

Annual 2009 Report for Water Licence 2BB-MEL0914

Comaplex Minerals Corp.
Suite 901, 1015 – 4th Street SW
Calgary, AB T2R1J4

The Licensee shall file an Annual Report on the appurtenant undertaking with the Board no later than March 31st of the year following the calendar year being reported which shall contain, but not be limited to, the following information:

a) the monthly and annual quantities in cubic metres of all freshwater obtained from Meliadine and Pump Lakes at Monitoring Stations MEL-1 and MEL-2, respectively;

Table 1. Water Use for 2009 (m³/day)1

	MEL – 1	MEL-1	MEL-2	Mel -2
	Meliadine Lake	Meliadine Lake	Lake A8 (Pump)	Lake A8 (Pump)
	(m³/day)	(m³/month)	(m³/day)	(m³/month)
January 2009	1.0	31	-	
February 2009	1.0	28	-	
March 2009	1.5	46.5	-	
April 2009 ²	4.3	129	75	1,050
May 2009	4.3	133.3	75	2,325
June 2009	4.3	129	75	2,250
July 2009	4.3	133.3	75	2,325
August 2009	4.3	133.3	159	4,929
September 2009 ³	4.3	129	159	2,544
October 2009 ⁴	1.9	9.5	-	
November 2009	-		-	
December 2009	-		-	

¹An application for an amendment was sent to the NWB on 21 January 2010 to increase the allowable water from 90m³/day to 290 m³/day.

Tables showing the measured water use are attached in Appendix A.

²Drilling commenced April 16th, 2009. The monthly quantity of water used is for the last 14 days of the month.

³Drilling stopped September 16th, 2009. The monthly quantity of water used is for the first 16 days of the month.

⁴ The camp was shut down 5 October 2009.

b) the monthly and annual quantities in cubic metres of Minewater pumped from the underground;

Underground exploration was inactive during 2009. No water was pumped from the underground.

c) an estimate of the current volume of waste rock and ore stockpiled on site;

The current volume of waste rock and ore remains unchanged from 2008. The volume of waste rock is 35,692 m³ while the ore's volume is 8,710 m³. This is detailed in the table below.

Waste Rock and Ore resulting from the Underground Exploration and Bulk Sampling Program 2007 - 2008

	tonnes	cubic meters	*SG
Overburden Portal	25,890	12,945	2
Waste Rock Portal	17,609	6,289	2.8
Waste Rock Decline	82,328	29,403	2.8
Ore	25,521	8,710	2.93
Total Rock	125,458	44,402	

^{* -} SG - specific gravity

d) tabular summaries of all data generated under the Monitoring Program, Part J

Please see Appendix B for data tables of the 2009 monitoring data. The data tables include supplementary data collected during periods of flow beyond that required by the Water Licence.

The location of sampling stations is shown on Figure 1 in Appendix B.

e) a summary of modification and/or major maintenance work carried out on the Water Supply Facilities, Bulk Fuel Storage Facility; Bermed Fuel Containment Facilities, and Sewage Disposal Facility, including all associated structures, and an outline of any work anticipated for the next year;

Comaplex has approval to construct additional fuel storage at its present fuel storage area. A lined, bermed area will be constructed in 2010 having space for 10 - 113,000 litre fuel bladders.

The commissioning of the Biodisk sewage treatment plant is behind schedule and is planned for the spring and summer of 2010. The present Pacto toilets will be kept operational as a backup.

Comaplex's Work Plan for 2010 is attached in Appendix C

f) a list of unauthorized discharges and follow-up action taken;

There were no unauthorized discharges in 2009.

g) updates or revisions to the Abandonment and Restoration Plan, Site Water Management Plan, Waste Rock and Ore Storage Management Plan, Spill Contingency Plan and the Operations and Maintenance Manual; revisions may be subject to Board approval;

The following were submitted to the Board for approval in 2009:

- Waste Management Plan: Meliadine West Gold Project revised Sept 2009
- Site Water Management Addendum: Meliadine West Gold Project submitted Sept 2009
- Abandonment and Restoration Plan: Meliadine West Gold Project Camp and Underground Exploration Area – revised Sept 2009
- Fuel Management and Spill Contingency Plan: Meliadine West Project revised Sept 2009
- QA/QC Plan –submitted Oct 2009.
- h) An updated estimate of the current Meliadine Lake Gold Project restoration liability, as required under Part B, Item 3, based upon the results of the restoration research, project development monitoring, and any modifications to the site plan;
 - There were no changes in project operation, project components and/or technology during 2009. As a result no update was made to the restoration liability.
- i) a brief description of follow-up action taken to address concerns detailed in inspection and compliance reports prepared by the Inspector;
 - A combination of direct and indirect water use is being metered for the camp (2009 average 4.3 m^3 /day) and drilling (53 m^3 /day/drill).
 - Appendix D details how and when Comaplex achieved compliance on outstanding issues raised in the August 13, 2008 Inspectors Direction.
- j) a summary of drilling activities and progressive reclamation of drill sites;
 - In 2009, the following diamond drilling for mineral resources and geotechnical drillings in the areas of proposed infrastructure were carried out:
 - Total number of drill holes 109
 Metres drilled 23,600

- Tiriganiaq: number of drill holes 35
 Metres drilled 16,732
- F Zone: number of drill holes 33 Metres drilled – 2,712

Reclamation of drill holes remains the same as previous years. Peat moss and fertilizer are added to the area around the drill hole. From experience, the drill site starts to recover within 5 years with vegetation re-emerging or re-establishing itself.

k) a summary of any abandonment and restoration work completed during the year and an outline of any work anticipated for the next year;

INAC Permit N2006X0012 – CWM Claims Winter Road cache and debris along the road were cleaned up in 2009.

Reclamation of the Meladine East Camp on Atulik Lake will be initiated during the spring and summer of 2010. An anticipated timeline is given below:

- Spring 2010 Fuel and some tents overland transport to the Meliadine Lake camp
- Summer 2010 Preparation of materials for winter backhaul, camp clean-up
- Winter 2011 demobilization of prepared materials
- Summer 2011 Final clean-up and submission of Final Plan
- a summary of any specific studies or reports requested by the Board, and a brief description of any future studies planned or proposed;

No specific studies or reports were requested by the Board during 2009. In 2010 water quality monitoring will continue beyond that required by the Water Licence.

m) a public consultation/participation report describing consultation with local organizations and residents of the nearby communities, if any were conducted;

2009	PLACE	PARTIES PRESENT AND SUBJECTS OF MEETING
Mar 31	Iqaluit	Nunavut Mining Symposium; presentation to industry and all regulatory boards with Project update.
May 6-8	Rankin Inlet	MDAG: all regulatory groups in attendance. Present Project and meet regulators.
May 21	Rankin Inlet	Town hall update meeting. 13 people.
June 17	Rankin Inlet	Presentation to the CLARC on the Project.

		Attendees: Hamish Tatti, Celestino Mukpah, Jack Karitok, Jerome Tattuinee, Paul Kanayok.
June 17	Rankin Inlet	Meeting with Manager CED (Robert Connelly) and Nunavut Transport (Alan Johnson) regarding proposal to access federal infrastructure money for the Meliadine River bridge and Comaplex fund the road. Visit to the bridge site.
June 18	Rankin Inlet	Discussion with Rankin mayor John Hickes, the SAO, and several council members. Project update and proposed application for road and bridge funding.
July 30	Rankin Inlet	Meeting with Paul Waye, Senior Administrative Office for Rankin Inlet to discuss locations for mine infrastructure and a quarry within the municipality.
		Tour of the town with M&T Enterprises to look at locations for possible mine infrastructure and to see existing quarries.
September 1	Camp site	Meeting with DFO to discuss fisheries habitat and compensation issues relating to the development of the Meliadine Gold Project.
September 4	Rankin Inlet	Tour of industrial areas of the municipality with John Hickes to look at possible location of the tank farm.
Oct 3	Rankin Inlet	Presentation of the current Meliadine Gold Project to the Socio-Economic Monitoring Committee (chaired by Nunavut Economic Development and Transportation). Present were Kivalliq mayors, Nunavut and federal departments, Meadowbank, and Areva

n) any other details on water use or waste disposal requested by the Board by November 1st of the year being reported.

There were no requests for additional details received by the Water Board before November 1, 2009.

Section F, clause3. Drill holes shall be immediately sealed and permanently capped to prevent induced contamination of groundwater or salinization of surface waters. The Licensee shall report all artesian flow occurrences within the Annual Report, including the location (GPS coordinates) and dates.

No drill holes had artesian flow. Some drill holes penetrated the permafrost layer, which on occasion resulted in flow part way up the drill stem but not to surface.

Section F, clause 4. Where drilling activity has penetrated below the permafrost layer, the NWB requests that the proponent record the depth of permafrost and location of the drill hole to be included within the Annual Report.

The lower permafrost boundary varies from point-to-point. Comaplex's estimate for this boundary is from approximately 425 to 450 metres. The only way we are sure a hole penetrates the permafrost boundary is when the presence of water is detected.

The installation of a thermistor at 410 m was attempted but failed as it is thought that the thermistor froze in the hole at that depth.

Drill holes passing through the permafrost boundary are shown on figure 2 and listed in the Table 2 found in Appendix E. These are angled drill holes exceeding 600 metres in length.

Section H, clause 3. The Licensee shall review the (Spill Contingency) Plan referred to in this Part as required by changes in operation and/or technology and modify the Plan accordingly. Further revisions to the Plan are to be submitted in the form of an Addendum to be included with the Annual Report, unless directed otherwise by an Inspector.

The Spill Management Plan was updated September 2009 and forwarded to the NWB. No further updates were prepared since that time.

Section I, Clause 4. The Licensee shall review the (Abandonment and Restoration) Plan referred to in this Part as required by changes in operation and/or technology and modify the Plan accordingly. Revisions to the Plan are to be submitted in the form of an Addendum to be included with the Annual Report.

The Abandonment and Restoration Plan was updated September 2009 and forwarded to the NWB. No further updates were prepared since that time.

Others Items of Note

The hydrocarbon contaminated soil located on the waste rock pad near the portal was successfully remediated to Nunavut Standards and CCME Canada Wide Standards for Residential/Parkland Use. The latter being the strictest requirement for hydrocarbon contaminated soil set by CCME.

Appendix F has a copy of the covering letter and the report from Golder Associates. The report was stamped by an engineer registered in Nunavut.

Appendix A

Measured Water Use for Potable Use and for Drilling

COMAPLEX MINERALS CORP.

