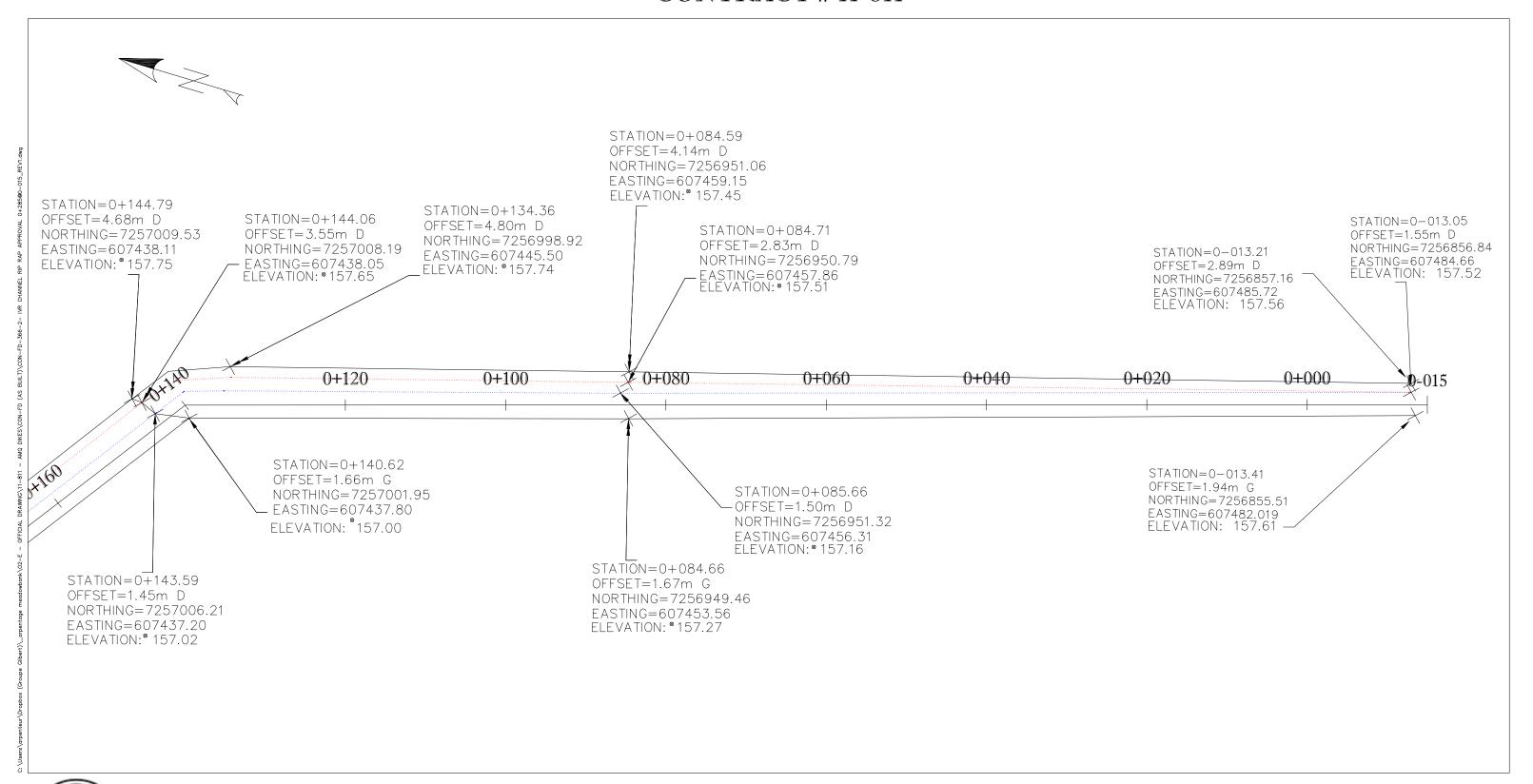


Figure 4: Riprap between 0+140 and 0+285

Figure 5: Riprap between 0+140 and 0+285


RIP RAP APPROVAL - 0+285 @ 0-140 IVR DIVERSION CHANNEL CONTRACT # 11-811

PREPARED BY : FRANCIS PAULIN DATE : 08-10-2020 CON-FD-366-1 REV1

RIP RAP APPROVAL - 0+140 @ 0--015 IVR DIVERSION CHANNEL CONTRACT # 11-811

PREPARED BY : FRANCIS PAULIN DATE : 08-10-2020

CON-FD-366-2 REV1

PROJECT:		ľ	VR Diversion Constr	uction		
PROJECT #:		6127		DATE:	2020-10-06	
DOCUMENT #:		20201006-F	RR-02	TIME:	14:00	
	(YYYYN shift	MMDD-DS/NS-01) DS	/NS = Day/Night		(24 hour clock)	
COMPLETED BY (AEM QA REPRESENTATIVE):	Laurier (Collette				
APPROVAL FOR :		Foundation approval (trench bottom and slopes)				
	\checkmark	Fill placement approval: Riprap				
		Other:				
LOCATION			PREVIOUS APPROVAL	<u>s</u>		
Station	0-015 to	0+290	Station:	0-	·015 to 0+284.5	
Inclination:			Details:	20	0200930-RR-01	
ELEVATION : varies		m				

COMPLIANCE WITH TECHNICAL SPECIFICATIONS:		VERIFICATIONS DONE BY:			
(Add additional items if needed)	QA AEM		QC AEM		N/A
	Υ	N	Υ	N	
Lines and Grades	✓		✓		
2. Free of ice/snow/water	✓		✓		
Cleaning of excavation bottom	✓		√		
4. Fill gradation (visual)	✓		✓		
5. Placement (lift thickness, segregation, etc.)	√		✓		
6. Compaction					✓
7. As-built survey completed	✓		✓		
8.					
9.					
10.					
11.					
12.					
13.					

DETAILS		<u>A</u>	PPRO	VED BY	<u>/:</u>
(Refer to	list above for item #)		QA AEM		; VI
ITEM		Υ	N	Υ	N
4	All the sectors with too much fine material were identified and the fine material was removed by hand.	✓		√	

APPROVED BY:	<u>NAME</u>	SIGNATURE	DATE
CONTRACTOR REPRESENTATIVE	MANUEL BUSSIÈRES	Deng	2020-10-06
AEM QC REPRESENTATIVE	MIKAËL TURCOTTE	Mikael Tarcotto	2020-10-06
AEM QA REPRESENTATIVE	LAURIER COLLETTE		2020-10-06
OWNER'S REPRESENTATIVE	LAURIER COLLETTE		

Figure 1: Fine material removal by hand

Figure 2: Riprap after fine material removal

Figure 3: Riprap between 0-015 and 0+020

Figure 4: Riprap between 0+020 and 0+140

Figure 5: Riprap between 0-015 and 0+100

Figure 6: Riprap between 0+140 and 0+200

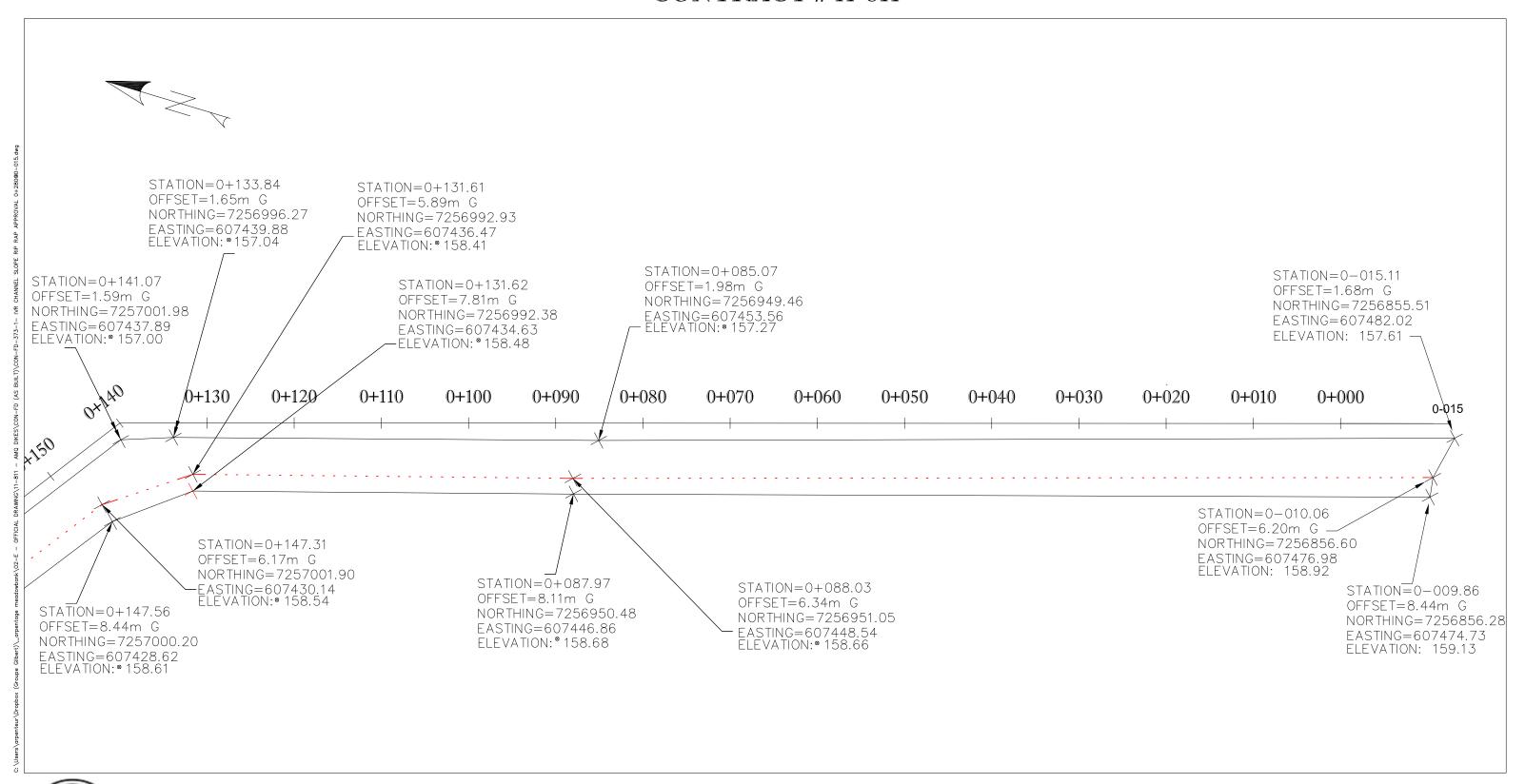
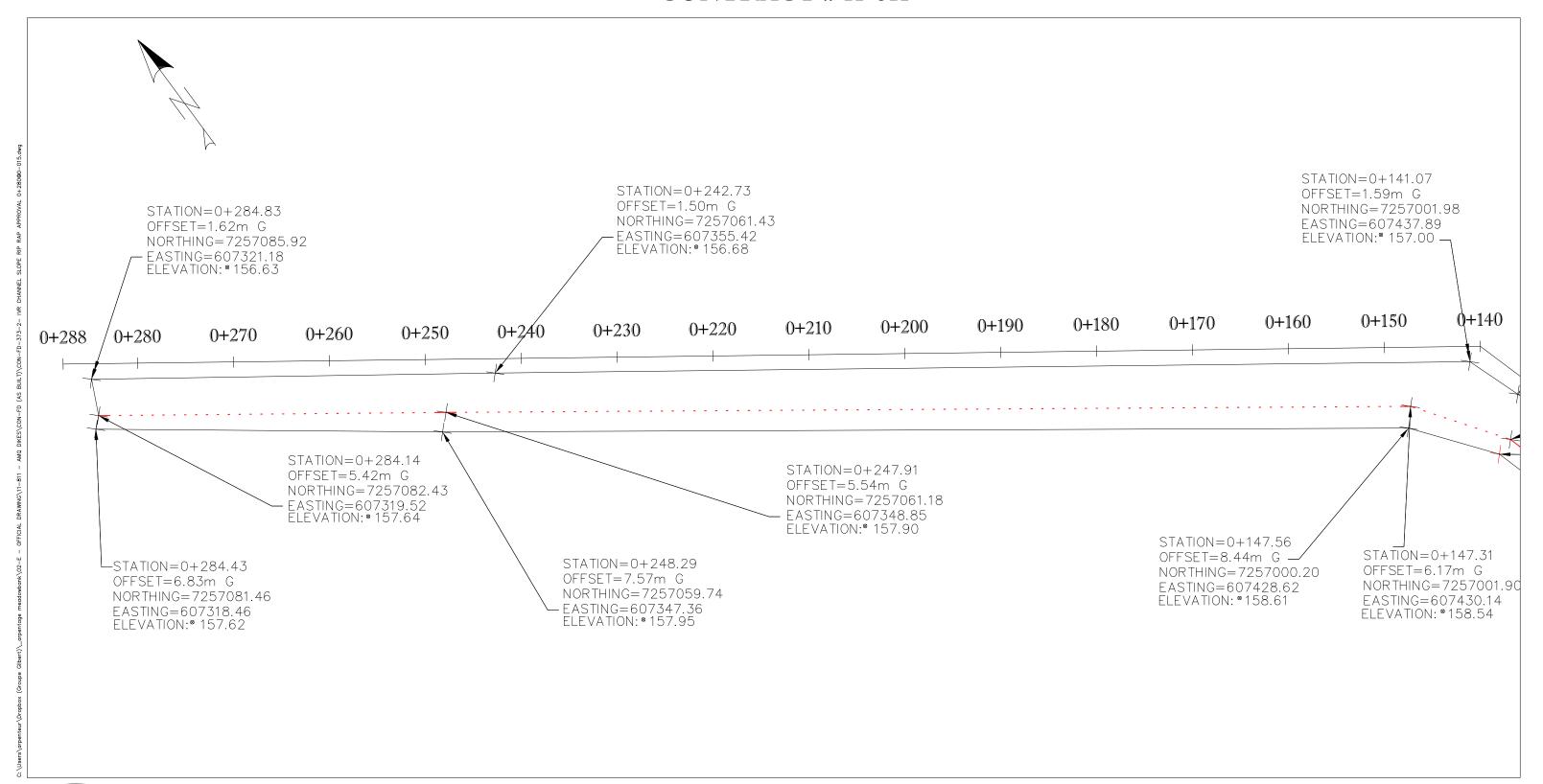


