

Photo: Sample 17-QR-06

Photo: TIA Road looking north. Sample location for 17-QR-07

Photo: Large basalt boulders with abundant hematite. At curb of TIA road between 17-QR-07 and 17-QR-08 sampling locations

Photo: End of TIA road construction at time of monitoring and sampling location for split duplicate pair 17-QR-08 and 17-QR-09

Photo: Explosive facility looking northwest. Sampling location of 17-QR-10

Photo: Sample 17-QR-10

Photo: Pale cream highly altered rock (not sampled)

Sample ID	Date	Time	Area	Bulk	Fines	Coc	ordinates (W	G84)	Sampling Comment	Description of Sampling Point	Description of rock types encountered in	Sulphides	Fizz	Color of fines	Rinse pH	Rinse EC	SFE?
				Sample Tag #	Sample Tag #	Latitude	Longitude	Elevation (m)			arou					uS/cm	1
17-QR-01	1-Aug-17	17:05	Airstrip (south apron)	2851	2852	68.155082	-106.617	39	Difficult to sample fines, bulk grain size distribution may not be representative (biased toward coarser fraction)	Center of apron, next to small berm and small rock stockpiles	Dark green basalt (mafic metavolcanic) with hematite veins, some carbonate veins, few samples with K-feldspar veins, some sericite alteration	Mostly <1%, some fragments with euhedral pyrite crystals (1- 5%)	Strong	Light pale grey (dark- green on wet samples)	9.2	460	Yes
17-QR-02	3-Aug-17	9:05	Tailings Catchment (West)	2858	2859	68.141671	-106.5886	24		Northeast corner of catchment berm	Mostly basalts with abundant hematite and rare-K-feldspar; rare quartz vein	Mostly none, few fragments with <1%	Strong	Light pale grey	9	560	Yes
17-QR-03	3-Aug-17	9:15	Tailings Catchment (East)	2860	2861	68.141313	-106.5859	27		Southeast corner of catchment berm	Mostly basalts with some hematite, some K- feldspar/carbonate veins; rare vein quartz	None	Moderate	Light pale grey	8.9	410	
17-QR-04	3-Aug-17	10:40	Cyanide Reagant Pad	2862	2863	68.139038	-106.5734	39		Northeast corner of berm	Mostly basalts with some hematite, some K- feldspar/carbonate veins, some carbonate veins, and rare epidote veins; rare vein quartz	None	Strong	Light pale grey	9	410	Yes
17-QR-05	3-Aug-17	11:45	TIA Road	2864	2865	68.122311	-106.5518	41		From pad on the east side of the road, ~450m south og 16-QR-04	Basalts with frequent K-feldspar-carbonate- quartz veins, some hematite (abundant hematite on west side of road), rare epidote veins	Mostly none, some sulphides associated with veins and lesser with hematite (2-4%)	-	Light pale grey	8.9	390	
17-QR-06	3-Aug-17	14:05	TIA Road	2866	2867	68.118688	-106.5468	36		From east side of the road, close to a pad with a container, ~450m south of 17-QR-05	Mostly basalts with frequent K-feldspar- carbonate veins (rare quartz in veins), some hematite, some epidote veins	None	-	Light pale grey	8.8	230	
17-QR-07	3-Aug-17	14:45	TIA Road	2868	2869	68.114335	-106.5419	40		West side of road, ~520m from 17-QR-06	Mostly basalt (green to dark green) with hematite, some K-feldspar-carbonate veins, some carbonate veins, rare epidote veins; rare vein guartz	Mostly none, some basalt with pyrite crystals (1-3%)	Strong	Light brown to pale grey	8.8	390	Yes
17-QR-08	3-Aug-17	15:20	TIA Road	2870	2871	68.110532	-106.5479	29		End of road on pad (southwest corner), ~500m from 17-QR-07	Mostly basalt, abundant hematite (concentrated in last curb of road), some K- feldspar, some to abundant carbonat eveins; rare vein quartz	None	Strong	Brown to light grey	9	280	
17-QR-09	3-Aug-17	15:30	TIA Road	2872	2873	68.110532	-106.5479	29	Duplicate of 17-QR-08	End of road on pad (southwest corner), ~500m from 17-QR-07	Mostly basalt, abundant hematite (concentrated in last curb of road), some K- feldspar, some to abundant carbonat eveins; rare vein guartz	None	Strong	Brown to light grey	9	260	
17-QR-10	3-Aug-17	17:10	Explosive facility pad	2874	2875	68.127471	-106.5522	37		Southwest corner of pad	Mostly basalt with some hematite, abundant carbonate veins, some K-feldspar, some epidote veins; rare vein quartz; rare baked metavolcanics (metasediments?)	Mostly none, some fragments with 2-3% pyrite	Strong	Pale light grey	9.1	150	

^{*}Qualifiers -- Rock types: Mostly (>80% of surveyed rocks), lesser (15-20%). Minerals/features/textures: abundant (>50% of surveyed rocks), frequent (30-50%), some (15-30%), few (5-15%), rare (<5%)

Description of rock types encountered in area*

Client: SRK CONSULTING

Page 1 of 6 Mostly <1%, some fragments with euhedral pyrite crystals (1-5%)

Mostly none, few fragments with <1%

Table 1: ABA Test Results for project HOPE BAY

Maxxam Sample No	Sample ID	Paste pH	CO2	CaCO3 Equiv.	Total S	HCI Extractable Sulphur	Sulphide Sulphur (by diff.)	Acid Generation Potential	Mod. ABA Neutralization Potential	Fizz Rating	Net Neutralization Potential	Neutralization Potential Ratio	
	Units	pH Units	wt%	Kg CaCO3/T	wt%	wt%	wt%	Kg CaCO3/T	Kg CaCO3/T	N/A	Kg CaCO3/T	N/A	
RV7495	2851	8.54	3.20	72.7	0.15	0.02	0.13	4.1	90.8	STRONG	86.7	22.1]
RV7497	2858	8.53	3.89	88.4	0.15	0.02	0.13	4.1	107	STRONG	103	26.1	
RV7499	2860	8.70	3.34	75.9	0.16	0.05	0.11	3.4	94.8	STRONG	91.4	27.9	
RV7501	2862	8.66	3.60	81.8	0.16	0.04	0.12	3.8	103	STRONG	98.7	27.0	
RV7503	2864	8.54	6.19	140.7	0.19	0.03	0.16	5.0	160	STRONG	-feldspar, some epidote	ne, some fragments with 2	2-3% pyrite
* Qualifiers> Ro	DUP-2864	8.62	6.07	138.0	0.18	0.03	0.15	4.7	160	STRONG	155	34.0]
RV7507	2866	8.55	5.26	119.6	0.11	0.02	0.09	2.8	139	STRONG	136	49.6	
RV7509	2868	8.58	3.65	83.0	0.14	0.02	0.12	3.8	116	STRONG	112	30.5	
RV7511	DUP-2868	8.63	4.33	98.4	0.16	0.02	0.14	4.4	124	STRONG	119	28.1	
RV7513	2870	8.62	5.07	115.2	0.13	0.02	0.11	3.4	135	STRONG	131	39.6	
RV7515	2872	8.68	5.37	122.1	0.12	0.02	0.10	3.1	143	STRONG	140	46.0	
RV7517	2874	8.65	5.85	133.0	0.20	0.03	0.17	5.3	150	STRONG	145	28.3]
Detection Limits	•	N/A	0.08	1.8	0.02	0.01	0.02	0.6	0.1	N/A	0.1	0.1	
Maxxam SOP#		BBY0SOP-	LECO	BBY WI-00033	LECO	BBY0SOP-00010	BBY WI-00033	BBY WI-00033	BBY0SOP-00020	BBY0SOP-00	BBY WI-00033	BBY WI-00033	

Notes:

Lawrence, R.W. 1991. Acid Rock Drainage Prediction Manual

References:

Acid Generation Potential = Sulphide Sulphur (by diff.)*31.25

CaCO3 Equivalency = Carbonate Carbon (CO2)*(100/44)*10

Carbonate carbon (CO2; HCI direct method) by Leco.

Fizz Rating - Reference method used is based on NP method.

Net Neutralization Potential = (Modified ABA Neutralization Potential)-(Acid Generation Potential (S-S by diff))

Mod. ABA Neutralization Potential - MEND Acid Rock Drainage Prediction Manual, MEND Project 1.16.1b (pages 6.2-11 to 17), March 1991.

Neutralization Potential Ratio = (Neutralization Potential)/(Acid Generation Potential)

Paste pH - Field and Laboratory Methods Applicable to Overburdens and Minesoils, (EPA 600 / 2-78-054, March 1978).

HCI Extractable Sulphur is based on a modified version of ASTM Method D 2492-02

Sulphide Sulphur = (Total Sulphur)-(Sulphate Sulphur)

Total sulphur, total carbon & carbonate carbon (CO2; HCl direct method) by Leco.

Client: SRK CONSULTING Page 2 of 6 Description of rock types encountered in area*

Mostly <1%, some fragments with euhedral pyrite crystals (1-5%) Mostly none, few fragments with <1%

Table 2: ABA QAQC Test Results for project HOPE BAY

	Duplicate QC												
Maxxam Sample No	Sample ID	Paste pH Reported	Paste pH Dup	CO2 Reported	CO2 Dup	Total S Reported	Total S Dup	HCI Extractable Sulphur Reported	HCI Extractable Sulphur Dup	Mod. ABA Neutralization Potential Reported	Mod. ABA Neutralization Potential Reported Dup	Fizz Rating Reported	Fizz Rating Dup
	Units	pH Units	pH Units	wt%	wt%	wt%	wt%	wt%	wt%	Kg CaCO3/T	Kg CaCO3/T	N/A	N/A
RV7501 Dup	2862.00			3.60	3.71								
RV7507 Dup	2866.00					0.11	0.12						
RV7513 Dup	2870.00	8.62	8.66							135	137	STRONG	STRONG
RV7517 Dup	2874.00	8.65	8.75					0.03	0.02	150	feldspar, some epido	ne, some fragments with 2	STRONG
* Qualifiers> Ro	ock types: Mostly (>80% of surveyed rocks), lesser (15-	20%). Minerals/features/textu	res: abundant (>50% of s	surveyed rocks), fr	equent (30-	-50%), some	(15-30%), f	few (5-15%), ra	re (<5%)				·

RV/513 Dup	2870.00	0.02	0.00							135	137	STRUNG
RV7517 Dup	2874.00	8.65	8.75					0.03	0.02	150	feldspar, some epido	one, some fragments with
Qualifiers> R	ock types: Mostly (>80% of surveyed rocks), lesser (15-	-20%). Minerals/features/textu	ures: abundant (>50% of	surveyed rocks), fr	equent (30-	50%), some	e (15-30%), f	ew (5-15%), rar	re (<5%)			
	Reference Material QC]		-								
		Paste pH		CO2		Total S				Mod. ABA	1	
		rasie pri		CO2		TOTAL S				Neutralization		
	Units	pH Units		wt%		wt%				Kg CaCO3/T]	
	Onto	prionits		WC70		*****	J			11g 00000/1		
	Reference Material	_					_					
	ARD REF MAT GS311-1 (8763456) (2.45 wt%)				_	2.31						
	ARD Spike 2.37% CO2 (8859796) (2.39 wt%)		-	2.33								
	ARD-Paste pH 8.29 (8859855) (8.29 pH Units)	8.32									_	
	KZK-1ModS Slight (8859873) (58.9 Kg CaCO3/T)				_		_			58.8		
	ARD Ref Mat C&S (8763456) (0.16 wt%)				_	0.17						
	ARD Spike 2.37% CO2 (8859796) (2.39 wt%)			2.35			_					
	RS10 STD (8856790) (0.06 % S)						[0.07				
	ARD Ref Mat DBOHC (8856790) (0.27 wt%)]					[0.29				
	Blank QC											
	Method Blank	1		-	, !	<0.02						
	Method Blank			<0.08							_	
	Method Blank]								-0.3		

Description of rock types encountered in area*

Client: SRK CONSULTING

Page 3 of 6xtly <1%, some fragments with euhedral pyrite crystals (1-5%)

