

7.5.1.5 Fouling Prevention

Control of fouling and clogging in practice is generally limited to six main strategies:

- 1. Applying appropriate pretreatment to the feed water. Fine screen helps to eliminate the build-up of trash, hair, lint and other fibrous materials, and decrease the risk of solids accumulation.
- 2. Maintaining operation within the design conditions, such as HRT, SRT, MLSS, temp, BOD/COD loading, pH, DO, F/ M ratio. Sludge wasting is a key in controlling the target operating SRT (typically ≥ 15 day) in the system. Table F.1 shows some examples.

Relationship between various operating parameters and their effect on membrane fouling

Parameter	Effect on membrane fouling
MLSS concentration ↑ or ↓	Fouling potential ↑
SRT ↑ or ↓	Fouling potential ↑
HRT ↓	Fouling potential ↑
Temperature ↓	Viscosity ↑ => membrane permeability ↓
Filamentous bacteria ↑	Viscosity ↑ => membrane permeability ↓
Air scour intensity ↑	membrane permeability ↑
EPS↑	Fouling rate ↑
SMP ↑	Fouling potential ↑

newterra O&M Manual

111

- 3. Employing appropriate physical or chemical cleaning protocols. For example, sodium hypochlorite and citric acid solutions are used to remove organic and inorganic foulants respectively.
- 4. Chemically or biochemically modifying the mixed liquor, such as addition of coagulants and powdered activated carbon (mostly in industrial effluent).
- 5. Reducing the flux. Particulate/colloid fouling is "reversible" in the sense that a reduction of the forward flux (through lowering of the membrane flux or solids concentration) or an increase of backwash intensity restores membrane permeability.
- 6. Ensure sufficient air scouring is being maintained to slough off excessive biofilm layer on the membrane surface.

7.5.1.5 MBR WWTP Fouling Control & Troubleshooting Chart

Combination of membrane physical cleaning operations as air **scouring**, **backwashing and relaxation** are efficient in membrane fouling control.

7.5.1.5.1 Air Scouring

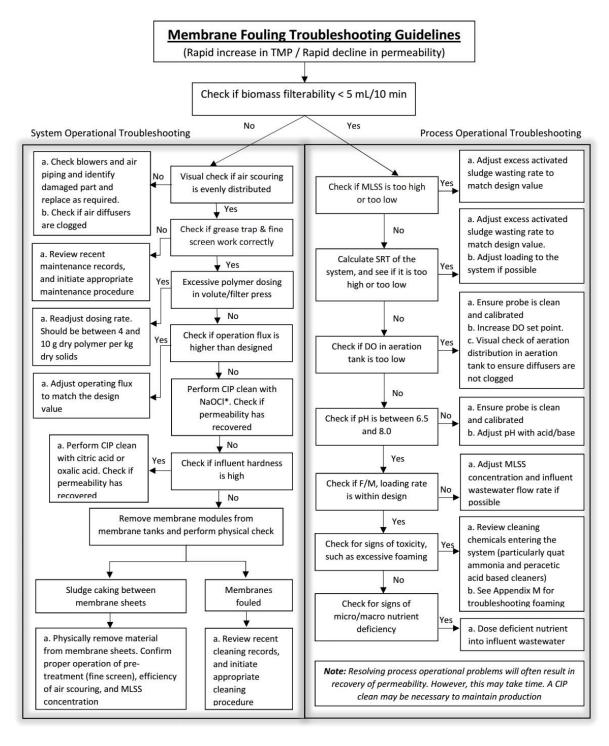
Aeration generates a shear stress at the membrane surface, which provides a scouring action and reduces membrane cake fouling.

Membrane air scouring check is essential procedure for newterra MBR WWTP. Air scour has to be observed for uniformity of bubbling action all across the membrane module/cassette on regular basis. It is easy to observe through clear window in membrane tank. Operator should note any unusual patterns of air distribution. Operator has to check for:

- damage of air diffusers and if this occurs, empty the tank and fix the diffuser;
- air leakages: if this occurs, tighten up the fittings.

If there is insufficient air scouring, localized dewatering (clogging, sludging, caking and plugging) may occur and as a result, membrane fouling occurs.

Proper air scouring in membrane tank



Uneven aeration in membrane tank

newterra O&M Manual

112

7.5.2 MBR Alarm Trouble Shooting

Alarm Name	Alarm Location	Alarm Description	Beacon Status	Troubleshooting Recommendatio n	Remedy Action
PLC ALM	СР	SHUTDOW N PLC Fault	FLASH	Turn off entire system. Wait 10 seconds before restoring power.	Please contact newterra -PLC problem
PWR FAIL ALM	СР	WARNING , Power Fail	SOLID	Power has failed to the unit	Press Reset
ESTOP ALM	Panel	E-Stop	FLASH	Check all locations of E-Stop Buttons to ensure they are not pushed in.	Pull out E-Stop
TALL-201	Clarifier	Temperatur e alarm low low	FLASH	Check for building heater malfunction. Assess influent water temperature	Replace heater. Take action to increase influent water temperature.
B-201/ B-202 Fail	Clarifier	Blower B-201/B- 202 has potentially failed	FLASH	Check blower for failure. Check breaker	Replace blower B-201/B-202.
LAHH-401	SCREEN DISCHARG E	High high level alarm in Screen Module discharge tank	FLASH	Potential discharge tank pump P-401/P-402 failure Check Breaker	Replace pump
P-401 or P-402 FAIL	SCREEN PUMP	P-401/P- 402 has potentially failed	FLASH	P-401/P-402 for failure. Check Breaker	Replace pump P-401/P-402

Alarm Name	Alarm Location	Alarm Description	Beacon Status	Troubleshooting Recommendatio n	Remedy Action
SCN-401 Or SCN-402 FAIL	SCREEN	Potential screen paddle wheel motor failure.	FLASH	Check screen motor for failure. Check Breaker	Replace motor
LAHH-301	EQ Tank	Level Alarm High High, EQ Tank	FLASH	Investigate if pump P-301, P-302 has failed, or system is receiving higher than design flow, or membrane is fouling.	Replace pump, divert flow, perform membrane chemical cleaning.
LALL-301	EQ TANK	Low Low Level Alarm	WARN	Check for level transmitter operation or upstream pipe obstruction or pump failure.	Clear obstruction or repair/replace faulty equipment.
P-301 or P- 302 FAIL	EQ PUMP	Pump P-301 has potentially failed	FLASH	Check pump P- 301 or P-302 for failure or if it is unplugged. Check Breaker	Plug in or replace pump P-301 or P-302.
PAL-301	EQ TANK	Pressure Alarm low on air inlet to EQ Tanks	FLASH	Check if blower B-301 or B-302 have failed. Check Breaker	Replace blowers if required.
LAHH-501 or LAHH-502	AERATION TANK	High High level alarm in Aeration Tank	FLASH	Check pump P- 501/P-502 for failure	Replace faulty pump
LALL-501	AERATION TANK	Low Low Level Alarm	WARN	Check level in the tank and ensure Level switch or transmitter is functioning correctly.	Clear obstruction or repair/ replace faulty equipment

116

Alarm Name	Alarm Location	Alarm Description	Beacon Status	Troubleshooting Recommendatio	Remedy Action
PHAL-501	AERATION TANKAERA TION TANK	Low pH AlarmLow low in Aeration Tank	WARN WARN	Check if caustic injection system is working and or needs refill Check if the pH probe is fouled or if the probe requires calibration. Check setpoint temperature.	Replace caustic injection system or refill. Clean pH probe. Calibrate pH probe. Adjust set point temperature.
PHAH-501	AERATION TANKAERA TION TANK	High pH alarm	WARN WARN	Check if caustic injection system is malfunctioning or if PH probe is calibrated or fouled.	Replace caustic soda injection. Calibrate pH probe or clean sensor
DOAL-501	AERATION TANKAERA TION TANK	Dissolved Oxygen Alarm low	WARN WARN	Investigate if there is septic smell & check the mixing pattern. If system smells septic with no uniform mixing, air diffuser might be clogged, blowers may not work or plant is overloaded. Ensure DO probe is calibrated and clean.	Increase aeration rate to maintain DO above 1.5 mg/L, or replace clogged diffuser, or change blower, or calibrate or clean DO probe. Replace caustic soda injection. Calibrate pH probe or clean sensor
P-501 or P-502 FAIL	AERATION TANK	Pump P-501 or P-502 has potentially failed	FLASH WARN	Check pump P- 501 or P-502 for failure. Check Breaker	Replace pump P-501 or P-502.

Alarm Name	Alarm Location	Alarm Description	Beacon Status	Troubleshooting Recommendatio	Remedy Action
P-503 FAIL	AERATION TANK	Pump P-503 has potentially failed	FLASH FLASH	Check pump P- 503 for failure. Check Breaker	Replace pump P-503
PAL-501	AERATION	Blower motor tripped off on overload Pressure	WARN FLASH FLASH	Check blower air line equipment and blower motor Check if 500 series blowers have failed	Replace faulty equipment Replace blowers if required
PAL-601 or PAL-602	MEMBRAN E TANK	Pressure Alarm low on air inlet to correspondi ng Membrane Tank. Blower motor tripped off on overload	FLASH WARN	Check if blower B-601 or B-602 has failed. Check blower air line equipment and blower motor	Replace blower if required. Replace faulty equipment.
LAHH-601 or LAHH-602	MEMBRAN E TANK	High High level alarm in Membrane	FLASH WARN	Check pump P-601 for failure	Replace pump P-601 Replace faulty equipment
FLT-701 or 702	PERM VFD 1 or 2	VFD Fault	FLASH WARN	Check VFD fault	Replace pump and VFD Replace faulty equipment
VTAL-701 or 702	MEMBRAN E 1 or TANK 2	Low vacuum alarm on permeate line from MBR1 or MBR2	FLASH WARN	Check for vacuum leak and membrane or pump fail	Repair and replace as required

Alarm Name	Alarm Location	Alarm Description	Beacon Status	Troubleshooting Recommendation	Remedy Action
VTAH-701 or 702	MEMBRAN E 1 or TANK 2	High vacuum alarm on permeate line from MBR1 or MBR2	FLASH WARN	Check for closed valve on permeate side or check membranes for severe fouling	Open valve or clean membranes Repair and replace as required
FTAL-701 or 702	MEMBRAN E 1 or TANK 2	Low permeate flow alarm on permeate line from MBR1 or MBR2	FLASH WARN	Check for closed valve or permeate pump failure Check for closed valve on permeate side or check membranes for severe fouling	Open valve or repair/ replace permeate pump Open valve or clean membranes Repair and replace as required
FTAH-701 or 702	MEMBRAN E 1 or TANK 2	High permeate flow alarm on permeate line from MBR1 or MBR2	FLASH WARN	Check for vacuum leak or membrane failure and operation of permeate pump	Repair and replace as required Open valve or repair/ replace permeate pump Open valve or clean membranes
UVA-811 or 812	PERM	UV-811 or UV-812 has failed.	FLASH WARN	Check if UV lamp has failed	Change UV lamp
UVA-BOTH	PERMEATE	UV-light 811 and UV-812 have failed	FLASH WARN	Check if UV lamp has failed Check if UV lamp has failed Check if UV lamp has failed	Change UV lamp Change UV lamp Change UV lamp Repair and replace as required
BACKWASH1 or BACKWASH2 FAILED	BACKWAS H PERM1 or PERM2	Backwash to TNK-601 or TNK-602 failed	FLASH WARN	Backwash did not complete – system skipped backwash	Check function of back-wash pump and valve

Alarm Name	Alarm Location	Alarm Description	Beacon Status	Troubleshooting Recommendatio n	Remedy Action
P-901 FAIL	MEMBRAN E PERM 1	Pump P-901 has potentially failed	FLASH WARN	Check pump P- 901 for failure Check for vacuum leak or membrane failure and operation of permeate pump	Replace pump P-901 Repair and replace as required
TALL-7901	BLDG-7901	Low low Temperatur e alarm for building	FLASH WARN	Check if electric heaters have failed or if BLDG door is open	Repair or replace heater(s) if required. Repair and replace as required
B-7901 FAIL	AIR EXCHANGE BLDG-7901	Potential blower failure	FLASH WARN	Check motor breaker	Turn breaker on

7.5.3 MBR Process Trouble Shooting

The following **newterra MicroClear™ MBR WWTP troubleshooting guide** can be used as a quick reference. If any of the problems discussed in this section or other difficulties persist, consult **newterra** ltd.

7.5.3.1 Biological System

Condition	Possible Cause	Potential Remedies
Mixed liquor is black or dark	Insufficient aeration is supplied for mixed liquor	Increase aeration rate and keep it above 1 mg/L Waste more sludge
brown	and/or plant is under- loading	Increase influent feed rate if required
Mixed liquor concentration is too high or too low	Sludge wasting rates are incorrect	Review operation of the activated sludge process and revise the sludge wasting rates as necessary
No mixing in tanks	Blowers failure	Check for electrical/blower failure, and replace blowers as necessary

Condition	Possible Cause	Potential Remedies
Unpleasant odour from tanks	Mechanical/electrical failure, e.g. blower and air piping are not operating correctly	Ensure good order of mechanical/electrical components
	System is overloading	Check the maximum flow and BOD loading rate to the MBR unit to see whether it is within the limits as per design specification
		Check the quality and contents of the flow into the MBR unit for any abnormal or prohibited substances
Effluent quality does not meet discharge criteria	Mixed liquor characteristics are not within proper operating standards	Improve the process operating conditions of the activated sludge system (confirm operating SRT and loading is within design and no present of toxic compounds)

7.5.3.2 Foaming

Condition	Possible Cause	Potential Remedies
Excessive foaming (white foam accumulating over	Influent inhibition/biomass toxicity occurs	Check the quality and contents of the flow into the MBR system for any abnormal or prohibited substances
the liquid surface) in aeration and/or membrane tanks	MBR system is overloading	Check the flow rates, BOD/COD loading and F:M ratio and then reduce flow/loading and/or increases MLSS concentration accordingly
	Mixed liquor characteristics are not within proper operating standards	Improve the operating conditions of the activated sludge system
	Membrane air scour system is over aerating	Review operation of the membrane scour system
	Foam control strategies are not operating correctly	Review foam removal equipment, anti-foam chemical dosing system (if applicable)
	MBR system are undergoing start-up	Remove foam and use approved defoamer as necessary (consult newterra Ltd);
		Control foam and ensure sprayer pump is running at all time during start-up,
		Ensure that MLSS concentration is increased, after start-up is completed

7.5.3.3 Permeate

Condition	Possible Cause	Potential Remedies
Cloudy permeate (The permeate turbidity or TSS is above the specific	Faulty operation of instrumentation	Confirm proper operation of control systems and instrumentation, clean, replace, recalibrate as required
setpoint)	Membrane cassette sheets are damaged	Take out membranes and visually inspect the individual membrane sheets, and repair or replace the membrane sheets as necessary
	Membrane module assembly are damaged	Identify damaged part, e.g. leaking tube, pipe, O-ring, gasket, and replace as required
	Permeate piping leak	Identify the leak and repair as required, e.g. tighten connections
Lower permeate flow than expected	Mechanical equipment failure	Ensure proper operation of permeate pumps
	Incorrect operation of permeate piping and valves	Check permeate piping for leaks
High TMP and lower	Membrane sludging	Confirm proper operation of pretreatment
permeability than expected		Take out membranes and visually inspect the individual membrane sheet. Remove sludge material from membrane sheets**
	Mixed liquor characteristics are contributing to poor filterability	Test the filterability of the mixed liquor; review and improve operating conditions of the activated sludge system as necessary
	Desired operating flux or flowrate is higher than design	Adjust operational flux or flowrate to match the design flux or flowrate

Condition	Possible Cause	Potential Remedies
	Membrane surface is fouled	Review recent cleaning records, and initiate appropriate cleaning procedure
	MLSS is too high, SRT is too low or insufficient dissolved oxygen in aerobic zone	Improve the characteristics of sludge by adjusting the activated sludge process operation
Uneven permeate and/or MLSS flow between membrane tanks	More recent completion of maintenance or recovery cleanings for one of the membrane tank	Review membrane cleaning records
	Uneven flow distribution to each membrane tank	Confirm proper operation of flow distribution system (pumps/control valves, etc)

7.5.3.4 Membrane air system

Condition	Possible Cause	Potential Remedies
Uneven aeration of membrane module	Membrane diffuser clogging;	Wash or clean the diffusers
	Loose air piping connections	Tighten pipe connections
Uneven aeration in membrane tank	Membrane diffusers or membrane modules are not level	Level the equipment
Air scour rate fails to reach the specified values	Improper operation of membrane blowers and/or air scour system, malfunctioning diffusers	Repair or replace the blowers Review and repair air piping as necessary Repair the diffusers

7.5.3.5 Membrane Cleaning

Condition	Possible Cause	Potential Remedies
Increased frequency	Mixed liquor	Test the filterability of the mixed liquor
of cleaning	characteristics are contributing to poor filterability	Review and improve operating conditions of the activated sludge system as necessary
	Improper operation of membrane cleaning	Confirm cleaning is done correctly, such as controls, cleaning cycles or durations, chemical concentration, and dosing system
	Membrane operate at higher flux than designed	Review MBR flow records
Cleaning fails to recover flux, permeability of	Improper operation of membrane cleaning	Confirm cleaning is operated correctly, such as controls, cleaning cycles or durations, and chemical concentration etc.
membranes	Improper operation of permeate pumps, piping, and control valves	Repair equipment as necessary
	Irrecoverable fouling of membranes	Review operating history with the goal of identifying contributing factors to fouling;

Condition	Possible Cause	Potential Remedies
		Perform membrane autopsy on membrane cassettes

7.5.3.6 Mechanical / Electrical Issues

Condition	Possible Cause	Potential Remedies
Indicator light at the		Clean intake screens on blower housing
control panel is on.	Air intake is blocked	Check air filter on blower for blockage
	Air discharge or vent line is blocked	Check discharge line and vent line visually or with drain cleaning equipment for obstructions
	MBR is flooded	Determine the cause of flooding, e.g., line obstruction, high flows, etc., and fix it
	Blower failed	Determine if blower failure was caused by an obstructed intake or discharge line
		Investigate overheating (i.e. internal thermal overload protection), short-circuiting, or other electrical failure, and mechanical failure (i.e. bearing failure) and correct it
Wastewater is backing up	Obstruction in the incoming sewer	Check the inlet pipe leading to the MBR visually or with drain-cleaning equipment
	Obstruction in the discharge piping	Check the permeate piping and later field piping visually or with drain-cleaning equipment
	Pumps failed	Check the operation of pumps as per pump manufacturer's specifications
	Flow rate to the MBR is too high	Check if the maximum flow rate to the MBR is within the limits as per design specification
Blower/pump not	Fuse blown	Electrician to check
working	Motor is overloading	Electrician to check
	Power failed	Electrician to check
System not in run mode	Kill switches are mistakenly pushed in	Ensure kill switches (on control panel/wall) are not pressed;
	Power failure/outage	Electrician to check

7.5.4 P-201/2, 301/2, 401/2, 501/2, 553/4, 551/2 - Trouble Shooting

	TROUBL	ESHOOTING
--	--------	-----------

1. Pump fails to build head pressure:

Check for:

a. Pumpnot primed.

b. In correct pump rotation.

c. Driver speed too low.

d. Suction line restricted.

e. Driver failure.

f. Plugged or damaged impeller.

g. Pump or impeller undersized.

h. Pump cavitation.

i. Improper im peller clearance.

2. Pump fails to provide enough flow rate.

Check for:

a. System resistance too high.

b. Pump undersized.

c. Pump not primed.

d. Driver speed too low.

e. Poor suction conditions.

f. Im proper impeller clearance.

3. Excessive noise or vibration during operation.

Check for:

a. Motor bearing failing.

b. Pump cavitation.

c. Im proper impeller clearance.

4. Leaking mechanical seal.

Check for:

a. Im proper assembly.

b. Worn or cracked seal faces.

c. Abrasive material in fluid.

 d. Liquid flashing at seal faces (Fluid temperature too high).

e. Seal pressure rating too low for the service.

f. Chemical attack of seal components.

g. Seal operated dry or with a liquid having poor lubricating properties. Pump gradually loses pressure and head.

Check for:

a. Increasing temperature causing cavitation or liquid vaporization.

b. Driver failure.

c. Suction lift too high.

d. Air entering suction line.

