

					General Observations						Field Mea	surements														
Date	Sampling Point	Area	Coordain	13)	Description of Location pH	Conductiv	-	Water Temperature	Water Colour	Turbidity	Precipitates/Stai		Photos Taken	Flow Measurement Calculations	t1	t2	t3	Amount	Capture	Flow	Lab sample collected	Filtrate colour	Sediment colour	Number of filters used	Duplicate	Field Blank
15-Jun-17	17-CB-01a	TLA Road	434008	7559504	NE toe of tails catchment basin ~50m west of Doris Creek. Grassy Tundra. Steady flow + channel from toe. Small, fragmented channel leading down to Doris Creek. Some grey fines settled in channel pools. 8cm x 3cm deep. Syringe used to collect sample.	s μS/cm 241	mV 155		Colorless	None	None	None	Yes		sec 2	sec 2	sec 2	mL 250	90	L/s 0.1	Yes	Colorless	Grey	1	17-CB-01b	
15-Jun-17	17-DC-01	Waste Rock Influenced Area	433147	7558966	North west corner within PCP. 50m downstream of ore stockpile. Steady flow from rock berm into the PCP. Rock fines on bottom of channel. 5cmxcxm deep. Syring used to collected sample.	3640	209	0.4	Colorless	None	None	None	Yes		2	2	2	250	90	0.1	Yes	Colorless - light orange when preserved	Reddish pebbles	2		
15-Jun-17	17-DC-02	Waste Rock Influenced Area	433157	7558981	Approximately 10m east of DC-01 at northwest corner within PCP. A lot of sediment in area. Area was fully saturated days prior to dewatering. Muddy. Small amount of seepage observed at toe of ore pad. Syringe used to collect sample.	3860	203	0.4	Colorless	None	None	None	Yes	Too little to measure							Yes	Colorless, slight orange when preserved	Reddish brown	2		
15-Jun-17	17-DC-03	Waste Rock Influenced Area	433328	7558877	Small seepage at toe of road berm at Pad G. Seepage very shallow. Tundra very saturated and muddy. 2 other small seeps within 1m of largest sampled seep; 10m west of sump. Syringe used to collect sample. 7.8	3350	165	0.5	Colorless	None	None	None	Yes		3	3	3	125	40	0.1	Yes	Colorless	None	1		
15-Jun-17	17-TLA-01	TLA Road	435368	7557723	Northwest side of TIA road at toe. Grassy tundra. Had to remove rocks to confirm and access seep. Visisble stream emenating from under roadway. Snow/ice on other side of roadway. Melt running under road. Grey fines settled in pools. Water appears slightly cloudy. Syringe used to collect sample	63	162	0.4	Colorless with slight brown	-	None	None	Yes	Too little to measure							Yes	Colorless	Grey	0		
16-Jun-17	17-TLA-02	TLA Road	435363	7557699	West side of TIA road. Large boulders. Large amount of willow in area. 3 large seeps within 2 meters; all pooling into 1 area. Grassy. No fine sediment present in pooled area. Syringe used to collect sample.	66	168	3.5	Colorless with slight brown	None	None	None	Yes		3	3	3	250	20	0.5	Yes	Coloriess	None	1		Yes - No ID
16-Jun-17	17-TLA-03	TLA Road	435474	7557284	West side of TIA raod. Grassy tundra. No pooling, water	86	167	2.2	Colorless with slight brown	None	None	None	Yes	Too low to measure							Yes	Colorless	None	1		
16-Jun-17	17-TLA-04	TLA Road	435488	7557209	West side of TIA road. Grassy tundra. Few willows. 1 small seep	255	159	1.2	Colorless with slight brown	None	None	None	Yes		3	3	3	125	50	0.1	Yes	Colorless with slight brown	Brown	6		
16-Jun-17	17-REF-03	Reference	432121	7557604	Channel 39cmx8.6cm deep. Pronounced channel with large flow. Grassy tundra. Flow from out crop heading North. Reddish sediment in bottom with patches of exposed sand. Used syringe to collect sample.	93	61	14.0	Colorless	None	None	None	Yes	Too large to measure (?)							Yes	Colorless	Red	1		
16-Jun-17	17-REF-02	Reference	432078	7556083	Small, pronounced channel flowing south. Grassy tundra. Pools	119	104	4.6	Colorless	None	None	None	Yes		3	2	2	1000	70	0.6	Yes	Colorless	Reddish	1		
16-Jun-17	17-REF-01	Reference	433456	7550152	Pronounced channel flowing North towards Windy Lake Road. Grassy tundra with abundnace of willows. Pools and riffles observed. Channel 25cmx17cm deep. Fast flowing.	53	108	6.4	Colorless with slight brown	None	None	None	Yes	Used a floating twig							Yes	Colorless	None	1		
16-Jun-17	17-TLA-05	TLA Road	435546	7557173	West side of TIA road. Grassy tundra, some willows. Small seep with pooling. Channel exists 10m down stream. Fines settled in bottom of pool. A few rocks ramoved to better access seep. Water sample collected with syringe.	99	111	6.0	Light brown	None	None	None	Yes		4	4	4	1000	75	0.3	Yes	Very light brown to colorless	None	1		
16-Jun-17	17-TLA-06	TLA Road	434666	7559197	West side of TIA road. ~50m south of reclaim jetty roat/reagent berm pad. Small (2 to 3 within 1m) flows emanating from toe of road berm. Removed a couple rocks for access. A lot of sediment in the sample area. Allowed fines to clear for 5 minutes. Grassy with hummocks. Collected sample with syringe.	81	99	11.8	Cloudy/colorless	Slightly	None	None	Yes	Unable to measure							Yes	-	-	0		
18-Jun-17	17-AIRSTR-01	Airstrip	4329175	7561090	North side of de-icing pad. Construction active in the area. Hummocks and willows present in sample area. No channel. Small pool (3m) at base of seepage. Small amounts of sediment in pool. Sample collected with a syringe.	557	150	1.1	Colorless	No	None	None	Yes		4	4	4	250	50	0.1	Yes	Colorless	None	3		
18-Jun-17	17-AIRSTR-02	Airstrip	432768	7561064	West side of south apron extension. Grassy tundra. Very small	232	106	0.4	Colorless, slightly cloudy	No	None	None	Yes	Too low to measure							Yes	Colorless	light orange/reddis h	4		

Area	Sample ID	Field pH	Lab pH	Field EC	Lab EC	ORP	Total Hardness	TSS	TDS	Acidity	Total Alkalinity	Total Ammonia	CI	F	NO ₃	NO2	Total P	SO₄	Al
		s.u.	s.u.	μS/cm	μS/cm	mV	mg CaCO ₃ /L	mg/L	mg/L	mg CaCO ₃ /L	mg CaCO3/L	mg N/L	mg/L	mg/L	mg N/L	mg N/L	mg/L	mg/L	mg/L
	CCME guideline*	6.5-9	6.5-9	-	-	-	-	-	-	-	1	4**	120 mg/L	-	3 mg N/L	-	1	-	0.1
Deference	16-REF-001	7	7.4	53	52	110	22	<3.0	57	3	21	<0.0050	3.2	0.062	<0.0050	<0.0010	0.0043	<0.30	0.049
Reference (Windy Road)	16-REF-002	7.7	7.5	120	120	100	31	<3.0	80	2.5	24	<0.0050	18	0.028	<0.0050	<0.0010	0.006	3.3	0.021
(Villa) Roda)	16-REF-003	7.7	7.7	93	93	61	35	<3.0	65	2	36	<0.0050	6.3	<0.020	<0.0050	<0.0010	0.0022	2.5	0.018
Wasta Daak	17-DC-01	7.8	7.7	3600	3500	210	750	48	2300	8.7	70	22	920	<0.40	48	0.86	0.23	180	0.0072
Waste Rock Influenced Area	17-DC-02	7.9	7.6	3900	3600	200	790	11	2400	9.5	73	23	970	<0.40	51	0.83	0.24	170	0.0059
	17-DC-02	7.8	7.8	3400	3100	170	920	4.7	1900	6.8	68	15	900	<0.40	40	0.47	0.0062	35	0.0068
	17-CB-01a	8.2	7.9	240	220	150	87	<3.0	160	2.4	88	<0.0050	14	0.026	0.28	0.0082	0.024	7.3	0.013
	17-TLA-01	8	7.5	63	79	160	25	26	56	3.2	34	0.12	3	0.038	0.0058	<0.0010	0.037	<0.30	0.081
Toil Lake Assess	17-TLA-02	7.5	7.5	66	64	170	30	<3.0	71	2.8	26	0.018	3.8	0.059	0.009	<0.0010	0.0054	<0.30	0.074
Tail Lake Access (TLA) Road	17-TLA-03	7.3	7.6	86	81	170	35	<3.0	75	4	34	0.05	4.6	0.064	0.0096	<0.0010	0.029	<0.30	0.064
(12/1)/1000	17-TLA-04	7.5	8	260	240	160	110	17	180	5	98	0.13	13	0.065	1.7	0.043	0.06	4.1	0.071
	17-TLA-05	7.7	7.6	99	96	110	43	<3.0	92	3.1	39	0.024	6.2	0.09	<0.0050	<0.0010	0.029	<0.30	0.085
	17-TLA-06	8.5	7.7	81	84	99	33	20	52	1.8	37	0.084	3.5	<0.020	0.018	0.0018	0.028	1.2	0.021
Airstrip	17-AIRSTR-01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=	-	-	-
Allouip	17-AIRSTR-02	8.2	8.1	230	220	110	92	8.1	140	1.8	96	0.12	8.7	0.039	0.094	0.0032	0.0079	6.5	0.022

^{*}Comparisons to CCME water quality guidelines for the protection of aquatic life are intended for screening purposes and are not directly applicable because the seepage sites do not support aquatic life.

Values in bold indicates value exceeds respective water quality guideline for the parameter.

^{**}Guideline for ammonia is pH and temperature dependent. Seepage waters had an average temperature of 5.2°C at time of sampling and an average pH of 7.6. This guideline value is approximate.

^{***}Guideline calculated based on the average hardness of the seepage samples of 330 mg CaCO $_3$ mg/L

Area	Sample ID	Sb	As	Ва	Ве	Bi	В	Cd	Ca	Cr	Со	Cu	Fe	Pb	Li	Mg	Mn	Hg
		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	CCME guideline*	-	0.005	ı	-	-	-	0.00037***	-	-	-	0.004***	0.3	0.007***		-	-	0.000026
Reference	16-REF-001	<0.00010	0.00018	0.0023	<0.000020	<0.000050	<0.010	<0.0000050	4.5	0.00048	<0.00010	0.00086	0.15	<0.000050	0.0027	2.7	0.0014	<0.000050
(Windy Road)	16-REF-002	<0.00010	<0.00010	0.0022	<0.000020	<0.000050	<0.010	<0.0000050	7.4	0.00013	<0.00010	0.00068	0.043	<0.000050	<0.0010	3.2	0.00088	<0.000050
(villa) Roda)	16-REF-003	<0.00010	<0.00010	0.0028	<0.000020	<0.000050	0.01	<0.0000050	10	0.00013	<0.00010	0.0012	0.043	<0.000050	<0.0010	2.4	0.0016	<0.000050
Waste Rock	17-DC-01	0.0011	0.0074	0.058	<0.000040	<0.00010	0.22	0.000065	240	0.0045	0.036	2.1	0.63	<0.00010	0.0067	36	0.18	0.000007
Influenced Area	17-DC-02	0.001	0.0033	0.053	<0.000040	<0.00010	0.23	0.00012	260	0.0039	0.037	2.2	0.55	<0.00010	0.012	37	0.63	<0.000050
	17-DC-02	0.00023	0.0016	0.081	<0.000040	<0.00010	0.11	0.00013	310	<0.00020	0.0013	0.008	<0.020	<0.00010	0.0067	35	0.22	<0.000050
	17-CB-01a	<0.00010	0.00019	0.0046	<0.000020	<0.000050	0.03	<0.0000050	26	<0.00010	<0.00010	0.0051	0.016	<0.000050	0.0014	5.2	0.0015	<0.000050
	17-TLA-01	<0.00010	0.00014	0.0023	<0.000020	<0.000050	<0.010	0.0000056	6.6	0.00033	0.00013	0.0024	0.069	0.000063	0.0018	2.1	0.062	<0.000050
Tail Lake Access	17-TLA-02	<0.00010	0.00015	0.0022	<0.000020	<0.000050	<0.010	<0.0000050	6.9	0.00053	<0.00010	0.0026	0.091	<0.000050	0.0024	3.1	0.012	<0.000050
(TLA) Road	17-TLA-03	<0.00010	0.00022	0.0028	<0.000020	<0.000050	<0.010	<0.0000050	8.8	0.00069	<0.00010	0.0029	0.063	<0.000050	0.0031	3.3	0.021	0.000005
(12/1)/1000	17-TLA-04	<0.00010	0.00068	0.01	<0.000020	<0.000050	0.015	0.000011	25	0.00068	0.00037	0.0067	0.07	0.000059	0.0039	11	0.11	<0.000050
	17-TLA-05	<0.00010	0.00026	0.0029	<0.000020	<0.000050	<0.010	<0.0000050	10	0.00064	<0.00010	0.0041	0.061	<0.000050	0.0036	4.1	0.02	0.0000053
	17-TLA-06	<0.00010	0.00013	0.003	<0.000020	<0.000050	0.011	<0.0000050	11	<0.00010	<0.00010	0.002	0.016	<0.000050	<0.0010	1.5	0.025	<0.000050
Airstrip	17-AIRSTR-01	-	-	=	-	-	=	-	-	-	-	-	-	-	-	-	-	-
Allouip	17-AIRSTR-02	<0.00010	0.0022	0.0026	<0.000020	<0.000050	0.024	<0.0000050	27	0.00015	0.00026	0.014	0.037	<0.000050	0.0015	6.2	0.058	<0.000050

^{*}Comparisons to CCME water quality guidelines for the protection of aquatic life are intended for screening purposes and are not directly applicable because the seepage sites do not support aquatic life.

Values in bold indicates value exceeds respective water quality guideline for the parameter.

^{**}Guideline for ammonia is pH and temperature dependent. Seepage waters had an average temperature of 5.2°C at time of sampling and an average pH of 7.6. This guideline value is approximate.

 $^{^{\}star\star\star}\text{Guideline}$ calculated based on the average hardness of the seepage samples of 330 mg CaCO $_3$ mg/L

Area	Sample ID	Мо	Ni	P	К	Se	Si	Ag	Na	Sr	s	TI	Sn	Ti	U	v	Zn	Zr
		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	CCME guideline*	-	0.15***	-	-	0.001	-	-	-	-	-	0.0008	-	-	-	-	0.03	-
Deference	16-REF-001	0.00018	0.0023	<0.050	0.33	<0.000050	1.4	<0.000010	3.3	0.011	<0.50	<0.000010	<0.00010	0.0005	0.000015	<0.00050	0.0033	0.00046
Reference (Windy Road)	16-REF-002	0.000063	0.00099	<0.050	0.29	<0.000050	1	<0.000010	11	0.024	1	<0.000010	<0.00010	<0.00030	<0.000010	<0.00050	0.0011	<0.00030
(Willay Hoda)	16-REF-003	<0.000050	<0.00050	<0.050	0.37	<0.000050	1.1	<0.000010	6.6	0.017	0.72	<0.000010	<0.00010	<0.00030	<0.000010	<0.00050	0.0041	<0.00030
Waste Rock	17-DC-01	0.0089	0.069	0.2	31	0.0038	2.3	0.03	290	0.78	60	0.000069	<0.00020	<0.00060	0.00086	<0.0010	<0.0020	<0.00030
Influenced Area	17-DC-02	0.01	0.08	0.18	31	0.0039	2.4	0.025	290	0.84	60	0.000062	<0.00020	<0.00060	0.00092	<0.0010	<0.0020	<0.00030
	17-DC-02	0.0016	0.0031	<0.10	15	0.00082	1.6	0.000066	160	0.75	12	0.000048	<0.00020	<0.00060	0.00064	<0.0010	<0.0020	<0.00030
	17-CB-01a	0.00025	0.00067	<0.050	1.2	0.00012	2.8	<0.000010	12	0.056	2.3	<0.000010	<0.00010	<0.00030	0.000021	<0.00050	0.0012	<0.00030
	17-TLA-01	0.00016	0.0022	<0.050	1.1	<0.000050	0.82	<0.000010	2.6	0.01	<0.50	<0.000010	<0.00010	0.00095	0.000024	<0.00050	0.0037	0.00048
Tail Lake Access	17-TLA-02	0.000081	0.0034	<0.050	0.59	<0.000050	1.3	<0.000010	3.9	0.013	<0.50	<0.000010	<0.00010	0.00064	0.000016	<0.00050	0.0029	0.0004
(TLA) Road	17-TLA-03	0.00016	0.0033	<0.050	0.82	<0.000050	2.8	<0.000010	4.1	0.014	<0.50	<0.000010	<0.00010	0.00073	0.000037	<0.00050	0.0027	0.00055
(12.1)11000	17-TLA-04	0.00036	0.0022	<0.050	3.1	0.000088	3.4	<0.000010	13	0.039	1.5	<0.000010	<0.00010	0.0017	0.000082	0.00055	0.0021	0.00049
	17-TLA-05	0.00019	0.004	<0.050	0.93	0.000053	2.1	<0.000010	5.3	0.017	<0.50	<0.000010	<0.00010	0.00071	0.000016	<0.00050	0.0025	0.00048
	17-TLA-06	0.000069	<0.00050	<0.050	0.59	<0.000050	0.38	<0.000010	2.5	0.009	<0.50	<0.000010	<0.00010	<0.00030	0.000016	<0.00050	<0.0010	<0.00030
Airstrip	17-AIRSTR-01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Allouip	17-AIRSTR-02	0.00027	0.0012	<0.050	1.6	0.00015	1.7	<0.000010	11	0.042	2.3	<0.000010	<0.00010	0.00031	0.00047	0.00083	<0.0010	<0.00030

^{*}Comparisons to CCME water quality guidelines for the protection of aquatic life are intended for screening purposes and are not directly applicable because the seepage sites do not support aquatic life.