DAILY WATER CONSUMPTION / USAGE

Water metered since July 17

Units: m3

Water metered since July 17

Avg: 4.2 m3 (Jul 17 to Aug 26)

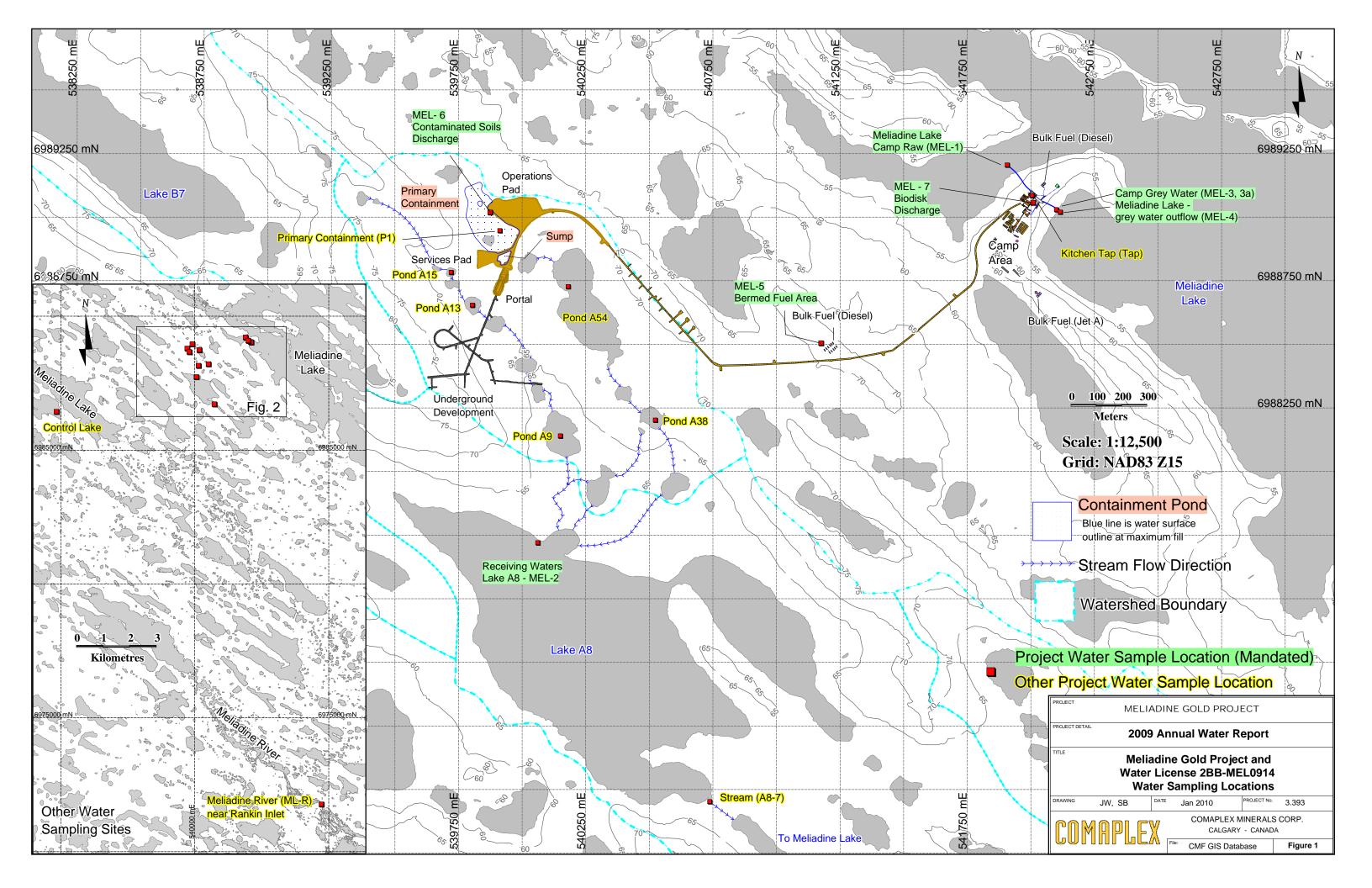
Avg: 4.1 m3 (Jul 17 to Sep 20)

YEAR	MONTH	LOCAT	DATE																															AVG
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	(m3)
2009	Jan-09	Camp	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	Q1	Portal	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
	Feb-09	Camp	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	2.0	2.0	2.2	2.0	2.0	2.4	2.4	2.0	2.0	2.0	2.0	2.4	2.0	2.0	2.0	2.4	2.0	2.0	2.0	2.0	$>\!<$	$>\!<$	$>\!\!<$	1.9
	Q1	Portal	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	$>\!\!<$	$>\!\!<$	$>\!\!<$	na
	Mar-09	Camp	2.0	2.0	2.0	2.4	2.0	2.0	2.0	2.0	2.4	2.4	2.4	2.0	2.0	2.4	2.4	2.8	2.4	2.4	0.8	2.4	2.8	2.8	2.8	2.8	3.0	3.0	0.0	2.8	3.0	3.0	3.0	2.3
	Q1	Portal	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
	Apr-09	Camp	3.0	3.2	3.0	3.2	3.2	3.2	3.2	3.2	3.4	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.0	3.0	3.2	3.2	2 3.2	3.2	3.2	3.6	3.6	3.2	3.2	3.6	3.2	3.2	\times	3.2
	Q2	Portal	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
	May-09	Camp	3.2	3.2	3.2	3.4	3.6	3.6	3.6	3.2	3.2	3.2	3.2	3.2	3.6	3.6	3.6	3.6	3.6	0.0	3.6	3.6	3.2	3.2	3.2	3.2	3.2	3.6	3.6	3.6	4.0	4.0	4.0	3.3
	Q2	Portal	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
	Jun-09	Camp	4.0	4.0	3.8	3.8	4.0	4.0	4.0	3.6	4.0	4.0	4.0	4.0	4.0	3.6	3.6	3.6	4.0	4.0	3.6	3.6	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.6	3.6	4.0	$>\!\!<$	3.9
	Q2	Portal	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
	Jul-09	Camp	4.0	3.6	3.6	4.0	3.6	3.6	4.0	10.0	3.6	4.0	4.0	8.0	4.0	4.0	4.0	4.0	3.2	3.5	4.2	3.6	4.3	4.3	4.6	4.8	3.7	4.6	3.5	4.7	4.3	3.9	4.8	4.3
	Q3	Portal	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
	Aug-09	Camp	4.3	2.7	4.1	2.1	3.8	3.5	4.1	3.4	4.3	3.9	4.6	4.3	4.3	4.3	4.4	4.2	4.5	5.7	7.3	3.8	4.9	3.6	4.7	4.1	4.1	3.2	4.8	4.1	3.3	3.9	4.3	4.1
	Q3	Portal	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
	Sep-09	Camp	5.5	6.3	3.6	2.7	2.6	4.1	4.6	3.6	4.1	2.7	3.7	5.1	3.8	4.3	2.7	4.9	4.7	3.9	4.0	2.0	3.7	2.8	4.1	2.2	4.6	1.1	1.7	1.3	1.9	1.9	$>\!\!<$	3.5
	Q3	Portal	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
	Oct-09	Camp	1.5	1.8	1.9	1.9	2.2																											1.9
	Q4	Portal	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
	Nov-09	Camp																															$>\!\!<$	na
		Portal	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	\times	na
	Dec-09	Camp																																na
	Q4	Portal	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na

2009 Drill Water Usage

**Water flow meter at supply pump read at the end of day shift

Date	Drill 1	1-1-7 5-1-1-1	Drill 2	na ot aay snitt	Drill 3		All Drills	Per Drill
	Meter	Daily	Meter	Daily	Meter	Daily	Daily	Daily Avg
	m3	m3	m3	m3	m3	m3	m3	m3
11-Aug	0		0		0			\mathbb{X}
12-Aug	0	0	0	0	64	64	64	64.0
13-Aug	0	0	0	0	111.8	47.8	47.8	47.8
14-Aug	71.5	71.5	0	0	168.9	57.1	128.6	64.3
15-Aug	131.5	60	28.4	28.4	227.7	58.8	147.2	49.1
16-Aug	195.3	63.8	91.2	62.8	248.4	20.7	147.3	49.1
17-Aug	253.7	58.4	162	70.8	336.3	87.9	217.1	72.4
18-Aug	283.2	29.5	232.9	70.9	366.6	30.3	130.7	43.6
19-Aug	344.2	61	257.9	25	NR	NA	86	43.0
20-Aug	404.5	60.3	322.9	65	488.3	121.7	247	82.3
21-Aug	444.3	39.8	389.9	67	537.8	49.5	156.3	52.1
22-Aug	526.3	82	489	99.1	584.7	46.9	228	76.0
23-Aug	588	61.7	525	36	607	22.3	120	40.0
24-Aug	649	61	562	37	637	30	128	42.7
25-Aug	709	60	649	87	657	20	167	55.7
26-Aug	749	40	672	23	695	38	101	33.7
27-Aug	812	63	750	78	757	62	203	67.7
28-Aug	872	60	802	52	780	23	135	45.0
29-Aug	931	59	876	74	837.5	57.5	190.5	63.5
30-Aug	991	60	NR	NA	857	19.5	79.5	39.8
31-Aug	1050	59	950	74	877.2	20.2	153.2	51.1
1-Sep	1112	62	NR	Move	NR	Move	62	62.0
2-Sep	1179	67	NR	Move	NR	Move	67	67.0
3-Sep	1274	95	1024	74	904	26.8	195.8	65.3
4-Sep	1293	19	1027	3	939	35	57	19.0
5-Sep	1354	61	1049	22	953.6	14.6	97.6	32.5
6-Sep	NR	Move	1119	70	NR	NA	70	70.0
7-Sep	1434	80	1188	69	985	31.4	180.4	60.1
8-Sep	NR	Move	1253	65	1005	20	85	42.5
9-Sep	1441	7	1321	68	1057	52	127	42.3
10-Sep	1497	56	1355	34	1097	40	130	43.3
11-Sep	1564	67	1364	9	1108	11	87	29.0
12-Sep	1613	49	1380	16	NR	NA	65	32.5
13-Sep	1682	69	1446	66	NR	Demob	135	67.5
14-Sep	1725	43	NR	Demob			43	43.0
15-Sep	1802	77					77	77.0
16-Sep	1855	53					53	53.0
17-Sep	NR	NA						
18-Sep	NR	Demob						
AVERAGE								52.5