6. Motor overheating.

Check for:

a. Excessive flow and amp draw (Throttle discharge).

b. Low voltage or frequency.

c. Flow rate too low with resulting heat rise.

d. Bearing failure.

e. System temperature too high.

7.5.5 P-701/702 Trouble Shooting

TROUBLESHOOTING

WARNING: Before making adjustments, disconnect power source and thoroughly bleed pressure from system prior to disassembly. Failure to do so could lead to electric shock or serious bodily harm.

Failure To Pump.

- Motor will not start: Check power supply. Voltage must be ± 10% of nameplate rating when motor is in locked rotor condition. Check for faulty capacitor on 1 phase Models.
- Motor runs and thermally kicks out: Check for excessive discharge pressure. Check for defective centrifugal switch on 1 phase Models. Increase ventilation to motor. Do not use less than #14 wire size.
- Stator torn; possible excessive pressure: Replace stator, check pressure at discharge port.
- Flexible joint broken; possible excessive pressure:
 Replace joint, check pressure at discharge port.
- Wrong rotation (3 phase only): Rotation must be clockwise when facing pump from motor end. Reverse the connections of any two line leads to the motor.
- Excessive suction lift or vacuum.

Pump Overloads.

- Excessive discharge pressure: Check pressure at discharge port for maximum ratings given in Table 1.
- Fluid viscosity too high: Limit fluid viscosity to 100 CP or 500 SSU.

Noisy Operation.

- Excessive suction lift or vacuum: Maximum suction lift is 25 feet for water.
- Suction line too small: Check pipe size. Be sure lines are free from obstructions.
- Pump Cavitates: Pump speed is 1725 rpm. Viscosity of fluid should not exceed 100 CP or 500 SSU.
- Flexible joint worn: Replace joint. Check pressure at discharge port.
- Insufficient mounting: Mount to be secure to a firm base. Vibration induced noise can be reduced by using mount pads and short sections of hose on suction and discharge ports.

Seal Leakage.

- Leakage at startup: If leakage is slight, allow pump to run several hours to let faces run in.
- Persistent seal leakage: Faces may be cracked from freezing or thermal shock. Replace seal.

Pump Will Not Prime.

Air leak on suction side: Check pipe connections.

7.5.6 P-801 Trouble Shooting

СО	NDITION	COMMON CAUSES	
A.	Pump will not start or run.	Check fuse, low voltage, overload open, open or incorrect wiring, open switch, impeller or seal bound mechanically, defective capacitor or relay when used, motor or wiring shorted. Float assembly held down. Switch defective, damaged, or out of adjustment.	
B.	Motor overheats and trips overload or blows fuse.	Incorrect voltage, negative head (discharge open lower than normal) impeller or seal bound mechanically, defective capacitor or relay, motor shorted.	
C.	Pump starts and stops too often.	Float tight on rod, check valve stuck or none installed in long distance line, overload open, level switch(s) defective, sump pit too small.	
D.	Pump will not shut off.	Debris under float assembly, float or float rod bound by pit sides or other, switch defective, damaged or out of adjustment.	
E.	Pump operates but delivers little or no water.	Check strainer housing, discharge pipe, or if check valve is used vent hole must be clear. Discharge head exceeds pump capacity. Low or incorrect voltage. Incorrect motor rotation. Capacitor defective. Incoming water containing air or causing air to enter pumping chamber.	
F.	Drop in head and/or capacity after a period of use.	Increased pipe friction, clogged line or check valve. Abrasive material and adverse chemicals could possibly deteriorate impeller and pump housing. Check line. Remove base and inspect.	

7.5.7 B-501/502 - Trouble Shooting

PROBLEM POSSIBLE CAUSES		SOLUTION	
	 Unit out of time. 	Re-time impellers	
	Distortion due to improper	Check mounting alignment and	
	mounting or pipe strains.	relieve pipe strains.	
Knocking	Excessive pressure differential.	Reduce to manufacturer's	
Kilocking		recommended pressure. Examine relief	
		valve, re-set if necessary.	
	Worn gears.	Replace timing gears.	
	5. Worn bearings.	Replace bearings	
	 Too much oil in gear case. 	 Reduce oil level. 	
	Too low operating speed.	Increase blower speed.	
	Dirty air Filter.	Clean or replace air filter	
Excessive blower temperature.	Clogged filter or muffler.	Remove cause of obstruction.	
Excessive blower temperature.	Excessive pressure differential.	Reduce pressure differential	
		across the blower.	
	Worn impeller clearances.	Replace impeller.	
	7. Internal contact.	7. Correct clearances.	
	Insufficient assembled	 Correct clearances. 	
	clearances.		
Impeller end or tip drag.	Case or frame distortion.	Check mounting and pipe strain.	
Imposior ond or up drag.	Excessive operating pressure.	Remove cause.	
	Excessive operating	Remove cause	
	temperature.		
	 Slipping belts. 	Tighten belts.	
Lack of volume.	Worn clearances.	Re-establish proper clearances.	
	Dirty air filter	Clean or replace air filter.	
Excessive bearing or gear wear.	Improper lubrication.	Correct lubrication level. Replace dirty	
		oil.	
	1. Headplate, gear case or drive	1. Clean vents.	
Loss of oil.	cover vents plugged.		
	2. Worn Seal.	Replace seals.	

7.5.8 B-301/302, B-601/602 - Trouble Shooting

Fault	Cause	Remedy	Carried out by
Motor does not start; no motor noise.	At least two power supply leads interrupted.	Eliminate interruption by fuses, terminals or power supply cables.	Electrician
Motor does not start; humming	One power supply lead interrupted.	Eliminate interruption by fuses, terminals or power supply cables.	Electrician
noise	Impeller is jammed.	Open vacuum pump/compressor cover, remove foreign body, clean.	Service*)
		Check or correct impeller gap setting if necessary.	Service
	Impeller defective.	Replace impeller.	Service*)
	Rolling bearing on drive motor side or vacuum pump/compressor side defective.	Replace motor bearing or vacuum pump/compressor bearing.	Service*)
Protective motor	Winding short-circuit.	Have winding checked.	Electrician
switch trips when motor is	Motor overloaded.	Reduce throttling.	Service*)
switched on. Power consumption too	Throttling does not match specification on rating plate.	Clean filters, mufflers and connection pipes if necessary.	Service*)
high.	Compressor is jammed.	ssor is jammed. See fault: "Motor does not start; humming noise." with cause: "Impeller is jammed.".	
Pump-motor unit	Leak in system.	Seal leak in the system.	
does not generate any or generates	Wrong direction of rotation.	Reverse direction of rotation by interchanging two connecting leads.	Electrician
insufficient pressure difference.	Incorrect frequency (on pump-motor units with frequency converter).	Correct frequency.	Electrician
	Shaft seal defective.	Replace shaft seal.	Service*)
	Different density of pumped gas.	Take conversion of pressure values into account. Inquire with Service Department.	Service
	Change in blade profile due to soiling.	Clean impeller, check for wear and replace if necessary.	Service*)
Abnormal flow noises.	Flow speed too high.	Clean pipes. Use pipe with larger cross- section if necessary.	Operator
	Muffler soiled.	Clean muffler inserts, check condition and replace if necessary.	Service*)
Abnormal running noise.	Ball bearing lacking grease or defective.	Regrease or replace ball bearing.	Service*)
Compressor leaky.	Seals on muffler defective.	Check muffler seals and replace if necessary.	Service*)
	Seals in motor area defective.	Check motor seals and replace if necessary.	Service

Only when the maintenance manual is at hand: rectification by the operator.

7.5.9 LT-301/501 - Trouble Shooting

1. Symptom: Transducer fails to give output of any kind.

Procedure: Isolate the problem to either the transducer or the power supply/readout.

See the Quick Check Procedures (above) for this check. If it can be determined that the transducer is no longer operable, remove it from service for further analysis. If the transducer output falls within the limits described

above, the fault lies somewhere else in your system.

2. Symptom: Transducer has failed and has been removed for analysis.

Procedure: Inspect the cable for physical damage. Cuts in the cable jacket can result in

liquid incursion into the transducer housing, which can cause permanent damage. If operational, the cable can be repaired by using a splice kit (P/N

830) supplied by Pressure Systems.

Inspect the transducer housing. It should be intact and free of corrosion. If the outer surface of the transducer is pitted, this could be an indication of galvanic corrosion caused by stray ground currents. If this is the case, the transducer will probably require replacement. If the external case exhibits none of these characteristics, carefully unscrew the nosepiece and look into the pressure sensing end of the transducer. The concentric rings of the sensing diaphragm should be visible. If they are not, it could be that residue has accumulated on the diaphragm, preventing it from responding properly to pressure changes. The transducer can be cleaned by gently swishing the transducer back and forth in a bucket of warm, soapy water until the residue softens and washes off. (See Cleaning Your Transducer, page 8.) Under no circumstances should any object or tool be used to remove residue from the sensing diaphragm or else permanent damage will be done. If cleaning the diaphragm does not solve the problem, the transducer should be returned to the factory for repair or replacement.

3. Symptom: Transducer develops a negative offset and gets worse over time

(actual level exceeds specified level).

Procedure: This may be a sign that moisture has entered the reference (vent) tube in

the cable and is inside the transducer housing. This is usually the result of not maintaining the desiccant vent filter or of operating the transducer without a desiccant filter or aneroid bellows. If caught early enough, the transducer can be saved by coiling the cable and transducer in a pan and baking it in an oven at 50°C (122°F) for a minimum of 2 hours. Be careful that the oven temperature does not exceed 50°C (122°F) or both the transducer and the cable can be damaged. Alternatively, suspend both the cable and transducer in a vertical position (with vent tube down), overnight to allow

water to drain from the transducer and vent tube.

4. Symptom: Transducer suddenly fails during or just after a nearby lightning event.

Procedure: This failure is usually caused by overvoltage due to ground transients

resulting from a direct or indirect lightning event. These transients can travel

distances of a mile or more. The transducer may be returned to the factory for repair and optional retrofit of our *lightning protection system*. This system carries a lifetime warranty against transducer damage due to lightning.

5. Symptom: Transducer response to pressure/level input changes becomes

sluggish.

Procedure: This is usually a sign that the sensing end of the transducer has become

fouled with residue. The transducer must be removed from service and the sensing diaphragm cleaned as described in Item 2, (warm, soapy water). If fouling persists, the transducer may be replaced with a Series 705 or Series 750 (non-fouling) transducer, which is specifically designed for trouble-free

operation in a high residue environment.

6. Symptom: Output reading is within limits but "freezes" at one point.

Procedure: In certain environments "crust" may form over the sensing diaphragm,

preventing the sensor from identifying change in level. Removing the transducer from service and cleaning it (as described in Item 2) will generally solve the problem. To combat marine growth, you might try wrapping the transducer with copper wire similar to that found in wire scouring pads for cleaning dishes. Marine growth occurs on the copper and eventually erodes the copper and drops off or the copper is manually removed during routine maintenance. Alternatively, there are various companies that will impregnate/coat the 316 stainless steel with anti-fouling chemicals of coatings. Level transducers temporarily removed from the well or sump should not be stored dry, but should be stored in a bucket of fresh water in

order to prevent "crust" formation.

7. Symptom: Readings increase very slowly over time.

Procedure: Our cable is shipped coiled and consequently takes time to straighten when

installed. Attaching a weight to the transducer (e.g., one of our sacrificial anodes) will help. To prevent cable stretch with lengths greater than 200 feet (60 m), secure the Kevlar fibers (just under the cable jacket) to your junction

box or other secure object.

8. Symptom: No electrical output from your transducer.

Procedure: Check all electrical connections to ensure they are correct and secure.

Double check your power supply or use a battery (as described previously) to ensure the transducer is getting power. If all checks OK, the problem could be a circuit board or the sensor in your transducer. The unit must be returned to the factory for evaluation. The most probable cause of this type of failure is damage to the submersible cable jacket allowing water to leak down the cable and into the transducer housing or lightning damage.

9. Symptom: Formation of marine growth on a submersible transducer.

Procedure: Certain transducer construction materials, for example, 316 stainless steel,

attract marine life (snails) and algae. Clean the transducer diaphragm by

soaking it in a bucket of warm water with a non-aggressive cleaning solution. You can also coat the transducer with marine grease. This may be the most effective and inexpensive way to protect your transducer.

checave and mexpensive way to protect your transducer.

10. Symptom: Submersible transducer exhibits corrosion or pitting on body or

diaphragm

Procedure: Dissimilar metals (for example, your transducer housing and your pump

housing) in an electrolytic environment (fluid in your well) can lead to galvanic corrosion of the metal that is nearer the anodic end of the galvanic series. Likewise, a voltage potential between the ground wire of the transducer and the ground of other equipment in the well can lead to galvanic corrosion. Installation of a P/N 820 or 825 sacrificial anode will help protect your transducer from galvanic corrosion. Our sacrificial anodes are made of a zinc alloy that, being nearer the anodic end of the galvanic series than the 316 stainless steel or titanium housing of the transducer, will

corrode before the transducer.

11. Symptom: The transducer is buried in dirt or silt and the readings seem to be

erroneous.

Procedure: Use of a piezometer nosepiece in this application would help. This

nosepiece can be easily installed in the field and features a very fine screen to keep dirt from fouling the diaphragm, but allows the diaphragm to sense

moisture levels.

12. Symptom: Transducer has an offset error.

Procedure: Our submersible transducers perform best when the sensing end is pointing

in a downward manner. Keep in mind that you can experience offset error due to the position sensitivity or orientation change of the sensor. Offset errors are more prominent in low pressure applications with the sensing end

of the transducer lying flat or pointing upward.

13. Symptom: I am testing a Series 700 4-20mA sensor for use with our data logger.

On page A-2 of the KPSI Level and Pressure Transducers User's Manual, I see the standard 4-20mA configuration. Does the recording

channel of my data logger become the mA meter?

Procedure: Most data loggers cannot measure current (mA) directly. When this is the

case a load resistor must be used to convert the current (mA) output into an appropriate voltage. If the User's Manual for your particular instrument does not illustrate a preferred method for recording current (mA) data then you should attach your transducer signal wires to your data logger in the

following manner.

Transducer red wire - Data Logger Excitation Terminal (The minimum excitation for a Series 700 Transducer is 9VDC) Transducer black wire - Data Logger signal input (+) terminal

Attach a Load resistor between the Data Logger signal input (+) terminal and the Data Logger signal input (-) terminal.

Attach a separate piece of wire between the Data Logger signal input (-) and analog ground.

In this configuration you will turn your data logger into a milliammeter. The size of your load resistor can be calculated in the following manner.

D/0.02=R

Where:

Data logger input range = D Full scale output of transducer = 0.02 A (20 mA) Load Resistor Value = R

Pick an appropriate standard value

250 Ohms results in 1 to 5 VDC at 4 and 20 mADC 125 Ohms results in 0.5 to 2.5 VDC (500 to 2500 mVDC) at 4 and 20 mADC

At this point the discussion needs to address IR loss (voltage drop) in series circuits. Note that Series 700 transducers need a minimum of 9 VDC to operate correctly. When the transducer is operating correctly it will output a current which, when driven through a resistor, will generate some amount of voltage drop. If the resistor value is 250 Ohms then the voltage measured across that resistor will be 0.004 A * 250 Ohms = 1.000 VDC and 0.020 A * 250 Ohms = 5 VDC. Notice that, if the available voltage from the data logger is12 VDC then 12 VDC - 5 VDC = 7 VDC which is less than the voltage required by the transducer to operate. If this scenario were to occur the transducer would actually stop functioning correctly when its output reached 12 mADC (50% of transducer full scale range). In this case the appropriate choice for a load resistor value is 125 Ohms.

14. Symptom:

I have a Series 700 4-20mA transducer rated for 7.5 PSIG attached to a pressure source that is outputting 7.5 PSIG. With 20VDC being supplied I am getting 19.94 mA. I can't find the upper range allowance for the sensor, but this seems low to me. Does this mA reading fall into the acceptable range for the transducer with the settings I've specified?

Procedure:

When evaluating a transducer it is sometimes convenient to make some broad generalizations in order to rapidly determine the condition of the unit. In general, transducers that output a 4-20 mADC signal have a 16 mADC span (4 - 20 = 16). If the transducers accuracy is reported as being some percentage of its full-scale range then the following table could be used in conjunction with the instructional notations to determine whether a more detailed analysis of data quality is required.

Model	Accuracy	Accuracy in mADC
700	1.00%FS	±0.16 ma
710	0.50%FS	±0.08 ma
720	0.25%FS	±0.05 ma
730	0.10%FS	±0.016 ma
735	0.05%FS	±0.008 ma

In order to approximately determine how many milliamps a transducer should output at a given depth.

- Determine the depth (in feet) at which the transducer is sited.
- 2. Divide the depth value (from step 1) by the transducer full-scale range (in feet). - Record the value.
- 3. Multiply the value calculated in step 2 by 16 (the transducer span in milliamps).
- 4. Add 4 to the product of step 3. This is the approximate value in milliamps that should be output by the transducer at its current depth.

In order to approximately determine the depth of a transducer (in feet) using a given value of milliamps.

- 1. Divide the full-scale range of the transducer (in feet) by 16. Record this value.
- 2. Subtract 4 from the milliamp output of the transducer. Record this value
- 3. Multiply the result of step one by the result of step 2. This is the approximate depth at which the transducer is sited.

If the resulting numbers are reasonably close to some verified value for current water depth, then the unit is functioning. In order to determine the quality of measurement, additional steps need to be performed.

7.5.10 PH-501 - Trouble Shooting

Fault reporting and troubleshooting					
Display	Description / cause	Status ¹	Mode ²	Measured variable output ³	Correction variable output ⁴
pH/mV RANGE ↓	Input voltage too low	Error	Basic load	Fault cur- rent	-
pH/mV RANGE↑	Input voltage too high	Error	Basic load	Fault cur- rent	-
T RANGE ↓	Measured tem- perature beneath measuring range	Error	Basic load	Fault cur- rent	Fault current
T RANGE	Measured tem- perature above measuring range	Error	Basic load	Fault cur- rent	Fault current
CAL ERROR	No valid user cal- ibration exists	Error	-	-	-
NO PROBE	If activated: pH sensor moni- toring outputs: no sensor	Error	Basic load	Fault cur- rent	-
PROBE ERR	If activated: pH sensor moni- toring outputs: sensor break	Error	Basic load	Fault cur- rent	-
CHECK- TIME	Control checkout time elapsed	Error	Basic load	Fault cur- rent	-
mA RANGE †	mA output cur- rent has an upper limit	Error	-	-	-

Display	Description / cause	Status ¹	Mode ²	Measured variable output ³	Correction variable output ⁴
mA RANGE ↓	mA output cur- rent has a lower limit	Error	-	-	-
LIMIT †	Measured vari- able exceeds upper set limit	Warning	-	-	-
LIMIT ↓	Measured vari- able falls below lower set limit	Warning	-	-	-
T LIMIT ↑	Correction variable exceeds upper set limit	Warning	-	-	-
T LIMIT ↓	Correction vari- able falls below lower set limit	Warning	-	-	-
LIMIT ERR	Set checkout time for moni- toring the meas- urement variable limits has elapsed	Error	Stop	Fault cur- rent	-
TLIMITERR	Set checkout time for moni- toring the correc- tion variable limits has elapsed	Error	Stop	Fault cur- rent	Fault current
NO CAL	No valid user cal- ibration exists	Warning	-	-	-
CON- TACTIN	If activated: Power relay is activated in 'PAUSE/HOLD'	Error	-	-	-

1 = [Status] Error status after occurrence of the fault (error means: alarm relay deactivates, '*' is displayed before the error message, can be acknowledged with OK)

- 2 = [Mode] Resulting controller mode (relates to control variable and thus, as necessary, mA output)
- 3 = [Measured variable output] Consequence for the current output, if this is set as 'a measured variable output'
- 4 = [Correction variable output] Consequence for the current output, if this is set as 'a correction variable output'

7.5.11 MV-701/702 - Trouble Shooting

Conditions	Possibilities	Solutions
Motor does not operate	Is the supplied power	Checking by meter.
	and voltage correct?	2. If so replace.
	Any blisters on the	3. Remove motor to check.
	capacitor?	
	3. Are the gear trains free?	
Motor stops running	Is power supply short	Check wiring.
	circuited?	Check for obstructions.
	Any foreign objects in	
	flow stream?	
Unable to fully open/close	1. Loose/Misaligned cam?	1. Adjust/Tighten using
	2. Bent valve stem?	spanner.
	Mechanical stop	Replace valve stem.
	adjustment incorrect?	Check position of stops.
Valve stops operating when	1. Gear worn out?	Replace gear.
motor is running.	Sleeve adapter worn out	Replace sleeve adapter.
	or broken?	3. Replace valve stem or
	Broken valve stem or	actuator transmission
	actuator transmission	shaft.
	shaft?	
Abnormal control for	 Controlling circuit 	1. Please refer to the wiring
operating two or more	connects in tandem or	diagram.
actuators simultaneously.	parallel?	
Motor overheats.	1. Is the voltage correct?	 Checking by meter.
	Is valve too tight to	Replace valve.
	operate?	Check duty cycle.
	High working	 Replace the binding
	frequency?	parts.
	Is motor stem or bearing	
	binding?	
Abnormal on/off angle on	1. Wrong phase wiring?	Change phase wiring.
3-phase voltage.		
Occasional on/off actuator	1. Simultaneous input	1. Check if the selection
failure.	power on/off.	switch is normal.
Vibration when valve is	Motor brake spring	1. Replace spring or Teflon.
closed.	fatigued or Teflon worn?	