Mostly none, few fragments with <1%

Table 3: Aqua Regia Metals Test Results for project HOPE BAY

Maxxam	Sample ID	Мо	Cu	Pb	Zn	۸۵	Ni	Со	Mn	Fe	Ι Δς	U	Λ.,	Th	Sr	Cd	Sb
Sample No	Sample ID	IVIO	Cu	Pυ		Ag	l INI	CO	IVIII	re	As		Au	'''	SI	Cu	SD
Sample No																	ı
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm
RV7495	2851	0.6	180	1.8	63	<0.1	56.1	34.2	939	4.95	6.6	0.1	5.8	0.2	23	<0.1	0.2
RV7497	2858	0.4	139	2.2	87	<0.1	62.2	35.4	1150	5.45	4.2	<0.1	5.1	0.2	24	0.2	0.1
RV7499	2860	0.3	145	1.9	84	<0.1	59.0	34.6	1130	5.55	4.8	<0.1	16.1	0.2	18	0.1	0.1
RV7501	2862	0.4	143	1.6	92	<0.1	52.5	37.2	1280	6.74	par, some e		27.1	0.2	19	<0.1	<0.1
res/textures: abu		0.3	147	3.4	87	<0.1	61.7	39.2	1360	5.89	4.1	<0.1	4.8	0.1	25	0.2	0.1
RV7505	DUP-2864	0.4	118	3.3	89	<0.1	63.1	38.1	1340	5.88	3.8	<0.1	7.1	0.1	26	0.2	0.2
RV7507	2866	0.3	160	3.6	83	<0.1	67.2	36.3	1220	5.64	3.9	<0.1	7.1	0.4	23	0.2	0.1
RV7509	2868	0.3	144	2.4	72	<0.1	57.9	33.6		5.29		<0.1	5.2	0.4		0.1	<0.1
RV7509 RV7511	DUP-2868	0.4	133	2.4	76	<0.1	56.8	35.0	1140 1150	5.42	3.9 4.6	<0.1	3.8	0.2	21 24	0.2	<0.1
RV7513	2870	0.3	138	2.0	70	<0.1	75.1	38.5	1210	5.83	6.2	<0.1	4.6	0.3	28	0.1	<0.1
RV7515	2872	0.3	144	1.9	72	<0.1	74.5	37.2	1190	5.54	5.8	<0.1	3.8	0.2	28	<0.1	<0.1
RV7517	2874	0.3	143	3.3	91	<0.1	72.4	41.5	1320	6.09	6.1	<0.1	6.7	0.2	31	0.2	0.1
QAQC	2011	0.0	110	0.0	01	-0.1	72.1	11.0	1020	0.00	0.1	-0.1	0.7	0.2	01	0.2	0.1
Duplicates	†																
RV7509 Dup	2868	0.4	144	2.1	73	<0.1	58.8	36.4	1150	5.33	4.1	<0.1	4.9	0.4	22	0.1	0.1
Blanks	•	•	•					•	•		•			•			
Method Blank										<0.01							
Method Blank													<0.5				
Method Blank		<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1		<0.5	<0.1		<0.1	<1	<0.1	<0.1
Reference Mate																	
	EA (%) (8917343)									22.08							
True Values RE										23.51							
Percent Difference	` ,									-6.1							
Reference Mate																	
	A PPB (8917354)												57.3				
	F OREAS45EA PPB												53				
Percent Difference	,												8.1				
Reference Mate		1 40	7444				070.5		104		1 44 7	1 40		10			
	A PPM (8917370)	1.6	711.1	14.4	32	0.3	379.5	50.3	401		11.7	1.9		10	4	<0.1	0.3
	F OREAS45EA PPM	1.39	709	14.3	28.9	0.26	381	52	400		10.3	1.73		10.7	3.5	0.02	0.2
Percent Difference	,	15.1	0.3	0.7	10.7	15.4	-0.4	-3.3	0.3		13.6	9.8		-6.5	14.3	-100.0	50.0
Reference Mate										2.00							
DS 11 % (89173										2.99 3.21							
True Values DS Percent Difference										-6.8							
Reference Mate	,									-0.0							
DS 11 PPB (891													110.5				
True Values DS													79				
Percent Difference													39.9				
Reference Mate	,												00.0				
DS 11 PPM (891		13.8	150.1	134.7	341	1.5	76	12.4	971		39	2.7		7.7	63	2.3	76
True Values DS		13.9	156.0	138.0	345.0	1.7	81.9	14.2	1055.0		42.8	2.6		7.7	67.3	2.4	7.2
Percent Difference		-0.7	-3.8	-2.4	-1.2	-12.3	-7.2	-12.7	-8.0		-8.9	4.2		0.7	-6.4	-3.0	955.6
Detection Limits	` ,	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.1	0.5	0.1	1	0.1	0.1
Maxxam SOP #		1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX

Bi	V	Ca	Р	La	Cr	Mg	Ва	Ti	В	Al	Na	K	W	Hg	Sc	TI	S	Ga	Se	Te
																				1
ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	nnm	ppm	ppm
<0.1	126	3.50	0.032	3	152	2.15	4	0.285	<20	2.62	0.016	0.02	<0.1	<0.01	6.7	<0.1	0.13	ppm 7	<0.5	>1
<0.1	131	4.34	0.031	2	167	2.55	4	0.300	<20	3.04	0.020	0.02	<0.1	<0.01	8.1	<0.1	0.13	7	<0.5	<1
<0.1	135	3.86	0.031	3	151	2.21	4	0.307	<20	2.82	0.016	0.02	<0.1	<0.01	7.9	<0.1	0.17	7	0.6	<1
<0.1	179	4.19	0.040	3	123	2.30	11	0.299	<20	3.16	0.017	0.02	<0.1	<0.01	11.7	<0.1	0.12	10	<0.5	<1
<0.1	140	6.06	0.029	2	155	2.88	4	0.272	<20	3.27	0.010	0.03	<0.1	<0.01	9.6	<0.1	0.19	8	<0.5	<1
<0.1	146	5.84	0.028	3	155	2.89	5	0.279	32	3.27	0.013	0.03	<0.1	<0.01	9.6	<0.1	0.18	7	<0.5	<1
<0.1	133	5.35	0.030	3	159	2.53	11	0.247	<20	3.05	0.014	0.04	<0.1	<0.01	9.1	<0.1	0.12	7	<0.5	<1
<0.1	126	4.45	0.027	2	143	2.27	7	0.273	<20	2.82	0.017	0.02	<0.1	<0.01	7.3	<0.1	0.14	7	0.7	<1
<0.1	131	4.59	0.030	3	150	2.29	6	0.284	<20	2.88	0.017	0.03	<0.1	<0.01	7.4	<0.1	0.14	7	<0.5	<1
<0.1	138	5.15	0.031	3	193	2.96	5	0.233	<20	3.32	0.012	0.03	<0.1	<0.01	9.6	<0.1	0.12	8	<0.5	<1
<0.1	131	5.47	0.030	3	190	2.81	4	0.234	<20	3.16	0.012	0.03	<0.1	<0.01	9.1	<0.1	0.12	7	0.6	<1
<0.1	146	5.88	0.030	3	177	2.98	5	0.230	<20	3.41	0.010	0.03	<0.1	<0.01	11.4	<0.1	0.23	8	0.7	<1
<0.1	129	4.51	0.028	3	150	2.26	6	0.286	<20	2.83	0.017	0.03	<0.1	<0.01	7.4	<0.1	0.15	7	<0.5	<1
-0.1	123	7.01	0.020		100	2.20		0.200	120	2.00	0.017	0.00	10.1	١٥.٥١	7.7	٧٥.١	0.10	,	٧٥.٥	
		<0.01	<0.001			<0.01		<0.001		<0.01	<0.001	<0.01					<0.05			
<0.1	<2			<1	<1		<1		<20				<0.1	<0.01	<0.1	<0.1		<1	<0.5	<0.2
																	_			
		0.04	0.026			0.09		0.098		3.44	0.021	0.06					<0.05			
		0.036	0.029			0.095		0.106		3.32	0.02	0.053					0.036			
		11.1	-10.3			-5.3		-7.5		3.6	5.0	13.2					-100.0			
													1							
0.3	308			7	854		144							<0.01	76.8	<0.1		13	1.3	<0.2
0.26	303			6.57	849		148							0.34	78	0.072		11.7	0.63	0.07
15.4	1.7			6.5	0.6		-2.7							-100.0	-1.5	-100.0		11.1	106.3	-100.0
						_														
		0.99	0.065			0.82		0.088		1.22	0.072	0.4					0.26			
		1.06	0.070			0.85		0.098		1.13	0.069	0.40					0.28			\blacksquare
		-6.9	-7.3			-3.5		-9.8		8.1	3.7	0.0					-8.3			
12.4	47			17	55		409						2.1	0.24	2.8	4.8		5	2.2	4
12.2	50.0			18.6	61.5		417.0						2.9	0.3	3.1	4.9		4.7	1.9	4.6
1.6	-6.0			-8.6	-10.6		-1.9						-27.6	-20.0	-9.7	-2.0		6.4	15.8	-12.3
0.1	2	0.01	0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX

Table 3: MEND SFE Test Results for project HOPE BAY

Maxxam

Maxxam Analytics 4606 Canada Way, Burnaby, BC Canada V5G 1K5 Tel: 604 734 7276 Fax: 604 731 2386 www.maxxam.ca

Description of rock types encountered in area*

SRK CONSULTING Client:

Page 4 of 6 Mostly <1%, some fragments with euhedral pyrite crystals (1-5%)

Mostly none, few fragments with <1%

Weight Uside Weight Uside Weight Uside Weight Uside Weight Weigh	Maxxam Sample No	Sample ID	Sample	Volume	pН	EC	SO4	Acidity to	Acidity to	Total Alkalinity	Bicarbonate	Carbonate	Hydroxide	Dissolved	Nitrate-N	Nitrite-N	Total	Total	Hardness	Dissolved
Part	•	•	Weight	Used				pH4.5		-			-	Chloride			Ammonia	Dissolved	CaCO3	Aluminum
Winds			110.3.1					J	p											
RV748		Units	g	ml	pH Units	uS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	
MYT919 2893 290 750 500 178.5 29.2 40.5 40.5 29 31 40.5 40.5 11.7 2.0 40.05 40.05 30.0 31.8 52.20	RV7496	2852	250	750	9.51	154.5	15.8	<0.5	<0.5	30	37	<0.5	<0.5	13.7	8.0	< 0.05	0.158	74	19.1	0.321
March	RV7498		250	750	9.13	146.5	19.6	<0.5	<0.5	26	32	<0.5	<0.5	10.1	0.9	<0.05	0.116	82	22.2	0.249
Consider	RV7502	2863	250	750	8.00	178.5	29.2	<0.5	<0.5	25	31	<0.5	<0.5	11.7	2.0	<0.05	0.010	100	31.8	0.280
Counting	RV7510	2869	250	750	8.45	178.1	26.0	<0.5	<0.5	32	38	<0.5	<0.5	10.9	1.7	<0.05	< 0.005	96	40.5	0.258
Duplicates No. Str. St				•		•						Mostly basalt wi	t Mostly none, so	me fragments w	rith 2-3% pyrite		,			
RV7912 DUP-2869 250 750 8.35 185.6 27.9 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	* Qualifiers> Rock types: M	 lostly (>80% of surveyed ro	cks), lesser (15-2	0%). Minerals	/features/text	ures: abundant (>	>50% of surv	eyed rocks), fred	quent (30-50%), so	ome (15-30%), few (5-15%), rare (<5%)	•		J						
RV7912 DUP-2869 250 750 8.35 185.6 27.9 <0.5 <0.5 35 43 <0.5 <0.5 11.5 1.8 <0.05 <0.006 100 42.6 0.272	Duplicates			-				-												
## Note 1	RV7512	DUP-2869	250	750	8.35	185.6	27.9	<0.5	<0.5	35	43	<0.5	<0.5	11.5	1.8	< 0.05	< 0.005	100	42.5	0.272
Blanks	RV7496 Dup	2852																		0.298
Method Blank	RV7512 Dup	DUP-2869						<0.5	<0.5					11.3		< 0.05		100		
Method Blank Metho	Blanks		•	•	•	•		•			•	•	•	•	•		•	•		
Method Blank	Method Blank		0	750	5.81	1.0	<0.5	<0.5	<0.5	0.7	0.8	<0.5	<0.5	<0.5	<0.2	<0.05	<0.005	<10	<0.50	<0.00050
Method Blank Metho	Method Blank																			<0.00050
Method Blank Metho	Method Blank							<0.5	<0.5											
Method Blank	Method Blank									0.8	1.0	<0.5	<0.5							
Method Blank	Method Blank									<0.5	<0.5	<0.5	<0.5							
Method Blank	Method Blank													<0.5						
Method Blank	Method Blank						<0.5													
Method Blank	Method Blank																	<10		
Method Blank	Method Blank																< 0.005			
MS HZO 10 ppb (8772632) % recovery Reference Material Ye 3. W-Van (8773630) % recovery 99.9 99.9 99.9 99.8 99.9 99.9 99.8	Method Blank															<0.005				
Seference Material Seferen	Reference Material															0.000				
Seference Material Seferen	MS H2O 10 ppb (8772532)	% recovery																		104.27100
Reference Material high W Soln's 8 (8773258) % recovery 9.8.8.0252 9.8.8.8.252 9.8.8.8.252 9.8.8.8.252 9.8.8.8.252 9.8.8.8.252 9.8.8.8.252 9.8.252 9.8.2	Reference Material		•	•									•	•	•		•			
Soln' B (8773258) % recovery 98.80252 98.78151 98.78253 98.78151 98.78253 98.78151 98.78253 98.78151 98.78151 98.78151 98.78151 98.78151 99.78151	ty 8.3 W-Van (8773040) % re	ecovery							99.9											
Seference Material	Reference Material		•	•	•	•	•	•			•	•	•	•	•		•	-		
Reference Material ide W K-Van (8773449) % recovery 99.50500 106.290000 106.290000 106.290000 106.290000	nity W Soln' B (8773258) % r	ecovery																		
Index Marked Ma	nity W Soln' B (8773263) % r	ecovery								98.78151										
Reference Material ate W K-Van (8773450) % recovery 9 99.50500 99.50500 9 90.50500 9 90.50500 9 90.50500 9 90.50500 9 90.50500 9 90.50500 9 90.50500 9 90.50500 9 90.50500 9 90.50500 9 90.5050 9 90.50500 9 90.50500 9 90.50500 9 90.50500 9 90.50500 9 90.5050	Reference Material			•			•						•	•	•					
Seference Material Seferen	ide W K-Van (8773449) % re	ecovery												106.29000						
Reference Material S 100 - Van (8774017) % recovery S S S S S S S S S	Reference Material	-																		<u> </u>
S 100 - Van (8774017) % recovery	ate W K-Van (8773450) % r	ecovery					99.50500													
Reference Material monia-Van (8774430) % recovery Reference Material Reference Material Reference Material Water-Van (8774941) % recovery Detection Limits N/A 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	Reference Material		•	-				•			•		•				•			
monia-Van (8774430) % recovery 100.00000 100.	S 100 -Van (8774017) % rec	<mark>ov</mark> ery																100.0		
Reference Material water-Van (8774941) % recovery Detection Limits N/A 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	Reference Material																			
e Water-Van (8774941) % recovery 93.10000 93.10000 Detection Limits N/A 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.02 0.005 0.005 10 0.50 0.0050		overy															100.00000			
Detection Limits N/A 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Reference Material																			
	e Water-Van (8774941) % re	covery																		
Mayyam SOP # RRYOSOP_000kY	Detection Limits							0.0		0.0							0.000		0.00	
100001-00004 100001	Maxxam SOP #		BBY0SOP-000	3Y0SOP-000	BY0SOP-000	BBY0SOP-0000	Y6SOP-000	BY6SOP-0003	3BY6SOP-00037	BBY6SOP-00026	BY6SOP-0002	BY6SOP-0002	BY6SOP-0002	BY6SOP-000	BY6SOP-0001	BBY6SOP-0001	BY6SOP-000	Y6SOP-0000	3BY WI-0003	BY7SOP-0000