^{**}NR - No Reading

Appendix B

Figure 1. Water Sampling Locations

and

Water Quality Data Tables

	,	r	c	9		,	е	*	1	1	ĸ	r	н
	CCME										0.1	0.019	
,	MMER												
	Sample Location	Sample_Date	Sample_Time	Label	Lab. Report	UTM E	UTM N	pH Field	Temp Field	Alkalinity, Total (as CaCO3) (mg/L)	Aluminum (Al)-Total (mg/L)	Ammonia-N (mg/L)	Antimony (Sb)-Total (mg/L)
,	A13	28-Jun-09	11:20	A13	L785375	539828	6988676	7.28	13.8	37.3	< 0.040	< 0.050	< 0.0016
,	A15	28-Jun-09	11:13	A15	L785376	539732	6988798	6.95	13.4	27.5	< 0.040	< 0.050	< 0.0016
*	A38	28-Jun-09	12:23	A38	L785377	540500	6988254	7.53	13.1	58.5	< 0.010	1.01	<0.00040
	A54	28-Jun-09	11:45	A54	L785378	540135	6988794	7.52	12.8	60.4	< 0.040	4.56	<0.0016
	A8-7	28-Jun-09	09:15	A8-7	L785379	540748	6986690	6.64	6.0	21.9	< 0.010	< 0.050	< 0.00040
	A9	28-Jun-09	12:15	A10	L785380	540194	6988142	7.59	13.3	44.3	< 0.040	< 0.050	< 0.0016
*	CONTROL	28-Jun-09	09:35	CONTROL	L785381	535001	6986333	6.22	5.5	28.6	< 0.010	< 0.050	< 0.00040
"	CONTROL 2	28-Jun-09	10:00	CONTROL 2	L785382	535001	6986333	6.47	10.5	20.1	< 0.010	< 0.050	< 0.00040
	MEL1	28-Jun-09	13:40	MEL1	L785383	541934	6989173	6.16	6.8	12.4	< 0.010	< 0.050	< 0.00040
п	MEL2	28-Jun-09	10:00	MEL2	L785384	540681	6986702	6.38	5.8	30.0	< 0.010	< 0.050	< 0.00040
"	MEL3	28-Jun-09	14:35	MEL3	L785385	542083	6989004	6.83	16.4	77.5	0.015	0.179	0.00073
**	MEL4	28-Jun-09	14:15	MEL4	L785386	542092	6989012	6.21	6.4	12.1	<0.010	<0.050	< 0.00040
H	ML-River	28-Jun-09	09:30	ML-River	L785387	544778	6971712	6.17	12.9	20.2	<0.010	<0.050	< 0.00040
п	TAP Water	28-Jun-09	14:50	TAP Water	L785388			6.45	10.3	16.7			

	,	N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z
	CCME	0.005						0.017					0.001	
Í	MMER	0.5												
	Sample Location	Arsenic (As)- Total (mg/L)	Barium (Ba)- Total (mg/L)	` '	Bicarbonate (HCO3) (mg/L)	Oxygen Demand (mg/L)	Boron (B)- Total (mg/L)	Cadmium (Cd)-Total (mg/L)	Calcium (Ca)- Dissolved (mg/L)	Calcium (Ca)- Total (mg/L)	` '	Chloride (CI) (mg/L)	Chromium (Cr)-Total (mg/L)	Cobalt (Co)- Total (mg/L)
	A13	0.0031	0.114	< 0.0040	45.6		< 0.050	< 0.00020	123	112	< 5.0	256	< 0.0050	< 0.0020
*	A15	0.0033	0.230	< 0.0040	33.5		< 0.050	<0.00020	247.7	232	< 5.0	551	< 0.0050	<0.0020
ę	A38	0.00261	0.0634	< 0.0010	71.3		< 0.050	<0.000050	73.9	78.7	< 5.0	156	< 0.0050	<0.0020
3	A54	0.0033	0.0683	< 0.0040	73.7		< 0.050	<0.00020	95.2	94.4	< 5.0	193	< 0.0050	<0.0020
*	A8-7	0.00107	0.0124	< 0.0010	26.7		< 0.050	<0.000050	11.9	10.8	< 5.0	14.5	< 0.0050	< 0.0020
٠	A9	0.0034	0.0878	< 0.0040	54.1		< 0.050	<0.00020	84.5	82.4	<5.0	170	< 0.0050	<0.0020
20	CONTROL	0.00048	0.0106	<0.0010	34.9		< 0.050	<0.000050	9.60	9.00	< 5.0	8.27	< 0.0050	< 0.0020
"	CONTROL 2	< 0.00040	0.0090	< 0.0010	24.5		< 0.050	<0.000050	7.17	7.14	< 5.0	8.38	< 0.0050	< 0.0020
	MEL1	< 0.00040	0.0059	< 0.0010	15.2	<2.0	< 0.050	<0.000050	5.36	4.72	< 5.0	5.92	< 0.0050	< 0.0020
11	MEL2	0.00092	0.0185	<0.0010	36.6	<2.0	< 0.050	<0.000050	17.3	17.0	< 5.0	23.4	<0.0050	< 0.0020
"	MEL3	0.00567	0.0299	< 0.0010	94.6	7.5	< 0.050	0.000075	41.0	37.7	<5.0	57.7	< 0.0050	< 0.0020
н	MEL4	<0.00040	0.0056	< 0.0010	14.7	<2.0	< 0.050	<0.000050	5.43	4.61	< 5.0	6.04	< 0.0050	<0.0020
H	ML-River	<0.00040	0.0091	<0.0010	24.7		< 0.050	<0.000050	7.10	6.40	< 5.0	8.20	< 0.0050	< 0.0020
u	TAP Water				20.4				6.97		< 5.0	8.16		

	*	AA	AB	AC	AD	AE	AF	AG	AH	Al	AJ	AK	AL	AM
	CCME		0.002-0.004				0.3	0.001-0.007						0
	MMER		0.3					0.2						
	Sample Location	Conductivity (EC) (uS/cm)	Copper (Cu)- Total (mg/L)	,	J	Ion Balance (%)	Iron (Fe)- Total (mg/L)	Lead (Pb)-	Lithium (Li)- Total (mg/L)	Magnesium (Mg)- Dissolved	Magnesium (Mg)-Total (mg/L)	Manganese (Mn)-Total (mg/L)	Mercury (Hg)- Total (mg/L)	
,	A13	966	<0.0040	359	<5.0	100	0.390	<0.00040	0.054	12.7	12.1	0.0132	<0.00010)
*	A15	1920	<0.0040	712	<5.0	98.9	0.554	<0.00040	0.168	22.7	19.0	0.0309	<0.00010	
*	A38	734	0.0015	227	< 5.0	90.0	0.061	0.00039	0.017	10.2	11.3	0.0021	< 0.00010	
à	A54	915	<0.0040	290	< 5.0	96.8	0.081	<0.00040	<0.024	12.7	13.0	0.0051	<0.00010	
,	A8-7	93.7	< 0.0010	36.2	< 5.0	Low EC	0.075	< 0.00010	< 0.010	1.58	1.41	0.0151	< 0.00010	
٠	A9	690	< 0.0040	250	< 5.0	95.4	0.182	<0.00040	0.032	9.39	9.48	0.0150	<0.00010	
**	CONTROL	84.2	< 0.0010	28.2	< 5.0	Low EC	0.101	< 0.00010	< 0.010	1.02	0.97	0.0161	< 0.00010	
	CONTROL 2	72.9	< 0.0010	22.4	< 5.0	Low EC	0.034	< 0.00010	<0.010	1.09	1.05	< 0.0020	< 0.00010	
п	MEL1	52.3	0.0052	16.9	<5.0	Low EC	0.025	<0.00010	<0.010	0.86	0.74	0.0051	<0.00010	<1
11	MEL2	141	< 0.0010	52.3	< 5.0	91.3	0.056	< 0.00010	< 0.010	2.22	2.21	0.0182	< 0.00010	
"	MEL3	416	0.0027	117	<5.0	107	0.116	0.00359	<0.010	3.64	3.94	0.0612	<0.00010	4
N	MEL4	52.0	<0.0010	16.6	< 5.0	Low EC	0.015	<0.00010	<0.010	0.75	0.76	0.0044	<0.00010	<1
м	ML-River	73.5	< 0.0010	22.0	< 5.0	Low EC	0.025	< 0.00010	< 0.010	1.04	0.94	0.0022	<0.00010	
ū	TAP Water	70.0		22.2	< 5.0	Low EC				1.16				<1

	Ψ.	AN	AO	AP	ΑQ	AR	AS	AT	AU	AV	AW	AX	AY	AZ
CCI	ME	0.073	0.025-0.015	2.9		0.006			6.5 - 9.0	0.03				
MM	MER		0.5						6.0 - 9.5					
	mple	Molybdenum (Mo)-Total (mg/L)	Nickel (Ni)- Total (mg/L)	Nitrate (as N) (mg/L)	Nitrate and Nitrite as N (mg/L)	Nitrite (as N) (mg/L)	Oil and Grease (mg/L)	Orthophosph ate (PO4-P) (mg/L)	рН (рН)	Phosphorus, Total Diss_ (mg/L)	Potassium (K)-Dissolved (mg/L)	Potassium (K)-Total (mg/L)	Selenium (Se)-Total (mg/L)	Silver (Ag)- Total (mg/L)
A13	3	< 0.0050	0.0040	< 0.050	< 0.071	< 0.050			7.80	< 0.020	5.50	5.88	<0.0080	< 0.00040
A1!	5	< 0.0050	0.0063	< 0.050	< 0.071	< 0.050			7.34	< 0.020	13.0	11.5	<0.0080	< 0.00040
. A38	8	< 0.0050	0.0030	2.46	2.46	< 0.050			7.85	< 0.020	5.93	6.63	< 0.0020	< 0.00010
A54	4	< 0.0050	0.0037	6.73	6.80	0.069	<1.0		7.84	<0.020	8.67	9.23	<0.0080	< 0.00040
. A8-	3-7	< 0.0050	<0.0020	< 0.050	<0.071	< 0.050			7.19	<0.020	0.71	0.64	< 0.00040	< 0.00010
. A9)	< 0.0050	0.0035	< 0.050	< 0.071	< 0.050			7.64	< 0.020	3.73	4.10	<0.0080	< 0.00040
CO	ONTROL	< 0.0050	< 0.0020	< 0.050	< 0.071	< 0.050			7.18	< 0.020	1.19	0.89	< 0.00040	<0.00010
CO	ONTROL 2	< 0.0050	< 0.0020	< 0.050	< 0.071	< 0.050			7.14	< 0.020	1.01	0.91	< 0.00040	< 0.00010
" ME	EL1	< 0.0050	< 0.0020	< 0.050	< 0.071	< 0.050	<1.0	< 0.010	6.97	<0.020	0.69	0.52	< 0.00040	< 0.00010
" ME	EL2	< 0.0050	< 0.0020	< 0.050	< 0.071	< 0.050	<1.0	< 0.010	7.30	<0.020	1.00	0.96	< 0.00040	< 0.00010
" ME	EL3	< 0.0050	0.0069	< 0.050	< 0.071	< 0.050	1.1	0.470	7.75	0.561	5.62	5.85	< 0.0020	< 0.00010
ME	EL4	< 0.0050	<0.0020	< 0.050	< 0.071	< 0.050	1.1	< 0.010	7.35	< 0.020	0.64	0.58	< 0.00040	< 0.00010
ML	River	< 0.0050	<0.0020	< 0.050	<0.071	< 0.050			7.17	< 0.020	1.00	0.86	< 0.00040	< 0.00010
TAI	P Water			< 0.050	< 0.071	< 0.050			7.42		0.92			