Figure 7: Riprap between 0+180 and 0+290

Figure 8: Riprap between 0+140 and 0+290

SLOPE RIP RAP APPROVAL - 0+280 @ 0-015 IVR DIVERSION CHANNEL CONTRACT # 11-811



PREPARED BY : FRANCIS PAULIN DATE : 08-10-2020

CON-FD-373-1

SLOPE RIP RAP APPROVAL - 0+280 @ 0-015 IVR DIVERSION CHANNEL CONTRACT # 11-811

PREPARED BY : FRANCIS PAULIN DATE : 08-10-2020 CON-FD-373-2

APPENDIX B5

Laboratory Results

Client: AEM									Projec	t N°:			6127				
									Sample	e N°:			IVR-ES	-02			
Projet:			Derivati	on chan	nel				Sampli	ng Date) :		2020-09	9-29			
December			□ lean						Sample	ed by:			Mikael [*]	Turcotte	(WSP)		
Description Origin:	1 OF WAT	eriai:	Esker Load du	ımped o	n site									Station x levation			
Proposed l	Jse:		Dtermir	ne the gra	adation (of the esk	ker used	to back	fill the ex	cavated	ice-rich ı	material					
						Sieve	Analysi	s (% Pa	assing)	(LC 21-	040)						
Sieve		112	80	56	37,5	31,5	28	19	12,5	9,5	4,75	2,36	1,18	600	300	150	75
Sieve	<i>-</i>	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	μm	μm	μm	μm
Cumulative	Results	100	100	100	94	89	88	80	73	69	61	53	44	39	34	27	18,6
Require- ments	min.																
	max.																
	A	utres e	ssais			Résultats	Exige	ences		Proct	or Test (NQ 2501	-255, me	thod)		Res	sults
							min.	max.	Maximu	ım Dry Ur	nit Weigh	t				#REF!	(kg/m³)
Wet mass of	sample +	containe	r (g)			13828			Optimu	m Moistu	re Conter	nt				#REF!	(%)
Dry mass of s	sample + o	container	(g)			13004											
Mass of conta	ainer (g)					1394					;	Sieve A	nalysis	Graph			
Moisture Cont	tent (%)					7,10%											100
																	90
									1 -							// /////	.
									1 _							4	80
									1 -							++++++++++++++++++++++++++++++++++++	70
									1 _								assing (%)
									 						111111	++++++++++++++++++++++++++++++++++++	assi
																	Percent Pa
																	40 Derc
																	30
] -			/				++++++++++++++++++++++++++++++++++++	
									1 🗀								20
									1								10
									1 🗀								₫,
									0,001	(_{0,01} Pari	0,1 ticle Size	e (mm)	1	10	1	100
									С	lay a	nd sil	t	San	d	Gra	avel	
										1	19		42		<u> </u>	39	
Remarks																	
Drawaredt		Miks	aël Turco	otte (W.S	SP)				wifi a -1 l-						Date		
Prepared by:		14111/0	. J. Tulot		/		-	Ve	erified by:						- Date		

IVR-EX-01

Client:	AEM	Project N°:	6127

Projet: Derivation channel **Sampling Date:** 2020-09-21

Sampled by: Mikael Turcotte (WSP)

Description of Material: Sand and gravel

Origin: Channel Location of Sampling: Station 0+232

Proposed Use: Gradation used to determine the type of soil at the bottom of the channel (quality control)

Sieve Analysis (% Passing) (LC 21-040)																	
Sieve	,	112	80	56	37,5	31,5	28	19	12,5	9,5	4,75	2,36	1,18	600	300	150	75
		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	μm	μm	μm	μm
Cumulative Results		100	100	87	76	71	68	60	53	49	42	38	34	31	28	25	22,5
min. Require-																	
ments	max.																

Sample N°:

A		-	ences	Proctor Test (NQ 2501-255, method)	Res	ults
Autres essais	Résultats	min.	max.	Maximum Dry Unit Weight	#REF!	(kg/m³)
Wet mass of sample + container (g)	17463			Optimum Moisture Content	#REF!	(%)
Dry mass of sample + container (g)	16411					
Mass of container (g)	1439			Sieve Analysis Graph		
Moisture Content (%)	7,03%					100
				0,001 0,01 0,1 1 10 Particle Size (mm) Clay and silt Sand Grav	v e l	90 80 80 80 80 80 80 80 80 80 80 80 80 80
				23 20 58	1	

Prepared by:	Mikaël Turcotte (WSP)	2020-09-23	Verified by:	Date:

Remarks

Client: AEM	Project N°:	6127
-------------	-------------	------

Sample N°: IVR-EX-03-01

Projet:Derivation channelSampling Date:2020-09-21

Sampled by: Mikael Turcotte (WSP)

Description of Material: Silty Till

Proposed Use:

Station 0+115
Elevation xx

Origin:ChannelLocation of Sampling:Elevation xx

Sieve Analysis (% Passing) (LC 21-040)																	
Sieve	,	112 mm	80 mm	56 mm	37,5 mm	31,5 mm	28 mm	19 mm	12,5 mm	9,5 mm	4,75 mm	2,36 mm	1,18 mm	600 µm	300 µm	150 μm	75 μm
Cumulative Results		100	100	100	96	96	96	95	94	93	93	85	80	76	71	62	52,4
Require-	min.																
ments	max.																

Gradation used to determine the type of soil at the bottom of the channel (quality control)

Autoropada		Exige	ences	Proctor Test (NQ 2501-255, method)	Results	
Autres essais	Résultats	min.	max.	Maximum Dry Unit Weight	#REF! (kg/m³)	
Wet mass of sample + container (g)	13838			Optimum Moisture Content	#REF! (%)	
Dry mass of sample + container (g)	11902					
Mass of container (g)	1403			Sieve Analysis Graph		
Moisture Content (%)	18,44%				100	
				0,001 0,01 0,1 1 10 Particle Size (mm)	90 80 70 60 60 40 40 40 40 40 40 40 40 40 4	
				Clay and silt Sand Gra	vel	
				52 41	7	

Prepared by: _	Mikaël Turcotte (WSP)	2020-09-23	Verified by:	Date:

Ice-rich till (not acceptable foundation material)

Client: AEM	Project N°:	6127
-------------	-------------	------

Sample N°: IVR-EX-03-02

Projet:Derivation channelSampling Date:2020-09-21

Sampled by: Mikael Turcotte (WSP)

Description of Material: Silty Till

Channel

Origin:

Station 0+115
Location of Sampling: Elevation xx

Proposed Use: Gradation used to determine the type of soil at the bottom of the channel (quality control)

Sieve Analysis (% Passing) (LC 21-040)																	
Sieve	•	112	80	56	37,5	31,5	28	19	12,5	9,5	4,75	2,36	1,18	600	300	150	75
		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	μm	μm	μm	μm
Cumulative Results		100	100	100	96	96	96	95	94	93	93	84	79	75	69	60	50,6
min. Require-																	
ments	max.																

Autoroporto		Exige	ences	Proctor Test (NQ 2501-255, method)	Results	
Autres essais	Résultats	min.	max.	Maximum Dry Unit Weight	#REF! (kg/m³	
Wet mass of sample + container (g)	13838			Optimum Moisture Content	#REF! (%)	
Dry mass of sample + container (g)	11902					
Mass of container (g)	1403			Sieve Analysis Graph		
Moisture Content (%)	18,44%				100	
					90 80 70 60 80 80 40 40 40 40 40 40 40 40 40 4	
				51 42	<i>T</i>	

Prepared by: Mika	aël Turcotte (WSP)	2020-09-23	Verified by:	Date:

Client:	AEM	Project N°:	6127

Sample N°: IVR-EX-03-03

Projet:Derivation channelSampling Date:2020-09-21

Sampled by: Mikael Turcotte (WSP)

Description of Material: Silty Till

Channel

Origin:

Station 0+115

Location of Sampling: Elevation xx

Proposed Use: Gradation used to determine the type of soil at the bottom of the channel (quality control)

	Sieve Analysis (% Passing) (LC 21-040)																
Sieve		112	80	56	37,5	31,5	28	19	12,5	9,5	4,75	2,36	1,18	600	300	150	75
		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	μm	μm	μm	μm
Cumulative Results		100	100	100	96	96	96	95	94	93	93	82	78	74	69	60	51,1
Require-	min.																
ments	max.																

Autus sessie	5, "	_	ences	Proctor Test (NQ 2501-255, method)	Results
Autres essais	Résultats	min.	max.	Maximum Dry Unit Weight #R	REF! (kg/m³)
Wet mass of sample + container (g)	13838			Optimum Moisture Content #R	REF! (%)
Dry mass of sample + container (g)	11902				
Mass of container (g)	1403			Sieve Analysis Graph	
Moisture Content (%)	18,44%				100
					90
					80
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
					Percent Passing (%)
					F Pas
					ercen 40
					
					30
					20
					10
					
				0,001 0,01 0,1 1 10	100
				Particle Size (mm)	
				Clay and silt Sand Grave	1
				51 42 7	

Prepared by:N	Mikaël Turcotte (WSP)	2020-09-23	Verified by:	Date:

Client:	AEM	Project N°:	6127

Sample N°: IVR-EX-03-04

Projet:Derivation channelSampling Date:2020-09-21

Sampled by: Mikael Turcotte (WSP)

Description of Material: Silty Till

Origin:

Channel Location of Sampling: Station 0+115

Location of Sampling: Elevation xx

Proposed Use: Gradation used to determine the type of soil at the bottom of the channel (quality control)

	Sieve Analysis (% Passing) (LC 21-040)																
Sieve	1	112 mm	80 mm	56	37,5 mm	31,5 mm	28 mm	19 mm	12,5 mm	9,5	4,75	2,36	1,18	600	300	150	75 um
		mm	mm	mm	111111	111111	111111	111111	1111111	mm	mm	mm	mm	μm	μm	μm	μm
Cumulative Results		100	100	100	96	96	96	95	94	93	93	85	81	76	70	61	51,5
Require-	min.																
ments	max.																

Autoroporto		-	ences	Proctor Test (NQ 2501-255, method)	Results		
Autres essais	Résultats	min.	max.	Maximum Dry Unit Weight	#REF!	(kg/m³)	
Wet mass of sample + container (g)	13838			Optimum Moisture Content	#REF!	(%)	
Dry mass of sample + container (g)	11902						
Mass of container (g)	1403			Sieve Analysis Graph			
Moisture Content (%)	18,44%			0,001 0,01 0,1 1 10 Particle Size (mm)	avel	90 90 80 80 60 80 80 80 80 80 80 80 80 80 80 80 80 80	
				52 42	7		

Prepared by: Mikaël Turcotte (WSP) 2020-09-23 Verified by: Date:

Client:			AEM						Projec	t N°:			6127				
									Sample	e N°:			IVR-EX	-01			
Projet:			Derivati	on chan	nel				Sampli	ng Date	:		2020-09-23				
			5 (Sample	ed by:			Mikael ⁻	Γurcotte	(WSP)		
Description	of Mat	erial:	Permafi						41					ation 0+2			
Origin:			Channe							on of Sa				ievalion	XX		
Proposed l	Jse:		Gradati	on used	to deterr	mine the t	type of s	soil at the	e bottom	of the ch	annel (q	uality co	ntrol)				
		1	T	1						(LC 21-0			1	1			
Sieve)	112 mm	80 mm	56 mm	37,5 mm	31,5 mm	28 mm	19 mm	12,5 mm	9,5 mm	4,75 mm	2,36 mm	1,18 mm	600 μm	300 µm	150 µm	75 μm
Cumulative	Results		ı	I			No g	gradatio	1	pled fo			<u>I</u>	<u> </u>	<u> </u>		
Require-	min.																
ments	max.																
					L.		Exige	ences		Procto	or Test (I	NQ 2501	-255, me	thod)		Res	sults
	Α	utres e	res essais Résultats min. max. Maximum Dry Unit Weight											#REF!	(kg/m³)		
Wet mass of s	sample +	containe	r (g)			13709			Optimu	m Moistur	e Conter	nt				#REF! (%)	
Dry mass of s	ample + o	container	(g)			7890											
Mass of conta	iner (g)					1578					5	Sieve A	nalysis	Graph			
Ice Content (%)					92,19%											100
																	90
																	80
] -								
																	70 (%)
									1 -								assing (%)
									1 🗀								t Pas
									1								rceni
									-								40 a
									.								30
																	20
																	1 20
																	10
									0,001		,01	0,1		1	10		↓ 0 100
									1 _		Part	icle Size	(mm)				
									С	lay a		t	San	d	+	vel	
										()		0			0	
Remarks	Ice-rich	n till (n	ot acce	otable f	oundat	ion mate	erial)										
Prepared by:	Mil	kaël Tu	rcotte (V	VSP)	2020-09	-24		Ve	erified by:						_ Date:		

Client:	AEM	Project N°:	6127

Sample N°: IVR-EX-11

Projet:Derivation channelSampling Date:2020-09-27

Sampled by: Mikael Turcotte (WSP)

Description of Material: Ice-rich sand and silt

Station 0+090 to 0+125 Elevation 155.3m

Origin: Channel Location of Sampling: Elev

Proposed Use: Gradation used to determine the type of soil at the bottom of the channel (quality control)

	Sieve Analysis (% Passing) (LC 21-040)																
Sieve	1	112	80	56	37,5	31,5	28	19	12,5	9,5	4,75	2,36	1,18	600	300	150	75
		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	μm	μm	μm	μm
Cumulative Results		100	100	100	100	100	99	99	99	99	98	98	98	97	94	54	38,8
Require-	min.																
ments	max.																