Notes:

Calculated parameter based on the concentration of Nitrate plus Nitrite(NO2+NO3) minus Nitrite(NO2)

References:

Hardness = (Calcium*2.497) + (Magnesium*4.118)

Dissolved Antimony	Dissolved Arsenic	Dissolved Barium (Ba)	Dissolved Beryllium	Dissolved Bismuth	Dissolved Boron (B)	Dissolved	Dissolved Cadmium (Cd)	Dissolved	Dissolved	Dissolved Cobalt (Co)	Dissolved Copper (Cu)	Dissolved Lanthanum	Dissolved Iron (Fe)	Dissolved Lead (Pb)	Dissolved Lithium (Li)	Dissolved Magnesium	Dissolved	Dissolved	Dissolved Molybdenu	Dissolved Nickel (Ni)	Dissolved Potassium
(Sb)	(As)	Bariuiii (Ba)	(Be)	(Bi)	DOIOII (D)	Cesium (Cs)	Cadmium (Cd)	Calcium (Ca)	Chromium (Cr)	Cobait (Co)	Copper (Cu)	(I a)	iron (Fe)	Lead (Pb)	Littiiuiii (Li)	(Ma)	(Mn)	(P)	m (Mo)	NICKEI (NI)	(K)
mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
0.000263	0.00110	0.000746	<0.000010	<0.0000050	0.144	<0.000050	0.0000380	5.72	0.00017	0.000173	0.00409	<0.000050	0.0249	0.0000630	0.00087	1.17	0.00269	0.0122	0.00335	0.000137	2.53
0.000224	0.00137	0.000539	<0.000010	<0.0000050	0.149	<0.000050	<0.0000050	6.67	0.00011	0.0000240	0.000858	<0.000050	0.0031	0.0000140	0.00065	1.34	0.000731	0.0066	0.00353	0.000100	2.58
0.000070	0.00129	0.00259	<0.000010	<0.0000050	0.107	<0.000050	<0.0000050	8.72	0.00010	0.000111	0.00145	<0.000050	0.0662	0.0000600	0.00091	2.43	0.00303	0.0036	0.00448	0.000079	1.83
0.000156	0.000942	0.00190	<0.000010	<0.0000050	0.109	<0.000050	<0.0000050	12.0	<0.00010	0.0000370	0.00204	<0.000050	0.0039	0.0000380	0.00129	2.54	0.00254	0.0081	0.00301	0.000079	1.30
0.000137	0.000941	0.00198	<0.000010	<0.0000050		<0.000050	<0.0000050	12.5	0.00025	0.0000900	0.00276	<0.000050	0.0859	0.0000550	0.00130	2.73	0.00463	0.0102	0.00302	0.000193	1.39
0.000238	0.00102	0.000684	<0.000010	<0.0000050	0.137	<0.000050	0.0000340	6.15	0.00015	0.000169	0.00395	<0.000050	0.0302	0.0000550	0.00082	1.13	0.00261	0.0110	0.00312	0.000122	2.47
<0.000020	<0.000000	<0.000020	<0.000010	<0.0000050	<0.050	<0.000050	<0.0000050	<0.050	<0.00010	<0.0000050	<0.000050	<0.000050	<0.0010	<0.0000050	<0.00050	<0.050	<0.000050	<0.0020	<0.000050	<0.000020	<0.050
<0.000020	<0.000020			<0.0000050	<0.050	<0.000050	<0.0000050	<0.050	<0.00010	<0.0000050	<0.000050	<0.000050	<0.0010	<0.0000050	<0.00050	<0.050	<0.000050	<0.0020	<0.000050	<0.000020	<0.050
<u> </u>	<u> </u>	10.000020	<u> </u>	40.0000000	٠٥.٥٥٥	10.000000	٧٥.000000	٦٥.050	٧٥.000 ١٥	10.0000000	40.000000	40.000000	٧٥.٥٥١٥	40.0000000	40.00000	٧٥.٥٥٥	40.000000	₹0.0020	٧٥.00000	<u> </u>	٦٥.050
99.60000	99.61000	101.81000	104.50000	97.10000	107 01200	102.90000	97.59000		98.69000	98.01000	98.01000	97.30000	111.03700	100.72000	106.60000		99.74000		96.70000	102.20000	
33.00000	00.01000	101.01000	104.00000	07.10000	107.01200	102.00000	07.00000		00.00000	30.01000	00.01000	37.00000	111.00700	100.72000	100.00000		33.1 4000		30.70000	102.20000	
		•		•		•		-	•		•			•				•			
0.00000	0.00005	0.00000	0.000015		0.050	0.000.55	0.00000==	0.050	0.00040	0.0000055	0.000053	0.0000=	0.0010	0.0000055	0.000=5	2.25	0.0000#3	0.0000			0.050
0.000020	0.000020		0.000010	0.0000050	0.050	0.000050	0.0000050	0.050	0.00010	0.0000050	0.000050	0.000050	0.0010	0.0000050	0.00050	0.050	0.000050	0.0020	0.000050	0.000020	0.050
BY/SOP-0000	BY/SOP-000	BY/SOP-0000	RAYSON-0000	USY/SOP-000	BX/SOF-000	RX/205-0000	3BY/SOP-00002	BA1205-0000	BBY7SOP-00002	BRA4205-0000	BY/SOP-0000	BY/SOP-0000	RA/205-0000	BY/SOP-0000	BX/205-000(BX/SOF-0000	RX/205-0000	BX/SOF-0000	BX/SOP-0000	BY/SOP-0000	BX/SOF-0000

Dissolved Rubidium (Rb)	Dissolved Selenium (Se)	Dissolved Silicon (Si)		Sodium (Na)	Strontium (Sr)	Sulphur (S)	(Te)	Dissolved Thallium (TI)	(Th)	Dissolved Tin (Sn)	Dissolved Titanium (Ti)	Dissolved Tungsten (W)	Dissolved Uranium (U)	Dissolved Vanadium (V)	Dissolved Zinc (Zn)	Dissolved Zirconium (Zr)	Dissolved Mercury (Hg)		Cation Sum	Balance %
mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	N/A	N/A	N/A
0.00204 0.00168	0.000704 0.000663	1.09 0.99	<0.0000050 0.0000080	19.5 17.0	0.0132 0.0164	<10 <10	<0.000020 0.000029	0.0000030 0.0000040	<0.0000050 <0.0000050	<0.00020 <0.00020	<0.00050 <0.00050	0.000067 0.000038	0.0000090 <0.0000020	0.00277 0.00267	0.00025 <0.00010	<0.00010 <0.00010	<0.000050 <0.000050	1.37 1.29	1.34 1.28	1.00 0.10
0.00108	0.000561	1.05	0.0000060	18.9	0.0104	<10	0.000029	0.0000030	<0.0000050	<0.00020	0.00030	0.000038	0.0000120	0.00207	0.00010	<0.00010	<0.000050	1.59	1.54	1.60
0.000473	0.000523	0.81	0.0000050	16.4	0.0173	<10	0.000027	0.0000030		<0.00020	<0.00050	0.000045	0.0000120	0.00143	<0.00010	<0.00010	<0.000050	1.60	1.58	0.50
0.000450 0.00202	0.000543 0.000748	0.88 1.05	<0.0000050 <0.0000050	17.1 18.9	0.0186 0.0131	<10 <10	0.000027 <0.000020	0.0000030 0.0000030	<0.0000050 <0.0000050	<0.00020 <0.00020	0.00115 0.00076	0.000044 0.000059	0.0000270 0.0000080	0.00152 0.00271	0.00021 0.00027	<0.00010 <0.00010	<0.000050 <0.000050	1.74	1.66	2.20
<0.000050 <0.000050	<0.000040 <0.000040	<0.10 <0.10	<0.0000050	<0.050 <0.050	<0.000050 <0.000050	<10 <10		<0.0000020		<0.00020 <0.00020	<0.00050 <0.00050	<0.000010 <0.000010		<0.00020 <0.00020	0.00017 0.00016	<0.00010 <0.00010	<0.000050 <0.000050	0.01	0.00	75.00
100.50000	106.09000		105.20000		96.79000		102.10000	98.70000	85.50000	98.00000	103.77000	92.10000	102.94000	98.98000	99.15000	91.60000	95.70000			
0.000050	0.000040	0.10	0.0000050	0.050	0.000050	10	0.000020	0.0000020	0.0000050	0.00020	0.00050	0.000010	0.0000020	0.00020	0.00010	0.00010	0.000050			
																	BBY7SOP-00002	BBY WI-00033	BBY WI-00033	BBY WI-00033
			22. 300.				22. 300								3000					

†	N/A	N/A	N/A
†	1.37	1.34	1.00
1	1.29	1.28	0.10
1	1.59	1.54 1.58	1.60
†	1.60	1.58	0.50
_			
7	1.74	1.66	2.20
1			
]			
T	0.01	0.00	75.00
Ī			
Ī			
Ī			
_			
_			
I			
_			
_			
-			
-			
-			
-			
4			
and the second			

Client:

SRK CONSULTING Page 5 of 6

Table 4: Sample List Test Results for project HOPE BAY

Maxxam Sample ID	Client Sample ID	Sample Form	Dry Weight Received (kg)
RV7495	2851	Dry Coarse Rock/Sediment	2.38
RV7496	2852	<2mm Fine/material	0.29
RV7497	2858	Dry Coarse Rock/Sediment	2.21
RV7498	2859	<2mm Fine/material	0.53
* Qualifiers> Rock types: Mostly (>80%	2860	Dry Coarse Rock/Sediment	1.57
RV7500	2861	<2mm Fine/material	0.49
RV7501	2862	Dry Coarse Rock/Sediment	1.44
RV7502	2863	<2mm Fine/material	0.43
RV7503	2864	Dry Coarse Rock/Sediment	2.00
RV7504	2865	<2mm Fine/material	0.41
RV7505	DUP-2864	Dry Coarse Rock/Sediment	0.00
RV7506	DUP-2865	<2mm Fine/material	0.00
RV7507	2866	Dry Coarse Rock/Sediment	1.45
RV7508	2867	<2mm Fine/material	0.46
RV7509	2868	Dry Coarse Rock/Sediment	1.35
RV7510	2869	<2mm Fine/material	0.52
RV7511	DUP-2868	Dry Coarse Rock/Sediment	0.00
RV7512	DUP-2869	<2mm Fine/material	0.00
RV7513	2870	Dry Coarse Rock/Sediment	1.70
RV7514	2871	<2mm Fine/material	0.43
RV7515	2872	Dry Coarse Rock/Sediment	1.76
RV7516	2873	<2mm Fine/material	0.43
RV7517	2874	Dry Coarse Rock/Sediment	1.91
RV7518	2875	<2mm Fine/material	0.42

Total Weight	24.32
Total Samples Received	24

Description of rock types encountered in area*

Mostly <1%, some fragments with euhedral pyrite crystals (1-5%) Mostly none, few fragments with <1%

Mostly basi Mostly none, some fragments with 2-3% pyrite

Table 5: Sample Summary for project HOPE BAY

SRK CONSULTING, HOPE BAY

Page 6 of 6

Date Samples Rec'd by Maxxam: 25 sample were rec'd on 30-Aug-2017.

