Appendix F

Cement-Bentonie cutoff wall mix design

Design report of Whale Tail Dike		Original -V.01
2018/May/10	651298-2700-4GER-0001	Technical Report

•))	Whale
SNC · LAVALIN	

Approved by:

Yohan Jalbert, Eng.

TECHNICAL NOTE Whale Tail Dike Cement-Bentonite Cut-off Wall Mix Design AEM # 6118-E-132-002-TCR-003 SNC # 651298-3000-4GER-0001 Prepared by: Tezera Firew Azmatch Reviewed by: Yohan Jalbert Rev. Date Page

	T1 4	SNC # 651298-3000-4GER-0001	PB	April 13 th , 2018	i
Title of document:	W	hale Tail Dike Cement-Bentonite Cut-off W	'all Mix D	esign	
Client:	A	GNICO EAGLE LIMITED			
Project: Am	naru	q Whale Tail Dike Detailed Design			
D	т.	The state of the s			
Prepared by:	16	ezera Firew Azmatch, Ph,D., P. Eng.			
Reviewed by:	Yo	ohan Jalbert, Eng.			

TECHNICAL NOTE		Tezera Firew Azmatch	
Whale Tail Dike Cement-Bentonite Cut-off Wall Mix Design	Reviewed by	r: Yohan Jalbert Date	Page
AEM # 6118-E-132-002-TCR-003 SNC # 651298-3000-4GER-0001	РВ	April 13 th , 2018	ii

REVISION INDEX

Revision				Remarks	
#	Prep.	App.	Date	Revised	Remarks
PA	TA		2018-03-05		Issued for internal review
РВ	TA	YJ	2018-04-13	All	Issued for information (phase III excluded)

NOTICE TO READER

This document contains the expression of the professional opinion of SNC-Lavalin Inc. ("SNC-Lavalin") as to the matters set out herein, using its professional judgment and reasonable care. It is to be read in the context of the agreement dated October 4th 2017 (the "Agreement") between SNC-Lavalin and Agnico-Eagle Mines Limited (the "Client") and the methodology, procedures and techniques used, SNC-Lavalin's assumptions, and the circumstances and constraints under which its mandate was performed. This document is written solely for the purpose stated in the Agreement, and for the sole and exclusive benefit of the Client, whose remedies are limited to those set out in the Agreement. This document is meant to be read as a whole, and sections or parts thereof should thus not be read or relied upon out of context.

SNC-Lavalin has, in preparing estimates, as the case may be, followed accepted methodology and procedures, and exercised due care consistent with the intended level of accuracy, using its professional judgment and reasonable care, and is thus of the opinion that there is a high probability that actual values will be consistent with the estimate(s). Unless expressly stated otherwise, assumptions, data and information supplied by, or gathered from other sources (including the Client, other consultants, testing laboratories and equipment suppliers, etc.) upon which SNC-Lavalin's opinion as set out herein are based have not been verified by SNC-Lavalin; SNC-Lavalin makes no representation as to its accuracy and disclaims all liability with respect thereto.

To the extent permitted by law, SNC-Lavalin disclaims any liability to the Client and to third parties in respect of the publication, reference, quoting, or distribution of this report or any of its contents to and reliance thereon by any third party

TECHNICAL NOTE Whale Tail Dike Cement-Bentonite Cut-off		Tezera Firew Azmatch Y: Yohan Jalbert	
Wall Mix Design	Rev.	Date	Page
AEM # 6118-E-132-002-TCR-003 SNC # 651298-3000-4GER-0001	РВ	April 13 th , 2018	iii

TABLE OF CONTENTS

1.0	Introduction	.1
2.0	Objective of the present study	.1
3.0 3.1 3.2 3.3	Phase I Laboratory Testing Program CB Mixes Considered for Phase I of the Laboratory Testing Program Results from Phase I of the Lab Testing Program Discussion on Phase I Laboratory Test Results	.2
4.4	Phase II Laboratory Testing Program CB Mixes Considered for Phase II of the Laboratory Testing Program Results from Phase II of the Lab Testing Program. Discussion on Phase II Early Performance/Workability Test Results. 4.3.1 On Additives 4.3.2 Influence of Cold-Curing on Workability/Viscosity. 4.3.3 Early-strength Test Results. 4.3.4 Bleeding Test Results. 4.3.5 Mixes with Optimized Cement Content. Long-Term Performance Assessment. 4.4.1 Results from the long-term Performance Assessment.	.6 .7 11 12 12 12 12
	4.4.2 Discussion of the Laboratory Test Results from the long-term Performance Assessment	16
5.0	Phase III Laboratory Testing Program1	17
6.0	References1	8
	List of figures	
_	3-1: Stress-strain plot from UCS test on CB Mix 1, Mix 2 and Mix 3 (28 days of curing) 3-2: Stress-strain plot from Triaxial UU test on CB Mix 1, Mix 2 and Mix 3 (28 days of curing)	
Figure Figure	 4-1: Variation of viscosity with time for Mixes 8 to 13 using different additives	8 9 9
Figure	4-5: Comparison of Cold-cured and warm-cured strength	
	4-6: Variation of ratio of warm-cured strength to cold-cured strength with curing age	

TECHNICAL NOTE Whale Tail Dike Cement-Bentonite Cut-off		: Tezera Firew Azmatch /: Yohan Jalbert	
Wall Mix Design	Rev.	Date	Page
AEM # 6118-E-132-002-TCR-003 SNC # 651298-3000-4GER-0001	РВ	April 13 th , 2018	iv

Figure 4-7: Stress-strain plot for Mix 22 warm-cured samples at curing age of 28 days Figure 4-8: Stress-strain plot for Mix 22 cold-cured samples at curing age of 28 days	
List of tables	
Table 2-1: Preliminary Requirements for Cement-Bentonite Mix Design	2
Table 3-1: Cement-Bentonite Mix Ratios for Phase I Laboratory Testing	2
Table 3-2: Summary of Laboratory Test Results for Phase I	3
Table 4-1: Mix Ratios Investigated during Phase II of the Lab Testing Program	7
Table 4-2: Slurry density, bleeding and early-strength (4 th day) from Phase II Lab Testing Program	11
Table 4-3: Phase II Mix Ratios for Long-Term Performance Evaluation	13
Table 4-4: Summary of Laboratory Test Results on Mix 22	13
Table 4-5: Strength test results (early-strength and long-term strength) on Mix 22	14

List of Appendix

APPENDIX 1: Phase I Laboratory Test Results APPENDIX 2: Phase II Laboratory Test Results APPENDIX 3: Additives – Product Description

TECHNICAL NOTE Whale Tail Dike Cement-Bentonite Cut-off		y: Tezera Firew Azmatch y: Yohan Jalbert	
Wall Mix Design	Rev.	Date	Page
AEM # 6118-E-132-002-TCR-003 SNC # 651298-3000-4GER-0001	РВ	April 13 th , 2018	1

1.0 Introduction

Agnico Eagle Mines Limited, Meadowbank Division ("AEM") is proposing to develop the Whale Tail Pit, a satellite deposit found in the Whale Tail Lake, on the Amaruq property, as a continuation of current mine operations and milling at the Meadowbank Mine. Therefore, the construction and operation of the Whale Tail Pit Project (the Project) would extend the life of the process operational facilities at Meadowbank Mine.

The Amaruq property is a 408 km² site located on Inuit Owned Land, approximately 150 km north of the Hamlet of Baker Lake and approximately 50 km northwest of the Meadowbank Mine in the Kivalliq region of Nunavut. The property was acquired by AEM in April 2013 and is subject to a mineral exploration agreement with Nunavut Tunngavik Incorporated.

A permitting level study for developing the water management infrastructure for the Amaruq project was completed in 2016 (SNC-Lavalin, 2016). As part of this water management infrastructure, there is an important dewatering dike that is required to enable mineral extraction in an open pit, located in the northern part of Whale Tail Lake. This dike, named the Whale Tail Dike (WTD), is located on a shallow plateau of the lake floor with an approximate 2 m depth of water. The WTD incorporates a cement-bentonite (CB) secant pile cutoff wall for providing seepage control. The preliminary design for the CB secant pile cutoff wall, which will be keyed into bedrock, was developed in 2017 during the feasibility level study (SNC-Lavalin, 2017).

The secant pile cut-off wall is composed of self-hardening cement-bentonite slurry. The slurry acts as supporting fluid during construction of the cut-off wall and forms the final cut-off wall material. The typical ingredients used are water, cement, bentonite, and additives (if required). Additives are used to improve the workability and control the setting of the CB slurry mixes.

The mix design for the composition of the CB secant pile cut-off wall of the WTD takes into consideration 3 parameters: strength, permeability, and constructability.

2.0 Objective of the present study

The objective of the present study is to determine a cement-bentonite (CB) mix that meets strength, permeability and constructability requirements. The preliminary design requirements of the CB mix were set based on SNC-Lavalin's experience, literature, standards and experience from BAUER Foundations Canada Inc. (BAUER) in similar projects. The preliminary design requirements for fresh and hydrated CB slurry mix for the cutoff wall are presented in Table 2-1 below.

TECHNICAL NOTE Whale Tail Dike Cement-Bentonite Cut-off		r: Tezera Firew Azmatch y: Yohan Jalbert	
Wall Mix Design	Rev.	Date	Page
AEM # 6118-E-132-002-TCR-003 SNC # 651298-3000-4GER-0001	PB	April 13 th , 2018	2

Table 2-1: Preliminary Requirements for Cement-Bentonite Mix Design

Characteristic	Requirement
Permeability (cm/sec)	≤ 10 ⁻⁶
Uncertified compressive strangth (UCC) (I/Ds)	≥ 400 for warm-cured testing
Unconfined compressive strength (UCS), (kPa)	≥ 200 for cold-cured testing
Minimum Early Strength	Minimum UCS of 50 kPa after 7 days of curing
Marsh Viscosity (seconds)	≤ 80 in 8 hours
Density (g/cm ³)	≥ 1.2

Laboratory tests were carried out in order to determine the mix design according to the proposed design requirements. The laboratory testing program was carried out in three phases: Phase I, Phase II and Phase III. The results from the three phases of the laboratory testing program are discussed in the following sections.

Laboratory testing to determine the UCS should take into account the effect of curing condition on strength. If laboratory tests are to be carried out under cold-cured condition, the minimum UCS has to be 200 kPa. However, if the laboratory tests are to be carried out on warm-cured samples, the minimum UCS has to be 400 kPa. These requirements were set assuming that the ratio of warm-cured to cold-cured strength is about 2. This requirement also assumes that the curing condition at the project site would be cold curing condition.

3.0 Phase I Laboratory Testing Program

3.1 CB Mixes Considered for Phase I of the Laboratory Testing Program

Phase I of the laboratory testing program included preparing samples under three different mix ratios shown in Table 3-1 below. The samples for the laboratory testing were prepared under warm curing condition (i.e., temperature of about 20°C).

Table 3-1: Cement-Bentonite Mix Ratios for Phase I Laboratory Testing

Material	Mix 1	Mix 2	Mix 3	
Cement (C/W)	0.4	0.32	0.25	
Bentonite (B/W, %)	5	5	5	
Note: Proportions are estimated by weight of material. Mix 1 was proposed by BAUER and is considered as the Base Case Mix				

	TECHNICAL NOTE Whale Tail Dike Cement-Bentonite Cut-off	Prepared by: Tezera Firew Azmatch Reviewed by: Yohan Jalbert		
•))	Wall Mix Design	Rev.	Date	Page
SNC · LAVALIN	AEM # 6118-E-132-002-TCR-003 SNC # 651298-3000-4GER-0001	PB	April 13 th , 2018	3

The following laboratory tests were conducted as part of the laboratory testing program for Phase I

- > Viscosity test using Marsh Funnel as per ASTM D6910-04 or API 13B
- > Unconfined compression test as per ASTM D2166
- > Triaxial unconsolidated-undrained (UU) test as per ASTM D2850
- > Permeability test as per ASTM D5084

3.2 Results from Phase I of the Lab Testing Program

The results from the laboratory tests in Phase 1 are summarized and presented in Table 3-2 below. The stress-strain plots from the unconfined compression test on samples cured for 28 days is presented in Figures 3-1 to 3-3. Details of the laboratory test results from Phase I are presented in Appendix 1.

Table 3-2: Summary of Laboratory Test Results for Phase I

Parameter	Mix 1	Mix 2	Mix 3
28 days UCS (kPa)	644.6	301.6	124.7
28 days Tangent Modulus of Elasticity (MPa), from UCS	93.7	58.7	33.5
28 days Cu from Triaxial UU Test (kPa)	330.4	158.9	77.4
28 days Tangent Modulus of Elasticity (MPa), from Triaxial UU test	122.7	60.2	22.2
28 days Permeability (cm/sec)	1.04 x 10 ⁻⁶	2.55 x 10 ⁻⁶	5.22 x 10 ⁻⁶
Marsh Viscosity	non-viscous mix	non-viscous mix	non-viscous mix

	TECHNICAL NOTE Whale Tail Dike Cement-Bentonite Cut-off	Prepared by: Tezera Firew Azmatch Reviewed by: Yohan Jalbert			
•))	Wall Mix Design	Rev.	Date	Page	
SNC·LAVALIN	AEM # 6118-E-132-002-TCR-003 SNC # 651298-3000-4GER-0001	PB	April 13 th , 2018	4	

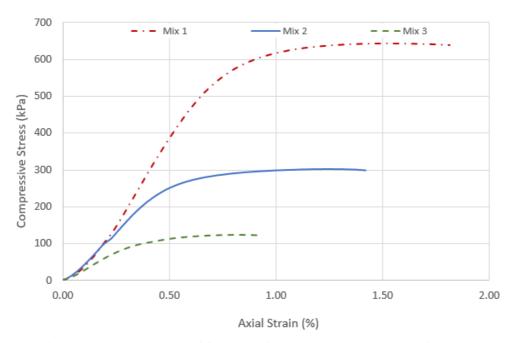


Figure 3-1: Stress-strain plot from UCS test on CB Mix 1, Mix 2 and Mix 3 (28 days of curing)

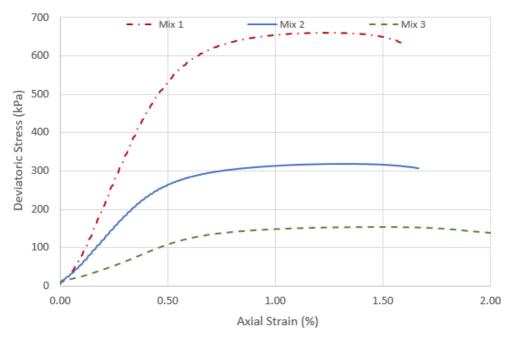


Figure 3-2: Stress-strain plot from Triaxial UU test on CB Mix 1, Mix 2 and Mix 3 (28 days of curing)

•))
SNC · LAVALIN

I LOTHINGAL NOTE		Prepared by: Tezera Firew Azmatch Reviewed by: Yohan Jalbert		
Wall Mix Design	Rev.	Date	Page	
AEM # 6118-E-132-002-TCR-003 SNC # 651298-3000-4GER-0001	РВ	April 13 th , 2018	5	

3.3 Discussion on Phase I Laboratory Test Results

Phase I of the laboratory testing program included carrying out tests on three different CB mixes shown in Table 3-1. The laboratory tests carried out on Mixes 1 to 3 indicated that.

- > The permeability of all the three mixes is close to the expected permeability requirement.
- > The UCS at 28 days is sensitive to the cement content. Mix 1 has a UCS greater than the design requirement. Hence, it meets the compressive strength requirement. The other two mixes have UCS values lower than the required UCS.
- > The Marsh viscosity test results indicated that all the three mixes are non-viscous and hence do not meet the viscosity requirement.

4.0 Phase II Laboratory Testing Program

Phase II of the laboratory testing program was needed to address the following issues:

- > As discussed in Section 3, the mixes used in Phase I did not meet viscosity requirement. Hence, new set of mixes had to be prepared using additives to improve workability/viscosity.
- > The mixes considered in Phase I laboratory testing program were prepared under warm curing condition only. However, based on the conditions of the project site, the temperature of the lake water (2.5°C) that will be used for preparing the CB slurry on site and the temperature of the ground that the slurry would be emplaced within, could have a significant effect on the curing of the mixture. Hence, the behaviour of the CB mixes under cold curing condition should be investigated. Therefore, Phase II testing program was required to assess the behaviour of the CB mixes under cold curing condition.
- > Early–strength tests were not conducted in Phase I laboratory testing program. One of the requirements to be met by the CB mixes is that they have a minimum early-strength of 50 kPa in 4 to 5 days of curing (earlier than these, if possible). Therefore, Phase II test program is required to determine the early-strength behaviour of the CB mixes.

The objectives of the Phase II testing program were, therefore to:

- > Determine mix designs that satisfy viscosity requirement
- > Determine mix designs that meet early-strength requirement
- > Determine type and dosage of additives needed to improve the workability of the CB mixes so that the mixes meet design requirements
- > Determine the behavior of the mixes under cold curing conditions (2°C-5°C)
- > Try to optimize the cement content of the mixes

The following laboratory tests were conducted during Phase II of the laboratory testing program:

- Viscosity test using Marsh Funnel as per ASTM D6910-04 or API 13B
- > Unconfined compression test as per ASTM D2166
- > Permeability test as per ASTM D5084
- > Bleeding test as per API13B
- > Vane shear test ax per ASTM D2573
- > Density testing as per ASTM D4380-84

•))
SNC · LAVALIN

TECHNICAL NOTE Whale Tail Dike Cement-Bentonite Cut-off	Prepared by: Tezera Firew Azmatch Reviewed by: Yohan Jalbert		
Wall Mix Design	Rev.	Date	Page
AEM # 6118-E-132-002-TCR-003 SNC # 651298-3000-4GER-0001	РВ	April 13 th , 2018	6

4.1 CB Mixes Considered for Phase II of the Laboratory Testing Program

As stated in the section above, the use of additives was required to improve the workability of the CB mixes. Hence, two different types of additives from two different suppliers were considered, as per the recommendation from BAUER based on their experience. The two different additives considered to improve the workability of the mixes were:

- > Sika P300-N, from SIKA Canada Inc.
- > ARBO S01_P (Sodium Lignosulfonate), from KemTek Industries Inc.

The product descriptions for the additives are presented in Appendix 3.

The mix ratios that were assessed during Phase II of the lab testing program are summarized in Table 4-1 below. A brief description of the mixes is presented below.

- Mixes 4 to 6 were prepared to check repeatability of the mixes considered in Phase I (Mixes 1 to 3) and to determine base case scenario for the rest of the mixes considered in Phase II. No additives were applied to these mixes.
- > Mixes 7 to 10 were prepared to check the applicability of the Sika P-300N additive to improve the workability of the mixes under warm curing condition.
- > Mixes 11 to 13 were prepared to check the applicability of the ARBO S01P additive to improve the workability of the mixes under warm curing condition.
- Mixes 14 to 16 were considered to check the behaviour of Mixes 11 to 13 under warm storage (for only cement and bentonite) and cold curing condition. These mixes were considered since there were no samples of cement and bentonite stored under cold condition by the time these tests were carried out.
- > Mixes 17 to 19 were considered to check the behaviour of the mixes stored and cured under cold condition.
- Mixes 20 to 21 were considered to optimize the cement content. These mixes have a lower cement content of 300 kg per cubic meter cube, compared to the other mixes which have a cement content of 350 kg per cubic meter of slurry.

The results from the lab testing program for the mixes described above are presented and discussed in the sections below.

TECHNICAL NOTE Whale Tail Dike Cement-Bentonite Cut-off	Prepared by: Tezera Firew Azmatch Reviewed by: Yohan Jalbert		
Wall Mix Design	Rev.	Date	Page
AEM # 6118-E-132-002-TCR-003 SNC # 651298-3000-4GER-0001	РВ	April 13 th , 2018	7

Table 4-1: Mix Ratios Investigated during Phase II of the Lab Testing Program

Mix ID	Cement	Bentonite	Additive		Downste
#	(C/W)	(B/W, %)	Туре	Dosage* (%)	Remark
4	0.4	5	N/A	N/A	Stored and cured warm
5	0.4	5	N/A	N/A	Stored and cured warm
6	0.4	5	N/A	N/A	Stored and cured warm
7	0.4	5	Sika P-300N	0.5	Stored and cured warm
8	0.4	4.6	Sika P-300N	0.5	Stored and cured warm
9	0.4	4	Sika P-300N	0.5	Stored and cured warm
10	0.4	3.4	Sika P-300N	0.5	Stored and cured warm
11	0.4	4.6	ARBO S01P	0.5	Stored and cured warm
12	0.4	4	ARBO S01P	0.5	Stored and cured warm
13	0.4	3.4	ARBO S01P	0.5	Stored and cured warm
14	0.4	4.6	ARBO S01P	0.5	Stored warm, cold-cured
15	0.4	4	ARBO S01P	0.5	Stored warm, cold-cured
16	0.4	3.4	ARBO S01P	0.5	Stored warm, cold-cured
17	0.4	4.6	ARBO S01P	0.5	Stored and cured cold
18	0.4	4	ARBO S01P	0.5	Stored and cured cold
19	0.4	3.4	ARBO S01P 0.5		Stored and cured cold
20	0.34	4	ARBO S01P	0.58	Stored and cured warm
21	0.34	4	ARBO S01P	0.58	Stored and cured cold

^{*} The additive dosage is by weight of cement.

4.2 Results from Phase II of the Lab Testing Program

A summary of the results from early-strength test, density test, bleeding test, and marsh viscosity test is presented in Table 4-2 below. Details of the results from Phase II laboratory testing program are presented in Appendix 2.

Figures 4-1 to 4-3 show the results from the Marsh test on viscosity of the different CB slurry mixes. The influence of the two different additives on improving the viscosity of the CB mix is shown in Figure 4-1. Figure 4-2 shows the influence of curing condition, where Mixes 11 to 13 were stored and cured under warm condition and Mixes 14 to

	TECHNICAL NOTE Whale Tail Dike Cement-Bentonite Cut-off	Prepared by: Tezera Firew Azmatch Reviewed by: Yohan Jalbert			
•))	Wall Mix Design	Rev.	Date	Page	
SNC · LAVALIN	AEM # 6118-E-132-002-TCR-003 SNC # 651298-3000-4GER-0001	РВ	April 13 th , 2018	8	

16 were prepared from cement and bentonite stored under warm condition (the water was stored under cold condition) but cured under cold condition.

Figure 4-3 shows the influence of storage condition based on Mixes 14 to 16 (where the cement and bentonite were stored under warm condition before mixing them with water stored under cold condition) and Mixes 17 to 19 (where the cement, bentonite and water were all stored under cold condition before mixing).