A., (Résultats	-	ences	Proctor Test (NQ 2501-255, method)	sults				
Autres essais	Résultats	min.	max.	Maximum Dry Unit Weight #REF	! (kg/m³)				
Frozen mass of sample + container (g)	8796			Optimum Moisture Content #REF	! (%)				
Thawed mass of sample with water removed + container (g)	n/a								
Dry mass of sample + container (g)	5076			Sieve Analysis Graph					
Mass of container (g)	1116				100				
Ice Content (%)	n/a				90				
Moisture Content (%)	93,94%				80				
					70 %				
					Percent Passing (%)				
					≡ o ₅ Tr				
					9 G C G				
					30				
					30				
					20				
					10				
				0,001 0,01 0,1 1 10	0 100				
				Particle Size (mm)					
				Clay and silt Sand Gravel					
				39 59 2					

Remarks Foundation material is not appropriate (ice-rich)									
Prepared by	. Mikaël Turcotte (WSP)	Verified by:	Date:						

Client: AEM							Projec	t N°:			6127						
									Sampl	e N°:			IVR-EX	-12			
Projet:			Derivati	on chan	nel				Sampling Date: 2020-0					9-27			
Danadation			C		ı				Sampled by: Mikael Turcotte						(WSP)		
Description Origin:	i or iviat	eriai:	Channe	nd grave el	I				Location	on of Sa	ampling	j :		ation 0+ ⁻ ation 155			
Proposed l	Jse:		Gradati	on used	to deterr	nine the	type of s	soil at the	e bottom	of the ch	nannel (q	uality co	ontrol)				
						Sieve	Analysi	s (% Pa	assing)	(LC 21-	040)						
0:		112	80	56	37,5	31,5	28	19	12,5	9,5	4,75	2,36	1,18	600	300	150	75
Sieve	, 	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	μm	μm	μm	μm
Cumulative	Results	100	100	100	91	86	84	76	70	66	60	55	51	47	41	32	25,4
Require- ments	min.																
	max.																
	А	utres e	ssais			Résultats	Exige	ences		Proct	or Test (NQ 2501	-255, me	thod)		Res	sults
							min.	max.	Maximu	ım Dry Ur	nit Weigh	t				#REF!	(kg/m³)
Frozen mass	of sample	+ conta	iner (g)			12541			Optimu	m Moistu	re Conte	nt				#REF!	(%)
Thawed mass	of samp	le with wa	ater remov	/ed + con	tainer (g)	9995											
Dry mass of s	ample + o	container	(g)			9139					;	Sieve A	nalysis	Graph			
Mass of conta	iner (g)					1401											100
Ice Content (%	%)					22,85%											90
Moisture Cont	tent (%)					11,06%											80
															 	/ 	70
																	H
																	assing (%)
																	t Pas
																	Percent P
									1				/			++++++++++++++++++++++++++++++++++++	ļ
																$\perp \parallel \parallel$	30
																	20
																	10
									0,001	(o,o1 Part	0,1 ticle Size	e (mm)	1	10	1	100
									С	lay a	nd sil	t	San	d	Gra	avel	
										2	25		35			40	
Remarks	Found	ation m	naterial	is appr	opriate	1	ı	1									
		N 4:1	al Torre	++- (\A)C	ים:										F :		
Prepared by:		IVIIKa	aël Turco	nie (WS	or)		-	Ve	erified by:						Date -	:	

Client: AEM							Project N°: 6127						6127				
									Sample	e N°:			IVR-EX	-13			
Projet:			Derivati	on chan	nel				Sampli	ng Date) :		2020-09	020-09-27			
Danadation			C						Sampled by: Mikael Turcotte ((WSP)		
Description Origin:	i or iviat	eriai:	Channe	nd grave el	1				Location	on of Sa	ampling	j :		0+090 to			
Proposed l	Jse:		Gradati	on used	to deterr	nine the	type of s	soil at the	e bottom				ontrol)				
						Sieve	Analysi	s (% Pa	assing)	(LC 21-	040)						
Sieve	<u> </u>	112	80	56	37,5	31,5	28	19	12,5	9,5	4,75	2,36	1,18	600	300	150	75
Sieve		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	μm	μm	μm	μm
Cumulative	Results	100	100	96	94	93	91	87	80	77	70	64	59	54	48	38	30,8
Require- ments	min.																
	max.															<u> </u>	
	Α	utres e	ssais			Résultats		ences					-255, me	thod)			sults
							min.	max.	-		nit Weigh						(kg/m³)
Frozen mass	of sample	+ conta	iner (g)			11846			Optimui	m Moistu	re Conter	nt				#REF!	(%)
Thawed mass	of samp	le with wa	ater remov	/ed + con	tainer (g)	8967											
Dry mass of s	ample + o	container	(g)			7920					;	Sieve A	nalysis	Graph			
Mass of conta	iner (g)					1312											100
Ice Content (%	%)					27,33%											90
Moisture Cont	tent (%)					15,84%											80
																	70
																	H
																	assing (%)
																	o tr
																	Percent P
																	30
																	20
																	10
									0,001	(_{0,01} Part	0,1 cicle Size	e (mm)	1	10	1	100
									С	lay a	nd sil	t	San	d	Gra	avel	
										3	31		39		;	30	
Remarks	Found	ation n	naterial	is appr	opriate	<u>I</u>	I	<u> </u>	<u> </u>								
		N 4:1	. 21 T	44 - () 41	20)												
Prepared by:		IVIIKa	aël Turco	one (WS	DP)		-	Ve	erified by:						Date:		

Client: AEM	Project N°:	6127
-------------	-------------	------

Sample N°: IVR-EX-14

Projet:Derivation channelSampling Date:2020-09-27

Sampled by: Mikael Turcotte (WSP)

Description of Material: Sand and gravel

Station 0+090 to 0+125

Origin: Channel Location of Sampling: Elev

Elevation 155.3m

Proposed Use: Gradation used to determine the type of soil at the bottom of the channel (quality control)

	Sieve Analysis (% Passing) (LC 21-040)																
Sieve	1	112 mm	80 mm	56 mm	37,5 mm	31,5 mm	28 mm	19 mm	12,5 mm	9,5 mm	4,75 mm	2,36 mm	1,18 mm	600 µm	300 um	150 µm	75 μm
														μιιι	μιιι	μιιι	μιιι
Cumulative	Results	100	100	100	94	90	89	84	77	73	65	59	52	47	42	33	26,0
Require-	min.																
ments	max.																

A		_	ences	Proctor Test (NQ 2501-255, method)	Res	ults		
Autres essais	Résultats	min.	max.	Maximum Dry Unit Weight	#REF!	(kg/m³)		
Frozen mass of sample + container (g)	9111			Optimum Moisture Content	#REF!	(%)		
Thawed mass of sample with water removed + container (g)	6819							
Dry mass of sample + container (g)	6214			Sieve Analysis Graph				
Mass of container (g)	1394					T 100		
Ice Content (%)	29,70%					90		
Moisture Content (%)	12,55%					80		
				I				
						70 %		
						e guiss		
						nt Pas		
						Percent Passing (%)		
						30		
						30		
						20		
						- 10		
				0,001 0,01 0,1 1 10		<u></u>		
				0,001 0,01 0,1 1 10 100 Particle Size (mm)				
				Clay and silt Sand Grave				
				26 39	35			

repared by:	Mikaël Turcotte (WSP)	2020-10-04	Verified by:	Date:

Origin:

Analysis Report - Soils and Aggregates

Client: AEM	Project N°:	6127
-------------	-------------	------

Sample N°: IVR-EX-15

Projet:Derivation channelSampling Date:2020-09-28

Sampled by: Patrice Gagnon

Description of Material: Sand and silt with gravel

Channel

Location of Sampling:

Station 0+050
Elevation: Bottom of excavation

Proposed Use: Gradation used to determine the type of soil at the bottom of the channel (quality control)

	Sieve Analysis (% Passing) (LC 21-040)																
Sieve		112	80	56	37,5	31,5	28	19	12,5	9,5	4,75	2,36	1,18	600	300	150	75
		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	μm	μm	μm	μm
Cumulative	Results	100	100	100	98	97	95	90	83	79	71	65	60	55	50	40	33,1
Require-	min.																
ments	max.																

		_	ences	Proctor Test (NQ 2501-255, method)	Results
Autres essais	Résultats	min.	max.	Maximum Dry Unit Weight	#REF! (kg/m³)
Frozen mass of sample + container (g)	8563			Optimum Moisture Content	#REF! (%)
Thawed mass of sample with water removed + container (g)	n/a				
Dry mass of sample + container (g)	7042			Sieve Analysis Graph	
Mass of container (g)	1632				100
Ice Content (%)	n/a				90
Moisture Content (%)	28,11%				80
					
					70 %
					op 09 09 09 09 09 09 09 09 09 09 09 09 09
					of Tu
					40 G
					30
					20
					10
				0,001 0,01 0,1 1 10	0 100
				Particle Size (mm)	
				Clay and silt Sand Gra	v e l
				33 38 29	9

Prepared by:	Mikaël Turcotte (WSP)	2020-10-04	Verified by:	Date:

Client:	AEM	Project N°:	6127

Sample N°: IVR-EX-16

Projet:Derivation channelSampling Date:2020-09-30

Sampled by: Mikael Turcotte (WSP)

Description of Material: Sand and gravel

Station 0+000 to 0+030

Origin: Channel Location of Sampling: Elevation 156.5m

Proposed Use: Gradation used to determine the type of soil at the bottom of the channel (quality control)

	Sieve Analysis (% Passing) (LC 21-040)																
Sieve	1	112 mm	80 mm	56	37,5	31,5	28 mm	19 mm	12,5	9,5	4,75	2,36	1,18	600	300	150	75 um
		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	μm	μm	μm	μm
Cumulative	Results	100	100	100	99	96	94	87	81	77	69	64	59	53	48	42	35,6
Require-	min.																
ments	max.																

A		-	ences	Proctor Test (NQ 2501-255, method)	Result	ts
Autres essais	Résultats	min.	max.	Maximum Dry Unit Weight	#REF! (k	g/m³)
Frozen mass of sample + container (g)	n/a			Optimum Moisture Content	#REF!	(%)
Wet mass of sample + container (g)	16718					
Dry mass of sample + container (g)	14625			Sieve Analysis Graph		
Mass of container (g)	1396				10	00
Ice Content (%)	n/a				90)
Moisture Content (%)	15,82%				80)
					70	
					60	Percent Passing (%)
					50	ntPa
					40	Perce
					30)
					20)
					10)
				0,001 0,01 0,1 1 10	0 100	
				Particle Size (mm)		
				Clay and silt Sand Gra	v e l	
				36 33 3	1	

Prepared by:	Mikaël Turcotte (WSP)	Verified by:	Date:
		· · · · · · · · · · · · · · · · · · ·	

Description of Material:

Derivation channel

Channel

Silt & clay with traces of gravel

Projet:

Origin:

Proposed Use:

Analysis Report - Soils and Aggregates

6127

IVR-EX-17

2020-10-03

Mikael Turcotte (WSP)

Station 0+250 slope

Elevation ???