Sample Prep Conducted by Maxxam: YES

Date of Analysis: September 2017

*Qualifiers -> Rock types: Mostly (>80% of surveyed rocks), lesser (15-20%). Minerals/features/textures: abundant (>50% of surveyed rocks), frequent (30-50%), some (15-30%), few (5-15%), rare (<5%)

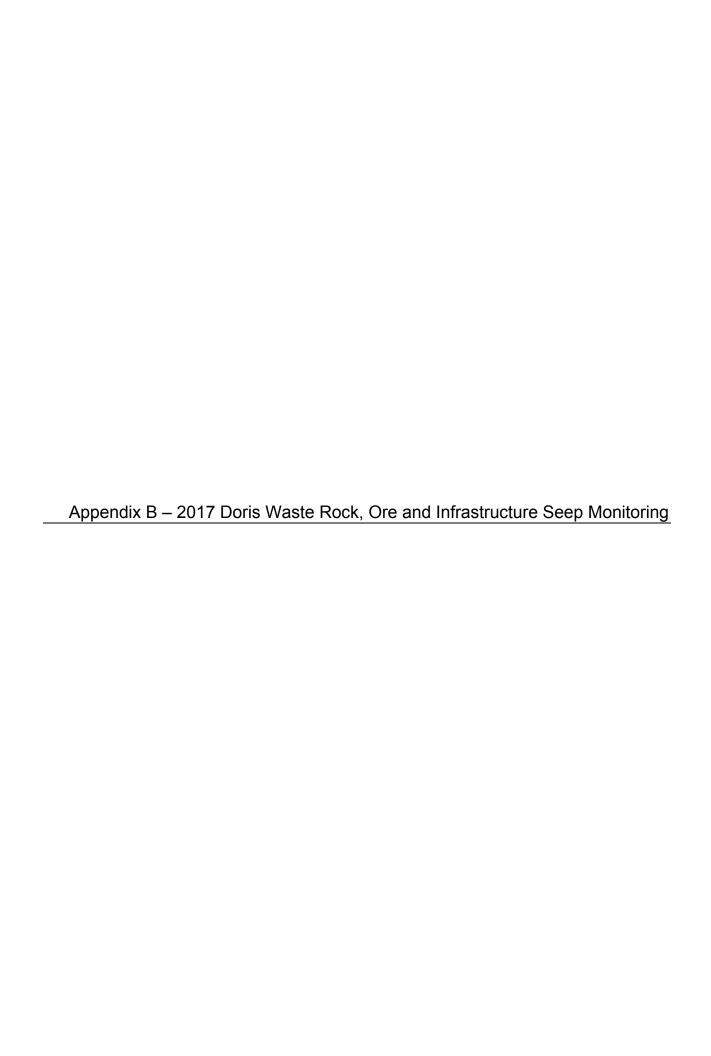
SRK CONSULTING Client Project Name: Client Project No: ARD Project #: Maxxam Job No: HOPE BAY 1CT022.016 N/A B774010

Contact Person: Eduardo Marquez; Lisa Barazzuol

E-mail Address: emarquez@srk.com; lbarazzuol@srk.com

Data Validated by: SAID ZEINAB

Position: Senior Manager, Acid Rock Drainage


Sample Storage

Sample rejects (and selected test residues where applicable) have been archived Standard archive protocol is archiving for samples for 3 months after testing is complete. If archiving is required past 3 months a fee will be required.

Description of rock types encountered in area*

Mostly <1%, some fragments with euhedral pyrite crystals (1-5%) Mostly none, few fragments with <1%

Mostly basi Mostly none, some fragments with 2-3% pyrite

SRK Consulting (Canada) Inc. 2200–1066 West Hastings Street Vancouver, BC V6E 3X2

T: +1.604.681.4196 F: +1.604.687.5532 vancouver@srk.com www.srk.com

Memo

To: Shelley Potter, TMAC Client: TMAC Resources Inc.

From: Jessica Charles, FGS Project No: 1CT022.016

Lisa Barazzuol, PGeo

Cc: Oliver Curran, TMAC Date: March 21, 2018

Subject: 2017 Geochemical Monitoring of Waste Rock, Doris Mine - FINAL

1 Introduction

In April 2015, TMAC re-initiated mining at Doris, with placement of waste rock on surface commencing in October 2015. Approximately 146,977 t of waste rock from the Doris underground mine were transferred onto Pad T (shown in Figure 2-1) in 2017. In the same year, approximately 3,060 t of waste rock from surface was placed as backfill in stopes of the Doris Mine. As per the waste rock and ore management plan, all waste rock was designated as mineralized waste rock that will be eventually placed as backfill in the underground mine (TMAC 2016a). Requirements for management and monitoring of waste rock and ore are specified in Water Licence 2AM-DOH1323 Amendment No. 1 (Nunavut Water Board 2016) and the Waste Rock and Ore Management Plan (WROMP, TMAC 2016a and 2016b), which forms part of Licence 2AM-DOH1323 Amendment No. 1.

This memo documents the results of geochemical monitoring of waste rock completed between January and December 2017. Other monitoring activities in the Doris mine area included an annual seep survey along the downgradient toe of the waste rock and ore stockpile area and routine monitoring of the Pollution Collection Pond (PCP). The results of the seepage survey are reported in the accompanying memo (SRK 2018) while results of the routine monitoring program are included in monthly water quality reports prepared by TMAC and submitted to the Nunavut Water Board.

2 Methods

2.1 Geological Inspections

2.1.1 Underground

Protocols for geological inspections are documented in TMAC (2016a). To summarize, geological inspections were conducted by site geologists when monitoring samples were collected and occurred at least once a month for the duration of 2017. Where possible, both the working face and the blasted rock (muck) pile were inspected to identify the rock type, quantity of sulphide and carbonate minerals. The data were recorded in geological inspection logs (Attachment 1).

Figure 2-1: Waste Rock and Ore Stockpile Locations, Doris North

2.1.2 Waste Rock Stockpiles

Eduardo Marquez of SRK completed an inspection of the waste rock stockpile on Pad T in August 2017. A discussion with geologist Kristin Chislett (TMAC) indicated that the only accessible waste rock deposited since the last inspection in June 2016 would be found on the upper bench, which contained over a dozen small waste rock stockpiles along the southern berm. The inspection was thus carried out by walking the perimeter of the upper bench of the pile and examining rock types and the presence of sulphide content. The lower benches were not inspected as they either contained waste rock deposited prior to last inspection or were not accessible. Kristin also indicated that waste rock had been taken underground for backfilling prior to the visit. Moreover, most of the waste rock being produced at the mine remained underground for placement as structural backfill in the stopes.

2.2 Sampling and Sample Preparation

Samples were primarily collected from the blasted rock (muck) from the underground mine by site geologists, however selected samples were collected from the face (Attachment 1). The samples were composited over an individual blast round, typically representing 70 to 95 m³ of rock.

Samples were collected for total sulphur (S) and total inorganic carbon (TIC) and in some cases acid base accounting (ABA) and elemental analysis. In all cases, samples consisted of a representative mixture of fine and coarse rock fragments from the pile.

The frequency of sample collection, as outlined by the TMAC (2016a) is one sample per 10,000 t of waste rock, which for 2017 equates to a minimum of 15 samples. The numbers of samples collected by TMAC and the associated geochemical tests are summarized in Table 2-1. All of the samples tested were designated and managed as mineralized waste regardless of sulphur content or the mineralized/unmineralized designation noted in Attachment 1. Ore is considered to be mineralized by definition, and therefore geochemical testing was not required. Samples were shipped to Maxxam Laboratories (Maxxam) for preparation and analysis. Analytical instructions were provided by TMAC.

Table 2-1: Waste Rock Monitoring Samples Collected and Associated Test Program

Rock Type ¹	Sulphur & TIC	ABA & Elemental Analysis				
11c	1	1				
1a	30	8				
Total Number of Tests	31	9				

Note:

¹ 1a = mafic metavolcanic. 11c = diabase

2.3 Analytical Methods

The following test methods were used in this analysis program:

- Total sulphur analyses were completed using the Leco method.
- TIC was determined by using a Leco furnace to directly measure CO₂ gas evolved from HCl treatment of the sample.
- Modified Sobek NP (MEND 1991).
- Sulphate by HCl leach.
- Elemental concentrations were determined by aqua regia digestion followed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analyses. This included determination of major elements (e.g., aluminium, calcium, magnesium, sodium, potassium, iron, sulphur) and trace elements (e.g., arsenic, zinc, copper, cadmium, lead).

Samples collected in Q1 and Q2 were prepared and analyzed at Maxxam in Burnaby, BC, whereas samples collected in Q3 and Q4 were prepared and analyzed by SGS Canada Inc. in Burnaby, BC because Maxxam's data reporting schedule did not meet TMAC's needs.

2.4 Data Interpretation Methods

The ratio of TIC to acid generating potential (AP) provides a measure of the acid rock drainage (ARD) potential of the sample. Samples are classified as non-potentially ARD generating (non-PAG) when TIC/AP ratios are greater than 3, as PAG when ratios are less than 1 and as having an uncertain potential for ARD when ratios are between 1 and 3. For samples with Modified NP, interpretations of ratios of NP to AP were the same as TIC to AP.

3 Results and Discussion

3.1 Geological Inspections

3.1.1 Underground

A summary of the samples collected are provided in Table 2 and include mafic volcanics (1a) and diabase (11c). According to TMAC geologists, in 2017 the Doris underground workings also intersected mafic volcanics (1av and 1p), magnetic diabase (11cm) and late mafic dykes (10b); the overall volume of 10b waste rock was relatively small (<1%). All waste rock placed on Pad T was classified as mineralized.

3.1.2 Waste Rock Stockpiles

The majority of the waste rock inspected was foliated grey mafic metavolcanic (basalt) with carbonate veins and trace to no visible sulphides. Rare K-feldspar was observed in the basalt, occurring within quartz veins. There were also a few truckloads of basalt with pervasive hematite veins. Localized areas of the stockpile areas inspected were rich in quartz veins and pyrite veining (Figure 3-1) and included evidence of pyrite oxidation (rusty brown surfaces on pyrite, see

Figure 3-2). Quartz veins were also visible on the southern slope of the waste rock pile. Minor occurrences (<1%) of pale cream coloured rock, that is altered metavolcanic rock proximal to the contact with the diabase (i.e. low NP basalt), was also observed.

Figure 3-1: Quartz vein along southern berm on the upper bench of Pad T

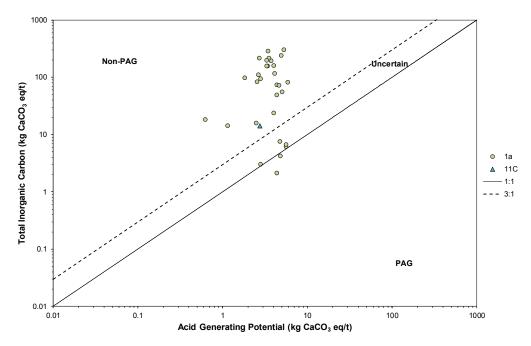
Figure 3-2: Quartz vein boulder with iron oxide staining

3.2 Laboratory Test Results

Laboratory testing data are provided in Attachments 2 and 3.

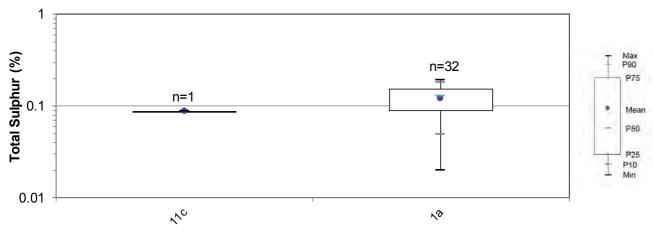
3.2.1 Sulphur and TIC

Sulphur and TIC results from Maxxam are available for 31 of the samples. The data are discussed in the context of rock type with the sample distribution as follows: 30 mafic metavolcanics (1a) samples and one diabase (11c) sample. Summaries of the sulphur and TIC data by rock type are provided in Figure 3-3 and Figure 3-4. The data are presented in full in Attachment 2.

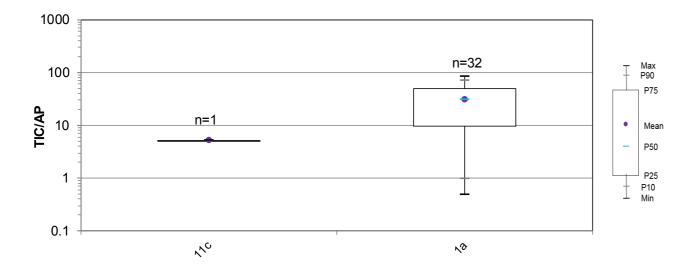

Mafic Metavolcanics (1a)

Sulphur concentrations for samples of 1a were uniformly low ranging from 0.02 to 0.19%, while TIC values ranged from 2.1 to 300 CaCO₃ eq/tonne (with median levels of 88 CaCO₃ eq/tonne). Approximately 30% of samples (n=9) have a TIC content below 20 kg CaCO₃ eq/tonne. TIC levels were lower than expected given typical concentrations observed in basalt from the Doris area (P25 to P75 values between 170 to 340 kg CaCO₃ eq/tonne, SRK 2015b). Based on SRK's inspection of the waste rock stockpile (Section 3.1.2), these samples are likely metavolcanics found along the contact with the diabase intrusion that has been altered (or hornfelsed) as a result of heat from the intrusion.

The majority of 1a samples (n=24) were classified as non-PAG. Four samples (13%) were classified as uncertain and two samples (7%) as PAG. The two samples classified as PAG had low levels of TIC (<5 kg CaCO $_3$ eq/tonne) and low levels of total sulphur contents of 0.14% and 0.16%.


Diabase (11c)

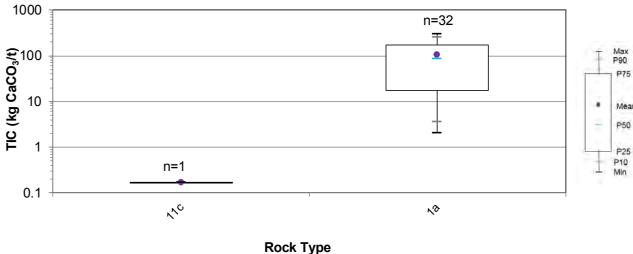
The results show that the 11c sample had a low sulphur (0.09%) and low TIC (14 kg CaCO₃ eq/tonne) content. The diabase sample was classified as non-PAG.