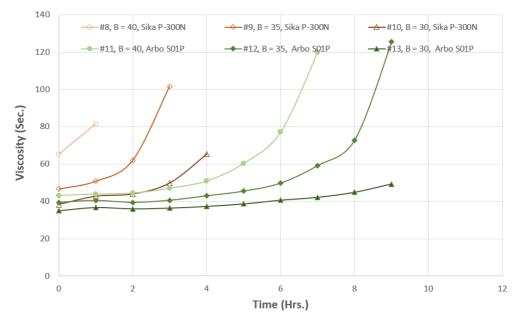


Figure 4-1: Variation of viscosity with time for Mixes 8 to 13 using different additives

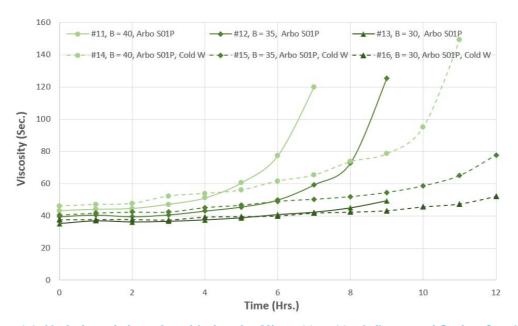


Figure 4-2: Variation of viscosity with time for Mixes 11 to 16 – Influence of Curing Condition

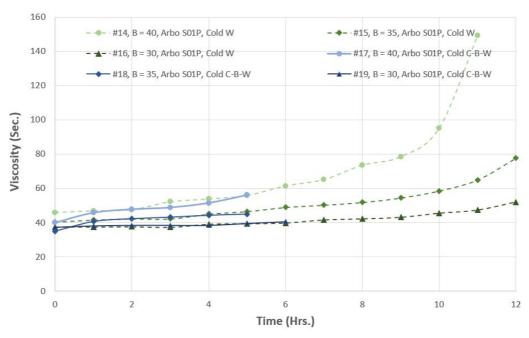


Figure 4-3: Variation of viscosity with time for Mixes 14 to 19 – Influence of Storage Condition

			Prepared by: Tezera Firew Azmatch Reviewed by: Yohan Jalbert		
Wall Mix Design		Rev.	Date	Page	
	AEM # 6118-E-132-002-TCR-003 SNC # 651298-3000-4GER-0001	РВ	April 13 th , 2018	10	

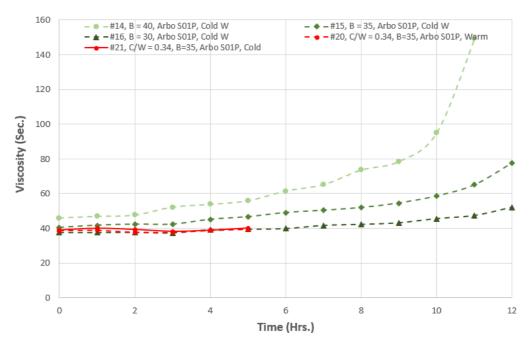


Figure 4-4: Variation of viscosity with time for Mixes 14 to 16, and Mixes 20 and 21 (with optimized cement content)

TECHNICAL NOTE Whale Tail Dike Cement-Bentonite Cut-off	Prepared by: Tezera Firew Azmatch Reviewed by: Yohan Jalbert		
Wall Mix Design	Rev.	Date	Page
AEM # 6118-E-132-002-TCR-003 SNC # 651298-3000-4GER-0001	РВ	April 13 th , 2018	11

Table 4-2: Slurry density, bleeding and early-strength (4th day) from Phase II Lab Testing Program

Mix #	Density (g/cm³)	UCS 4-days (kPa)	Viscosity after 8hrs (Sec.),	Bleeding (%, 2 Hrs.)	Bleeding (%, 3 days)
4	1.27	N/R	Non-viscous	1	N/R
5	1.26	N/R	Non-viscous	0.7	N/R
6	1.25	N/R	Non-viscous	1.2	N/R
7	1.25	N/R	> 80	0	N/R
8	1.26	N/R	> 80	0.5	N/R
9	1.26	N/R	> 80	0.5	N/R
10	1.24	N/R	> 80	0.5	N/R
11	1.24	N/R	> 80	1	N/R
12	1.22	N/R	73	0.7	N/R
13	1.19	N/R	45	1	N/R
14	1.23	74	74	0.8	N/R
15	1.21	87	52	1	N/R
16	1.19	106	42	1.3	N/R
17	1.23	98	N/R	1	4
18	1.22	112	N/R	0.5	4.5
19	1.19	112	N/R	1.8	8
20	1.19	152	< 80*	0.9	3
21	1.19	60	< 80*	1.9	7.5

N/R = Not Recorded, * the viscosity for these mixes were measured only up to 5 hrs and based on the observed trend it is expected that the viscosity at 8 hrs would be less than 80 seconds

4.3 Discussion on Phase II Early Performance/Workability Test Results

4.3.1 On Additives

A comparison of the performance of the additives is presented in Figure 4-1. The test results indicated that, for the mix ratios considered in this lab testing program, the mixes prepared with the Sika P-300N additive (Mixes 8 to 10) do not meet the workability/viscosity requirement. The Arbo S01P additive (Mixes 11 to 13) showed a better

TECHNICAL NOTE Whale Tail Dike Cement-Bentonite Cut-off	Prepared by: Tezera Firew Azmatch Reviewed by: Yohan Jalbert		
Wall Mix Design	Rev.	Date	Page
AEM # 6118-E-132-002-TCR-003 SNC # 651298-3000-4GER-0001	PB	April 13 th , 2018	12

performance in terms of workability. Hence, more mixes were considered for the current investigation using the Arbo S01P additive.

4.3.2 Influence of Cold-Curing on Workability/Viscosity

Figures 4-2 indicates that the cold-cured mixes (Mixes 14 to 16) have better workability (for viscosity aspect) than the warm-cured samples (Mixes 11 to 13).

4.3.3 Early-strength Test Results

The early-strength test results, presented in Table 4-2, indicated that Mixes 14 to 21 meet the early-strength requirement (UCS of 50 kPa) in 4-days. Early-strength measurements were not carried out up-to 4 days for the other mixes (Mixes 4 to 13). Mixes 7 to 13 have the same mix ratio as Mixes 14 to 16 but are stored under warm condition. Hence, Mixes 7 to 13 are also expected to satisfy early-strength requirement.

4.3.4 Bleeding Test Results

The bleeding test results indicate that the all the mixes have bleeding less than 2% in 2 hours. Longer period monitoring of up to 3 days was conducted on selected mixes (Mixes 17 to 22). The longer-period bleeding test results indicated that Mixes 19 and 21 show bleeding more than 7% in three days and the rest of the mixes show bleeding less than 5% in three days.

4.3.5 Mixes with Optimized Cement Content

The mixes with the optimized cement content (Mix 20 and Mix 21, warm-cured and cold-cured, respectively) meet the early-strength requirement. The viscosity tests on these mixes were done only up to 5 hrs. Based on the observed trend shown in Figure 4-4, it is expected that these mixes would meet the viscosity requirement. These mixes also satisfy the bleeding requirement. As indicated above, longer period (3 days) bleeding monitoring was carried out for these samples. The bleeding after 3 days in Mix 20 (warm-cured) is 3% and that in Mix 21 (cold-cured) is 7.5%.

4.4 Long-Term Performance Assessment

Based on the test results on early-strength, viscosity, bleeding and density, the mixes presented in Table 4-3 were considered for further investigation into the long-term performance (i.e., 28-days permeability and unconfined compressive strength tests on 7-days, 14-days, and 28-days curing time) for the following reasons:

- Mix 17 showed good performance in terms of early-strength, viscosity, bleeding and density. Hence, it was considered for further investigation into long-term performance (i.e., 28-days permeability and unconfined compressive strength tests [7-day, 14-days, and 28-days]). It was, however, labelled as Mix 22. Tests were performed on warm-cured and cold-cured samples to assess the influence of cold-curing condition on strength and establish relationship between warm-cured strength and cold-cured strength.
- > For the mixes with optimized cement content (Mix 20 and Mix 21), the warm-cured mix (Mix 21) showed good performance in terms of early-strength, viscosity, bleeding and density requirements. However, the early-strength of the cold-cured mix (i.e., UCS of 60 kPa) is very close to the required early-strength (i.e, UCS of 50 kPa). It also demonstrated considerable bleeding of 7.5% after 3 days. Therefore, these mixes were not considered for long-term performance assessment.

TECHNICAL NOTE Whale Tail Dike Cement-Bentonite Cut-off	Prepared by: Tezera Firew Azmatch Reviewed by: Yohan Jalbert		
Wall Mix Design	Rev.	Date	Page
AEM # 6118-E-132-002-TCR-003 SNC # 651298-3000-4GER-0001	РВ	April 13 th , 2018	13

Table 4-3: Phase II Mix Ratios for Long-Term Performance Evaluation

Miss ID #	Cement	Bentonite	Additive		Remark
Mix ID #	(C/W) (B/W, %)		Туре	Dosage*	
22-Warm	0.4	4.6	ARBO S01P	0.5	Stored and cured cold
22-Cold	0.4	4.6	ARBO S01P	0.5	Stored and cured cold

4.4.1 Results from the long-term Performance Assessment

The long-term performance assessment was carried out only on Mix 22. Table 4-4 below summarizes the laboratory test results from the tests conducted on Mix 22. Details of the laboratory test results are presented in Appendix 2.

The long-term strength and early-strength test results are summarized in Table 4-5 and plotted in Figure 4.5. Figure 4.6 presents the variation of the ratio of warm-cured strength to cold-cured strength with age of curing.

Table 4-4: Summary of Laboratory Test Results on Mix 22

Mix#	Density (g/cm³)	Average Permeability (cm/sec)	UCS 4-days (kPa)	Average UCS 28-days (kPa)	Viscosity after 8hrs (Sec.)	Bleeding in 2 Hrs (%)
22- Warm	1.24	3.5 x 10 ⁻⁶	220	475	< 80*	0.2
22-Cold	1.24	6.6 x 10 ⁻⁶	72	227	< 80*	0.2

^{*} the viscosity for these mixes were measured only up to 2 hrs and based on the observed trend (and since it is the same mix as Mix 17, which had a viscosity value less than 80 seconds) it is expected that the viscosity at 8 hrs would be less than 80 seconds

TECHNICAL NOTE Whale Tail Dike Cement-Bentonite Cut-off	Prepared by: Tezera Firew Azmatch Reviewed by: Yohan Jalbert		
Wall Mix Design	Rev.	Date	Page
AEM # 6118-E-132-002-TCR-003 SNC # 651298-3000-4GER-0001	РВ	April 13 th , 2018	14

Table 4-5: Strength test results (early-strength and long-term strength) on Mix 22

		Warm Cured			Cold Cured			red	
Curing Age (Days)	Test #	UCS, Warm (kPa)	Failure Strain (%)	Tangent Modulus of Elasticity (MPa)	Test #	UCS, Cold (kPa)	Failure Strain (%)	Tangent Modulus of Elasticity (MPa)	UCS Ratio Warm/Cold
1		10				0			NA
2	NA	103	NA	NA	NA	7	NA	NA	14.71
3	INA	174	INA	INA	INA	42	INA	INA	4.14
4		220				72			3.06
	1	237.7	1.04	52.6	4	96.2	1.25	15.7	2.47
7	2	239.5	1.03	44.2	5	81.4	1.01	14.6	2.94
	3	249.8	1.24	50.7	6	91.9	0.77	21.1	2.72
14	7	341.4	1.09	66.6	9	171.2	0.7	35.9	1.99
14	8	315.6	1.03	56.7	10	164.6	0.72	38.1	1.92
28	11	451	0.93	83.1	14	223.2	0.73	49.3	2.02
	12	502.8	0.94	115.8	15	228.1	0.83	48.9	2.20
	13	470.4	1.03	88	16	228.5	0.9	42	2.06

Note: the early strength test results (days 1 to 4) are from vane shear test and the long-term strength test results are from unconfined compression test. NA = Not applicable

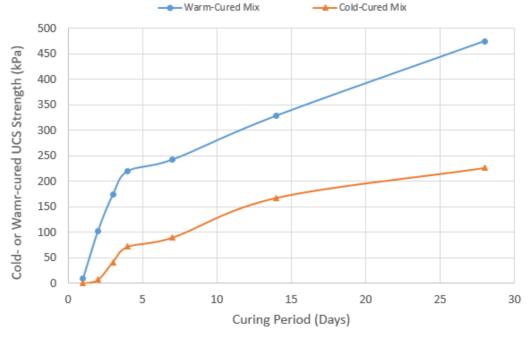


Figure 4-5: Comparison of Cold-cured and warm-cured strength

	TECHNICAL NOTE Whale Tail Dike Cement-Bentonite Cut-off	Prepared by: Tezera Firew Azmatch Reviewed by: Yohan Jalbert			
•))	Whale Tail Dike Cement-Bentonite Cut-off Wall Mix Design	Rev.	Date	Page	
SNC·LAVALIN	AEM # 6118-E-132-002-TCR-003 SNC # 651298-3000-4GER-0001	PB	April 13 th , 2018	15	

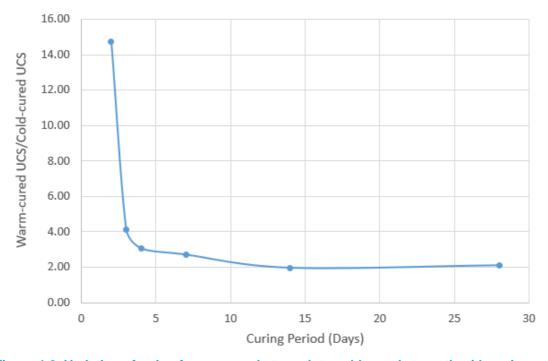


Figure 4-6: Variation of ratio of warm-cured strength to cold-cured strength with curing age

Figure 4-7: Stress-strain plot for Mix 22 warm-cured samples at curing age of 28 days

TECHNICAL NOTE Whale Tail Dike Cement-Bentonite Cut-off	Prepared by: Tezera Firew Azmatch Reviewed by: Yohan Jalbert			
Wall Mix Design	Rev.	Date	Page	
AEM # 6118-E-132-002-TCR-003 SNC # 651298-3000-4GER-0001	РВ	April 13 th , 2018	16	

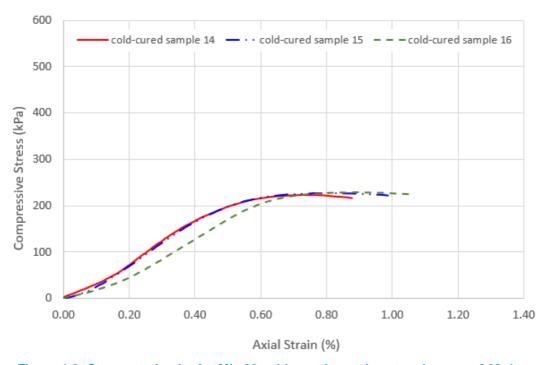


Figure 4-8: Stress-strain plot for Mix 22 cold-cured samples at curing age of 28 days

4.4.2 Discussion of the Laboratory Test Results from the long-term Performance Assessment

The results presented in Table 4-4 indicate that Mix 22 satisfies the density, early-strength, 28-days strength and bleeding requirement under both cold-cured and warm-cured conditions. The viscosity measurement on Mix 22 was done only for a couple of hours. However, based on the recorded data for a couple of hours and based on the fact that this mix is the same as Mix 17, which satisfies viscosity requirement, it can be concluded that the viscosity of Mix 22 would be less than 80 seconds in 8 hours and hence it meets the viscosity requirement.

As shown in Figure 4-5, the strength tests conducted on the samples indicated that cold curing condition decreases the rate of strength gain with curing age. Both the warm-cured and cold-cured samples continued to harden with time. However, as expected, longer curing periods were required for the cold-cured samples (4-days) compared to the warm-cured samples (2 days) to meet the early-strength requirement of 50 kPa.

Figure 4-6 shows that the ratio of the warm-cured strength to the cold-cured strength decreases with time and the ratio approach a value of about 2 with longer period of curing.

Figure 4-7 and Figure 4-8 show the stress-strain plots form UCS tests carried out on Mix 22 under warm-cured and cold-cured conditions, respectively. The stress-strain plots show that for the same curing age of 28 days, cold curing condition results in lower UCS and also lower modulus of elasticity (as shown in Table 4-5 as well) than warm curing condition. Therefore, the cold-curing condition influences not only the compressive strength of the material but also the modulus of elasticity of the material.

TECHNICAL NOTE Whale Tail Dike Cement-Bentonite Cut-off	Prepared by: Tezera Firew Azmatch Reviewed by: Yohan Jalbert		
Wall Mix Design	Rev.	Date	Page
AEM # 6118-E-132-002-TCR-003 SNC # 651298-3000-4GER-0001	PB	April 13 th , 2018	17

The cold curing condition also influences the failure strain resulting in a lower failure strain (as shown in Table 4-5) compared to warm curing condition.

5.0 Phase III Laboratory Testing Program

All the CB slurry mixes considered in Phase I and Phase II were prepared by using tap water. However, it is expected that the actual mixes on the project site would be prepared using water from Whale Tail Lake. The water chemistry may affect the performance of the CB mix. Hence, it has been proposed by SNC-Lavalin (during MDRB 23) that laboratory testing program is necessary on CB mix samples prepared by using water from Whale Tail Lake. The review board agreed that such tests need to be conducted before deciding the final CB mix design ratio to be used for the project.

Therefore, the main objective of Phase III lab testing program is to make laboratory tests on the selected design mix prepared using water from Whale Tail Lake. In addition to that, pin-hole tests (which were not performed during Phase I and Phase II) would be carried out to assess erodability of the CB mixes during early-stage of curing. Tensile strength tests will also be carried out to determine the tensile strength of the CB mixes.

The laboratory tests in Phase III will be carried out on CB mixes with the same mix ratio as Mix 22, under cold curing condition and the CB slurry would be prepared using water from Whale Tail Lake.

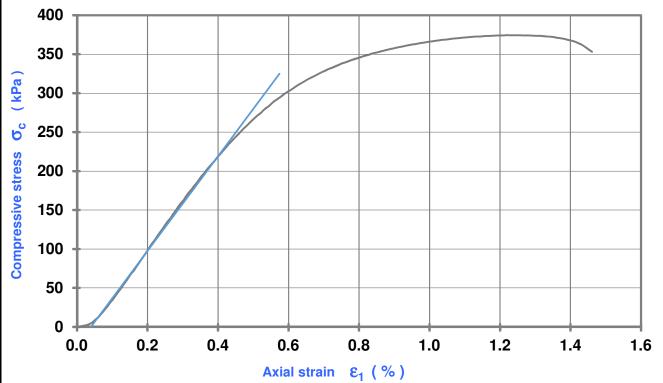
TECHNICAL NOTE Whale Tail Dike Cement-Bentonite Cut-off	Prepared by: Tezera Firew Azmatch Reviewed by: Yohan Jalbert		
Wall Mix Design	Rev.	Date	Page
AEM # 6118-E-132-002-TCR-003 SNC # 651298-3000-4GER-0001	PB	April 13 th , 2018	18

6.0 References

SNC-Lavalin, 2016. Permitting Level Engineering Report for Geotechnical and Water Management Infrastructure, 627215-10000-40ER-0004-01, February 2016.

SNC-Lavalin, 2017. Preliminary Studies for Water Management and Geotechnical Infrastructure at Amaruq, Whale Tail Dike Secant Pile Cutoff Wall Preliminary Design, 645003-3000-4GER-0003, October, 2017

Appendix 1 Phase I Laboratory Test Results


CLIENT : SNC-Lavalin MIX DESIGN #: 1

PROJECT : AMARUQ CURING TYPE : UNDER WATER AT 20 °C

LOCATION : NUNAVUT

FILE : 651298 TEST nr : UCS -01

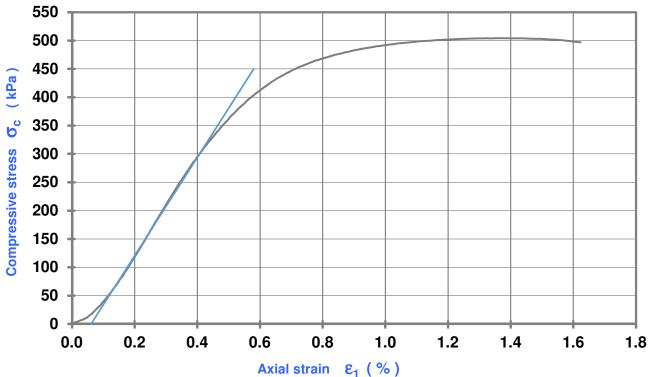
Initial cha	racterist	ics		Water content	Αι	ıxiliary	т	otal
Diameter	D _O	mm	101.58	Total wet mass (g)	mass (g) 2453.64			
Length	Lo	mm	198.37	Total dry mass (g)			11	09.01
Cross-sectional area	A_0	cm ²	81.04	Container nr			N	I-14
Total volume	V_{T}	cm ³	1607.48	Container mass (g)			37	8.16
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.953	Water content (%)			18	3.98
Total wet mass	Mh	g	2075.48		TEST C	ONDITION		
Total dry mass	Ms	g	730.85		IESI C	ONDITION		
Water volume	V_{w}	cm ³	1348.68	Compression rate	mm/min	0.183	%/min	0.09
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAII	N DECIII	TS AT FAILU	IDE	
Solids volume	Vs	cm ³	267.05	IVIAII	N NESUL	13 AT FAILC)nE	
Degree of saturation	S_R	(%)	100.6	Compressive stress	σ_{c}	kPa	3	74.4
				Axial strain	$\epsilon_{\scriptscriptstyle 1}$	(%)	1	.22
Molded Specin	nen Unit	Weight		Secant modulus at :		σ_{c}	σ	c/2
					Δ L / L $_{ m O}$	(%)	C	0.04
Total moist	ρ_{w}	3	12.7	Axial strain (%) 1.18 0.31).31
Total dry	$ ho_{\sf d}$	kN/m ³	4.5	E _u (MPa)		31.8	6	51.6

Remarks: Date of batching: 2017-11-22 Date of test: 2017-11-29 (7 days curing)

The specimen expelled water during compression (draining property)

Prepared by: Richard Courchesne (100736) Date: 2017-12-01

Verfied by: Yohan Jalbert, ing. Date:


CLIENT: SNC-Lavalin MIX DESIGN #: 1

PROJECT : AMARUQ CURING TYPE : UNDER WATER AT 20 °C

LOCATION : NUNAVUT

FILE : 651298 TEST nr : UCS -07

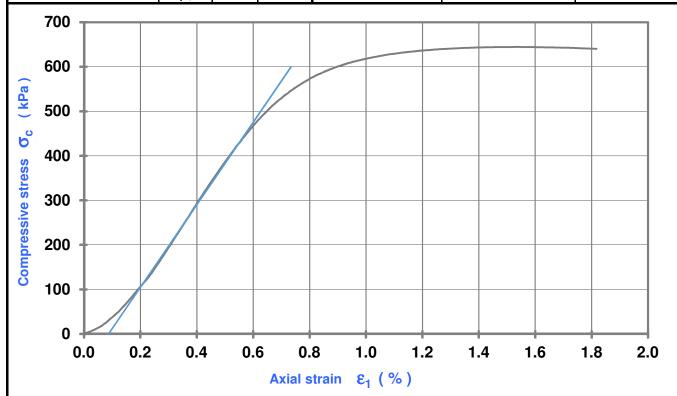
Initial cha	racterist	ics		Water content	Αι	ıxiliary	То	otal
Diameter	D _O	mm	101.49	Total wet mass (g)			245	3.51
Length	Lo	mm	196.65	Total dry mass (g)			112	5.40
Cross-sectional area	A_0	cm ²	80.89	Container nr			2	23
Total volume	V_{T}	cm ³	1590.69	Container mass (g)			38	5.92
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.938	Water content (%)			179	9.60
Total wet mass	Mh	g	2067.59		TEST C	ONDITION		
Total dry mass	Ms	g	739.48		IESI C	ONDITION		
Water volume	V_{w}	cm ³	1332.11	Compression rate	mm/min	0.150	%/min	0.08
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAII	I DECIII	TC AT EALL	IDE	
Solids volume	Vs	cm ³	270.20	IVIAII	N NESUL	TS AT FAILU	JNE	
Degree of saturation	S_R	(%)	100.9	Compressive stress $\sigma_{\rm c}$ kPa 504.2				
_	-11	(, , ,	100.5	Compressive stress	\mathbf{o}^c	кРа	50	4.2
	-11	(/ -)	100.9	Axial strain	\mathcal{E}_{c}	кра (%)		.37
Molded Specin				·	•	•	1.	
Molded Specin				Axial strain	•	(%)	1. σ ₀	.37
Molded Specin		Weight		Axial strain Secant modulus at :	ϵ_1 Δ L/L $_{O}$	(%)	1. σ ₀	37
	nen Unit			Axial strain Secant modulus at : Initail correction	ϵ_1 Δ L/L _O	(%) σ _c (%)	1.	37 c/ 2 06

Remarks: Date of batching: 2017-11-22 Date of test: 2017-12-06 (14 days curing)

The specimen expelled water during compression (draining property)

Prepared by: Richard Courchesne (100736) Date: 2017-12-12

Verfied by: Yohan Jalbert, ing. Date:


CLIENT: SNC-Lavalin MIX DESIGN #: 1

PROJECT : AMARUQ CURING TYPE : UNDER WATER AT 20 °C

LOCATION : NUNAVUT

FILE : 651298 TEST nr : UCS -13

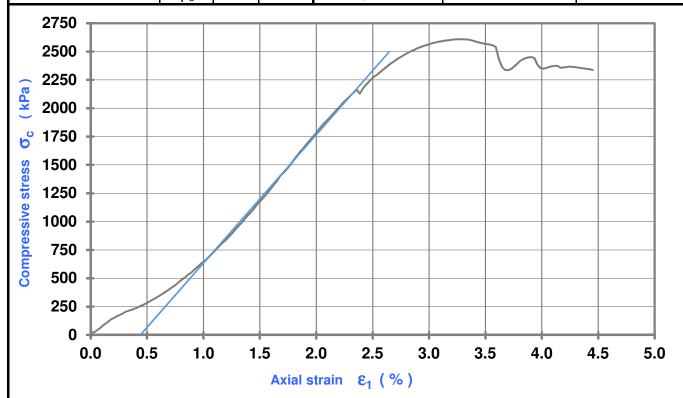
Initial cha	racterist	ics		Water content	Αι	ıxiliary	т	otal
Diameter	D _O	mm	101.69	Total wet mass (g) 2436.51				36.51
Length	Lo	mm	194.93	Total dry mass (g)			11	17.66
Cross-sectional area	A_0	cm ²	81.21	Container nr			N	l-21
Total volume	V_{T}	cm ³	1583.01	Container mass (g)			38	37.42
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.917	Water content (%)			18	80.61
Total wet mass	Mh	g	2049.09		TEST C	ONDITION		
Total dry mass	Ms	g	730.24	TEST CONDITION				
Water volume	V_{w}	cm ³	1322.82	Compression rate mm/min 0.150 %/min 0.				
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAII	N DECIII '	TS AT FAILU	IDE	
Solids volume	Vs	cm ³	266.83	IVIAII	N NESUL	15 AT FAILU)n c	
Degree of saturation	S_R	(%)	100.5	Compressive stress	$\sigma_{\!\scriptscriptstyle c}$	kPa	6	44.6
				Axial strain	$\epsilon_{\scriptscriptstyle 1}$	(%)	1	.53
Molded Specin	nen Unit	Weight		Secant modulus at :		σ_{c}	σ	5 _c / 2
				Initail correction	Δ L / L $_{ m O}$	(%)	C	0.09
Total moist	ρ_{w}	3	12.7	Axial strain (%)	n (%) 1.44 0.35).35
Total dry	$ ho_{\sf d}$	kN/m ³	4.5	E _u (MPa)		44.6	g	3.7

Remarks: Date of batching: 2017-11-22 Date of test: 2017-12-20 (28 days curing)

The specimen expelled water during compression (draining property)

Prepared by: Richard Courchesne (100736) Date: 2017-12-22

Verfied by: Yohan Jalbert, ing. Date:


CLIENT: SNC-Lavalin MIX DESIGN #: 1

PROJECT : AMARUQ CURING TYPE : FROZEN AT -18 °C

LOCATION : NUNAVUT

FILE : 651298 TEST nr : UCS -05

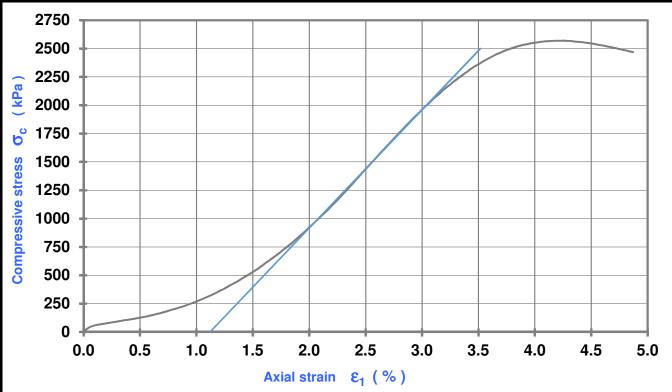
Initial cha	racterist	ics		Water content	Αι	uxiliary	T	otal
Diameter	D _O	mm	101.24	Total wet mass (g)			244	17.70
Length	Lo	mm	201.67	Total dry mass (g)			116	55.08
Cross-sectional area	A_0	cm ²	80.49	Container nr			E	Bo6
Total volume	V_{T}	cm ³	1623.34	Container mass (g)			45	0.76
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.992	Water content (%)			17	9.56
Total wet mass	Mh	g	1996.94		TEST C	ONDITION		
Total dry mass	Ms	g	714.32	TEST CONDITION				
Water volume	V_{w}	cm ³	1286.48	Compression rate mm/min 0.750 %/min				
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAII	N DECIII	TS AT FAILU	IDE	
Solids volume	Vs	cm ³	261.01	IVIAII	N NESUL	15 AT FAILU	INE	
Degree of saturation	S _R	(%)	94.4	Compressive stress	$\sigma_{\!\scriptscriptstyle c}$	kPa	26	09.5
				Axial strain	$\epsilon_{\scriptscriptstyle 1}$	(%)	3	.25
Molded Specin	nen Unit	Weight		Secant modulus at :		σ_{c}	σ	c/2
				Initail correction	Δ L/L $_{ m O}$	(%)	0	.44
Total moist	ρ_{w}	3	12.1	Axial strain (%) 2.81			1	.17
Total dry	$ ho_{\sf d}$	kN/m ³	4.3	E _u (MPa)		92.9	1.	11.9

Remarks: Date of batching: 2017-11-22 Date of test: 2017-11-29 (7 days curing)

The specimen expelled water during compression at the bottom only

Prepared by : Richard Courchesne (100736) Date: 2017-12-01

Verfied by : Yohan Jalbert, ing. Date:


CLIENT: SNC-Lavalin MIX DESIGN #: 1

PROJECT : AMARUQ CURING TYPE : FROZEN AT -18 °C

LOCATION : NUNAVUT

FILE : 651298 TEST nr : UCS -10

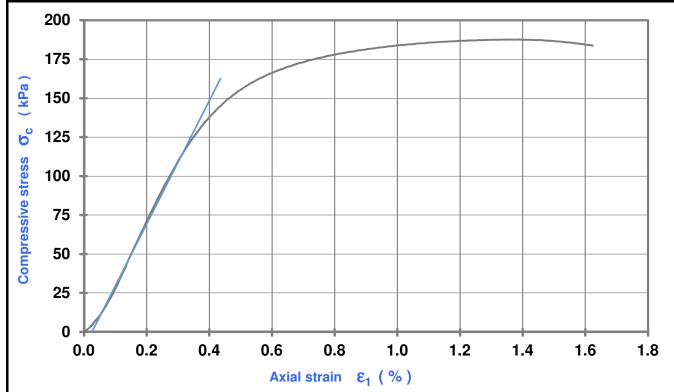
Initial cha	racterist	ics		Water content	Αι	ıxiliary	т	otal
Diameter	D _O	mm	101.46	Total wet mass (g)			24	36.58
Length	Lo	mm	199.79	Total dry mass (g)			11	71.73
Cross-sectional area	A_0	cm ²	80.85	Container nr			!	S-9
Total volume	V_{T}	cm ³	1615.40	Container mass (g)			45	9.18
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.969	Water content (%)			17	7.51
Total wet mass	Mh	g	1977.40		TEST C	ONDITION		
Total dry mass	Ms	g	712.55	TEST CONDITION				
Water volume	V_{w}	cm ³	1268.66	Compression rate mm/min 0.750 %/min 0.3				
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAII	N DECIII '	TS AT FAILU	IDE	
Solids volume	Vs	cm ³	260.36	IVIAII	N NESUL	15 AT FAILU	JNE .	
Degree of saturation	S_R	(%)	93.6	Compressive stress	σ_{c}	kPa	25	69.8
				Axial strain	$\epsilon_{\scriptscriptstyle 1}$	(%)	4	.26
Molded Specin	nen Unit	Weight		Secant modulus at :	-	σ_{c}	σ	c/2
				Initail correction	Δ L/L $_{ m O}$	(%)	1	.12
Total moist	ρ_{w}	kN/m ³	12.0	Axial strain (%) 3.14 1.17			.17	
Total dry	ρ_{d}	kiN/m°	4.3	E _u (MPa)		81.9	1	03.2

Remarks: Date of batching: 2017-11-22 Date of test: 2017-12-07 (15 days curing)

The specimen expelled water during compression at the bottom only

Prepared by : Richard Courchesne (100736) Date: 2017-12-12

Verfied by: Yohan Jalbert, ing. Date:


CLIENT : SNC-Lavalin MIX DESIGN #: 2

PROJECT : AMARUQ CURING TYPE : UNDER WATER AT 20 °C

LOCATION : NUNAVUT

FILE : 651298 TEST nr : UCS -02

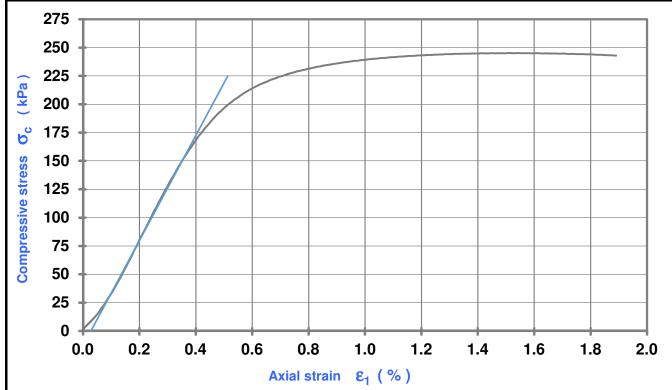
Initial cha	racterist	ics		Water content	Au	ıxiliary	т	otal
Diameter	D _O	mm	101.50	Total wet mass (g) 2417.81				
Length	Lo	mm	196.17	Total dry mass (g)			104	47.07
Cross-sectional area	A_0	cm ²	80.92	Container nr			N	l-26
Total volume	V_{T}	cm ³	1587.38	Container mass (g)			42	7.73
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.933	Water content (%)			22	1.32
Total wet mass	Mh	g	1990.08		TEST C	ONDITION		
Total dry mass	Ms	g	619.34	TEST CONDITION				
Water volume	V_{w}	cm ³	1374.86	Compression rate mm/min 0.183 %/min 0.				
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAII	N DECIII .	TS AT FAILU	IDE	
Solids volume	V_s	cm ³	226.30	IVIAII	N NESUL	15 AT FAIL)NE	
Degree of saturation	S_R	(%)	101.0	Compressive stress	$\sigma_{ extsf{c}}$	kPa	18	37.6
				Axial strain	$\epsilon_{\scriptscriptstyle 1}$	(%)	1	.36
Molded Specin	nen Unit	Weight		Secant modulus at :	-	σ_{c}	σ	c/2
				Initail correction	Δ L / L $_{ m O}$	(%)	C	.03
Total moist	ρ_{w}	kN/m ³	12.3	Axial strain (%) 1.34 0.24				.24
Total dry	ρ_{d}	kN/m°	3.8	E _u (MPa)		14.0	3	9.3

Remarks: Date of batching: 2017-11-22 Date of test: 2017-11-29 (7 days curing)

The specimen expelled water during compression (draining property)

Prepared by: Richard Courchesne (100736) Date: 2017-12-01

Verfied by: Yohan Jalbert, ing. Date:


CLIENT : SNC-Lavalin MIX DESIGN #: 2

PROJECT : AMARUQ CURING TYPE : UNDER WATER AT 20 °C

LOCATION : NUNAVUT

FILE : 651298 TEST nr : UCS -08

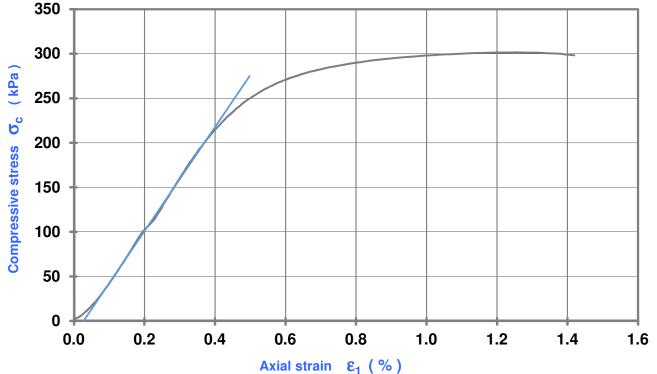
Initial cha	racterist	ics		Water content	Au	xiliary	т	otal
Diameter	D _O	mm	101.46	Total wet mass (g)			230	63.89
Length	Lo	mm	194.56	Total dry mass (g)			10 ⁻	13.31
Cross-sectional area	A_0	cm ²	80.85	Container nr			N	l-21
Total volume	V_{T}	cm ³	1573.02	Container mass (g)			38	7.47
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.918	Water content (%)			21	5.80
Total wet mass	Mh	g	1976.42		TEST CO	ONDITION		
Total dry mass	Ms	g	625.84	TEST CONDITION				
Water volume	V_{w}	cm ³	1354.64	Compression rate mm/min 0.183 %/min				
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAII	N DECIII 1	ΓS AT FAILU	IDE	
Solids volume	Vs	cm ³	228.68	IVIAII	N NESUL	IS AT FAILU)nE	
Degree of saturation	S_R	(%)	100.8	Compressive stress	$\sigma_{\!\scriptscriptstyle c}$	kPa	24	45.2
				Axial strain	$\epsilon_{\scriptscriptstyle 1}$	(%)	1	.51
Molded Specin	nen Unit	Weight		Secant modulus at :	-	σ_{c}	σ	c/2
				Initail correction	Δ L/L $_{ m O}$	(%)	0	.03
Total moist	ρ_{w}	kN/m ³	12.3	Axial strain (%) 1.48 0.26				.26
Total dry	ρ_{d}	kN/m	3.9	E _u (MPa)		16.6	4	7.3

Remarks: Date of batching: 2017-11-22 Date of test: 2017-12-06 (14 days curing)

The specimen expelled water during compression (draining property)

Prepared by: Richard Courchesne (100736) Date: 2017-12-12

Verfied by: Yohan Jalbert, ing. Date:



CLIENT : SNC-Lavalin MIX DESIGN #: 2

PROJECT : AMARUQ CURING TYPE : UNDER WATER AT 20 °C

LOCATION : NUNAVUT

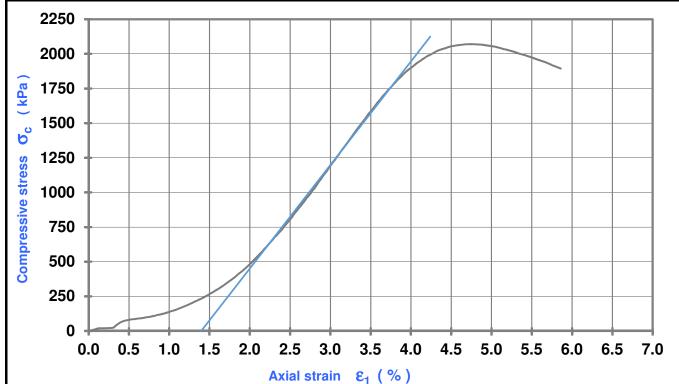
FILE : 651298						TEST nr :	UCS -14		
Initial ch	aracterist	ics		Water content	Au	uxiliary	т	otal	
Diameter	D _O	mm	101.60	Total wet mass (g)			2366.00		
Length	LO	mm	194.89	Total dry mass (g)			1003.39		
Cross-sectional area	A_0	cm ²	81.07	Container nr			23		
Total volume	V_{T}	cm ³	1580.04	Container mass (g)			38	35.73	
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.918	Water content (%)			22	20.61	
Total wet mass	Mh	g	1980.27	TEST CONDITION					
Total dry mass	Ms	g	617.66						
Water volume	V_{w}	cm ³	1366.71	Compression rate	mm/min	0.150	%/min	0.08	
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAIN DECLUTO AT FAILURE					
Solids volume	V_s	cm ³	225.69	MAIN RESULTS AT FAILURE					
Degree of saturation	S_R	(%)	100.9	Compressive stress	$\sigma_{\rm c}$	kPa	3	01.6	
		ı		Axial strain	$\epsilon_{\scriptscriptstyle 1}$	(%)	1	.25	
Molded Speci	men Unit	Weight		Secant modulus at :		σ_{c}	σ _c / 2		
				Initail correction	Δ L/L $_{O}$	(%)	(0.03	
Total moist	ρ_{w}	3	12.3	Axial strain (%)		1.23	().26	
Total dry	$ ho_{\sf d}$	kN/m ³	3.8	E _u (MPa)		24.6	5	58.7	
350									
000									
300							T		
Ba									

Remarks: Date of batching: 2017-11-22 Date of test: 2017-12-20 (28 days curing)

The specimen expelled water during compression (draining property)

Prepared by: Richard Courchesne (100736) Date: 2017-12-22

Verfied by: Yohan Jalbert, ing. Date:


CLIENT : SNC-Lavalin MIX DESIGN #: 2

PROJECT : AMARUQ CURING TYPE : FROZEN AT -18 °C

LOCATION : NUNAVUT

FILE : 651298 TEST nr : UCS -04

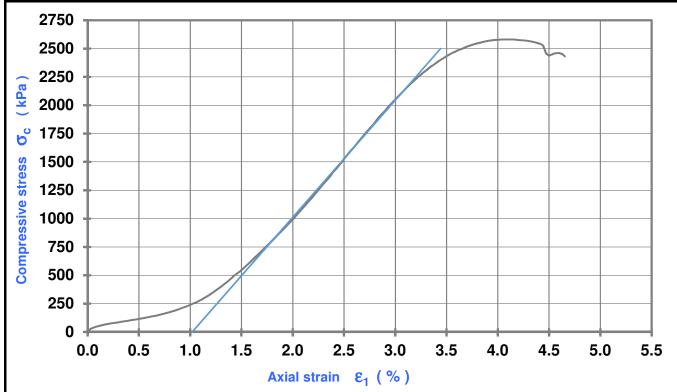
Initial cha	racterist	ics		Water content	Au	xiliary	T	otal
Diameter	D _O	mm	101.40	Total wet mass (g)			232	28.16
Length	Lo	mm	199.27	Total dry mass (g)			100	31.17
Cross-sectional area	A_0	cm ²	80.75	Container nr			D	-13
Total volume	V_{T}	cm ³	1609.15	Container mass (g)			42	6.26
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.965	Water content (%)			21	4.41
Total wet mass	Mh	g	1901.90		TEST CO	NULTION		
Total dry mass	Ms	g	604.91	TEST CONDITION				
Water volume	V_{w}	cm ³	1300.89	Compression rate mm/min 0.750 %/min 0				
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAII	I DECIII 1	S AT FAILU	IDE	
Solids volume	Vs	cm ³	221.03	IVIAII	N NESUL	IS AT FAILU	JNE	
Degree of saturation	S_R	(%)	93.7	Compressive stress	$\sigma_{\!\scriptscriptstyle c}$	kPa	20	70.2
				Axial strain	$\epsilon_{\scriptscriptstyle 1}$	(%)	4	.74
Molded Specin	nen Unit	Weight		Secant modulus at :	-	σ_{c}	σ	c/2
				Initail correction	Δ L/L $_{ m O}$	(%)	1	.40
Total moist	ρ_{w}	kN/m ³	11.6	Axial strain (%) 3.34 1.43				.43
Total dry	ρ_{d}	kN/m	3.7	E _u (MPa)	(61.9	7	3.6

Remarks: Date of batching: 2017-11-22 Date of test: 2017-11-29 (7 days curing)

The specimen expelled water during compression at the bottom only

Prepared by : Richard Courchesne (100736) Date: 2017-12-01

Verfied by: Yohan Jalbert, ing. Date:


CLIENT : SNC-Lavalin MIX DESIGN #: 2

PROJECT : AMARUQ CURING TYPE : FROZEN AT -18 °C

LOCATION : NUNAVUT

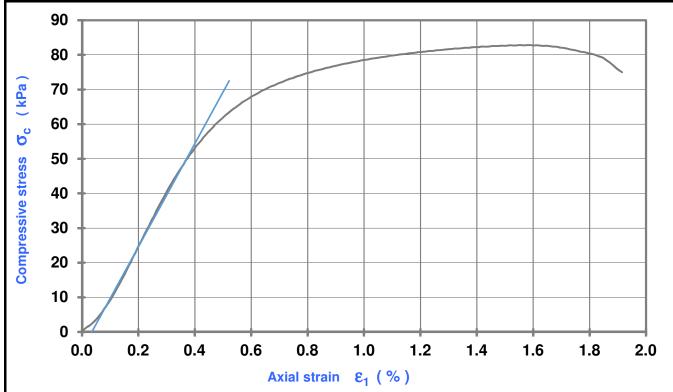
FILE : 651298 TEST nr : UCS -11

Initial cha	racterist	ics		Water content	Αι	ıxiliary	т	otal
Diameter	D _O	mm	101.40	Total wet mass (g)			23	48.86
Length	Lo	mm	199.28	Total dry mass (g)			10	56.80
Cross-sectional area	A_0	cm ²	80.75	Container nr			ı	N-2
Total volume	V_{T}	cm ³	1609.23	Container mass (g)			44	8.98
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.965	Water content (%)			21	2.57
Total wet mass	Mh	g	1899.88		TEST C	ONDITION		
Total dry mass	Ms	g	607.82	TEST CONDITION				
Water volume	V_{w}	cm ³	1295.95	Compression rate mm/min 0.750 %/min 0.3				
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAII	N DECIII '	TS AT FAILU	IDE	
Solids volume	Vs	cm ³	222.09	IVIAII	N NESUL	15 AT FAILU	JNE .	
Degree of saturation	S_R	(%)	93.4	Compressive stress	$\sigma_{\!\scriptscriptstyle c}$	kPa	25	80.9
				Axial strain	$\epsilon_{\scriptscriptstyle 1}$	(%)	4	.10
Molded Specin	nen Unit	Weight		Secant modulus at :	-	σ_{c}	σ	c/2
				Initail correction	Δ L/L $_{ m O}$	(%)	1	.02
Total moist	ρ_{w}	kN/m ³	11.6	Axial strain (%) 3.08 1.27				.27
Total dry	$ ho_{\sf d}$	kN/m°	3.7	E _u (MPa)		83.7	1	02.1

Remarks: Date of batching: 2017-11-22 Date of test: 2017-12-06 (14 days curing)

The specimen expelled water during compression at the bottom only Prepared by : Richard Courchesne (100736) Date: 2017-12-12

Verfied by : Yohan Jalbert, ing. Date:


CLIENT : SNC-Lavalin MIX DESIGN #: 3

PROJECT : AMARUQ CURING TYPE : UNDER WATER AT 20 °C

LOCATION : NUNAVUT

FILE : 651298 TEST nr : UCS -03

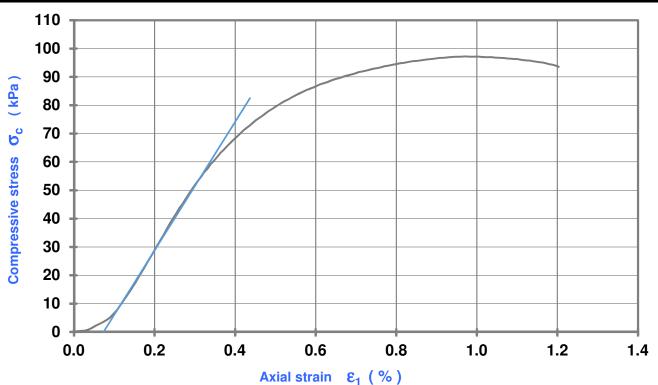
Initial cha	racterist	ics		Water content	Au	xiliary	Т	otal
Diameter	D _O	mm	101.69	Total wet mass (g) 2317.26				
Length	Lo	mm	193.51	Total dry mass (g)			92	3.17
Cross-sectional area	A_0	cm ²	81.21	Container nr			N	l-12
Total volume	V_{T}	cm ³	1571.57	Container mass (g)			42	4.62
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.903	Water content (%)			27	9.63
Total wet mass	Mh	g	1892.64		TEST C	ONDITION		
Total dry mass	Ms	g	498.55	TEST CONDITION				
Water volume	V_{w}	cm ³	1398.28	Compression rate mm/min 0.183 %/min				
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAII	N DECIII .	TS AT FAILU	IDE	
Solids volume	V_s	cm ³	182.17	IVIAII	N NESUL	IS AT FAIL	JNE	
Degree of saturation	S_R	(%)	100.6	Compressive stress	$\sigma_{\!\scriptscriptstyle c}$	kPa	8	2.8
				Axial strain	$\epsilon_{\scriptscriptstyle 1}$	(%)	1	.58
Molded Specin	nen Unit	Weight		Secant modulus at :	-	σ_{c}	σ	c/2
				Initail correction	Δ L/L $_{ m O}$	(%)	0	.03
Total moist	ρ_{w}	kN/m ³	11.8	Axial strain (%) 1.55 0.28				.28
Total dry	ρ_{d}	kN/m ³	3.1	E _u (MPa)		5.4	1	5.2

Remarks: Date of batching: 2017-11-22 Date of test: 2017-11-29 (7 days curing)

The specimen expelled water during compression (draining property)

Prepared by: Richard Courchesne (100736) Date: 2017-12-01

Verfied by: Yohan Jalbert, ing. Date:


CLIENT : SNC-Lavalin MIX DESIGN #: 3

PROJECT : AMARUQ CURING TYPE : UNDER WATER AT 20 °C

LOCATION : NUNAVUT

FILE : 651298 TEST nr : UCS -09

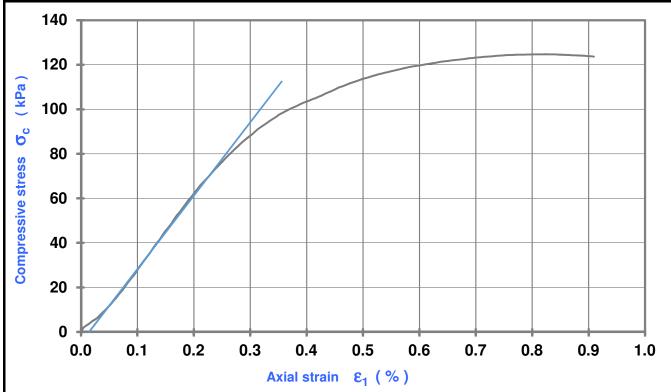
Initial cha	racterist	ics		Water content	Αι	uxiliary	т	otal
Diameter	D _O	mm	101.42	Total wet mass (g) 2346.12				46.12
Length	Lo	mm	196.24	Total dry mass (g)			93	86.71
Cross-sectional area	A_0	cm ²	80.79	Container nr)-13
Total volume	V_{T}	cm ³	1585.37	Container mass (g)			42	26.33
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.935	Water content (%)			27	' 6.15
Total wet mass	Mh	g	1919.79		TEST C	ONDITION		
Total dry mass	Ms	g	510.38	TEST CONDITION				
Water volume	V_{w}	cm ³	1413.65	Compression rate	0.09			
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAII	I DECIII	TS AT FAILU	IDE	
Solids volume	V_s	cm ³	186.49	IVIAII	N NESUL	15 AT FAILU)nE	
Degree of saturation	S_R	(%)	101.1	Compressive stress	$\sigma_{\!\scriptscriptstyle c}$	kPa	9	7.2
				Axial strain	$\epsilon_{\scriptscriptstyle 1}$	(%)	С).97
Molded Specin	nen Unit	Weight		Secant modulus at :	-	σ_{c}	σ	5 _c / 2
				Initail correction	Δ L/L $_{ m O}$	(%)	C).07
Total moist	ρ_{w}	kN/m ³	11.9	Axial strain (%) 0.90 0.22).22
Total dry	ρ_{d}	KN/m	3.2	E _u (MPa)		10.8	2	22.9

Remarks: Date of batching: 2017-11-22 Date of test: 2017-12-06 (14 days curing)

The specimen expelled water during compression (draining property)

Prepared by: Richard Courchesne (100736) Date: 2017-12-12

Verfied by: Yohan Jalbert, ing. Date:


CLIENT : SNC-Lavalin MIX DESIGN #: 3

PROJECT : AMARUQ CURING TYPE : UNDER WATER AT 20 °C

LOCATION : NUNAVUT

FILE : 651298 TEST nr : UCS -15

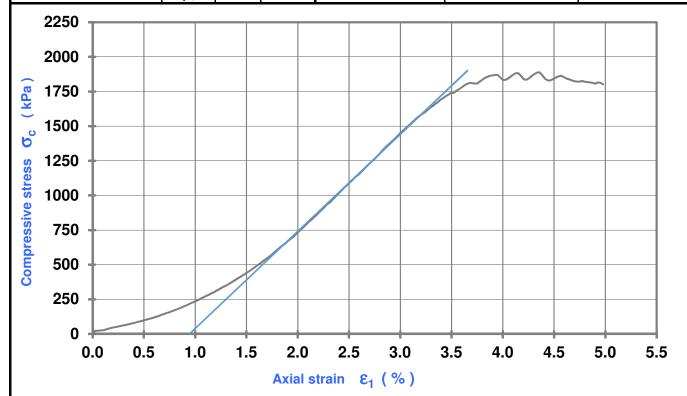
Initial cha	nitial characteristics			Water content	Auxiliary		Total		
Diameter	D _O	mm	101.58	Total wet mass (g)			22	76.98	
Length	Lo	mm	193.89	Total dry mass (g) 877.26					
Cross-sectional area	A_0	cm ²	81.04	Container nr N-14					
Total volume	V_{T}	cm ³	1571.22	Container mass (g) 378.09					
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.909	Water content (%) 280.41					
Total wet mass	Mh	g	1898.89	TEST CONDITION					
Total dry mass	Ms	g	499.17	TEST CONDITION					
Water volume	V_{w}	cm ³	1403.93	Compression rate	mm/min	0.150	%/min	0.08	
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAII	N DECIII	TS AT FAILU	IDE		
Solids volume	V_s	cm ³	182.39	IVIAII	N NESUL	13 AT FAIL)nE		
Degree of saturation	S_R	(%)	101.1	Compressive stress	$\sigma_{\!\scriptscriptstyle c}$	kPa	1:	24.7	
				Axial strain	$\epsilon_{\scriptscriptstyle 1}$	(%)	c).82	
Molded Specin	nen Unit	Weight		Secant modulus at :	-	σ_{c}	σ	5 _c / 2	
				Initail correction	Δ L/L $_{ m O}$	(%)	C).01	
Total moist	ρ_{w}	kN/m ³	11.9	Axial strain (%)		0.81	C).19	
Total dry	ρ_{d}	kiN/m°	3.1	E _u (MPa) 15.4 33.5					

Remarks: Date of batching: 2017-11-22 Date of test: 2017-12-20 (28 days curing)

The specimen expelled water during compression (draining property)

Prepared by: Richard Courchesne (100736) Date: 2017-12-22

Verfied by: Yohan Jalbert, ing. Date:


CLIENT : SNC-Lavalin MIX DESIGN #: 3

PROJECT : AMARUQ CURING TYPE : FROZEN AT -18 °C

LOCATION : NUNAVUT

FILE : 651298 TEST nr : UCS -06

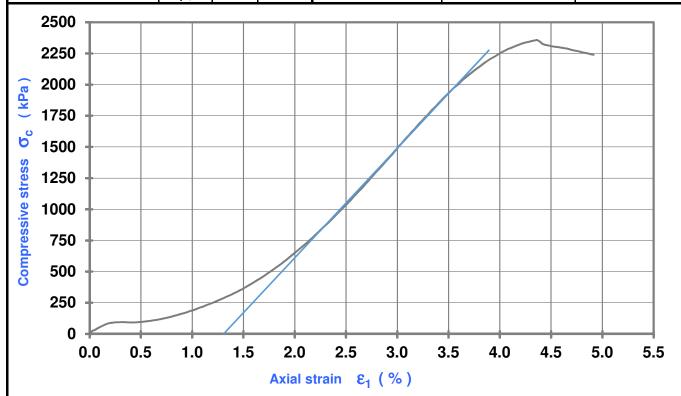
Initial cha	racterist	ics		Water content Auxiliary			т	otal	
Diameter	D _O	mm	101.34	Total wet mass (g)			23:	34.45	
Length	Lo	mm	201.95	Total dry mass (g)			97	'2.15	
Cross-sectional area	A_0	cm ²	80.65	Container nr	Container nr H				
Total volume	V_{T}	cm ³	1628.70	Container mass (g) 473.97				3.97	
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.993	Water content (%)			27	' 3.46	
Total wet mass	Mh	g	1860.48		TEST C	ONDITION			
Total dry mass	Ms	g	498.18	TEST CONDITION					
Water volume	V_{w}	cm ³	1366.40	Compression rate	mm/min	0.750	%/min	0.37	
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAII	N DECIII .	TS AT FAILU	IDE		
Solids volume	Vs	cm ³	182.03	IVIAII	N NESUL	15 AT FAILU	JNE		
Degree of saturation	S_R	(%)	94.5	Compressive stress	σ_{c}	kPa	18	388.3	
				Axial strain	$\epsilon_{\scriptscriptstyle 1}$	(%)	4	1.36	
Molded Specin	nen Unit	Weight		Secant modulus at : σ_c $\sigma_c/2$				5 _c / 2	
				Initail correction	Δ L / L $_{ m O}$	(%)	C).94	
Total moist	ρ_{w}	kN/m ³	11.2	Axial strain (%)		3.41	1	.37	
Total dry	$ ho_{\sf d}$	kN/m°	3.0	E _u (MPa) 55.3 69.4					

Remarks: Date of batching: 2017-11-22 Date of test: 2017-11-29 (7 days curing)

The specimen expelled water during compression at the bottom only

Prepared by: Richard Courchesne (100736) Date: 2017-12-01

Verfied by: Yohan Jalbert, ing. Date:


CLIENT : SNC-Lavalin MIX DESIGN #: 3

PROJECT : AMARUQ CURING TYPE : FROZEN AT -18 °C

LOCATION : NUNAVUT

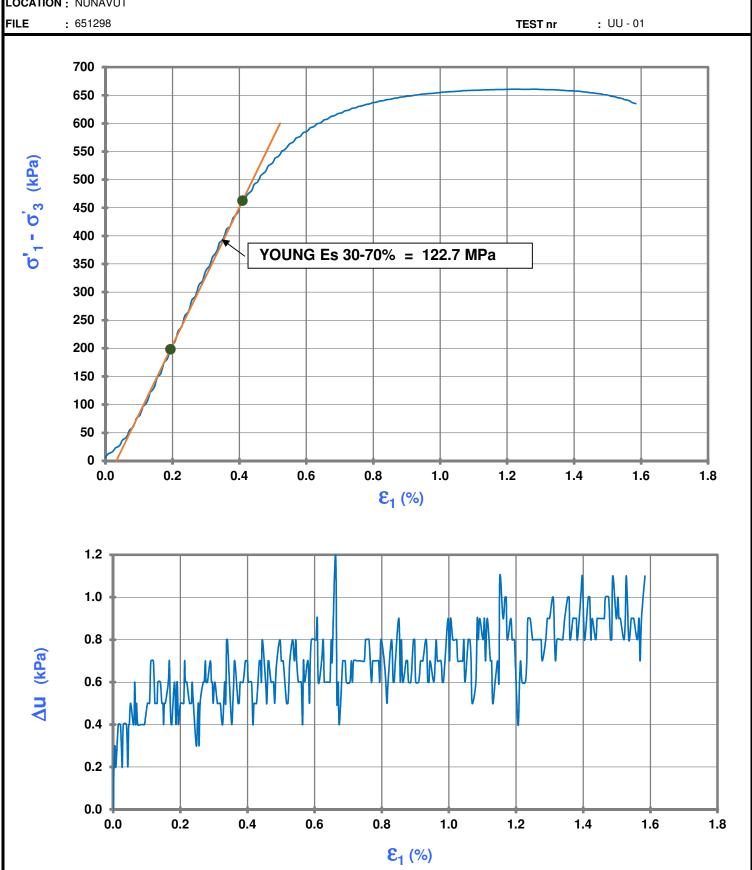
FILE : 651298 TEST nr : UCS -12

Initial cha	racterist	ics		Water content Auxiliary			Total		
Diameter	D _O	mm	101.15	Total wet mass (g)			231	6.88	
Length	Lo	mm	200.83	Total dry mass (g)				964.25	
Cross-sectional area	A_0	cm ²	80.35	Container nr			Н	V-1	
Total volume	V_{T}	cm ³	1613.67	Container mass (g)	47	4.00			
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.985	Water content (%)			27	5.91	
Total wet mass	Mh	g	1842.88		TEST	ONDITION			
Total dry mass	Ms	g	490.25	TEST CONDITION					
Water volume	V_{w}	cm ³	1356.70	Compression rate mm/min 0.750 %/min 0.3					
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAII	N DECIII	TS AT FAILU	IDE		
Solids volume	Vs	cm ³	179.13	IVIAII	N NESUL	13 AT FAILC	INE		
Degree of saturation	S _R	(%)	94.6	Compressive stress	$\sigma_{\!\scriptscriptstyle c}$	kPa	23	58.3	
				Axial strain	$\epsilon_{\scriptscriptstyle 1}$	(%)	4	.36	
Molded Specin	nen Unit	Weight		Secant modulus at :		$\sigma_{\rm c}$	σ	_c /2	
				Initail correction	Δ L/L $_{ m O}$	(%)	1	.31	
Total moist	ρ_{w}	kN/m ³	11.2	Axial strain (%)		3.06	1	.36	
Total dry	$ ho_{\sf d}$	kN/m°	3.0	E _u (MPa) 77.2 86.9				6.9	

Remarks: Date of batching: 2017-11-22 Date of test: 2017-12-06 (14 days curing)

The specimen expelled water during compression at the bottom only

Prepared by: Richard Courchesne (100736) Date: 2017-12-12

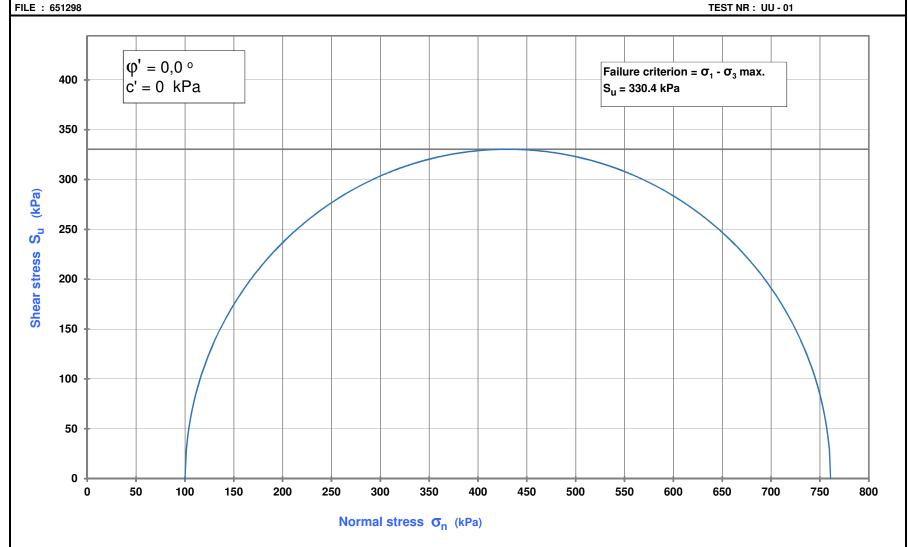

Verfied by: Yohan Jalbert, ing. Date:

UNCONSOLIDATED - UNDRAINED SHEAR

: SNC-Lavalin inc. MIX DESIGN # : 1

PROJECT: AMARUQ CURING TYPE : UNDER WATER AT 20 ℃

LOCATION: NUNAVUT

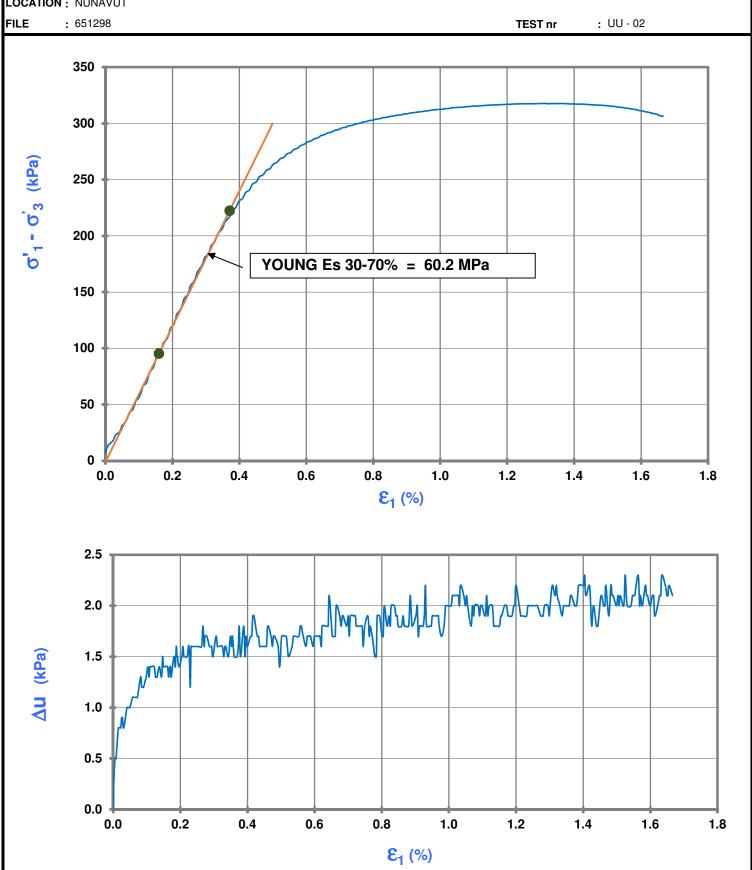


UNCONSOLIDATED UNDRAINED TRIAXIAL TEST UU + u

SYNTHESIS - PRESENTATION OF MOHR-COULOMB'S IN TOTAL STRESS

CLIENT : SNC-Lavalin inc. MIX DESIGN #:1

PROJECT : AMARUQ CURING TYPE : UNDER WATER AT 20 °C LOCATION: NUNAVUT

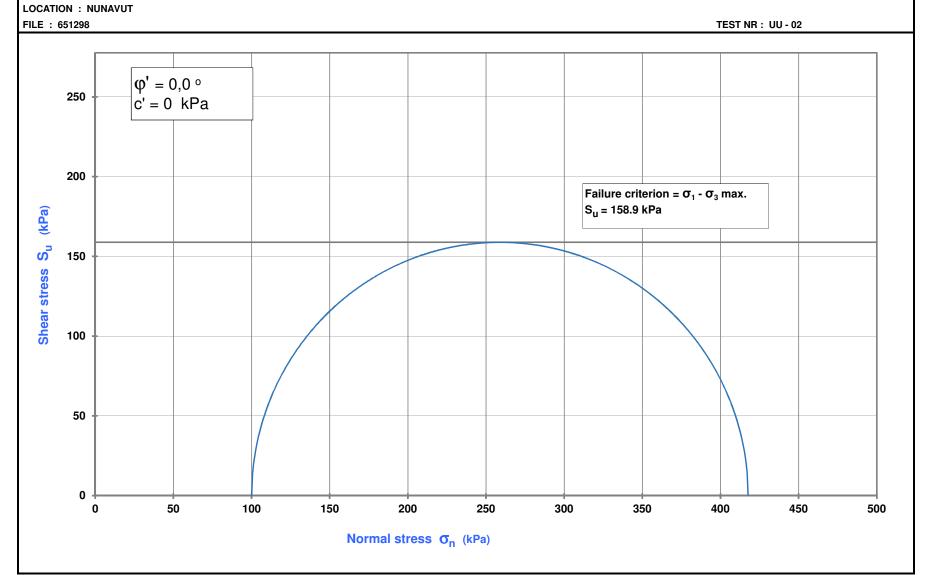


UNCONSOLIDATED - UNDRAINED SHEAR

: SNC-Lavalin inc. MIX DESIGN # :

PROJECT: AMARUQ CURING TYPE : UNDER WATER AT 20 ℃

LOCATION: NUNAVUT

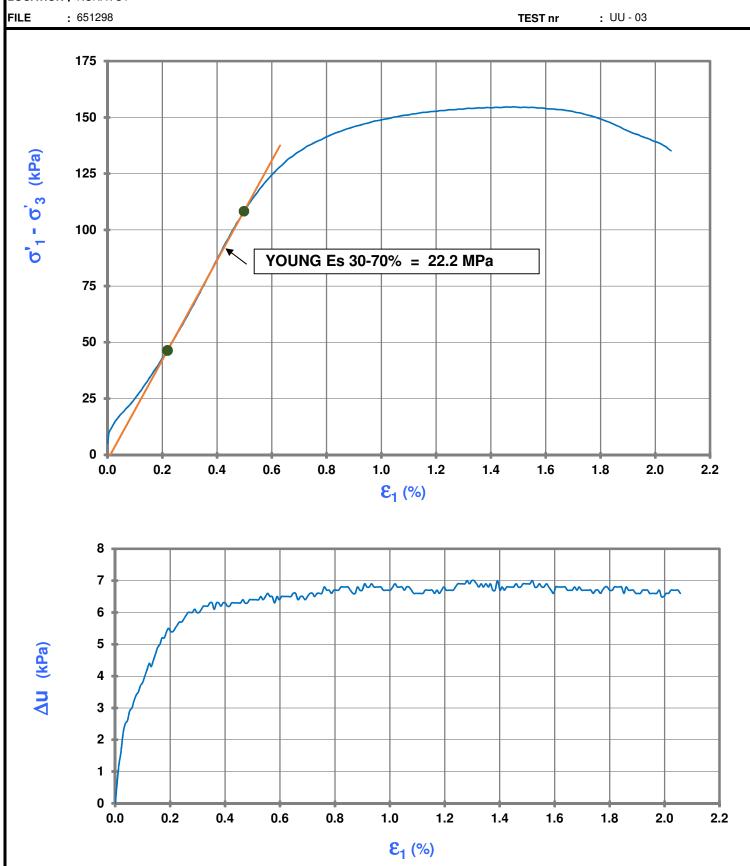


UNCONSOLIDATED UNDRAINED TRIAXIAL TEST UU + u

SYNTHESIS - PRESENTATION OF MOHR-COULOMB'S IN TOTAL STRESS

CLIENT : SNC-Lavalin inc. MIX DESIGN # : 2

PROJECT : AMARUQ CURING TYPE : UNDER WATER AT 20 ℃

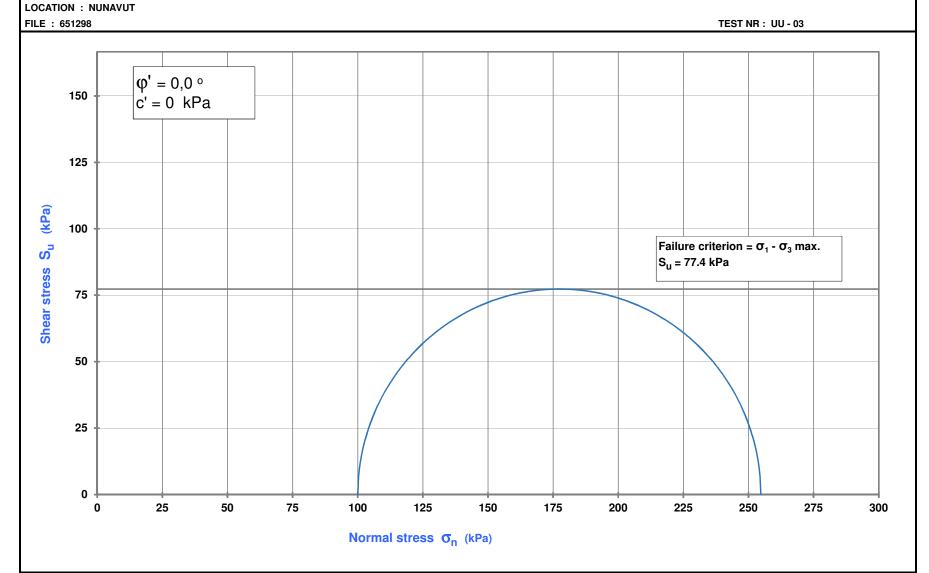


UNCONSOLIDATED - UNDRAINED SHEAR

CLIENT: SNC-Lavalin inc. MIX DESIGN #: 3

PROJECT: AMARUQ CURING TYPE: UNDER WATER AT 20 ℃

LOCATION: NUNAVUT



UNCONSOLIDATED UNDRAINED TRIAXIAL TEST UU + u

SYNTHESIS - PRESENTATION OF MOHR-COULOMB'S IN TOTAL STRESS

CLIENT : SNC-Lavalin inc. MIX DESIGN # : 3

PROJECT : AMARUQ CURING TYPE : UNDER WATER AT 20 ℃

CLIENT : SNC-Lavalin inc. MIX DESIGN#: 1

CURING TYPE : UNDER WATER AT 20 ℃ PROJECT : AMARUQ

LOCATION : NUNAVUT

FILE : 651298 TEST Nr : SK - 01

FILE . 031290						•		IESTINI	. 51(-01	
INITIAL MOUNTING S	SPECIMEN	I PROPER	TIES	WATER	CONTENT	AUXILIARY	TOTAL	MAIN	RESULTS AT FA	ILURE
									Failure	Final
Diameter	De	101.66	mm	Mass tare + n	noist specimen		2420.33	Line		
Length	Le	194.34	mm	Mass tare + d	Iry specimen		1112.52	σ_1 – σ_3		
Cross-sectional area	Ae	81.17	cm ²	Tare no.			22	σ'_1/σ'_3		
Total volume	Ve	1577.4	cm ³	Mass of tare			378.28	σ'3		
Ratio L / D	Le / De	1.912	(1/1)	Water conte	ent (%)		178.12	ΔU_b		
Total wet mass	Mh	2042.53	g					Α		
Total dry mass	Ms	734.24	g	MEMBRAI	NE OF LATEX	CONDITIONS	OF DRAINAGE	ϵ_1		
Water volume	Vw	1312.2	cm ³					ϵ_{v}		
Specific gravity (est.)	Gs	2.745		Dm :	0.30 mm	Loading:	N	Failure crite	rion :	σ_1 – σ_3 max
Solids volume	Vs	268.3	cm ³	Cm :	310.00 mm	Dissipation:	N	CORI	RECTIONS OF ME	MBRANE
Degree of saturation	S	100.2	%	Lm :	197.55 mm		N	$\sigma_{\rm a}$		
				Correction.:	N			$\sigma_{\rm r}$		
DIMENSIONS OF	TRIMMED	SPECIME	N					σ_{α}		
Length	Lo	194.34	mm	E : Homogei	neous elastic	H : Top		σα		
Diameter	Do	101.66	mm	H : Horizonta	als creasings	B : Base		σ_a : axial co	rrection of mem	brane
Measured Ovality			%	V : Verticals	creasings	R : Radial		σ _r : radial co	rrection of mem	brane
Cell nr :	GE-208			P : Plane of	failure	N : Undrained	d	σ_{lpha} : correction	on for plan of fa	ilure
Rate of axial strain:				N : No corre	ction	Note: Withou	ıt drains	k : 1.04E-06 cm/s		
								C_{v}	:	
PHYSICALS AI	ND MECH	ANICALS		Code	Ю	IN	CI	DU	SP	ZD
CHARACTERIS				Step Line	Trimming	Initial 1		Dissipation 36	Saturation 25	
Volume of specimen			Vx	(cm ³)	1577.4	1577.4		1568.0	1573.5	
Volume of water			Vw	(cm ³)	1312.2	1312.2		1312.3	1316.8	
Volume of voids			Vv	(cm ³)	1309.2	1309.2		1299.7	1305.2	
Water content			W	(%)	178.18	178.18		178.20	178.81	
Dry mass density			ρ_{s}	(kg/m ³)	465	465		468	467	
Void ratio			е	(1/1)	4.880	4.880		4.844	4.865	
Porosity			n	(1/1)	0.830	0.830		0.829	0.829	
Degree of saturation			S	(%)	100.2	100.2		101.0	100.9	
Units strains			ϵ_{v}	(%)	0.00	0.00		0.60	0.25	
since the trimming			ϵ_1	(%)	0.00	0.00		0.18	0.07	
Effective stresses			σ_3	(kPa)		5		80	5	
			σ_1	(kPa)		10		85	10	
Pore pressure parame	eter		В	(1/1)					0.940	
CODES		STEPS	ENCE O)F 1E51	Start line	End line	1			
IN Initial trans	sition	51213			0	1	1			
SP Back press		ation			2	25				
CI Isotropic Id	ading				26	27				
DU Dissipation					28	36				
KC Permeabili	ity constar	nt head - r	nethod	Α	37	46				
REMARKS : 1 - SATU	RATION I	BY BACK	PRES	SURE, ISOTF	ROPIC CONSO	I LIDATION ANI	J D PERMEABIL	ITY TEST		