Values in bold indicates value exceeds respective water quality guideline for the parameter.

^{**}Guideline for ammonia is pH and temperature dependent. Seepage waters had an average temperature of 5.2°C at time of sampling and an average pH of 7.6. This guideline value is approximate.

^{***}Guideline calculated based on the average hardness of the seepage samples of 330 mg CaCO $_3$ mg/L

SRK Consulting (Canada) Inc. 2200–1066 West Hastings Street Vancouver, BC V6E 3X2

T: +1.604.681.4196 F: +1.604.687.5532 vancouver@srk.com www.srk.com

Memo

To: Shelley Potter, TMAC Client: TMAC Resources Inc.

From: Jessica Charles Project No: 1CT022.016

Lisa Barazzuol

Cc: Oliver Curran, TMAC Date: March 26, 2018

Subject: 2017 Geochemical Monitoring of Flotation Tailings Slurry and Detoxified Tailings, Doris Mill

1 Introduction

TMAC started processing ore at the Doris mill with initiation of deposition of flotation tailings in the Doris tailings impoundment area (TIA) on January 20, 2017 and placement of detoxified tailings as backfill in Doris Mine on February 20, 2017. Geochemical monitoring of tailings commenced in February 2017. In 2017, a total of 199,488 t (dry weight equivalent) of flotation tailings were deposited in the Doris TIA and 8,333 t of detoxified tailings were placed as backfill within stopes of Doris Mine.

The geochemical monitoring program for flotation tailings slurry and detoxified tailings are specified in Schedule J, Tables 1 and 2 of NWB Type "A" Water Licence 2AM-DOH1323 Amendment No. 1 (the "Water Licence", Nunavut Water Board 2016) and includes the following monitoring stations: TL-5 (process plant tailings water discharge), TL-6 (flotation tailings solids), TL-7 (detoxified tailings solids¹), and TL-11 (seepage from underground backfilled stopes).

This memo documents the results of the 2017 geochemical monitoring of flotation and detoxified tailings at TL-5, TL-6, TL-7 and TL-11 and fulfills the reporting requirements outlined in Schedule B, Items 2a, 2b and 2d of Water Licence 2AM-DOH1323.

2 Methods

2.1 Sample Collection and Analysis

2.1.1 Tailings and Process Water

Flotation Tailings (TL-6) and Process Plant Water Discharge (TL-5)

Schedule J (Table 2) of the Water Licence specifies weekly sampling of flotation tailings (TL-6) and process plant tailings supernatant (TL-5). Samples for TL-5 and TL-6 were collected from

¹ Detoxified tailings are referred to as cyanide leach residue in the Water Licence

the flotation tailings thickener tank. The filtrate from the detox filter press (where detoxified tailings are dewatered) is pumped to the flotation tailings thickener tank prior to discharge to the TIA.

Each week, TMAC collected flotation tailings slurry from the tailings thickener tank in a clean 5-gallon bucket. The sample is left in the bucket to allow gravitational settling and separation of the tailings solids from the liquid. After settling, samples were collected for TL-5 and TL-6.

The supernatant was sampled according to SNP monitoring requirements for TL-5 using a sterile 60mL syringe and submitted to ALS Environmental in Vancouver, BC once per month for the analysis of pH, TSS, ammonia, nitrate, nitrite, sulphate, cyanide (WAD, free and total), cyanate, thiocyanate, and total metals. In total, the 2017 monitoring program included geochemical characterization of 10 monthly samples of tailings process water collected from February to December with a duplicate sample collected in May. There was no sample collected in June.

After sampling was completed for TL-5, the remaining supernatant was discarded and a clean stainless-steel spoon used to transfer the solid tailings into a plastic Ziploc bag. The bag was then sealed and placed in a fridge until the last weekly sample for the month has been collected. At the end of each month, TMAC combined and homogenized equal amounts of tailings from each weekly sample to create a monthly composite sample for TL-6 of approximately 500 g. In total, the 2017 monitoring program included geochemical characterization of 11 monthly composites of flotation tailings collected from February to December with a duplicate sample collected in July.

Monthly TL-6 composite samples were submitted in glass jars to ALS Environmental Labs in Vancouver, BC for analysis of total sulphur, sulphate sulphur, TIC and trace element content. The analytical program was managed by TMAC using the acid-base accounting (ABA) methods outlined in Table 2-1. Laboratory data for TL-6 are provided in Attachment 1.

Table 2-1: Analytical Methods for TL-6 and TL-7

Parameter	Method Synopsis
Rinse pH	Sieved 2 mm fraction mixed with deionized water at a solid to water ratio of 1 to 2.
Total Sulphur	Combustion by Leco
Sulphate Sulphur	As-received sample leached using deionized water at a solid to liquid ratio of 1 to 10. The leachate is analyzed for sulphate using ion chromatography.
Total inorganic carbon (TIC)	Pulverized sample treated with acetic acid. Carbonate content determined by titration.
Trace element content	Digestion of sieved 2 mm fraction with ICP-MS finish. The digestion uses a 1 to 1 mixture of nitric and hydrochloric acid and a solid to solution ratio of 1 to 1.

Detoxified Tailings (TL-7)

Schedule J (Table 2) of the Water Licence specifies monthly sampling of detoxified tailings, monthly analysis of WAD cyanide, TIC, total metals (including sulphur) and moisture content, and quarterly analysis of cyanate and thiocyanate. There is no analytical method for cyanate and thiocyanate in solids therefore it is not possible to satisfy this monitoring requirement.

Each month and at the end of the detoxification cycle, TMAC collected one discrete sample of detoxified tailings from the discharge compartment of the detox filter press. In total, the 2017 monitoring program included geochemical characterization of 11 monthly samples of detoxified tailings collected from February to December. One duplicate sample was collected in September. Samples were placed in glass sample jars using a clean stainless-steel spoon and submitted to ALS Environmental in North Vancouver, BC for the analytical program outlined in in Table 2-1. WAD cyanide was also determined by distillation and extraction procedures, with analytical details documented in Attachment 2. Laboratory data are provided in Attachment 2.

2.1.2 Seepage Survey of Underground Backfilled Stopes (TL-11)

Schedule J (Table 2) of the Water Licence specifies bi-annual seepage surveys of underground backfilled stopes with opportunistic sampling of seepage for the analysis of pH, EC, trace metals by ICP-MS, alkalinity, acidity, sulphate, total and WAD cyanide, total ammonia, nitrate and nitrite.

TMAC completed underground seepage inspections of backfilled stopes in August and December 2017. Visual surveys were conducted of all backfilled stopes that could be accessed safely at the time of the survey. In December, not all backfilled levels could be safely accessed. Four stopes were surveyed in August (3 dry, 1 with identified seep) and four stopes were surveyed in December (3 dry, 1 with identified seep).

In August, TMAC collected one sample from the seep flowing from the bottom of the east limb South stope at level 4932, location E433877, N7559782. In December, TMAC collected duplicate samples from the seep flowing from the bottom of the east limb North stope seep at level 4932, location E433877, N7559809. Both stopes were previously mined out in the Doris North area, and were later backfilled with a blend of unconsolidated waste rock and detoxified tailings. Samples were collected using a syringe and field measurements of pH, EC, ORP and temperature recorded. Seepage flow rates could not be measured due to the low volume of the seeps.

TMAC submitted samples to ALS Environmental in Burnaby, BC for analysis of pH, EC, TSS, TDS, alkalinity, chloride, sulphate, total and WAD cyanide, and dissolved and total metals. The sample for dissolved metals was filtered at the time of sampling. Laboratory data are provided in Attachment 3.

3 Results and Discussion

3.1 Data QA/QC

3.1.1 Tailings Solids Samples

All tailings solids data for TL-6 and TL-7 were reviewed by SRK for QA/QC. Table 3-1 presents the results of the QA/QC checks including comparison of duplicate sample pairs for TL-6 and TL-7 (TL6-31JUL17B^ and TL7-18SEP17B^). Relative percentage differences (RPD) were calculated to assess reproducibility of results. SRK considers all data acceptable.

For free and weak acid dissolved (WAD) cyanide concentrations analytical detection limits were adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity). Free cyanide was reported at concentrations less than detection limits which ranged from 0.05 ppm to 20 ppm.

3.1.2 Seepage Survey Samples

All seepage water quality data for TL-11 were reviewed by SRK for QA/QC. Table 3-2 presents the results of the QA/QC checks including a comparison of the duplicate sample collected in December (TL11-17DEC17B^). RPD values were calculated to assess reproducibility of the duplicate results. RPD values for TSS, aluminium and total cyanide exceeded the QA/QC criteria of +/-30%. However, the laboratory indicated that total cyanide values could be biased high due to high nitrite in the sample. SRK considers all data acceptable.

3.1.3 Process Plant Tailings Supernatant

All supernatant water quality data for TL-5 were reviewed by SRK for QA/QC. Table 3-3 presents the results of the QA/QC checks including a comparison of the duplicate sample collected in May. RPD values for boron, calcium, cesium, copper, lithium, molybdenum and strontium exceeded the QA/QC field duplicate criteria of +/-30%. The ion balance could not be evaluated as dissolved metals analysis was not completed. The samples were no longer available for re-run analysis therefore the data were accepted as is.

Table 3-1: QA/QC Summary for Solid Tailings Analysis (TL-6 and TL-7)

QC Test	SRK QC Criteria	Results		
	Rinse pH			
Lab Duplicate (n=4)	For any samples, +/- 0.5 difference pH unit	All passed.		
Field Duplicate (n=2)	For any samples, +/- 0.5 difference pH unit	All passed.		
Standard/Controls (n=22)	Within tolerance ranges	All passed.		
	тіс			
Lab Blank (n=22)	<2X detection limit (DL)	All passed.		
Lab Duplicate (n=3)	For samples > 10X the detection limit (DL), % RPD within +/-20%	All passed.		
Field Duplicate (n=2)	For samples > 10X the detection limit (DL), % RPD within +/-30%	All passed.		
Standard reference materials (n=22)	Within +/-20% Difference	All passed.		
	Total S & Sulphate			
Lab Blank (n=44) for Total S, (n=44) for Total Sulphate	<2X detection limit (DL)	All passed.		
Sulphur balance (total S > sulphate S) (n=22)	For samples > 10X the detection limit (DL), Total Sulphur should be greater than Total Sulphate, if not then (sulphatetotal S)/Total S> 20%	All passed.		
Lab Duplicate (n=12 for Total S, n= 12 for Total Sulphate)	For samples > 10X the detection limit (DL), % RPD within +/-20%	All passed.		
Field Duplicate (n=2 for Total S, n= 2 for Total Sulphate)	For samples > 10X the detection limit (DL), % RPD within +/-30%	All passed.		
Standard reference materials for Total S (n=44) and sulphate (n=44)	Within +/-20% Difference	All passed.		
	Trace Element Content			
Lab Blank (n=44)	<5X Detection Limit	All passed.		
Lab Duplicate (n=4)	For samples >10X detection limit (DL), % RPD within +/- 20%, ok 10% of metal scan failing.	All passed.		
Field Duplicate (n=2)	For samples >10X detection limit (DL), % RPD within +/- 30%, ok 10% of metal scan failing.	All passed.		
Standard reference materials (n=88)	Within specified tolerance ranges.	All passed.		

Table 3-2: QA/QC Summary for Backfilled Stope Seepage Samples (TL-11)

QC Test	SRK QC Criteria	Results
Field vs. Lab pH (n=2)	For any samples, +/- 1 difference unit	All passed.
Lab method Blank (n=various*)	<2X DL	All passed.
Field Duplicates (n=1)	>10X DL, RPD better than +/-30%	Failed for Total CN, however lab indicated that total CN values could be biased high due to high nitrite in sample.
Standards/Controls (n=various*)	Within tolerance ranges	All passed.
Ion Balance (n=2)	EC>100 uS/cm, imbalance not greater than 10%	All passed.
Total vs. Dissolved metals (n=1)	Total metals >Dissolved metals, (Total metals-Dissolved metals)/(average(total metals,dissolved metals)=+/-30%	All passed.

Table 3-3: QA/QC Summary for Process Plant Tailings Supernatant (TL-5)

QC Test	SRK QC Criteria	Results
Ion Balance (n=10)	EC>100 uS/cm, imbalance is within +/-10%	No dissolved metals analysis. Cannot evaluate.
Field Duplicates (n=2)	For samples > 10X the detection limit (DL), % RPD within +/-30%	Duplicate sample for May failed for B, Ca, Cs, Cu, Li, Mo, Sr.

3.2 Flotation and Detoxified Tailings Solids (TL-6 and TL-7)

3.2.1 Acid Base Accounting

A summary of ABA results is presented in Table 3-5..

Discussion of Analytical Methods and Implications for Data Interpretation

The ABA and trace element methods for TL-6 and TL-7 (Table 2-1) are different than those used for the geochemical characterization of Doris metallurgical tailings (SRK 2015) and other Hope Bay sample (e.g. quarry rock, waste rock) at Hope Bay. In consultation with ALS, SRK reviewed and compared the methods used for TL-6 and TL-7 with SRK (2015). Table 3-4 summarizes the methods for each parameter and discusses the implications for data interpretation.

Table 3-4: Comparison of analytical methods used for TL-6 and TL-7 with ABA methods

Parameter	SRK Review of Methods	Data Interpretation Method
Rinse pH	Typical method is paste pH (Sobek 1979) but rinse pH results are typically comparable or lower.	Rinse pH sufficiently provides pH of tailings.
Total Sulphur	Same method as ABA.	Use as is.
Sulphate Sulphur	Method used will yield lower concentrations compared to ABA method.	Calculate AP using total sulphur.
Total inorganic carbon (TIC)	Method used will yield lower concentrations compared to ABA method.	Data will underestimate TIC resulting in lower ratios of TIC to AP. Refer to as TIC* in text.
Trace element content	Method used will yield lower concentrations for refractory metals, e.g. Al, Cr.	Use as is.

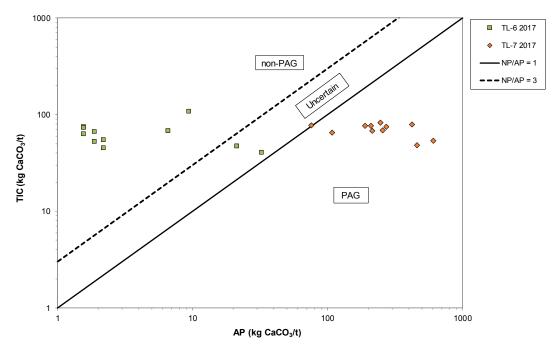
Results

Total sulphur concentrations were highest for detoxified tailings and ranged from 2.4 to 19%. In comparison, sulphur concentrations ranged from <0.05% to 1.0% for flotation tailings. As discussed in Section 3.2.1, total sulphur was used to calculate acid potential (AP).

The total sulphur concentrations of the flotation tailings collected from February to May had higher sulphur content (0.2% to 1%) compared to i) flotation tailings produced later in the year (0.05% to 0.07%) and ii) metallurgical tailings geochemically characterized as part of the Type A amendment (SRK 2015). According to TMAC, the sulphur concentrations observed from June onward are typical for flotation tailings with the higher sulphur concentrations earlier in the year indicative of a combination of higher sulphide ore being processed during that period and poor sulphide recoveries in the Concentrate Line. Sulphide recovery in the Concentration Line has since been optimized.

