APPENDIX B.12

Meadowbank Camp 2002 – 2004 Lake Evaporation Calculation

LAKE EVAPORATION CALCULATION

Calculation of lake evaporation from pan evaporation is based on the procedure outlined below. This procedure is the standard one used by the Atmospheric Environment Service.

Daily Lake Evaporation in SI Units

$$E_L = 0.7 [E_P + 0.00642 P \alpha_P (.37 + 0.00255 U_P) T]$$

where: $E_L =$ computed daily lake evaporation (mm)

 $E_P =$ net daily pan loss (mm)

 $E_P = W_a - W_r + R$

W_a = water added (mm)

 W_r = water removed (mm)

R = rainfall for past 24 hours (mm)

P = station pressure (kilopascal)

 $P = 101.325 (1 - 0.00002257 Z)^{5.25}$

Z = station elevation (m)

 α_P = fraction of advected energy (Class A Pan) used for evaporation

 α_P = 0.35 + 0.01044 T_W + 0.000559 U_P if $0 \le U_P < 161$

 α_P = 0.35 + 0.01044 T_W + 0.08 + 0.000249 (U_P-161) if 161 $\leq U_P$ < 322

 α_P = 0.35 + 0.01044 T_W + 0.12 + 0.000124 (U_P-322) if 322 \leq U_P < 483

 $\alpha_P = 0.35 + 0.01044 T_W + 0.14 + 0.000062 (U_P-483)$ if $U_P > 483$

 U_P = daily wind run across pan (km)

T = mean water and air temperature difference function

 $T = (T_W - T_a)^{.88} \text{ if } T_W > T_a$

 $T = -[(T_a - T_w)^{.88}] \text{ if } T_W < T_a$

T = 0 if $T_W = T_a$

TW = mean water temperature

Ta = mean air temperature

Reference: Kohler, M.A., T.J. Nordenson, and W.E. Fox, "Evaporation from Pans and Lakes", Research Paper No. 38, U.S. Weather Bureau, 1955.