2 - DESIGNATION: ASTM D2435M-11, ASTM D5084-16a

3 - Date of batching : 2017-11-22 Date of test: 2017-12-19 (27 days curing)

CLIENT : SNC-Lavalin inc. MIX DESIGN#: 2

CURING TYPE : UNDER WATER AT 20 $^{\circ}\mathrm{C}$ PROJECT : AMARUQ

LOCATION : NUNAVUT FILE : 651298

TEST Nr : SK - 02

FILE	: 651298								TEST Nr	: SK - U2	
INITIAL N	MOUNTING S	PECIMEN	PROPER	TIES	WATER	CONTENT	AUXILIARY	TOTAL	MAIN	RESULTS AT FA	AILURE
Diameter		D-	101.00		Manadana			0000.00	Line	Failure	Final
Diameter Length		De Le	101.60 191.90	mm mm		noist specimen		2338.38	Line		
Ü					Mass tare + d	ry specimen		1001.58	σ_1 – σ_3		
Cross-sec	tional area	Ae	81.07	cm ²	Tare no.			N-71	σ' ₁ /σ' ₃		
Total volur	me	Ve	1555.8	cm ³	Mass of tare			386.20	σ'3		
Ratio L / D)	Le / De	1.889	(1/1)	Water conte	ent (%)		217.23	ΔU_b		
Total wet r	mass	Mh	1953.40	g		NE OF LATEX	CONDITIONS	OF DRAINAGE	Α		
Total dry n	nass	Ms	615.38	g	WEWDRAI	VE OF LATEX	CONDITIONS	OF DRAINAGE	ϵ_1		
Water volu	ume	Vw	1342.0	cm ³					ϵ_{v}		
Specific gr	ravity (est.)	Gs	2.745		Dm :	0.30 mm	Loading:	N	Failure crite	rion :	σ_1 – σ_3 max
Solids volu	ume	Vs	224.9	cm ³	Cm :	310.00 mm	Dissipation:	N	CORI	RECTIONS OF ME	MBRANE
Degree of	saturation	S	100.8	%	Lm :	195.01 mm	Shearing:	N	$\sigma_{\rm a}$		
					Correction.:	N			$\sigma_{\rm r}$		
DIME	NSIONS OF T	RIMMED	SPECIME	N							
Length		Lo	191.90	mm	E : Homoger	neous elastic	H:Top		σ_{α}		
Diameter		Do	101.60	mm	H : Horizonta		B : Base		σ _o : axial co	rrection of men	nbrane
Measured	Ovality			%	V : Verticals	_	R : Radial			rection of mem	
Cell nr :		GE-002			P : Plane of	failure	N : Undrained	d	l '		
Rate of ax	ial strain :	GE 002			N : No corre		Note: Withou		σ_{α} : correction for plan of failure k : 2.55E-06 cm/s		
									C _v	:	
DH	IYSICALS AN	ID MECH/	VNICVIS		Code	Ю	IN	CI	DU	SP	ZD
	ARACTERIST				Step	Trimming	Initial 1		Dissipation	Saturation	
Volume of	specimen			Vx	Line (cm ³)	1555.0			36	25	
Volume of	•			Vw	(cm ³)	1555.8 1342.0	1555.8		1542.7 1339.5	1549.6	
Volume of				Vv	(cm ³)		1342.0			1345.9	
Water con				W	(%)	1330.9 217.43	1330.9 217.43		1317.9 217.02	1324.7 218.06	
Dry mass	density			ρ_{s}	(kg/m ³)	396	396		399	397	
Void ratio				e	(1/1)	5.919	5.919		5.861	5.891	
Porosity				n	(1/1)	0.855	0.855		0.854	0.855	
Degree of	saturation			S	(%)	100.8	100.8		101.6	101.6	
Units strain	ns			ϵ_{v}	(%)	0.00	0.00		0.84	0.40	
since the t	rimming			ϵ_1	(%)	0.00	0.00		0.23	0.07	
Effective s	stresses			σ_3	(kPa)		5		80	5	
				σ_1	(kPa)		10		85	10	
Pore press	sure paramet	ter	050:	В	(1/1)					0.980	
CODES			STEPS	ENCE C	r IESI	Start line	End line	1			
IN	Initial transi	tion	5.2.5			0	1	1			
SP	Back press		ation			2	25				
CI	Isotropic loa		0 nove :=::-			26	27				
DU KC	Dissipation Permeabilit				Δ	28 37	36 46				
		•									
REMARKS	: 1 - SATUF	RATION E	BY BACK	PRES	SURE. ISOTR	OPIC CONSO	LIDATION ANI	D PERMEABIL	JITY TEST		

REMARKS: 1 - SATURATION BY BACK PRESSURE, ISOTROPIC CONSOLIDATION AND PERMEABILITY TEST

2 - DESIGNATION: ASTM D2435M-11, ASTM D5084-16a

3 - Date of batching : 2017-11-22 Date of test: 2017-12-19 (27 days curing)

CLIENT : SNC-Lavalin inc. MIX DESIGN # : 3

PROJECT : AMARUQ CURING TYPE : UNDER WATER AT 20 ℃

LOCATION: NUNAVUT FILE: 651298

TEST Nr : SK - 03

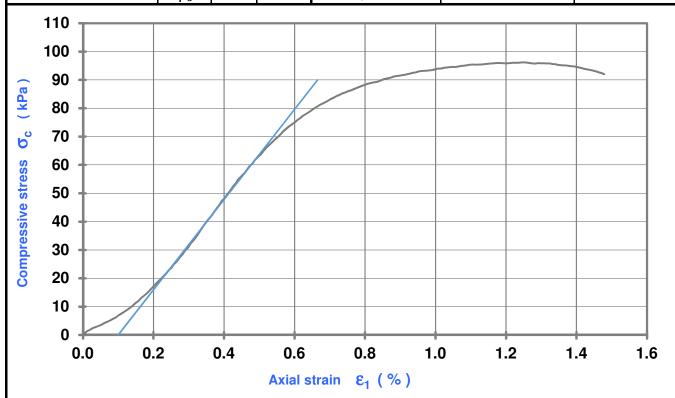
	. 001200								0		
INITIAL N	MOUNTING S	SPECIMEN	I PROPER	TIES	WATER	CONTENT	AUXILIARY	TOTAL	MAIN	RESULTS AT FA	AILURE
							710711211111			Failure	Final
Diameter		De	101.78	mm	Mass tare + m	oist specimen		2322.07	Line		
Length		Le	193.64	mm	Mass tare + dr	ry specimen		928.59	σ_1 – σ_3		
Cross-sec	tional area	Ae	81.36	cm ²	Tare no.			N-20	σ'_1/σ'_3		
Total volur	me	Ve	1575.5	cm ³	Mass of tare			427.13	σ'3		
Ratio L / D)	Le / De	1.903	(1/1)	Water conte	nt (%)		277.88	ΔU_b		
Total wet r	mass	Mh	1898.25	g			001101710110		Α		
Total dry n	nass	Ms	501.46	g	MEMBRAN	E OF LATEX	CONDITIONS	OF DRAINAGE	ϵ_1		
Water volu	ume	Vw	1401.0	cm ³					ϵ_{V}		
Specific gr	ravity (est.)	Gs	2.745		Dm :	0.30 mm	Loading:	N	Failure crite	erion :	σ_1 – σ_3 max
Solids volu	ume	Vs	183.2	cm ³	Cm :	310.00 mm	Dissipation:	N	COR	RECTIONS OF ME	MBRANE
Degree of	saturation	S	100.6	%	Lm :	196.95 mm	Shearing:	N	σ_{a}		
DIME	NOIONO OF	TDIMMED	ODEOME		Correction.:	N			$\sigma_{\rm r}$		
DIME	NSIONS OF	IKIMMED	SPECIME	N					σ_{α}		
Length		Lo	193.64	mm	E : Homogen	eous elastic	H : Top		- u		
Diameter		Do	101.78	mm	H : Horizonta	ls creasings	B : Base		σ _a : axial co	rrection of men	nbrane
Measured	Ovality			%	V : Verticals	creasings	R : Radial		σ _r : radial co	rrection of mem	brane
Cell nr :		GE-002			P : Plane of f	ailure	N : Undrained	d	σ_{α} : correction	on for plan of fa	ilure
Rate of ax	ial strain :				N : No correc	ction	Note: Withou	t drains	k	: 5.22E-06 d	m/s
									C_{v}	:	
PH	IYSICALS AI	ND MECHA	ANICALS		Code	10	IN	CI	DU	SP	ZD
	ARACTERIS				Step Line	Trimming	Initial 1		Dissipation 36	Saturation 25	
Volume of	specimen			Vx	(cm ³)	1575.5	1575.5		1559.2	1570.8	
Volume of	•			Vw	(cm ³)	1401.0	1401.0		1396.6	1406.5	
Volume of	voids			Vv	(cm ³)	1392.2	1392.2		1375.9	1387.5	
Water con	tent			W	(%)	278.54	278.54		277.67	279.64	
Dry mass	density			ρ_{s}	(kg/m ³)	318	318		322	319	
Void ratio				е	(1/1)	7.598	7.598		7.509	7.573	
Porosity				n	(1/1)	0.884	0.884		0.882	0.883	
Degree of	saturation			S	(%)	100.6	100.6		101.5	101.4	
Units strain	ns			ϵ_{v}	(%)	0.00	0.00		1.04	0.30	
since the t	rimming			ϵ_1	(%)	0.00	0.00		0.28	0.03	
Effective s	tresses			σ_3	(kPa)		5		80	5	
				σ_1	(kPa)		10		85	10	
Pore press	sure parame	eter		В	(1/1)					0.972	
CODES			STEPS	ENCE O	OF TEST	Start line	End line	-			
IN	Initial trans	sition	SIEPS			Start line 0	End line 1	-			
SP	Back press		ation			2	25				
CI	Isotropic lo	ading				26	27				
DU	Dissipation					28	36				
KC	Permeabili	ty constar	nt head - r	nethod	Α	37	43				
DEMARKS	L CATU	DATIONI		DDEC	CLIDE ICOTO	ODIC CONSO	LIDATION AND) DEDMEVBII	ITV TECT		

REMARKS: 1 - SATURATION BY BACK PRESSURE, ISOTROPIC CONSOLIDATION AND PERMEABILITY TEST

2 - DESIGNATION: ASTM D2435M-11, ASTM D5084-16a

 $\label{eq:continuous} 3 - \text{Date of batching}: 2017\text{-}11\text{-}22 \qquad \quad \text{Date of test}: 2017\text{-}12\text{-}20 \text{ (28 days curing)}$

Appendix 2 Phase II Laboratory Test Results


CLIENT : SNC-Lavalin MIX DESIGN #: 22

PROJECT : PHASE II - -AMARUQ CURING TYPE : UNDER WATER AT 2,6 °C

LOCATION: NUNAVUT FILE: 651298

TEST nr : UCS -04

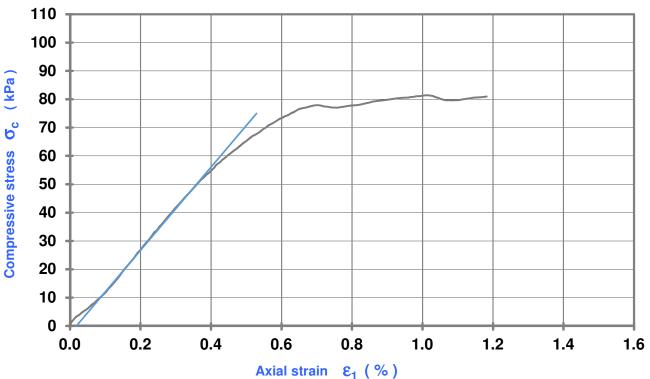
Initial cha	racterist	ics		Water content	Aı	uxiliary	т	otal	
Diameter	D _O	mm	49.93	Total wet mass (g)			23	0.23	
Length	Lo	mm	86.78	Total dry mass (g)			90	0.24	
Cross-sectional area	A_0	cm ²	19.58	Container nr 1				1	
Total volume	V_{T}	cm ³	169.92	Container mass (g) 13.35				3.35	
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.738	Water content (%)			18	2.07	
Total wet mass	Mh	g	216.88	TEST CONDITION					
Total dry mass	Ms	g	76.89	TEST CONDITION					
Water volume	V_{w}	cm ³	140.41	Compression rate	mm/min	0.081	%/min	0.09	
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAII	N DECLII	TS AT FAILU	IDE		
Solids volume	Vs	cm ³	28.10	WAII	N RESUL	15 AT FAILU	JNE		
Degree of saturation	S_R	(%)	99.0	Compressive stress	$\sigma_{\!\scriptscriptstyle c}$	kPa	9	6.2	
				Axial strain	$\epsilon_{\scriptscriptstyle 1}$	(%)	1	.25	
Molded Specin	nen Unit	Weight		Secant modulus at :		$\sigma_{\!\scriptscriptstyle c}$	σ	c/2	
				Initail correction	Δ L/L $_{O}$	(%)	0	.10	
Total moist	ρ_{w}	kN/m ³	12.5	Axial strain (%)		1.15	0	.30	
Total dry	$ ho_{\sf d}$	kN/m°	4.4	E _u (MPa) 8.4 16.0					

Remarks: Date of batching: 2018-02-12 Date of test: 2018-02-19 (7 days curing)

The specimen expelled water during compression (draining property)

Prepared by: Richard Courchesne (100736) Date: 2018-02-21

Verfied by: Yohan Jalbert, ing. Date:


CLIENT : SNC-Lavalin MIX DESIGN #: 22

PROJECT : PHASE II - -AMARUQ CURING TYPE : UNDER WATER AT 2,6 °C

LOCATION : NUNAVUT

FILE : 651298 TEST nr : UCS -05

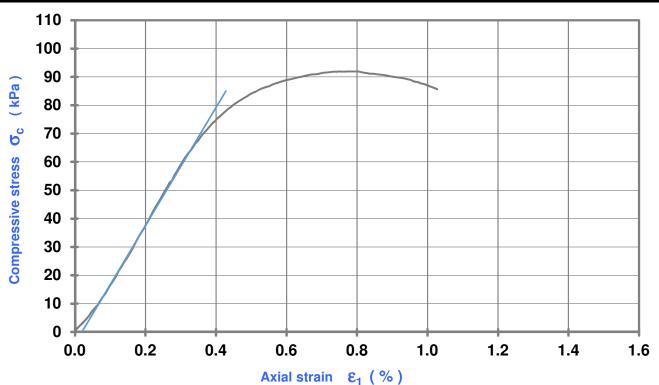
Initial cha	racterist	ics		Water content	Αι	uxiliary	Т	otal	
Diameter	D _O	mm	49.98	Total wet mass (g)			23	9.45	
Length	Lo	mm	90.35	Total dry mass (g)	l dry mass (g) 94.1				
Cross-sectional area	A_0	cm ²	19.62	Container nr				49	
Total volume	V_{T}	cm ³	177.24	Container mass (g)	10	3.44			
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.808	Water content (%) 179.99					
Total wet mass	Mh	g	226.01		TECT C	ONDITION			
Total dry mass	Ms	g	80.72	TEST CONDITION					
Water volume	V_{w}	cm ³	145.73	Compression rate mm/min 0.081 %/min 0.09					
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAI	N DECIII	TC AT EALL	IDE		
Solids volume	Vs	cm ³	29.49	IVIAII	N RESUL	TS AT FAILU	INE		
Degree of saturation	S _R	(%)	98.6	Compressive stress	$\sigma_{\!\scriptscriptstyle c}$	kPa	8	1.4	
				Axial strain	$\epsilon_{\scriptscriptstyle 1}$	(%)	1	.01	
Molded Specin	nen Unit	Weight		Secant modulus at :		σ_{c}	σ	c/2	
				Initail correction	Δ L/L $_{ m O}$	(%)	0	.02	
Total moist	ρ_{w}	3	12.5	Axial strain (%)		1.00	0	.28	
Total dry	ρ_{d}	kN/m ³	4.5	4.5 E _u (MPa) 8.2 14.9				4.9	

Remarks: Date of batching: 2018-02-12 Date of test: 2018-02-19 (7 days curing)

The specimen expelled water during compression (draining property)

Prepared by: Richard Courchesne (100736) Date: 2018-02-21

Verfied by: Yohan Jalbert, ing. Date:


CLIENT : SNC-Lavalin MIX DESIGN #: 22

PROJECT : PHASE II - -AMARUQ CURING TYPE : UNDER WATER AT 2,6 °C

LOCATION : NUNAVUT

FILE : 651298 TEST nr : UCS -06

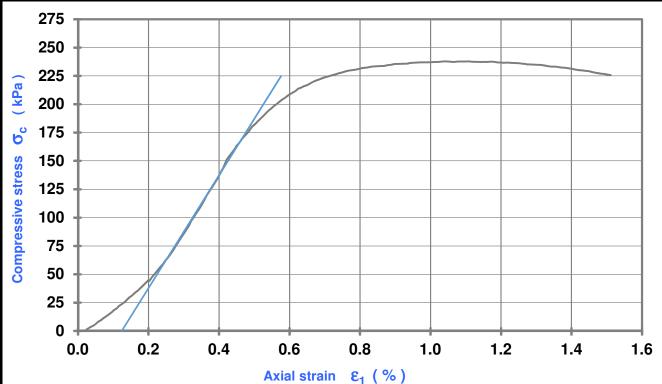
Initial cha	racterist	ics		Water content	Αι	ıxiliary	Т	otal	
Diameter	D _O	mm	50.19	Total wet mass (g)	iss (g) 242.45				
Length	Lo	mm	90.40	Total dry mass (g) 94.69					
Cross-sectional area	A_0	cm ²	19.78	Container nr			48		
Total volume	V_{T}	cm ³	178.83	Container mass (g)	13.51				
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.801	Water content (%) 182.02					
Total wet mass	Mh	g	228.94	TEST CONDITION					
Total dry mass	Ms	g	81.18	TEST CONDITION					
Water volume	V_{w}	cm ³	148.20	Compression rate	mm/min	0.081	%/min	0.09	
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAII	N DECIII	TS AT FAILU	IDE		
Solids volume	V_s	cm ³	29.66	IVIAII	N NESUL	13 AT FAILC	INE		
Degree of saturation	S_R	(%)	99.4	Compressive stress	$\sigma_{\!\scriptscriptstyle c}$	kPa	9	1.9	
				Axial strain	$\epsilon_{\scriptscriptstyle 1}$	(%)	C).77	
Molded Specin	nen Unit	Weight		Secant modulus at :	-	σ_{c}	σ	c/2	
				Initail correction	Δ L/L $_{ m O}$	(%)	C	0.02	
Total moist	ρ_{w}	kN/m ³	12.6	Axial strain (%)		0.75	C).23	
Total dry	ρ_{d}	KIN/m	4.5	E _u (MPa) 12.2 20.0					

Remarks: Date of batching: 2018-02-12 Date of test: 2018-02-19 (7 days curing)

The specimen expelled water during compression (draining property)

Prepared by: Richard Courchesne (100736) Date: 2018-02-21

Verfied by: Yohan Jalbert, ing. Date:


CLIENT : SNC-Lavalin MIX DESIGN #: 22

PROJECT : PHASE II - -AMARUQ CURING TYPE : UNDER WATER AT 20 °C

LOCATION : NUNAVUT

FILE : 651298 TEST nr : UCS -01

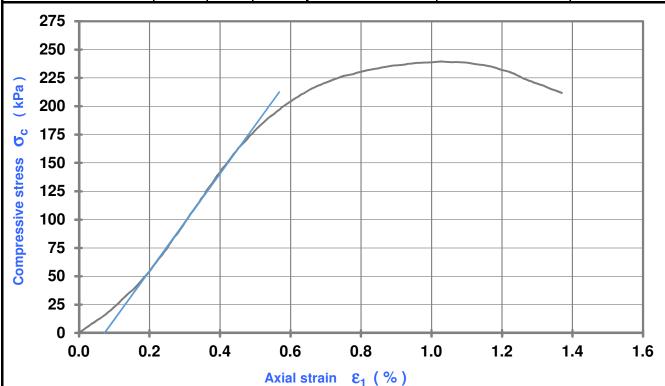
Initial cha	racterist	ics		Water content	Au	ıxiliary	т	otal	
Diameter	D _O	mm	50.27	Total wet mass (g)			24	7.25	
Length	LO	mm	92.07	Total dry mass (g)				6.20	
Cross-sectional area	A_0	cm ²	19.85	Container nr				97	
Total volume	V_{T}	cm ³	182.76	Container mass (g)			15	5.49	
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.831	Water content (%)			18	37.15	
Total wet mass	Mh	g	231.76	TEST CONDITION					
Total dry mass	Ms	g	80.71	TEST CONDITION					
Water volume	V_{w}	cm ³	151.50	Compression rate	mm/min	0.081	%/min	0.09	
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAII	N DECIII .	TS AT FAILU	IDE		
Solids volume	V_s	cm ³	29.49	IVIAII	N NESUL	15 AT FAILU	JNE .		
Degree of saturation	S_R	(%)	98.8	Compressive stress	$\sigma_{\!\scriptscriptstyle c}$	kPa	2:	37.7	
				Axial strain	$\epsilon_{\scriptscriptstyle 1}$	(%)	1	.04	
Molded Specin	nen Unit	Weight		Secant modulus at :		σ_{c}	σ	c/2	
				Initail correction	Δ L/L $_{ m O}$	(%)	C).12	
Total moist	ρ_{w}	kN/m ³	12.4	Axial strain (%)		0.92	C).24	
Total dry	ρ_{d}	KIN/M	4.3	E _u (MPa)		25.9	4	9.6	