TIC* levels were relatively uniform for both tailings types, with 25th to 75th percentile levels between 50 to 71 kg CaCO₃/t for flotation tailings and 66 to 77 kg CaCO₃/t for detoxified tailings. Based on the differences in methods, SRK believes that the TIC* levels are underestimated compared to actual carbonate content (Table 3-4).

The ratio of TIC to acid potential (AP) provides a measure of the acid rock drainage (ARD) potential of the sample. Samples are classified as non-potentially ARD generating (non-PAG) when TIC/AP ratios are greater than 3, as PAG when ratios are less than 1 and as having an uncertain potential for ARD when ratios are between 1 and 3.


In terms of ARD classification, nine of the flotation tailings samples were classified as non-PAG and two samples classified as uncertain. The two samples classified as uncertain were from the early part of the year when sulphide recoveries were poorer than expected. Additionally, as discussed above, it is likely that the method used to measure TIC results in underestimation of the carbonate content. Therefore, previous conclusions regarding the ARD potential of the

flotation tailings remain unchanged. For detoxified tailings, ten samples were classified as PAG and one sample as uncertain. All tailings samples reported neutral to alkaline rinse pH indicating they were not acidic at the time of sampling.

Table 3-5: Summary of ABA Analysis for Flotation (TL-6) and Detoxified Tailings (TL-7) 2017

Tailinga Type	Month	Rinse pH	Total S	TIC*	TIC*/AP
Tailings Type	Month	s.u.	%	kg CaCO₃/t	
	Feb	8.8	0.3	110	12
	Mar	8.8	0.68	47	2.2
	Apr	8.9	1	40	1.2
	May	8.8	0.21	68	10
	Jun	9.1	0.07	45	21
TL-6	Jul	9.3	0.07	55	25
	Aug	8.9	<0.05	75	48
	Sep	9.2	<0.05	74	47
	Oct	9.1	<0.05	63	40
	Nov	9.2	0.06	52	28
	Dec	9	0.06	66	35
	Feb	9	2.4	77	1
	Mar	8.4	6.1	76	0.4
	Apr	8.3	15	48	0.1
	May	7.9	19	54	0.089
	Jun	8.3	8.7	75	0.28
TL-7	Jul	8.4	14	79	0.19
	Aug	8.3	6.7	76	0.37
	Sep	9.4	7.9	82	0.34
	Oct	8.7	8.2	69	0.27
	Nov	9	3.5	65	0.6
	Dec	8.7	6.9	68	0.32

^{*} Refer to Section 3.2.1 for details

P:\U7160 Vancouver Geochem Assistance\Project\01_1CT022.027 Hope Bay\2017\Tailings\1. Working File\[1CT022.027_HopeBay_Tailings\MonitoringData_rev03.xlsx\]

Figure 3-1: ARD Classifications using TIC for the Tailings Samples

3.2.2 Elemental Analysis

The statistical distribution of trace element content for flotation and detoxified tailings are summarized in Table 3-6. Results were compared to average crustal abundance data for basalt (Price 1997) as an indicator of enrichment. Selenium could not be assessed because the detection limit was close to the comparison threshold. Comparisons to the screening criteria are summarized as follows:

For flotation tailings 95th percentile concentrations of arsenic, silver and sulphur are above the screening criteria, however samples with elevated levels were from the early part of the year when sulphide recoveries were poorer than expected. Trace element content for flotation tailings produced in May and after contained levels below the screening criteria, which is consistent with trace element content of Doris metallurgical flotation tailings samples (SRK 2015).

For detoxified tailings, 95th percentile concentrations are above the screening criteria for the following parameters: antimony, arsenic, bismuth, cadmium, copper, lead, selenium, silver, total sulphur, and zinc. This is consistent with trace element content of Doris metallurgical tailings samples (SRK 2015) except for antimony, silver, and zinc, with the differences summarized as follows:

Antimony: one monitoring sample (April) is above the screening criteria, with antimony for all
other samples within the range of the metallurgical samples. For the April sample, antimony
levels (2.6 ppm) is about two times higher than maximum levels observed in the metallurgical
samples.

 Silver: concentrations for the monitoring samples are about ten times higher than maximum levels observed in the metallurgical samples.

 Zinc: all monitoring samples except February were elevated compared the screening criteria with the maximum level (6,100 ppm) approximately seven times higher than maximum observed levels for metallurgical tailings.

All other parameters were below the screening criteria indicating no appreciable enrichment.

3.2.3 Cyanide from Detoxified Tailings Solids

In the processing plant, there are two sections: the concentrate lines (CL1 and CL2) and the Concentrate Treatment Plant (CTP). Cyanide is a reagent used exclusively in the CTP to dissolve gold from the solid concentrate to be captured by resin. The concentrate lines (CL) react poorly to the presence of cyanide and so this side must be kept free of cyanide in order for the process to perform well. The final stage of the CTP is cyanide destruction. Cyanide is destroyed using the INCO SO₂ process. The detoxified slurry is filtered; the solids are placed in a pile to be deposited underground for permanent storage and the solution is pumped to the tailings thickener where it is combined with the flotation tailings. The detoxification circuit is run to produce a total cyanide level of less than one part per million (1 ppm). The solutions from the detox circuit and final tailings discharge are routinely analyzed for WAD and total cyanide species by mill personnel to monitor the performance of the cyanide detoxification circuit. Concentrations of WAD and total cyanide at SNP station TL-5 (process plant tailings water discharge) are reported monthly to the Nunavut Water Board.

For TL-7, the WAD cyanide concentrations are not in aqueous form but are extracted from the detoxified tailings solids. Cyanide within the tailings solids is not labile. Concentrations of distilled WAD cyanide from the detoxified tailings were less than the analytical limits of detection (0.05 - 20 ppm) except for the April sample with a concentration of 0.11 ppm (Table 3-7). There are no regulatory limits for WAD cyanide within tailings solids.

Table 3-6: Summary of Elemental for Flotation (TL-6) and Detoxified Tailings (TL-7)

Parameter	DL	1	ΓL-6 201	7		TL-7 201	7	10X Average Crustal Abundance* for Basalt
		P05	P50	P95	P05	P50	P95	
Al	50	8500	10000	14000	9200	12000	13000	780000
Sb	0.1	0.1	0.1	0.17	0.89	1.4	2.3	2
As	0.1	6.6	8.3	47	260	410	710	20
Ва	0.5	7	14	17	14	17	21	3300
Ве	0.1	0.1	0.12	0.14	0.11	0.13	0.15	10
Bi	0.2	0.2	0.2	0.2	1	2.2	3.6	0.07
В	5	7.3	14	34	8.3	13	24	50
Cd	0.02	0.063	0.11	0.24	1.9	5.7	12	2.2
Ca	50	22000	28000	38000	26000	32000	43000	760000
Cr	0.5	21	27	33	49	59	80	1700
Co	0.1	10	13	32	150	280	460	480
Cu	0.5	22	27	140	2900	5400	16000	870
Fe	50	33000	40000	50000	97000	140000	210000	865000
Pb	0.5	4.2	6.3	15	180	380	1100	60
Li	2	13	24	31	16	20	25	170
Mg	20	12000	14000	17000	13000	15000	16000	460000
Mn	1	790	930	1100	940	1100	1200	15000
Hg	0.005	0.005	0.005	0.0092	0.042	0.08	0.15	0.9
Мо	0.1	0.19	0.24	0.29	1.1	1.9	3.3	15
Ni	0.5	18	22	42	130	220	320	1300
Р	50	260	300	370	270	310	390	10000
К	100	570	1200	1500	810	1000	1300	83000
Se	0.2	0.2	0.2	0.51	4.7	8.2	17	0.5
Ag	0.1	0.18	0.28	1.4	6.5	21	50	1.1
Na	50	440	630	870	1300	2000	3100	180000
Sr	0.5	11	15	18	16	17	22	4650
S	1000	1000	1100	1400	82000	100000	210000	3000
S - Total	500	500	700	8600	29000	79000	170000	3000
TI	0.05	0.05	0.05	0.072	0.72	1.3	2.4	2.1
Sn	2	2	2	2	2	2	2	15
Ti	1	380	700	1000	410	620	1100	138000
W	0.5	0.5	0.5	0.61	1.4	1.7	3.1	7
U	0.05	0.05	0.05	0.05	0.05	0.073	0.17	10
V	0.2	37	48	65	47	63	93	2500
Zn	2	47	61	130	850	2800	5100	1050
Zr	1	1.2	1.8	2.4	2.3	3.5	5.2	

Source: P:\01_SITES\Hope.Bay\1CH008.023_Geochem_Monitoring\G_Tailings Monitoring\2017\1. Working file\[1CT022.027_HopeBay_TailingsMonitoringData_rev04.xlsx]

Note:

Numbers highlighted in bold exceed 10 times the average crustal abundance for basaltic rocks from Price (1997) Statistics based on 11 samples

All results reported as ppm

DL = Analytical detection limit

Distilled WAD Cyanide Month (ppm) <10 Feb Mar 0.11 <2 Apr <2 May Jun <10 <2 Jul Aug <4 Sep <20 Oct <20 <20 Nov

<20

Table 3-7: Distilled WAD Cyanide from Detoxified Tailings Solids (TL-7)

3.3 Seepage Monitoring of Backfilled Stopes (TL-11)

Dec

3.3.1 Seepage Quality

Seepage was observed during the August and December surveys on level 4932 and flowing from the bottom of the east limb of South and North stopes respectively. The sample was collected approximately 20 m from the bottom of the stope and after flowing along the decline road and through an area where equipment was stored. The stope contained both waste rock and detoxified tailings backfill and is interpreted to be contact water of these material types. Water quality analysis of the seeps is provided in Table 3-8 for selected parameters.

The TL-11 seepage monitoring data are summarized as follows:

- pH conditions were circum-neutral with a value of 6.7.
- Major anion chemistry was dominated by chloride (42,000 to 48,000 mg/L) and to a lesser degree sulphate (900 mg/L), while major cation chemistry was dominated by calcium (~15,000 mg/L) and to a lesser degree sodium (~8,000 mg/L) and magnesium (1,100 mg/L). Potential sources of the major ions include residues on waste rock from drilling brines (calcium and chloride), other sources of saline water (chloride, sulphate, calcium, sodium and magnesium), and sulphide oxidation with associated carbonate dissolution from waste rock and detoxified tailings (sulphate and calcium).
- Total cyanide concentrations were 0.08 mg/L for both samples and free cyanide concentrations were 0.026 and 0.024 mg/L. WAD cyanide concentrations were equivalent to free cyanide (when analyzed in the December sample).
- Levels of ammonia (390 mg/L and 280 mg/L), nitrate (590 mg/L) and nitrite (6.8 mg/L) exceed screening criteria values and are likely from blast residues on waste rock.

 Both seepage samples exhibited leaching of cadmium, copper, nickel, selenium, silver and zinc consistent with trends observed from the humidity cell test (HCT) program for metallurgical detoxified tailings (SRK 2015).

• The following dissolved parameters were consistently reported at concentrations less than analytical detection limits in the seeps sampled in both sampling events: aluminium, antimony, arsenic, beryllium, bismuth, chromium, iron, phosphorous, silicon, tellurium, thorium, tin, titanium, tungsten, vanadium and zirconium. The low arsenic concentrations in the seepage is notable given the elevated concentrations of arsenic in the detoxification tailings and is consistent with trends observed from the HCT program for metallurgical detoxified tailings (SRK 2015).

Table 3-8: Summary of TL-11 (Backfilled Stopes) Seepage Water Quality Analysis

	Sample ID	TL11-06AUG17	TL11-17DEC17A
	Date Sampled	8/6/2017 3:15 PM	12/17/2017 1:30 PM
Parameter	Units		
EC	uS/cm	-	100000
pH	pH	6.7	6.7
TSS	mg/L	620	1100
TDS	mg/L	120000	55000
Total Alkalinity	mg/L as CaCO ₃	-	49
NH ₃	mg/L	390	280
CI	mg/L	42000	48000
NO ₃	as N mg/L	-	590
NO ₂	as N mg/L	-	6.80
SO ₄	mg/L	-	900
Total CN	mg/L	0.080	0.081
WAD CN	mg/L	-	0.028
Free CN	mg/L	0.026	0.024
Al	mg/L	0.1	0.1
Sb	mg/L	0.01	0.01
As	mg/L	0.01	0.01
Ва	mg/L	0.46	0.56
В	mg/L	1.90	2.40
Cd	mg/L	0.030	0.026
Са	mg/L	15000	17000
Cr	mg/L	0.01	0.01
Со	mg/L	0.15	0.19
Cu	mg/L	0.19	0.56
Fe	mg/L	1	1
Pb	mg/L	0.0071	0.13
Li	mg/L	0.46	0.39
Mg	mg/L	1100	1100
Mn	mg/L	7.8	6.5
Мо	mg/L	0.026	0.027
Ni	mg/L	0.44	0.36
K	mg/L	490	490
Se	mg/L	0.014	0.014
Ag	mg/L	0.041	0.052
Na	mg/L	7200	7800
S	mg/L	580	390
TI	mg/L	0.0014	0.0015
U	mg/L	0.0023	0.0030
Zn	mg/L	0.56	1.6

Source:: P:\01_SITES\Hope.Bay\1CH008.023_Geochem_Monitoring\G_Tailings Monitoring\2017\1. Working file\[1CT022.027_HopeBay_TailingsMonitoringData_rev04.xlsx\]

Notes:

Screen Criteria – 10x CEQG = Canadian Environmental Quality Guidelines for the Protection of Aquatic Life (Canadian Council of Ministers of the Environment) – used for screening purposed only

Blue italics = Value less than laboratory detection limit. Detection limit shown.

Bold values = Values exceeds screening criteria (ten times CCME Guidelines for Freshwater Aquatic Life – Long-term Concentration).

-- = Data not available.

3.4 Process Plant Tailings Water Discharge (TL-5)

Figures depicting time series of constituent concentrations and loads from the process plant tailings water discharge (TL-5) to the TIA are presented in Attachment 4.

4 Summary and Conclusions

TMAC initiated ore processing on January 20, 2017 with commencement of tailings monitoring in February 2017 in accordance to the water licence.

The results of the geochemical monitoring program of flotation tailings solids (TL-6) is consistent with the geochemical characterization studies of metallurgical tailings (SRK 2015) and is summarized as follows:

- Flotation tailings deposition in the Doris TIA commenced on January 20, 2017. A total of 199,488 t (dry weight) of flotation tailings were deposited in the TIA in 2017.
- Total sulphur levels were higher during the initial months of process plant operation (0.21 to 1%) owing to higher sulphide ore that was processed during that period and low sulphide recoveries in the concentrate line. Starting in June, sulphide removal was optimized resulting in flotation tailings with lower sulphur concentrations (<0.05 to 0.07%).
- TIC* content in the flotation tailings ranged from 41 to 110 kg CaCO₃/t, which SRK expects are underestimated due the analytical method used to quantify reactive carbonate content (Section 3.2.1).
- Nine of the flotation tailings samples are classified as non-PAG and two as uncertain. The
 two samples classified as uncertain were from the early part of the year when sulphide
 recoveries were poorer than expected. Therefore, previous conclusions regarding the ARD
 potential of the flotation tailings remain unchanged.
- Trace element content was compared to ten times the average crustal abundance for basalt (Price 1997) as an indicator of enrichment. Trace element content at 95th percentile concentrations are above screening criteria for arsenic and total sulphur, however samples above screening criteria were from the early part of the year when sulphide recoveries were poorer than expected. Trace element content for flotation tailings produced in May and after contained levels below the screening criteria, which is consistent with trace element content of Doris metallurgical flotation tailings samples (SRK 2015).

The results of the geochemical monitoring program of detoxified tailings solids (TL-7) is consistent with the geochemical characterization studies of metallurgical tailings (SRK 2015) and is summarized as follows:

- In 2017, a total of 8,333 t of detoxified tailings were placed as backfill in Doris Mine underground stopes.
- Sulphur and TIC* content in the detoxified tailings ranged from 2.4 to 19% and 48 to 82 kg CaCO₃/t, respectively. Rinse pH ranged from 7.9 to 8.4 indicating all samples were not acidic.