	*	ВА	BB	ВС	BD	BE	BF	BG	ВН	BI	BJ	ВК	BL	BM
C	CCME											29		
ľ	MMER											15		
S	Sample	Sodium (Na)- Dissolved	Sodium (Na)-	Strontium (Sr)-Total	Sulfate (SO4)	TDS (Calculated)	Thallium (TI)-	Tin (Sn)-	Titanium (Ti)-	Total Carbon	Total Inorganic Carbon	Total Suspended Solids	Turbidity	Uranium (U)-
· L	ocation	(mg/L)	Total (mg/L)	(mg/L)	(mg/L)	(mg/L)	Total (mg/L)	Total (mg/L)	Total (mg/L)	(mg/L)	(mg/L)	(mg/L)	(NTU)	Total (mg/L)
·	\13	22.1	21.8	0.965	14.3	456	<0.00040	<0.050	<0.0024			<3.0	1.12	< 0.00040
· A	\15	41.5	48.6	2.40	21.6	914	< 0.00040	< 0.050	< 0.0024			<3.0	2.76	< 0.00040
· A	1 38	24.1	28.0	0.720	33.7	350	< 0.00010	< 0.050	< 0.0010			3.0	0.46	0.00031
Å	\ 54	33.3	36.2	0.794	43.7	453	< 0.00040	< 0.050	< 0.0024			<3.0	1.38	0.00068
· A	\8-7	2.1	2.0	0.0701	2.14	46.1	< 0.00010	< 0.050	< 0.0010			<3.0	0.49	< 0.00010
·	\ 9	12.1	12.8	0.653	9.55	316	< 0.00040	< 0.050	< 0.0024			3.0	0.73	< 0.00040
, C	CONTROL	4.5	4.3	0.0310	2.09	43.8	< 0.00010	< 0.050	< 0.0010			< 3.0	0.58	< 0.00010
C	CONTROL 2	4.3	4.0	0.0329	3.04	37.1	< 0.00010	< 0.050	< 0.0010			<3.0	0.34	< 0.00010
. N	MEL1	2.8	2.2	0.0267	2.54	25.6	<0.00010	< 0.050	<0.0010	6.7	3.0	< 3.0	0.26	<0.00010
" N	MEL2	3.0	2.7	0.110	2.73	67.7	< 0.00010	< 0.050	< 0.0010	10.4	6.9	<3.0	0.36	< 0.00010
" N	MEL3	34.5	35.1	0.248	27.4	216	0.00013	< 0.050	0.0020	40.0	20.0	4.0	3.18	< 0.00010
N	ΛEL4	3.7	2.9	0.0227	2.42	26.2	<0.00010	< 0.050	<0.0010	5.9	3.0	<3.0	0.34	<0.00010
N	/IL-River	4.2	3.6	0.0329	3.06	36.7	<0.00010	< 0.050	< 0.0010			<3.0	0.35	< 0.00010
T	ΓAP Water	4.4			2.87	34.5						<3.0	0.34	

	,	BN	ВО
	CCME	-	0.03
	MMER		0.5
	Sample Location	Vanadium (V)-Total (mg/L)	Zinc (Zn)- Total (mg/L)
,	A13	< 0.0020	< 0.016
,	A15	< 0.0020	< 0.016
4	A38	< 0.0010	0.0040
	A54	< 0.0020	0.030
*	A8-7	< 0.0010	0.0261
	A9	< 0.0020	0.031
**	CONTROL	< 0.0010	< 0.0040
"	CONTROL 2	< 0.0010	< 0.0040
12	MEL1	< 0.0010	< 0.0040
n	MEL2	< 0.0010	0.0261
"	MEL3	<0.0010	0.0220
"	MEL4	<0.0010	< 0.0040
H	ML-River	<0.0010	< 0.0040
п	TAP Water		

	*		c	9	*	16.	е			1	ж	r	×
	CCME								0.1	0.019		0.005	
	MMER											0.5	
								Alkalinity,					
								Total (as	Aluminum		Antimony		
	Sample							CaCO3)	(AI)-Total	Ammonia-N	(Sb)-Total	Arsenic (As)-	Barium (Ba)-
	Location	Sample_Date	Sample_Time	Label	Lab. Report	UTM E	UTM N	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Total (mg/L)	Total (mg/L)
,	A13	06-Aug-09	00:00	A13	L801984	539828	6988676	23.0	<0.20	< 0.050	<0.0080	<0.0080	0.410
	A15	06-Aug-09	10:10	A15	L801984	539732	6988798	39.7	<0.20	< 0.050	< 0.0080	< 0.0080	0.340
*	A38	06-Aug-09	10:20	A38	L801984	540500	6988254	40.5	< 0.040	< 0.050	< 0.0016	0.0040	0.0941
3	A54	06-Aug-09	10:30	A54	L801984	540135	6988794	40.1	< 0.040	0.387	<0.0016	0.0034	0.0947
	A9	06-Aug-09	10:40	A9	L801984	540194	6988142	57.2	< 0.040	< 0.050	< 0.0016	0.0050	0.113
	MEL4	06-Aug-09	00:00	MEL4	L801984	542092	6989012						
10	P1	06-Aug-09	00:00	P1	L801984	539901	6988966	107	<0.040	11.6	<0.0016	0.0139	0.135
"	P2	06-Aug-09	00:00	Sump	L801984	539952	6988927	100	<0.20	5.59	<0.0080	0.0132	0.137
	A8	06-Aug-09	10:50	Pump Lake	L801984	535000	6987700	34.7	< 0.010	< 0.050	< 0.00040	0.00216	0.0195

	4	N	0	Р	Q	R	S	Т	U	V	W	Х	Υ
	CCME					0.017					0.001		
,	MMER												
				Biochemical									
		Beryllium	Bicarbonate	Oxygen		Cadmium	Calcium (Ca)-		Carbonate		Chromium		Conductivity
	Sample	(Be)-Total	(HCO3)	Demand	Boron (B)-	(Cd)-Total	Dissolved	Calcium (Ca)-	(CO3)	Chloride (CI)	(Cr)-Total	Cobalt (Co)-	(EC)
	Location	(mg/L)	(mg/L)	(mg/L)	Total (mg/L)	(mg/L)	(mg/L)	Total (mg/L)	(mg/L)	(mg/L)	(mg/L)	Total (mg/L)	(uS/cm)
,	A13	<0.020	28.0		< 0.080	< 0.0010	398	339	< 5.0	839	<0.016	< 0.0040	2800
	A15	< 0.020	48.4		< 0.080	< 0.0010	350	337	< 5.0	764	< 0.016	< 0.0040	2630
	A38	< 0.0040	49.4		< 0.050	<0.00020	111	120	<5.0	270	< 0.0050	< 0.0020	1100
3	A54	< 0.0040	49.0		< 0.050	<0.00020	125	128	< 5.0	284	< 0.0050	< 0.0020	1210
	A9	< 0.0040	69.8		< 0.050	<0.00020	114	92.2	< 5.0	214	< 0.0050	< 0.0020	871
	MEL4			<2.0									
10	P1	< 0.0040	131		< 0.050	<0.00020	197	144	<5.0	361	< 0.0050	< 0.0020	1650
"	P2	< 0.020	122		0.225	<0.0010	303	266	<5.0	997	<0.016	0.0044	4520
10	A8	< 0.0010	42.3		< 0.050	< 0.000050	20.8	21.1	< 5.0	24.2	< 0.0050	< 0.0020	161

	4	Z	AA	AB	AC	AD	AE	AF	AG	АН	Al	AJ	AK
	CCME	0.002-0.004				0.3	0.001-0.007						0
,	MMER	0.3					0.2						
									Magnesium				
			Hardness (as						(Mg)-	Magnesium	Manganese		MF - Fecal
	Sample	Copper (Cu)-	CaCO3)	Hydroxide	Ion Balance	Iron (Fe)-	Lead (Pb)-	Lithium (Li)-	Dissolved	(Mg)-Total	(Mn)-Total	Mercury (Hg)-	Coliforms
,	Location	Total (mg/L)	(mg/L)	(OH) (mg/L)	(%)	Total (mg/L)	Total (mg/L)	Total (mg/L)	(mg/L)	(mg/L)	(mg/L)	Total (mg/L)	(CFU/100mL)
,	A13	< 0.020	1130	< 5.0	101	0.932	<0.0020	0.26	32.4	27.3	0.0404	< 0.00010	
	A15	< 0.020	1040	< 5.0	101	0.329	<0.0020	0.14	40.6	38.9	0.0075	< 0.00010	
*	A38	< 0.0040	355	< 5.0	97.7	0.095	< 0.00040	0.034	18.9	20.5	0.0036	< 0.00010	
3	A54	< 0.0040	396	< 5.0	97.5	0.020	< 0.00040	0.035	20.3	20.8	< 0.0020	< 0.00010	
	A9	< 0.0040	341	< 5.0	104	0.134	< 0.00040	0.049	13.8	11.1	0.0057	< 0.00010	
	MEL4												1
10	P1	0.0081	589	<5.0	109	0.093	0.00064	0.025	23.5	17.3	0.0471	<0.00010	
п	P2	< 0.020	1300	< 5.0	107	0.069	<0.0020	<0.12	133	115	0.134	< 0.00010	
13	A8	< 0.0010	63.3	< 5.0	102	0.051	< 0.00010	< 0.010	2.76	2.83	0.0080	< 0.00010	