Project N°:

Sample N°:

Sampling Date:

Location of Sampling:

Sampled by:

Gradation used to determine the type of soil at the bottom of the channel (quality control)

Sieve Analysis (% Passing) (LC 21-040)

Sieve	•	112 mm	80 mm	56 mm	37,5 mm	31,5 mm	28 mm	19 mm	12,5 mm	9,5 mm	4,75 mm	2,36 mm	1,18 mm	600 µm	300 μm	150 µm	75 μm
umulative l	Results			•	•		No	gradatio	on, for m	oisture	content	only			•		
Require-	min.																
ments	max.																
							Exige	ences	Proctor Test (NQ 2501-255, method)							Res	ults
Autres essais Rés							min.	max.	Maximu	m Dry Ur	it Weight	İ				#REF!	(kg/m ³
ozen mass	of sample	+ contair	ner (g)			3331			Optimur	n Moistui	e Conter	ıt				#REF!	(%)
nawed mass	of sampl	e with wa	ter remov	/ed + con	tainer (g)	2577											
y mass of s	ample + c	container	(g)			2090											
ass of conta	iner (g)					487											
e Content (%	6)					26,51%											
oisture Cont	ent (%)					30,38%											
									С	lay a	nd sil	t	San	d	Gra	vel	
										()		0		1	00	
Remarks	Founda	ation m	aterial i	is not a	ppropri	iate		•	•								
		N Attoo	21 T	otte (WS	ים,			Ve	erified by:						Date:		

Client:	AEM	Project N°:	6127

Sample N°: IVR-FF-001

Projet:Derivation channelSampling Date:2020-09-20

Sampled by: Mikael Turcotte (WSP)

Description of Material: Granular 0-3/4"

Station xx

Origin: Stockpile Location of Sampling: Elevation xx

Proposed Use: Fine filter at the bottom of the IVR channel

	Sieve Analysis (% Passing) (LC 21-040)																
Sieve	,	112 mm	80 mm	56 mm	37,5 mm	31,5 mm	28 mm	19 mm	12,5 mm	9,5 mm	4,75 mm	2,36 mm	1,18 mm	600 um	300 µm	150 µm	75 μm
		111111	111111	111111	111111	111111	111111	111111	111111	111111	111111	111111	111111	μιιι	μιιι	μιιι	μιιι
Cumulative	Results	100	100	100	100	100	100	86	58	48	32	24	18	14	11	9	7,7
Require-	min.						100			51	30	17		11	9		
ments	max.						100			88	64	41		27	18		

A		_	ences	Proctor Test (NQ 2501-255, method) Result	is
Autres essais	Résultats	min.	max.	Maximum Dry Unit Weight #REF! (kg	g/m³)
Wet mass of sample + container (g)	14640			Optimum Moisture Content #REF!	(%)
Dry mass of sample + container (g)	14203				
Mass of container (g)	1578			Sieve Analysis Graph	
Moisture Content (%)	3,46%			7 	10
				90)
)
				7	
				/*	
				- 60	ssing
				50	Percent Passing (%)
				40	Perce
				20)
				1	
				20	J
				10	ı
				0,001 0,01 0,1 1 10 100	
				Particle Size (mm)	
				Clay and silt Sand Gravel	
				8 24 68	

Prepared by:	Mikaël Turcotte (WSP)	2020-09-23	Verified by:	Date:

Not conform (Sampling method was not good)

Client: AEM Project N°:	6127
-------------------------	------

Sample N°: IVR-FF-002

Projet:Derivation channelSampling Date:2020-09-20

Sampled by: Mikael Turcotte (WSP)

Description of Material: Granular 0-3/4"

Station xx

Origin: Stockpile Location of Sampling: Elevation xx

Proposed Use: Fine filter at the bottom of the IVR channel

	Sieve Analysis (% Passing) (LC 21-040)																
Sieve)	112 mm	80 mm	56 mm	37,5 mm	31,5 mm	28 mm	19 mm	12,5 mm	9,5 mm	4,75 mm	2,36 mm	1,18 mm	600 µm	300 µm	150 μm	75 μm
Cumulative	Results	100	100	100	100	100	100	88	58	43	24	17	13	10	8	7	6,0
Require-	min.						100			51	30	17		11	9		
ments	max.						100			88	64	41		27	18		

A		Exig	ences	Proctor Test (NQ 2501-255, method) Results
Autres essais	Résultats	min.	max.	Maximum Dry Unit Weight #REF! (kg/m
Wet mass of sample + container (g)	14420			Optimum Moisture Content #REF! (%)
Dry mass of sample + container (g)	13953			
Mass of container (g)	1590			Sieve Analysis Graph
Moisture Content (%)	3,78%			100
				90
				50 A December 2 Passing (%)
				20
				Particle Size (mm) Clay and silt Sand Gravel
				6 18 76

repared by:	Mikaël Turcotte (WSP)	2020-09-23	Verified by:	Date:

Not conform (Sampling method was not good)

Client: AEM Project N [*] : 61	Client:	AEM	Project N°:	612
---	---------	-----	-------------	-----

Sample N°: IVR-FF-003

Projet:Derivation channelSampling Date:2020-09-20

Sampled by: Mikael Turcotte (WSP)

Description of Material: Granular 0-3/4"

Station xx

Origin: Stockpile Location of Sampling: Elevation xx

Proposed Use: Fine filter at the bottom of the IVR channel

Sieve Analysis (% Passing) (LC 21-040)																	
Sieve	•	112 mm	80 mm	56 mm	37,5 mm	31,5 mm	28 mm	19 mm	12,5 mm	9,5 mm	4,75 mm	2,36 mm	1,18 mm	600 µm	300 μm	150 μm	75 μm
Cumulative	Results	100	100	100	100	100	100	88	63	52	33	24	18	13	10	8	6,7
Require- ments	min.						100			51	30	17		11	9		
	max.						100			88	64	41		27	18		

Autres essais		Exigences		Proctor Test (NQ 2501-255, method) Results				
		min.	max.	Maximum Dry Unit Weight #REF! (kg/m				
Wet mass of sample + container (g)	15409			Optimum Moisture Content #REF! (%)				
Dry mass of sample + container (g)	15236							
Mass of container (g)	1632			Sieve Analysis Graph				
Moisture Content (%)	1,27%			100				
				80				
				70 8				
				09 Percent Passing (%)				
				on t Pas				
				00 to 10 to				
				 				
				30				
				20				
				10				
				0				
				0,001 0,01 0,1 1 10 100 Particle Size (mm)				
				Clay and silt Sand Gravel				
				7 26 67				

Prepared by:	Mikaël Turcotte (WSP)	2020-09-23	Verified by:	Date:
			·	

Remarks Gradation is conform

Client: AEM	Project N°:	6127
-------------	-------------	------

Sample N°: IVR-FF-004

Projet:Derivation channelSampling Date:2020-09-20

Sampled by: Mikael Turcotte (WSP)

Description of Material: Granular 0-3/4"

Station xx

Origin: Stockpile Location of Sampling: Elevation xx

Proposed Use: Fine filter at the bottom of the IVR channel

Sieve Analysis (% Passing) (LC 21-040)																	
Sieve		112 mm	80 mm	56 mm	37,5 mm	31,5 mm	28 mm	19 mm	12,5 mm	9,5 mm	4,75 mm	2,36 mm	1,18 mm	600 µm	300 µm	150 μm	75 μm
Cumulative	Results	100	100	100	100	100	100	95	80	70	50	36	25	18	13	10	8,0
Require-	min.						100			51	30	17		11	9		
ments	max.						100			88	64	41		27	18		

Autor		Exig	ences	Proctor Test (NQ 2501-255, method)	sults
Autres essais	Résultats	min.	max.	Maximum Dry Unit Weight #REF	(kg/m³)
Wet mass of sample + container (g)	14608			Optimum Moisture Content #REF	(%)
Dry mass of sample + container (g)	14478				
Mass of container (g)	1632			Sieve Analysis Graph	
Moisture Content (%)	1,01%			0,001 0,01 0,1 1 10 Particle Size (mm)	100 90 80 70 (%) 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
				Clay and silt Sand Gravel	
				8 42 50	

Prepared by:	Mikaël Turcotte (WSP)	2020-09-23	Verified by:	Date:
			<u>-</u>	<u> </u>

Gradation is conform

Remarks

Client: AEM Project N [*] : 61	Client:	AEM	Project N°:	612
---	---------	-----	-------------	-----

Sample N°: IVR-FF-005

Projet:Derivation channelSampling Date:2020-09-21

Sampled by: Mikael Turcotte (WSP)

Description of Material: Granular 0-3/4"

Station xx

Origin: Stockpile Location of Sampling: Elevation xx

Proposed Use: Fine filter at the bottom of the IVR channel

Sieve Analysis (% Passing) (LC 21-040)																	
Sieve		112 mm	80 mm	56 mm	37,5 mm	31,5 mm	28 mm	19 mm	12,5 mm	9,5 mm	4,75 mm	2,36 mm	1,18 mm	600 µm	300 μm	150 μm	75 μm
Cumulative	Results	100	100	100	100	100	100	96	76	63	42	32	24	19	15	13	10,5
Require-	min.						100			51	30	17		11	9		
ments	max.						100			88	64	41		27	18		

		Exig	ences	Proctor Test (NQ 2501-255, method) Results
Autres essais	Résultats	min.	max.	Maximum Dry Unit Weight #REF! (kg/m²
Wet mass of sample + container (g)	14875			Optimum Moisture Content #REF! (%)
Dry mass of sample + container (g)	14245			
Mass of container (g)	1398			Sieve Analysis Graph
Moisture Content (%)	4,90%			100
				90
				70 (%)
				90 in iss
				op 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
				P 40 P 70
				30
				20
				10
				0,001 0,01 0,1 1 10 100
				Particle Size (mm)
				Clay and silt Sand Gravel
				11 32 58

Prepared by:	Mikaël Turcotte (WSP)	2020-09-23	Verified by:	Date:
_			•	

Gradation is conform

Project N ^o :	6127
	Project N°:

Sample N°: IVR-FF-006

Projet:Derivation channelSampling Date:2020-09-21

Sampled by: Mikael Turcotte (WSP)

Description of Material: Granular 0-3/4"

Origin:

Station xx
Location of Sampling: Station xx

Proposed Use: Fine filter at the bottom of the IVR channel

Stockpile

Sieve Analysis (% Passing) (LC 21-040)																	
Sieve	,	112 mm	80 mm	56 mm	37,5 mm	31,5 mm	28 mm	19 mm	12,5 mm	9,5 mm	4,75 mm	2,36 mm	1,18 mm	600 µm	300 µm	150 μm	75 um
		111111	1111111	1111111	1111111	1111111	1111111	111111	111111	111111	1111111	111111	111111	μιιι	μιιι	μιιι	μm
Cumulative	Results	100	100	100	100	100	100	90	64	52	33	25	19	15	12	10	8,6
Require-	min.						100			51	30	17		11	9		
ments	max.						100			88	64	41		27	18		

Autoroporto		Exig	ences	Proctor Test (NQ 2501-255, method) Resu	ılts
Autres essais	Résultats	min.	max.	Maximum Dry Unit Weight #REF!	(kg/m³)
Wet mass of sample + container (g)	15332			Optimum Moisture Content #REF!	(%)
Dry mass of sample + container (g)	14697				
Mass of container (g)	1116			Sieve Analysis Graph	
Moisture Content (%)	4,68%				100
					90
					80
					70 %
					essing
					Percent Passing (%)
					Perce
				 	30
					20
					10
				0,001 0,01 0,1 1 10 100	0
				Particle Size (mm)	
				Clay and silt Sand Gravel	
				9 24 67	

_				
	Mikaël Turcotte (WSP)	2020-09-23	\\	Date:

Gradation is conform

Client: AEM	Project N°:	6127
-------------	-------------	------

Sample N°: IVR-FF-007

Projet:Derivation channelSampling Date:2020-09-21

Sampled by: Mikael Turcotte (WSP)

Description of Material: Granular 0-3/4"

Station xx

Origin: Stockpile Location of Sampling: Elevation xx

Proposed Use: Fine filter at the bottom of the IVR channel

						Sieve	Analysi	s (% Pa	ssing) ((LC 21-	040)						
Sieve 11.			80 mm	56 mm	37,5 mm	31,5 mm	28 mm	19 mm	12,5 mm	9,5 mm	4,75 mm	2,36 mm	1,18 mm	600 µm	300 µm	150 μm	75 μm
Cumulative Results		100	100	100	100	100	100	95	78	67	45	33	24	19	15	13	10,5
Require-	min.						100			51	30	17		11	9		
ments	max.						100			88	64	41		27	18		

Autoroporto		Exige	ences	Proctor Test (NQ 2501-255, method) Results	s
Autres essais	Résultats	min.	max.	Maximum Dry Unit Weight #REF! (kg	J/m³)
Wet mass of sample + container (g)	18387			Optimum Moisture Content #REF! ((%)
Dry mass of sample + container (g)	17563				
Mass of container (g)	1578			Sieve Analysis Graph	
Moisture Content (%)	5,15%			[J
				90	
				80	
				, , , , , , , , , , , , , , , , , , ,	(%)
				60	ssing
				50	nt Pas
				40	Percent Passing (%)
				30	_
				20	
				10	
				0,001 0,01 0,1 1 10 100	
				Particle Size (mm)	
				Clay and silt Sand Gravel	
				11 35 55	

Prepared by:	Mikaël Turcotte (WSP)	2020-09-23	Verified by:	Date:

Gradation is conform

Remarks

Client: AEM	Project N°:	6127
-------------	-------------	------

Sample N°: IVR-FF-008

Projet:Derivation channelSampling Date:2020-09-21

Sampled by: Mikael Turcotte (WSP)

Description of Material: Granular 0-3/4"

Station xx

Origin: Stockpile Location of Sampling: Elevation xx

Proposed Use: Fine filter at the bottom of the IVR channel

						Sieve	Analysi	s (% Pa	ssing) ((LC 21-	040)						
Sieve	112 mm	80 mm	56 mm	37,5 mm	31,5 mm	28 mm	19 mm	12,5 mm	9,5 mm	4,75 mm	2,36 mm	1,18 mm	600 µm	300 µm	150 μm	75 μm	
Cumulative Results		100	100	100	100	100	100	94	76	68	49	39	29	21	16	13	10,3
Require-	min.						100			51	30	17		11	9		
ments	max.						100			88	64	41		27	18		