\cdf\s1.cdf\uk.srk.ad\projects\u7160 Vancouver Geochem Assistance\Project\\u01101_1CT022.027 Hope Bay\u2017\Waste Rock\\u013. Working File\[hopeBay_WRMonitoring_1CT022.027_JC_rev01.xlsx\]

Figure 3-3: TIC versus AP for Monitoring Samples

Rock Type



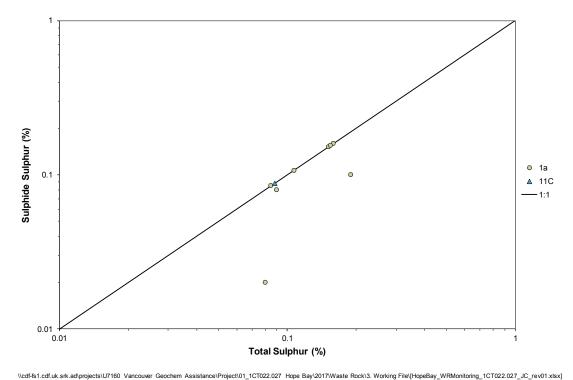
Rock Type

P:\U7160 Vancouver Geochem Assistance\Project\01_1CT022.027 Hope Bay\2017\Waste Rock\3. Working File\[HopeBay_WRMonitoring_1CT022.027_JC_rev02.xlsx]

Figure 3-4: Box and Whisker Plots of S, TIC, and TIC/AP ratios by Rock Type

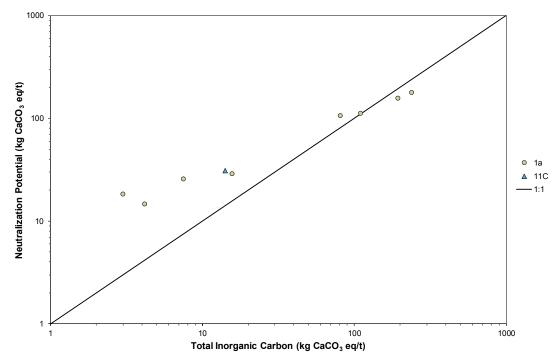
(These plots are conventional box and whisker graphs, with the upper and lower extremes showing the minimum and maximum values, tick marks outside of the box showing the 5th and 95th percentiles, outer margins of the box showing the 25th and 75th percentiles and central division in the box showing the median value)

P:\U7160 Vancouver Geochem As sistance\Project\01_1CT022.027 Hope Bay\2017\Waste Rock\3. Working File\[hopeBay_WRMonitoring_1CT022.027_JC_rev02.xlsx\]


3.2.2 ABA Results

Full ABA results are available for nine samples and are presented in Figure 3-5 to Figure 3-7 and Attachment 2.

The results indicate moderately alkaline paste pH, with the paste pH of the 1a material typically (P25 to P75) between 8.2 and 8.9 and a paste pH of 9.2 for the 11c sample.


Total sulphur concentrations are plotted against sulphide sulphur in Figure 3-5. Total sulphur has a generally linear relationship with sulphide sulphur. This indicates the majority of the sulphur is present as sulphide minerals. Accordingly, total sulphur was used to calculate acid potential (AP). A discussion of sulphur levels according to sample type is presented in Section 3.2.1.

Modified NP for the 1a samples is typically (P25 to P75) between 24 to 120 kg CaCO₃/t. The one sample of diabase material reported a modified NP value of 31 kg CaCO₃/t. For samples with levels of Modified NP up to approximately 60 kg CaCO₃/t, levels of NP are generally greater than TIC, suggesting that silicates contributed to the buffering capacity in the tests (Figure 3-6). Above NP levels of 60 kg CaCO₃/t, TIC levels tended to be greater than NP, suggesting the occurrence of iron-bearing carbonates which do not contribute to net-neutralization potential as they both produce and consume acid. All samples were classified as non-PAG on the basis of NP/AP (Figure 3-7) owing to higher levels of NP compared to TIC. On the basis of TIC/AP, five of these samples were classified as non-PAG, two as uncertain and one as PAG (Figure 3-3).

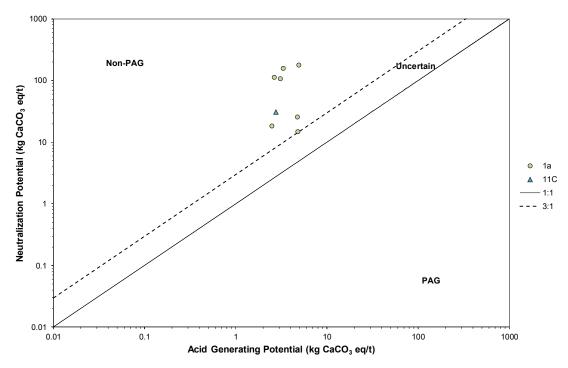

neural reductions and projects for the Validation of Security and Secu

Figure 3-5: Total Sulphur Plotted against Sulphide Sulphur for ABA Samples

\cdf.\s1.cdf.uk.srk.ad\projects\U7160 Vancouver Geochem Assistance\Project\\01_1CT022.027 Hope Bay\2017\Waste Rock\\3. Working File\[HopeBay_WRMonitoring_1CT022.027_JC_rev01.xlsx\]

Figure 3-6: Modified Sobek NP versus TIC for ABA Samples

\cdf.\s1.cdf.\uk.srk.ad\projects\U7160 Vancouver Geochem Assistance\Project\01_1CT022.027 Hope Bay\2017\Waste Rock\3. Working File\[HopeBay_WRMonitoring_1CT022.027_uC_rev01.xlsx\]

Figure 3-7: Modified Sobek NP versus AP for ABA Samples

3.2.3 Elemental Analysis

Eight samples of metavolcanics (1a) and one sample of diabase (11c) were submitted for elemental analysis. Results were compared to average crustal abundance for basalt (Price 1997) as an indicator of enrichment and are summarized in Table 3-1 and Table 3-2. The full laboratory results are presented in Attachment 3. Selenium could not be assessed because the screening level was within the range of analytical error.

Results of the elemental analyses indicate that concentrations of trace elements in the mafic metavolcanics (1a) (Table 3-1) and diabase (11c) (Table 3-2) were less than ten times the average crustal abundance for basalt (Price 1997).

Table 3-1: Summary of Elemental Analyses for Basalt (1a)

Parameter	Detection Limit (Q1/2)	Detection Limit (Q3/4)	Unit	P00	P25	Median	P75	P100	10X Average Crustal Abundance* for Basalt
Ag	100	2	ppb	9	16	100	110	230	1100
As	0.5	0.1	ppm	0.3	0.65	0.9	4.2	8.4	20
Au	0.5	0.2	ppb	0.2	0.58	1.6	2.4	3.8	40
Ва	1	0.5	ppm	3	4.5	13	22	45	3300
Ca	0.01	0.01	%	0.81	1.3	2.6	4.2	4.9	76
Cd	0.1	0.01	ppm	0.02	0.058	0.09	0.21	1.5	2.2
Co	0.1	0.1	ppm	23	25	27	30	31	480
Cr	1	0.5	ppm	13	17	18	21	22	1700
Cu	0.1	0.01	ppm	17	32	52	87	220	870
Fe	0.01	0.01	%	4.8	6.1	9.4	9.8	10	86.5
Hg	10	5	ppb	5	5	7.5	10	18	900
Mg	0.01	0.01	%	1.2	1.4	1.7	1.8	2	46
Mn	1	1	ppm	540	710	1200	1600	2100	15000
Мо	0.1	0.01	ppm	0.3	0.41	0.51	0.55	0.7	15
Ni	0.1	0.1	ppm	1.2	1.6	2.5	7	12	1300
Р	0.001	0.001	%	0.074	0.085	0.089	0.098	0.11	1
Pb	0.1	0.01	ppm	0.69	0.91	2.8	6.2	37	60
S	0.05	0.02	%	0.06	0.078	0.11	0.15	0.17	0.3
Sb	0.1	0.02	ppm	0.02	0.035	0.07	0.1	0.17	2
Se	0.5	0.1	ppm	0.1	0.3	0.35	0.5	0.5	0.5
Sr	1	0.5	ppm	9	11	15	33	52	4650
U	0.1	0.1	ppm	0.1	0.1	0.1	0.1	0.1	10
V	2	2	ppm	50	66	68	93	130	2500
W	0.1	0.1	ppm	0.1	0.1	0.1	0.1	0.2	7
Zn	1	0.1	ppm	22	94	120	190	600	1050

 $Source: \color= Constraints and Constraints$

Note:

^{*} Numbers highlighted in bold exceed 10 times the average crustal abundance for basaltic rocks from Price (1997) Statistics based on 8 samples.

Table 3-2: Summary of Elemental Analyses for Diabase (11c)

Parameter	Detection Limit	Unit	Result	10X Average Crustal Abundance* for Basalt			
Ag	2	ppb	43	1100			
As	0.1	ppm	0.4	20			
Au	0.2	ppb	1.6	40			
Ва	0.5	ppm	11	3300			
Ca	0.01	%	1.5	76			
Cd	0.01	ppm	0.01	2.2			
Co	0.1	ppm	20	480			
Cr	0.5	ppm	59	1700			
Cu	0.01	ppm	120	870			
Fe	0.01	%	6.2	86.5			
Hg	5	ppb	5	900			
Mg	0.01	%	3.3	46			
Mn	1	ppm	400	15000			
Мо	0.01	ppm	0.94	15			
Ni	0.1	ppm	38	1300			
Р	0.001	%	0.062	1			
Pb	0.01	ppm	0.69	60			
S	0.02	%	0.06	0.3			
Sb	0.02	ppm	0.02	2			
Se	0.1	ppm	0.1	0.5			
Sr	0.5	ppm	26	4650			
U	0.1	ppm	0.1	10			
V	2	ppm	330	2500			
W	0.1	ppm	0.1	7			
Zn	0.1	ppm	32	1050			

Source: \\cdf-fs1.cdf.uk.srk.ad\\projects\\U7160 \Vancouver Geochem Assistance\\Project\\01_1CT022.027 \text{ Hope Bay\2017\Waste Rock\3. Working File\\[HopeBay_WRMonitoring_1CT022.027_JC_rev02.xlsx\]

Note:

^{*} Numbers highlighted in bold exceed 10 times the average crustal abundance for basaltic rocks from Price (1997)

4 Summary and Conclusions

Mining at Doris in 2017 has resulted in the placement of approximately 146,977 t of waste rock on Pad T, all of which was managed as mineralized waste rock. The balance of waste rock produced in 2017 remained underground and was placed as structural backfill in the underground stopes. In 2017, 3,060 t of waste rock from the surface waste rock stockpile was placed as backfill in stopes of the Doris mine.

A total of 31 waste rock samples were collected as part of the waste rock geochemical monitoring program with one sample geologically identified as diabase (11c) and the others as mafic metavolcanics (1a). According to TMAC geologists, waste rock geologically classified as late mafic dyke (10b) was also intersected in 2017 though the overall volume of mafic dyke waste rock was relatively small (<1%).

Sulfur concentrations for the mafic metavolcanics samples (1a) were uniformly low, ranging from 0.02 to 0.19% and with median levels of 0.13%. TIC ranged from 2.1 to 300 kg CaCO₃ eq/tonne, with 30% of samples having TIC levels less than 30 kg CaCO₃ eq/tonne. TIC levels are lower than expected given typical concentrations observed in basalt from the Doris area (P25 to P75 values between 167 to 339 kg CaCO₃ eq/tonne, SRK 2015b). Based on SRK's inspection of the waste rock stockpile, these samples are likely metavolcanics found along the contact with the diabase intrusion that has been altered (or hornfelsed) as a result of heat from the intrusion.

On the basis of TIC/AP, the majority of basalt samples were classified as non-PAG with two samples classified as having an uncertain potential for ARD and four samples as PAG. ARD classifications by TIC/AP are more conservative than NP/AP owing to higher levels of NP. Trace element analyses on the solids indicated that concentrations of trace elements in mafic 1a 11c materials were less than ten times the average crustal abundance for basalt.

A long-term assessment of the anticipated geochemical behaviour of the waste rock in the stockpile on Pad T with respect to acid rock drainage and metal leaching (ARD/ML) is not possible for the reasons described as follows:

- The higher incidence of mafic metavolcanics (1a) with lower TIC content. Based on kinetic test work (SRK 2015b), the risk for metal leaching from this material is expected to be low.
- Volumes of the waste rock according to rock type, specifically for the low TIC mafic metavolcanics materials cited above, are not documented.

The geochemical behaviour of the waste rock is monitored through the annual seep survey along the downgradient toe of the waste rock and ore stockpile area and routine monitoring of the Pollution Control Pond (PCP). The results of the seepage survey are reported in the accompanying memo (SRK 2018) while results of the routine monitoring program are included in monthly water quality reports prepared by TMAC and submitted to the Nunavut Water Board. All waste rock on surface will be placed underground at closure.

Kind regards,

SRK Consulting (UK) Ltd.

This signature by be a scanned the futbories given permission to its use for this particular distance. He original signature is held on file.

Jessica Charles, FGS Consultant

Reviewed by

SRK Consulting (Canada) Ltd.

This lignature has been scanned.

The author has given permission for this part has been scanned.

Lisa Barazzuol, PGeo (BC) Senior Consultant

Disclaimer—SRK Consulting (Canada) Inc. has prepared this document for TMAC Resources Inc.. Any use or decisions by which a third party makes of this document are the responsibility of such third parties. In no circumstance does SRK accept any consequential liability arising from commercial decisions or actions resulting from the use of this report by a third party.