Remarks: Date of batching: 2018-02-12 Date of test: 2018-02-19 (7 days curing)

The specimen expelled water during compression (draining property)

Prepared by: Richard Courchesne (100736) Date: 2018-02-21

Verfied by: Yohan Jalbert, ing. Date:


CLIENT : SNC-Lavalin MIX DESIGN #: 22

PROJECT : PHASE II - -AMARUQ CURING TYPE : UNDER WATER AT 20 °C

LOCATION : NUNAVUT

FILE : 651298 TEST nr : UCS -02

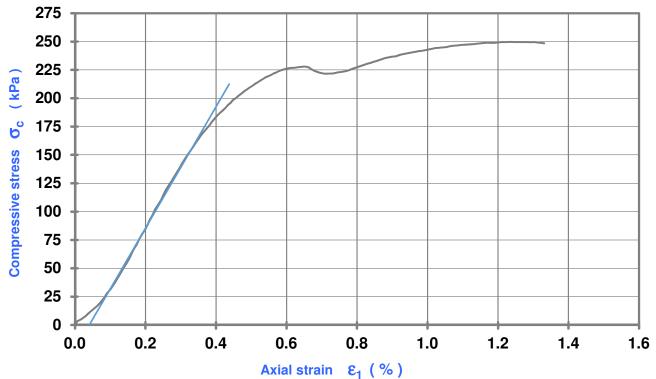
Initial cha	racterist	ics		Water content	Αι	uxiliary	т	otal	
Diameter	D _O	mm	50.30	Total wet mass (g)			24	0.87	
Length	Lo	mm	89.29	Total dry mass (g)			93.96		
Cross-sectional area	A_0	cm ²	19.87	Container nr				84	
Total volume	V_{T}	cm ³	177.43	Container mass (g)			15	5.60	
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.775	Water content (%) 187.48					
Total wet mass	Mh	g	225.27	TEST CONDITION					
Total dry mass	Ms	g	78.36	TEST CONDITION					
Water volume	V_{w}	cm ³	147.35	Compression rate	mm/min	0.081	%/min	0.09	
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAII	N DECIII	TS AT FAILU	IDE		
Solids volume	V_s	cm ³	28.63	IVIAII	N NESUL	15 AT FAILU	JNE .		
Degree of saturation	S_R	(%)	99.0	Compressive stress	$\sigma_{\!\scriptscriptstyle c}$	kPa	2:	39.5	
				Axial strain	$\epsilon_{\scriptscriptstyle 1}$	(%)	1	.03	
Molded Specin	nen Unit	Weight		Secant modulus at : σ_c $\sigma_c/2$				c/2	
				Initail correction	Δ L/L $_{ m O}$	(%)	C	0.07	
Total moist	ρ_{w}	kN/m ³	12.5	Axial strain (%)		0.96	C).28	
Total dry	ρ_{d}	kN/m	4.3	E _u (MPa) 25.1 43.0					

Remarks: Date of batching: 2018-02-12 Date of test: 2018-02-19 (7 days curing)

The specimen expelled water during compression (draining property)

Prepared by: Richard Courchesne (100736) Date: 2018-02-21

Verfied by: Yohan Jalbert, ing. Date:


CLIENT : SNC-Lavalin MIX DESIGN #: 22

PROJECT : PHASE II - -AMARUQ CURING TYPE : UNDER WATER AT 20 °C

LOCATION : NUNAVUT

FILE : 651298 TEST nr : UCS -03

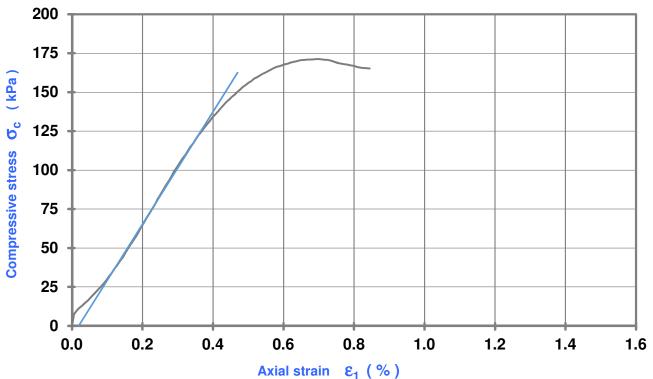
Initial cha	racterist	tics		Water content	Au	xiliary	Т	otal	
Diameter	D _O	mm	50.20	Total wet mass (g)			24	0.81	
Length	LO	mm	90.23	Total dry mass (g)			90	3.07	
Cross-sectional area	A_0	cm ²	19.79	Container nr 20					
Total volume	V_{T}	cm ³	178.59	Container mass (g) 13.62					
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.797	Water content (%) 185.95					
Total wet mass	Mh	g	227.19		TECT CO	ONDITION			
Total dry mass	Ms	g	79.45	TEST CONDITION					
Water volume	V_{w}	cm ³	148.18	Compression rate mm/min 0.081 %/min 0.09					
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAI	N DECIII 1	TS AT FAILU	IDE		
Solids volume	V_s	cm ³	29.03	IVIAII	N NESUL	IS AT FAIL)nE		
Degree of saturation	S _R	(%)	99.1	Compressive stress	$\sigma_{\rm c}$	kPa	24	49.8	
				Axial strain	$\epsilon_{\scriptscriptstyle 1}$	(%)	1	.24	
Molded Specin	nen Unit	Weight		Secant modulus at :		σ_{c}	σ	c/2	
				Initail correction	Δ L/L $_{ m O}$	(%)	0	.04	
Total moist	ρ_{w}	kN/m ³	12.5	Axial strain (%)	•	1.20	0	.23	
Total dry	$ ho_{\sf d}$	kN/m°	4.4	4 E _u (MPa) 20.8 54.4					

Remarks: Date of batching: 2018-02-12 Date of test: 2018-02-19 (7 days curing)

The specimen expelled water during compression (draining property)

Prepared by: Richard Courchesne (100736) Date: 2018-02-21

Verfied by: Yohan Jalbert, ing. Date:


CLIENT : SNC-Lavalin MIX DESIGN #: 22

PROJECT : PHASE II - -AMARUQ CURING TYPE : UNDER WATER AT 2,6 °C

LOCATION : NUNAVUT

FILE : 651298 TEST nr : UCS -09

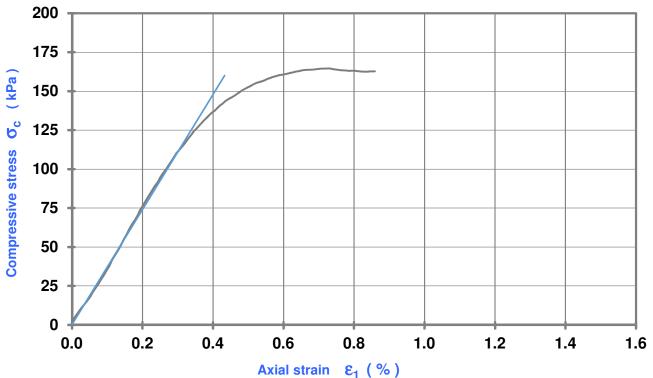
Initial cha	racterist	tics		Water content	Au	ıxiliary	Total	
Diameter	D _O	mm	50.12	Total wet mass (g)			23	35.31
Length	LO	mm	88.22	Total dry mass (g)			9	1.81
Cross-sectional area	A_0	cm ²	19.73	Container nr			N	1L-1
Total volume	V_{T}	cm ³	174.04	Container mass (g)			1:	3.37
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.760	Water content (%)			18	32.94
Total wet mass	Mh	g	221.94		TECT C	ONDITION		
Total dry mass	Ms	g	78.44		IESI C	ONDITION		
Water volume	V_{w}	cm ³	143.93	Compression rate mm/min 0.081 %/min 0.0				
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAI	N DECIII .	TS AT FAILU	IDE	
Solids volume	Vs	cm ³	28.66	IVIAI	N NESUL	IS AT FAILU	INE	
Degree of saturation	S _R	(%)	99.0	Compressive stress	σ_{c}	kPa	1	71.2
				Axial strain	$\epsilon_{\scriptscriptstyle 1}$	(%)	c).70
Molded Specir	nen Unit	Weight		Secant modulus at :		σ_{c}	$\sigma_{c}/2$	
				Initail correction	Δ L / L $_{ m O}$	(%)	C	0.02
Total moist	ρ_{w}	3	12.5	Axial strain (%)	ıl strain (%) 0.68 0.2).24	
Total dry	$ ho_{\sf d}$	kN/m ³	4.4	E _u (MPa)	25.1 36.5			86.5

Remarks: Date of batching: 2018-02-12 Date of test: 2018-02-26 (14 days curing)

The specimen expelled water during compression (draining property)

Prepared by: Richard Courchesne (100736) Date: 2018-02-28

Verfied by: Yohan Jalbert, ing. Date:


CLIENT : SNC-Lavalin MIX DESIGN #: 22

PROJECT : PHASE II - -AMARUQ CURING TYPE : UNDER WATER AT 2,6 °C

LOCATION : NUNAVUT

FILE : 651298 TEST nr : UCS -10

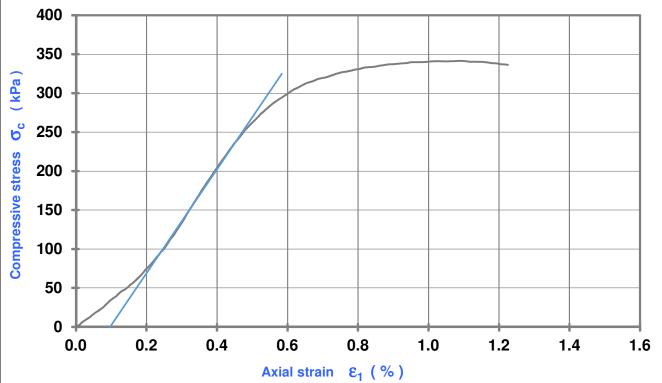
Initial cha	racterist	ics		Water content	Αι	ıxiliary	Total		
Diameter	D _O	mm	50.09	Total wet mass (g)	mass (g) 235.38				
Length	Lo	mm	87.77	Total dry mass (g)			91	1.66	
Cross-sectional area	A_0	cm ²	19.71	Container nr				49	
Total volume	V_{T}	cm ³	172.97	Container mass (g)			13	3.44	
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.752	Water content (%)			18	3.74	
Total wet mass	Mh	g	221.94		TECT C	ONDITION			
Total dry mass	Ms	g	78.22		IESI C	ONDITION			
Water volume	V_{w}	cm ³	144.15	Compression rate mm/min 0.081 %/min 0				0.09	
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAII	N DECIII	TC AT EALL	IDE		
Solids volume	V_s	cm ³	28.58	IVIAII	N RESUL	TS AT FAILU	INE		
Degree of saturation	S_R	(%)	99.8	Compressive stress	$\sigma_{\!\scriptscriptstyle c}$	kPa	16	64.6	
				Axial strain	$\epsilon_{\scriptscriptstyle 1}$	(%)	0	.72	
Molded Specin	nen Unit	Weight		Secant modulus at :		σ_{c}	$\sigma_{\rm c}$ / 2		
				Initail correction	Δ L/L $_{ m O}$	(%)	0	.00	
Total moist	ρ_{w}	3	12.6	Axial strain (%)	0.72 0.23		.23		
Total dry	$ ho_{\sf d}$	kN/m ³	4.4	E _{II} (MPa)	22.8 38.0			8.0	

Remarks: Date of batching: 2018-02-12 Date of test: 2018-02-26 (14 days curing)

The specimen expelled water during compression (draining property)

Prepared by: Richard Courchesne (100736) Date: 2018-02-28

Verfied by: Yohan Jalbert, ing. Date:


CLIENT : SNC-Lavalin MIX DESIGN #: 22

PROJECT : PHASE II - -AMARUQ CURING TYPE : UNDER WATER AT 20 °C

LOCATION : NUNAVUT

FILE : 651298 TEST nr : UCS -07

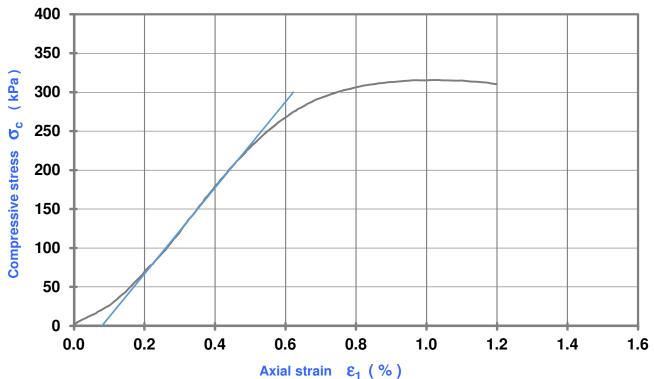
Initial cha	al characteristics			Water content	Au	Auxiliary		otal
Diameter	D _O	mm	50.41	Total wet mass (g)			25	54.63
Length	Lo	mm	94.28	Total dry mass (g)			9	8.92
Cross-sectional area	A_0	cm ²	19.96	Container nr				97
Total volume	V_{T}	cm ³	188.17	Container mass (g)			1:	5.48
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.870	Water content (%)			18	86.61
Total wet mass	Mh	g	239.15	TEST CONDITION				
Total dry mass	Ms	g	83.44		IESIC	ONDITION		
Water volume	V_{w}	cm ³	156.18	Compression rate mm/min 0.081 %/min 0.0				
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAII	N DECIII	TS AT FAILU	IDE	
Solids volume	V_s	cm ³	30.49	IVIAII	N NESUL	13 AT FAILC	INE	
Degree of saturation	S_R	(%)	99.0	Compressive stress	$\sigma_{\!\scriptscriptstyle c}$	kPa	3	41.4
				Axial strain	$\epsilon_{\scriptscriptstyle 1}$	(%)	1	.09
Molded Specin	nen Unit	Weight		Secant modulus at :		σ_{c}	$\sigma_{c}/2$	
				Initail correction	Δ L/L $_{O}$	(%)	C).10
Total moist	ρ_{w}	3	12.5	Axial strain (%)	0.99 0.26).26	
Total dry	ρ_{d}	kN/m ³	4.3	E _u (MPa)	34.6 67.7			

Remarks: Date of batching: 2018-02-12 Date of test: 2018-02-26 (14 days curing)

The specimen expelled water during compression (draining property)

Prepared by: Richard Courchesne (100736) Date: 2018-02-28

Verfied by: Yohan Jalbert, ing. Date:


CLIENT : SNC-Lavalin MIX DESIGN #: 22

PROJECT : PHASE II - -AMARUQ CURING TYPE : UNDER WATER AT 20 °C

LOCATION : NUNAVUT

FILE : 651298 TEST nr : UCS -08

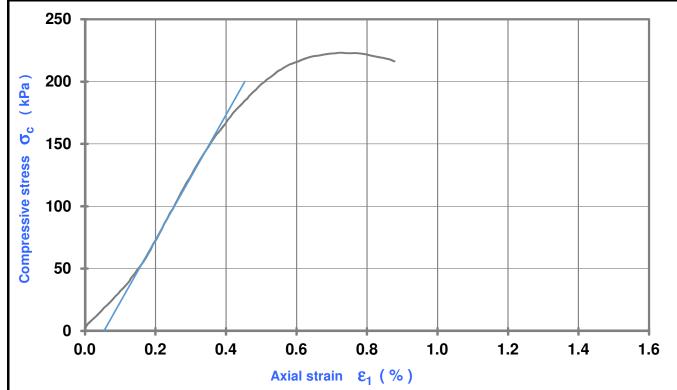
Initial cha	racterist	ics		Water content	Αι	uxiliary	Total		
Diameter	D _O	mm	50.46	Total wet mass (g)			24	5.25	
Length	Lo	mm	91.52	Total dry mass (g)	Fotal dry mass (g) 94.26				
Cross-sectional area	A_0	cm ²	20.00	Container nr				48	
Total volume	V_{T}	cm ³	183.01	Container mass (g)	13.52				
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.814	Water content (%)	187.01				
Total wet mass	Mh	g	231.73		TECT C	ONDITION			
Total dry mass	Ms	g	80.74		IESI C	ONDITION			
Water volume	V_{w}	cm ³	151.44	Compression rate mm/min 0.081		%/min	0.09		
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAI	MAIN RESULTS AT FAILURE				
Solids volume	Vs	cm ³	29.50	IVIAI	N RESUL	15 AT FAILU	JNE		
Degree of saturation	S _R	(%)	98.7	Compressive stress	$\sigma_{\!\scriptscriptstyle c}$	kPa	3.	15.6	
				Axial strain	$\epsilon_{\scriptscriptstyle 1}$	(%)	1	.03	
Molded Specin	nen Unit	Weight		Secant modulus at :		$\sigma_{\!\scriptscriptstyle c}$	σ	c/2	
				Initail correction	Δ L/L $_{O}$	(%)	0	.08	
Total moist	ρ_{w}	3	12.4	Axial strain (%) 0.95 0.29			.29		
Total dry	$ ho_{\sf d}$	kN/m ³	4.3	E _u (MPa)		33.3	5	5.4	
400								\neg	

Remarks: Date of batching: 2018-02-12 Date of test: 2018-02-26 (14 days curing)

The specimen expelled water during compression (draining property)

Prepared by: Richard Courchesne (100736) Date: 2018-02-28

Verfied by: Yohan Jalbert, ing. Date:


CLIENT : SNC-Lavalin MIX DESIGN #: 22

PROJECT : PHASE II - -AMARUQ CURING TYPE : UNDER WATER AT 2,6 °C

LOCATION : NUNAVUT

FILE : 651298 TEST nr : UCS -14

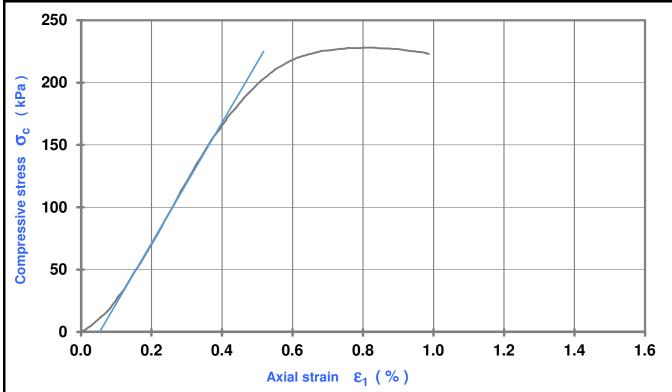
Initial cha	racterist	ics		Water content	Au	xiliary	Total		
Diameter	D _O	mm	50.12	Total wet mass (g) 233.50					
Length	Lo	mm	86.92	Total dry mass (g)			9-	1.52	
Cross-sectional area	A_0	cm ²	19.73	Container nr				20	
Total volume	V_{T}	cm ³	171.51	Container mass (g)			10	3.61	
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.734	Water content (%)			18	2.24	
Total wet mass	Mh	g	219.89		TEST C	ONDITION			
Total dry mass	Ms	g	77.91		IESI CO	ONDITION			
Water volume	V_{w}	cm ³	142.41	Compression rate mm/min 0.081 %/min 0.09					
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAII	N DECILI	TS AT FAILU	IDE		
Solids volume	Vs	cm ³	28.47	WAII	N RESUL	IS AT FAILU	JNE		
Degree of saturation	S_R	(%)	99.6	Compressive stress	$\sigma_{ extsf{c}}$	kPa	22	23.2	
		•		Axial strain	$\epsilon_{\scriptscriptstyle 1}$	(%)	0	.73	
Molded Specin	nen Unit	Weight		Secant modulus at :		σ_{c}	σ _c /2		
				Initail correction	Δ L/L $_{ m O}$	(%)	0	.05	
Total moist	ρ_{w}	kN/m ³	12.6	Axial strain (%) 0.67 0.23		.23			
Total dry	ρ_{d}	kiN/m	4.5	E _u (MPa)	;	33.3	5	0.6	

Remarks: Date of batching: 2018-02-12 Date of test: 2018-03-12 (28 days curing)

The specimen expelled water during compression (draining property)

Prepared by: Richard Courchesne (100736) Date: 2018-03-14

Verfied by: Yohan Jalbert, ing. Date:


CLIENT : SNC-Lavalin MIX DESIGN #: 22

PROJECT : PHASE II - -AMARUQ CURING TYPE : UNDER WATER AT 2,6 °C

LOCATION : NUNAVUT

FILE : 651298 TEST nr : UCS -15

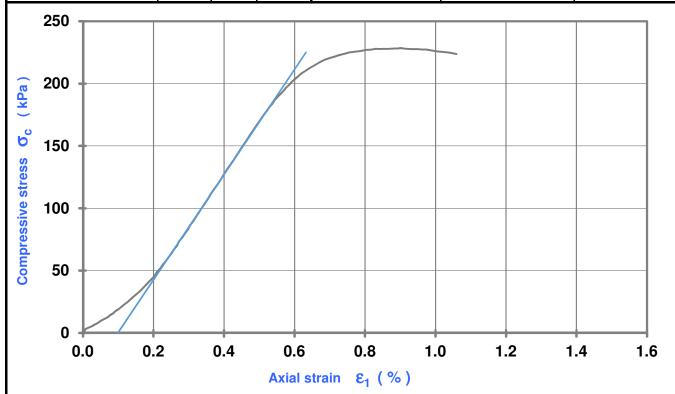
Initial cha	racterist	ics		Water content	Aι	ıxiliary	Total	
Diameter	D _O	mm	50.18	Total wet mass (g) 237.37				
Length	Lo	mm	88.52	Total dry mass (g)			9:	2.63
Cross-sectional area	A_0	cm ²	19.78	Container nr				89
Total volume	V_{T}	cm ³	175.08	Container mass (g)			1:	3.37
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.764	Water content (%)			18	32.61
Total wet mass	Mh	g	224.00	TEST CONDITION				
Total dry mass	Ms	g	79.26	TEST CONDITION				
Water volume	V_{w}	cm ³	145.18	Compression rate mm/min 0.081 %/min 0				
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAII	N DECIII	TS AT FAILU	IDE	
Solids volume	V_s	cm ³	28.96	IVIAII	N NESUL	13 AT FAILC)nE	
Degree of saturation	S_R	(%)	99.4	Compressive stress	$\sigma_{\!\scriptscriptstyle c}$	kPa	2	28.1
				Axial strain	$\epsilon_{\scriptscriptstyle 1}$	(%)	C).83
Molded Specin	nen Unit	Weight		Secant modulus at :		σ_{c}	σ _c /2	
				Initail correction	Δ L / L $_{ m O}$	(%)	C).05
Total moist	ρ_{w}	kN/m ³	12.5	Axial strain (%)	0.78 0.24).24	
Total dry	ρ_{d}	KIN/M	4.4	E _u (MPa) 29.4 48.7				

Remarks: Date of batching: 2018-02-12 Date of test: 2018-03-12 (28 days curing)

The specimen expelled water during compression (draining property)

Prepared by: Richard Courchesne (100736) Date: 2018-03-14

Verfied by: Yohan Jalbert, ing. Date:


CLIENT : SNC-Lavalin MIX DESIGN #: 22

PROJECT : PHASE II - -AMARUQ CURING TYPE : UNDER WATER AT 2,6 °C

LOCATION : NUNAVUT

FILE : 651298 TEST nr : UCS -16

Initial cha	tial characteristics			Water content	Auxiliary		Total	
Diameter	D _O	mm	50.27	Total wet mass (g)			23	37.32
Length	Lo	mm	88.16	Total dry mass (g)			9:	2.97
Cross-sectional area	A_0	cm ²	19.85	Container nr				88
Total volume	V_{T}	cm ³	175.00	Container mass (g)			1:	3.68
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.754	Water content (%)			18	32.05
Total wet mass	Mh	g	223.64	TEST CONDITION				
Total dry mass	Ms	g	79.29	TEST CONDITION				
Water volume	V_{w}	cm ³	144.78	Compression rate mm/min 0.081 %/min 0.				0.09
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAII	N DECIII	TS AT FAILU	IDE	
Solids volume	V_s	cm ³	28.97	IVIAII	N NESUL	15 AT FAILU	JNE .	
Degree of saturation	S_R	(%)	99.2	Compressive stress	$\sigma_{\!\scriptscriptstyle c}$	kPa	2	28.5
				Axial strain	$\epsilon_{\scriptscriptstyle 1}$	(%)	c	0.90
Molded Specin	nen Unit	Weight		Secant modulus at :		σ_{c}	σ _c /2	
				Initail correction	Δ L/L $_{ m O}$	(%)	C).10
Total moist	ρ_{w}	kN/m ³	12.5	Axial strain (%)	0.80 0.28).28	
Total dry	ρ_{d}	kN/m	4.4	E _u (MPa) 28.5 42.2				