Autura assais	5, "	-	ences	Proctor Test (NQ 2501-255, method) Results
Autres essais	Résultats	min.	max.	Maximum Dry Unit Weight #REF! (kg/m
Wet mass of sample + container (g)	18505			Optimum Moisture Content #REF! (%)
Dry mass of sample + container (g)	18055			
Mass of container (g)	1590			Sieve Analysis Graph
Moisture Content (%)	2,73%			100
				90
				80
				l
				70 8
				90 to 0 to
				80
				/
				30
				20
				10
				0,001 0,01 0,1 1 10 100
				Particle Size (mm)
				Clay and silt Sand Gravel
				10 39 51

Prepared by:	Mikaël Turcotte (WSP)	2020-09-23	Verified by:	Date:
			· · · · · · · · · · · · · · · · · · ·	

Gradation is conform

Moisture-Density Determination Test (ASTM METHOD)

Checked By				Date			F0-930.205 (On)/IA/11-
Tested By	Mi	kaël Turcotte		Date	septembr	e 23, 2020	
Moisture Content (%)			2.27%	4.24%	5.88%	7.42%	8.82%
Wt of Soil Dry (kg)			0.353	0.330	0.289	0.633	0.896
Tare (kg)			0.180	0.238	0.233	0.236	0.488
Wt of Water (kg)			0.008	0.014	0.017	0.047	0.079
Wt of Sample Dry + Tare (kg)		_	0.533	0.568	0.522	0.869	1.384
Wt of Sample Wet + Tare (kg)			0.541	0.582	0.539	0.916	1.463
Container Number			S11	S10	S4	S3	C1
		Mois	ture Content Determ	ination	•		
Dry Density [E/(1+Moisture)] (kg/m3)			2254	2297	2388	2341	2332
Wet Density [C/D] (kg/m3)			2305	2394	2529	2515	2538
Wt of Sample Wet + Mold (kg)			10.496	10.685	10.969	10.940	10.988
, ,		<u> </u>	Density Determination	on	<u>'</u>		
Volume of Water Added (mL)		p.s.s.s	250	250	200	200	100
Estimated Moisture Content (%)	In place	In place	2.0	4.0	6.0	8.0	10.0
Trial Number:	1	2	3	4	5	6	7
		<u> </u>	ure Increment Deteri	mination			
Volume of Mold (dm3)	2.117	Splitter No.	. 32 1		-		
Wt. of Mold (kg)	5.616	Rammer No.	FGL 1	8-9718	Scale No.		
Proctor Mold No.	FGL 18-9717	Oven No.	paratus oscur or re	oung	Grad. Cylinder No.		
We notained on 4.75mm (kg)			paratus Used For Te				
Wt Retained on 4.75mm (kg)		Wt of Tested	. ,	5.500	Ореспіс	, Olavity	
Wt of Total Sample (kg)	A (4.75mm)	 	B (9.5mm) Oversize (%)	28.0%		Gravity	
Sample Preparation ASTM D698/D1557 Test Method	Dry		Moist	Х	C (19.0mm)	X	
			Test Preparation				
Date Sampled	Septembre 20,	2020				viillaet Tarootte (VVCI	,
Date Sampled	septembre 20,		Sampled By	opilei / Fit Name		Mikaël Turcotte (WSF	D)
	Fine filter at bottom		Source - Samp	oplier / Pit Name		Amaruq	
Soil Type Material	Gravel (0-3/-	/ "\	Sample Identif			Stockpile	
Project / Site	IVR Diversion	on	Lab Sample N			IVR-FF-04	
Client	AEM		Project No			6127	
	A = A 4					0407	

Method 4.75mm (kg) 9.5mm (kg) 19.0mm (kg)

Standard Proctor Test (ASTM D698)

Clie	ent :			А		l	_ab N° : _	IVR-FF-04							
Pro	ject/Site:			IVR D	iversion			Proj	ect N°:_		6127				
	2200														
	2150														
/m³)	2100														
Dry Density (kg/m³)	2050														
Dry	2000 •														
	1950 •														
	1900	3.0	4.	0	5.0	6.0	7.	.0	8.0	9.0	10.0	11.0			
						Water Co	ontent (%	%)							
	oared Samp		Dry A		Moist B	X	с [Х		Assumed G_{s}		0.00 //anual			
Mate	Type: erial: posed Use:			Fine		I (0-3/4") ottom of cha	annel								
Sam Agg Sam	nple Identific nple Locatio regate Supp nple Date: npled By:	n: olier / Pit Name	: :		Am septembi	ckpile naruq re 20, 2020 rcotte (WSF			Optimu % Reta Correct	ry Density: Im Moisture ined on 4.7 ted Dry Der ted Opt. Mo	28.0 sity: -				
Ren	narks :							er (59%) minus 6% of bentonite.							
			ecimens	have be	en hydra	ated during	36h to a	assure ai	n homoge	eneous mat					
Per	formed by	·:		Thoma	as Dahm				Date : _	a	vril 19, 2020)			
Ver	ified by: Thomas Dahm								Date : _	а	vril 19, 2020)			

Proctor Curve

Lower Moisture Limit	2
Upper Moisture Limit	11

Modified Proctor Test (ASTM D1557)

Clie	Client : AEM												La	b N	l°:		IVR-FF-04													
Pro	ject/Site	e:						IVR	Div	ersio	n						Pre	oje	ct N	l°:					6′	127				
	2200																													
	2150																					Zer	о А	ir V	'oic	ds L	ine			
	2100																						/	_						
g/m³)	2050																													
Dry Density (kg/m³)	2000																													
Dry D	1950																													
	1900																													
	1850																													
	1800	0			4.0			6	.0			8.0)			10.0)			12	2.0				14.	0			16.	0
											V	Vate	er Co	onte	nt ('	%)														
Prep	ared Sar	mple:				Dry	, [-		Mois	st	Х									Ass	ume	d G	;*:				0.00		
AST	M D1557	Test N	/leth	od:		Α		-		В		-		С			Χ				Тур	e of	Har	nme	er:	_	N	lanua	al	_
Mate	Type: erial: oosed Us	e:					_ _	Fi	ne fi	Gra	vel (0			annel																
	iple Ident iple Loca		n:				_			S	Stock	oile										Dens Mois				#	0 ŧN/A	_	J/m ³	
Aggı	regate Su	upplier	/ Pit											% I	Reta	aine	d on	4.	75m		- 2	28.0	%							
	iple Date ipled By:						_			kaël 7							Corrected Dry Density: #DIV/0! kg/m³ Corrected Opt. Moist.: #N/A %													
Ren	narks :																													
Per	formed	by:						Mika	ël T	urco	tte								Dat	e :		\$	sep	tem	nbr	e 2	3, 2	020		
Ver	ified by	:																	Dat	e :										_

Proctor Curve

Lower Moisture Limit	2
Upper Moisture Limit	10

-	1	2	3	4	5	6
Dry Density	0	0	2254.06517	2296.9785	2388.10161	2341.05699
Moisture Content	0	0	0.02266289	0.04242424	0.05882353	0.07424961

Saturation		
	2450	#DIV/0!
	2390	#DIV/0!
	2330	#DIV/0!
	2270	#DIV/0!
	2210	#DIV/0!
	2150	#DIV/0!
	2090	#DIV/0!
	2030	#DIV/0!
	1970	#DIV/0!
	1910	#DIV/0!
	1850	#DIV/0!
	1790	#DIV/0!
	1730	#DIV/0!
	1670	#DIV/0!
	1610	#DIV/0!
	1550	#DIV/0!
	1490	#DIV/0!
	1430	#DIV/0!
	1370	#DIV/0!
	1310	#DIV/0!
	1250	#DIV/0!
	1190	#DIV/0!
	1130	#DIV/0!
	1070	#DIV/0!

Saturation : W =
$$\frac{(Yw^*1000)(Gs) - (Yd)}{(Yd)(Gs)}$$
 * 100

as per ASTM D698

		Mold No.	FGL 18-9717	FGL 18-9717	FGL 18-9717	FGL 18-9717
_ A	Ą	Wt of Sample Wet + Mold (kg)	0.000	0.000	10.496	10.685
6	3	Wt of Mold (kg)	5.614	5.614	5.614	5.614
)	Wt of Sample Wet [A-B] (kg)	-5.614	-5.614	4.882	5.071
)	Volume of Mold (dm3)	2.117	2.117	2.117	2.117
[Ξ	Wet Density [C/D] (kg/m3)	-2652	-2652	2306	2395
F	=	Dry Density [E/(1+Moisture)] (kg/m3)	0	0	0	0

Mold Information	Mold No.	Weight	Volume
	2010-152-01	6.462	2.117
	2011-152-01	6.486	2.107
	2012-152-01	4.225	0.941
	2018-152-01	5.614	2.117

ı		

21 5	1 EE . 11	#NI/A	#N1/A
21.5	1.5E+11	#N/A	#N/A
21.6	1.52E+11	#N/A	#N/A
21.7	1.54E+11	#N/A	#N/A
21.8	1.57E+11	#N/A	#N/A
21.9	1.59E+11	#N/A	#N/A
22	1.61E+11	#N/A	#N/A
22.1	1.63E+11	#N/A	#N/A
22.2	1.65E+11	#N/A	#N/A
22.3	1.68E+11	#N/A	#N/A
22.4	1.7E+11	#N/A	#N/A
22.5	1.72E+11	#N/A	#N/A
22.6	1.74E+11	#N/A	#N/A
22.7	1.77E+11	#N/A	#N/A
22.8	1.79E+11	#N/A	#N/A
22.9	1.82E+11	#N/A	#N/A
23	1.84E+11	#N/A	#N/A
23.1	1.86E+11	#N/A	#N/A
23.2	1.89E+11	#N/A	#N/A
23.3	1.91E+11	#N/A	#N/A
23.4	1.94E+11	#N/A	#N/A
23.5	1.96E+11	#N/A	#N/A
23.6	1.99E+11	#N/A #N/A	#N/A
23.7		#N/A #N/A	#N/A #N/A
	2.01E+11		
23.8	2.04E+11	#N/A	#N/A
23.9	2.06E+11	#N/A	#N/A
24	2.09E+11	#N/A	#N/A
24.1	2.12E+11	#N/A	#N/A
24.2	2.14E+11	#N/A	#N/A
24.3	2.17E+11	#N/A	#N/A
24.4	2.2E+11	#N/A	#N/A
24.5	2.22E+11	#N/A	#N/A
24.6	2.25E+11	#N/A	#N/A
24.7	2.28E+11	#N/A	#N/A
24.8	2.31E+11	#N/A	#N/A
24.9	2.34E+11	#N/A	#N/A
25	2.36E+11	#N/A	#N/A
25.1	2.39E+11	#N/A	#N/A
25.2	2.42E+11	#N/A	#N/A
25.3	2.45E+11	#N/A	#N/A
25.4	2.48E+11	#N/A	#N/A
25.5	2.51E+11	#N/A	#N/A
25.6	2.54E+11	#N/A	#N/A
25.7	2.57E+11	#N/A	#N/A
25.8	2.6E+11	#N/A	#N/A
25.9	2.63E+11	#N/A	#N/A
26	2.66E+11	#N/A	#N/A
26.1	2.69E+11	#N/A	#N/A
26.2	2.72E+11	#N/A #N/A	#N/A #N/A
26.3	2.75E+11	#N/A #N/A	#N/A #N/A
26.4	2.78E+11	#N/A	#N/A
26.5	2.82E+11	#N/A	#N/A
26.6	2.85E+11	#N/A	#N/A

00.7	0.005.44	//N.1./A	//N.1./.N
26.7	2.88E+11	#N/A	#N/A
26.8	2.91E+11	#N/A	#N/A
26.9	2.95E+11	#N/A	#N/A
27	2.98E+11	#N/A	#N/A
27.1	3.01E+11	#N/A	#N/A
27.2	3.05E+11	#N/A	#N/A
27.3	3.08E+11	#N/A	#N/A
27.4	3.11E+11	#N/A	#N/A
27.5	3.15E+11	#N/A	#N/A
27.6	3.18E+11	#N/A	#N/A
27.7	3.22E+11	#N/A	#N/A
27.8	3.25E+11	#N/A	#N/A
27.9	3.29E+11	#N/A	#N/A
28	3.32E+11	#N/A	#N/A
28.1	3.36E+11	#N/A	#N/A
28.2	3.39E+11	#N/A	#N/A
28.3	3.43E+11	#N/A	#N/A
28.4	3.47E+11	#N/A	#N/A
28.5	3.5E+11	#N/A	#N/A
28.6	3.54E+11	#N/A	#N/A
28.7	3.58E+11	#N/A	#N/A
28.8	3.62E+11	#N/A	#N/A
28.9	3.65E+11	#N/A	#N/A
29	3.69E+11	#N/A	#N/A
29.1	3.73E+11	#N/A #N/A	#N/A
29.2	3.77E+11	#N/A	#N/A
29.3	3.81E+11	#N/A	#N/A
29.4	3.85E+11	#N/A	#N/A
29.5	3.89E+11	#N/A	#N/A
29.6	3.93E+11	#N/A	#N/A
29.7	3.97E+11	#N/A	#N/A
29.8	4.01E+11	#N/A	#N/A
29.9	4.05E+11	#N/A	#N/A
30	4.09E+11	#N/A	#N/A
30.1	4.13E+11	#N/A	#N/A
30.2	4.17E+11	#N/A	#N/A
30.3	4.21E+11	#N/A	#N/A
30.4	4.25E+11	#N/A	#N/A
30.5	4.3E+11	#N/A	#N/A
30.6	4.34E+11	#N/A	#N/A
30.7	4.38E+11	#N/A	#N/A
30.8	4.43E+11	#N/A	#N/A
30.9	4.47E+11	#N/A	#N/A
31	4.51E+11	#N/A	#N/A
31.1	4.56E+11	#N/A	#N/A
31.2	4.6E+11	#N/A	#N/A
31.3	4.64E+11	#N/A	#N/A
31.4	4.69E+11	#N/A	#N/A
31.5	4.73E+11	#N/A	#N/A
31.6	4.78E+11	#N/A	#N/A
31.7	4.83E+11	#N/A	#N/A
31.8	4.87E+11	#N/A #N/A	#N/A
51.0	7.07 LT11	πι ν/ /\	πι ν //\