The opinions expressed in this report have been based on the information available to SRK at the time of preparation. SRK has exercised all due care in reviewing information supplied by others for use on this project. Whilst SRK has compared key supplied data with expected values, the accuracy of the results and conclusions from the review are entirely reliant on the accuracy and completeness of the supplied data. SRK does not accept responsibility for any errors or omissions in the supplied information, except to the extent that SRK was hired to verify the data.

5 References

MEND 1991. Acid Rock Drainage Prediction Manual. Mine Environment Neutral Drainage Program. Report 1.16.1b.

- Nunavut Water Board (2016) Water Licence No. 2AM-DOH1323 Amendment No. 1. Issued on November 4, 2016.
- Price, W.A. 1997. DRAFT Guidelines and Recommended Methods for the Prediction of Metal Leaching and Acid Rock Drainage at Minesites in British Columbia. BC Ministry of Employment and Investment, Energy and Minerals Division. 151pp
- SRK 2015a. Hope Bay Project Doris North Waste Rock and Ore Management Plan Revision 2. Report prepared for TMAC Resources Inc. by SRK Consulting, April 2015.
- SRK 2015b. Static Testing and Mineralogical Characterization of Waste Rock and Ore from the Doris Deposit, Hope Bay. Report prepared for TMAC Resources by SRK Consulting, June 2012.
- TMAC 2016a. Waste Rock and Ore Management Plan, Hope Bay Project, Nunavut. Report prepared for the Nunavut Water Board by TMAC Resources, August 2016.
- TMAC 2016b. Waste Rock and Ore Management Plan, Hope Bay Project, Nunavut. Addendum prepared for the Nunavut Water Board by TMAC Resources, September 2016.

MAC								WASTE ROCK SAMPLE	ES .						
				SAMPLE LOCATION	l						GEOLOGIC DESCRIPTION				
SAMPLE#	GEOLOGIST	DATE SAMPLED	LEVEL	STN/GP#	l x	Y	7	MINING ZONE	ANALYSIS	MINERALIZED/NOT MINERALIZED	ROCK TYPE	SUI PHIDE %	CARBONATE %	DESCRIPTION	
R828364	AG	16-Jan-17	BTD	Muck pile from DS Blast on jan 16, 2017	433702.915	7559518.921	-119	Basalt and buffer zone	ABA test	Not Mineralized	1a	<1	O/TINDOTO/TIE /0	DECORAL FICH	
R828365	KC	10-5an-17 10-Feb-17	BTD	Feb 10 DS blast face	433730.8	7559610.4	-137	Any zone	Total Sulphur and TIC	Not Mineralized Not Mineralized	1a	<1			
R828366	KC	10-Feb-17	BTD	Corner of DB3	433720.3	7559563.2	-130	Any zone	Total Sulphur and TIC	Not Mineralized	1a	<1			
R828367	AG	2-Mar-17	BTD	Muck pile from DS Blast on Mar 2, 2017	433752.925	7559708.941	-147	Any zone	Total Sulphur and TIC	Not Mineralized	1a	<1			
R828368	KC	22-Mar-17	BTD	corner of vent access	433767	7559746	-155	Basalt and buffer zone	Total Sulphur and TIC	Mineralized	1a	<1		Minor Fe staining	
R828369	KC	29-Mar-17	BTD	BTD face Mar 30	433774	7559787	-159	Basalt and buffer zone	ABA test	Not Mineralized	1a	<1		Minor Fe staining	
R828370	AG	16-Apr-17	BTD	Muck pile from DS Blast on Apr 16, 2017	433805.009	7559858.28	-168	Basalt and buffer zone	Total Sulphur and TIC	Not Mineralized	1a	<1		Ŭ	
R828371	KC	5/7/2017	4825LA	Stn 2505+13.5	433826	7559743	-165	Basalt and buffer zone	Total Sulphur and TIC	Not Mineralized	1a	<1			
R828372	KC	5/7/2017	BTD	7/May face	433829	755802	-181	Basalt and buffer zone	Total Sulphur and TIC	Not Mineralized	1a	<1			
R828373	KC	5/7/2017	4820	7/May face	433759	755845	-170	Basalt and buffer zone	Total Sulphur and TIC	Not Mineralized	1a	<1		Fe Staining	
R828374	AG	5/23/2017	4820 EXP	Muck pile from DS Blast on May 23, 2017	433767.009	7559889.473	-177	Basalt and buffer zone	ABA test	Not Mineralized	1a	<1			
R828375	AG	5/23/2017	BTD	Muck pile from NS Blast onMay 25, 2017	433815.601	7559671.988	-189	Basalt and buffer zone	Total Sulphur and TIC	Not Mineralized	1a	<1			
R828376	AG	5/25/2017	4825LA	Face as of May 25, 2017	433872.257	7559730.395	-170	Basalt and buffer zone	Total Sulphur and TIC	Not Mineralized	1a	<1		Fe Staining	
R828377	KC	6/15/2017	4795 RMK	Right corner of remuck	433833	7559743.7	-192	Basalt and buffer zone	ABA test	Not Mineralized	1a	<1			
R828378	KC	6/15/2017	BTD	June 15 face	433786	7559713	-197	Basalt and buffer zone	Total Sulphur and TIC	Not Mineralized	1a	<1			
R828379	AG	13-Jul-17	BTD	Muck pile from DS Blast on July 13, 2017	433821.62	7559799.973	-213	Basalt and buffer zone	Total Sulphur and TIC	Not Mineralized	1a	<1			
R828380	KC	2-Aug-17	4885 RMK	RMK	433747	7559338.7	-109	Diabase	ABA test	Not Mineralized	11C	<1			
R828381	KC	2-Aug-17	BTD	Face BTd	433829	7559750.1	-221	Basalt and buffer zone	Total Sulphur and TIC	Not Mineralized	1a	<1			
R828382	KC	2-Aug-17	4994 SB	Safety Bay	433586	7559100	-46	Basalt and buffer zone	ABA test	Not Mineralized	1a	<1			
R828383	KC	13-Sep-17	DCO	DCO SB	433584	7558994	-62	Basalt and buffer zone	Total Sulphur and TIC	Not Mineralized	1a	<1			
R828384	KC	13-Sep-17	DCO	DCO station 9407	433581	7559041	-55	Basalt and buffer zone	Total Sulphur and TIC	Not Mineralized	1a	<1			
R828385	KC	13-Sep-17	BTD	SB	433782	7559729	-235	Basalt and buffer zone	Total Sulphur and TIC	Not Mineralized	1a	<1			

7558940

755809

7559712 -230 Basalt and buffer zone Total Sulphur and TIC

7559789 -248 Basalt and buffer zone Total Sulphur and TIC

7559731.854 -253 Basalt and buffer zone Total Sulphur and TIC

7559710 -263 Basalt and buffer zone Total Sulphur and TIC

-87 Basalt and buffer zone Total Sulphur and TIC

ABA test

ABA test

ABA test

-69 Basalt and buffer zone

7559718 -229 Alteration zone

433774.894 7559732.136 -265 Basalt and buffer zone Total Sulphur and TIC

433591.891 7558721.666 -98 Basalt and buffer zone

Not Mineralized

1a

1a

1a

1a

1a

1a

1a

1a

1a

<1

<1

<1

<1

<1

<1

<1

433800

433842

433572

433839.992

433812

433909.6

433582

R828386

R828387

R828388

R828389

R828390

R828391

R828392

R828393

R828394

KC

KC

KC

AG

KC

KC

KC

AP

AP

13-Sep-17

18-Oct-17

20-Oct-17

14-Nov-17

3-Dec-17

3-Dec-17

4-Dec-17

24-Dec-17

24-Dec-17

BTD ECO

RMK

RMK

4765 Acc end of access

ECO

Dec 3 face

muck pile from Nov 14 blast

Muck pile from Dec 23, NS blast

BTD Muck pile from Dec 23, NS blast

BTD

DCO

BTD

BTD

DCO

DCO

Hematite staining pervasive

Minor Hematite staining

Minor Hematite staining

			Paste pH	S(T)	S(SO4)	S(S-2)	AP	AP from S(T)	CO2	TIC	TIC	Mod NP	Net NP	Fizz Test	TIC/AP	NP/AP
			Std. Units	%S	%S	%S	kg CaCO3/t	kg CaCO3/t	wt%	%C	kg CaCO3/t	kg CaCO3/t	kg CaCO3/t	-		-
SAMPLE#	DOCK TYPE	LOD Q1-2	#N/A	0.02	0.01	0.02	0.6		0.08		1.8	0.1	0.1	#N/A		0.1
SAMPLE #	ROCK TYPE	LOD Q3-4	0.20	0.005	0.01	#N/A	#N/A			0.01	#N/A	0.5	#N/A	#N/A		#N/A
R828364	1a	Maxxam	8.99	0.090	0.010	0.080	2.50	2.81	0.13	0.04	3.00	18.3	15.8	SLIGHT	1.1	7.32
R828365	1a	Maxxam	#N/A	0.18	#N/A	#N/A	#N/A	5.63	0.27	0.07	6.10	#N/A	#N/A	#N/A	1.1	#N/A
R828366	1a	Maxxam	#N/A	0.14	#N/A	#N/A	#N/A	4.38	0.090	0.02	2.10	#N/A	#N/A	#N/A	0.5	#N/A
R828367	1a	Maxxam	#N/A	0.14	#N/A	#N/A	#N/A	4.38	2.14	0.58	48.6	#N/A	#N/A	#N/A	11.1	#N/A
R828368	1a	Maxxam	#N/A	0.13	#N/A	#N/A	#N/A	4.06	1.04	0.28	23.6	#N/A	#N/A	#N/A	5.8	#N/A
R828369	1a	Maxxam	8.38	0.080	0.090	< 0.020	0	2.50	0.69	0.19	15.7	28.8	28.8	MODERATE	6.3	#N/A
R828370	1a	Maxxam	#N/A	0.12	#N/A	#N/A	#N/A	3.75	8.52	2.33	194	#N/A	#N/A	#N/A	51.6	#N/A
R828371	1a	Maxxam	#N/A	0.090	#N/A	#N/A	#N/A	2.81	4.09	1.12	93.0	#N/A	#N/A	#N/A	33.1	#N/A
R828372	1a	Maxxam	#N/A	0.11	#N/A	#N/A	#N/A	3.44	6.91	1.89	157	#N/A	#N/A	#N/A	45.7	#N/A
R828373	1a	Maxxam	#N/A	0.14	#N/A	#N/A	#N/A	4.38	3.23	0.88	73.4	#N/A	#N/A	#N/A	16.8	#N/A
R828374	1a	Maxxam	8.98	0.19	0.090	0.10	3.10	5.94	3.58	0.98	81.4	106	103	MODERATE	13.7	34.2
R828375	1a	Maxxam	#N/A	0.13	#N/A	#N/A	#N/A	4.06	6.96	1.90	158	#N/A	#N/A	#N/A	38.9	#N/A
R828376	1a	Maxxam	#N/A	< 0.020	#N/A	#N/A	#N/A	0.63	0.80	0.22	18.2	#N/A	#N/A	#N/A	29.1	#N/A
R828377	1a	SGS	8.09	0.16	< 0.010	0.16	4.97	4.97	#N/A	2.88	240	171	172	MODERATE	48.3	34
R828378	1a	SGS	#N/A	0.082	#N/A	#N/A	#N/A	2.56	#N/A	1.00	83.3	#N/A	#N/A	#N/A	32.5	#N/A
R828379	1a	SGS	#N/A	0.11	#N/A	#N/A	#N/A	3.34	#N/A	1.89	158	#N/A	#N/A	#N/A	47.1	#N/A
R828380	11C	SGS	9.23	0.088	< 0.010	0.088	2.75	2.75	#N/A	0.17	14.2	31.0	28.3	None	5.2	11
R828381	1a	SGS	#N/A	0.17	#N/A	#N/A	#N/A	5.31	#N/A	3.61	301	#N/A	#N/A	#N/A	56.6	#N/A
R828382	1a	SGS	8.91	0.15	< 0.010	0.15	4.75	4.75	#N/A	0.090	7.50	25.6	20.9	None	1.6	5
R828383	1a	SGS	#N/A	0.037	#N/A	#N/A	#N/A	1.16	#N/A	0.17	14.2	#N/A	#N/A	#N/A	12.3	#N/A
R828384	1a	SGS	#N/A	0.18	#N/A	#N/A	#N/A	5.63	#N/A	0.080	6.67	#N/A	#N/A	#N/A	1.2	#N/A
R828385	1a	SGS	#N/A	0.11	#N/A	#N/A	#N/A	3.53	#N/A	2.59	216	#N/A	#N/A	#N/A	61.1	#N/A
R828386	1a	SGS	#N/A	0.059	#N/A	#N/A	#N/A	1.84	#N/A	1.17	97.5	#N/A	#N/A	#N/A	52.9	#N/A
R828387	1a	SGS	#N/A	0.13	#N/A	#N/A	#N/A	4.16	#N/A	1.40	117	#N/A	#N/A	#N/A	28.1	#N/A
R828388	1a	SGS	7.86	0.085	< 0.010	0.085	2.66	2.66	#N/A	1.32	110	111	108	Moderate	41.4	42
R828389	1a	SGS	#N/A	0.15	#N/A	#N/A	#N/A	4.69	#N/A	0.86	71.7	#N/A	#N/A	#N/A	15.3	#N/A
R828390	1a	SGS	#N/A	0.16	#N/A	#N/A	#N/A	5.09	#N/A	0.66	55.0	#N/A	#N/A	#N/A	10.8	#N/A
R828391	1a	SGS	8.88	0.16	< 0.010	0.16	4.84	4.84	#N/A	0.050	4.17	14.6	9.76	None	0.9	3
R828392	1a	SGS	#N/A	0.087	#N/A	#N/A	#N/A	2.72	#N/A	2.60	217	#N/A	#N/A	#N/A	79.7	#N/A
R828393	1a	SGS	8.24	0.11	< 0.010	0.11	3.34	3.34	#N/A	2.34	195	157	153	Moderate	58.3	47
R828394	1a	SGS	#N/A	0.11	#N/A	#N/A	#N/A	3.47	#N/A	3.42	285	#N/A	#N/A	#N/A	82.2	#N/A

			Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca
	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%		
SAMPLE#	ROCK	LOD Q1-2	0.1	0.1	0.1	1	100	0.1	0.1	1	0.01	0.5	0.1	0.5	0.1	1	0.1	0.1	0.1	2	0.01
SAMPLE #	TYPE	LOD Q3-4	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01
R828364	1a	Maxxam	0.30	78.4	7.10	22.0	< 100	2.60	24.4	535	6.14	0.80	0.10	2.40	0.70	9.00	< 0.10	< 0.10	< 0.10	66.0	0.81
R828369	1a	Maxxam	0.50	22.1	1.40	139	< 100	2.40	30.5	1470	9.75	< 0.50	0.10	2.50	0.60	11.0	< 0.10	< 0.10	< 0.10	68.0	1.37
R828374	1a	Maxxam	0.30	113	5.90	596	< 100	11.3	30.4	1220	9.21	0.70	< 0.10	3.80	0.40	51.0	1.50	< 0.10	< 0.10	126	3.78
R828377	1a	SGS	0.54	60.4	0.69	128	9.00	12.2	30.5	2092	10.4	4.10	< 0.10	< 0.20	0.20	19.1	0.060	0.040	0.030	112	4.87
R828380	11C	SGS	0.94	119	0.69	31.7	43.0	38.0	20.1	403	6.21	0.40	0.10	1.60	0.40	26.4	< 0.010	< 0.020	0.11	328	1.45
R828382	1a	SGS	0.59	215	4.16	37.2	137	5.50	25.8	566	4.77	8.40	< 0.10	1.20	0.50	11.4	0.050	0.040	0.070	50.0	1.39
R828388	1a	SGS	0.70	34.8	0.94	113	17.0	1.30	28.3	1112	9.82	1.00	< 0.10	< 0.20	0.40	26.4	0.020	0.020	0.10	86.0	4.07
R828391	1a	SGS	0.51	43.2	37.0	337	228	1.70	23.3	761	6.14	4.50	< 0.10	0.70	0.80	10.3	0.54	0.17	0.11	66.0	0.90
R828393	1a	SGS	0.44	17.4	0.81	114	11.0	1.20	26.4	1921	9.65	0.30	< 0.10	2.00	0.30	52.3	0.080	< 0.020	0.020	68.0	4.61

			Р	La	Cr	Mg	Ва	Ti	В	Al	Na	K	W	Sc	TI	S	Hg	Se	Te	Ga
		%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm	
SAMPLE#	ROCK	LOD Q1-2	0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.1	0.1	0.05	10	0.5	0.2	1
SAMPLE #	TYPE	LOD Q3-4	0.001	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1
R828364	1a	Maxxam	0.11	7.00	22.0	1.15	26.0	0.28	< 20.0	1.47	0.10	0.10	< 0.10	5.30	< 0.10	0.070	< 10.0	< 0.50	< 0.20	16.0
R828369	1a	Maxxam	0.10	5.00	18.0	1.73	20.0	0.34	< 20.0	2.57	0.11	0.13	0.10	6.80	< 0.10	0.060	< 10.0	< 0.50	< 0.20	16.0
R828374	1a	Maxxam	0.080	4.00	22.0	1.75	3.00	0.11	< 20.0	3.20	0.066	0.020	< 0.10	24.8	< 0.10	0.17	< 10.0	< 0.50	< 0.20	17.0
R828377	1a	SGS	0.074	2.50	20.9	2.02	5.20	0.0050	< 20.0	3.23	0.027	0.060	< 0.10	17.6	< 0.020	0.13	< 5.00	0.30	< 0.020	11.7
R828380	11C	SGS	0.062	6.10	58.6	3.28	11.3	0.21	< 20.0	3.11	0.32	0.12	< 0.10	12.4	0.030	0.060	< 5.00	0.10	< 0.020	12.1
R828382	1a	SGS	0.090	5.00	17.7	1.28	20.4	0.23	< 20.0	1.45	0.21	0.10	< 0.10	8.90	0.12	0.15	< 5.00	0.30	< 0.020	9.70
R828388	1a	SGS	0.087	5.00	18.9	1.50	3.80	0.092	< 20.0	3.32	0.036	0.010	< 0.10	20.7	< 0.020	0.080	< 5.00	0.30	< 0.020	16.6
R828391	1a	SGS	0.096	6.40	13.2	1.77	44.7	0.26	< 20.0	2.03	0.13	0.17	0.20	7.00	0.060	0.15	18.0	0.40	< 0.020	14.1
R828393	1a	SGS	880.0	3.70	13.7	1.60	4.70	0.0070	< 20.0	3.05	0.013	0.020	< 0.10	21.6	< 0.020	0.090	< 5.00	0.10	< 0.020	14.6

SRK Consulting (Canada) Inc. 2200–1066 West Hastings Street Vancouver, BC V6E 3X2

T: +1.604.681.4196 F: +1.604.687.5532 vancouver@srk.com www.srk.com

Memo

To: Shelley Potter, TMAC Client: TMAC Resources Inc.

From: Marie-Christine Noel Project No: 1CT022.016

Lisa Barazzuol

Cc: Oliver Curran, TMAC Date: March 26, 2018

Subject: 2017 Doris Waste Rock, Ore and Infrastructure Seep Monitoring

1 Introduction

As part of the verification, monitoring and management plans for the Hope Bay Project (the Project), TMAC monitors seepage downstream of the Doris North infrastructure, pads, roads, and waste rock. The 2017 seepage program was completed by TMAC in accordance with conditions outlined in Part D "Conditions applying to Construction and Operations" Item 20 of Water Licence 2AM-DOH1323 Amendment No. 1 (Nunavut Water Board 2016), Quarry Management and Monitoring Plan (TMAC 2017) and the Waste Rock and Ore Management Plan, Hope Bay Project, Nunavut (TMAC 2016).

This memo presents the results of the 2017 freshet seep survey and complies with Item 21 of the Water Licence cited above. It includes seepage monitoring of the Doris waste rock stockpiles and infrastructure constructed at Doris between fall of 2016 to mid-2017 using Quarry 2 rock, including:

- Tailings Impoundment Area (TIA) access road between Quarry 3 and southern end of TIA,
- Tailings catchment basin,
- Airstrip expansion, and
- Temporary explosives berm by the North Dam.

2 Methods

2.1 Seep Survey and Sample Collection

TMAC conducted the waste rock and construction (quarry) rock seep survey between June 15 and June 18, 2017 in the areas outlined in Section 1. Seep survey locations were established opportunistically by walking the toes of the waste rock stockpile, infrastructure, roadways, and berms (Attachment A). Additionally, three reference points in the tundra, not subject to mine influences, were sampled. The samples used as reference points were collected at approximately the same points as the 2010-2016 seep surveys (in the vicinity of the Doris-Windy Road, Attachment A)

Seeps were observed in all inspected areas except the temporary explosives berm. A total of 12 seepage sites and 3 reference sites were established. Of the twelve seepage sites, seven sites were in along the TIA Access Road, three were in the waste rock influenced area, and two were at the airstrip.

Field measurements were taken at all locations where water was observed flowing into and out of construction rock material including seeps where precipitation runoff and snowmelt came into contact with rock along the roadways, building pads and berms. Electrical conductivity (EC), pH, temperature, oxidation-reduction potential (ORP), and flow rates (where possible) were measured at each of these locations at the time of monitoring.

As per the water licence, a minimum of 10% of the total sample set, including any sites with elevated conductivity, were submitted to a laboratory for an extended analytical suite. A total of 15 samples was collected and analyzed. In addition, one duplicate sample and one field blank were collected and submitted for laboratory analysis, and one travel blank was included in sample shipments as part of SRK's quality assurance/quality control (QA/QC) program.

TMAC submitted 18 samples (including a duplicate and field and travel blanks) to ALS Environmental Labs in Vancouver, BC where they were analyzed for pH, conductivity, sulphate, acidity, alkalinity, chloride, fluoride, nitrate, nitrite, phosphorus, ammonia, total dissolved solids (TDS), total suspended solids (TSS) and low level dissolved metals including mercury and selenium. All samples were filtered and preserved in the field, as required.

2.2 Quality Assurance

QA/QC review of all data was conducted by SRK and deemed overall acceptable.

Ion balances ranged from -10.7 to 9.9% for the seep samples. One sample exceeded SRK's criteria of $\pm 10\%$ (17-TLA-02) with an ion balance of -10.7%. As the sample had very low concentrations of ions (electrical conductivity < μ S/cm) this was deemed acceptable. All other samples complied with SRK's criteria.

Field blank parameters were below detection limits indicating that appropriate field filtration and sampling methods were employed. The field duplicate results were within ±7% relative percent difference (RPD) for all parameters with measured concentrations above ten times the detection limit.

Laboratory and field values of pH and electric conductivity (EC) were compared, as well as total dissolved solids (TDS) and lab conductivity. Conductivity values were near parity for all samples. Values of pH were slightly higher in the lab than in the field for all samples. For all samples, TDS demonstrated a strong positive correlation with lab conductivity.

3 Results and Discussion

Attachment A presents maps of the seepage sample locations and the as-built alignment of the airstrip, TIA access road and Pad T. A complete set of field observations and measurements is provided in Attachment B. Attachment C contains the laboratory water chemistry results.

3.1 Field Measurements

The maps in Attachment A present electric conductivity and pH measured in the field. The field data are summarized as follows (Table 1):

- pH was neutral to slightly alkaline.
- The samples collected within the Waste Rock Influenced Area (17-DC-01, 17-DC-02, 17-DC-03) had the highest levels of conductivity (3350 to 3860 µS/cm).
- Median conductivity concentrations of the seepage samples collected along the TIA access road were 86 μS/cm while the median conductivity concentrations of the samples collected along the airstrip was 390 μS/cm.
- Median concentrations for the reference samples were 93 μS/cm. The reference points were measured as representative of conditions outside the influence of construction and mining operations.

Table 1: Mean Values for Field Conductivity and pH Measurements

		Conductivity	-11			
Site Area	No. of Samples	(µS/cm)	рН			
		М	edian			
Waste Rock Influenced Area	3	3600	7.8			
TIA Access Road	7	86	7.7			
Airstrip	2	390	7.9			
Reference Points	3	93	7.7			

Source: \\van-

svr0\projects\01_SITES\Hope.Bay\1CH008.023_Geochem_Monitoring\C_Seep_Surveys\June2017%20Seepage%20Survey\4.%20Workin g%20file\2017_DorisSeep_CompiledData_Rev00_AMD.xlsx

3.2 Laboratory Data

A summary of water quality analyses for the 2017 seep samples is presented in Table 2. All parameters were compared to the CCME water quality guidelines for the protection of aquatic life to screen for elevated parameters (dissolved). Comparisons to these criteria were used solely for screening purposes and are not directly applicable because the seep locations do not support aquatic life.

3.2.1 Windy Road Area (Reference)

Consistent with previous years, three reference samples were taken in the Windy Road area and submitted for laboratory analysis (Table 2). The lab pH values ranged from 7.4 to 7.7, while lab electric conductivity was measured between 52 and 120 μ S/cm. Parameter concentrations were below the screening criteria.

3.2.2 Waste Rock Influenced Area

Three samples from the Waste Rock Influenced Area (WRIA) in the Doris Camp were submitted for laboratory analysis (Table 2). DC-01 and DC-02 were sampled immediately downstream of the toe of the stockpile on Pad I that is composed of TMAC ore placed on top of waste rock from 2011 and 2012. Accordingly, seepage from DC-01 and DC-02 are considered contact water (undiluted) from this stockpile.

The lab pH values ranged from 7.6 to 7.8, and lab electric conductivity ranged from 3,100 to 3,500 μ S/cm. All samples had elevated ammonia, chloride and nitrate concentrations compared to the screening criteria. Ammonia concentrations ranged from 4 to 6 times above the screening criteria and nitrate concentrations were 13 to 17 higher. One sample (17-DC-03) had copper concentrations that were twice the screening criteria while the other two samples were 50 times higher. Two samples (17-DC-01 and 17-DC-02) had iron and selenium concentrations two times and four times greater than the screening criteria, respectively. One sample (17-DC-01) had arsenic concentrations 50% greater than the screening criteria.

3.2.3 TIA Access Road Area

Seven samples from the TIA access road area (including the tailings catchment basin) were submitted for laboratory analysis (Table 2). Lab pH ranged from 7.5 to 8, and lab electric conductivity ranged from 64 to 240 μ S/cm. Three samples (17-CB-01, 17-TLA-04, and 17-TLA-05) had copper concentrations that exceeded but the same order of magnitude as the screening criteria (higher by a maximum of 60%).

3.2.4 Airstrip Area

Two samples from the Airstrip area were submitted for laboratory analysis (Table 2). Lab pH for the samples was 8.2 and 8.1 and lab electric conductivity of 560 and 230. The copper concentration for both samples exceeded the screening criteria by a factor of approximately 4. All other parameters were below the screening criteria. In general, 17-AIRSTR-01 had higher concentrations than 17-AIRSTR-02. Sulphate concentrations for both samples were low (≤12 mg/L).