- Ten of the detoxified tailings samples were classified as PAG and one as uncertain.
- Compared to ten times the average crustal abundance for basalt, 95th percentile concentrations are enriched in antimony, arsenic, bismuth, cadmium, copper, lead, selenium, silver, zinc and total sulphur.
- There is no analytical method for cyanate and thiocyanate for solid-phase samples, as specified in the monitoring program for TL-7 in Schedule J (Table 2) of the Water Licence. WAD cyanide was also specified for TL-7 with levels below analytical detection with the exception of the samples in April (0.11 ppm). There is no regulatory limit for WAD cyanide in tailings. SRK suspects that the inclusion of cyanate, thiocyanate and WAD cyanide monitoring for the detoxified tailings solids (TL-7) may be a typographical error.

The results of the opportunistic seepage sampling from underground backfilled stopes (TL-11) is summarized as follows:

- Seepage from the east limb of the South and North stopes on level 4932 containing waste rock and detoxified tailings backfill was observed and sampled in August and December.
- Seepage pH was circum-neutral in both sampling events.
- Major anion chemistry was dominated by chloride (~48,000 mg/L) and to a lesser degree sulphate (900 mg/L), while major cation chemistry was dominated by calcium (~15,000 mg/L) and to a lesser degree sodium (~8,000 mg/L) and magnesium (1,100 mg/L). Potential sources of the major ions include residues on waste rock from drilling brines (calcium and chloride), other sources of saline water (chloride, sulphate, calcium, sodium and magnesium), and sulphide oxidation with associated carbonate dissolution from waste rock and detoxified tailings (sulphate and calcium).
- Total and WAD cyanide concentrations in the seepage were 0.08 mg/L and 0.028 mg/L, respectively.
- The source of ammonia (280 and 390 mg/L), nitrate (590 mg/L) and nitrite (6.8 mg/L) is attributable to blast residues from waste rock.
- The following metal(loid)s were reported at concentrations exceeding the screening criteria in both seepage monitoring events (all dissolved): cadmium and copper (up to 30 times higher), nickel and selenium (same order of magnitude), silver (up to 20 times higher) and zinc (up to 5 times higher). Notably arsenic concentrations were low. Parameter concentrations are consistent with trends observed from the humidity cell test (HCT) program for metallurgical detoxified tailings (SRK 2015).

Regards,

SRK Consulting (UK) Ltd.

this signature by been scanned three futher into given permission to it. use for this philosophic burners. The cryption signature is held on file.

Jessica Charles, FGS Consultant

SRK Consulting (Canada) Ltd.

This signature has been scanned.

Lisa Barazzuol, PGeo (BC)

Senior Consultant

Reviewed by

This signature has been scanned.

The author has diven permission for its use in this particular document.

The original signature is held on file.

Kelly Sexsmith, PGeo (BC)
Principal Consultant

Disclaimer—SRK Consulting (Canada) Inc. has prepared this document for TMAC Resources Inc.. Any use or decisions by which a third party makes of this document are the responsibility of such third parties. In no circumstance does SRK accept any consequential liability arising from commercial decisions or actions resulting from the use of this report by a third party.

The opinions expressed in this report have been based on the information available to SRK at the time of preparation. SRK has exercised all due care in reviewing information supplied by others for use on this project. Whilst SRK has compared key supplied data with expected values, the accuracy of the results and conclusions from the review are entirely reliant on the accuracy and completeness of the supplied data. SRK does not accept responsibility for any errors or omissions in the supplied information, except to the extent that SRK was hired to verify the data.

5 References

Canadian Council of the Environment, 2007. Canadian Water Quality Guidelines for the Protection of Aquatic Life Update 7.0.

- Nunavut Water Board (2016) Water Licence No. 2AM-DOH1323 Amendment No. 1. Issued on November 4, 2016.
- Price, W.A. 1997. DRAFT Guidelines and Recommended Methods for the Prediction of Metal Leaching and Acid Rock Drainage at Minesites in British Columbia. BC Ministry of Employment and Investment, Energy and Minerals Division. 151pp
- SRK Consulting (Canada) Inc, 2015. Geochemical Characterization of Tailings from the Doris Deposits, Hope Bay. Report prepared for TMAC Resources by SRK Consulting (Canada) Inc. Project no 1CT022.002. June 2015.

TMAC Resources Inc ATTN: Environmental Site Manager Hope Bay Project 95 Welliington St West

Toronto ON M5J 2N7

Date Received: 28-FEB-17

Report Date: 09-MAR-17 11:14 (MT)

Version: FINAL

Client Phone: 867-988-0569

Certificate of Analysis

Lab Work Order #: L1895621 Project P.O. #: 4500002907

Job Reference: COMPLIANCE SAMPLING PROGRAM

C of C Numbers: Legal Site Desc:

ambu Springer

Amber Springer, B.Sc Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L1895621 CONTD.... PAGE 2 of 3 Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
14905624.4 TIG 2755547							
L1895621-1 TL6-27FEB17							
Sampled By: kc on 27-FEB-17 @ 15:00							
Matrix: waste							
Metals in Soil (CCME) with Extra Metals							
Mercury in Soil by CVAFS Mercury (Hg)	0.0134		0.0050	mg/kg	06-MAR-17	08-MAR-17	R3670966
Metals in Soil by CRC ICPMS							
Aluminum (AI)	8210		50	mg/kg	06-MAR-17	07-MAR-17	R3671103
Antimony (Sb)	0.24		0.10	mg/kg	06-MAR-17	07-MAR-17	R3671103
Arsenic (As)	82.6		0.10	mg/kg	06-MAR-17	07-MAR-17	R3671103
Barium (Ba)	6.27		0.50	mg/kg	06-MAR-17	07-MAR-17	R3671103
Beryllium (Be)	<0.10		0.10	mg/kg	06-MAR-17	07-MAR-17	R3671103
Bismuth (Bi)	<0.20		0.20	mg/kg	06-MAR-17	07-MAR-17	R3671103
Boron (B)	6.5		5.0	mg/kg	06-MAR-17	07-MAR-17	R3671103
Cadmium (Cd)	0.255		0.020	mg/kg	06-MAR-17	07-MAR-17	R3671103
Calcium (Ca)	38600		50	mg/kg	06-MAR-17	07-MAR-17	R3671103
Chromium (Cr)	21.8		0.50	mg/kg	06-MAR-17	07-MAR-17	R3671103
Cobalt (Co)	48.3		0.10	mg/kg	06-MAR-17	07-MAR-17	R3671103
Copper (Cu)	197		0.50	mg/kg	06-MAR-17	07-MAR-17	R3671103
Iron (Fe)	48700		50	mg/kg	06-MAR-17	07-MAR-17	R3671103
Lead (Pb)	21.8		0.50	mg/kg	06-MAR-17	07-MAR-17	R3671103
Lithium (Li)	12.7		2.0	mg/kg	06-MAR-17	07-MAR-17	R3671103
Magnesium (Mg)	14600		20	mg/kg	06-MAR-17	07-MAR-17	R3671103
Manganese (Mn)	1030		1.0	mg/kg	06-MAR-17	07-MAR-17	R3671103
Molybdenum (Mo)	0.29		0.10	mg/kg	06-MAR-17	07-MAR-17	R3671103
Nickel (Ni)	55.3		0.50	mg/kg	06-MAR-17	07-MAR-17	R3671103
Phosphorus (P)	263		50	mg/kg	06-MAR-17	07-MAR-17	R3671103
Potassium (K)	560		100	mg/kg	06-MAR-17	07-MAR-17	R3671103
Selenium (Se)	0.82		0.20	mg/kg	06-MAR-17	07-MAR-17	R3671103
Silver (Ag)	2.10		0.10	mg/kg	06-MAR-17	07-MAR-17	R3671103
Sodium (Na)	417		50	mg/kg	06-MAR-17	07-MAR-17	R3671103
Strontium (Sr)	16.9		0.50	mg/kg	06-MAR-17	07-MAR-17	R3671103
Thallium (TI)	0.094		0.050	mg/kg	06-MAR-17	07-MAR-17	R3671103
Tin (Sn)	<2.0		2.0	mg/kg	06-MAR-17	07-MAR-17	R3671103
Titanium (Ti)	327		1.0	mg/kg	06-MAR-17	07-MAR-17	R3671103
Uranium (U)	<0.050		0.050	mg/kg	06-MAR-17	07-MAR-17	R3671103
Vanadium (V)	38.4		0.20	mg/kg	06-MAR-17	07-MAR-17	R3671103
Zinc (Zn)	126		2.0	mg/kg	06-MAR-17	07-MAR-17	R3671103
Zirconium (Zr)	1.1		1.0	mg/kg	06-MAR-17	07-MAR-17	R3671103
pH in Soil (1:2 Soil:Water Extraction) pH (1:2 soil:water)	0.70		0.40	n⊔		09 MAD 17	Daccosca
Miscellaneous Parameters	8.79		0.10	pН		08-MAR-17	R3669863
Inorganic Carbon (as CaCO3 Equivalent)	10.9		0.40	0/		00 MAD 47	
. ,	10.8		0.40	%		08-MAR-17	D0000044
Moisture	24.1		0.25	%	00.4445.:=	05-MAR-17	R3668314
Sulfate (SO4)	489		10	mg/kg	06-MAR-17	07-MAR-17	R3670866
Inorganic Carbon	1.30		0.050	%		08-MAR-17	R3670427
Sulfur (S)-Total	3000		500	mg/kg	07-MAR-17	07-MAR-17	R3669786
Sulfur (S)-Total	3000		500	mg/kg	07-MAR-17	07-MAR-17	F

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1895621 CONTD....

PAGE 3 of 3 Version: FINAL

Reference Information

Test Method References:

ALS Test Code Matrix Method Reference** **Test Description** C-TIC-PCT-SK Total Inorganic Carbon in Soil CSSS (2008) P216-217 Soil

A known quantity of acetic acid is consumed by reaction with carbonates in the soil. The pH of the resulting solution is measured and compared against a standard curve relating pH to weight of carbonate.

HG-200.2-CVAF-VA Mercury in Soil by CVAFS EPA 200.2/1631E (mod)

Soil samples are digested with nitric and hydrochloric acids, followed by analysis by CVAFS.

IC-CACO3-CALC-SK Soil Inorganic Carbon as CaCO3 Equivalent Calculation

Metals in Soil by CRC ICPMS MFT-200.2-CCMS-VA Soil EPA 200.2/6020A (mod)

Soil samples are digested with nitric and hydrochloric acids, followed by analysis by CRC ICPMS.

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. This method does not dissolve all silicate materials and may result in a partial extraction, depending on the sample matrix, for some metals, including, but not limited to Al, Ba, Be, Cr, Sr, Ti, Tl, and V.

MOISTURE-VA Moisture content CWS for PHC in Soil - Tier 1

This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours.

PH-1:2-VA pH in Soil (1:2 Soil:Water Extraction) BC WLAP METHOD: PH, ELECTROMETRIC, SOIL

This analysis is carried out in accordance with procedures described in the pH, Electrometric in Soil and Sediment method - Section B Physical/Inorganic and Misc. Constituents, BC Environmental Laboratory Manual 2007. The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water. The pH of the solution is then measured using a standard pH probe.

S-TOT-LECO-SK Total Sulphur by combustion method ISO 15178:2000 Soil

The air-dried sample is ignited in a combustion analyzer where sulfur in the reduced SO2 gas is determined using a thermal conductivity detector.

SO4-LEACH-IC-VA Soil Sulfate leach (1:10) by IC EPA 300.1 (mod)

Leachable Anions in Sediment/Soil Method analysis is carried out using a leaching procedure which involves the gentle tumbling of the sample in a specified leaching solution (typically deionized water) for a specific length of time. The resulting extract is then analysed anions by ion chromatography with conductivity or UV detection. The method is applicable to the following anions: fluoride, chloride, phosphate, bromide, nitrate, sulfate.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
SK	ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED. ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L1895621 Report Date: 09-MAR-17 Page 1 of 5

Client: TMAC Resources Inc

Hope Bay Project 95 Welliington St West

Toronto ON M5J 2N7

Contact: Environmental Site Manager

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
C-TIC-PCT-SK	Soil							
Batch R367	0427							
WG2488689-2 L Inorganic Carbon	.cs		99.6		%		80-120	08-MAR-17
-	Л В		00.0		,,		00-120	OO-WIARC 17
Inorganic Carbon			<0.050		%		0.05	08-MAR-17
HG-200.2-CVAF-VA	Soil							
Batch R367	0966							
WG2489845-4 C Mercury (Hg)	CRM	VA-NRC-STS	8 D-3 84.7		%		70-130	08-MAR-17
WG2489845-3 L	.cs							
Mercury (Hg)			101.6		%		70-130	08-MAR-17
	ЛВ				_			
Mercury (Hg)			<0.0050		mg/kg		0.005	08-MAR-17
MET-200.2-CCMS-VA	Soil							
Batch R367								
WG2489845-4 C Aluminum (Al)	CRM	VA-NRC-STS	93.8		%		70-130	07 MAD 47
Antimony (Sb)			102.8		%			07-MAR-17
Arsenic (As)			85.7		%		70-130	07-MAR-17
Barium (Ba)			93.3		%		70-130	07-MAR-17
Beryllium (Be)			99.4		%		70-130 70-130	07-MAR-17 07-MAR-17
Bismuth (Bi)			101.7		%		70-130	07-MAR-17
Boron (B)			95.5		%		70-130	07-MAR-17
Cadmium (Cd)			106.4		%		70-130	07-MAR-17
Calcium (Ca)			94.2		%		70-130	07-MAR-17
Chromium (Cr)			94.8		%		70-130	07-MAR-17
Cobalt (Co)			93.5		%		70-130	07-MAR-17
Copper (Cu)			90.1		%		70-130	07-MAR-17
Iron (Fe)			92.7		%		70-130	07-MAR-17
Lead (Pb)			99.5		%		70-130	07-MAR-17
Lithium (Li)			95.2		%		70-130	07-MAR-17
Magnesium (Mg)			97.2		%		70-130	07-MAR-17
Manganese (Mn)			86.2		%		70-130	07-MAR-17
Molybdenum (Mo)			96.5		%		70-130	07-MAR-17
Nickel (Ni)			90.0		%		70-130	07-MAR-17
Phosphorus (P)			103.2		%		70-130	07-MAR-17
Potassium (K)			93.5		%		70-130	07-MAR-17

Page 2 of 5

Workorder: L1895621 Report Date: 09-MAR-17

Test Matrix Reference Result Qualifier Units **RPD** Limit Analyzed MET-200.2-CCMS-VA Soil R3671103 WG2489845-4 CRM **VA-NRC-STSD-3** Selenium (Se) % 90.7 70-130 07-MAR-17 Silver (Ag) 95.6 % 70-130 07-MAR-17 Sodium (Na) 94.8 % 70-130 07-MAR-17 Strontium (Sr) 99.3 % 70-130 07-MAR-17 Thallium (TI) 99.2 % 07-MAR-17 70-130 Titanium (Ti) 97.9 % 70-130 07-MAR-17 Uranium (U) 100.8 % 70-130 07-MAR-17 Vanadium (V) 92.7 % 70-130 07-MAR-17 90.8 Zinc (Zn) % 70-130 07-MAR-17 WG2489845-3 **LCS** Aluminum (AI) 93.5 % 80-120 07-MAR-17 101.4 Antimony (Sb) % 80-120 07-MAR-17 Arsenic (As) 98.4 % 80-120 07-MAR-17 Barium (Ba) 95.2 % 80-120 07-MAR-17 Beryllium (Be) 93.6 07-MAR-17 % 80-120 Bismuth (Bi) % 91.2 80-120 07-MAR-17 Boron (B) 91.0 % 80-120 07-MAR-17 Cadmium (Cd) 92.6 % 80-120 07-MAR-17 % Calcium (Ca) 91.1 80-120 07-MAR-17 Chromium (Cr) 92.4 % 80-120 07-MAR-17 % Cobalt (Co) 92.5 80-120 07-MAR-17 Copper (Cu) 91.4 % 80-120 07-MAR-17 Iron (Fe) 95.5 % 80-120 07-MAR-17 Lead (Pb) 93.3 % 80-120 07-MAR-17 Lithium (Li) 90.9 % 80-120 07-MAR-17 Magnesium (Mg) 90.9 % 80-120 07-MAR-17 Manganese (Mn) 93.6 % 80-120 07-MAR-17 Molybdenum (Mo) 96.4 % 80-120 07-MAR-17 Nickel (Ni) 92.5 % 80-120 07-MAR-17 Phosphorus (P) 104.6 % 80-120 07-MAR-17 Potassium (K) 95.5 % 80-120 07-MAR-17 Selenium (Se) 94.2 % 80-120 07-MAR-17 Silver (Ag) 95.0 % 80-120 07-MAR-17 Sodium (Na) 94.1 % 80-120 07-MAR-17