31.9	4.92E+11	#N/A	#N/A
32	4.96E+11	#N/A	#N/A
32.1	5.01E+11	#N/A	#N/A
32.2	5.06E+11	#N/A	#N/A
32.3	5.11E+11	#N/A	#N/A
32.4	5.15E+11	#N/A	#N/A
32.5	5.2E+11	#N/A	#N/A
32.6	5.25E+11	#N/A	#N/A
32.7	5.3E+11	#N/A	#N/A
32.8	5.35E+11	#N/A	#N/A
32.9	5.4E+11	#N/A	#N/A
33	5.45E+11	#N/A	#N/A
33.1	5.49E+11	#N/A	#N/A
33.2	5.54E+11	#N/A	#N/A
33.3	5.6E+11	#N/A	#N/A
33.4	5.65E+11	#N/A	#N/A
33.5	5.7E+11	#N/A	#N/A
33.6	5.75E+11	#N/A	#N/A
33.7	5.8E+11	#N/A	#N/A
33.8	5.85E+11	#N/A	#N/A
33.9	5.9E+11	#N/A	#N/A
34	5.96E+11	#N/A	#N/A
34.1	6.01E+11	#N/A	#N/A
34.2	6.06E+11	#N/A	#N/A
34.3	6.12E+11	#N/A	#N/A
34.4	6.17E+11	#N/A	#N/A
34.5	6.22E+11	#N/A	#N/A

MODIFIED PROCTOR CURVE PLOT DATA

PROCTOR CURVE: START / END OPTION

				_	
		2	1.11E+08	2	1.11E+08
Min		2.1		2.1	1.3E+08
	2	2.2		2.2	1.5E+08
Max		2.3		2.3	1.71E+08
	10	2.4		2.4	1.95E+08
		2.5		2.5	2.22E+08
		2.6		2.6	2.5E+08
		2.7		2.7	2.81E+08
		2.8		2.8	3.14E+08
		2.9	3.49E+08	2.9	3.49E+08
		3	3.88E+08	3	3.88E+08
		3.1		3.1	4.28E+08
		3.2		3.2	4.72E+08
		3.3		3.3	5.19E+08
		3.4		3.4	5.68E+08
		3.5	6.21E+08	3.5	6.21E+08
		3.6	6.76E+08	3.6	6.76E+08
		3.7	7.35E+08	3.7	7.35E+08
		3.8	7.98E+08	3.8	7.98E+08
		3.9	8.63E+08	3.9	8.63E+08
		4	9.33E+08	4	9.33E+08
		4.1	1.01E+09	4.1	1.01E+09
		4.2	1.08E+09	4.2	1.08E+09
		4.3	1.16E+09	4.3	1.16E+09
		4.4	1.25E+09	4.4	1.25E+09
		4.5	1.33E+09	4.5	1.33E+09
		4.6	1.43E+09	4.6	1.43E+09
		4.7	1.52E+09	4.7	1.52E+09
		4.8	1.62E+09	4.8	1.62E+09
		4.9	1.73E+09	4.9	1.73E+09
		5	1.84E+09	5	1.84E+09
		5.1	1.95E+09	5.1	1.95E+09
		5.2	2.07E+09	5.2	2.07E+09
		5.3	2.19E+09	5.3	2.19E+09
		5.4	2.32E+09	5.4	2.32E+09
		5.5	2.45E+09	5.5	2.45E+09
		5.6	2.59E+09	5.6	2.59E+09
		5.7	2.73E+09	5.7	2.73E+09
		5.8	2.88E+09	5.8	2.88E+09

Moisture-Density Determination Test (LS METHOD)

Client Project / Site Soil Type Material Proposed Use Date Sampled			Project No Lab Sample N Sample Identi Source - Sam Aggregate Su Sampled By	fication			
			Test Preparation				
Sample Preparation	Dry	X	Moist	-			
LS-706/707 Test Procedure	1 (4.75mm)		2 (26.5mm)	-	3 (26.5mm)	Х	
Wt of Total Sample (kg)			Oversize (%)		Specifi	c Gravity	2.75
Wt Retained on 26.5mm (kg)		Wt of Tested					
		Ар	paratus Used For Te	esting			
Proctor Mold No.		Oven No.			Grad. Cylinder No.		
Wt. of Mold (kg)		Rammer No.			Scale No.		
Volume of Mold (dm3)		Splitter No.					
		Moist	ure Increment Deter	mination			
Trial Number:	1	2	3	4	5	6	7
Estimated Moisture Content (%)							
Volume of Water Added (mL)							
			Density Determinat	ion			
Wt of Sample Wet + Mold (kg)							
Wet Density [C/D] (kg/m3)							
Dry Density [E/(1+Moisture)] (kg/m3)							
		Mois	ture Content Detern	nination			
Container Number							
Wt of Sample Wet + Tare (g)							
Wt of Sample Dry + Tare (g)							
Wt of Water (g)							
Tare (g)							
Wt of Soil Dry (g)							
Moisture Content (%)							
Tested By				Date			
Checked By				Date			F0-930.205(On)/IA/11-1

Method 4.75mm (kg) 26.5mm (kg)

Standard Proctor Test (MTO LS-706)

Client	t:				,	AEM				_	L	ab N°	:		IVI	R-FF	-04		
Projec	ct/Site :				IVR I	Diversion	on			_	Proje	ect N°	:			6127	7		
2:	200]
2	150													Zero	Alr V	oids	Line		-
	100													\checkmark					
Dry Density (kg/m³) ⊳	050																		-
_	000																		
1:	950																		
1:	900 0.0		2.0		4.0	0		6.0		8.0			10.0		1	2.0		14	4.0
							Wa	ater Co	ontent	(%)									
	red Sample: 6 Test Proce	dure:	ſ	Dry [X	Moi			3		х				G _s *:			.75 inual	
	al: sed Use:			-						_									
Sample Aggreg	e Identifications e Locations gate Supplie e Dates ed By:		me:	- - - -						_ _ _ _		Opti % R Corr	mum etaind ected	Moist ed on d Dry I	ty: ure: 26.5m Density Moist.	# m # y: #	##### ##### #####	% % kg/m	
Rema	ırks :																		
Perfo	rmed by :				Mikaë	el Turco	otte					Date	:	Se	eptem	bre 2	23, 20	20	
Verifie	ed by :									_		Date	:						

Proctor Curve

Lower Moisture Limit	2
Upper Moisture Limit	10

Modified Proctor Test (MTO LS-707)

Clier	nt :		AEM					_		Lab I	۷° :	IVR-FF-04									
Proje	ect/Site :		IVR Diversion				_	Project N° :				6127									
	2200															Zero /	Air V	oids	Line		
	2150																4				
	2100																				
Dry Density (kg/m³)	2050																				
	2000 -																				
	1950																				
	1900		2.0		4	.0		6.0			8.0			10.0)		12	.0		14	4.0
Prepa	ared Sample	e:		Dry	X	Me	v oist	Vate	r Coi	ntent	(%)			A	ssum	ed G _s	*:		2.7	75	
	07 Test Prod Type:	edure:		1			2	-		3		Х]	Т	ype of	f Ham	mer:		Man	iual	
Propo Samp Samp Aggre Samp	osed Use: ple Identifica ple Location: egate Suppli ple Date: pled By:		Name:								- - - - -		O % C	ax. Dr ptimul Retai prrect	m Moi ned o ed Dr	isture n 26. y Den	: 5mm sity:	###	#### #### #### ####	% % kg/m	
Rem	arks :																				
Perf	ormed by	:			Mika	ël Turc	otte				_		Da	te :		septe	embi	re 23	, 2020	0	
Verified by : Date :																					

Proctor Curve

Lower Moisture Limit	2
Upper Moisture Limit	10

SAND CONE TEST

Client:	AEM					Material :	E	S
Project:	IVR Diversion I	Ditch	=			Shift:	Day /	
Location:	Berm		-			QC rep.:	Mikaël Turcotte	
-						•		
			San	d cone test				
	Test Values			Test 1	Test 2	Test 3	Test 4	Test 5
				2.00	2.00	4.00	4.00	6.00
	ind before test	M ₁	kg					
	and after test	M ₂	kg					
Mass o	f sand used	M ₃	kg	0.00	0.00	0.00	0.00	0.00
	e volume	V_1	m ³	0.00121	0.00121	0.00121	0.00121	0.00121
Sand	d density	р	kg/m³	1449.00	1449.00	1449.00	1449.00	1449.00
Mass of	sand in cone	M_4	kg	1.75	1.75	1.75	1.75	1.75
Mass of	sand in hole	M_5	kg	-1.75	-1.75	-1.75	-1.75	-1.75
Volun	ne of hole	V ₂	m ³	-0.00121	-0.00121	-0.00121	-0.00121	-0.00121
Mass	of container	M ₆	g					
Mass of con	tainer + wet soil	M ₇	g					
Mass of con	ntainer + dry soil	M ₈	g					
Mass	of wet soil	M ₉	g	0.0	0.0	0.0	0.0	0.0
Mass	of dry soil	M ₁₀	g	0.0	0.0	0.0	0.0	0.0
Mass	of water	M ₁₁	g	0.0	0.0	0.0	0.0	0.0
Moistu	ire content	W	%	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Wet de	nsity of soil	p_h	kg/m ³	0.0	0.0	0.0	0.0	0.0
Dry de	nsity of soil	p_d	kg/m ³	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Dry densi	ity on proctor	p_d	kg/m ³					
% Co	mpaction	W	%	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Comments on	the test :						
-								
	Performed by :							

Date :

APPENDIX B6

Construction Weekly MOM

Date:9/25/2020Time:10H00CTLocalization:Teams/Amaruq
construction conference room

Attendees:		
Name	Function	Department / Company
Marc-André Beaudet (MAB)	Construction Lead	AEM
Mikael Turcotte (MT)	Construction QC	WSP
Dany Pageau (DP)	Superintendent	KCG
Alex Gélinas (AG)	Construction Resident Engineer	AEM
Jean-Francois Béland (JFB)	Construction Civil General Supervisor	AEM
Richard Saint-Jean (RSJ)	Site Manager	KCG
Patrice Gagnon (PG)	Geotechnical Specialist (QA)	AEM
Alexandre Lavallée (AL)	Engineering	AEM
Thomas Lepine (TL)	Engineering	AEM

Item	Requestor	Description	Action by
Sche	dule		
	N/A	Construction start date is September 18th to October 9th 2020 Planned construction of 21 days (See schedule for more details)	N/A
Cons	truction and Er	ngineering Concerns and Site Change	
	Construction	Health and Safety, Environment key points discussion	N/A
	Construction	Water management is done with 2 electrical sump pumps and the method was approved by environment	N/A
	Construction	The temporary access road is built with soap stone. This one will be removed from there before the ground froze. It will be removed to the tundra level.	N/A
	Cons/Eng.	The membrane geotextile that construction request for this infrastrure (Mirafi 1600) is on the last boat of the season for Amaruq, it will not be on site in time. We've proposed to SNC the replace it by a Novatex V, and it's been approved with two layers as a replacement. On the section 0+000 to 0+149 there's some ice-rich material that can cause more displacement, Engineering proposed to add 2 more layers of geotextile Novatex V to have a better resistance in this area.	Cons.
	Engineering	The change of geotextile will be consider as a Design Change. The documentation concerning that change will be send to Engineering.	Cons.

Date:10/02/2020Time:10h00 AMLocalisation:Amaruq

Attendees:		
Name	Function	Department / Company
Marc-André Beaudet (MAB)	Construction Lead	AEM
Mikael Turcotte (MT)	Construction QC	WSP
Jessy Gauthier (JG)	Construction Résident	WSP
Dany Pageau (DP)	Superintendant	KCG
Jean-Francois Béland (JFB)	Construction Civil General Supervisor	AEM
Alexandre Lavallee (AL)	Engineering	AEM
Thomas Lépine (TL)	Engineering	AEM
Laurier Collette (CL)	Geotechnical Engineer	AEM
Nicolas Tremblay	Project Manager	KCG

Item	Requestor	Description	Action by	Status/ Comment
Subje	ect 1		'	
1	Construction	Health and safety, environment key points discuss, the temporary road will be scoop out at the end of the job	N/A	
2	Construction	1.5 meter of ice was retrieved under the channel and esker was use to fill it up with compaction	N/A	
3	Construction	Fine filter will be finish with a *tablet method*	N/A	
4	Construction	All the geotextile was install as SNC directive. There was not enough Novatex V for the channel, SNC has approves the Mirafi 1100 with 2 layers to finish the work. Some frost fighter are in place to prevent the geotextile from freezing	N/A	
5	Construction	The rip rap is acceptation is done, there's some little part to clean at the end of the work	N/A	
6	Construction	The access road is done	N/A	

APPENDIX C

Design changes records

SNC-LAVALIN INC.