8.0 SHUT DOWN

8.1 MBR Temporary Shut Down

A temporary shutdown for a few days requires continuous aeration of the biomass to keep the DO level at least 2 mg/L and continuous biomass recycle between the bioreactors.

8.2 MBR Permanent Shut Down / Winterizing

Permanent shut down is required if system operation stops for at least 2 weeks without inflow. Permanent shut down includes the following procedure:

8.2.1 Process Shut Down Procedure

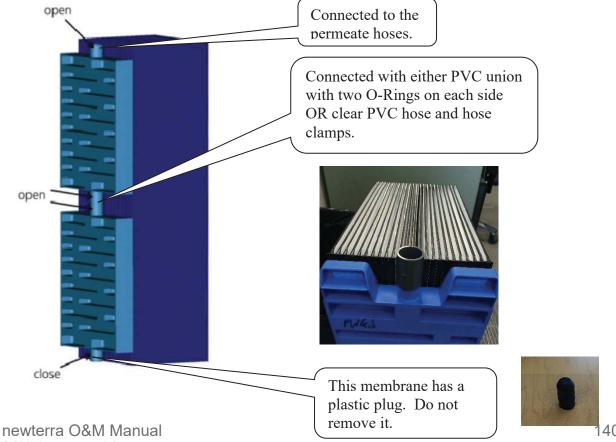
- Conduct a "Backwash Now" operation on the system
- Stop influent flow into the System
- Ensure all pumps are in the "OFF" position using the HOA HMI screen
- Ensure all Blowers are in the "AUTO" position using the HOA HMI screen. This is to be done until a vacuum truck can be provided or contracted locally to clean out the tanks.
- Ensure all automated valves are in the "OFF" position using the HOA HMI screen.
- Ensure that the MBR is disabled using the HMI screen button
- Conduct all maintenance procedures on Section 7 Table regardless of schedule time

8.2.2 Cleaning - General

- Conduct general system interior cleaning
- Open all tanks, wash out with a garden hose and Vacuum out.
- Clean all sensors and level switches

8.2.3 Membranes

- Ensure that the membrane tanks (TNK-601/602) are drained before opening the membrane tanks.
- Open TNK-601/602 doors with hand/power tools.

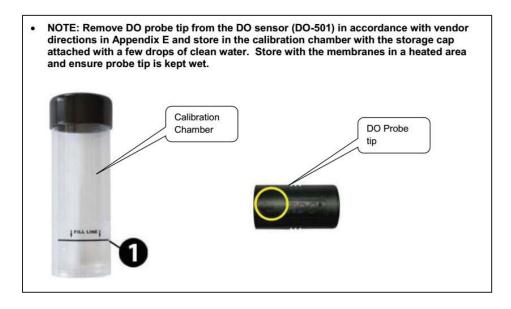


- Using a garden hose, wash the inside of the tanks and vac out any remaining waste water. DO NOT USE A PRESSURE WASHER!
- Disconnect the permeate hoses from the top of membrane the membrane stack.
- Remove the membranes from the membrane frame using hand tools.

- **CAUTION** the membranes are contaminated with waste water. PPE required.
- **NOTE**. The membranes are double stacked. The bottom membrane has a plug in the bottom opening. Do not remove this plug. Note the membrane orientations for reinstallation. The membranes are joined together with either a PVC union with two O-Rings on each side OR clear PVC hose and hose clamps.

© 2017 by **newterra**, Itd.

• After membranes are separated, wash with clean water. Remove the blue backing plate and gently separate the membrane plates and clean with water to remove any debris.


- Replace backing plate and let the membranes dry out.
- Shrink wrap the membrane cassettes in multiple film layers and seal the membranes cassettes with tape. Note and mark which membranes have the bottom plug in them.
- Store the preserved membrane cassettes at room temperature (never expose the membrane cassettes to frost, dust, or direct sunlight).

8.3 General Components

- Conduct all preventative maintenance as listed in Section 7.
- Drain/Vacuum Out and wash out all tanks.
- Clean and Wash out SCR-201/202
- Disassemble all PVC ball valves and drain any water inside (open and close to ensure trapped water escapes).
- Leave all valves ½ open during reinstallation
- Open all drain valves and leave open.
- Find all check valves and make sure water is not being held by valve (Wet/Dry Vac works well here).
- Drain / remove all pumps from tanks, ensure no water is left inside the pump.
- Use RV Antifreeze that is suitable for potable water systems
 - o Refill any check valve

- o Dump in 2 (qty) 4-L bottles in each tank
- Remove power from system.
- Double check and ensure that there is no water left in any pipes, fittings etc. If it is not possible to remove the water fill with antifreeze.
- Drain the chemical tanks and dispose of chemicals in accordance with manufacturer's recommendations and local regulations.
- Remove pH (PH-501) and DO (DO-501) probes from TNK-501 and store with membranes in a heated area ensure probes are kept wet.

8.4 Blowers - B-501/502

STORAGE

Your Gardner Denver Blower was packaged at the factory with adequate protection to permit normal storage for up to six (6) months.

If the unit is to be stored under adverse conditions or for extended periods of time, the following additional measures should be taken to prevent damage.

- 1. Store the blower in a clean, dry, heated (if possible) area.
- Make certain inlet and discharge air ports are tightly covered to prevent foreign material from entering the air box.
- 3. All exposed, non-painted surfaces should be protected against rust and corrosion.
- 4. Provide adequate protection to avoid accidental mechanical damage.
- In high humidity or corrosive environments, additional measures may be required to prevent rusting of the blower internal surfaces.
- 6. To prevent rusting of gears, bearings, etc., the oil reservoirs may be filled with normal operating oil.

Before running the blower, drain the oil and replace to the proper operating level with clean, fresh lubricant.

- Rotate the blower shaft (10 to 25 turns) weekly during storage. Inspect the blower shaft (near the shaft seal area) monthly and spray with rust inhibitor if needed.
- For long term storage (over six (6) months), contact Gardner Denver Compressor Division Customer Service for recommendations.

REMOVING PROTECTIVE MATERIALS

The shaft extension is protected with rust inhibitor which can be removed with any standard solvent.

Follow the safety directions of the solvent manufacturer.

Blower inlet and outlet are temporarily capped to keep out dirt and other contaminants during shipment. These covers must be removed before start-up.

The internal surfaces of all Sutorbilt units are mist sprayed with a rust preventative to protect the machine during shipment. Remove this film upon initial startup, using any commercial safety solvent. Position the blower so that the inlet and discharge connections are in the vertical position (vertical airflow). On vertically mounted units, it will be necessary to lay the unit on its side supporting the ends of the unit so as not to restrict the port on the bottom side. Place a shallow pan on the under side of the unit. With the blower disconnected from power, spray the solvent in the top port, rotating the impellers by spinning the shaft manually. Continue this procedure until the unit is visibly clean.

Rotating components will cause severe injury in case of personal contact. Keep hands and loose clothing away from blower inlet and discharge ports.

8.4 Chemical Dosing Pumps - P-6101/6102/6103

- 1. Disconnect the pump from the mains power supply.
- **2.** Empty the liquid end by turning the pump upside down and allowing the feed chemical to run out.
- 3. Flush the liquid end with a suitable medium; flush the dosing head thoroughly when using hazardous feed chemicals!

9.0 SERVICE & SUPPORT

9.1 Commissioning and Start-up

newterra MicroClear[™] MBR System's **commissioning & start-up** is the last step of the **newterra** project execution process.

As part of your order, the following on site services will be provided by experienced factory trained newterra representative:

- Includes five (5) 8-hour days of onsite startup/commissioning by one (1) factory trained newterra representative
- Includes five (5) 8-hour days of onsite training by one (1) factory trained newterra representative

9.1.1 Startup/Commissioning

Typical System Startup/Commissioning includes the following:

- Equipment checks Electrical, mechanical, and controls
- Functional test Equipment and control system
- Hydraulic test
- · Operation during plant seeding

9.1.2 Training

On-site operator training including the following topics:

- General MBR theory & process
- Specific system instruction
 - Components
 - Controls and operating philosophy
 - Alarms and alarm troubleshooting
 - Maintenance
 - Troubleshooting
 - MBR fouling control (Biology, physical, and chemical)

147

9.2 Post commissioning Services

A comprehensive range of post commissioning services are available from **newterra** beyond system design and installation. Specific services include:

- Technical support (including after-hours emergency telephone support).
- Spare parts order and delivery.
- Training program.
- Plant optimization and upgrades.
- Telemetry control and monitoring.
- Assistance in preparing system performance reports (process data monitoring & analysis).
- Preventive maintenance cleaning (including membrane cleaning).
- System audits for reviewing the performance and efficiency of all MBR subsystems..

9.2.1 Technical Support

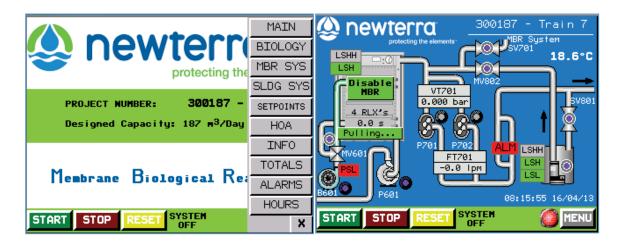
<u>Technical support</u> is available to assist in troubleshooting of **newterra** MBR systems during normal working hours 8:30 am to 5:00 pm (Eastern Time Zone for **newterra** ltd.). Telephone service is available via **1.800.420.4056**.

Emergency **24/7 telephone technical support –** This will be activated upon subscribing to **newterra's** 24/7 technical support service. If a problem cannot be resolved through telephone or e-mail support, **newterra** technicians and engineers are available for site visits.

9.2.2 Spare Parts

newterra has spare parts to provide quick response to any critical system breakdown. Contact **newterra** parts department at **1.800.420.4056**.

All parts and components associated with **newterra** MBR Systems are available from within service departments and manufacturing facilities of **newterra** ltd across Canada and abroad.


Potentially required spare parts are:

- membrane modules/membrane cassettes;
- parts for repair/replacement (valves, transmitters, switches, gauges, pH & DO probes, pump motors, analyzers, PLC components, fuses, etc.);
- maintenance spare parts (air blowers, air filters, pumps, immersion heaters, chemical metering pumps, etc.).

9.2.3 Assistance in telemetry control and monitoring

newterra SITE-LINK is a customized software program and hardware configuration which provides a real-time link to a treatment system via cellular modem or customer supplied internet connection using our secure Site-Link Server.

newterra Site-Link comes with the following customizable features:

- Customized P&ID layout with system status
- Start/Stop/Reset of system
- Manual control of all system components
- Data logging downloads in .csv format[†]
- Daily system status reports (E-Monitor)
- Alarm history including current alarm status
- Hour meters for applicable equipment
- Customization of all system set points[†]
- Live and historical trending
- Immediate text & email on alarm (E-Alarm)

The basic system requires that the customer provide a standard computer network cable to the control panel. If the customer's computer network is accessible to the internet, this system can also be monitored from any internet enabled computer. Static IP is not required but is recommended and must be provided by customer.

This system is not available if customer supplied internet connection or cellular service is not available at the site. During internet outages, reports cannot be sent and system status cannot be monitored remotely.

[†]certain restrictions apply

9.2.4 Site visits and system audits

Site visits and system audits can be arranged at an additional cost. Contact **newterra** for all financial aspects of **newterra** initial and post-commissioning services.

During a system audit, technical reviews of the performance of all **newterra** MBR subsystems and the efficiency of the biological process can be performed. Based on the site visit and agenda discussed with the client, we can assist in:

- Maintenance coordination and scheduling, including membrane maintenance and cleaning.
- Validation of chemical dosing settings.
- MBR System inspection for the proper operation of the membrane system in accordance with the O&M manual; equipment calibration, process optimization and upgrades.
- Continued on-site operator training and coaching.

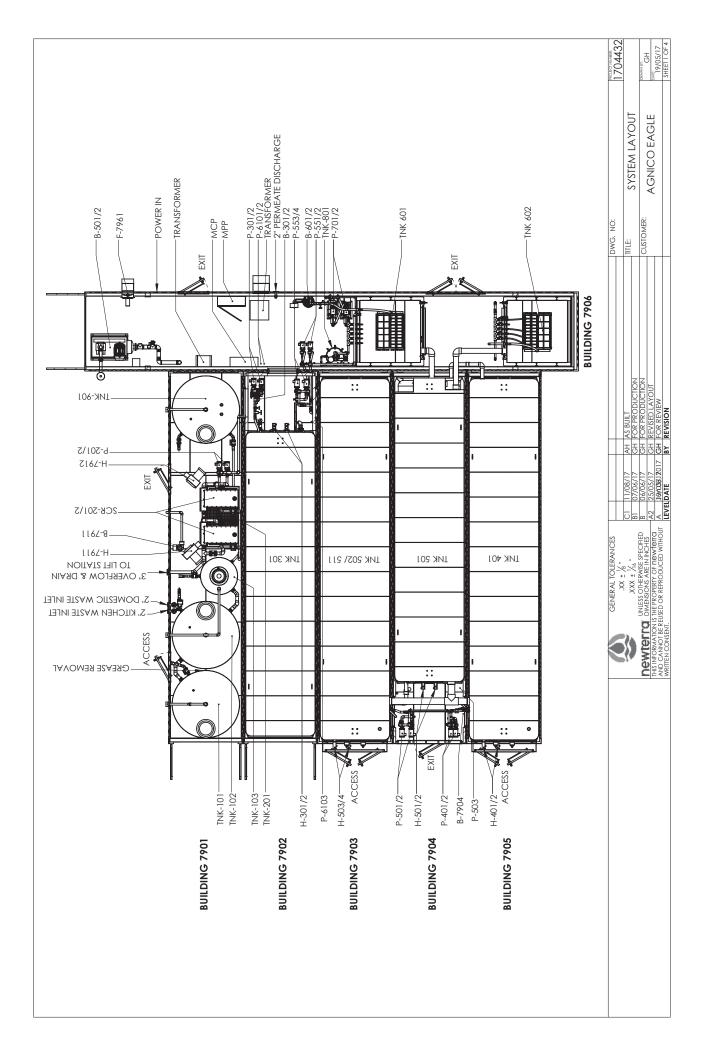
10.0 WARRANTY

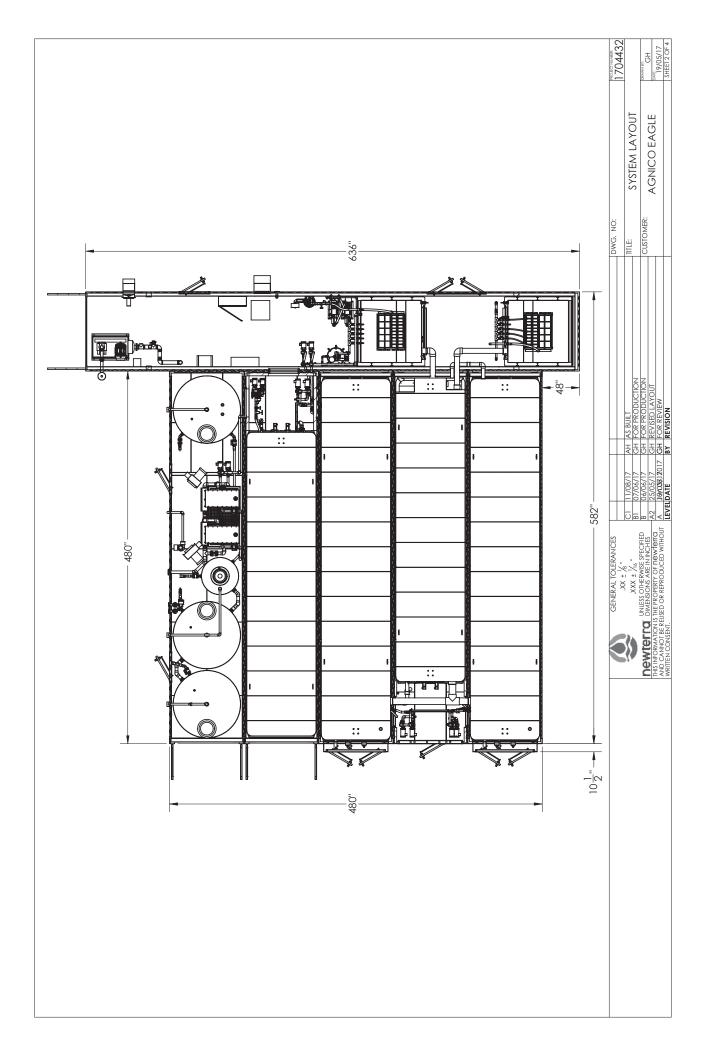
General Warranty Statement

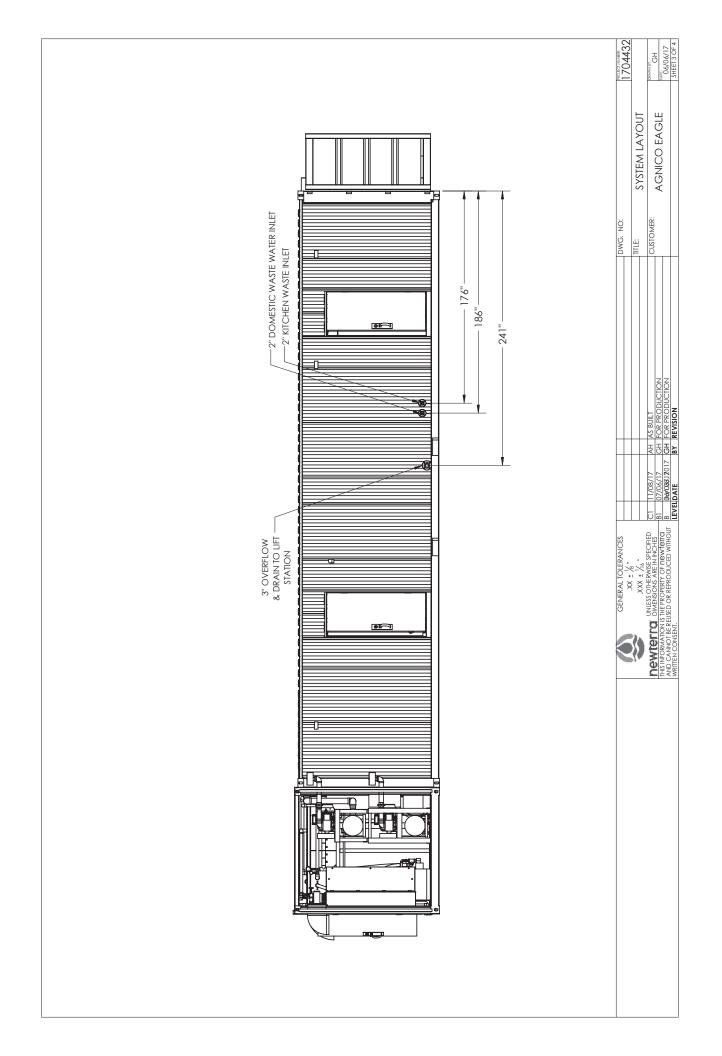
- newterra warrants and guarantees products of its manufacture against defective workmanship or material for a period of one year from the date of notice of readiness to ship.
- This warranty is expressly and strictly limited to replacing, without charge, any part or parts which
 prove to newterra's satisfaction upon examination, to have been defective in design, material or
 workmanship, and which have not been neglected, abused or misapplied, provided the buyer gives
 newterra immediate written notice upon discovery of any claimed defect.
- During the warranty period, parts will be shipped as necessary with instructions to replace, which
 can be further elaborated over phone or email; visit(s) of our technician to site can be covered if
 there is a service agreement in place; otherwise, actual charges will be quoted to the owner at that
 time, if required.
- 4. **newterra** will also guarantee component parts manufactured by others to the extent of the guarantee made by the manufacturer of such equipment. In any case, guarantees on specific components will be extended a minimum of one year from date of notice of readiness to ship.