Workorder: L1895621 Report Date: 09-MAR-17 Page 3 of 5

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-VA	Soil							
Batch R3671103	}							
WG2489845-3 LCS			400.4		0/			
Strontium (Sr)			100.4		%		80-120	07-MAR-17
Thallium (TI)			91.3		%		80-120	07-MAR-17
Tin (Sn)			96.4		%		80-120	07-MAR-17
Titanium (Ti)			91.2		%		80-120	07-MAR-17
Uranium (U)			95.6		%		80-120	07-MAR-17
Vanadium (V)			93.7		%		80-120	07-MAR-17
Zinc (Zn)			89.0		%		80-120	07-MAR-17
Zirconium (Zr)			91.7		%		70-130	07-MAR-17
WG2489845-1 MB Aluminum (Al)			<50		mg/kg		50	07-MAR-17
Antimony (Sb)			<0.10		mg/kg		0.1	07-MAR-17
Arsenic (As)			<0.10		mg/kg			
Barium (Ba)			<0.10		mg/kg		0.1 0.5	07-MAR-17 07-MAR-17
Beryllium (Be)			<0.10		mg/kg		0.5	07-MAR-17
Bismuth (Bi)			<0.10					
Boron (B)			<5.0		mg/kg		0.2	07-MAR-17
Cadmium (Cd)					mg/kg		5	07-MAR-17
			<0.020		mg/kg		0.02	07-MAR-17
Calcium (Ca)			<50		mg/kg		50	07-MAR-17
Chromium (Cr)			<0.50		mg/kg		0.5	07-MAR-17
Cobalt (Co)			<0.10		mg/kg		0.1	07-MAR-17
Copper (Cu)			<0.50		mg/kg		0.5	07-MAR-17
Iron (Fe)			<50		mg/kg		50	07-MAR-17
Lead (Pb)			<0.50		mg/kg 		0.5	07-MAR-17
Lithium (Li)			<2.0		mg/kg 		2	07-MAR-17
Magnesium (Mg)			<20		mg/kg 		20	07-MAR-17
Manganese (Mn)			<1.0		mg/kg		1	07-MAR-17
Molybdenum (Mo)			<0.10		mg/kg		0.1	07-MAR-17
Nickel (Ni)			<0.50		mg/kg		0.5	07-MAR-17
Phosphorus (P)			<50		mg/kg		50	07-MAR-17
Potassium (K)			<100		mg/kg		100	07-MAR-17
Selenium (Se)			<0.20		mg/kg		0.2	07-MAR-17
Silver (Ag)			<0.10		mg/kg		0.1	07-MAR-17
Sodium (Na)			<50		mg/kg		50	07-MAR-17
Strontium (Sr)			< 0.50		mg/kg		0.5	07-MAR-17

Workorder: L1895621

Report Date: 09-MAR-17

Page 4 of 5

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-VA	Soil							
Batch R3671103								
WG2489845-1 MB Thallium (TI)			<0.050		mg/kg		0.05	07-MAR-17
Tin (Sn)			<2.0		mg/kg		2	07-MAR-17
Titanium (Ti)			<1.0		mg/kg		1	07-MAR-17
Uranium (U)			<0.050		mg/kg		0.05	07-MAR-17
Vanadium (V)			<0.20		mg/kg		0.2	07-MAR-17
Zinc (Zn)			<2.0		mg/kg		2	07-MAR-17
Zirconium (Zr)			<1.0		mg/kg		1	07-MAR-17
MOISTURE-VA	Soil							
Batch R3668314								
WG2489221-2 LCS Moisture			99.6		%		90-110	05-MAR-17
WG2489221-6 LCS Moisture			100.0		%		90-110	05-MAR-17
WG2489221-1 MB Moisture			<0.25		%		0.25	05-MAR-17
WG2489221-5 MB Moisture			<0.25		%		0.25	05-MAR-17
PH-1:2-VA	Soil							
Batch R3669863								
WG2489845-5 IRM pH (1:2 soil:water)		VA-ALP-SRS1	507 6.50		рН		6.2-6.8	08-MAR-17
S-TOT-LECO-SK	Soil							
Batch R3669786								
WG2488683-4 IRM Sulfur (S)-Total		1646A_SOIL	3300		mg/kg		2500-4600	07-MAR-17
WG2488683-5 MB Sulfur (S)-Total			<500		mg/kg		500	07-MAR-17
SO4-LEACH-IC-VA	Soil							
Batch R3670866								
WG2489590-4 DUP Sulfate (SO4)		L1895621-1 489	477		mg/kg	2.5	20	07-MAR-17
WG2489590-2 LCS Sulfate (SO4)			99.3		%		70-130	07-MAR-17
WG2489590-1 MB								

Workorder: L1895621 Report Date: 09-MAR-17 Page 5 of 5

Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC#	

1 of Environmental Report To: Report Format / Distribution Service Requested (Rush for routine analysis subject to availability) Company; TMAC Resources Ltd (Hope Bay) ☑Standard □Other @egular (Standard Turnaround Times - Business Days) Environmental Site Manager **☑**PDF **⊡**Excel **□**Digitai □Fax Priority (2-4 Business Days) - 50% Surcharge - Contact ALS to Confirm TAT Contact: Address: 95 Wellington Street West, Suite 1010 Email 1: enviro@tmacresources.com Gimergency (1-2 Bus. Days) - 100% Surcharge - Contact ALS to Confirm TAT P.O. Box 44 Toronto, ON M5J 2N7 Email 2: Chame Day or Weekend Emergency - Contact ALS to Confirm TAT katsky venter@tmacresources.com Phone: 1-416-628-0216 Email 3: Fax: **Analysis Request** Invoice To Same as Report? Please indicate below Filtered, Preserved or both (F, P, F/P) Client / Project Information Hardcopy of Invoice with Report? Job #: PO / AFE: TMAC-CO2014-0001 Company: Contact: L\$D Number of Containers Address: Job Ref: Compliance Sampling Program Phone: Fax: Quote #: Lab:Work(Ordeif#1 ALS Amber Springer Sampler: KC Contact: (ED USE ONLY) Sample Sample Identification Date Time Sample Type (dd-mmm-yy) #. (This description will appear on the report) (hh:mm) TL6-27FEB17 27-Feb-17 15:00 Waste Special Instructions / Regulations with water or land use (CCME-Freshwater Aquatic Life/BC CSR - Commercial/AB Tier 1 - Natural, etc) / Hazardous Details *Note - Tailings Sample Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. Also provided on another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses. SHIPMENT RECEPTION (labruse only) SHIPMENT RELEASE (client use) SHIPMENT VERIFICATION:(labstsetonly) Released by: Date (dd-mmm-yy) Time (hh-mm) Received by: Observations Time: Temperature: Verified by: Date: Yes(/ No ? 28-Feb-17 Kyle Conway

JC MAR - 2 2017 11:30 an JC

GENF 18.01 Front

TMAC Resources Inc ATTN: Environmental Site Manager Hope Bay Project 95 Welliington St West

Toronto ON M5J 2N7

Date Received: 28-MAR-17

Report Date: 06-APR-17 18:58 (MT)

Version: FINAL

Client Phone: 867-988-0569

Certificate of Analysis

Lab Work Order #: L1906046 Project P.O. #: 4500002907

Job Reference: COMPLIANCE SAMPLING PROGRAM

C of C Numbers: Legal Site Desc:

ambu Springer

Amber Springer, B.Sc Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700

ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🔈

www.alsglobal.com

L1906046 CONTD.... PAGE 2 of 3 Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1906046-1 TL6-27MAR17							
Sampled By: KC on 27-MAR-17 @ 15:00							
Matrix: waste Metals in Soil (CCME) with Extra Metals							
Mercury in Soil by CVAFS							
Mercury (Hg)	<0.0050		0.0050	mg/kg	03-APR-17	04-APR-17	R3692346
Metals in Soil by CRC ICPMS	VO.0000		0.0000	,g/.tg	0074174	0171017	110002040
Aluminum (Al)	10400		50	mg/kg	03-APR-17	04-APR-17	R3692822
Antimony (Sb)	<0.10		0.10	mg/kg	03-APR-17	04-APR-17	R3692822
Arsenic (As)	10.4		0.10	mg/kg	03-APR-17	04-APR-17	R3692822
Barium (Ba)	15.9		0.50	mg/kg	03-APR-17	04-APR-17	R3692822
Beryllium (Be)	0.13		0.10	mg/kg	03-APR-17	04-APR-17	R3692822
Bismuth (Bi)	<0.20		0.20	mg/kg	03-APR-17	04-APR-17	R3692822
Boron (B)	14.1		5.0	mg/kg	03-APR-17	04-APR-17	R3692822
Cadmium (Cd)	0.217		0.020	mg/kg	03-APR-17	04-APR-17	R3692822
Calcium (Ca)	24100		50	mg/kg	03-APR-17	04-APR-17	R3692822
Chromium (Cr)	27.5		0.50	mg/kg	03-APR-17	04-APR-17	R3692822
Cobalt (Co)	13.9		0.10	mg/kg	03-APR-17	04-APR-17	R3692822
Copper (Cu)	24.7		0.50	mg/kg	03-APR-17	04-APR-17	R3692822
Iron (Fe)	37700		50	mg/kg	03-APR-17	04-APR-17	R3692822
Lead (Pb)	8.13		0.50	mg/kg	03-APR-17	04-APR-17	R3692822
Lithium (Li)	29.0		2.0	mg/kg	03-APR-17	04-APR-17	R3692822
Magnesium (Mg)	14100		20	mg/kg	03-APR-17	04-APR-17	R3692822
Manganese (Mn)	880		1.0	mg/kg	03-APR-17	04-APR-17	R3692822
Molybdenum (Mo)	0.27		0.10	mg/kg	03-APR-17	04-APR-17	R3692822
Nickel (Ni) Phosphorus (P)	22.8		0.50	mg/kg	03-APR-17	04-APR-17	R3692822
Potassium (K)	275 1490		50 100	mg/kg mg/kg	03-APR-17 03-APR-17	04-APR-17 04-APR-17	R3692822 R3692822
Selenium (Se)	<0.20		0.20	mg/kg	03-APR-17	04-APR-17	R3692822
Silver (Ag)	0.38		0.20	mg/kg	03-APR-17	04-AFR-17	R3692822
Sodium (Na)	587		50	mg/kg	03-APR-17	04-APR-17	R3692822
Strontium (Sr)	11.8		0.50	mg/kg	03-APR-17	04-APR-17	R3692822
Thallium (TI)	<0.050		0.050	mg/kg	03-APR-17	04-APR-17	R3692822
Tin (Sn)	<2.0		2.0	mg/kg	03-APR-17	04-APR-17	R3692822
Titanium (Ti)	927		1.0	mg/kg	03-APR-17	04-APR-17	R3692822
Uranium (U)	<0.050		0.050	mg/kg	03-APR-17	04-APR-17	R3692822
Vanadium (V)	47.6		0.20	mg/kg	03-APR-17	04-APR-17	R3692822
Zinc (Zn)	128		2.0	mg/kg	03-APR-17	04-APR-17	R3692822
Zirconium (Zr)	2.1		1.0	mg/kg	03-APR-17	04-APR-17	R3692822
pH in Soil (1:2 Soil:Water Extraction)				-			
pH (1:2 soil:water)	8.84		0.10	рН		04-APR-17	R3692228
Miscellaneous Parameters							
Inorganic Carbon (as CaCO3 Equivalent)	4.73		0.40	%		05-APR-17	
Moisture	24.7		0.25	%		02-APR-17	R3690963
Sulfate (SO4)	363		10	mg/kg	03-APR-17	04-APR-17	R3694603
Inorganic Carbon	0.568		0.050	%		05-APR-17	R3692830
Sulfur (S)-Total	6800		500	mg/kg	03-APR-17	03-APR-17	R3692367

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1906046 CONTD....

PAGE 3 of 3 Version: FINAL

Reference Information

Test Method References:

ALS Test Code Matrix Test Description Method Reference**

C-TIC-PCT-SK Soil Total Inorganic Carbon in Soil CSSS (2008) P216-217

A known quantity of acetic acid is consumed by reaction with carbonates in the soil. The pH of the resulting solution is measured and compared against a standard curve relating pH to weight of carbonate.

HG-200.2-CVAF-VA Soil Mercury in Soil by CVAFS EPA 200.2/1631E (mod)

Soil samples are digested with nitric and hydrochloric acids, followed by analysis by CVAFS.

IC-CACO3-CALC-SK Soil Inorganic Carbon as CaCO3 Equivalent Calculation

MET-200.2-CCMS-VA Soil Metals in Soil by CRC ICPMS EPA 200.2/6020A (mod)

Soil samples are digested with nitric and hydrochloric acids, followed by analysis by CRC ICPMS.

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. This method does not dissolve all silicate materials and may result in a partial extraction. depending on the sample matrix, for some metals, including, but not limited to Al, Ba, Be, Cr, Sr, Ti, Tl, and V.

MOISTURE-VA Soil Moisture content CWS for PHC in Soil - Tier 1

This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours.

PH-1:2-VA Soil pH in Soil (1:2 Soil:Water Extraction) BC WLAP METHOD: PH, ELECTROMETRIC, SOIL

This analysis is carried out in accordance with procedures described in the pH, Electrometric in Soil and Sediment method - Section B Physical/Inorganic and Misc. Constituents, BC Environmental Laboratory Manual 2007. The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water. The pH of the solution is then measured using a standard pH probe.

S-TOT-LECO-SK Soil Total Sulphur by combustion method ISO 15178:2000

The air-dried sample is ignited in a combustion analyzer where sulfur in the reduced SO2 gas is determined using a thermal conductivity detector.

SO4-LEACH-IC-VA Soil Sulfate leach (1:10) by IC EPA 300.1 (mod)

Leachable Anions in Sediment/Soil Method analysis is carried out using a leaching procedure which involves the gentle tumbling of the sample in a specified leaching solution (typically deionized water) for a specific length of time. The resulting extract is then analysed anions by ion chromatography with conductivity or UV detection. The method is applicable to the following anions: fluoride, chloride, phosphate, bromide, nitrate, sulfate.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

SK ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA	Laboratory Definition Code	Laboratory Location
VA ALS ENVIDONMENTAL VANCOUVED BRITISH COLUMBIA CANADA	SK	ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA
VA ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA	VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED. ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L1906046 Report Date: 06-APR-17 Page 1 of 5

Client: TMAC Resources Inc

Hope Bay Project 95 Welliington St West

Toronto ON M5J 2N7

Contact: Environmental Site Manager

est	Matrix	Reference	Result Qualifier	Units	RPD	Limit	Analyzed
C-TIC-PCT-SK	Soil						
Batch R3692830							
WG2505434-1 DUP Inorganic Carbon		L1906046-1 0.568	0.577	%	1.6	20	05-APR-17
WG2505434-2 LCS Inorganic Carbon			104.4	%		80-120	05-APR-17
WG2505434-3 MB Inorganic Carbon			<0.050	%		0.05	05-APR-17
IG-200.2-CVAF-VA	Soil						
Batch R3692346							
WG2504313-4 CRM Mercury (Hg)		VA-NRC-STS	D-3 74.9	%		70-130	04-APR-17
WG2504313-3 LCS Mercury (Hg)			85.5	%		70-130	04-APR-17
WG2504313-1 MB Mercury (Hg)			<0.0050	mg/kg		0.005	04-APR-17
MET-200.2-CCMS-VA	Soil						
Batch R3692822							
WG2504313-4 CRM		VA-NRC-STS	D-3				
Aluminum (Al)			99.6	%		70-130	04-APR-17
Antimony (Sb)			104.4	%		70-130	04-APR-17
Arsenic (As)			88.1	%		70-130	04-APR-17
Barium (Ba)			96.5	%		70-130	04-APR-17
Beryllium (Be)			100.6	%		70-130	04-APR-17
Bismuth (Bi)			108.8	%		70-130	04-APR-17
Boron (B)			105.8	%		70-130	04-APR-17
Cadmium (Cd)			109.2	%		70-130	04-APR-17
Calcium (Ca)			101.9	%		70-130	04-APR-17
Chromium (Cr)			98.8	%		70-130	04-APR-17
Cobalt (Co)			97.4	%		70-130	04-APR-17
Copper (Cu)			93.4	%		70-130	04-APR-17
Iron (Fe)			94.9	%		70-130	04-APR-17
Lead (Pb)			100.5	%		70-130	04-APR-17
Lithium (Li)			99.6	%		70-130	04-APR-17
Magnesium (Mg)			99.8	%		70-130	04-APR-17
Manganese (Mn)			90.5	%		70-130	04-APR-17
Molybdenum (Mo)			100.8	%		70-130	04-APR-17
Nickel (Ni)			92.7	%		70-130	04-APR-17