	,	AL	AM	AN	AO	AP	AQ	AR	AS	AT	AU	AV	AW
	CCME	0.073	0.025-0.015	2.9		0.006		6.5 - 9.0					
,	MMER		0.5					6.0 - 9.5					
	Sample Location	Molybdenum (Mo)-Total (mg/L)	Nickel (Ni)- Total (mg/L)	Nitrate (as N) (mg/L)	Nitrate and Nitrite as N (mg/L)	Nitrite (as N) (mg/L)	Oil and Grease (mg/L)	pH (pH)	Potassium (K)-Dissolved (mg/L)	Potassium (K)-Total (mg/L)	Selenium (Se)-Total (mg/L)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Sodium (Na)- Dissolved (mg/L)
,	A13	< 0.0050	0.0084	< 0.050	< 0.071	< 0.050		7.56	13.9	11.9	0.0266	<0.0020	39.5
	A15	< 0.0050	0.0079	< 0.050	< 0.071	< 0.050		7.77	9.64	9.27	0.0281	<0.0020	39.9
,	A38	< 0.0050	0.0031	0.396	0.396	< 0.050		7.88	9.44	10.3	0.0033	<0.00040	43.5
3	A54	< 0.0050	0.0032	5.74	5.86	0.122		7.87	10.4	10.8	0.0045	< 0.00040	48.0
	A9	< 0.0050	0.0037	< 0.050	< 0.071	< 0.050		7.98	4.49	3.58	0.0047	< 0.00040	16.9
	MEL4						<1.0						
10	P1	< 0.0050	0.0072	9.58	9.72	0.131		7.98	16.1	12.0	0.0048	0.00062	58.4
"	P2	< 0.0050	0.0474	21.0	21.2	0.148		8.05	37.7	33.6	0.0303	<0.0020	457
13	A8	< 0.0050	<0.0020	< 0.050	< 0.071	< 0.050		7.90	1.15	1.09	0.00047	0.00012	3.8

	7	AX	AY	ΑZ	ВА	BB	ВС	BD	BE	BF	BG	ВН
	CCME								29			0.03
	MMER								15			0.5
								Total	Total			
				TDS				Kjeldahl	Suspended		Vanadium	
	Sample	Sodium (Na)-	Sulfate (SO4)	(Calculated)	Thallium (TI)-	Tin (Sn)-	Titanium (Ti)-	Nitrogen	Solids	Uranium (U)-	(V)-Total	Zinc (Zn)-
	Location	Total (mg/L)	(mg/L)	(mg/L)	Total (mg/L)	Total (mg/L)	Total (mg/L)	(mg/L)	(mg/L)	Total (mg/L)	(mg/L)	Total (mg/L)
,	A13	33.7	8.83	1350	< 0.0020	< 0.050	< 0.012	0.78		< 0.0020	0.011	< 0.080
	A15	37.0	13.7	1240	< 0.0020	< 0.050	< 0.012	0.75		< 0.0020	0.011	< 0.080
	A38	49.3	47.8	527	< 0.00040	< 0.050	< 0.0024	1.23		< 0.00040	0.0022	< 0.016
a	A54	50.1	63.2	601	< 0.00040	< 0.050	< 0.0024	1.65		< 0.00040	0.0023	< 0.016
	Α9	13.3	10.4	408	< 0.00040	< 0.050	< 0.0024	1.01		< 0.00040	0.0024	< 0.016
	MEL4								<3.0			
10	P1	43.7	62.5	826	< 0.00040	< 0.050	< 0.0024	13.4		0.00118	0.0037	0.018
"	P2	406	600	2680	<0.0020	< 0.050	<0.012	7.00		0.0117	0.010	<0.080
19	A8	3.8	2.76	76.3	0.00016	< 0.050	< 0.0010	0.37		< 0.00010	< 0.0010	< 0.0040

	7		c	P			e			1	ж	r	-
CCME										0.1	0.019		
MME	R												
								Alkalinity,	Aluminum			Antimony	
								Total (as	(AI)-	Aluminum		(Sb)-	Antimony
								CaCO3)	Dissolved	(AI)-Total	Ammonia-N	Dissolved	(Sb)-Total
Sam		Sample Date	-	Label		UTM E	UTM N	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
A13		03-Sep-09	14:45	A13	L817421	539828	6988676	46.9	<0.040	<0.040	<0.050	<0.0016	<0.0016
A15		03-Sep-09	14:30	A15	L817421	539732	6988798	45.9	<0.040	0.044	<0.050	<0.0016	<0.0016
A38		03-Sep-09	11:00	A38	L817421	540500	6988254	59.8	<0.040	0.059	<0.050	<0.0016	<0.0016
A54		03-Sep-09	13:30	A54	L817421	540135	6988794	46.9	<0.040	<0.040	0.544	<0.0016	<0.0016
A8-7		03-Sep-09	10:30	A8-7	L817421	540748	6986690	36.3	< 0.010	< 0.010	< 0.050	< 0.00040	< 0.00040
A9		03-Sep-09	12:45	A9	L817421	540194	6988142	58.8	< 0.040	< 0.040	< 0.050	< 0.0016	< 0.0016
CON	TROL			CONTROL	L817421	535001	6986333	25.7	<0.010	<0.010	<0.050	< 0.00040	<0.00040
MEL1		03-Sep-09	09:30	MEL1	L817421	541934	6989173	14.6	<0.010	<0.010	<0.050	< 0.00040	<0.00040
MEL1	DUPL	03-Sep-09	09:30	MEL1 DUPL	L817421	541934	6989173	15.4	<0.010	<0.010	< 0.050	< 0.00040	< 0.00040
MEL2	2	03-Sep-09	10:00	MEL2	L817421	540681	6986702	37.7	<0.010	0.011	<0.050	< 0.00040	<0.00040
MEL3	3	04-Sep-09	07:00	MEL3	L817421	542083	6989004						
MEL4	ļ	04-Sep-10	07:10	MEL4	L817421	542092	6989012						
ML-R	iver	04-Sep-09	09:30	ML-River	L817421	544778	6971712	22.0	<0.010	0.019	< 0.050	< 0.00040	< 0.00040
P1		03-Sep-09	14:00	P1	L817421	539901	6988966	119	<0.040	<0.040	7.10	<0.0016	<0.0016
20													

*		N	О	Р	Q	R	S	Т	U	V	W	Х
CCME			0.005									
MMER			0.5									
						Beryllium			Biochemical			Cadmium
		Arsenic (As)-		Barium (Ba)-		(Be)-	Beryllium	Bicarbonate	Oxygen	Boron (B)-		(Cd)-
		Dissolved	Arsenic (As)-	Dissolved	Barium (Ba)-	Dissolved	(Be)-Total	(HCO3)	Demand	Dissolved	Boron (B)-	Dissolved
SampleID	Sample Date	(mg/L)	Total (mg/L)	(mg/L)	Total (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Total (mg/L)	(mg/L)
A13	03-Sep-09	0.0032	0.0034	0.157	0.156	<0.0040	< 0.0040	57.3		<0.20	<0.050	<0.0040
A15	03-Sep-09	0.0043	0.0066	0.212	0.204	<0.0040	< 0.0040	56.0		<0.20	<0.050	<0.0040
A38	03-Sep-09	0.0037	0.0064	0.0864	0.0794	<0.0040	<0.0040	73.0		<0.20	<0.050	<0.0040
A54	03-Sep-09	0.0033	0.0037	0.091	0.0879	< 0.0040	<0.0040	57.3		<0.20	<0.050	<0.0040
A8-7	03-Sep-09	0.00191	0.00237	0.0158	0.0155	<0.0010	<0.0010	44.3		<0.050	<0.050	<0.0010
A9	03-Sep-09	0.0047	0.0074	0.141	0.142	< 0.0040	<0.0040	71.7		<0.20	<0.050	< 0.0040
CONTROL		0.00057	0.00060	0.0069	0.0068	< 0.0010	<0.0010	31.4		<0.050	<0.050	<0.0010
MEL1	03-Sep-09	0.00043	0.00045	0.0058	0.0058	< 0.0010	<0.0010	17.9		< 0.050	<0.050	< 0.0010
MEL1 DUPL	03-Sep-09	0.00043	0.00047	0.0058	0.0059	<0.0010	<0.0010	18.8		<0.050	< 0.050	<0.0010
MEL2	03-Sep-09	0.00222	0.00262	0.0198	0.0193	<0.0010	<0.0010	46.0		<0.050	<0.050	<0.0010
MEL3	04-Sep-09								6.5			
MEL4	04-Sep-10								<2.0			
ML-River	04-Sep-09	<0.00040	< 0.00040	0.0094	0.0093	<0.0010	<0.0010	26.9		< 0.050	< 0.050	<0.0010
P1	03-Sep-09	0.0104	0.0114	0.105	0.103	< 0.0040	<0.0040	145		<0.20	<0.050	<0.0040