1140, de Maisonneuve Blvd. West Montreal (Quebec) Canada H3A 1M8 Tel: (514) 393-1000 Fax: (514) 390-2765

Alexandre Lavallée, Frédérick Bolduc,

To: Thomas Lépine, Patrice Gagnon, Laurier DATE: October 16th, 2020

Collette, Bruno Roy (AEM)

c.c.: Anh Long Nguyen

FROM: Nina Quan REF.: 668284-7000-60CA-0001 Rev 01

OBJECT: IVR Diversion - Summary of Design Changes During Construction in September and October

2020

1.0 Introduction

This memorandum summarizes the design and technical specifications changes made during the construction of the IVR Diversion due to site conditions.

2.0 Summary of Design Modifications

Table 2.1 presents the list of changes made in design and technical specifications during the construction.

668284-7000-60CA-0001 Page 1

Table 2-1: List of Changes Made to the Design and Technical Specifications to the IVR Diversion during Construction

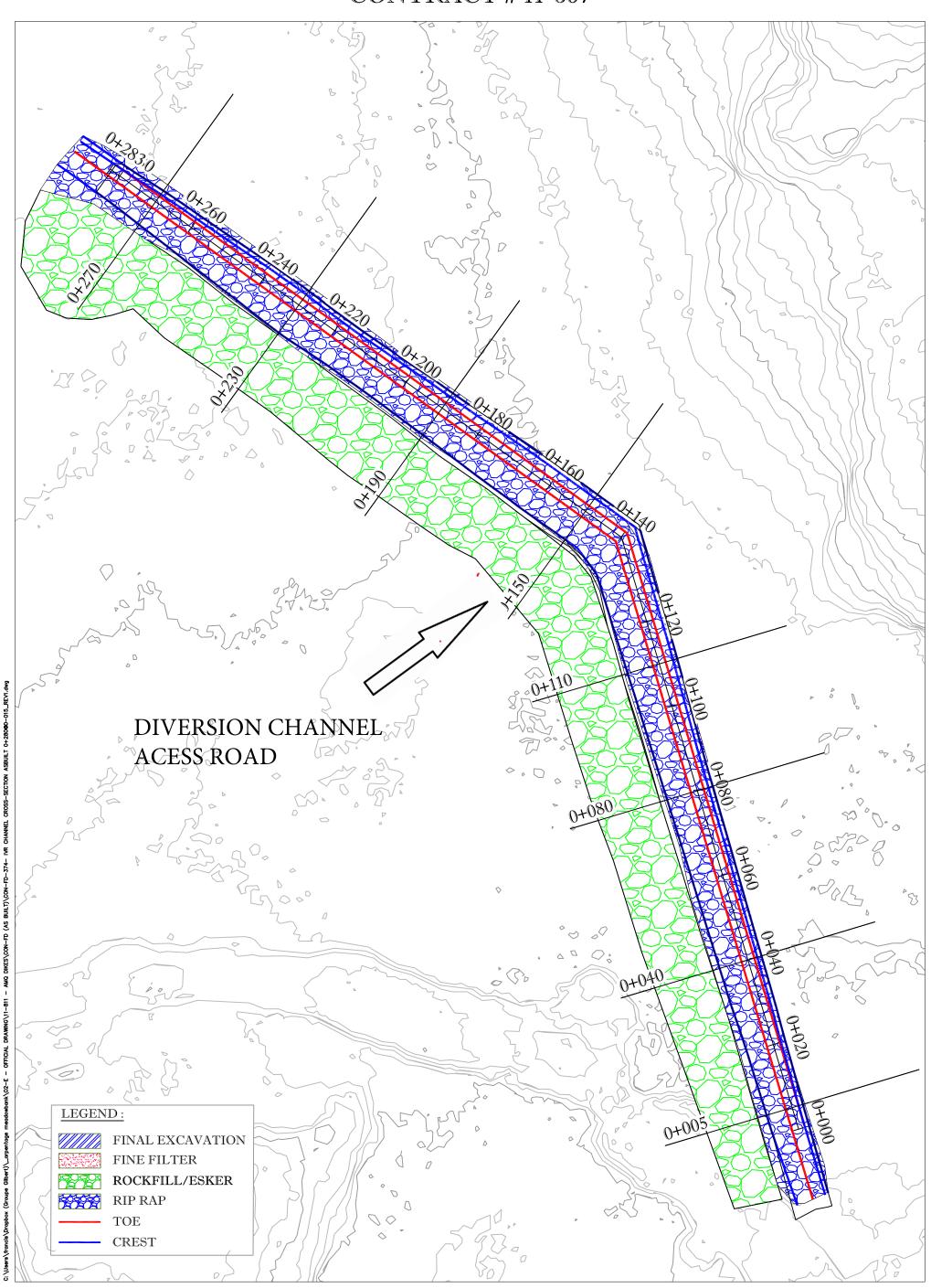
Deviation	Date	Date	Status	Subject	Location	Notes
No. 001	Received 2020-09-03 2020-09-19 And 2020-09-30	Responded 2020-09-10 2020-09-21 And 2020-09-30	Accepted	AEM planned to use ultramafic rockfill instead of esker for the berm. Ultramafic rockfill is very fine and easily degrade under compaction which usually make it a low permeability element. 2020-09-19: Geotextile: Mirafi S1600 geotextile was ordered as per technical specifications. Shipment has arrived, however due to Caribou migration the geotextile cannot be delivered on time for the construction. AEM proposed to use two layers of Novatex V geotextile. 2020-09-29 Geotextile: AEM informed thy ran out of Novatex V on site but have Mirafi 1100N, which visually is thicker thant Novatex V. The approach for construction to be used with this material is similar to Novatex V (two layer with overlap).	All along the channel All the channel	Using ultramafic rockfill is an acceptable alternative considering that: a) The diversion is operational only for a limited time; b) Traffic frequency is almost negligible and limited to light trucks 2020-09-21 Physical and Mechanical Properties of the two geotextile types are summarized: Physical Properties
003	2020-09-24	2020-09-25	Accepted	The ground at this time of year is saturated and therefor unstable. AEM planned to eliminate the small plateau on the upstream side of the channel and replace it with fine filter. The plan is to join the soft ground with the fine filter until the base of the boulder field then cover it with riprap to match the elevation of the surface of the boulders. The constraint is the reach of the excavator. Boulder field Boulder field	0+143 to 0+281	The use of Mirafi 1100 N with a two layout approach with overlap is acceptable. The request was accepted understanding that it is due to the constraint of equipment (excavator reach) and the saturated soil condition. However, this request was not put in effect. The excavator operator managed to reach the far end of the excavation in the deepest portion of the channel and the plateau could be built as per design.
004	2020-09-27	2020-09-29	Accepted	Ice Rich Till: deep ice rich till layer was encountered at 0+235 to 0+260, 0+125 to 0+090 and 0+070 to 0+029. AEM excavated to total depth of 1.8m (0.6m to planned depth and an additional 1.2m). The additional excavation was due to the ice rich till material. 1.2m was backfilled with compacted esker to reach the planned depth. Due to safety reasons, if the excavation is deeper than 2m the downstream berm could not be properly sloped to preserve excavator reach. With the aggregates, a total of 2m of added granular material will be sitting above the ice-rich till left in place. AEM confirmed that from 0+235 to 0+260 the bedrock was encountered in about 10% of the surface excavated. Bedrock is believed to be somewhat close to the bottom of the excavation.	0+235 to 0+260; 0+125 to 0+090, 0+070 to 0+029	The approach was accepted given that 1.2 m of ice rich material was removed and excavated area was backfilled compacted to the designed elevation. AEM assured that bedrock was slightly below the excavated depth.

Deviation	Date	Date	Status	Subject	Location	Notes
No.	Received	Responded				
005	2020-09-28	2020-09-29	Resolved	Channel Entrance: There is about 15 m from the station 0+000 to where the channel begins. In order to complete coverage of the area by the channel and collect all water, the excavation will be continued for 15m until it reaches the natural ground. AEM asked for the proposed solution as fill materials for the 15m in order to match the existing fill of the channel knowing that the actual proposed fill thickness would end up creating a bump above the topography.	0+000 to 0-15	 Recommended design is as follow: Station -15 to -7.5: fine filter + geotextile + a little layer of rip-rap Station -7.5 to 0: fine filter + geotextile + rip-rap Station 0: start of the IVR Diversion Fine filter thickness goes from 300 (at 0) to 150 mm (at -15) The inlet shall have a similar slope as the IVR Diversion.
006	2020-09-29	2020-09-29	Accepted	Geotextile: AEM ran out of the Novetex V and wondered if Mirafi 1100N can be substitute. The installation of Mirafi 1100N will be the same as Novetex V where two layers with overlap will be applied.		The physical and material properties of Mirafi 1100N are stronger than Novetex V. Mirafi 1100N can be used as a substitution.
007	2020-09-30	2020-09-30	Resolved	Channel outlet: the riprap layer is below the ground surface .		SNC explained the design intent which the riprap layer should be at ground elevation at the outlet. AEM confirmed that at the channel outlet near the energy dissipator, a sump was in place at the early stage of the construction. This area was backfilled to original ground. On top, a thin layer of fine filter was placed to fill the local depressions between large boulders. The final fine filter elevation corresponds to natural ground elevation at the exit of the energy dissipator. SNC is Okay with the approach. ONE SLOPE ONE SLOPE ONE SCALE 1:50 Description Description
008	2020-10-03	2020-10-05	Resolved	Berm: AEM would like to add an additional 0.5m of rockfill on the berm to increase the height to a minimum of 2m. This layer would be placed after the construction of the channel and will act as the thermal cap to contain the active layer in the berm. The rip-rap and geotextile layer will also be reduced to the 1:100 year flood event. 1 m(1:100 yr) 1 m(1:100 yr) 5 - Rip-Rap 2A - Fine Filter		SNC is okay with the additional lift as long as the rip-rap and geotextile are extended to a height of 1m from the invert along the entire channel length. SNC is okay with placing the rip-rap and geotextile layer only upto the Elevation of the 1:100 yr flood event.
				End of Document		