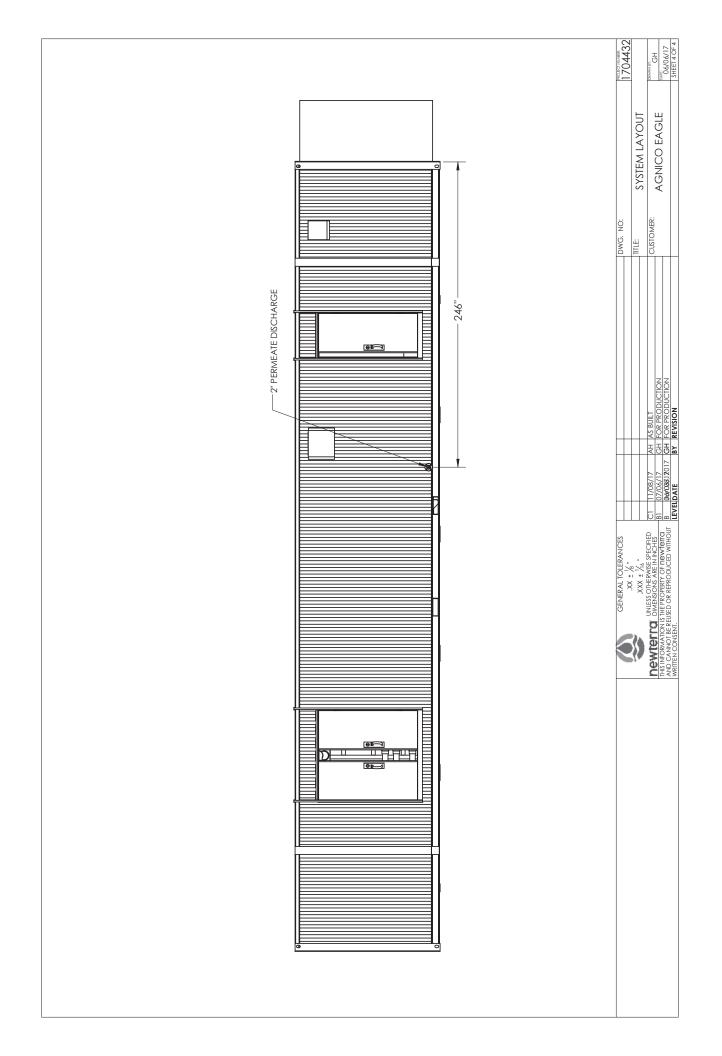
Warranty Exclusions

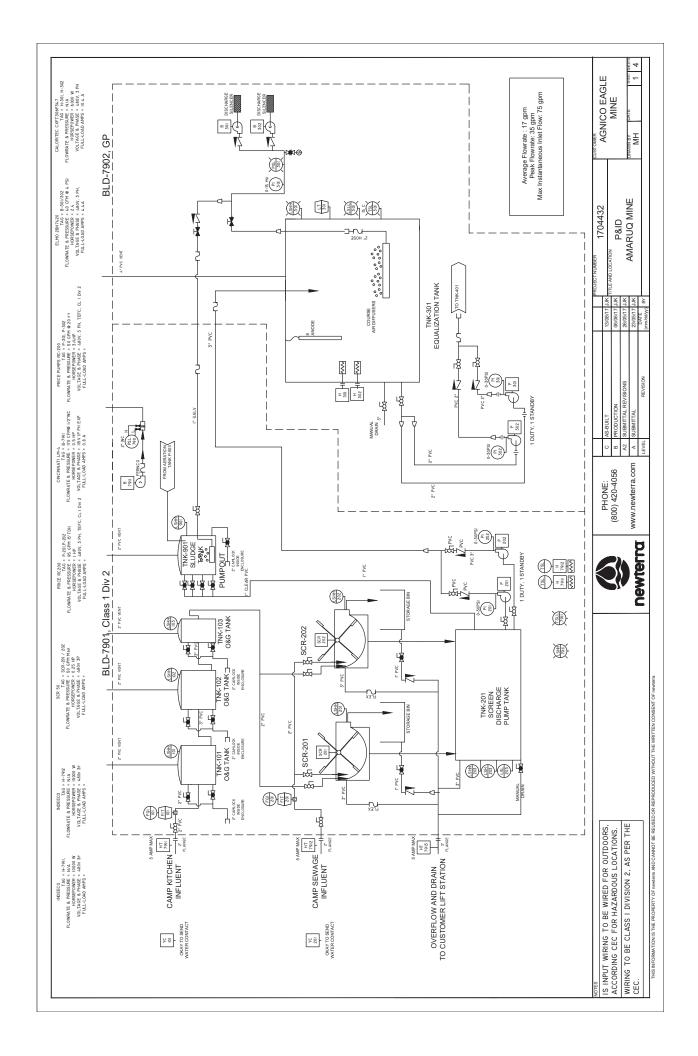
- 1. Warranty coverage does not include:
 - Freight, labor, travel, and living expenses associated with parts replacement
 - · Normal maintenance items such as lubrication, fan belts, and cleaning of the equipment
 - System parts damaged as a result of customer changes to the system and/or PLC program without the written consent of newterra.
- In the event that the customer, or any contractor employed by the customer, contracts an outside company, other than newterra for modification of system equipment, without knowledge of newterra, the warranty in that case may become null & void.
- In the event that the customer, or any installation contractor employed by the customer, contracts outside newterra for installation work or erection of quoted equipment, the customer shall assume full responsibility for said contract.

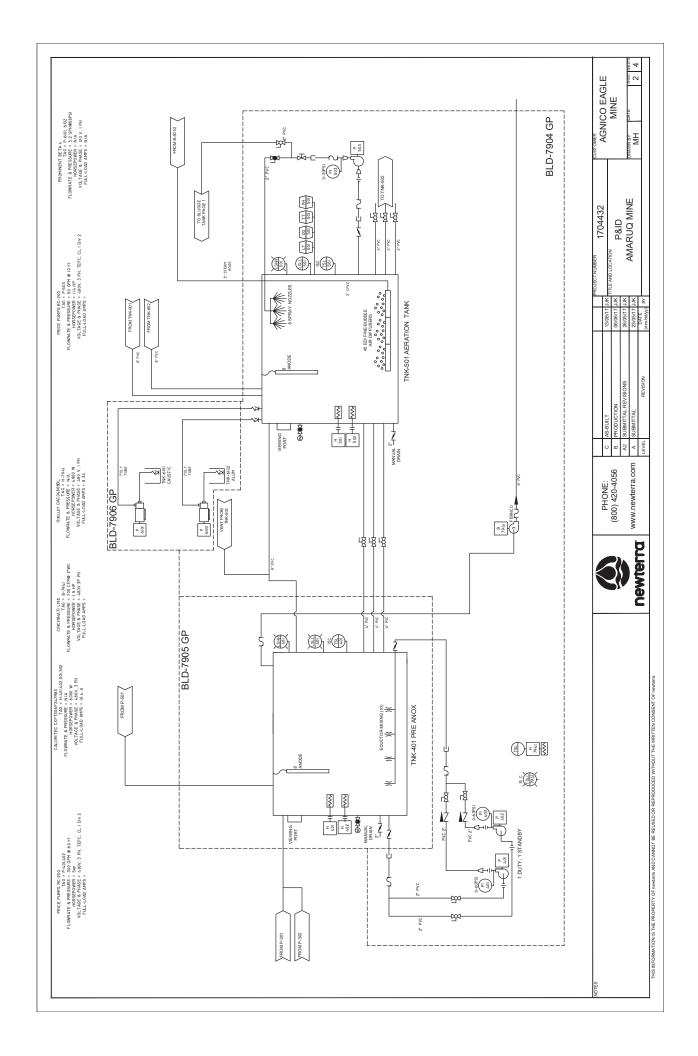

Warranty Validation and Conditions

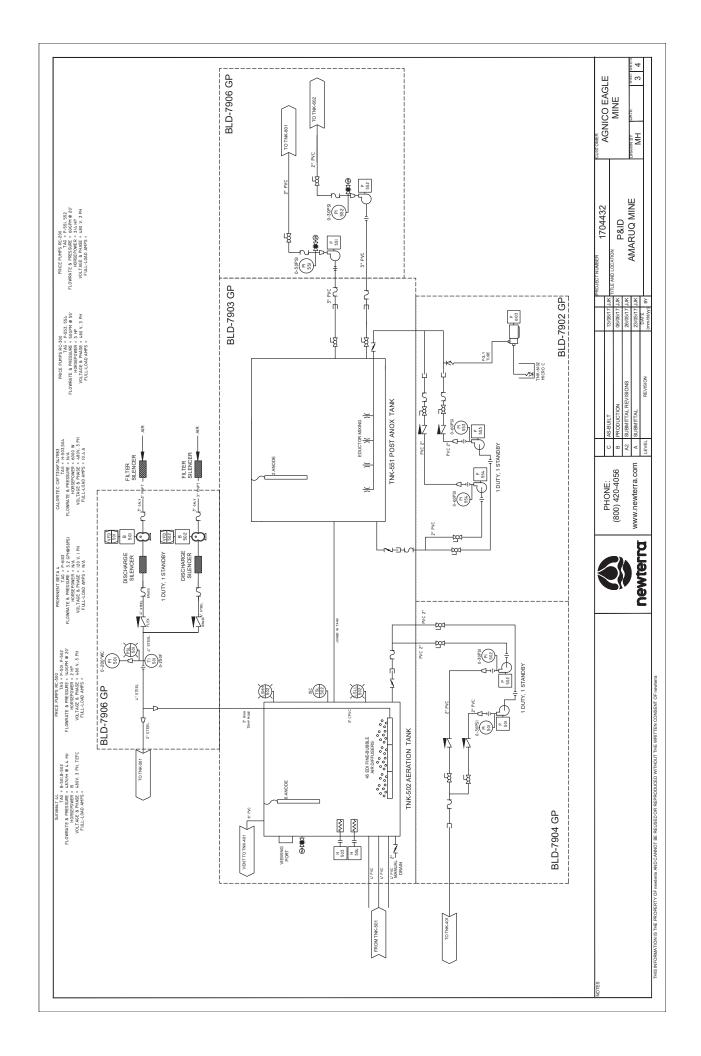

- newterra highly recommends that the system be started up by a newterra factory trained technician to ensure the correct installation and trouble-free startup. The startup checklist provided in the O&M manual must be completed and returned to newterra to validate your equipment warranty which begins on the date of shipment from the factory.
- In the event that the system is commissioned by a certified technician that is not an employee of newterra, the Startup Checklist must be returned to newterra within 15 days of the completion of startup

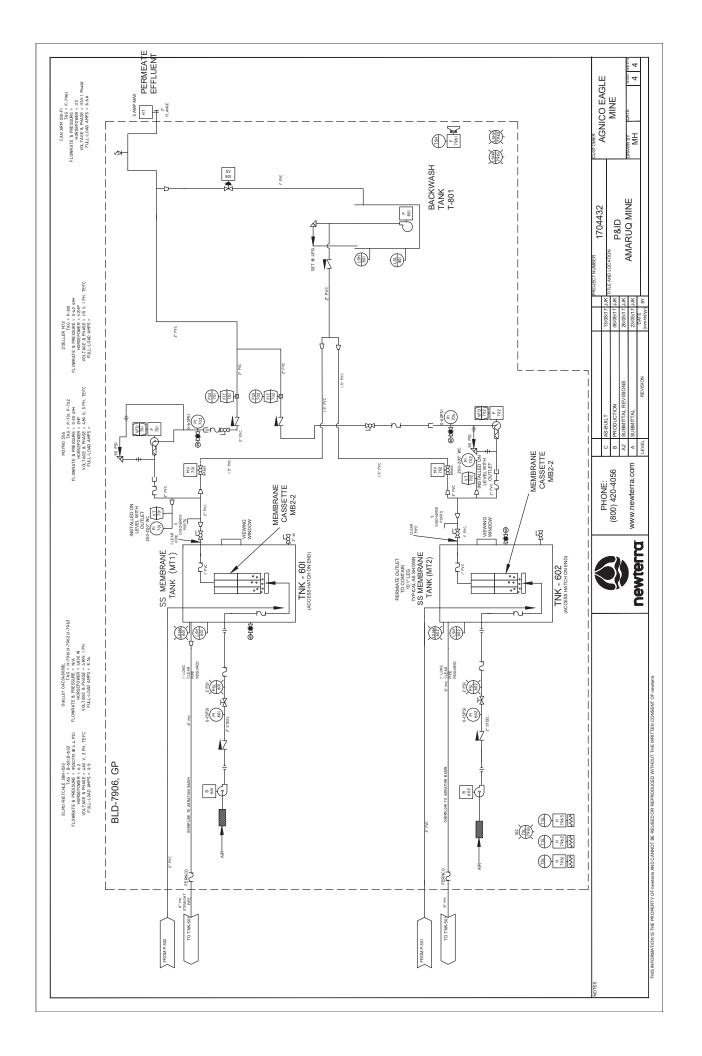


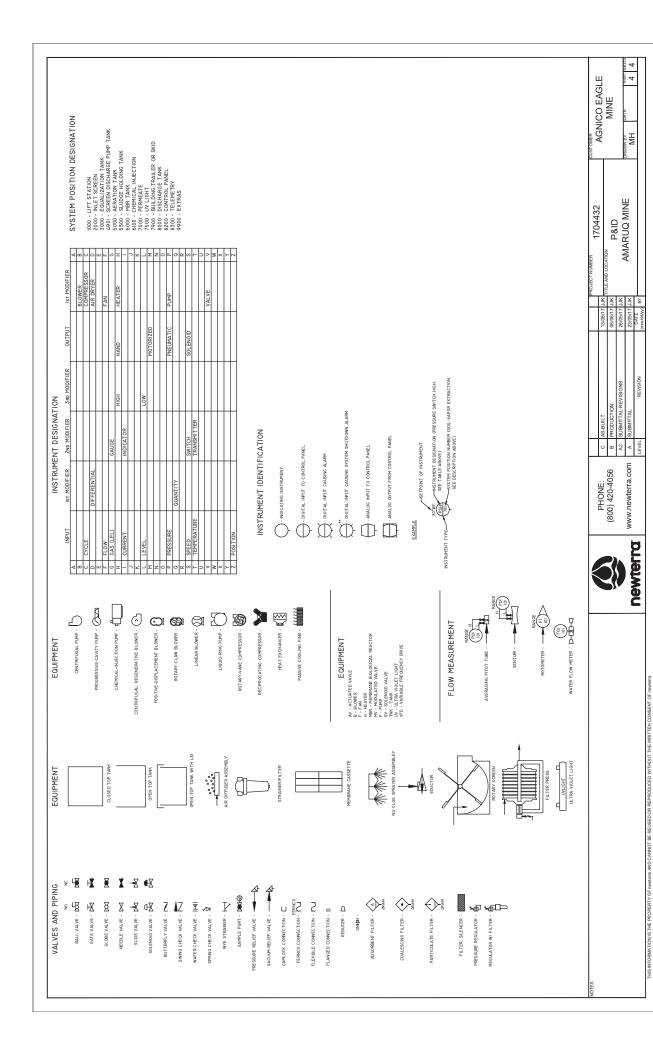

APPENDIX A


Drawings









Project:

1704432 - AGNICO EAGLE MINE - C

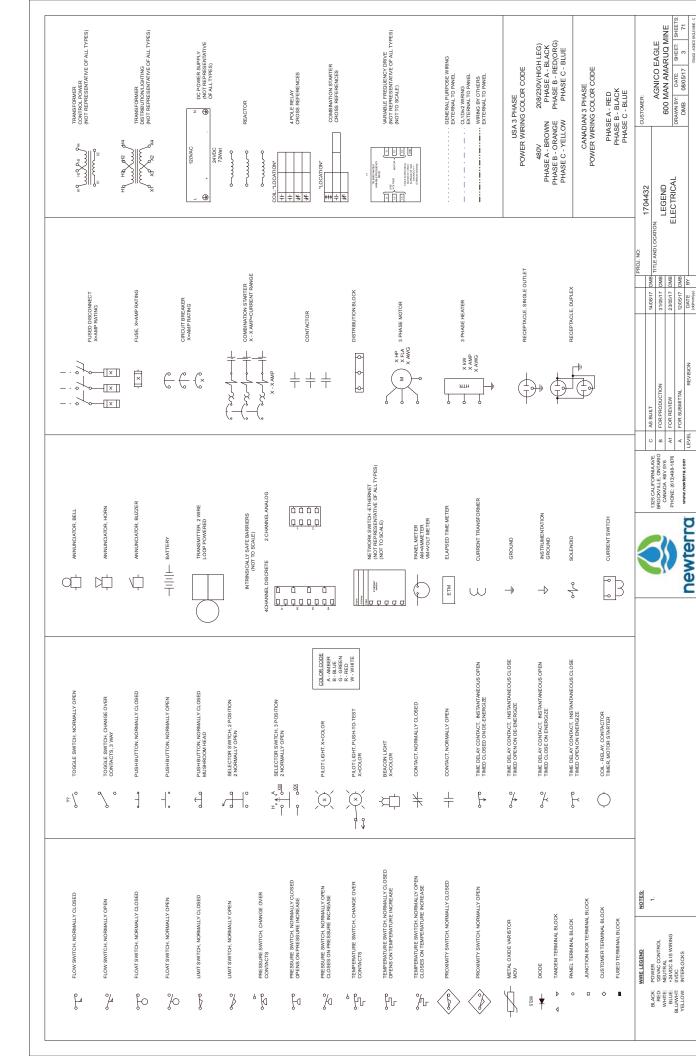
| SYNCIE URD DAGGAM, SEET 10 % 3 | SYNCIE URD DAGGAM, SEET 10 % 4 | SYNCIE URD DAGGAM, SEET 10 % 4

ELECTRICAL SPECIFICATIONS	CIFICATIONS
VOLTAGE	V009
PHASE	3Ø
FREQUENCY	ZH 09
FULL LOAD AMPS	172A
MAIN DISCONNECT SIZE	400A - FUSED @ 250A
SCCR SYMMETRICAL (KAMPS)	10
SYSTEM APPROVAL AND CLASSIFICATION	cMET - CL1Div2
PANEL APPROVAL AND CLASSIFICATION	cMETus to UL698A