	*		Υ	Z	AA	AB	AC	AD	AE	AF	AG	АН	Al
	CCME		0.017		7.0.	, ,,,	7.10	7.2	0.001	7	1.0	7.11.	7 11
,	MMER												
								Chromium					
			Cadmium	Calcium (Ca)-		Carbonate		(Cr)-	Chromium	Cobalt (Co)-		Conductivity	Copper (Cu)-
			(Cd)-Total	Dissolved	Calcium (Ca)-	(CO3)	Chloride (CI)	Dissolved	(Cr)-Total	Dissolved	Cobalt (Co)-	(EC)	Dissolved
,	SampleID	Sample Date	(mg/L)	(mg/L)	Total (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Total (mg/L)	(uS/cm)	(mg/L)
	A13	03-Sep-09	<0.00020	166	166	<5.0	361	<0.020	< 0.0050	<0.0080	<0.0020	1330	<0.0040
	A15	03-Sep-09	<0.00020	212	216	<5.0	479	<0.020	< 0.0050	<0.0080	<0.0020	1660	< 0.0040
	A38	03-Sep-09	<0.00020	113	123	<5.0	256	<0.020	0.0086	<0.0080	<0.0020	1040	< 0.0040
	A54	03-Sep-09	<0.00020	137	132	<5.0	312	<0.020	< 0.0050	<0.0080	<0.0020	1310	< 0.0040
	A8-7	03-Sep-09	<0.000050	21.1	21.4	<5.0	26.2	< 0.0050	< 0.0050	<0.0020	<0.0020	169	<0.0010
	A9	03-Sep-09	<0.00020	146	169	<5.0	294	<0.020	0.0095	<0.0080	<0.0020	1130	<0.0040
	CONTROL		<0.00050	8.93	8.86	<5.0	7.62	<0.0050	<0.0050	<0.0020	<0.0020	78.0	<0.0010
"	MEL1	03-Sep-09	<0.000050	6.31	6.21	<5.0	7.67	< 0.0050	< 0.0050	<0.0020	<0.0020	66.3	<0.0010
	MEL1 DUPL	03-Sep-09	<0.00050	6.21	6.31	<5.0	7.63	< 0.0050	<0.0050	<0.0020	<0.0020	65.8	<0.0010
	MEL2	03-Sep-09	<0.000050	25.5	25.8	<5.0	36.2	<0.0050	<0.0050	<0.0020	<0.0020	209	<0.0010
	MEL3	04-Sep-09											
	MEL4	04-Sep-10											
	ML-River	04-Sep-09	<0.00050	8.61	7.97	<5.0	10.3	<0.0050	< 0.0050	<0.0020	<0.0020	86.1	0.0011
	P1	03-Sep-09	<0.00020	160	159	<5.0	310	<0.020	< 0.0050	<0.0080	<0.0020	1380	<0.0040
		·											
,													

*		AJ	AK	AL	AM	AN	AO	AP	AQ	AR	AS	AT
CCME		0.002-0.004					0.3		0.001-0.007			
MMER		0.3							0.2			
												Magnesium
			Hardness (as			Iron (Fe)-		Lead (Pb)-		Lithium (Li)-		(Mg)-
		Copper (Cu)-	CaCO3)	Hydroxide	Ion Balance	Dissolved	Iron (Fe)-	Dissolved	Lead (Pb)-	Dissolved	Lithium (Li)-	Dissolved
SampleID	Sample Date	Total (mg/L)			(%)	(mg/L)	Total (mg/L)	(mg/L)	Total (mg/L)	(mg/L)	Total (mg/L)	(mg/L)
A13	03-Sep-09	< 0.0040	496	<5.0	95.6	0.016	0.602	<0.020	<0.00040	0.058	0.060	19.8
A15	03-Sep-09	< 0.0040	644	< 5.0	94.9	0.025	0.702	<0.020	<0.00040	0.060	0.061	27.8
A38	03-Sep-09	< 0.0040	362	< 5.0	97.9	0.020	0.455	<0.020	<0.00040	0.027	<0.024	19.5
A54	03-Sep-09	< 0.0040	437	< 5.0	99.0	<0.010	0.029	< 0.020	<0.00040	0.029	0.030	23.1
A8-7	03-Sep-09	<0.0010	64.7	<5.0	97.2	<0.010	0.074	<0.0050	<0.00010	0.0042	<0.010	2.91
A9	03-Sep-09	< 0.0040	433	<5.0	99.3	0.018	0.358	<0.020	< 0.00040	0.064	0.056	16.7
CONTROL		<0.0010	26.7	<5.0	Low EC	<0.010	0.036	<0.0050	<0.00010	< 0.0030	<0.010	1.07
MEL1	03-Sep-09	0.0013	20.3	<5.0	Low EC	<0.010	0.026	< 0.0050	<0.00010	< 0.0030	<0.010	1.11
MEL1 DUPL	03-Sep-09	0.0011	20.0	<5.0	Low EC	<0.010	0.028	< 0.0050	<0.00010	< 0.0030	<0.010	1.10
MEL2	03-Sep-09	<0.0010	78.5	<5.0	97.6	<0.010	0.067	<0.0050	< 0.00010	0.0059	<0.010	3.59
MEL3	04-Sep-09											
MEL4	04-Sep-10											
ML-River	04-Sep-09	0.0014	27.3	<5.0	Low EC	<0.010	0.036	<0.0050	<0.00010	<0.0030	<0.010	1.41
P1	03-Sep-09	<0.0040	479	<5.0	98.4	<0.010	0.051	<0.020	< 0.00040	< 0.012	< 0.024	19.2
	'											

,		AU	AV	AW	AX	AY	AZ	BA	BB	ВС	BD	BE
CCME								0.073		0.025-0.015	2.9	
MMER										0.5		
			Manganese				Molybdenum					
		Magnesium	(Mn)-	Manganese	Mercury (Hg)-	-	(Mo)-	Molybdenum	Nickel (Ni)-			Nitrate and
		(Mg)-Total	Dissolved	(Mn)-Total	Dissolved	Mercury (Hg)	Dissolved	(Mo)-Total	Dissolved	Nickel (Ni)-	Nitrate (as N)	Nitrite as N
SampleID	Sample Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Total (mg/L)	(mg/L)	(mg/L)	(mg/L)	Total (mg/L)	(mg/L)	(mg/L)
A13	03-Sep-09	19.2	0.0433	0.0491	<0.00010	<0.00010	<0.020	<0.0050	0.0074	0.0071	< 0.050	< 0.071
A15	03-Sep-09	29.4	0.226	0.253	< 0.00010	<0.00010	<0.020	< 0.0050	0.0189	0.0190	< 0.050	< 0.071
A38	03-Sep-09	20.9	0.0026	0.0123	<0.00010	<0.00010	<0.020	<0.0050	0.0046	0.0057	1.43	1.43
A54	03-Sep-09	22.2	<0.0020	0.0024	<0.00010	<0.00010	<0.020	< 0.0050	0.0045	0.0047	5.57	5.57
A8-7	03-Sep-09	2.91	<0.0020	0.0046	<0.00010	<0.00010	<0.0050	<0.0050	<0.0020	<0.0020	<0.050	<0.071
A9	03-Sep-09	19.5	<0.0020	0.0126	<0.00010	<0.00010	<0.020	<0.0050	0.0060	0.0063	< 0.050	<0.071
CONTROL		1.03	<0.0020	0.0026	<0.00010	<0.00010	<0.0050	<0.0050	<0.0020	<0.0020	< 0.050	<0.071
MEL1	03-Sep-09	1.07	<0.0020	0.0027	<0.00010	<0.00010	<0.0050	<0.0050	<0.0020	<0.0020	< 0.050	<0.071
MEL1 DUPL	03-Sep-09	1.08	<0.0020	0.0027	<0.00010	<0.00010	<0.0050	<0.0050	<0.0020	<0.0020	< 0.050	<0.071
MEL2	03-Sep-09	3.51	<0.0020	0.0040	<0.00010	<0.00010	<0.0050	<0.0050	<0.0020	<0.0020	<0.050	<0.071
MEL3	04-Sep-09											
MEL4	04-Sep-10											
ML-River	04-Sep-09	1.28	<0.0020	0.0038	<0.00010	<0.00010	<0.0050	<0.0050	<0.0020	<0.0020	<0.050	<0.071
P1	03-Sep-09	18.9	<0.0020	0.0089	<0.00010	<0.00010	<0.020	<0.0050	0.0071	0.0070	4.08	4.14
	'											

7		BF	BG	BH	BI	BJ	BK	BL	BM	BN	ВО	BP
CCME		0.006			6.5 - 9.0	0.03						
MMER					6.0 - 9.5							
								Potassium		Selenium		
			Oil and	Orthophosph			Phosphorus,	(K)-	Potassium	(Se)-	Selenium	Silver (Ag)-
		Nitrite (as N)	Grease	ate (PO4-P)		Phosphorus,	Total Diss_	Dissolved	(K)-Total	Dissolved	(Se)-Total	Dissolved
SampleID	Sample Date	(mg/L)	(mg/L)	(mg/L)	pH (pH)	Total (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
A13	03-Sep-09	< 0.050		< 0.010	7.72	< 0.020	< 0.020	5.58	5.22	0.0035	0.0042	< 0.020
A15	03-Sep-09	< 0.050		< 0.010	7.47	< 0.020	< 0.020	5.72	5.52	0.0042	0.0029	< 0.020
A38	03-Sep-09	< 0.050		< 0.010	7.69	< 0.020	< 0.020	9.04	9.74	< 0.0020	0.0026	< 0.020
A54	03-Sep-09	< 0.050		< 0.010	7.70	< 0.020	< 0.020	11.6	10.9	0.0032	0.0039	<0.020
A8-7	03-Sep-09	< 0.050		< 0.010	7.57	<0.020	<0.020	1.07	1.18	<0.00040	< 0.00040	< 0.0050
A9	03-Sep-09	< 0.050		<0.010	7.73	<0.020	<0.020	4.98	5.72	0.0041	0.0050	<0.020
CONTROL		< 0.050		<0.010	7.41	<0.020	<0.020	0.91	1.03	< 0.00040	< 0.00040	<0.0050
MEL1	03-Sep-09	<0.050		<0.010	7.20	<0.020	<0.020	0.73	0.80	<0.00040	< 0.00040	<0.0050
MEL1 DUPI	. 03-Sep-09	<0.050		<0.010	7.14	<0.020	<0.020	0.76	0.82	< 0.00040	< 0.00040	< 0.0050
MEL2	03-Sep-09	<0.050		<0.010	7.56	<0.020	<0.020	1.29	1.40	0.00061	0.00061	<0.0050
MEL3	04-Sep-09		<1.0		7.76							
MEL4	04-Sep-10		<1.0		7.20							
ML-River	04-Sep-09	<0.050		<0.010	7.27	<0.020	<0.020	1.00	1.00	<0.00040	<0.00040	<0.0050
P1	03-Sep-09	0.060		<0.010	7.99	<0.020	<0.020	10.9	10.9	0.0028	0.0029	<0.020
	'											
1												