Workorder: L1906046

Report Date: 06-APR-17 Page 2 of 5

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-VA	Soil							
Batch R3692822								
WG2504313-4 CRM		VA-NRC-STS						
Phosphorus (P)			98.1		%		70-130	04-APR-17
Potassium (K)			99.9		%		70-130	04-APR-17
Selenium (Se)			99.1		%		70-130	04-APR-17
Silver (Ag)			96.2		%		70-130	04-APR-17
Sodium (Na)			99.0		%		70-130	04-APR-17
Strontium (Sr)			104.4		%		70-130	04-APR-17
Thallium (TI)			105.1		%		70-130	04-APR-17
Titanium (Ti)			113.1		%		70-130	04-APR-17
Uranium (U)			101.4		%		70-130	04-APR-17
Vanadium (V)			100.9		%		70-130	04-APR-17
Zinc (Zn)			93.2		%		70-130	04-APR-17
WG2504313-3 LCS								
Aluminum (Al)			99.9		%		80-120	04-APR-17
Antimony (Sb)			102.2		%		80-120	04-APR-17
Arsenic (As)			99.7		%		80-120	04-APR-17
Barium (Ba)			103.5		%		80-120	04-APR-17
Beryllium (Be)			98.5		%		80-120	04-APR-17
Bismuth (Bi)			95.4		%		80-120	04-APR-17
Boron (B)			95.0		%		80-120	04-APR-17
Cadmium (Cd)			99.2		%		80-120	04-APR-17
Calcium (Ca)			100.6		%		80-120	04-APR-17
Chromium (Cr)			98.6		%		80-120	04-APR-17
Cobalt (Co)			99.1		%		80-120	04-APR-17
Copper (Cu)			97.1		%		80-120	04-APR-17
Iron (Fe)			98.3		%		80-120	04-APR-17
Lead (Pb)			97.6		%		80-120	04-APR-17
Lithium (Li)			96.9		%		80-120	04-APR-17
Magnesium (Mg)			95.0		%		80-120	04-APR-17
Manganese (Mn)			102.3		%		80-120	04-APR-17
Molybdenum (Mo)			100.4		%		80-120	04-APR-17
Nickel (Ni)			99.7		%		80-120	04-APR-17
Phosphorus (P)			102.2		%		80-120	04-APR-17
Potassium (K)			98.7		%		80-120	04-APR-17
Selenium (Se)			95.0		%		80-120	04-APR-17

Workorder: L1906046

Report Date: 06-APR-17

Page 3 of 5

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-VA	Soil							
Batch R369282	2							
WG2504313-3 LCS Silver (Ag)			101.2		%		80-120	04-APR-17
Sodium (Na)			97.6		%		80-120	04-APR-17
Strontium (Sr)			108.1		%		80-120	04-APR-17
Thallium (TI)			95.7		%		80-120	04-APR-17
Tin (Sn)			99.6		%		80-120	04-APR-17
Titanium (Ti)			98.1		%		80-120	04-APR-17
Uranium (U)			102.0		%		80-120	04-APR-17
Vanadium (V)			100.6		%		80-120	04-APR-17
Zinc (Zn)			91.8		%		80-120	04-APR-17
Zirconium (Zr)			98.6		%		70-130	04-APR-17
WG2504313-1 MB								
Aluminum (Al)			<50		mg/kg		50	04-APR-17
Antimony (Sb)			<0.10		mg/kg		0.1	04-APR-17
Arsenic (As)			<0.10		mg/kg		0.1	04-APR-17
Barium (Ba)			<0.50		mg/kg		0.5	04-APR-17
Beryllium (Be)			<0.10		mg/kg		0.1	04-APR-17
Bismuth (Bi)			<0.20		mg/kg		0.2	04-APR-17
Boron (B)			<5.0		mg/kg		5	04-APR-17
Cadmium (Cd)			<0.020		mg/kg		0.02	04-APR-17
Calcium (Ca)			<50		mg/kg		50	04-APR-17
Chromium (Cr)			< 0.50		mg/kg		0.5	04-APR-17
Cobalt (Co)			<0.10		mg/kg		0.1	04-APR-17
Copper (Cu)			<0.50		mg/kg		0.5	04-APR-17
Iron (Fe)			<50		mg/kg		50	04-APR-17
Lead (Pb)			<0.50		mg/kg		0.5	04-APR-17
Lithium (Li)			<2.0		mg/kg		2	04-APR-17
Magnesium (Mg)			<20		mg/kg		20	04-APR-17
Manganese (Mn)			<1.0		mg/kg		1	04-APR-17
Molybdenum (Mo)			<0.10		mg/kg		0.1	04-APR-17
Nickel (Ni)			<0.50		mg/kg		0.5	04-APR-17
Phosphorus (P)			<50		mg/kg		50	04-APR-17
Potassium (K)			<100		mg/kg		100	04-APR-17
Selenium (Se)			<0.20		mg/kg		0.2	04-APR-17
Silver (Ag)			<0.10		mg/kg		0.1	04-APR-17

Workorder: L1906046

Report Date: 06-APR-17

Page 4 of 5

MET-200.2-CCMS-VA Batch R3692822	0-11					
Potob	Soil					
Dalcii R3092022						
WG2504313-1 MB Sodium (Na)			<50	mg/kg	50	04-APR-17
Strontium (Sr)			<0.50	mg/kg	0.5	04-APR-17
Thallium (TI)			<0.050	mg/kg	0.05	04-APR-17
Tin (Sn)			<2.0	mg/kg	2	04-APR-17
Titanium (Ti)			<1.0	mg/kg	1	04-APR-17
Uranium (U)			<0.050	mg/kg	0.05	04-APR-17
Vanadium (V)			<0.20	mg/kg	0.2	04-APR-17
Zinc (Zn)			<2.0	mg/kg	2	04-APR-17
Zirconium (Zr)			<1.0	mg/kg	1	04-APR-17
MOISTURE-VA	Soil					
Batch R3690963						
WG2504326-2 LCS Moisture			99.8	%	90-110	02-APR-17
WG2504326-6 LCS Moisture			100.1	%	90-110	02-APR-17
WG2504326-1 MB Moisture			<0.25	%	0.25	02-APR-17
WG2504326-5 MB Moisture			<0.25	%	0.25	02-APR-17
PH-1:2-VA	Soil					
Batch R3692228	COII					
WG2504313-5 IRM		VA-ALP-SRS1	1507			
pH (1:2 soil:water)			6.55	рН	6.2-6.8	04-APR-17
S-TOT-LECO-SK	Soil					
Batch R3692367						
WG2503037-3 IRM Sulfur (S)-Total		1646A_SOIL	3700	mg/kg	2500-4600	03-APR-17
WG2503037-4 MB Sulfur (S)-Total			<500	mg/kg	500	03-APR-17
SO4-LEACH-IC-VA	Soil					
Batch R3694603						
WG2504505-3 LCS Sulfate (SO4)			102.4	%	70-130	04-APR-17
WG2504505-1 MB Sulfate (SO4)			<10	mg/kg	10	04-APR-17

Workorder: L1906046 Report Date: 06-APR-17 Page 5 of 5

Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

DOD

1 of

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878

ALS Enuironmental

www.alsqlobal.com

Number of Containers If Yes add SIF Observations Yes (No ? Service Requested (Rush for routine analysis subject to availability) Omergency (1-2 Bus. Days) - 100% Surcharge - Contact ALS to Confirm TAT Oriority (2-4 Business Days) - 50% Surcharge - Contact ALS to Confirm TAT Please indicate below Filtered, Preserved or both (F, P, F/P) SHIPMENT VERIFICATION (lab use only) Game Day or Weekend Emergency - Contact ALS to Confirm TAT Also provided on another Excel tab are the ALS location addresses, phone numbers and sample container / preservation / holding time table for common analyses. Special Instructions / Regulations with water or land use (CCME-Freshwater Aquatic Life/BC CSR - Commercial/AB Tier 1 - Natural, etc) / Hazardous Details Qegular (Standard Turnaround Times - Business Days) Analysis Request L1906046-COFC By the use of this form the user acknowledges and agrees with the Terms and Conditions as provided on a separate Excel tab. Date: Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. /erified by: AV-81T-001RMM × 0.10 Sample Type Femperature. Waste -Fax S S katsky venter@tmacresources.com SHIPMENT RECEPTION (lab use only Digital *Note - Tailings Sample enviro@tmacresources.com Time (hh.mm) 15:00 Amber Springer Sampler: Time Report Format / Distribution Client / Project Information PO / AFE: TMAC-C02014-Date (dd-mmm-yy) 28-Mar-17 **⊡**Excel Dother Sate: ALS Contact: Standard Email 1: Email 2: ob Ref Quote #: Email 3 Job # PDF SD Received by: (This description will appear on the report) Time (hh-mm) Sample Identification 190000 95 Wellington Street West, Suite 1010 P.O. Box 44 Toronto, ON M5J 2N7 Fax: Fax Date (dd-mmm-w/) 28-Mar-17 TMAC Resources Ltd (Hope Bay) SHIPMENT RELEASE (client use Environmental Site Manager lardcopy of Invoice with Report? Same as Report ? TL6-27MAR17 Lab Work Order # (lab use only) Released by: nvoice To Report To: Sample Company: Company Address: Address Contact Contact # Phone: Phone:

GENF 18.01 Front

TMAC Resources Inc ATTN: Environmental Site Manager Hope Bay Project 95 Welliington St West

Toronto ON M5J 2N7

Date Received: 25-APR-17

Report Date: 08-MAY-17 17:48 (MT)

Version: FINAL

Client Phone: 867-988-0569

Certificate of Analysis

Lab Work Order #: L1917005 Project P.O. #: 4500002907

Job Reference: COMPLIANCE SAMPLING PROGRAM

C of C Numbers: Legal Site Desc:

ambu Springer

Amber Springer, B.Sc Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700

ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L1917005 CONTD.... PAGE 2 of 3 Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1917005-1 TL6-24APR17							
Sampled By: KC on 24-APR-17 @ 06:30							
Matrix: waste Metals in Soil (CCME) with Extra Metals							
Mercury in Soil by CVAFS							
Mercury (Hg)	<0.0050		0.0050	mg/kg	28-APR-17	30-APR-17	R3710567
Metals in Soil by CRC ICPMS	10.0000		0.0000	mg/ng	207111111	007111111	10007
Aluminum (Al)	13800		50	mg/kg	28-APR-17	30-APR-17	R3710902
Antimony (Sb)	<0.10		0.10	mg/kg	28-APR-17	30-APR-17	R3710902
Arsenic (As)	7.88		0.10	mg/kg	28-APR-17	30-APR-17	R3710902
Barium (Ba)	16.9		0.50	mg/kg	28-APR-17	30-APR-17	R3710902
Beryllium (Be)	0.13		0.10	mg/kg	28-APR-17	30-APR-17	R3710902
Bismuth (Bi)	<0.20		0.20	mg/kg	28-APR-17	30-APR-17	R3710902
Boron (B)	28.0		5.0	mg/kg	28-APR-17	30-APR-17	R3710902
Cadmium (Cd)	0.106		0.020	mg/kg	28-APR-17	30-APR-17	R3710902
Calcium (Ca)	30200		50	mg/kg	28-APR-17	30-APR-17	R3710902
Chromium (Cr)	29.9		0.50	mg/kg	28-APR-17	30-APR-17	R3710902
Cobalt (Co)	15.1		0.10	mg/kg	28-APR-17	30-APR-17	R3710902
Copper (Cu)	22.9		0.50	mg/kg	28-APR-17	30-APR-17	R3710902
Iron (Fe)	48800		50	mg/kg	28-APR-17	30-APR-17	R3710902
Lead (Pb)	6.34		0.50	mg/kg	28-APR-17	01-MAY-17	R3711177
Lithium (Li)	31.0		2.0	mg/kg	28-APR-17	30-APR-17	R3710902
Magnesium (Mg)	17500		20	mg/kg	28-APR-17	30-APR-17	R3710902
Manganese (Mn)	1080		1.0	mg/kg	28-APR-17	30-APR-17	R3710902
Molybdenum (Mo)	0.25		0.10	mg/kg	28-APR-17	30-APR-17	R3710902
Nickel (Ni)	25.7		0.50	mg/kg	28-APR-17	30-APR-17	R3710902
Phosphorus (P) Potassium (K)	387		50	mg/kg	28-APR-17	30-APR-17	R3710902
Selenium (Se)	1470		100	mg/kg	28-APR-17	30-APR-17	R3710902
Silver (Ag)	<0.20		0.20	mg/kg	28-APR-17 28-APR-17	30-APR-17 30-APR-17	R3710902
Sodium (Na)	0.33 832		0.10 50	mg/kg mg/kg	28-APR-17	30-APR-17	R3710902 R3710902
Strontium (Sr)	15.1		0.50	mg/kg	28-APR-17	30-APR-17	R3710902 R3710902
Sulfur (S)	1100		1000	mg/kg	28-APR-17	30-APR-17	R3710902
Thallium (TI)	<0.050		0.050	mg/kg	28-APR-17	30-APR-17	R3710902
Tin (Sn)	<2.0		2.0	mg/kg	28-APR-17	30-APR-17	R3710902
Titanium (Ti)	873		1.0	mg/kg	28-APR-17	30-APR-17	R3710902
Tungsten (W)	0.64		0.50	mg/kg	28-APR-17	30-APR-17	R3710902
Uranium (U)	<0.050		0.050	mg/kg	28-APR-17	30-APR-17	R3710902
Vanadium (V)	58.9		0.20	mg/kg	28-APR-17	30-APR-17	R3710902
Zinc (Zn)	72.7		2.0	mg/kg	28-APR-17	30-APR-17	R3710902
Zirconium (Zr)	2.5		1.0	mg/kg	28-APR-17	30-APR-17	R3710902
pH in Soil (1:2 Soil:Water Extraction)							
pH (1:2 soil:water)	8.88		0.10	рН		30-APR-17	R3710500
Miscellaneous Parameters							
Inorganic Carbon (as CaCO3 Equivalent)	4.05		0.40	%		05-MAY-17	
Moisture	27.4		0.25	%		29-APR-17	R3710256
Sulfate (SO4)	589		10	mg/kg	01-MAY-17	02-MAY-17	R3713964
Inorganic Carbon	0.486		0.050	%		05-MAY-17	R3715649
Sulfur (S)-Total	10400		500	mg/kg	05-MAY-17	05-MAY-17	R3715865
				J .J			

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1917005 CONTD....

PAGE 3 of 3 Version: FINAL

Reference Information

Test Method References:

ALS Test Code Matrix Test Description Method Reference**

C-TIC-PCT-SK Soil Total Inorganic Carbon in Soil CSSS (2008) P216-217

A known quantity of acetic acid is consumed by reaction with carbonates in the soil. The pH of the resulting solution is measured and compared against a standard curve relating pH to weight of carbonate.

HG-200.2-CVAF-VA Soil Mercury in Soil by CVAFS EPA 200.2/1631E (mod)

Soil samples are digested with nitric and hydrochloric acids, followed by analysis by CVAFS.

IC-CACO3-CALC-SK Soil Inorganic Carbon as CaCO3 Equivalent Calculation

MET-200.2-CCMS-VA Soil Metals in Soil by CRC ICPMS EPA 200.2/6020A (mod)

This method uses a heated strong acid digestion with HNO3 and HCl and is intended to liberate metals that may be environmentally available. Silicate minerals are not solubilized. Dependent on sample matrix, some metals may be only partially recovered, including Al, Ba, Be, Cr, Sr, Ti, Tl, V, W, and Zr. Volatile forms of sulfur (including sulfide) may not be captured, as they may be lost during sampling, storage, or digestion. Analysis is by Collision/Reaction Cell ICPMS.

MOISTURE-VA Soil Moisture content CWS for PHC in Soil - Tier 1

This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours.

PH-1:2-VA Soil pH in Soil (1:2 Soil:Water Extraction) BC WLAP METHOD: PH, ELECTROMETRIC, SOIL

This analysis is carried out in accordance with procedures described in the pH, Electrometric in Soil and Sediment method - Section B Physical/Inorganic and Misc. Constituents, BC Environmental Laboratory Manual 2007. The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water. The pH of the solution is then measured using a standard pH probe.

S-TOT-LECO-SK Soil Total Sulphur by combustion method ISO 15178:2000

The air-dried sample is ignited in a combustion analyzer where sulfur in the reduced SO2 gas is determined using a thermal conductivity detector.