End of Document

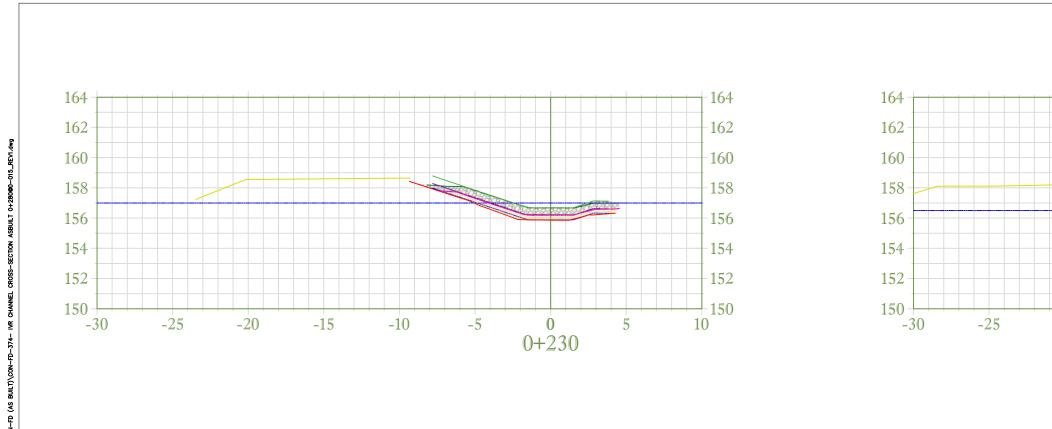
DESIGN CHANGE LOG

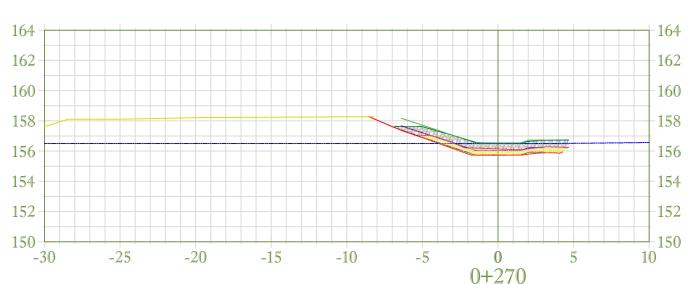
PROJECT: IVR DIVERSION CHANNEL

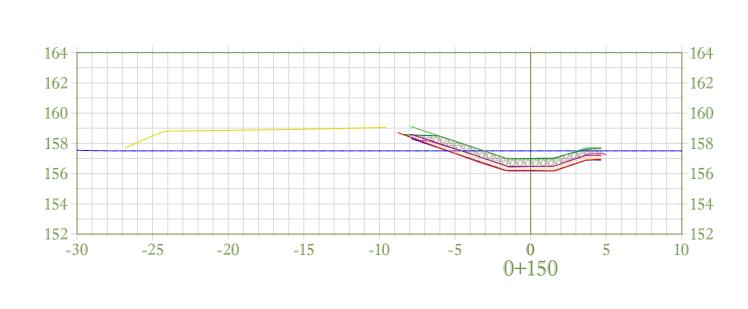


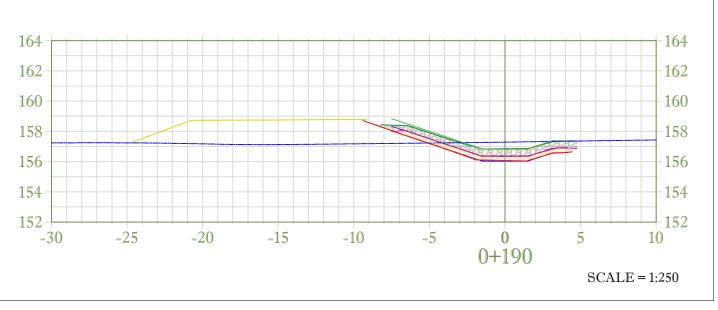
	MEADOW									
No	DATE	SUBJECT	ITEM	LOCATION	DRAWING OR SPEC REF.	DESIGN	CHANGE	STATUS	APPROVED BY	NOTES
01	9/10/2020	Material change	Access road/berm material	All the road	61-695-230-201	Compacted esker material 1.5m thick	Compacted rockfill (ultramafi soapstone) 2m thick	Approved. Memo received	SNC (Deviation No 001 & 008)	fine rockfill (type soapstone), granulometry used 0-600mm, all large particle put aside
02	9/19/2020	Material change	Geotextile product	All the channel	668284-7000-40EF-0001	Mirafi 1600 or equivalent	2 Layers of Novatex V	Approved. Memo received	SNC (Deviation No 002)	Overlap remains the same. The second layer started half way through the first layer at bottom for better coverage.
03		Geometry change	East crest	0+143 to 0+281	61-695-230-201	On the east side of the channel, 1m wide flat crest at the top of the slope	Rather than a flat crest, slope continues over 1m wide so that the top of the Fine Filter layer merges with the top of natural saturated ground material. Rip rap layer on top follows the Fine filter slope and merges with the boulder field surface.	Approved. Memo received Change not executed	SNC (Deviation No 003)	Change initially requested because of equipement limitation (maximum excavator reach), but the operator ended up being able to build the east side of the channel as per the initial design
04	9/25/2020	Over-excavation	Channel invert foundation	0+225 to 0+260 0+125 to 0+090 0+070 to 0+029	668284-7000-40EF-0001	The channel invert shall be sitting on ice-poor material surface or on bedrock surface	Excavation for ice-rich material removal does not extend beyond 1.2m below channel invert.	Approved. Memo received	SNC (Deviation No 004)	Maximum over-excavation of 1200mm below targetted elevation to remove most of the ice rich till. Material replaced by 2 layers of fine esker, dry, well compacted.
05	9/27/2020	Geometry change	Channel inlet	-0+015 to 0+000	61-695-230-201	channel upstream end is at STA 0+000	Channel upstream section extends to -0+015, and follows design intent (slope, layers, etc.)	Approved. Memo received	SNC (Deviation No 005)	Excavation of the material pass the channel limit in order to collect a water pond sitting in the area.
06	9/29/2020	Material change	Geotextile product	All the channel	668284-7000-40EF-0001	Mirafi 1600 or equivalent	2 Layers of Mirafi 1100N for -0+015 to 0+060	Approved. Memo received	SNC (Deviation No 006)	The site ran out of Novatex V but Mirafi 1100N was readily avaiable. Same installation procedure as with Novatex V
07	10/1/2020	Geometry change	Channel outlet	0+284 to 0+290	61-695-230-201	Geotextile end at the bottom of the excavation and rip rap is even to natural ground elevation	Geotextile goes up and extends beyond the dissipator to lay at natural ground elevation. Rip rap added on top of the geotextile to hold it in place and dissipates the energy of water dischargin out of the channel	Approved. Memo received	SNC (Deviation No 007)	Added geotextile and rip rap layer covers the backfilled temporary sump around 0+286
08	10/3/2020	Geometry change	West slope cross-section	All the channel	61-695-230-201	Fine filter stops at natural ground elevation. Geotextile and rip rap extends to the top of the road.	Fine filter top elevation to be 1m above inlet. Geotextile and rip rap to end there accordingly, rather than being extended to top of the road	Approved. Memo received	SNC (Deviation No 008)	1m above the inlet is enough to contain 1:100year event and allows material saving

APPENDIX D AS-BUILT DRAWINGS


DIVERSION CHANNEL AS-BUILT AMARUQ ROAD CONSTRUCTION CONTRACT # 11-607



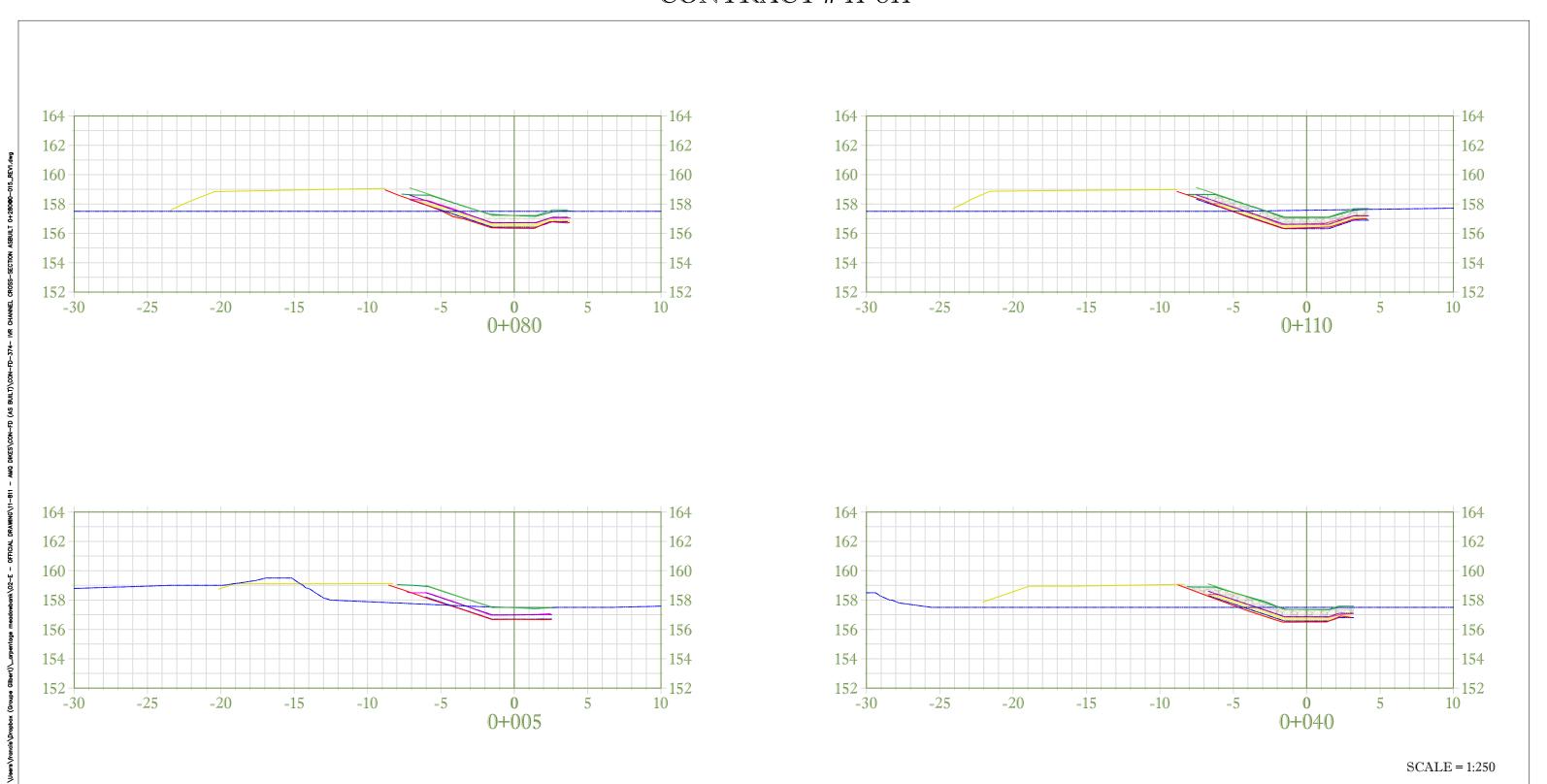



PREPARED BY : FRANCIS PAULIN DATE : 13-02-2021 CON-FD-374.REV1

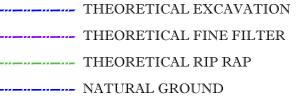
DIVERSION CHANNEL CROSS SECTION AS-BUILT AMARUQ DIVERSION CHANNEL CONTRACT # 11-811

THEORETICAL EXCAVATION
THEORETICAL FINE FILTER
THEORETICAL RIP RAP
NATURAL GROUND

AS-BUILT EXCAVATION


AS-BUILT FINE FILTER / GEOTEXTILE

AS-BUILT RIP RAP


AS-BUILT ROAD

PREPARED BY : FRANCIS PAULIN DATE : 13-02-2021 CON-FD-374-2.REV1

DIVERSION CHANNEL CROSS SECTION AS-BUILT AMARUQ DIVERSION CHANNEL CONTRACT # 11-811

PREPARED BY : FRANCIS PAULIN DATE : 13-02-2021 CON-FD-374-1.REV1

QA REPORT – 2020-10-10 16

PHOTOS

Photo 1: channel site before construction, St.0+000 looking North.

Photo 2: channel site before construction, St.0+025 looking North-West.

QA REPORT – 2020-10-10

Photo 3: first lift of the downstream berm construction with ultramafic rockfill, St. 0+140 looking South.

Photo 4: construction of the second lift of the downstream berm construction with ultramafic rockfill, St. 0+180 looking South.

Photo 5: excavation of the temporary sump to manage water 5m North of the outlet, St.0+285 looking South.

Photo 6: First step of the excavation where 500mm of material is dug to promote drainage of the overburden, St.0+270 looking North-east.

Photo 7: excavation St.0+150 looking South. First step of preliminary excavation near the shovel and final depth reached at bottom left, St.0+150 looking South-East.

Photo 8: Final excavation at bottom of channel before the upstream tablet was completed, St.0+140 looking North-West.

Photo 9: final excavation reached at bottom of the channel with tablet completed on the upstream slope. The downstream slope was not built to preserve excavator reach to place aggregates.

Photo 10: ice-rich till at the bottom of the planned excavation, St.0+250 looking North.

Photo 11: ice lens within an ice-rich till area, St.0+247. Ice was removed from the bottom of the excavation and under the downstream slope toe, right on the photo.

Photo 12: ice-rich till removal with a mechanical hammer, first 600mm material removal, St.0+125 looking South-East.

Photo 13: ice-rich till removal completed with the mechanical hammer, first 1200mm material removed, before backfilling it with esker, St.0+125 looking South-East.

Photo 14: backfilling of the ice-rich till zone with compacted esker material, first 600mm completed. St.0+125 looking South East.

Photo 15: backfilling of the ice-rich till area 0+125-0+090 with compacted esker material completed to match planned channel bottom elevation, looking South-East.

Photo 16: Approved foundation ready for the fine filter placement, St.0+090 looking North.

Photo 17: fine filter placement, St.0+145 looking North-West.

Photo 18: fine filter placement, pushing the water and mud out of the approved foundation before placement, St.0+240.

Figure 19: fine filter placement final approval before geotextile installation, St.0+140 looking North-West.

Photo 20: approved foundation of the energy dissipator following overburden excavation, looking at channel outlet.

Photo 21: energy dissipator at the channel outlet covered with fine filter, St.0+275 looking North-West.

Photo 22: geotextile installation, St.0+050 looking South-East.

Photo 24: geotextile installation followed by rip-rap placement, St.0+200.

Photo 25: rip rap placement over the geotextile matching the natural topography on the upstream side, St.0+140 looking North.

Photo 26: rip rap placement completed on the upstream side for section 0-015 to 0+090, looking South-East. Downstream berm not sloped to final grade.

Photo 27: sloping of the downstream berm from foundation to top of platform, St.0+140 looking North-East.

Photo 28: approved surface of the downstream berm sloped ready for fine filter placement, St.0+200 looking North-West.

Photo 29: fine filter placement in downstream slope, St. 0+170 looking South-East.

Photo 30: final fine filter placement in the downstream slope before geotextile placement, St. 0+070 looking North-West.

Figure 31: ballasting the approved installed geotextile with rip rap to prevent wind action, St.0+125 looking North.

Figure 32: rip rap placement on top of geotextile in the downstream slope, St.0+100 looking South.

Photo 33: view of the finalized channel, St. 0+000 looking North-West.

Photo 34: Channel inlet completed with rip rap placement.

Photo 35: channel outlet completed with geotextile and rip rap.

Photo 36: view of the completed channel section 0+000 to 0+140.