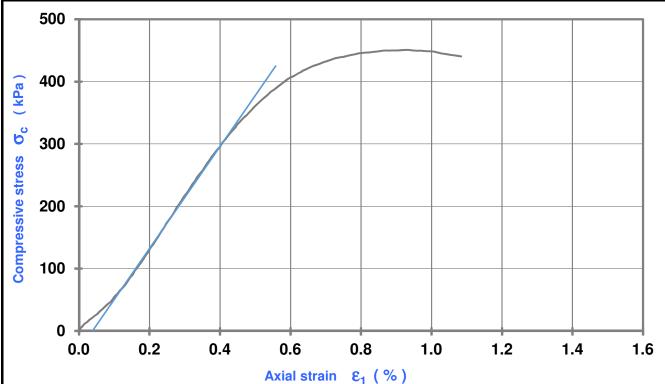
Remarks: Date of batching: 2018-02-12 Date of test: 2018-03-12 (28 days curing)

The specimen expelled water during compression (draining property)

Prepared by: Richard Courchesne (100736) Date: 2018-03-14

Verfied by: Yohan Jalbert, ing. Date:

DESIGNATION: Unconfined Compressive Strength ASTM D2166/D2166M-16


CLIENT : SNC-Lavalin MIX DESIGN #: 22

PROJECT : PHASE II - -AMARUQ CURING TYPE : UNDER WATER AT 20 °C

LOCATION : NUNAVUT

FILE : 651298 TEST nr : UCS -11

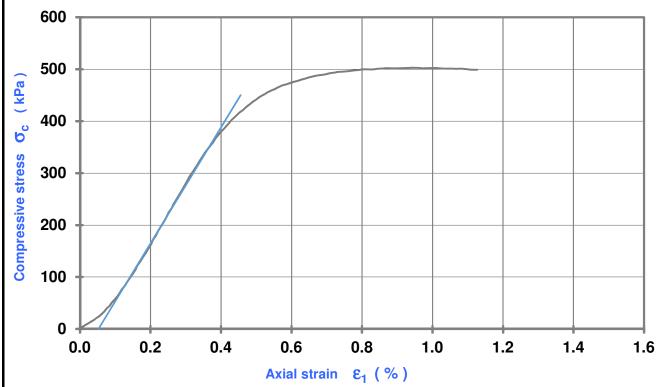
Initial cha	racterist	ics		Water content	Αι	ıxiliary	Total	
Diameter	D _O	mm	50.44	Total wet mass (g)			25	0.75
Length	Lo	mm	92.25	Total dry mass (g)			9:	5.75
Cross-sectional area	A_0	cm ²	19.98	Container nr				7
Total volume	V_{T}	cm ³	184.31	Container mass (g)			15	5.68
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.829	Water content (%)			19	3.58
Total wet mass	Mh	g	235.07	TEST CONDITION				
Total dry mass	Ms	g	80.07	TEST CONDITION				
Water volume	V_{w}	cm ³	155.47	Compression rate mm/min 0.081 %/min (
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAII	N DECIII '	TS AT FAILU	IDE	
Solids volume	V_s	cm ³	29.26	IVIAII	N NESUL	15 AT FAILU	INE	
Degree of saturation	S_R	(%)	100.3	Compressive stress	$\sigma_{\!\scriptscriptstyle c}$	kPa	4	51.0
				Axial strain	$\epsilon_{\scriptscriptstyle 1}$	(%)	C	.93
Molded Specin	nen Unit	Weight		Secant modulus at :	$\sigma_{\rm c}$		σ _c /2	
				Initail correction	Δ L / L $_{ m O}$	(%)	C	0.04
Total moist	ρ_{w}	kN/m ³	12.5	Axial strain (%)	0.89 0.28).28	
Total dry	ρ_{d}	KIN/m	4.3	E _u (MPa)		50.5	8	32.7

Remarks: Date of batching: 2018-02-12 Date of test: 2018-03-12 (28 days curing)

The specimen expelled water during compression (draining property)

Prepared by: Richard Courchesne (100736) Date: 2018-03-14

Verfied by: Yohan Jalbert, ing. Date:


CLIENT : SNC-Lavalin MIX DESIGN #: 22

PROJECT : PHASE II - -AMARUQ CURING TYPE : UNDER WATER AT 20 °C

LOCATION : NUNAVUT

FILE : 651298 TEST nr : UCS -12

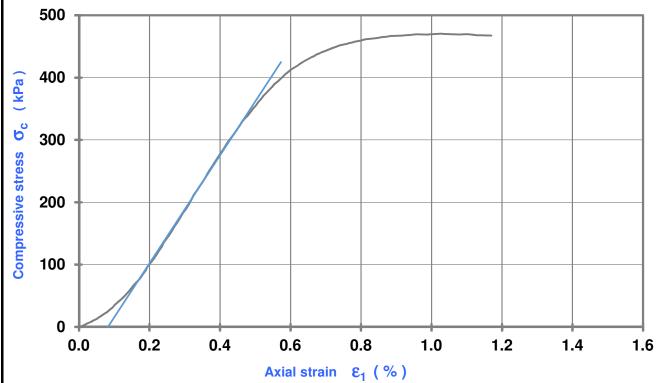
Initial cha	racterist	ics		Water content	Αι	ıxiliary	Total			
Diameter	D _O	mm	50.31	Total wet mass (g)			24	5.10		
Length	Lo	mm	90.46	Total dry mass (g)			90	6.18		
Cross-sectional area	A_0	cm ²	19.88	Container nr				97		
Total volume	V_{T}	cm ³	179.79	Container mass (g)			15	5.47		
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.798	Water content (%)			18	4.51		
Total wet mass	Mh	g	229.63		TEST CONDITION					
Total dry mass	Ms	g	80.71		IESIC	ONDITION				
Water volume	V_{w}	cm ³	149.37	Compression rate mm/min 0.081 %/min				0.09		
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAII	N DECIII	TS AT FAILU	IDE			
Solids volume	V_s	cm ³	29.49	IVIAII	N NESUL	13 AT TAILC	/n L			
Degree of saturation	S_R	(%)	99.4	Compressive stress	$\sigma_{\!\scriptscriptstyle c}$	kPa	50	02.8		
				Axial strain	ϵ_{1}	(%)	C	.94		
Molded Specin	nen Unit	Weight		Secant modulus at :	-	σ_{c}	σ	c/2		
				Initail correction	Δ L/L $_{O}$	(%)	C	0.05		
Total moist	ρ_{w}	kN/m ³	12.5	Axial strain (%)		0.89 0.23).23		
Total dry	ρ_{d}	KIN/M	4.4	E _u (MPa)		56.6	112.6			

Remarks: Date of batching: 2018-02-12 Date of test: 2018-03-12 (28 days curing)

The specimen expelled water during compression (draining property)

Prepared by: Richard Courchesne (100736) Date: 2018-03-14

Verfied by: Yohan Jalbert, ing. Date:


CLIENT : SNC-Lavalin MIX DESIGN #: 22

PROJECT : PHASE II - -AMARUQ CURING TYPE : UNDER WATER AT 20 °C

LOCATION : NUNAVUT

FILE : 651298 TEST nr : UCS -13

Initial cha	racterist	ics		Water content	Au	Auxiliary		otal
Diameter	D _O	mm	50.33	Total wet mass (g)			23	9.32
Length	Lo	mm	88.33	Total dry mass (g)			9:	3.75
Cross-sectional area	A_0	cm ²	19.90	Container nr				84
Total volume	V_{T}	cm ³	175.75	Container mass (g)			1:	5.59
Ratio Length / Diameter	L_0/D_0	(1 / 1)	1.755	Water content (%)			18	6.25
Total wet mass	Mh	g	223.73		TEST C	ONDITION		
Total dry mass	Ms	g	78.16		IESIC	ONDITION		
Water volume	V_{w}	cm ³	146.01	Compression rate mm/min 0.081 %/min 0.				
Specific gravity (est.)	G_S	(1 / 1)	2.745	MAII	N DECIII	TS AT FAILU	IDE	
Solids volume	V_s	cm ³	28.56	IVIAII	N NESUL	13 AT FAILC	INE	
Degree of saturation	S_R	(%)	99.2	Compressive stress	σ_{c}	kPa	4	70.4
				Axial strain	$\epsilon_{\scriptscriptstyle 1}$	(%)	1	.03
Molded Specim	nen Unit	Weight		Secant modulus at :	-	σ_{c}	$\sigma_{\rm c}$ / 2	
				Initail correction	Δ L/L $_{ m O}$	(%)	C	0.08
Total moist	ρ_{w}	kN/m ³	12.5	Axial strain (%)	strain (%) 0.95 0.).28	
Total dry	ρ_{d}	kN/m°	4.4	E _u (MPa)	49.7 86.5			

Remarks: Date of batching: 2018-02-12 Date of test: 2018-03-12 (28 days curing)

The specimen expelled water during compression (draining property)

Prepared by: Richard Courchesne (100736) Date: 2018-03-14

Verfied by: Yohan Jalbert, ing. Date:

CLIENT : SNC-Lavalin inc. MIX DESIGN # : 22

PROJECT : AMARUQ - PHASE II CURING TYPE : UNDER WATER AT 20 ℃

LOCATION: NUNAVUT FILE: 651298

TEST Nr : SK - 01

FILE	. 031290								IESI NI	. 51(-01	
INITIAL M	OUNTING S	PECIMEN	PROPER	TIES	WATER	CONTENT	AUXILIARY	TOTAL	MAIN	RESULTS AT F	AILURE
								_		Failure	Final
Diameter		De	50.35	mm	Mass tare + r	noist specimen		246.73	Line		
Length		Le	90.46	mm	Mass tare + o	dry specimen		96.56	σ_1 – σ_3		
Cross-sect	ional area	Ae	19.91	cm ²	Tare no.			W-4	σ'_1/σ'_3		
Total volum	ne	Ve	180.1	cm ³	Mass of tare			15.87	σ'3		
Ratio L / D		Le / De		(1/1)	Water cont			186.11	ΔU_{b}		
Total wet m	nass	Mh	229.33	g	Water cont	0.11 (70)		100.11	A		
Total dry m	ass	Ms	80.69	g	MEMBRA	NE OF LATEX	CONDITIONS	OF DRAINAGE	ϵ_1		
Water volu	me	Vw	149.1	cm ³					$\epsilon_{\sf v}$		
Specific gra	avity (est.)	Gs	2.745		Dm :	0.30 mm	Loading:	N	Failure crite	erion :	$\sigma_1 - \sigma_3 \operatorname{max}$
Solids volu	me	Vs	29.5	cm ³	Cm :	153.00 mm	Dissipation:	НВ	COR	RECTIONS OF ME	MBRANE
Degree of s	saturation	S	99.0	%	Lm :	92.26 mm			σ_{a}		
					Correction.:				σ_{r}		
DIMEN	ISIONS OF T	TRIMMED	SPECIME	:N	0011001101111	.,					
Length		Lo	90.46	mm	E : Homoge	neous elastic	H:Top		σ_{α}		
Diameter		Do	50.35	mm	_	als creasings	B : Base		σ _a : axial co	rrection of men	nbrane
Measured (Ovality			%	V : Verticals	-	R : Radial			rrection of men	
Cell nr :	-	GE-189			P : Plane of		N : Undrained	d	σ_{lpha} : correction for plan of failure		
Rate of axis	al strain :				N : No corre	ection	Note: Withou	ıt drains	k : 2.14E-06 cm/s		
									C _v	:	
DU	VCICAL C AN	ID MECHA	MICALC		Code	IO	IN	CI	DÜ	SP	ZD
	YSICALS AN ARACTERIST				Step	Trimming	Initial		Dissipation	Saturation	
					Line		1		35	25	
Volume of	•			Vx	(cm ³)	180.1	180.1		177.1	178.6	
Volume of				Vw	(cm ³)	149.1	149.1		150.3	151.4	
Volume of				Vv	(cm ³)	150.7	150.7		147.7	149.1	
Water cont				W	(%)	184.21	184.21		185.69	187.05	
Dry mass d	iensity			ρ_{s}	(kg/m ³)	448	448		456	452	
Void ratio				е	(1/1)	5.110	5.110		5.008	5.058	
Porosity Degree of s	saturation			n S	(1/1) (%)	0.836 99.0	0.836 99.0		0.834 101.8	0.835 101.5	
Dogree or c	Jataration				(70)	33.0	33.0		101.0	101.0	
Units strain	IS			ϵ_{V}	(%)	0.00	0.00		1.68	0.84	
since the tr	imming			ϵ_1	(%)	0.00	0.00		0.21	0.06	
Effective st	resses			σ_3	(kPa)		5		85	5	
				σ_1	(kPa)		10		91	10	
Pore press	ure parame	ter		В	(1/1)					0.940	
CODEO				JENCE O	F TEST	Ctout line	Endline	1			
CODES	Initial transi	ition	STEPS			Start line 0	End line 1	1			
SP	Back press		ation			2	25				
	Isotropic lo		2.1011			26	27				
	, ,			essure		28	35				
					Α	36	45				
]			
REMARKS	 1 - SATUR 	RATION F	RY BACK	PRES!	SLIRE ISOTE	ROPIC CONSO	I IDATION ANI	D PERMEARII	ITY TEST		

REMARKS: 1 - SATURATION BY BACK PRESSURE, ISOTROPIC CONSOLIDATION AND PERMEABILITY TEST

2 - DESIGNATION: ASTM D2435M-11, ASTM D5084-16a

CLIENT : SNC-Lavalin inc. MIX DESIGN # : 22

PROJECT: AMARUQ - PHASE II CURING TYPE: UNDER WATER AT 2.6 ℃

LOCATION: NUNAVUT FILE: 651298

TEST Nr : SK - 02

FILE	. 031290								IESI NI	. 511 - 02	
INITIAL M	OUNTING S	PECIMEN	PROPER	TIES	WATER	CONTENT	AUXILIARY	TOTAL	MAIN	RESULTS AT FA	AILURE
										Failure	Final
Diameter		De	50.21	mm	Mass tare + n	noist specimen		229.90	Line		
Length		Le	85.09	mm	Mass tare + d	Iry specimen		89.66	σ_1 – σ_3		
Cross-sect	ional area	Ae	19.80	cm ²	Tare no.			ML-1	σ'_1/σ'_3		
Total volun	ne	Ve	168.5	cm ³	Mass of tare			13.36	σ'3		
Ratio L / D		Le / De		(1/1)	Water conte	ent (%)		183.80	ΔU_b		
Total wet n	nass	Mh	215.79	g					Α		
Total dry m	ass	Ms	76.30	g	MEMBRAI	NE OF LATEX	CONDITIONS	OF DRAINAGE	ϵ_1		
Water volu	me	Vw	139.9	cm ³					$\epsilon_{\sf v}$		
Specific gra	avity (est.)	Gs	2.745		Dm :	0.30 mm	Loading:	N	Failure crite	rion :	σ_1 – σ_3 max
Solids volu	me	Vs	27.9	cm ³	Cm :	153.00 mm	Dissipation:	НВ	COR	RECTIONS OF ME	MBRANE
Degree of	saturation	S	99.5	%	Lm :	86.66 mm			σ_{a}		
					Correction.:	N			$\sigma_{\rm r}$		
DIMEN	ISIONS OF	TRIMMED	SPECIME	N							
Length		Lo	85.09	mm	E : Homogei	neous elastic	H : Top		σ_{α}		
Diameter		Do	50.21	mm		als creasings	B : Base		σ _a : axial co	rrection of men	nbrane
Measured	Ovality			%	V : Verticals	-	R : Radial			rrection of mem	
Cell nr :		GE-190			P : Plane of	failure	N : Undrained	d	-	on for plan of fa	
Rate of axi	al strain :				N : No corre	ction	Note: Withou	ıt drains	k k	: 5.20E-06 d	
									C _v	:	
DU.	YSICALS AN	ID MECH	MICALC		Code	Ю	IN	CI	DU	SP	ZD
	ARACTERIS				Step	Trimming	Initial		Dissipation	Saturation	
				17.	Line		1		35	25	
Volume of	•			Vx	(cm ³)	168.5	168.5		166.4	167.9	
Volume of				Vw	(cm ³)	139.9	139.9		141.2	142.7	
Water cont				Vv W	(cm ³) (%)	140.6 182.82	140.6 182.82		138.5 184.52	140.0 186.48	
Dry mass of											
Void ratio	lensity			ρ_s	(kg/m ³)	453 5.044	453 5.044		458 4.969	454 5.022	
Porosity				e n	(1/1) (1/1)	0.835	0.835		0.832	0.834	
Degree of	saturation			S	(%)	99.5	99.5		101.9	101.9	
Units strain				ϵ_{V}	(%)	0.00	0.00		1.24	0.37	
since the tr	imming			ε ₁	(%)	0.00	0.00		0.44	0.09	
Effective st	resses			σ_3	(kPa)		5		85	5	
_				σ_1	(kPa)		10		91	10	
Pore press	Pore pressure parameter SEQUENC			B	(1/1)		<u>l</u>		<u>l</u>	0.966	
CODES			STEPS	JENOE C	n IESI	Start line	End line	-			
IN	N Initial transition					0	1	1			
SP	P Back pressure saturation					2	25				
CI	Isotropic lo	•				26	27				
	DU Dissipation of excess pore pressure					28	35				
KC	Permeabili	ty constar	nt head - i	method	А	36	45				
BEMARKS	· 1 - SATIII	RATION F	RV BACK	PRES	SLIBE ISOTE	ROPIC CONSO	I IDATION ANI	J D PERMEARII	ITY TEST		

REMARKS: 1 - SATURATION BY BACK PRESSURE, ISOTROPIC CONSOLIDATION AND PERMEABILITY TEST

2 - DESIGNATION: ASTM D2435M-11, ASTM D5084-16a

 $\label{eq:continuous} \mbox{3 - Date of batching: 2018-02-12} \qquad \mbox{Date of test: 2018-03-14 (30 days curing)}$

CLIENT : SNC-Lavalin inc. MIX DESIGN # : 22

PROJECT : AMARUQ - PHASE II CURING TYPE : UNDER WATER AT 20 ℃

LOCATION: NUNAVUT
FILE: 651298

TEST Nr : SK - 03

INITIAL MOUNTING	SDECIMEN	I DRODEE	TIES	WATER	CONTENT	AUXILIARY	TOTAL	MAIN RESULTS AT FAILURE		
INITIAL MOONTING	SPECIMEN	PHOPER	IIIES	WAIEN	CONTENT	AUXILIANT	TOTAL		Failure	Final
Diameter	De	50.38	mm	Mass tare + m	noist specimen		242.72	Line		
Length	Le	89.74	mm	Mass tare + d	ry specimen		93.58	σ_1 – σ_3		
Cross-sectional area	a Ae	19.93	cm ²	Tare no.			20	σ'_1/σ'_3		
Total volume	Ve	178.9	cm ³	Mass of tare			13.64	σ'3		
Ratio L / D	Le / De		(1/1)	Water conte	ent (%)		186.56	ΔU_b		
Total wet mass	Mh	227.74	g				•	Α		
Total dry mass	Ms	79.94	g	MEMBRAN	NE OF LATEX	CONDITIONS	OF DRAINAGE	ϵ_1		
Water volume	Vw	148.2	cm ³					$\epsilon_{\sf v}$		
Specific gravity (est.) Gs	2.745		Dm :	0.30 mm	Loading:	N	Failure crite	rion :	σ_1 – σ_3 max
Solids volume	Vs	29.2	cm ³	Cm :	153.00 mm	Dissipation:	HB	CORI	RECTIONS OF ME	MBRANE
Degree of saturation	S	99.1	%	Lm :	91.54 mm			$\sigma_{\rm a}$		
				Correction.:	N			$\sigma_{\rm r}$		
DIMENSIONS O	FTRIMMED	SPECIME	:N					σ_{α}		
Length	Lo	89.74	mm	E : Homoger	neous elastic	H:Top		σū		
Diameter	Do	50.38	mm	H : Horizonta	als creasings	B : Base		σ _a : axial co	rrection of men	nbrane
Measured Ovality			%	V : Verticals	creasings	R : Radial		σ _r : radial co	rrection of mem	brane
Cell nr :	GE-189			P : Plane of	failure	N : Undrained	d	σ_{α} : correction	on for plan of fa	ilure
Rate of axial strain:				N : No corre	ction	Note: Withou	t drains	k	: 5.37E-06 d	
								C_{v}	:	
PHYSICALS	AND MECHA	ANICALS		Code	IO	IN	CI	DU	SP	ZD
CHARACTER				Step Line	Trimming	Initial 1		Dissipation 35	Saturation 25	
Volume of specimen			Vx	(cm ³)	178.9	178.9		176.8	178.2	
Volume of water			Vw	(cm ³)	148.2	148.2		150.0	151.1	
Volume of voids			Vv	(cm ³)	149.7	149.7		147.6	148.9	
Water content			W	(%)	184.89	184.89		187.13	188.51	
Dry mass density			ρ_{s}	(kg/m ³)	447	447		452	449	
Void ratio			е	(1/1)	5.124	5.124		5.052	5.099	
Porosity			n	(1/1)	0.837	0.837		0.835	0.836	
Degree of saturation			S	(%)	99.1	99.1		101.7	101.5	
Units strains			ϵ_{v}	(%)	0.00	0.00		1.19	0.40	
since the trimming			ϵ_1	(%)	0.00	0.00		0.27	0.07	
Effective stresses			σ_3	(kPa)		5		85	5	
			σ_1	(kPa)		10		91	10	
Pore pressure paran	neter		В	(1/1)					0.928	
CODES			JENCE C	OF TEST	Start line	End line	-			
CODES IN Initial trai	nsition	STEPS			Start line 0	End line 1	1			
	ssure satur	ation			2	25				
CI Isotropic					26	27				
DU Dissipation	on of exces				28	35				
KC Permeab	ility constar	nt head -	method	Α	36	45				
DEMARKS: 1 CAT	LIDATION	DV D 4 C 1	DDEO	OLIDE IOCTO	I CONCO	LIDATION AND		ITV TEOT		