SO4-LEACH-IC-VA Soil Sulfate leach (1:10) by IC EPA 300.1 (mod)

Leachable Anions in Sediment/Soil Method analysis is carried out using a leaching procedure which involves the gentle tumbling of the sample in a specified leaching solution (typically deionized water) for a specific length of time. The resulting extract is then analysed anions by ion chromatography with conductivity or UV detection. The method is applicable to the following anions: fluoride, chloride, phosphate, bromide, nitrate, sulfate.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

SK ALS ENVIRON	
	MENTAL - SASKATOON, SASKATCHEWAN, CANADA
VA ALS ENVIRON	MENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L1917005 Report Date: 08-MAY-17 Page 1 of 6

Client: TMAC Resources Inc

Hope Bay Project 95 Welliington St West

Toronto ON M5J 2N7

Contact: Environmental Site Manager

Test	Matrix	Reference	Result Qualifier	Units	RPD	Limit	Analyzed
C-TIC-PCT-SK	Soil						
Batch R371							
WG2520675-2 L Inorganic Carbon	.CS		100.3	%		80-120	05-MAY-17
WG2520675-3 N Inorganic Carbon	ИΒ		<0.050	%		0.05	05-MAY-17
HG-200.2-CVAF-VA	Soil						
Batch R371	0567						
WG2519193-4 C Mercury (Hg)	CRM	VA-NRC-STS	6D-3 95.1	%		70-130	30-APR-17
	.cs						
Mercury (Hg)			101.3	%		70-130	30-APR-17
WG2519193-1 N Mercury (Hg)	ИВ		<0.0050	mg/kg		0.005	30-APR-17
MET-200.2-CCMS-VA	Soil						
Batch R371	0902						
	RM	VA-NRC-STS					
Aluminum (Al)			105.4	%		70-130	30-APR-17
Antimony (Sb)			106.0	%		70-130	30-APR-17
Arsenic (As)			90.9	%		70-130	30-APR-17
Barium (Ba)			98.4	%		70-130	30-APR-17
Beryllium (Be)			106.2	%		70-130	30-APR-17
Bismuth (Bi)			107.2	%		70-130	30-APR-17
Boron (B)			108.7	%		70-130	30-APR-17
Cadmium (Cd)			111.8	%		70-130	30-APR-17
Calcium (Ca)			104.5	%		70-130	30-APR-17
Chromium (Cr)			102.2	%		70-130	30-APR-17
Cobalt (Co)			97.6	%		70-130	30-APR-17
Copper (Cu)			93.5	%		70-130	30-APR-17
Iron (Fe)			96.1	%		70-130	30-APR-17
Lead (Pb)			104.8	%		70-130	30-APR-17
Lithium (Li)			103.6	%		70-130	30-APR-17
Magnesium (Mg)			106.4	%		70-130	30-APR-17
Manganese (Mn)			93.1	%		70-130	30-APR-17
Molybdenum (Mo)			102.7	%		70-130	30-APR-17
Nickel (Ni)			94.2	%		70-130	30-APR-17
Phosphorus (P)			107.3	%		70-130	30-APR-17
Potassium (K)			108.9	%		70-130	30-APR-17

Workorder: L1917005

Report Date: 08-MAY-17

Page 2 of 6

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-VA	Soil							
Batch R3710902								
WG2519193-4 CRM		VA-NRC-STS						
Selenium (Se)			103.0		%		70-130	30-APR-17
Silver (Ag)			99.6		%		70-130	30-APR-17
Sodium (Na)			106.3		%		70-130	30-APR-17
Strontium (Sr)			107.6		%		70-130	30-APR-17
Thallium (TI)			110.0		%		70-130	30-APR-17
Titanium (Ti)			122.0		%		70-130	30-APR-17
Uranium (U)			105.8		%		70-130	30-APR-17
Vanadium (V)			104.9		%		70-130	30-APR-17
Zinc (Zn)			95.3		%		70-130	30-APR-17
WG2519193-3 LCS Aluminum (Al)			101.7		%		80-120	30-APR-17
Antimony (Sb)			100.7		%		80-120	30-APR-17
Arsenic (As)			103.5		%		80-120	30-APR-17
Barium (Ba)			98.2		%		80-120	30-APR-17
Beryllium (Be)			99.4		%		80-120	30-APR-17
Bismuth (Bi)			99.9		%		80-120	30-APR-17
Boron (B)			88.4		%		80-120	30-APR-17
Cadmium (Cd)			100.5		%		80-120	30-APR-17
Calcium (Ca)			97.8		%		80-120	30-APR-17
Chromium (Cr)			98.3		%		80-120	30-APR-17
Cobalt (Co)			97.7		%		80-120	30-APR-17
Copper (Cu)			96.3		%		80-120	30-APR-17
Iron (Fe)			97.8		%		80-120	30-APR-17
Lead (Pb)			100.3		%		80-120	30-APR-17
Lithium (Li)			98.6		%		80-120	30-APR-17
Magnesium (Mg)			101.3		%		80-120	30-APR-17
Manganese (Mn)			103.4		%		80-120	30-APR-17
Molybdenum (Mo)			99.7		%		80-120	30-APR-17
Nickel (Ni)			99.5		%		80-120	30-APR-17
Phosphorus (P)			102.3		%		80-120	30-APR-17
Potassium (K)			100.7		%		80-120	30-APR-17
Selenium (Se)			101.5		%		80-120	30-APR-17
Silver (Ag)			98.4		%		80-120	30-APR-17
Sodium (Na)			101.3		%		80-120	30-APR-17

Workorder: L1917005

Report Date: 08-MAY-17

Page 3 of 6

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-VA	Soil							
Batch R3710902	2							
WG2519193-3 LCS Strontium (Sr)			99.5		%		80-120	30-APR-17
Sulfur (S)			104.9		%		80-120	30-APR-17
Thallium (TI)			100.3		%		80-120	30-APR-17
Tin (Sn)			97.7		%		80-120	30-APR-17
Titanium (Ti)			95.3		%		80-120	30-APR-17
Tungsten (W)			100.8		%		80-120	30-APR-17
Uranium (U)			100.8		%		80-120	30-APR-17
Vanadium (V)			99.8		%		80-120	30-APR-17
Zinc (Zn)			96.1		%		80-120	30-APR-17
Zirconium (Zr)			96.7		%		70-130	30-APR-17
WG2519193-1 MB								
Aluminum (AI)			<50		mg/kg		50	30-APR-17
Antimony (Sb)			<0.10		mg/kg		0.1	30-APR-17
Arsenic (As)			<0.10		mg/kg		0.1	30-APR-17
Barium (Ba)			<0.50		mg/kg		0.5	30-APR-17
Beryllium (Be)			<0.10		mg/kg		0.1	30-APR-17
Bismuth (Bi)			<0.20		mg/kg		0.2	30-APR-17
Boron (B)			<5.0		mg/kg		5	30-APR-17
Cadmium (Cd)			<0.020		mg/kg		0.02	30-APR-17
Calcium (Ca)			<50		mg/kg		50	30-APR-17
Chromium (Cr)			<0.50		mg/kg		0.5	30-APR-17
Cobalt (Co)			<0.10		mg/kg		0.1	30-APR-17
Copper (Cu)			<0.50		mg/kg		0.5	30-APR-17
Iron (Fe)			<50		mg/kg		50	30-APR-17
Lead (Pb)			<0.50		mg/kg		0.5	30-APR-17
Lithium (Li)			<2.0		mg/kg		2	30-APR-17
Magnesium (Mg)			<20		mg/kg		20	30-APR-17
Manganese (Mn)			<1.0		mg/kg		1	30-APR-17
Molybdenum (Mo)			<0.10		mg/kg		0.1	30-APR-17
Nickel (Ni)			<0.50		mg/kg		0.5	30-APR-17
Phosphorus (P)			<50		mg/kg		50	30-APR-17
Potassium (K)			<100		mg/kg		100	30-APR-17
Selenium (Se)			<0.20		mg/kg		0.2	30-APR-17
Silver (Ag)			<0.10		mg/kg		0.1	30-APR-17

Workorder: L1917005

Report Date: 08-MAY-17

Page 4 of 6

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-VA	Soil							
Batch R3710902 WG2519193-1 MB								
Sodium (Na)			<50		mg/kg		50	30-APR-17
Strontium (Sr)			<0.50		mg/kg		0.5	30-APR-17
Sulfur (S)			<1000		mg/kg		1000	30-APR-17
Thallium (TI)			<0.050		mg/kg		0.05	30-APR-17
Tin (Sn)			<2.0		mg/kg		2	30-APR-17
Titanium (Ti)			<1.0		mg/kg		1	30-APR-17
Tungsten (W)			<0.50		mg/kg		0.5	30-APR-17
Uranium (U)			< 0.050		mg/kg		0.05	30-APR-17
Vanadium (V)			<0.20		mg/kg		0.2	30-APR-17
Zinc (Zn)			<2.0		mg/kg		2	30-APR-17
Zirconium (Zr)			<1.0		mg/kg		1	30-APR-17
MOISTURE-VA	Soil							
Batch R3710256								
WG2519195-2 LCS Moisture			98.0		%		90-110	29-APR-17
WG2519195-6 LCS Moisture			98.4		%		90-110	29-APR-17
WG2519195-1 MB Moisture			<0.25		%		0.25	29-APR-17
WG2519195-5 MB Moisture			<0.25		%		0.25	29-APR-17
PH-1:2-VA	Soil							
Batch R3710500 WG2519193-5 IRM pH (1:2 soil:water)		VA-ALP-SRS1	507 6.56		рН		6.2-6.8	30-APR-17
S-TOT-LECO-SK	Soil							
Batch R3715865 WG2521387-4 IRM Sulfur (S)-Total		1646A_SOIL	3400		mg/kg		2500-4600	05-MAY-17
WG2521387-5 MB Sulfur (S)-Total			<500		mg/kg		500	05-MAY-17
SO4-LEACH-IC-VA	Soil							

Workorder: L1917005

Report Date: 08-MAY-17

Page 5 of 6

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SO4-LEACH-IC-VA	4	Soil							
Batch R	3713964								
WG2519603-2 Sulfate (SO4)	LCS			101.3		%		70-130	02-MAY-17
WG2519603-1 Sulfate (SO4)	MB			<10		mg/kg		10	02-MAY-17

Workorder: L1917005 Report Date: 08-MAY-17 Page 6 of 6

Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

COC#			
	Page	4 -1	

Report To:		Report Fo	ormat / Distributi	on		Service Requested (Rush for routine analysis subject to availability) Begular (Standard Turnaround Times - Business Days)								
Company. TN	MAC Resources Ltd (Hope Bay)		□ Other											
Contact: En	vironmental Site Manager	☑ PDF	☑ Excel	□Digital	□Fax	Orion	ity (2-4 B	lusiness D	lays) - 50)% Surcha	rge - Cont	act ALS to	o Confirm	TAT
Address: 95	Wellington Street West, Suite 1010	Email 1:	enviro@tmacres	ources.com		Omergency (1-2 Bus. Days) - 100% Surcharge - Contact ALS to Confirm TAT							TAT	
P.(O. Box 44 Toronto, ON M5J 2N7	Email 2:	katsky.venter@t	macresources.	com	O ame	a Day or	Weekend	Emerger	ncy - Conta	ct ALS to	Confirm T	TAT	
Phone: 1-4	416-628-0216 Fax:	Email 3.							A	nalysis l	Reques	t		
Invoice To Sa	ime as Report ?	Client / Pr	roject Informatio	n		Plea	ase indi	cate be	low Filt	ered, Pr	eserved	or both	(F, P, F	/P)
Hardcopy of Invo	ice with Report?	Job#:										73E		
Company:		PO / AFE:	TMAC-CO2014-	0001							\Box			
Contact:		LSD;				1					1 1	- 48	1 1	
Address:		Job Ref	Compliance Sar	mpling Program	1		- 1		1 1		1 1		1 1	Jers
Phone:	Fax:	Quote #:				4			1 1		1 1		1 1	ıtaiı
Lab Work	HULLINGS	ALS	Amber Springer	Sampler:	кс	TL6-VA				11	11			of Cor
(lab use		Contact:	(a) / (a)	C. V. C. C.		8			1 1		1 1		1 1	ero
Sample #	Sample Identification (This description will appear on the	e report)	Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	TMR1								Number of Containers
TL	6-24APR17		24-Apr-17	6:30	Waste	X								2
				42000			_	_				_	+	-
					_	\vdash	-	+	-	-	-			+
						_ '	- 1							
														-
						-								-
						_					111111		111	_
=						<u>_</u> ,	111111		11111	005 C	MMI	(11111 1 1	AN .	
								Ш	MIM			11111111	111	
									111111	005-C	OFC			
								L	1917	000-0	01.0			-
						\vdash						-	1 1	-
	Special Instructions / Regulations with v	vater or land use (CCN	E-Freshwater A	quatic Life/BC	CSR - Commerci	ial/AB	Tier 1 -	Natura	al, etc)	/ Hazar	lous De	tails		
			*Note - Tailin	gs Sample										
	Failure to c	complete all portions o	f this form may	delay analysis	Please fill in thi	s form	LEGIE	BLY.						
	By the use of this form the													
	Also provided on another Excel tab are the A					rvatio								
	HIPMENT RELEASE (client use)		MENT RECEPTION		-			SHIPM	$\overline{}$	ERIFICA		ab use		
Released by:	Date (dd-mmm-vv) Time (hh-mm)	Received by:	Date:	Time:	Temperature:	Verifie	ed by:		Date:		Time:		Obser Yes	rvations:
Kyle Conway	25-Apr-17 9:00	A+ 35	April-2017	1:45	8.4 °C									add SIF

Ill Co

GENF 18.01 Front

TMAC Resources Inc ATTN: Environmental Site Manager Hope Bay Project 95 Welliington St West

Toronto ON M5J 2N7

Date Received: 30-MAY-17

Report Date: 08-JUN-17 10:52 (MT)

Version: FINAL

Client Phone: 867-988-0569

Certificate of Analysis

Lab Work Order #: L1933582 Project P.O. #: 4500002907

Job Reference: COMPLIANCE SAMPLING PROGRAM

C of C Numbers: Legal Site Desc:

ambu Springer

Amber Springer, B.Sc Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L1933582 CONTD.... PAGE 2 of 3 Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1933582-1 TL6-30MAY17							
Sampled By: KC/LW on 30-MAY-17 @ 11:00							
Matrix: WASTE Metals in Soil (CCME) with Extra Metals							
Mercury in Soil by CVAFS							
Mercury (Hg)	<0.0050		0.0050	mg/kg	04-JUN-17	06-JUN-17	R3740761
Metals in Soil by CRC ICPMS	10.0000		0.0000	l mg/kg	0100111	00 0011 17	10740701
Aluminum (Al)	10100		50	mg/kg	04-JUN-17	06-JUN-17	R3741080
Antimony (Sb)	<0.10		0.10	mg/kg	04-JUN-17	06-JUN-17	R3741080
Arsenic (As)	8.25		0.10	mg/kg	04-JUN-17	06-JUN-17	R3741080
Barium (Ba)	14.3		0.50	mg/kg	04-JUN-17	06-JUN-17	R3741080
Beryllium (Be)	0.11		0.10	mg/kg	04-JUN-17	06-JUN-17	R3741080
Bismuth (Bi)	<0.20		0.20	mg/kg	04-JUN-17	06-JUN-17	R3741080
Boron (B)	12.6		5.0	mg/kg	04-JUN-17	06-JUN-17	R3741080
Cadmium (Cd)	0.154		0.020	mg/kg	04-JUN-17	06-JUN-17	R3741080
Calcium (Ca)	25200		50	mg/kg	04-JUN-17	06-JUN-17	R3741080
Chromium (Cr)	25.7		0.50	mg/kg	04-JUN-17	06-JUN-17	R3741080
Cobalt (Co)	12.7		0.10	mg/kg	04-JUN-17	06-JUN-17	R3741080
Copper (Cu)	20.1		0.50	mg/kg	04-JUN-17	06-JUN-17	R3741080
Iron (Fe)	38900		50	mg/kg	04-JUN-17	06-JUN-17	R3741080
Lead (Pb)	4.26		0.50	mg/kg	04-JUN-17	06-JUN-17	R3741080
Lithium (Li)	23.8		2.0	mg/kg	04-JUN-17	06-JUN-17	R3741080
Magnesium (Mg)	14700		20	mg/kg	04-JUN-17	06-JUN-17	R3741080
Manganese (Mn)	909		1.0	mg/kg	04-JUN-17	06-JUN-17	R3741080
Molybdenum (Mo)	0.24		0.10	mg/kg	04-JUN-17	06-JUN-17	R3741080
Nickel (Ni) Phosphorus (P)	22.1		0.50	mg/kg	04-JUN-17	06-JUN-17	R3741080
Potassium (K)	342 1170		50 100	mg/kg mg/kg	04-JUN-17 04-JUN-17	06-JUN-17 06-JUN-17	R3741080 R3741080
Selenium (Se)	<0.20		0.20	mg/kg	04-30N-17 04-JUN-17	06-JUN-17	R3741080
Silver (Ag)	0.19		0.20	mg/kg	04-30N-17 04-JUN-17	06-JUN-17	R3741080
Sodium (Na)	610		50	mg/kg	04-JUN-17	06-JUN-17	R3741080
Strontium (Sr)	13.3		0.50	mg/kg	04-JUN-17	06-JUN-17	R3741080
Thallium (TI)	<0.050		0.050	mg/kg	04-JUN-17	06-JUN-17	R3741080
Tin (Sn)	<2.0		2.0	mg/kg	04-JUN-17	06-JUN-17	R3741080
Titanium (Ti)	620		1.0	mg/kg	04-JUN-17	06-JUN-17	R3741080
Tungsten (W)	<0.50		0.50	mg/kg	04-JUN-17	06-JUN-17	R3741080
Uranium (U)	<0.050		0.050	mg/kg	04-JUN-17	06-JUN-17	R3741080
Vanadium (V)	43.5		0.20	mg/kg	04-JUN-17	06-JUN-17	R3741080
Zinc (Zn)	82.4		2.0	mg/kg	04-JUN-17	06-JUN-17	R3741080
Zirconium (Zr)	1.8		1.0	mg/kg	04-JUN-17	06-JUN-17	R3741080
pH in Soil (1:2 Soil:Water Extraction)	_						
pH (1:2 soil:water)	8.84		0.10	pН		05-JUN-17	R3740035
Miscellaneous Parameters			_				
Inorganic Carbon (as CaCO3 Equivalent)	6.80		0.40	%		05-JUN-17	
Moisture	24.1		0.25	%		04-JUN-17	R3739740
Sulfate (SO4)	349		10	mg/kg	06-JUN-17	06-JUN-17	R3742263
Inorganic Carbon	0.816		0.050	%		05-JUN-17	R3739878
Sulfur (S)-Total	2100		500	mg/kg	02-JUN-17	02-JUN-17	R3739057

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1933582 CONTD....