Table 2: Summary of Laboratory Results of 2017 Seep Samples.

	Sample ID	Field pH	Lab pH	Field EC	Lab EC	ORP	Total Hardness	TDS	Total Ammonia	CI	NO3	SO4	Al	As	Cd	Cu	Fe	Pb	Hg	Ni	Se	TI	Zn
Area	Campio 15	s.u.	s.u.	μS/cm	μS/cm	mV	mg CaCO₃/L	mg/L	mg N/L	mg/L	mg N/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	CCME Guideline*	6.5-9	6.5-9	-	-	-	-	-	4**	120 mg/L	3 mg N/L	-	0.1	0.005	0.0041***	0.004***	0.3	0.007***	0.000026	0.15***	0.001	0.0008	0.03
Reference	17-REF-01	7	7.4	53	52	110	22	57	<0.0050	3.2	<0.0050	<0.30	0.049	0.00018	<0.0000050	0.00086	0.15	<0.000050	<0.000050	0.0023	<0.000050	<0.000010	0.0033
(Windy	17-REF-02	7.7	7.5	120	120	100	31	80	<0.0050	18	<0.0050	3.3	0.021	<0.00010	<0.0000050	0.00068	0.043	<0.000050	<0.0000050	0.00099	<0.000050	<0.000010	0.0011
Road)	17-REF-03	7.7	7.7	93	93	61	35	65	<0.0050	6.3	<0.0050	2.5	0.018	<0.00010	<0.0000050	0.0012	0.043	<0.000050	<0.000050	<0.00050	<0.000050	<0.000010	0.0041
Waste	17-DC-01	7.8	7.7	3600	3500	210	750	2300	22	920	48	180	0.0072	0.0074	0.000065	2.1	0.63	<0.00010	0.000007	0.069	0.0038	0.000069	<0.0020
Rock Influenced	17-DC-02	7.9	7.6	3900	3600	200	790	2400	23	970	51	170	0.0059	0.0033	0.00012	2.2	0.55	<0.00010	<0.0000050	0.08	0.0039	0.000062	<0.0020
Area	17-DC-03	7.8	7.8	3400	3100	170	920	1900	15	900	40	35	0.0068	0.0016	0.00013	0.008	<0.020	<0.00010	<0.0000050	0.0031	0.00082	0.000048	<0.0020
	17-CB-01a	8.2	8	240	220	150	89	140	0.005	14	0.28	7.3	0.014	0.00018	<0.0000050	0.0053	0.016	<0.000050	<0.0000050	0.00067	0.00011	<0.000010	0.0016
	17-TLA-01	8	7.5	63	79	160	25	56	0.12	3	0.0058	<0.30	0.081	0.00014	5.6E-06	0.0024	0.069	0.000063	<0.000050	0.0022	<0.000050	<0.000010	0.0037
	17-TLA-02	7.5	7.5	66	64	170	30	71	0.018	3.8	0.009	<0.30	0.074	0.00015	<0.000050	0.0026	0.091	<0.000050	<0.000050	0.0034	<0.000050	<0.000010	0.0029
TIA Access Road	17-TLA-03	7.3	7.6	86	81	170	35	75	0.05	4.6	0.0096	<0.30	0.064	0.00022	<0.000050	0.0029	0.063	<0.000050	0.000005	0.0033	<0.000050	<0.000010	0.0027
	17-TLA-04	7.5	8	260	240	160	110	180	0.13	13	1.7	4.1	0.071	0.00068	0.000011	0.0067	0.07	0.000059	<0.000050	0.0022	0.000088	<0.000010	0.0021
	17-TLA-05	7.7	7.6	99	96	110	43	92	0.024	6.2	<0.0050	<0.30	0.085	0.00026	<0.000050	0.0041	0.061	<0.000050	0.0000053	0.004	0.000053	<0.000010	0.0025
	17-TLA-06	8.5	7.7	81	84	99	33	52	0.084	3.5	0.018	1.2	0.021	0.00013	<0.0000050	0.002	0.016	<0.000050	<0.0000050	<0.00050	<0.000050	<0.000010	<0.0010
Airotria	17-AIRSTR-01	7.6	8.2	560	510	150	230	320	0.66	34	0.016	12	0.017	0.0035	0.000027	0.017	0.049	<0.000050	<0.0000050	0.0042	0.00023	<0.000010	<0.0010
Airstrip	17-AIRSTR-02	8.2	8.1	230	220	110	92	140	0.12	8.7	0.094	6.5	0.022	0.0022	<0.0000050	0.014	0.037	<0.000050	<0.0000050	0.0012	0.00015	<0.000010	<0.0010

 $Source: $\van-svr0\projects \one Source: $\van-svr0\projects \one Source: \one So$

Notes:

- (1) *Comparisons to CCME water quality guidelines for the protection of aquatic life are intended for screening purposes and are not directly applicable because the seepage sites do not support aquatic life.
- (2) Values in bold indicates value exceeds respective water quality guideline for the parameter.
- (3) **Guideline for ammonia is pH and temperature dependent. Seepage waters had an average temperature of 3.6°C at time of sampling and an average pH of 7.8. This guideline value is approximate.
- (4) ***Guideline calculated based on the average hardness of the seepage samples of 195 mg CaCO3 mg/L

3.3 Comparison to Previous Surveys

Table 3 presents a comparison of samples collected in 2017 from the waste rock influenced and reference areas with historical seepage samples collected from the same area (refer to maps in Attachment A). The historical data are presented as 5th, 50th, and 95th percentile statistics, with concentrations below the detection limit assumed to be equal to the detection limit.

3.3.1 Windy Road Area (Reference)

Reference samples collected in 2017 had concentrations generally consistent with the historical dataset.

3.3.2 Waste Rock Influenced Area

Consistent with previous years, seepage results indicated flushing of salts from drilling brines (chloride) and explosives residues (ammonia and nitrate) from the waste rock stockpile. Sulphate concentrations were within historical ranges. Copper, iron and nickel for the stockpile seepage samples (17-DC-01 and 17-DC-02) were higher than historic monitoring data, however this could be due to the fact that these samples represent true contact (undiluted) water and the presence of ore within the stockpile. All other parameters were consistent with the historical dataset.

Table 3: Comparison of Water Quality Results to Range of Observed Data for Waste Rock Influenced Area and Reference Sites

		Sample ID	Lab pH	Lab EC	Total Hardness	TDS	Total Ammonia	CI	NO3	SO4	Al	As	Cd	Cu	Fe	Pb	Hg	Ni	Se	TI	Zn
Area	Samples	-	s.u.	μS/cm	mg CaCO3/L	mg/L	mg N/L	mg/L	mg N/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
		CCME guideline*	6.5-9	-	-	-	4**	120 mg/L	3 mg N/L	1	0.1	0.005	0.0041***	0.004***	0.3	0.007***	0.000026	0.15***	0.001	0.0008	0.03
Reference	2017 Samples	17-REF-01	7.4	52	22	57	<0.0050	3.2	<0.0050	<0.30	0.049	0.00018	<0.0000050	0.00086	0.15	<0.000050	<0.0000050	0.0023	<0.000050	<0.000010	0.0033
(Windy Road)		17-REF-02	7.5	120	31	80	<0.0050	18	<0.0050	3.3	0.021	<0.00010	<0.0000050	0.00068	0.043	<0.000050	<0.0000050	0.00099	<0.000050	<0.000010	0.0011
,		17-REF-03	7.7	93	35	65	<0.0050	6.3	<0.0050	2.5	0.018	<0.00010	<0.0000050	0.0012	0.043	<0.000050	<0.0000050	<0.00050	<0.000050	<0.000010	0.0041
Reference	2011 to 2016	P05	7.2	53	17	33	0.005	3.7	0.005	0.3	0.0059	0.0001	0.000005	0.00084	0.025	0.00005	0.000005	0.0005	0.00005	0.00001	0.0014
(Windy	Statistics	P50	7.5	75	23	57	0.0056	6.3	0.005	0.77	0.019	0.00011	0.00001	0.0012	0.043	0.00005	0.00001	0.00092	0.0001	0.00001	0.0033
Road) 2011-2016		P95	8	200	76	120	0.015	28	0.005	3.9	0.051	0.00021	0.00005	0.0019	0.19	0.00005	0.00001	0.0026	0.001	0.0001	0.0046
		n	19	15	19	19	16	19	19	19	19	19	19	19	19	19	15	19	19	19	19
Waste Rock	2017 Samples	17-DC-01	7.7	3500	750	2300	22	920	48	180	0.0072	0.0074	0.000065	2.1	0.63	<0.00010	0.000007	0.069	0.0038	0.000069	<0.0020
Influenced Area		17-DC-02	7.6	3600	790	2400	23	970	51	170	0.0059	0.0033	0.00012	2.2	0.55	<0.00010	<0.0000050	0.08	0.0039	0.000062	<0.0020
71100		17-DC-03	7.8	3100	920	1900	15	900	40	35	0.0068	0.0016	0.00013	0.008	<0.020	<0.00010	<0.0000050	0.0031	0.00082	0.000048	<0.0020
Waste Rock Influenced Area 2011-2016	2011 to 2016	P05	7.6	420	130	230	0.29	58	1.9	11	0.007	0.00061	0.0000071	0.0028	0.01	0.00005	0.000005	0.00059	0.00025	0.00001	0.0011
	Statistics	P50	7.9	2400	820	2200	16	840	43	39	0.012	0.0014	0.000034	0.0064	0.03	0.000064	0.00001	0.0018	0.0014	0.000077	0.0025
		P95	8.1	8500	2500	7100	67	2500	140	140	0.032	0.0043	0.00032	0.014	0.065	0.00025	0.00001	0.0066	0.01	0.001	0.03
		n	20	14	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20

 $Source: van-svr0\projects\\01_SITES\\Hope.Bay\\1CH008.023_Geochem_Monitoring\\C_Seep_Surveys\\June2017\%20Seepage\%20Survey\\4.\%20Working\%20file\\2017_DorisSeep_CompiledData_Rev01_AMD.xlsx$

Notes:

(1) All metal concentrations are dissolved

4 Conclusions and Recommendations

The scope of the 2017 Hope Bay seep monitoring survey included infrastructure constructed from quarry rock between fall 2016 and mid-2017 (airstrip expansion, tailings catchment basin, temporary explosives berm by the North dam, the TIA access road between Quarry 3 and the southern end of the TIA) and areas downstream of waste rock stockpiles, including seepage collected from the toe of the stockpiles. All infrastructure surveyed was constructed from rock sourced from Quarry 2. Seepage samples were observed and sampled in all areas except downstream of the temporary explosives berm.

The results of the 2017 sampling program indicate that there are no major issues with respect to metal leaching and acid rock drainage in seepage associated with infrastructure at Hope Bay. Compared with seeps from infrastructure areas, and consistent with previous years, seepage from areas impacted by waste rock had elevated levels of chloride, nitrate and ammonia. Chloride levels are attributed to flushing of drilling brines and nitrate and ammonia levels to blasting residues from the waste rock.

The waste rock toe seepage samples were elevated in arsenic, copper, iron, nickel and selenium concentrations compared to screening criteria and/or historical data. The elevated concentrations may be due to the sample type (undiluted contact water) and the presence of ore in the stockpile that historically contained waste rock only.

Continued monitoring will establish trends in parameter concentrations. The majority of this seepage is captured in the water management system implemented at Doris and directed to the TIA.

Regards.

SRK Consulting (Canada) Inc.

Marie-Christine Noel

Consultant

Reviewed by

The state of the state of the state of

This signature has been scanned.

Lisa Barazzuol, PGeo (BC)

Senior Consultant

Disclaimer—SRK Consulting (Canada) Inc. has prepared this document for TMAC Resources Inc.. Any use or decisions by which a third party makes of this document are the responsibility of such third parties. In no circumstance does SRK accept any consequential liability arising from commercial decisions or actions resulting from the use of this report by a third party.

The opinions expressed in this report have been based on the information available to SRK at the time of preparation. SRK has exercised all due care in reviewing information supplied by others for use on this project. Whilst SRK has compared key supplied data with expected values, the accuracy of the results and conclusions from the review are entirely reliant on the accuracy and completeness of the supplied data. SRK does not accept responsibility for any errors or omissions in the supplied information, except to the extent that SRK was hired to verify the data.

5 References

Nunavut Water Board (2016) Water Licence No. 2AM-DOH1323 – Amendment No. 1. Issued on November 4, 2016.

- SRK Consulting (Canada) Inc., 2010. *Quarry A, B & D Management and Monitoring Plan, Revision 01*. Technical report prepared for Hope Bay Mining Ltd. by SRK, April 2010.
- SRK Consulting (Canada) Inc., 2015. 2014 Hope Bay Seepage Monitoring Program. Prepared for TMAC Resources. SRK Project No. 1CT022.001. March 2015.
- SRK Consulting (Canada) Inc., 2016. 2015 Doris Waste Rock and Ore Seep Monitoring. Prepared for TMAC Resources. SRK Project No. 1CT022.009. April 2016.
- SRK Consulting (Canada) Inc., 2017. 2016 Doris Waste Rock and Ore Seep Monitoring. Prepared for TMAC Resources. SRK Project No. 1CT022.009. March 2017.
- TMAC Resources Inc., 2016. Waste Rock and Ore Management Plan, Hope Bay Project, Nunavut. Prepared by TMAC Resources, August 2016.
- TMAC Resources Inc., 2017. Quarry Management and Monitoring Plan, Hope Bay Project, Nunavut. Prepared for TMAC Resources, November 2017.