REMARKS: 1 - SATURATION BY BACK PRESSURE, ISOTROPIC CONSOLIDATION AND PERMEABILITY TEST

2 - DESIGNATION: ASTM D2435M-11, ASTM D5084-16a

CLIENT : SNC-Lavalin inc. MIX DESIGN # : 22

PROJECT: AMARUQ - PHASE II CURING TYPE: UNDER WATER AT 2.6 ℃

LOCATION: NUNAVUT FILE: 651298

TEST Nr : SK - 04

FILE	: 651298								IESI Nr	: SK - 04	
INITIAL M	NITIAL MOUNTING SPECIMEN PROPERTIES		WATER	CONTENT	AUXILIARY	TOTAL	MAIN	MAIN RESULTS AT FAILU			
Diameter.		D-	50.00					007.07	I the e	Failure	Final
Diameter Length		De Le	50.30 86.74	mm mm		noist specimen		237.27	Line		
Ü					Mass tare + d	ry specimen		94.47	σ_1 – σ_3		
Cross-sect	tional area	Ae	19.87	cm ²	Tare no.			97	σ' ₁ /σ' ₃		
Total volur	ne	Ve	172.4	cm ³	Mass of tare			15.49	σ' ₃		
Ratio L / D)	Le / De		(1/1)	Water conte	ent (%)		180.81	ΔU_b		
Total wet n	nass	Mh	221.07	g	MEMBRAN	NE OF LATEX	CONDITIONS	OF DRAINAGE	Α		
Total dry m	nass	Ms	78.98	g	WILWIDTIAL	TE OF LATEX	CONDITIONS	OI DITAINAGE	ϵ_1		
Water volu	ıme	Vw	142.5	cm ³					ϵ_{V}		
Specific gr	avity (est.)	Gs	2.745		Dm :	0.30 mm	Loading:	N	Failure crite	rion :	σ_1 – σ_3 max
Solids volu	ıme	Vs	28.9	cm ³	Cm :	153.00 mm	Dissipation:	HB	CORI	RECTIONS OF ME	MBRANE
Degree of	saturation	S	99.3	%	Lm :	88.42 mm	Shearing:		σ_{a}		
					Correction.:	N			$\sigma_{\rm r}$		
DIMEN	NSIONS OF	TRIMMED	SPECIME	N							
Length		Lo	86.74	mm	E : Homoger	neous elastic	H:Top		σ_{α}		
Diameter		Do	50.30	mm		als creasings	B : Base		σ _o : axial co	rrection of men	nbrane
Measured	Ovality			%	V : Verticals	•	R : Radial			rrection of mem	
Cell nr :		GE-189			P : Plane of	failure	N : Undrained	d	'	on for plan of fa	
Rate of axi	ial strain :	GE 100			N : No corre		Note: Withou		k	: 6.64E-06 c	
									C _v	:	
DH	YSICALS A	ND MECH/	MICALS		Code	Ю	IN	CI	DU	SP	ZD
	ARACTERIS				Step	Trimming	Initial 1		Dissipation	Saturation	
Volume of	specimen			Vx	Line (cm ³)	170.4	· ·		35	25	
Volume of	•			Vw	(cm ³)	172.4 142.5	172.4 142.5		169.9 143.1	171.1 144.3	
Volume of				۷v	(cm ³)						
Water con				W	(%)	143.5 179.91	143.5 179.91		141.0 180.66	142.2 182.18	
Dry mass of	density			ρ_{s}	(kg/m ³)	458	458		465	462	
Void ratio				e	(1/1)	4.973	4.973		4.886	4.928	
Porosity				n	(1/1)	0.833	0.833		0.830	0.831	
Degree of	saturation			S	(%)	99.3	99.3		101.5	101.5	
Units strair	ns			ϵ_{V}	(%)	0.00	0.00		1.47	0.76	
since the ti	rimming			ϵ_1	(%)	0.00	0.00		0.28	0.08	
Effective s	tresses			σ'_3	(kPa)		5		85	5	
				σ_1	(kPa)		10		91	10	
Pore press	sure parame	eter	0=0	В	(1/1)					0.966	
CODES			STEPS	JENCE O	IF IESI	Start line	End line	1			
IN	Initial trans	ition	5.2.0			0	1	1			
SP	Back press	sure satur	ation			2	25				
CI	Isotropic lo					26	27				
DU	Dissipation					28	35				
KC	Permeabili	ty constar	nt nead -	method	А	36	45				
REMARKS	: 1 - SATU	RATION F	BY BACK	PRES	SUBE ISOTE	OPIC CONSO	I IDATION ANI	J D PERMEABIL	ITY TEST		

REMARKS: 1 - SATURATION BY BACK PRESSURE, ISOTROPIC CONSOLIDATION AND PERMEABILITY TEST

2 - DESIGNATION: ASTM D2435M-11, ASTM D5084-16a

 $\label{eq:continuous} \mbox{3 - Date of batching: 2018-02-12} \qquad \mbox{Date of test: 2018-03-19 (35 days curing)}$

CLIENT : SNC-Lavalin inc. MIX DESIGN # : 22

PROJECT : AMARUQ - PHASE II CURING TYPE : UNDER WATER AT 20 ℃

LOCATION: NUNAVUT FILE: 651298

TEST Nr : SK - 05

ILE	. 031290								IESI NI	. 51(-05	
INITIAL N	OUNTING S	PECIMEN	PROPER	TIES	WATER	CONTENT	AUXILIARY	TOTAL	MAIN RESULTS AT FAILURE		AILURE
								_		Failure	Final
Diameter		De	50.40	mm	Mass tare + r	moist specimen		240.84	Line		
Length		Le	87.89	mm	Mass tare + o	dry specimen		94.65	σ_1 – σ_3		
Cross-sect	tional area	Ae	19.95	cm ²	Tare no.			84	σ'_1/σ'_3		
Total volur	ne	Ve	175.4	cm ³	Mass of tare			15.59	σ'3		
Ratio L / D		Le / De		(1/1)	Water cont	ent (%)		184.91	ΔU_{b}		
Total wet n	nass	Mh	223.94	g	Water cont	CIR (70)		104.51	A		
Total dry m	nass	Ms	79.06	g	MEMBRA	NE OF LATEX	CONDITIONS	OF DRAINAGE	ϵ_1		
Water volu	ıme	Vw	145.3	cm ³					$\epsilon_{\sf v}$		
Specific gr	avity (est.)	Gs	2.745		Dm :	0.30 mm	Loading:	N	Failure crite	erion :	$\sigma_1 - \sigma_3 \operatorname{max}$
Solids volu	ıme	Vs	28.9	cm ³	Cm :	153.00 mm	Dissipation:	НВ	COR	RECTIONS OF ME	
Degree of	saturation	S	99.2	%	Lm :	89.68 mm			σ_{a}		
					Correction.:				σ_{r}		
DIMEN	NSIONS OF	TRIMMED	SPECIME	N	O O I TOOLIOI II.	•••					
Length		Lo	87.89	mm	E : Homoge	neous elastic	H:Top		σ_{α}		
Diameter		Do	50.40	mm	_	als creasings	B : Base		σ _a : axial co	rrection of men	nbrane
Measured	Ovality			%	V : Verticals	-	R : Radial			rrection of men	
Cell nr :		GE-189			P : Plane of		N : Undrained	d	· .	on for plan of fa	
Rate of axi	ial strain :				N : No corre	ection	Note: Withou	ıt drains	k k	: 2.89E-06 d	
									C _v	:	
- DU	VCICAL C AI	ID MECHA	NICALC		Code	IO	IN	CI	DÜ	SP	ZD
	YSICALS AN				Step	Trimming	Initial		Dissipation	Saturation	
					Line		1		35	25	
Volume of	•			Vx	(cm ³)	175.4	175.4		173.7	174.4	
Volume of				Vw	(cm ³)	145.3	145.3		147.0	148.0	
Volume of				Vv	(cm ³)	146.5	146.5		144.8	145.6	
Water con				W	(%)	183.25	183.25		185.40	186.66	
Dry mass o	aensity			ρ_{s}	(kg/m ³)	451	451		455	453	
Void ratio				e	(1/1)	5.070	5.070 0.835		5.011 0.834	5.039 0.834	
Porosity Degree of	saturation			n S	(1/1) (%)	0.835 99.2	99.2		101.6	101.7	
Dogree or	Jataration				(70)	00.2	55.2		101.0	101.7	
Units strair	าร			ϵ_{V}	(%)	0.00	0.00		0.98	0.52	
since the t	rimming			ϵ_1	(%)	0.00	0.00		0.25	0.08	
Effective s	tresses			σ_{3}	(kPa)		5		85	5	
				σ_1	(kPa)		10		91	10	
Pore press	sure parame	ter		В	(1/1)					0.909	
CODEC				JENCE O	F TEST	Ctort line	Endling	1			
CODES	Initial trans	ition	STEPS			Start line 0	End line 1	1			
SP	Back press		ation			2	25				
CI	Isotropic lo					26	27				
DU	Dissipation	•	s pore pre	essure		28	35				
KC	Permeabili				Α	36	45				
]			
REMARKS	· 1 - SATII	RATION F	RY BACK	PRFS:	SLIRE ISOTE	ROPIC CONSO	I IDATION ANI	D PERMEARII	ITY TEST		

REMARKS: 1 - SATURATION BY BACK PRESSURE, ISOTROPIC CONSOLIDATION AND PERMEABILITY TEST

2 - DESIGNATION: ASTM D2435M-11, ASTM D5084-16a

3 - Date of batching : 2018-02-12 $\,$ Date of test : 2018-03-16 (32 days curing)

CLIENT : SNC-Lavalin inc. MIX DESIGN # : 22

PROJECT: AMARUQ - PHASE II CURING TYPE: UNDER WATER AT 2.6 ℃

LOCATION: NUNAVUT FILE: 651298

TEST Nr : SK - 06

FILE . 03129	0							IESTINI	. 511 - 00	
INITIAL MOUNTING	INITIAL MOUNTING SPECIMEN PROPERTIES		WATER CONTENT		AUXILIARY	TOTAL	MAIN RESULTS AT FAILURE			
									Failure	Final
Diameter	De	50.30	mm	Mass tare + n	noist specimen		223.27	Line		
Length	Le	82.09	mm	Mass tare + d	ry specimen		87.47	σ_1 – σ_3		
Cross-sectional area	a Ae	19.87	cm ²	Tare no.			89	σ' ₁ /σ' ₃		
Total volume	Ve	163.1	cm ³	Mass of tare			13.38	σ' ₃		
Ratio L / D	Le / De		(1/1)	Water conte	ent (%)		183.29	ΔU_b		
Total wet mass	Mh	209.11	g			CONDITIONS		Α		
Total dry mass	Ms	74.09	g	MEMBRAI	IE OF LATEX	CONDITIONS	OF DRAINAGE	ϵ_1		
Water volume	Vw	135.4	cm ³					$\epsilon_{\sf v}$		
Specific gravity (est.) Gs	2.745		Dm :	0.30 mm	Loading:	N	Failure crite	rion :	σ_1 – σ_3 max
Solids volume	Vs	27.1	cm ³	Cm :	153.00 mm	Dissipation:	HB	CORI	RECTIONS OF MEI	MBRANE
Degree of saturation	S	99.6	%	Lm :	83.67 mm	Shearing:		σ_{a}		
				Correction.:	N			$\sigma_{\rm r}$		
DIMENSIONS O	FTRIMMED	SPECIME	N					σ_{α}		
Length	Lo	82.09	mm	E : Homogei	neous elastic	H:Top		σ_{α}		
Diameter	Do	50.30	mm	H : Horizonta		B : Base		σ _a : axial co	rrection of mem	ıbrane
Measured Ovality			%	V : Verticals		R : Radial			rrection of mem	
Cell nr :	GE-190			P : Plane of	Ü	N : Undrained	4		on for plan of fa	
Rate of axial strain:	GE-190			N : No corre		Note: Withou	-	k correction	: 8.01E-06 c	
. Idio or dandronam .								C _v	:	, 3
DUVELCALE	AND MECH	ANICALC		Code	Ю	IN	CI	DU	SP	ZD
PHYSICALS CHARACTER				Step	Trimming	Initial		Dissipation	Saturation	
Volume of specimen	1		Vx	Line (cm ³)	100.1	1 100.4		35	25	
Volume of water			Vw	(cm ³)	163.1 135.4	163.1 135.4		160.4 135.7	162.1 137.3	
Volume of voids			۷v	(cm ³)	136.0	136.0				
Water content			W	(%)	182.24	182.24		133.4 182.64	135.0 184.79	
Dry mass density			ρ_{s}	(kg/m ³)	454	454		462	457	
Void ratio			е	(1/1)	5.024	5.024		4.926	4.987	
Porosity			n	(1/1)	0.834	0.834		0.831	0.833	
Degree of saturation	I		S	(%)	99.6	99.6		101.8	101.7	
Units strains			ϵ_{V}	(%)	0.00	0.00		1.64	0.62	
since the trimming			ϵ_1	(%)	0.00	0.00		0.34	0.07	
Effective stresses			σ_3	(kPa)		5		85	5	
Pore pressure parar	neter		σ΄ ₁ Β	(kPa) (1/1)		10		91	10 0.974	
i die piessuie palai			JENCE O			<u> </u>		1	0.374	
CODES		STEPS			Start line	End line				
IN Initial tra SP Back pre	nsition ssure satur	ation			0 2	1 25				
CI Isotropic		aliUi1			26	25 27				
DU Dissipati	on of exces				28	35				
KC Permeat	ility constar	nt head -	method	Α	36	45				
						Ī	1			

REMARKS: 1 - SATURATION BY BACK PRESSURE, ISOTROPIC CONSOLIDATION AND PERMEABILITY TEST

2 - DESIGNATION: ASTM D2435M-11, ASTM D5084-16a

 $\label{eq:continuous} \mbox{3 - Date of batching: 2018-02-12} \qquad \mbox{Date of test: 2018-03-16 (32 days curing)}$

Appendix 3 Additives – Product Description

tembec	Cote : LSPC-009
DIVISION : GROUPE PRODUITS CHIMIQUES / CHEMICAL PRODUCTS GROUP	Page 1 de/of 1
DEPARTMENT : MARKETING	Date : 2014/02/12
ARBO S01 : Poudre / Powder	Version : 13.0.0

ARBO® SO1 P

Wood type	Northern Softwood
Manufacturing Process	Ammonium Sulfite
Production Site	Temiscaming, Quebec, Canada
CAS Number (generic)	68131-31-7
CAS Number (specific)	8061-51-6

Specifications

CHARACTERISTIC	Analysis Method	UNIT	RANGE ⁽¹⁾
Appearance			Brown powder
Bulk Density	WI-RES-S042	g/cc	0.32 - 0.55
Solids (w/w)	WI-LIG-L007	%	93 - 97
(1) on product as is			

Typical Data

CHARACTERISTIC	Analysis Method	UNIT	TYPICAL VALUE (2)
Mineral ashes	WI-LIG-050	%	22.7
Sodium	ICP-MS,MA-500-Mét.1.2R	%	7
Total Sulfur	ICP-MS,MA-500-Mét.1.2R	%	6.7
Reducing Matters (2) on 100% solids basis	WI-DIV-L054	%	< 3

Description and Applications

 $\mathsf{ARBO}^{\texttt{@}}\,\mathsf{SO1}$ is a low sugar, modified sodium lignosulfonate spray dried powder

 $\mathsf{ARBO}^{\$}\,\mathsf{SO1}$ is widely used as a dispersing agent for agrochemicals and concrete admixtures and binding agent for carbon black production

Packaging

25 Kg bags (1 MT per pallet, stretch wrapped), or 900 Kg Bulk Bags

Disclaimer

The data and information contained herein is believed to be true to best of our know ledge at Chemical Group. No warranty or representation for which Chemical Group assumes legal responsibility is implied. The information refers only to the controlled product described herein and does not relate to use of the product with any other materials and processes. Chemical Group encourages our customers to consider, investigate, and verify information for their uses. Chemical Group assumes no responsibility for damage to property or equipment or injury to recipient or third party persons as a result of misuse or handling of this quality product. Customers are encouraged to conduct appropriate testing before use of product. The user must assure that use of information contained herein is done according to all applicable laws and regulations.

Tembec Lignosulfonates - Technical Service and Development

Tartas-AVBN, France + 33 557 96 52 86 arturo.perdomo@tembec.com Temiscaming, Quebec, Canada + 1 819 627 4496 shanna.milne@tembec.com

Les copies papier ne sont pas officielles. / Printed copies are not official

Product Data Sheet
Edition 08.2012/v1
CSC Master Format™ 03 05 00
Sika® P-300N

Sika® P-300N

High-Range Water Reducing Admixture

Description	Sika® P-300N is a normal setting, high range water reducing, super-plasticizing powdered admixture for concrete.
Where to Use	 As a super-plasticizer, Sika® P-300N may be added with the normal amount of water to produce flowing concrete. When used as a high range water reducer, Sika® P-300N will reduce water requirements by 25 - 40%, increasing concrete compressive strengths at all ages. Alternatively, it can be used to achieve a combination of these characteristics.
Advantages	 Jobsite control of slump without the addition of water. Higher, early and ultimate strengths. Improved workability with no loss in strength. Improved cohesiveness and reduced segregation. Higher strengths may be achieved more economically. Lower permeability and greater durability. Easier concrete placement in difficult to access and heavily reinforced areas. Reduces shrinkage and creep. Yields higher modulus of rupture.
Standards	Sika® P-300N conforms to ASTM C494, Type F.
	Typical Data Packaging 15 kg (33 lb) bag Colour and Form Brown powder Shelf Life and Storage 2 years when stored in original unopened bag in dry warehouse conditions. Protect from direct sunlight.
How to Use	
Dosage	Sika® P-300N is normally added to the concrete at a rate of 150 - 500 g/100 kg weight of cementitious material. Performance assurance testing should be conducted to determine the optimum dosage. Dosage rates outside the recommended range may be used where specialized materials such as microsilica are specified, extreme ambient conditions are encountered or
	unusual project conditions require special consideration. In this case, please contact your Sika Canada Technical Sales Representative for further information.
Mixing	Sika® P-300N should be dispensed separately from the other admixtures, preferably after all of the materials have been charged into the mixer.
Clean Up	Use personal protective equipment (chemical resistant goggles/gloves/clothing). Without direct contact, remove spilled or excess product and place in suitable sealed container. Dispose of excess product and container in accordance with applicable environmental regulations.
Health and Safety Information	For information and advice on the safe handling, storage and disposal of chemical products, users should refer to the most recent Material Safety Data Sheet containing physical, ecological, toxicological and other safety-related data.
	WEED OUT OF DEAGUE OF OUR DREAM

The information, and in particular, the recommendations relating to the application and end-use of Sika products, are given in good faith based on Sika's current knowledge and experience of the products when properly stored, handled and applied under normal conditions, within their shelf life. In practice, the differences in materials, substrates and actual site conditions are such that no warranty in respect of merchantability or of fitness for a particular purpose, nor any liability arising out of any legal relationship whatsoever, can be inferred either from this information, or from any recommendations, or from any other advice offered. The proprietary rights of third parties must be observed. All orders are accepted subject to our current terms of sale and delivery. Users should always refer to the most recent issue of the Product Data Sheet for the product concerned, copies of which will be supplied on request or can be accessed in the Internet under www.sika.ca.

Sika Canada Inc. Head Office 601 Delmar Avenue

601 Delmar Avenue Pointe-Claire, Quebec H9R 4A9 Other locations
Toronto
Edmonton
Vancouver

KEEP OUT OF REACH OF CHILDREN

FOR INDUSTRIAL USE ONLY

1-800-933-SIKA www.sika.ca

An ISO 9001 certified company Pointe-Claire: ISO 14001 certified EMS

Thermistor string readings along WTD

Design report of Whale	Original -V.01		
2018/May/10	651298-2700-4GER-0001	Technical Report	

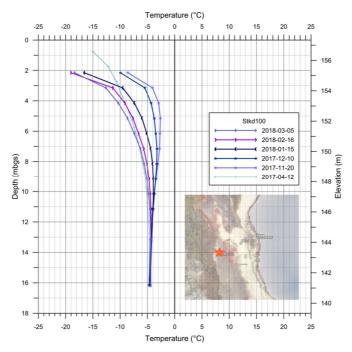


Figure G-1: Readings on temporary thermistor string Stkd100

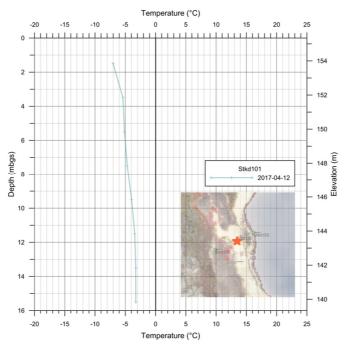


Figure G-2: Reading on temporary thermistor string Stkd101

Design report of Whale	Original -V.PB	
2018/05/02	651298-2700-4GER-0001	Technical Report

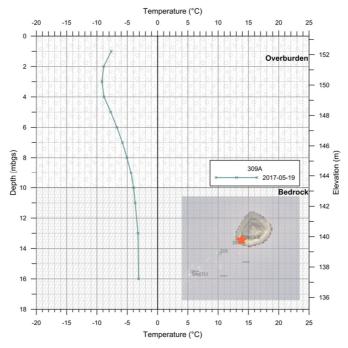


Figure G-3: Reading on temporary thermistor string 309A

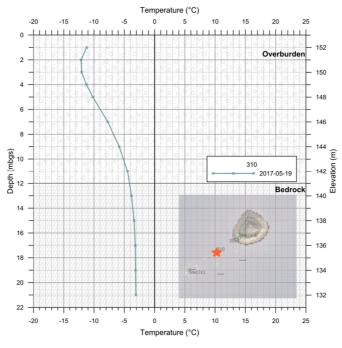


Figure G-4: Reading on temporary thermistor string 310

Design report of Whale	Original -V.PB	
2018/05/02	651298-2700-4GER-0001	Technical Report

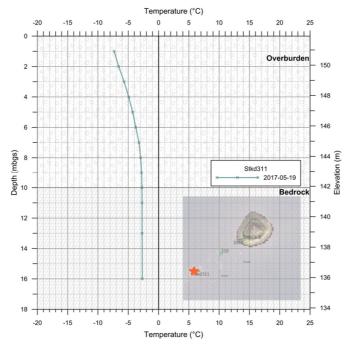


Figure G-5: Reading on temporary thermistor string Stkd311

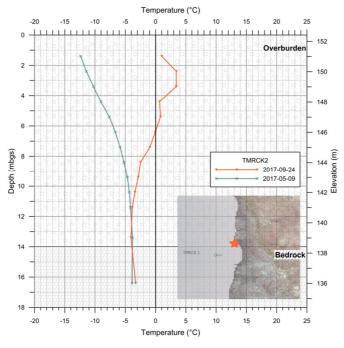


Figure G-6: Readings on temporary thermistor string TMRCK2

Design report of Whale Tail Dike		Original -V.PB
2018/05/02	651298-2700-4GER-0001	Technical Report

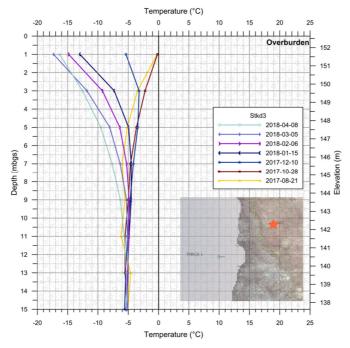


Figure G-7: Readings on temporary thermistor string Stkd3

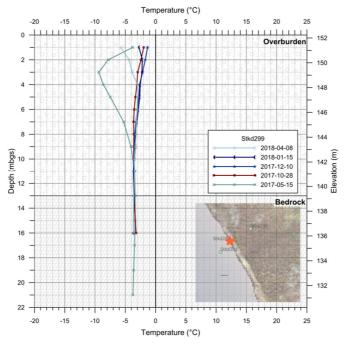


Figure G-8: Readings on temporary thermistor string Stkd299

Design report of Whale Tail Dike		Original -V.PB
2018/05/02	651298-2700-4GER-0001	Technical Report

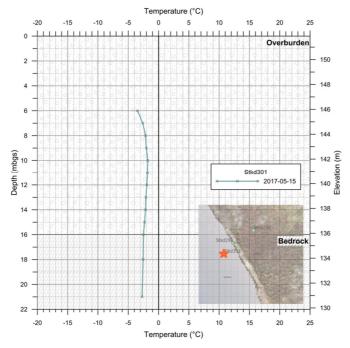


Figure G-9: Reading on temporary thermistor string Stkd301

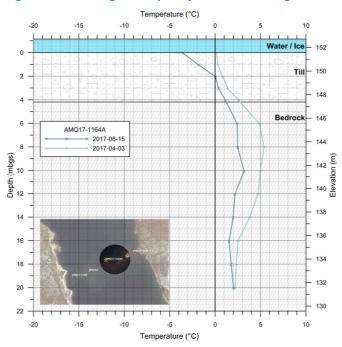


Figure G-10: Readings on permanent thermistor string AMQ17-1164A

Design report of Whale	Tail Dike	Original -V.PB
2018/05/02	651298-2700-4GER-0001	Technical Report

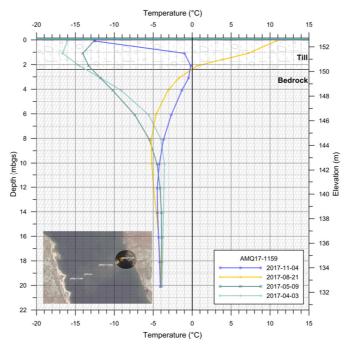


Figure G-11: Readings on permanent thermistor string AMQ17-1159

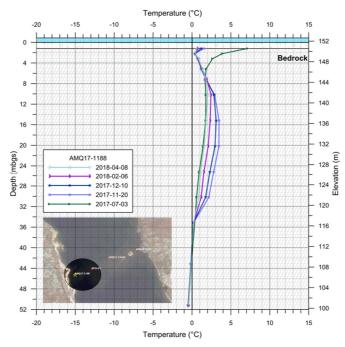


Figure G-12: Readings on permanent thermistor string AMQ17-1188

Design report of Whale Tail Dike		Original -V.PB
2018/05/02	651298-2700-4GER-0001	Technical Report

5500, boulevard des Galeries, bureau 200 Québec (Québec) G2K 2E2 418-621-5500 - 418-621-8887