PAGE 3 of 3 Version: FINAL

Reference Information

Test Method References:

ALS Test Code Matrix Test Description Method Reference**

C-TIC-PCT-SK Soil Total Inorganic Carbon in Soil CSSS (2008) P216-217

A known quantity of acetic acid is consumed by reaction with carbonates in the soil. The pH of the resulting solution is measured and compared against a standard curve relation pH to weight of carbonates.

a standard curve relating pH to weight of carbonate.

HG-200.2-CVAF-VA Soil Mercury in Soil by CVAFS EPA 200.2/1631E (mod)

Soil samples are digested with nitric and hydrochloric acids, followed by analysis by CVAFS.

IC-CACO3-CALC-SK Soil Inorganic Carbon as CaCO3 Equivalent Calculation

MET-200.2-CCMS-VA Soil Metals in Soil by CRC ICPMS EPA 200.2/6020A (mod)

This method uses a heated strong acid digestion with HNO3 and HCl and is intended to liberate metals that may be environmentally available. Silicate minerals are not solubilized. Dependent on sample matrix, some metals may be only partially recovered, including Al, Ba, Be, Cr, Sr, Ti, Tl, V, W, and Zr. Volatile forms of sulfur (including sulfide) may not be captured, as they may be lost during sampling, storage, or digestion. Analysis is by Collision/Reaction Cell ICPMS.

MOISTURE-VA Soil Moisture content CWS for PHC in Soil - Tier 1

This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours.

PH-1:2-VA Soil pH in Soil (1:2 Soil:Water Extraction) BC WLAP METHOD: PH, ELECTROMETRIC, SOIL

This analysis is carried out in accordance with procedures described in the pH, Electrometric in Soil and Sediment method - Section B Physical/Inorganic and Misc. Constituents, BC Environmental Laboratory Manual 2007. The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water. The pH of the solution is then measured using a standard pH probe.

S-TOT-LECO-SK Soil Total Sulphur by combustion method ISO 15178:2000

The air-dried sample is ignited in a combustion analyzer where sulfur in the reduced SO2 gas is determined using a thermal conductivity detector.

SO4-LEACH-IC-VA Soil Sulfate leach (1:10) by IC EPA 300.1 (mod)

Leachable Anions in Sediment/Soil Method analysis is carried out using a leaching procedure which involves the gentle tumbling of the sample in a specified leaching solution (typically deionized water) for a specific length of time. The resulting extract is then analysed anions by ion chromatography with conductivity or UV detection. The method is applicable to the following anions: fluoride, chloride, phosphate, bromide, nitrate, sulfate.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
SK	ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L1933582 Report Date: 08-JUN-17 Page 1 of 6

Client: TMAC Resources Inc

Hope Bay Project 95 Welliington St West

Toronto ON M5J 2N7

Contact: Environmental Site Manager

Test	Matrix	Reference	Result Qualifier	Units	RPD	Limit	Analyzed
C-TIC-PCT-SK	Soil						
Batch R373	9878						
WG2540029-2 L Inorganic Carbon	.cs		94.0	%		80-120	05-JUN-17
WG2540029-3 N Inorganic Carbon	ИΒ		<0.050	%		0.05	05-JUN-17
IG-200.2-CVAF-VA	Soil						
Batch R374	0761						
WG2541055-4 C Mercury (Hg)	CRM	VA-NRC-STS	6D-3 89.8	%		70-130	06-JUN-17
WG2541055-3 L Mercury (Hg)	.cs		104.4	%		70-130	06-JUN-17
	Л В					. 5 100	00 0011 17
Mercury (Hg)			<0.0050	mg/kg		0.005	06-JUN-17
MET-200.2-CCMS-VA	Soil						
Batch R374	1080						
	CRM	VA-NRC-STS					
Aluminum (Al)			105.2	%		70-130	06-JUN-17
Antimony (Sb)			107.9	%		70-130	06-JUN-17
Arsenic (As)			90.5	%		70-130	06-JUN-17
Barium (Ba)			96.8	%		70-130	06-JUN-17
Beryllium (Be)			103.3	%		70-130	06-JUN-17
Bismuth (Bi)			100.0	%		70-130	06-JUN-17
Boron (B)			111.8	%		70-130	06-JUN-17
Cadmium (Cd)			108.3	%		70-130	06-JUN-17
Calcium (Ca)			101.3	%		70-130	06-JUN-17
Chromium (Cr)			102.8	%		70-130	06-JUN-17
Cobalt (Co)			98.4	%		70-130	06-JUN-17
Copper (Cu)			93.3	%		70-130	06-JUN-17
Iron (Fe)			96.1	%		70-130	06-JUN-17
Lead (Pb)			101.0	%		70-130	06-JUN-17
Lithium (Li)			99.3	%		70-130	06-JUN-17
Magnesium (Mg)			105.5	%		70-130	06-JUN-17
Manganese (Mn)			89.5	%		70-130	06-JUN-17
Molybdenum (Mo)			98.0	%		70-130	06-JUN-17
Nickel (Ni)			92.5	%		70-130	06-JUN-17
Phosphorus (P)			108.7	%		70-130	06-JUN-17
Potassium (K)			113.0	%		70-130	06-JUN-17

Workorder: L1933582

Report Date: 08-JUN-17

Page 2 of 6

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-VA	Soil							
Batch R3741080)							
WG2541055-4 CRM		VA-NRC-ST						
Selenium (Se)			98.1		%		70-130	06-JUN-17
Silver (Ag)			99.4		%		70-130	06-JUN-17
Sodium (Na)			114.7		%		70-130	06-JUN-17
Strontium (Sr)			104.7		%		70-130	06-JUN-17
Thallium (TI)			106.6		%		70-130	06-JUN-17
Titanium (Ti)			123.2		%		70-130	06-JUN-17
Uranium (U)			100.5		%		70-130	06-JUN-17
Vanadium (V)			106.6		%		70-130	06-JUN-17
Zinc (Zn)			94.6		%		70-130	06-JUN-17
WG2541055-3 LCS Aluminum (Al)			101.6		%		80-120	06-JUN-17
Antimony (Sb)			104.7		%		80-120	06-JUN-17
Arsenic (As)			103.2		%		80-120	06-JUN-17
Barium (Ba)			101.5		%		80-120	06-JUN-17
Beryllium (Be)			98.7		%		80-120	06-JUN-17
Bismuth (Bi)			95.3		%		80-120	06-JUN-17
Boron (B)			89.9		%		80-120	06-JUN-17
Cadmium (Cd)			99.8		%		80-120	06-JUN-17
Calcium (Ca)			98.4		%		80-120	06-JUN-17
Chromium (Cr)			100.0		%		80-120	06-JUN-17
Cobalt (Co)			100.5		%		80-120	06-JUN-17
Copper (Cu)			97.8		%		80-120	06-JUN-17
Iron (Fe)			99.1		%		80-120	06-JUN-17
Lead (Pb)			97.6		%		80-120	06-JUN-17
Lithium (Li)			97.3		%		80-120	06-JUN-17
Magnesium (Mg)			100.1		%		80-120	06-JUN-17
Manganese (Mn)			103.8		%		80-120	06-JUN-17
Molybdenum (Mo)			98.4		%		80-120	06-JUN-17
Nickel (Ni)			100.3		%		80-120	06-JUN-17
Phosphorus (P)			100.1		%		80-120	06-JUN-17
Potassium (K)			101.3		%		80-120	06-JUN-17
Selenium (Se)			100.6		%		80-120	06-JUN-17
Silver (Ag)			95.5		%		80-120	06-JUN-17
Sodium (Na)			101.4		%		80-120	06-JUN-17

Workorder: L1933582

Report Date: 08-JUN-17

Page 3 of 6

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-VA	Soil							
Batch R3741080)							
WG2541055-3 LCS Strontium (Sr)			00 F		0/		00.400	00 1111 47
` ,			99.5 97.4		% %		80-120	06-JUN-17
Thallium (TI) Tin (Sn)					%		80-120	06-JUN-17
Titanium (Ti)			99.3 98.8				80-120	06-JUN-17
` ,			96.6 101.8		%		80-120	06-JUN-17
Tungsten (W)			99.8		%		80-120	06-JUN-17
Uranium (U)					%		80-120	06-JUN-17
Vanadium (V)			101.9		%		80-120	06-JUN-17
Zinc (Zn)			92.2		%		80-120	06-JUN-17
Zirconium (Zr)			97.8		%		70-130	06-JUN-17
WG2541055-1 MB Aluminum (Al)			<50		mg/kg		50	06-JUN-17
Antimony (Sb)			<0.10		mg/kg		0.1	06-JUN-17
Arsenic (As)			<0.10		mg/kg		0.1	06-JUN-17
Barium (Ba)			<0.50		mg/kg		0.5	06-JUN-17
Beryllium (Be)			<0.10		mg/kg		0.1	06-JUN-17
Bismuth (Bi)			<0.20		mg/kg		0.2	06-JUN-17
Boron (B)			<5.0		mg/kg		5	06-JUN-17
Cadmium (Cd)			<0.020		mg/kg		0.02	06-JUN-17
Calcium (Ca)			<50		mg/kg		50	06-JUN-17
Chromium (Cr)			< 0.50		mg/kg		0.5	06-JUN-17
Cobalt (Co)			<0.10		mg/kg		0.1	06-JUN-17
Copper (Cu)			< 0.50		mg/kg		0.5	06-JUN-17
Iron (Fe)			<50		mg/kg		50	06-JUN-17
Lead (Pb)			< 0.50		mg/kg		0.5	06-JUN-17
Lithium (Li)			<2.0		mg/kg		2	06-JUN-17
Magnesium (Mg)			<20		mg/kg		20	06-JUN-17
Manganese (Mn)			<1.0		mg/kg		1	06-JUN-17
Molybdenum (Mo)			<0.10		mg/kg		0.1	06-JUN-17
Nickel (Ni)			< 0.50		mg/kg		0.5	06-JUN-17
Phosphorus (P)			<50		mg/kg		50	06-JUN-17
Potassium (K)			<100		mg/kg		100	06-JUN-17
Selenium (Se)			<0.20		mg/kg		0.2	06-JUN-17
Silver (Ag)			<0.10		mg/kg		0.1	06-JUN-17
Sodium (Na)			<50		mg/kg		50	06-JUN-17

Workorder: L1933582

Report Date: 08-JUN-17

Page 4 of 6

MeT-200.2-CCMS-VA R3741080 R3741085 R3741085	Limit	Analyzed
WG2541055-1 Strontium (Sr)		
Strontium (Sr)		
Thallium (TI)	0.5	06-JUN-17
Tin (Sn)	0.05	06-JUN-17
Titanium (Ti)	2	06-JUN-17
Tungsten (W)	1	06-JUN-17
Uranium (U) <0.050	0.5	06-JUN-17
Vanadium (V) <0.20	0.05	06-JUN-17
Zirconium (Zr) < <1.0 mg/kg MOISTURE-VA Soil Batch R3739740 WG2541048-2 LCS Moisture 99.99 % WG2541048-6 LCS Moisture 99.9 % WG2541048-1 MB Moisture < 99.9 % WG2541048-5 MB Moisture < <0.25 % WG2541048-5 MB Moisture < <0.25 % PH-1:2-VA Soil Batch R3740035 WG2541055-5 IRM VA-ALP-SRS1507 pH (1:2 soil:water) 6.52 pH S-TOT-LECO-SK Soil	0.2	06-JUN-17
MOISTURE-VA Soil Batch R3739740 WG2541048-2 LCS Moisture 99.99 % WG2541048-6 LCS Moisture 99.9 % WG2541048-1 MB Moisture < 0.25 % WG2541048-5 MB Moisture < 0.25 % PH-1:2-VA Soil Batch R3740035 WG2541055-5 IRM PH (1:2 soil:water) 6.52 pH	2	06-JUN-17
Batch R3739740 WG2541048-2 LCS Moisture 99.99 % WG2541048-6 LCS Moisture 99.9 % WG2541048-1 MB Moisture <	1	06-JUN-17
Batch R3739740 WG2541048-2 LCS Moisture 99.99 % WG2541048-6 LCS Moisture 99.9 % WG2541048-1 MB Moisture < 0.25 % WG2541048-5 MB Moisture < 0.25 % PH-1:2-VA Soil Batch R3740035 WG2541055-5 IRM VA-ALP-SRS1507 pH (1:2 soil:water) 6.52 pH		
Moisture 99.99 % WG2541048-6 LCS Moisture 99.9 % WG2541048-1 MB Moisture < 0.25 % WG2541048-5 MB Moisture < 0.25 % PH-1:2-VA Soil Batch R3740035 WG2541055-5 IRM VA-ALP-SRS1507 pH (1:2 soil:water) 6.52 pH S-TOT-LECO-SK Soil		
WG2541048-6 LCS Moisture 99.9 % WG2541048-1 MB MB WG2541048-5 MB % Moisture <0.25		
Moisture 99.9 % WG2541048-1 MB <0.25	90-110	04-JUN-17
Moisture <0.25	90-110	04-JUN-17
Moisture < 0.25 % PH-1:2-VA Soil Batch R3740035 WG2541055-5 IRM VA-ALP-SRS1507 pH (1:2 soil:water) 6.52 pH S-TOT-LECO-SK Soil	0.25	04-JUN-17
Batch R3740035 WG2541055-5 IRM pH (1:2 soil:water) VA-ALP-SRS1507 pH S-TOT-LECO-SK Soil	0.25	04-JUN-17
Batch R3740035 WG2541055-5 IRM pH (1:2 soil:water) VA-ALP-SRS1507 6.52 pH S-TOT-LECO-SK Soil		
WG2541055-5 IRM VA-ALP-SRS1507 pH (1:2 soil:water) 6.52 pH S-TOT-LECO-SK Soil		
	6.2-6.8	05-JUN-17
WG2539968-2 IRM 1646A_SOIL Sulfur (S)-Total 2800 mg/kg	2500-4600	02-JUN-17
WG2539968-3 MB Sulfur (S)-Total <500 mg/kg	500	02-JUN-17
SO4-LEACH-IC-VA Soil		
Batch R3742263		
WG2541620-3 DUP L1933582-1 Sulfate (SO4) 349 354 mg/kg 1.2	20	06-JUN-17
WG2541620-2 LCS Sulfate (SO4) 100.4 %	70-130	06-JUN-17