	*	*	BQ	BR	BS	ВТ	BU	BV	BW	ВХ	BY	BZ	CA
	CCME												
,	MMER												
						Strontium							
				Sodium (Na)-		(Sr)-	Sulfate	TDS	Thallium (TI)-		Tin (Sn)-		Titanium (Ti)-
			Silver (Ag)-	Dissolved	Sodium (Na)-	Dissolved	(SO4)	(Calculated)	Dissolved	Thallium (TI)-		Tin (Sn)-	Dissolved
	SampleID	Sample Date	Total (mg/L)		Total (mg/L)		(mg/L)	(mg/L)	(mg/L)	Total (mg/L)		Total (mg/L)	
	A13	03-Sep-09	<0.00040	19.6	19.1	1.22	13.9	614	<0.20	<0.00040	<0.20	<0.050	<0.0040
·	A15	03-Sep-09	<0.00040	23.7	23.6	1.26	17.6	793	<0.20	<0.00040	<0.20	< 0.050	< 0.0040
	A38	03-Sep-09	< 0.00040	41.5	44.7	1.00	46.1	527	<0.20	< 0.00040	< 0.20	< 0.050	< 0.0040
1	A54	03-Sep-09	< 0.00040	53.9	51.3	1.20	66.8	657	0.00046	< 0.00040	<0.20	<0.050	< 0.0040
	A8-7	03-Sep-09	<0.00010	3.9	4.1	0.117	3.26	80.2	< 0.050	< 0.00010	< 0.050	<0.050	<0.0010
	A9	03-Sep-09	<0.00040	19.0	22.3	1.08	10.2	526	<0.20	< 0.00040	<0.20	<0.050	< 0.0040
	CONTROL		<0.00010	4.3	4.2	0.0277	1.79	40.0	< 0.050	< 0.00010	< 0.050	< 0.050	<0.0010
	MEL1	03-Sep-09	<0.00010	4.0	4.0	0.0288	3.08	31.7	< 0.050	< 0.00010	< 0.050	<0.050	<0.0010
	MEL1 DUPL	03-Sep-09	<0.00010	4.0	3.9	0.0285	3.06	32.0	< 0.050	<0.00010	< 0.050	< 0.050	<0.0010
	MEL2	03-Sep-09	<0.00010	4.8	4.9	0.156	3.80	97.8	<0.050	<0.00010	< 0.050	<0.050	<0.0010
	MEL3	04-Sep-09											
	MEL4	04-Sep-10											
	ML-River	04-Sep-09	<0.00010	5.7	5.2	0.0398	3.49	43.7	< 0.050	<0.00010	< 0.050	< 0.050	< 0.0010
	P1	03-Sep-09	<0.00040	41.1	40.9	1.11	44.0	675	<0.20	<0.00040	<0.20	< 0.050	<0.0040
		·											
10													

	*		СВ	CC	CD	CE	CF	CG	CH	CI	CJ	CK
CCM	ΙE				29							0.03
MME	ER				15							0.5
				Total	Total				Vanadium			
				Kjeldahl	Suspended		Uranium (U)-		(V)-	Vanadium	Zinc (Zn)-	
			Titanium (Ti)-	Nitrogen	Solids	Turbidity	Dissolved	(- /	Dissolved	(V)-Total	Dissolved	Zinc (Zn)-
Sam	npleID	Sample Date	Total (mg/L)	(mg/L)	(mg/L)	(NTU)	(mg/L)	Total (mg/L)	(mg/L)	(mg/L)	(mg/L)	Total (mg/L)
A13		03-Sep-09	<0.0024	0.55		2.96	<0.00040	<0.00040	< 0.0040	<0.0020	0.0082	<0.016
A15		03-Sep-09	<0.0024	0.47		2.12	< 0.00040	<0.00040	0.0012	<0.0020	0.0078	<0.016
A38		03-Sep-09	< 0.0024	1.00		0.78	< 0.00040	0.00042	< 0.0040	0.0023	0.0067	< 0.016
A54		03-Sep-09	< 0.0024	1.71		0.47	0.00051	0.00050	< 0.0040	<0.0020	0.0096	<0.016
A8-7	7	03-Sep-09	< 0.0010	0.48		0.52	< 0.00010	< 0.00010	< 0.0010	<0.0010	0.0055	< 0.0040
A9		03-Sep-09	< 0.0024	0.87		1.75	< 0.00040	< 0.00040	< 0.0040	0.0027	0.0063	<0.016
CON	ITROL		<0.0010	0.45		0.67	<0.00010	<0.00010	< 0.0010	<0.0010	0.0088	<0.0040
mEL1	1	03-Sep-09	<0.0010	0.29		0.50	<0.00010	<0.00010	< 0.0010	<0.0010	0.0055	<0.0040
mEL1	1 DUPL	03-Sep-09	<0.0010	0.31		0.52	< 0.00010	<0.00010	< 0.0010	<0.0010	0.0098	< 0.0040
meL2	2	03-Sep-09	<0.0010	0.63		0.55	<0.00010	<0.00010	< 0.0010	<0.0010	0.0094	<0.0040
mel:	3	04-Sep-09			4.0							
MEL	4	04-Sep-10			<3.0							
ML-R	River	04-Sep-09	0.0012	0.26		0.53	< 0.00010	<0.00010	< 0.0010	<0.0010	0.0041	0.0047
P1		03-Sep-09	<0.0024	8.91		0.71	0.00129	0.00128	< 0.0040	<0.0020	0.0043	<0.016
	·	·										
-												

CCME				0.1	0.019		0.005					
MMER							0.5					
			Alkalinity,								Biochemical	
			Total (as	Aluminum		Antimony			Beryllium	Bicarbonate	Oxygen	
	Sample	Sample	CaCO3)	(AI)-Total	Ammonia-N	(Sb)-Total	Arsenic (As)-	Barium (Ba)-	(Be)-Total	(HCO3)	Demand	Boron (B)-
SampleID	Date	Time	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Total (mg/L)	Total (mg/L)	(mg/L)	(mg/L)	(mg/L)	Total (mg/L)
MEL1	30-Sep-09	09:35	17.0	< 0.010	< 0.050	< 0.00040	0.00050	0.0074	<0.0010	20.8	<2.0	< 0.050
MEL1A (DUP)	30-Sep-09	10:25	16.9	0.015	< 0.050	< 0.00040	0.00057	0.0076	< 0.0010	20.6	<2.0	< 0.050
MEL2	30-Sep-09	10:35	40.1	0.039	< 0.050	< 0.00040	0.00361	0.0224	< 0.0010	49.0	<2.0	< 0.050
MEL3	30-Sep-09	11:08	198	0.018	0.298	<0.00040	0.00578	0.0369	<0.0010	242	3.2	< 0.050
MEL4	30-Sep-09	11:02	16.0	0.053	<0.050	< 0.00040	0.00059	0.0072	<0.0010	19.5	<2.0	< 0.050
TAP	30-Sep-09	11:25	16.8							20.4		

CCME		0.017				0.001			0.002-0.004			
MMER									0.3			
		Cadmium		Carbonate		Chromium		Conductivity		Hardness (as		
	Sample	(Cd)-Total	Calcium (Ca)-	(CO3)	Chloride (CI)	(Cr)-Total	Cobalt (Co)-	(EC)	Copper (Cu)-	CaCO3)	Hydroxide	Ion Balance
SampleID	Date	(mg/L)	Total (mg/L)	(mg/L)	(mg/L)	(mg/L)	Total (mg/L)	(uS/cm)	Total (mg/L)	(mg/L)	(OH) (mg/L)	(%)
MEL1	30-Sep-09	< 0.000050	7.62	<5.0	8.31	<0.0050	<0.0020	73.9	0.0011	24.2	<5.0	Low EC
MEL1A (DUP)	30-Sep-09	0.000319	7.30	< 5.0	8.20	<0.0050	<0.0020	74.2	0.0026	23.3	<5.0	Low EC
MEL2	30-Sep-09	0.000205	27.2	<5.0	40.2	<0.0050	<0.0020	231	0.0023	83.4	<5.0	94.5
MEL3	30-Sep-09	< 0.000050	68.1	<5.0	142	<0.0050	0.0023	923	0.0014	196	<5.0	94.2
MEL4	30-Sep-09	0.000060	6.57	< 5.0	8.49	<0.0050	<0.0020	72.6	0.0015	21.2	<5.0	Low EC
TAP	30-Sep-09		6.54	< 5.0	8.18			72.9		20.9	< 5.0	Low EC

CCME		0.3	0.001-0.007						0.073	0.025-0.015	2.9	
MMER			0.2							0.5		
								MF - Fecal				
					Magnesium	Manganese		Coliforms	Molybdenum			Nitrate and
	Sample	Iron (Fe)-	Lead (Pb)-	Lithium (Li)-	(Mg)-Total	(Mn)-Total	Mercury (Hg)-	(CFU/100mL	(Mo)-Total	Nickel (Ni)-	Nitrate (as N)	Nitrite as N
SampleID	Date	Total (mg/L)	Total (mg/L)	Total (mg/L)	(mg/L)	(mg/L)	Total (mg/L))	(mg/L)	Total (mg/L)	(mg/L)	(mg/L)
MEL1	30-Sep-09	0.042	0.00028	< 0.0030	1.26	0.0053	< 0.00010	<1	<0.0050	<0.0020	< 0.050	< 0.071
MEL1A (DUP)	30-Sep-09	0.054	0.00177	<0.0030	1.24	0.0049	<0.00010	<1	<0.0050	<0.0020	< 0.050	<0.071
MEL2	30-Sep-09	0.249	0.00043	0.0059	3.77	0.0257	< 0.00010		<0.0050	< 0.0020	< 0.050	< 0.071
MEL3	30-Sep-09	0.247	0.00160	0.0045	6.34	0.242	< 0.00010	11	<0.0050	0.0098	0.086	0.086
MEL4	30-Sep-09	0.142	0.00046	< 0.0030	1.16	0.0109	<0.00010	1	<0.0050	<0.0020	< 0.050	<0.071
TAP	30-Sep-09				1.12			<1			< 0.050	< 0.071

CCME		0.006			6.5 - 9.0	0.03						
MMER					6.0 - 9.5							
			Oil and	Orthophosph			Potassium	Selenium			Sulfate	TDS
	Sample	Nitrite (as N)	Grease	ate (PO4-P)		Phosphorus,	(K)-Total	(Se)-Total	Silver (Ag)-	Sodium (Na)-	(SO4)	(Calculated)
SampleID	Date	(mg/L)	(mg/L)	(mg/L)	рН (рН)	Total (mg/L)	(mg/L)	(mg/L)	Total (mg/L)	Total (mg/L)	(mg/L)	(mg/L)
MEL1	30-Sep-09	< 0.050	<1.0	<0.010	7.32	< 0.020	0.91	<0.00040	<0.00010	4.5	3.69	36.5
MEL1A (DUP)	30-Sep-09	< 0.050	<1.0	<0.010	7.23	<0.020	0.89	< 0.00040	<0.00010	4.4	3.57	35.7
MEL2	30-Sep-09	< 0.050	1.2	<0.010	7.61	<0.020	1.51	<0.0020	<0.00010	5.4	5.61	108
MEL3	30-Sep-09	< 0.050	2.3	1.18	7.98	1.34	5.34	<0.0020	<0.00010	98.7	43.5	483
MEL4	30-Sep-09	< 0.050	<1.0	<0.010	7.28	<0.020	0.80	<0.00040	<0.00010	4.4	3.29	34.3
TAP	30-Sep-09	< 0.050			7.16		0.85			4.3	3.59	34.7