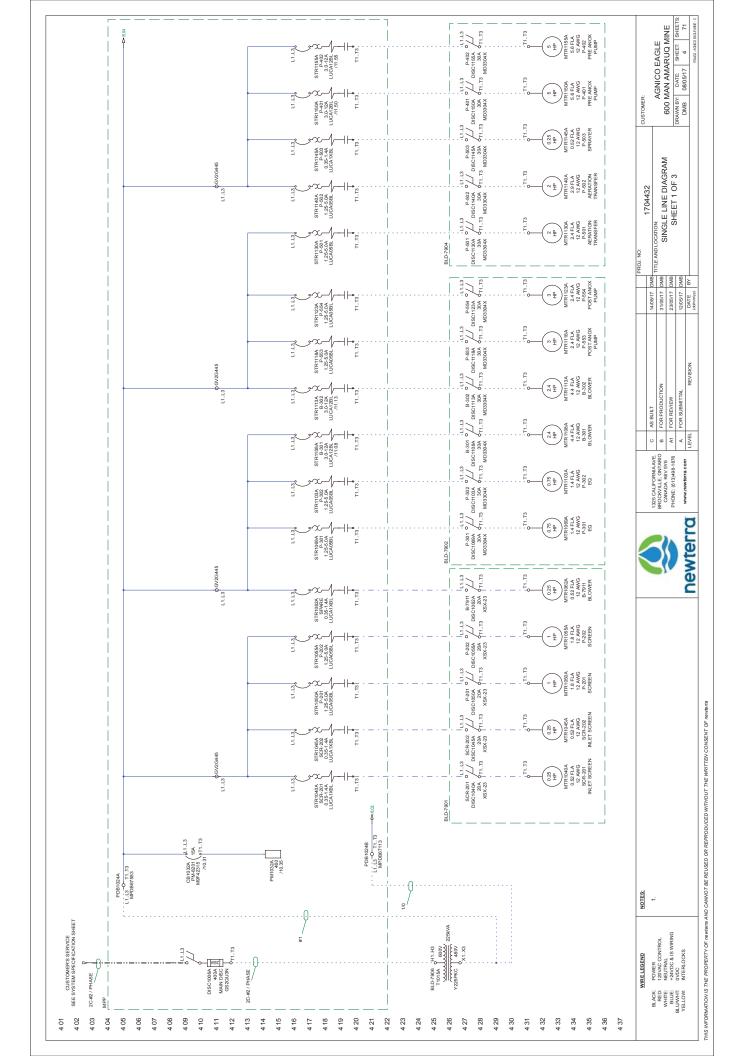
newterra

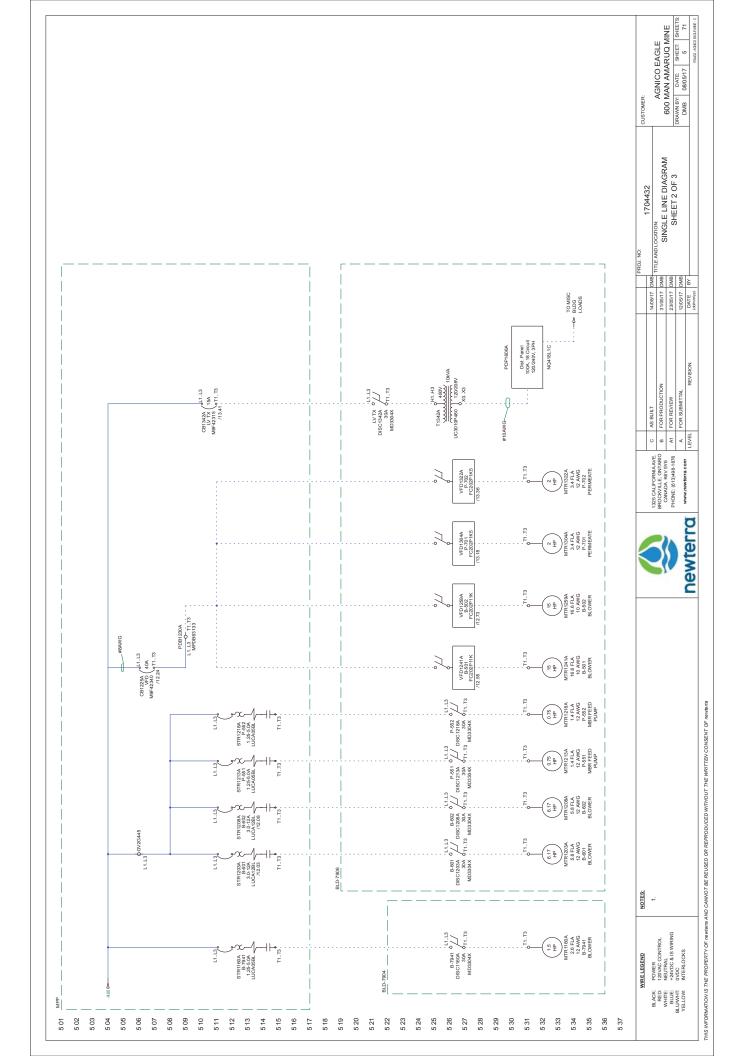
SYSTEM SPECIFICATIONS 1704432 | 140817 | DMB | TITLE AND LOCATION: | 2306317 | DMB | SYSTEM \$ | 2206317 | DMB | CAMBON | CA PROJ. NO: REVISION 1325 CALIFORNIANIE C AS BULT
BROCKVILLE, OKTARO B FOR PRODUCTON
CANADA REVO FOR
CANADA REVO FOR
PHONE: (613,486.1876
A FOR SLIBMITAL
REVEL

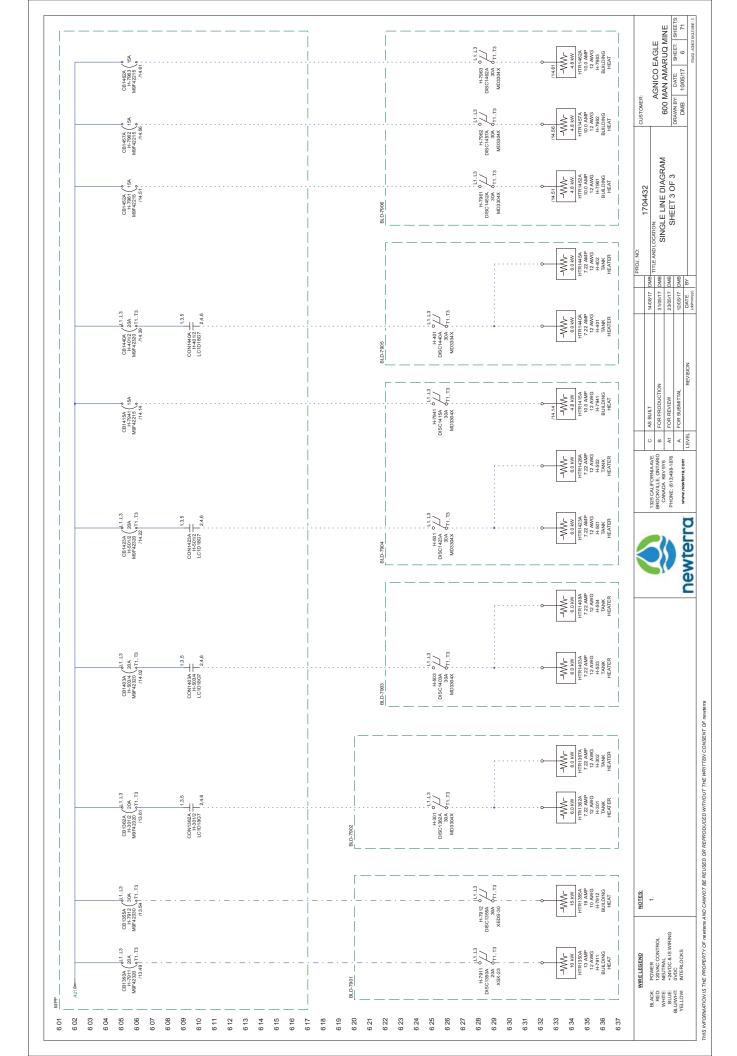
AGNICO EAGLE
600 MAN AMARUQ MINE
DRAWN BY: DATE: SHEETS.
DMB 0805/17 2 71

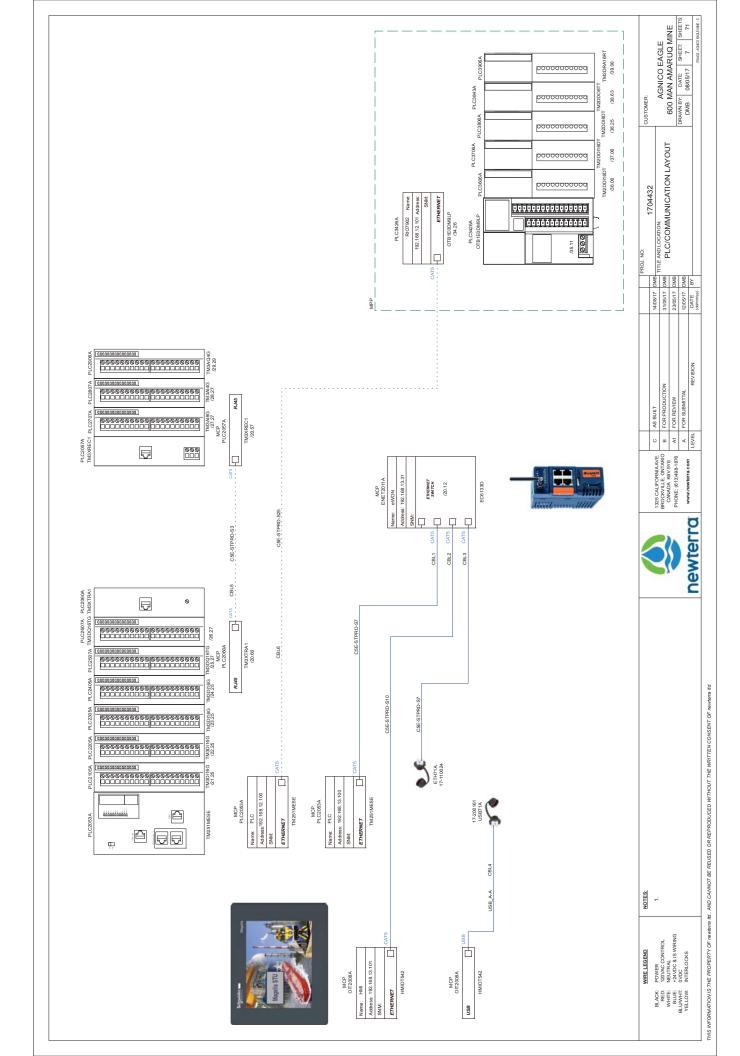

THIS INFORMATION IS THE PROPERTY OF newtens Its.. AND CANNOT BE REUSED OR REPRODUCED WITHOUT THE WRITTEN CONSENT OF newtens Its.

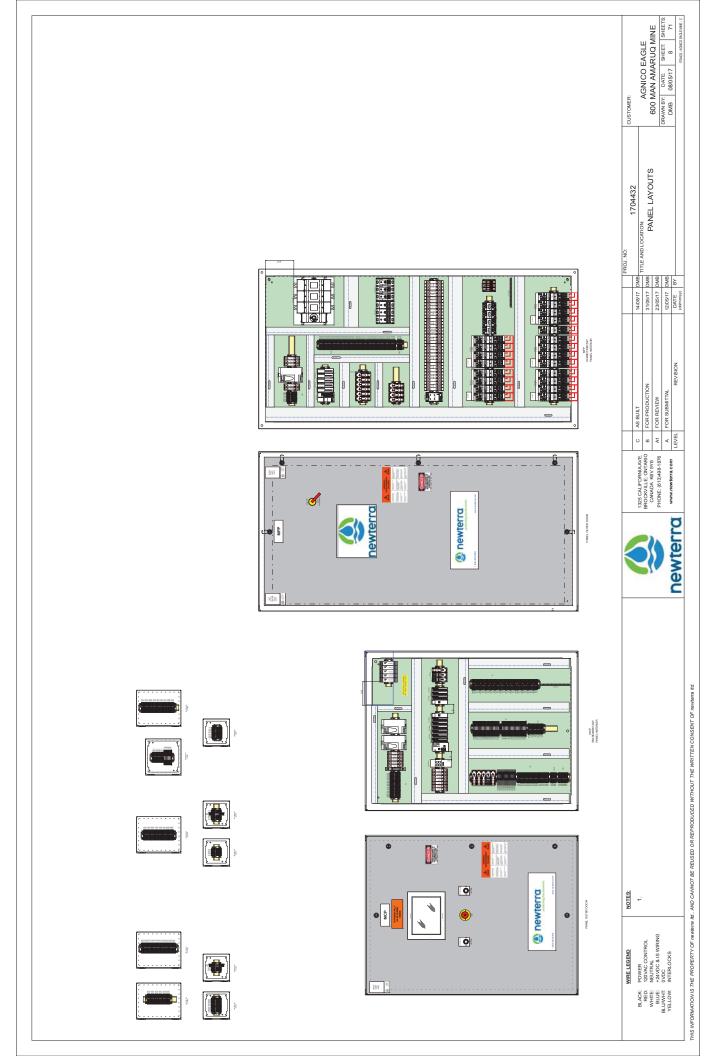
NOTES:


WIRE LEGEND


POWER 120VAC CONTROL NEUTRAL +24VDC & IS WIRING 0VDC INTERLOCKS


BLACK:
RED:
WHITE:
BLUWHT:
YELLOW:




THIS INFORMATION IS THE PROPERTY OF newtenna Ital.. AND CANNOT BE REUSED OR REPRODUCED WITHOUT THE WRITTEN CONSENT OF newterna Ital

T) WOLLS

newterra

REVISION

AGNICO EAGLE
600 MAN AMARUQ MINE
DRAWN BY: DATE: SHEETS.
DMB 0805/17 9 71

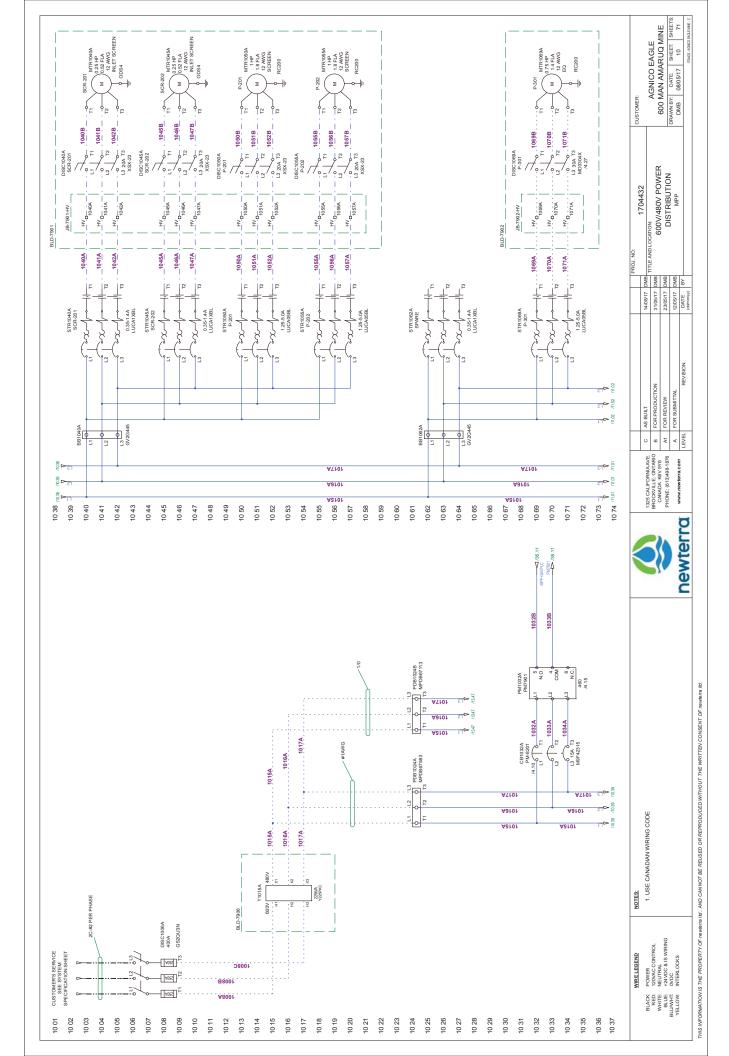
SPARE SHEET 1704432

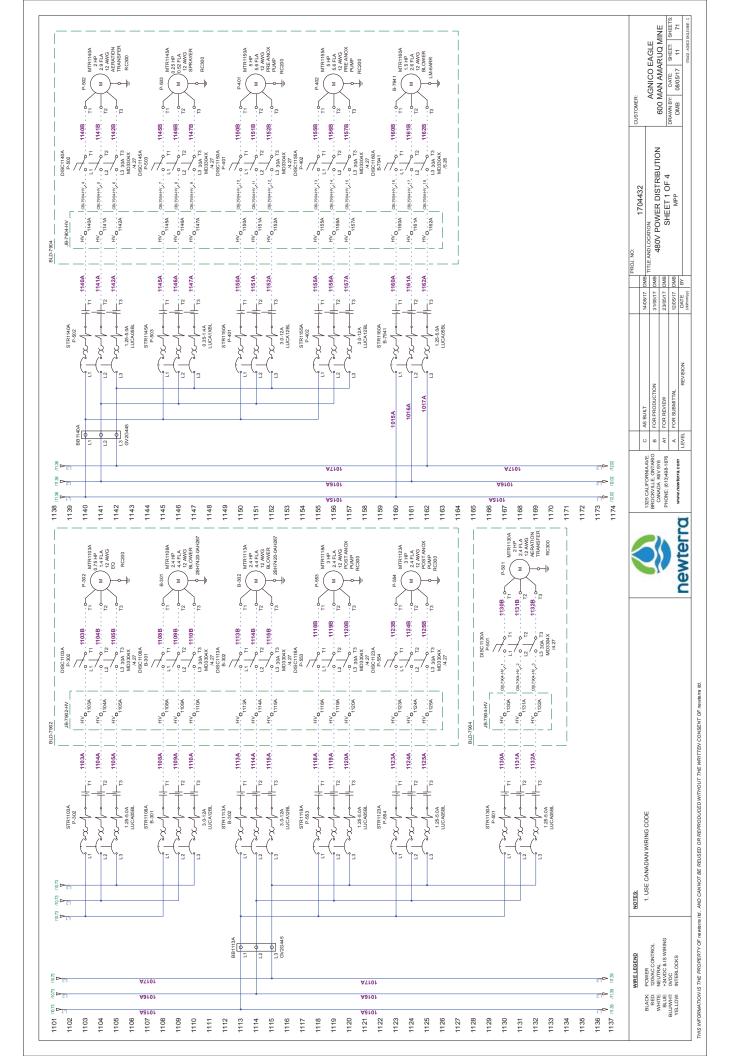
14,08/17 DMB TI 31/05/17 DMB 2305/17 DMB 12,05/17 DMB DATE BY (ddmm/yy)

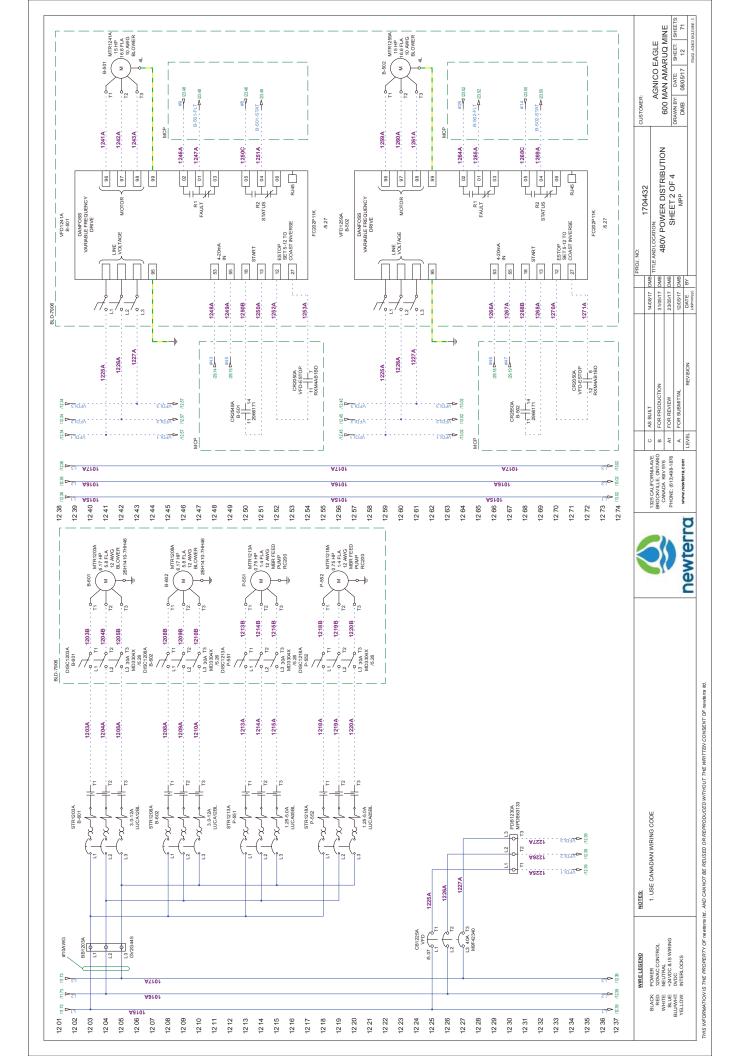
CUSTOMER:

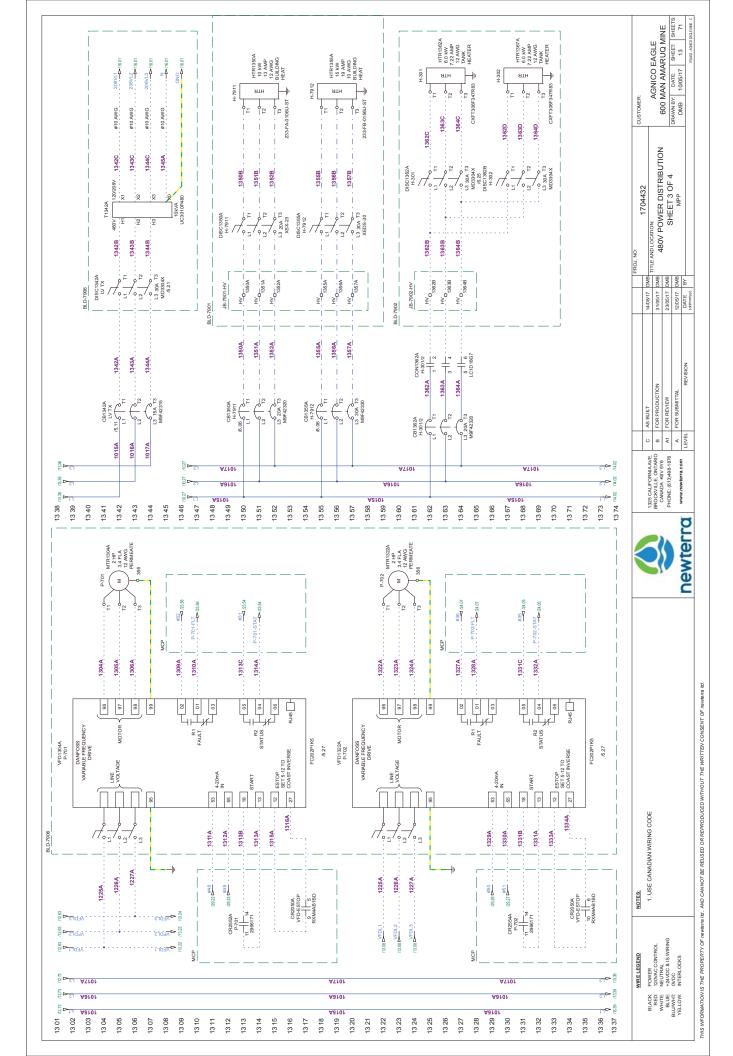
PROJ. NO:

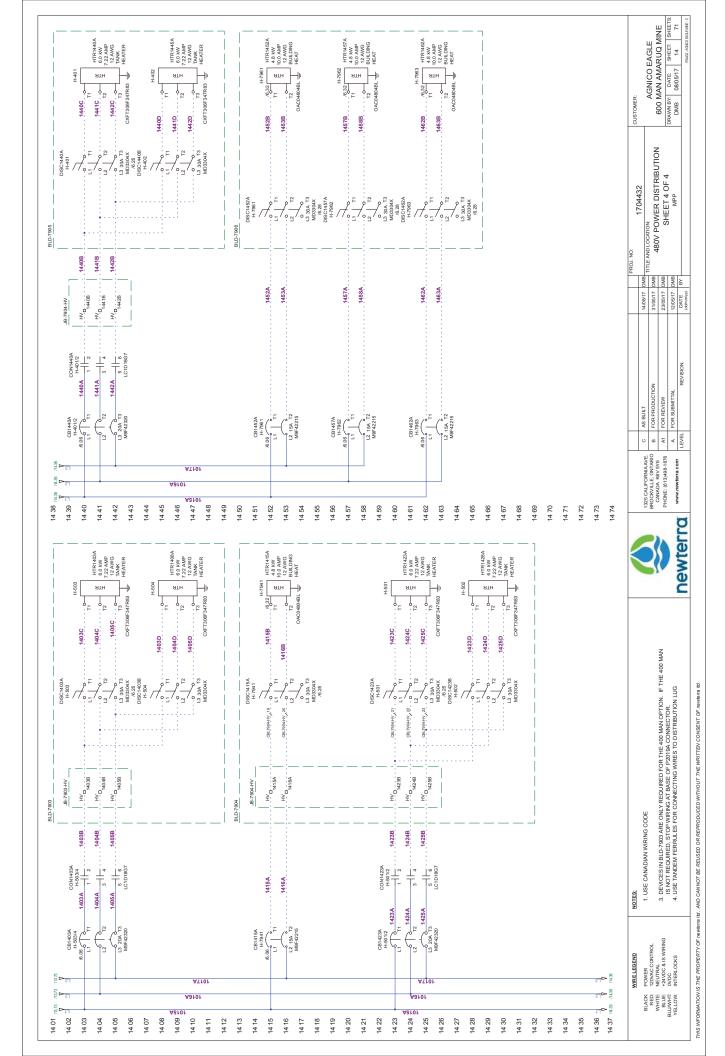
170452 - AGNOO BAGLE MINE - C


THIS INFORMATION IS THE PROPERTY OF newtons AND CANINOT BE REUSED OR REPRODUCED WITHOUT THE WRITTEN CONSENT OF newtons


NOTES:


WIRELEGEND


POWER 120VAC CONTROL NEUTRAL +24VDC & IS WIRING 0VDC INTERLOCKS


BLACK: RED: WHITE: BLUWHT: YELLOW:

T) WOLLS

15 02 15 02 15 03 15 06 15 08 15 08 15 08

15 16

15 17 15 18 15 20 15 21 15 22

15 23 15 24 15 25 15 26 15 27 15 29

15 30 15 32 15 33 15 34 15 35

newterra

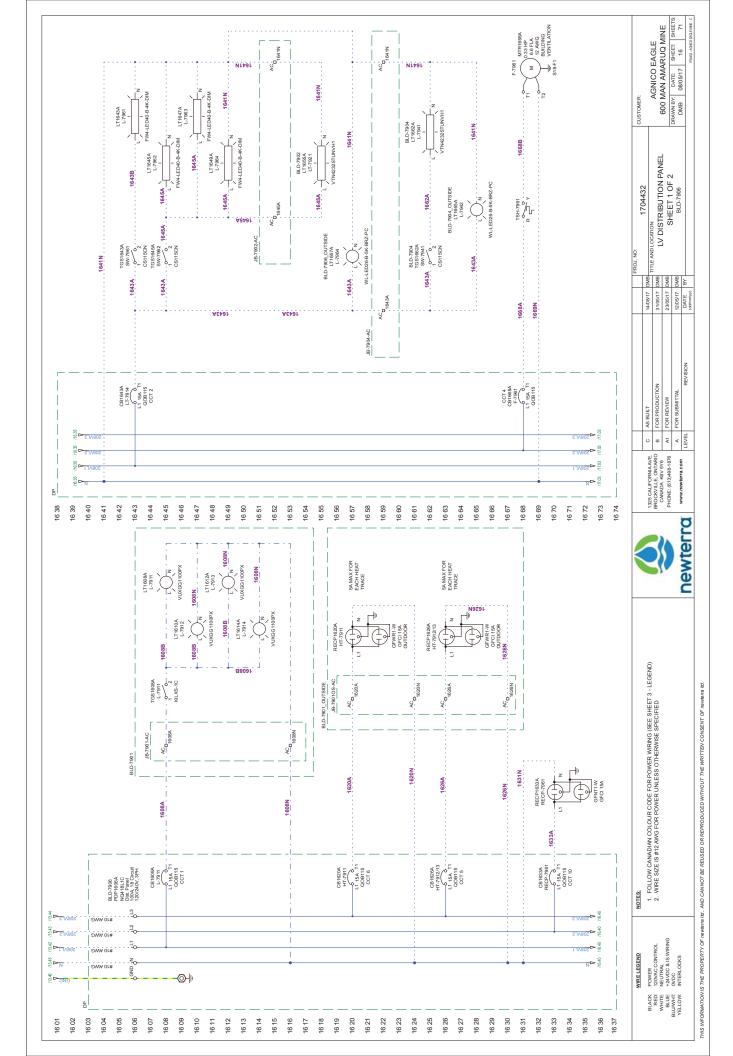
AGNICO EAGLE
600 MAN AMARUQ MINE
DRAWN BY: DATE: SHEETS.
DMB 22/05/17 15 71 SPARE SHEET 1704432 MPP TITLE AND LOCATION: 14,08/17 DMB TI 31/05/17 DMB 2305/17 DMB 12,05/17 DMB DATE BY (ddmm/yy) REVISION

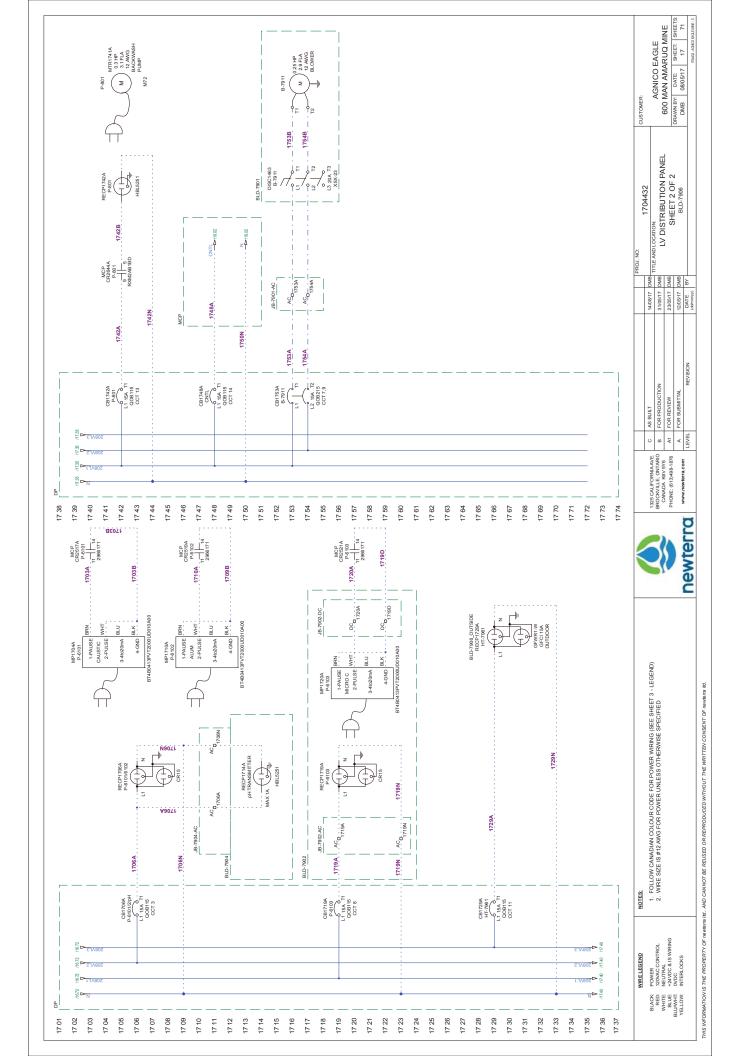
CUSTOMER:

PROJ. NO:

THIS INFORMATION IS THE PROPERTY OF newtons AND CANINOT BE REUSED OR REPRODUCED WITHOUT THE WRITTEN CONSENT OF newtons

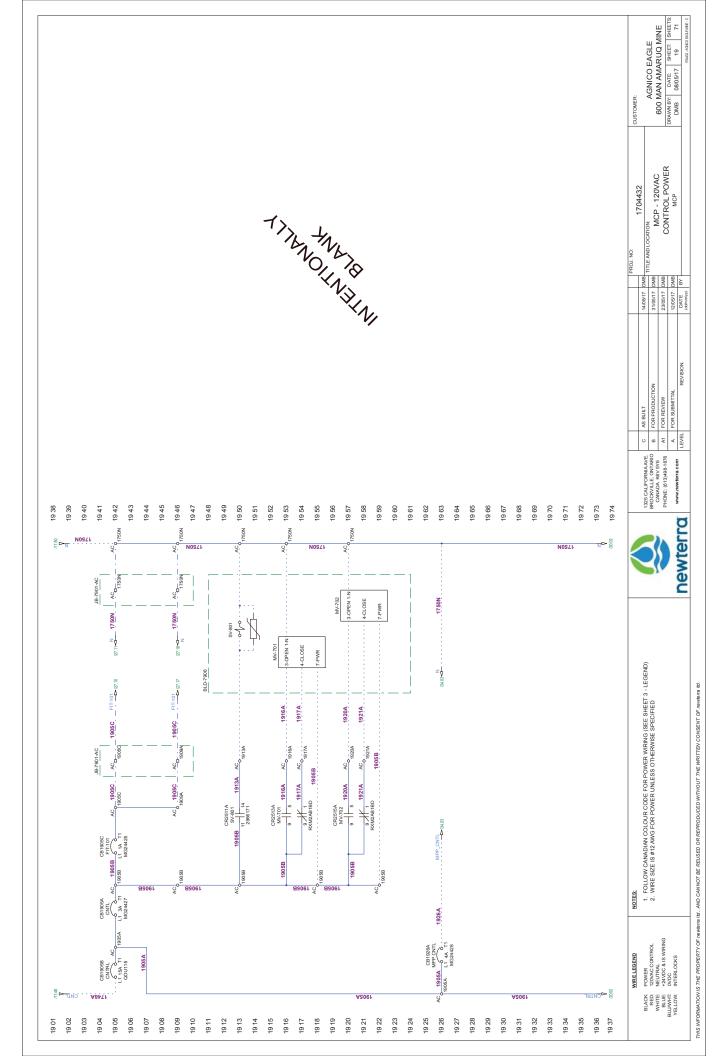
1. USE CANADIAN WIRING CODE

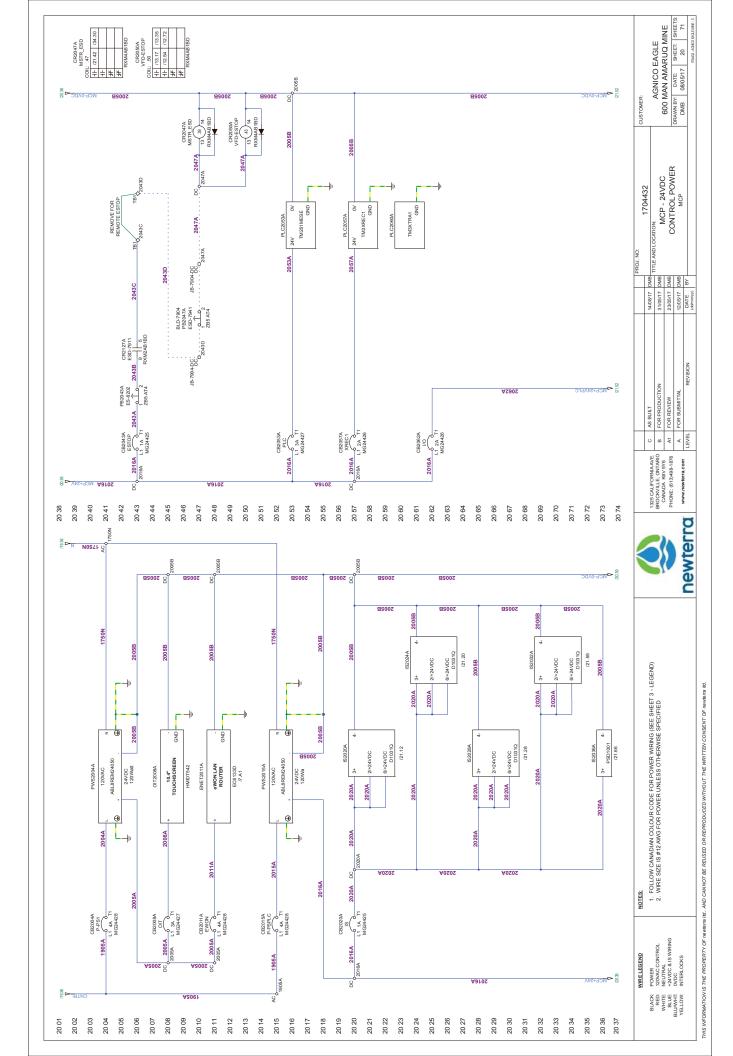

POWER
120VAC CONTROL
NEUTRAL
+24VDC & IS WIRING
0VDC
NTERLOCKS

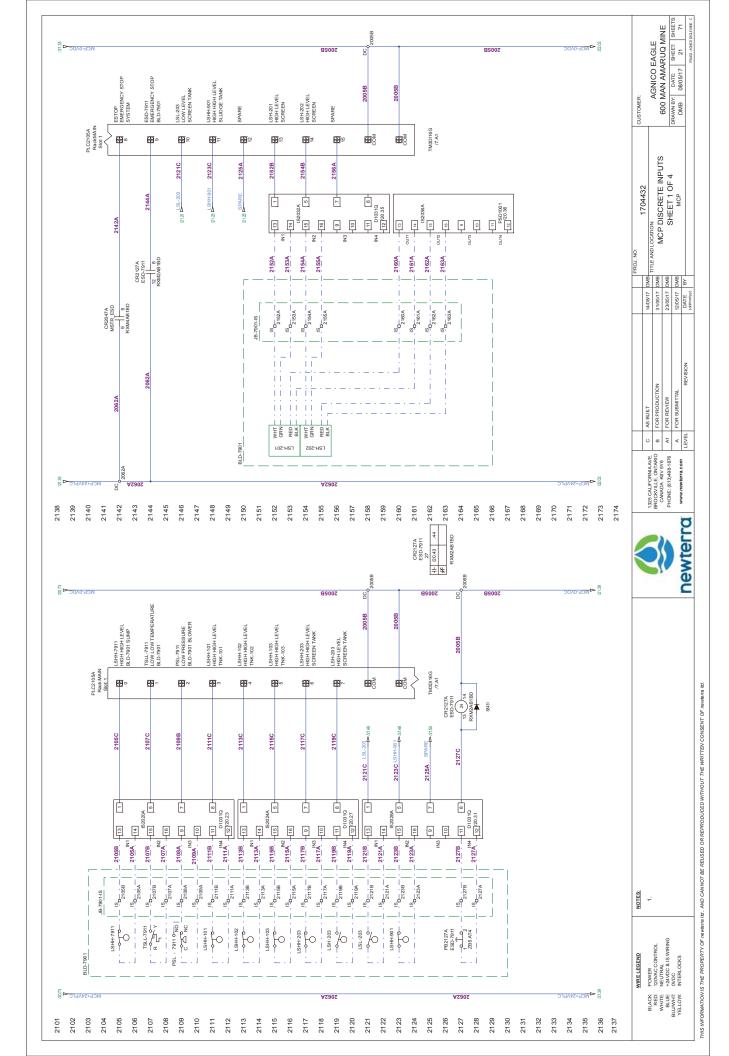

BLACK: RED: WHITE: BLUWHT: YELLOW:

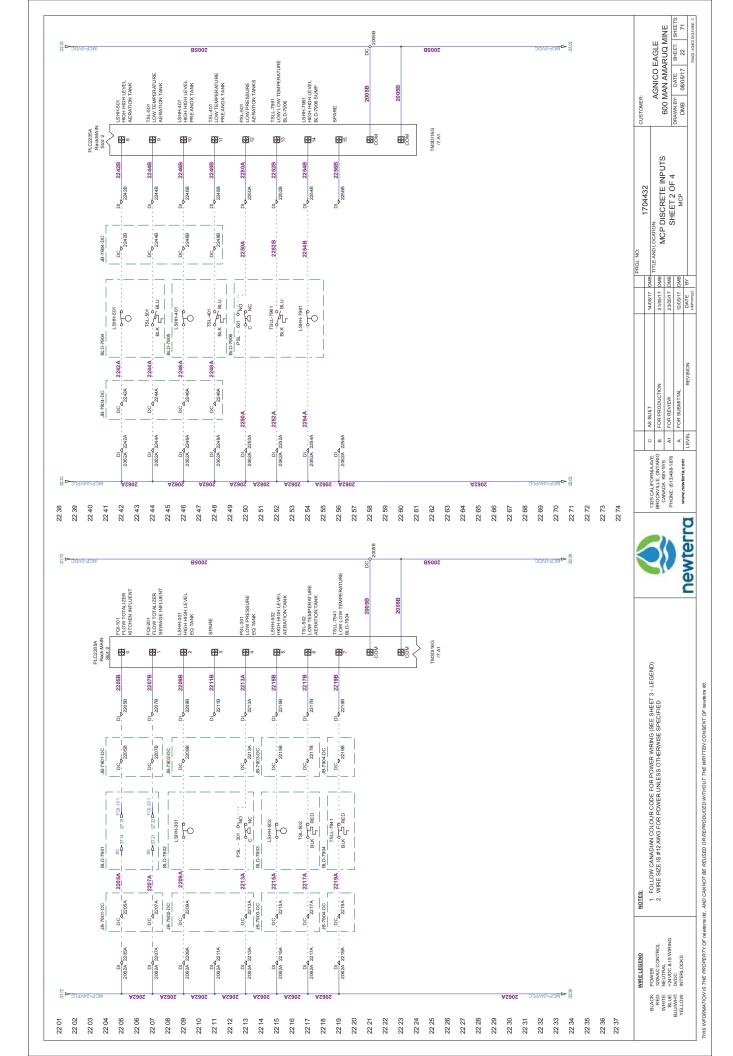
NOTES:

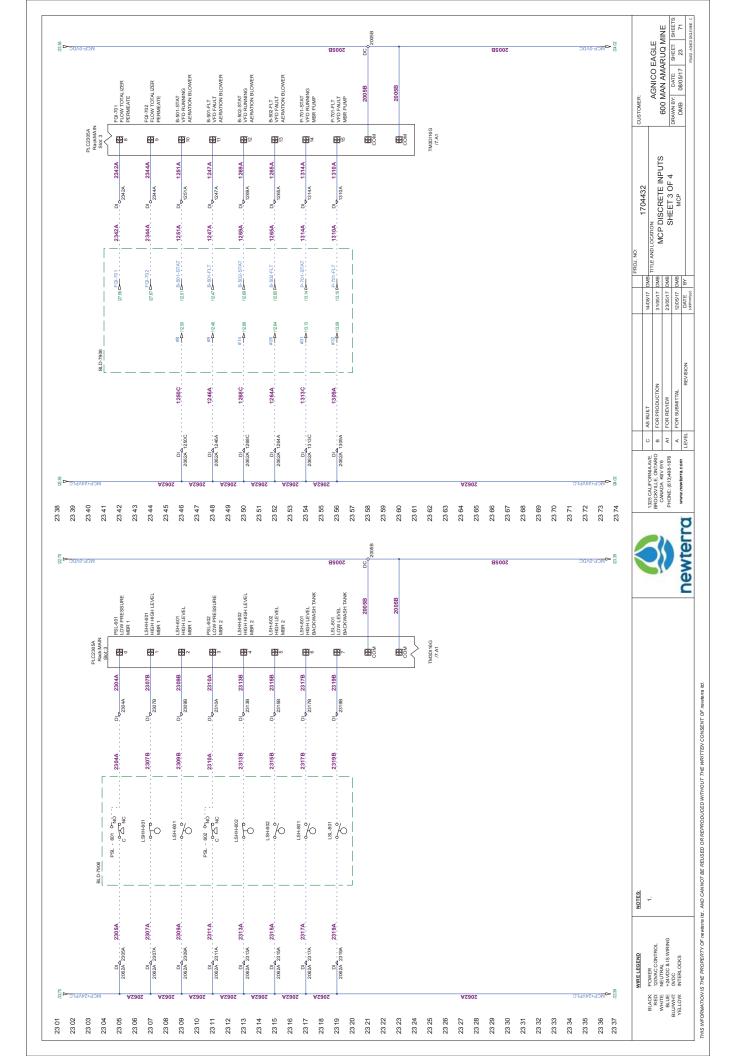
WIRELEGEND

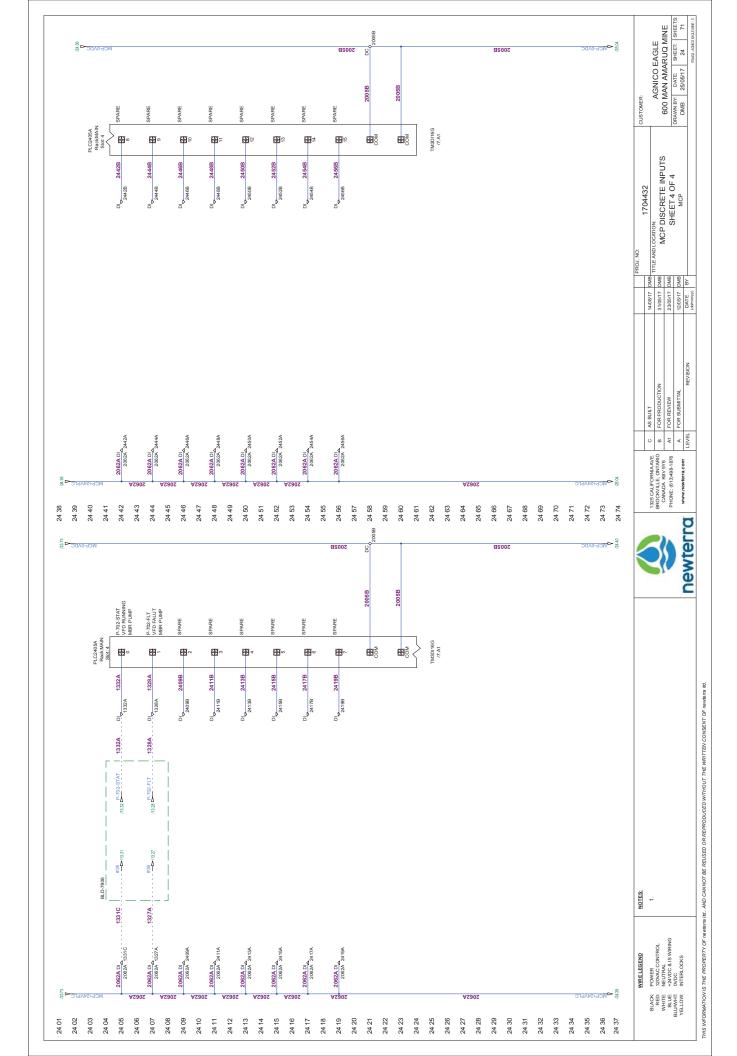

15 36 15 37

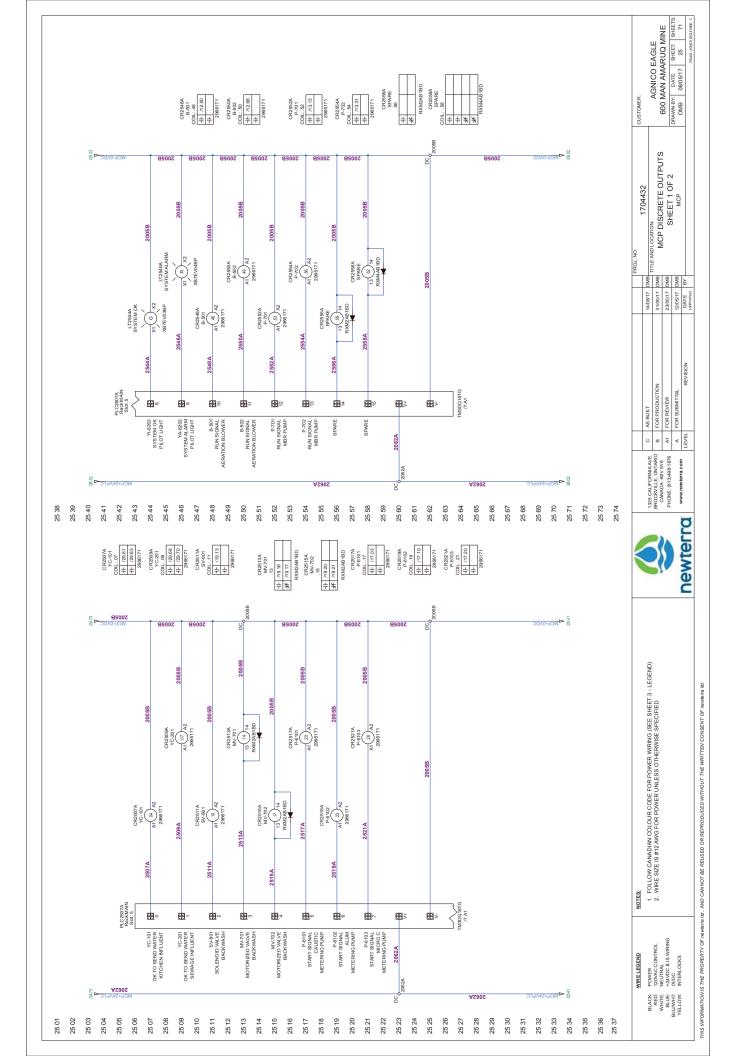


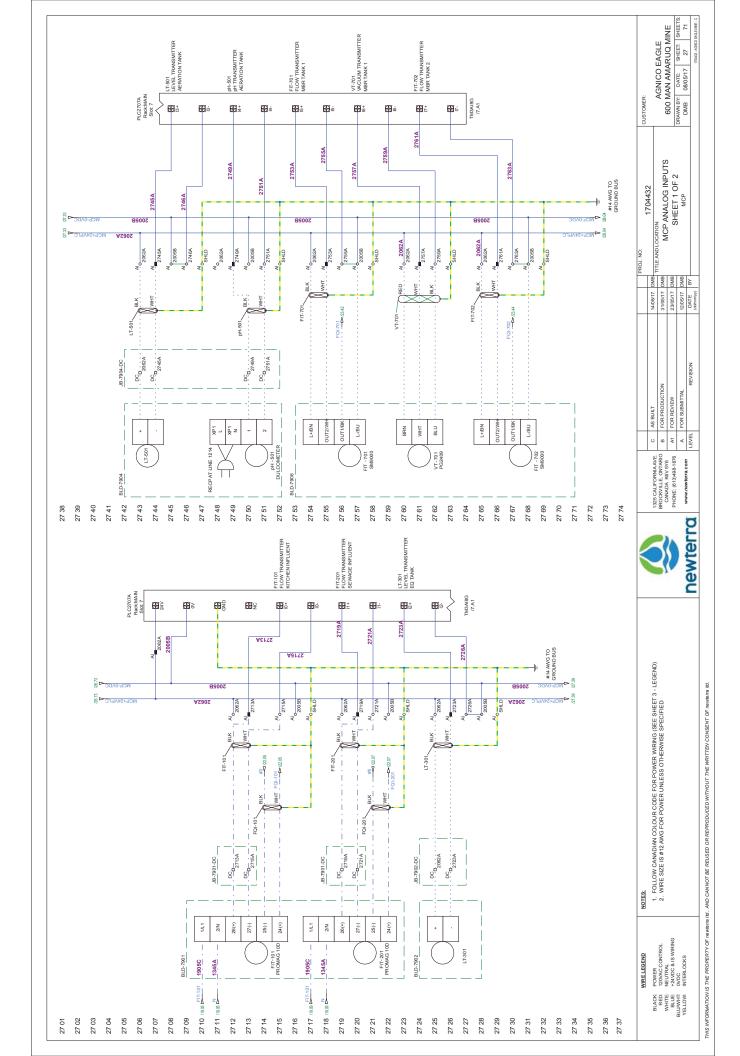



18 01	18 38	
18 02	18 39	
18 03	18 40	
18 04	18 41	
18 05	18 42	
18.06	18 43	
18 07	18 44	
18 08	18 45	
18 09	1846	
18 10	18 47	
1811	18 48	
1812	18 49	
1813	18 50	
1814	18.51	
1815	18 52	7
1816	18 53	>>/
1847	18 54	4
18.88	18 55	7,0
18.18	18 56	1/2
18 20	18.57	
1821	18 58	> 1
18 22	18 59	<i>''</i>
18 23	18 60	
18 24	18 61	
18 25	18 62	
18.26	18 63	
18.27	18 64	
18.28	18 65	
18 29	18 66	
18 30	18 67	
1831	18 68	
18 32	18 69	
18 33	18 70	
18 34	18.71	
18 35	18 72	
18.36	18 73	
18 37	18 74	
WRELEGEND NOTES: BLACK POWER 1.	0	
MITE AND SIS WIRING BILLIAM AND	CANADA KGV SY6 PHONE: (613)498-1876 A1 FOR REVIEW	310617 DMB SPARE SHEET 600 MAN AMARUQ MINE 230617 DMB SHETS
OVDC INTERLOCKS	A FOR SUBMITTAL EVEL	12.05/T DAME BY BLD-7906 DAME 29.05/T 18 71 TREVISION DATE BY BY BY BY BY BY BY B
		(dd/mm/yy)

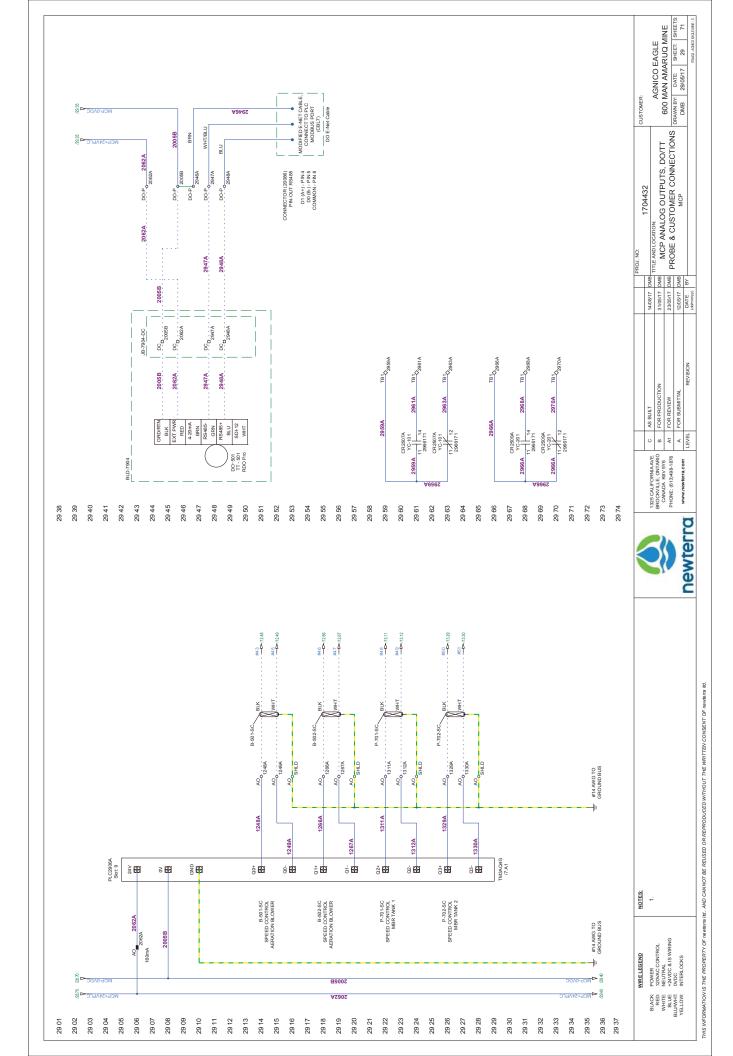

THIS INFORMATION IS THE PROPERTY OF newlens IIS. AND CANNOT BE REUSED OR REPRODUCED WITHOUT THE WRITTEN CONSENT OF newlens IIS.





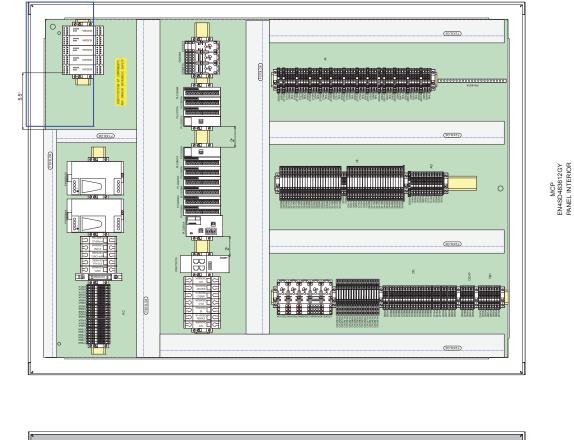






														7	>>/		7,0	1/4			·/																PROJ. NO: 1704432 CUSTOMER.
30.38	30.39	30 40	30.41	30.42	30 43	30 44	30.45	30 46	30.47	30.48	30 49	30 80	30.51	30.62	30.53	30.54	30 55	30 56	30 57	30.58	30 59	30 60	30 61	30 62	30 63	30 64	30 65	30 66	30 67	30 68	30 69	30.70	30.71	30 72	30.73	30 74	1110000
30.01	30 02	30 03	30 04	30.05	30.06	30 07	30.08	30 06	3010	30.11	30 12	3013	30.14	3015	3016	30.17	7,0,	3019	30.20	3021	30.22	30 23	30 24	30.25	30.26	30.27	30.28	30 29	30.30	30.31	30.32	30.33	30.34	30.35	30.36	30.37	WIRE LEGEND NOTES.

newterra


| HAGBYT| DAMB | TITLE AND LOCATION | TOTAL STATE | TOTAL SAND LOCATION | TOTAL SAND LOCATION | TOTAL SAND LOCATION | TOTAL SAND LOCATION | MCP | DAMB LOCATION | DAMB LOCATIO

AGNICO EAGLE
600 MAN AMARUQ MINE
DRAWN BY: DATE: SHEETS.
DMB 28/05/17 30 71

THIS INFORMATION IS THE PROPERTY OF NEWBITTS IN. AND CANNOT BE REUSED OR REPRODUCED WITHOUT THE WRITTEN CONSENT OF NEWBITTS III.

POWER
120VAC CONTROL
NEUTRAL
+24VDC & IS WIRING
0VDC
INTERLOCKS

BLACK:
RED:
WHITE:
BLUE:
BLUWHT:
YELLOW:

SYSTEMAANDA SYSTEMAANDA VICTORIA XINTENDARIA

> V.Zgesh Xurrivosar

INTRINSICALLY SAFE WIRING INSIDE

₩CP

CMETus PANEL DATA LABEL

NOTES:

MIRE LEGEND

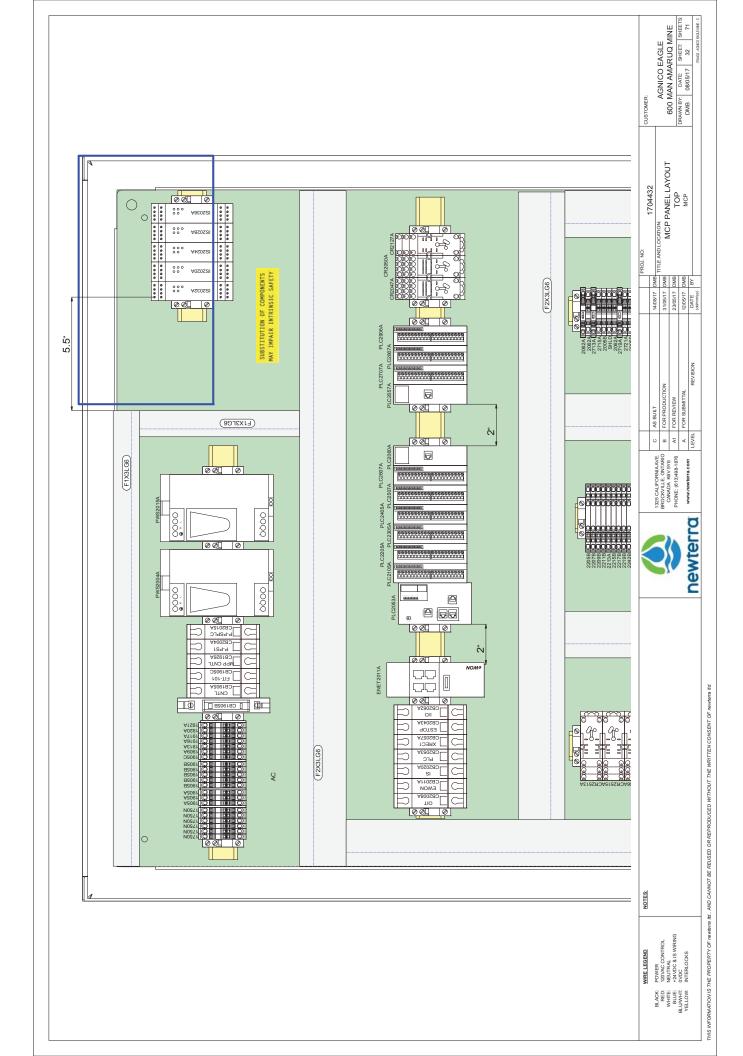
POWER
120VAC CONTROL
NEUTRAL
+24VDC & IS WIRING
0VDC
INTERLOCKS

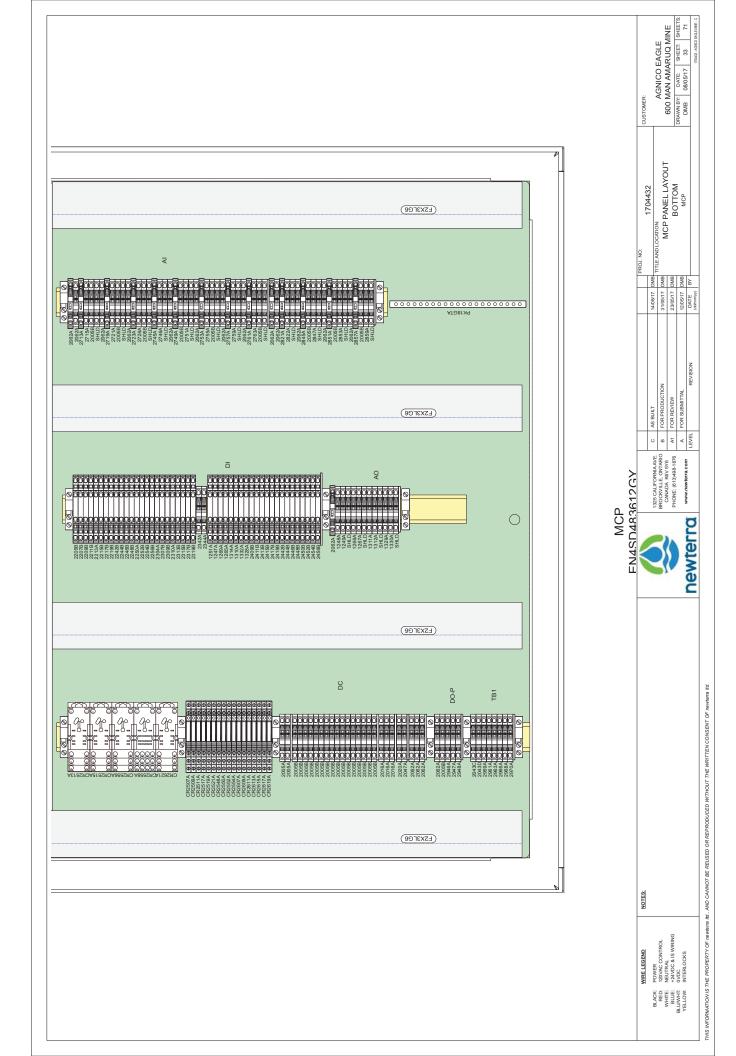
BLACK: RED: WHITE: BLUWHT: YELLOW:

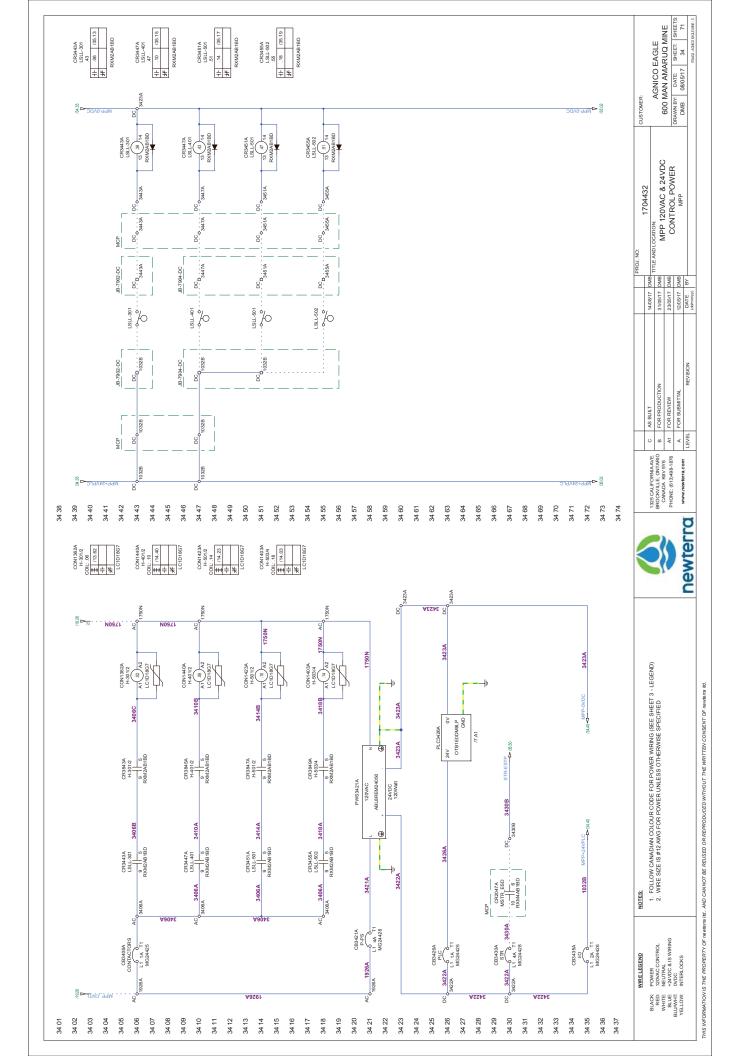
PANEL OUTER DOOR

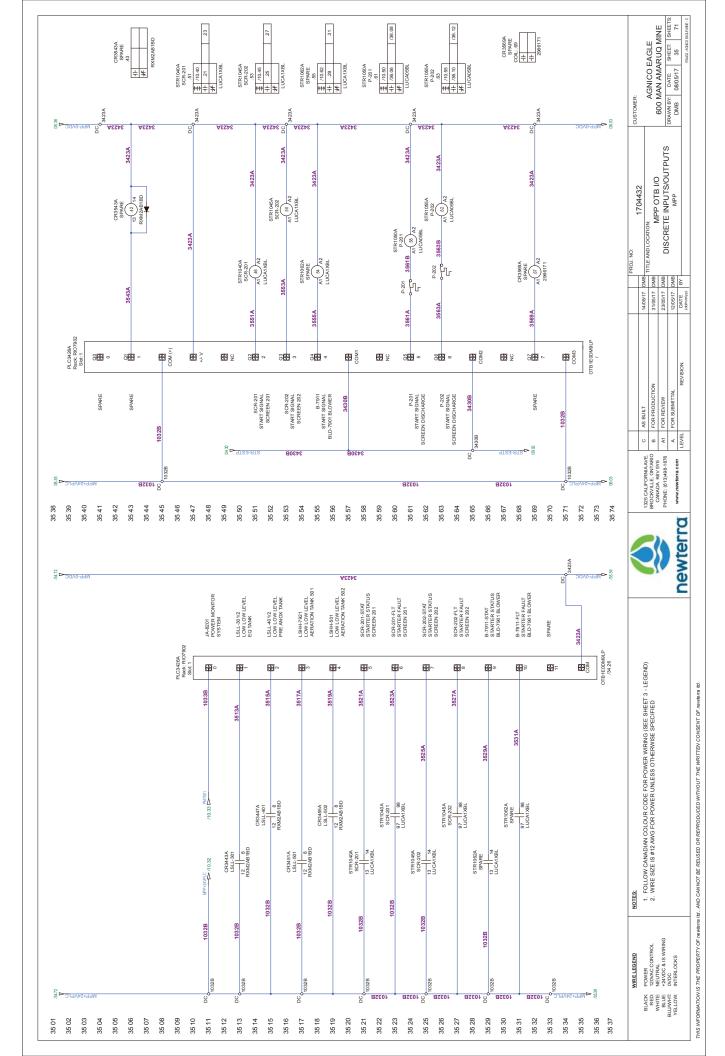
1.800.420.4056

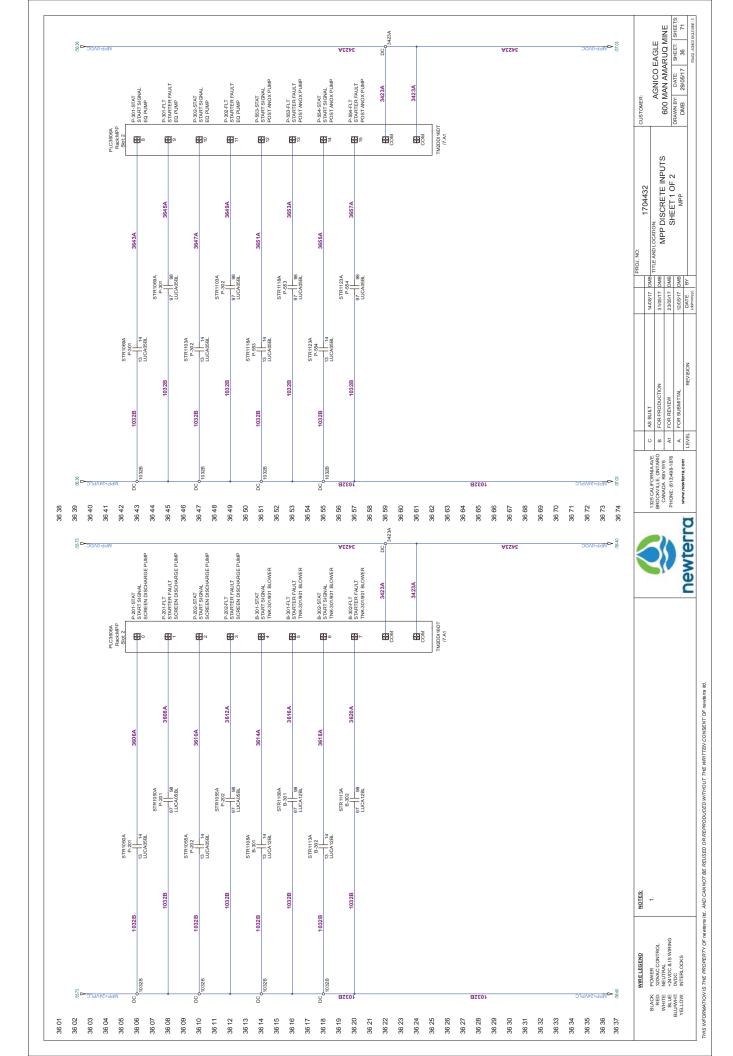
newterra

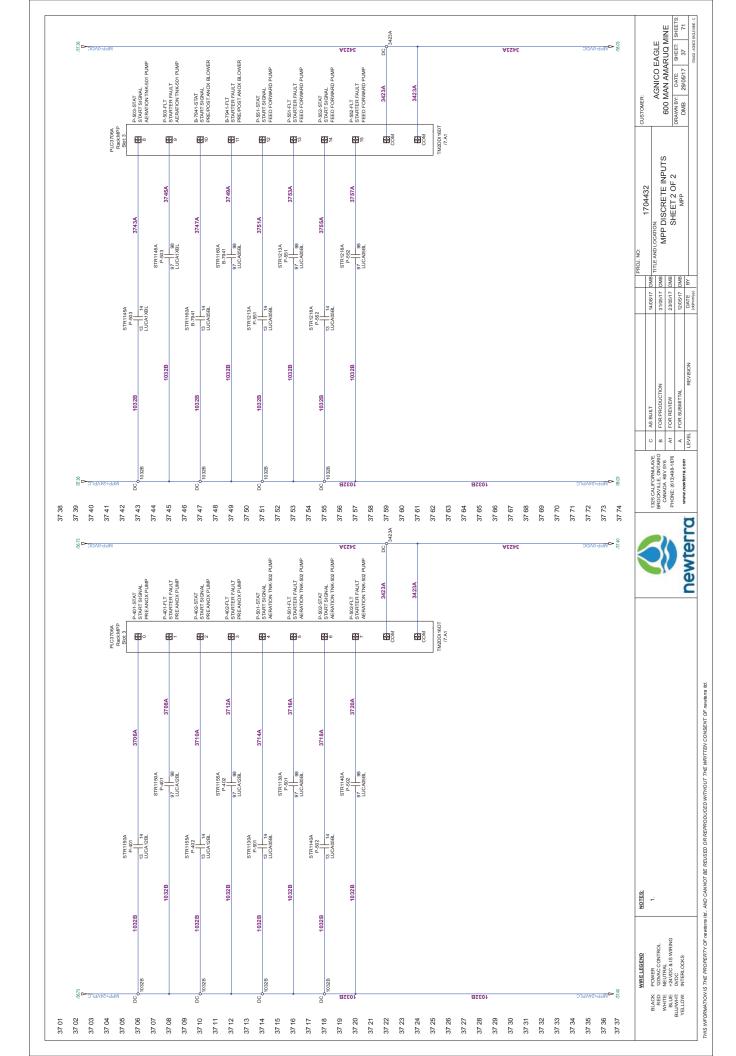

newterra

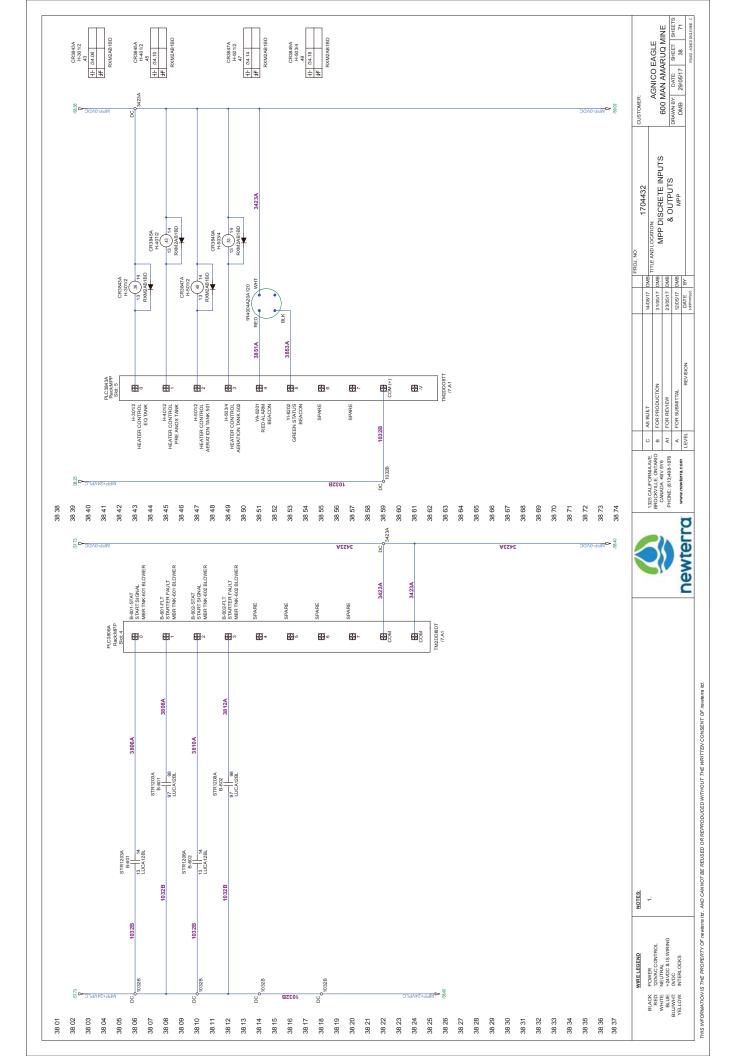

1325 CALIFORNIAAVE. C AS BU
BROCKVILLE, OVITARIO
CANADA KGV 5V6
PHONE: (613)498-1876
A1 FOR R

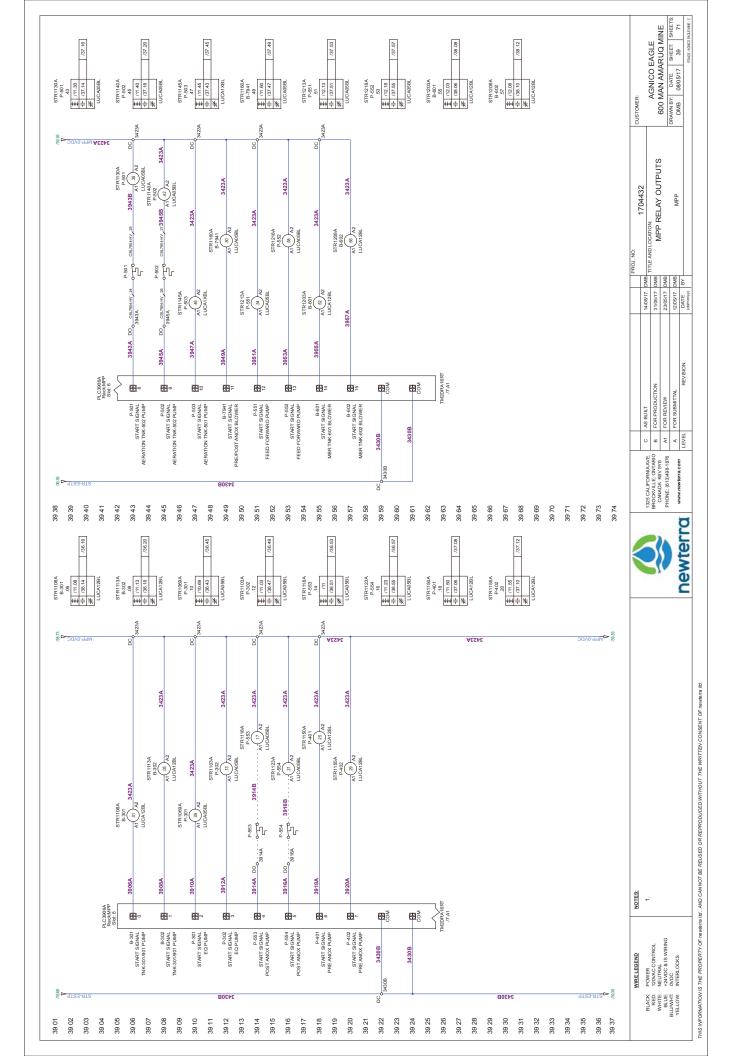

PROJ. NO:	1704432	TITLE AND LOCATION			MCP	
	DAAD	Om C	DMB	DMB	DMB	β
	44 D 8/17 D M ID	100	31/05/17 DMB	23/05/17 DMB	12,05/17 DMB	(dd/mm/yy)
	TILL AS BILLT		FOR PRODUCTION	A1 FOR REVIEW	FOR SUBMITTAL	REVISION
	C)	В	14 41	4	LEVEL
		AAVE	TARIO	3-1876		


AGNICO EAGLE
600 MAN AMARUQ MINE
DRAWN BY: DATE: SHEETS
DMB 08/05/17 31 71


THIS INFORMATION IS THE PROPERTY OF newserra IId.. AND CANNOT BE REUSED OR REPRODUCED WITHOUT THE WRITTEN CONSENT OF newterra IId.







														イ	>>	¹	7,00	1/1			"																	14.08/17 DMB TITLE AND LOCATION.
40.38	40 39	4040	4041	40 42	4043	40 44	4045	4046	40 47	40 48	40 49	40 50	40 51	40 52	40 53	40 54	40 55	40 56	40 57	40 58	40 59	40 60	40 61	40 62	40 63	40 64	40 65	40 66	40 67	40 68	40 69	40 70	40 71	40 72	40 73	40 74		1325 CALIFORNIAAVE. C AS BUILT
														イ	<i>>></i> /	in the second	40,	1/4/			//																NOTES	NOTES. 1. FOLLOW CANADIAN COLOUR CODE FOR POWER WIRING (SEE SHEET 3 - LEGEND)
40 01	40 02	40 03	40 04	40 05	40 06	40 07	40 08	40 09	40 10	40 11	40 12	40 13	40 14	40 15	40 16	40 17	40 18	40 19	40 20	40 21	40 22	40 23	40 24	40 25	40 26	40 27	40 28	40 29	40 30	40 31	40 32	40 33	40 34	40 35	40 36	40 37	MR	BLACK: POWER

De

FOLLOW CANADIAN COLOUR CODE FOR POWER WIRING (SEE SHEET 3 - LEGEND)
 WIRE SIZE IS #12 AWG FOR POWER UNLESS OTHERWISE SPECIFIED

BLACK POWER
RED. 120%CONTROL
WHITE NEUTRAL
BLUE +24/DC & IS WIRING
BLUMHT: 0VDC
YELLOW: INTERLOCKS

1325 C BROCK CAN PHON	www	
	ewterra	

170452 - AGNOO BAGLE MINE - C	170440			0	REVISION	LEVEL
1				DATE BY	MOIGINGO	10/01
DMR 08/05/17 40 71	VAIE: SH	DMR 08/05/17	MPP	12,05/17 DMB	FOR SUBMITTAL 12	<
800 MAN AMAROG MINE	AMAK	DOU IMAIN		23/05/17 DMB	FOR REVIEW 23	A1
GLE	AGNICO EAGLE	AGN		31/05/17 DMB	FOR PRODUCTION 3:	В
L	1		INDI OCATION:	MU /1/80/	AS BUILT	ی
			9	44 MB/47 DA4		