CCME							29			0.03
MMER							15			0.5
					Total	Total	Total			
					Kjeldahl	Organic	Suspended		Vanadium	
	Sample	Thallium (TI)-	Tin (Sn)-	Titanium (Ti)-	Nitrogen	Carbon	Solids	Uranium (U)-	(V)-Total	Zinc (Zn)-
SampleID	Date	Total (mg/L)	Total (mg/L)	Total (mg/L)	(mg/L)	(mg/L)	(mg/L)	Total (mg/L)	(mg/L)	Total (mg/L)
MEL1	30-Sep-09	< 0.00010	< 0.050	< 0.0010	0.27	3.3	<3.0	< 0.00010	< 0.0010	0.0039
MEL1A (DUP)	30-Sep-09	< 0.00010	< 0.050	< 0.0010	< 0.20	3.2	<3.0	< 0.00010	< 0.0010	0.0148
MEL2	30-Sep-09	< 0.00010	< 0.050	0.0018	0.55	4.7	7.0	< 0.00010	< 0.0010	0.0122
MEL3	30-Sep-09	< 0.00010	< 0.050	0.0044	1.84	23.8	5.0	< 0.00010	0.0016	0.0188
MEL4	30-Sep-09	< 0.00010	< 0.050	0.0046	0.23	3.1	5.0	< 0.00010	< 0.0010	0.0061
TAP	30-Sep-09						<3.0			

Appendix C Comaplex 2010 Work Plan

MELIADINE GOLD PROJECT

2010 Work Plan

SUBMITTED TO:

Kivalliq Inuit Association

BY: COMAPLEX MINERALS CORP. CALGARY, AB, February 2010

Meliadine West Gold Project 2010 Work Plan

February 2010

Proponent:

Comaplex Minerals Corp. Calgary, Alberta

Contact: Sandy Barham Phone 403-750-2573

Land Use Authorization:

The Meliadine Gold Property has been consolidated through the purchase of Meliadine Resources Ltd., and the mineral rights to the property are now 100% controlled by Comaplex Minerals Corp. As such, this work plan covers proposed activities for the entire Meliadine property. These changes are summarized on Figure 1 along with a summary of proposed activities for 2010.

The land use activities proposed by Comaplex for 2010 are consistent with the scale of activity undertaken in the previous year. These activities are described below and are authorized by:

Permitting Summary

Lic. Number	Explanation	Issued By	NIRB File	Expiry	Note
KVL100B195	Meliadine Prospecting	KIA		Oct 31 2010	Renewed
KVL302C268	NTI Parcel Drilling incl Tiriganiaq	KIA		July 1 2010	Renew in 2010
KVCL102J168	Commercial Lease	KIA	07EN044	June 30, 2011	Renew in 2010
KVRW98F149	Meliadine Lake Right of Way	KIA		April 30 2010	Renew in 2010
KVRW07F02	Overland Right of Way	KIA	07AN063	October 26 2010	Renewed
KVCA07Q08	Mainland Esker Quarry Permit	KIA		September 15, 2010	Renew in 2010
KVL308C07	Mel E Exploration	KIA		13-Jun-10	Renew in 2010
N2010C0002	PB1 Drill Permit	INAC	10EN006	Pending	Application Pending
	I DI DIIII CIIIII	11 17 10	10211000	ronaing	Application Lending
N2007C0041	CWM Claims Drilling	INAC	05EN006	April 13 2010	Expire?
				- J	
N2007C0041	CWM Claims Drilling	INAC	05EN006	April 13 2010	Expire?
N2007C0041 N2006X0012	CWM Claims Drilling CWM Claims Winter Road	INAC INAC	05EN006 06RN050	April 13 2010 June 27 2009	Expire? Expired - Final Plan
N2007C0041 N2006X0012 2008QP0038	CWM Claims Drilling CWM Claims Winter Road QUARRYING MEL LAKE	INAC INAC INAC	05EN006 06RN050 08EN005	April 13 2010 June 27 2009 April 13 2009	Expire? Expired - Final Plan Expired - Final Plan
N2007C0041 N2006X0012 2008QP0038	CWM Claims Drilling CWM Claims Winter Road QUARRYING MEL LAKE	INAC INAC INAC	05EN006 06RN050 08EN005	April 13 2010 June 27 2009 April 13 2009	Expire? Expired - Final Plan Expired - Final Plan
N2007C0041 N2006X0012 2008QP0038	CWM Claims Drilling CWM Claims Winter Road QUARRYING MEL LAKE Land Use Permit - Quarrying	INAC INAC INAC INAC	05EN006 06RN050 08EN005	April 13 2010 June 27 2009 April 13 2009 April 13 2009	Expire? Expired - Final Plan Expired - Final Plan Expired - Final Plan
N2007C0041 N2006X0012 2008QP0038	CWM Claims Drilling CWM Claims Winter Road QUARRYING MEL LAKE Land Use Permit - Quarrying WCB Program Authorization	INAC INAC INAC INAC WCB	05EN006 06RN050 08EN005 05EN006	April 13 2010 June 27 2009 April 13 2009 April 13 2009 31-Dec-10	Expire? Expired - Final Plan Expired - Final Plan Expired - Final Plan Annual

Included in the above are pending applications to:

- Amend water license 2BB-MEL0914 to allow daily water maximums of 290 m3
- Allow diamond and geotechnical drilling on Federal Claim PB1 (F69574) where a proposed bridge may be sited.

• Extend the underground exploration and bulk sampling program to greater depths to allow effective exploration of deeper mineralization found in the last 2 years. This underground program would not start until 2011.

Comaplex anticipates a diamond drill program of about 25,000 meters for 2010.

Equipment on Site

Major equipment on site is listed in Appendix A. No additional major equipment will be mobilized to and stored on the property in 2010. An assessment of equipment needs for the proposed extension to the underground exploration and bulk sampling program is being completed.

Comaplex is reviewing quotes for helicopter and drill services to the project in 2010. We presently have 1 contractor, M&T Enterprises Ltd, providing logistical services.

Comaplex presently stores 3 LF70 diamond drills on the Meliadine West property. The Meliadine East camp site includes 2 Fly 38 diamond drills. All drills are the property of Boart Longyear.

Proposed Activities

- 1) Yearly **fuel and supplies mobilization** over the permitted right of way winter access road (KIA permit KVRW98F149) or the permitted overland route (KIA permit KVRW07F02):
 - a) Total fuel scheduled for mobilization into camp in the winter of 2010 is approximately 300,000 liters of P50 and 130,000 liters of Jet A. This will commence in mid to late February as per previous years. All fuel for 2010 will be stored in the steel double walled tanks.
 - b) Supplies to the Meliadine Laket camp as per previous years (core boxes, racks, salt, steel).
- 2) Construction of the permitted **fuel retention berm** (as proposed) at the site is planned for the spring of 2010. No fuel storage in bladders will take place in 2010. This work is being completed in anticipation of underground exploration work in 2011.
- 3) The **KIA quarry** on the Commercial Lease is permitted and may be used as a source of aggregate if required.
- 4) We anticipate a **drill program** of about 25,000 meters in 2010. Most of the drilling will target the known gold zones (Figure 1) Tiriganiaq, F Zone, Discovery, Pump and Wolf. Some diamond drilling will be conducted on reconnaissance drill targets these targets are under review. The drill program will run from March to October of 2010.

- 5) The **Meliadine East camp** on Atulik Lake will be decommissioned during the summer of 2010 and the winter of 2010-2011. We intend to remove all tents and buildings moving useful materials to the Meliadine West camp. Drill core in core racks will remain at the site. Barreled fuel is at the Meliadine East camp in the following quantities:
 - 94 drums P-50 in instaberms
 - 92 drums Jet B in instaberms

This fuel will be moved overland into lined storage at the Meliadine Lake site during the spring of 2010. The camp clean-up will include preparation of bulky materials for winter demobilization in 2011. Other consumables that will be moved to Meliadine Lake site overland during the spring of 2010 are drill salt ($CaCl_2 - 7$ pallets), propane (10 x 110 lb bottles), core boxes (7 pallets), core racks (6). These quantities are estimated from inherited inventories and have not been verified by Comaplex Minerals personnel.

- 6) Comaplex is planning to commission its **BIODISK sewage treatment system** during the spring and summer of 2010. Water license 2BB-MEL0914 includes terms and conditions for the installation, operation and monitoring of this system. Some construction work is required on the sump system of the BIODISK unit. Plans for this construction are on file with the KIA and the NWB.
- 7) We are planning to perform **geotechnical drilling** along the alignment of the proposed all weather road, at the location of a proposed bridge site on the Meliadine River, and at other stream crossing sites along the proposed road (see Figure 1). Applications for the permitting of this work have been submitted and are being reviewed.
- 8) Permit requests are to be filed by the successful bidder, for the detailed **mapping and mitigation of certain heritage sites** along the road alignment; specifically, heritage resources near the proposed bridge location at the Meliadine River.
- 9) **Maintenance** of the existing two kilometer road between camp and the portal site will take place as required. A culvert installed in the area of the **Primary Water Containment** is a source of seepage and will be removed in 2010 likely after the spring melt during a low flow period. Spring melt pad run-off water contained in the primary containment area will only be released when sampling results are received indicating acceptable water quality standards are met.
- 10) Golder Associates Ltd. has been contracted by Comaplex to collect **mining geotechnical data** on specific targets on the Meliadine property in 2010. This work is, in most cases, a continuation of work completed in previous years and is reported annually.
- 11) Golder Associates has been contracted by Comaplex to collect socioeconomic baseline data for the proposed mine area and within the Kivalliq region.

Location (see Figure 1):

Areas of activity:

- 1) **KNOWN GOLD DEPOSITS AND SURROUNDING AREAS:** Most diamond drilling will target the Tiriganiaq, F Zone, Pump, Wolf and Discovery Gold Deposits and nearby areas. These gold deposits will also have geotechnical drilling conducted on them where necessary.
- 2) **ASSESSMENT EXPLORATION** The FELSIC 1, FAY 4, FAY2 and TAN1 concessions require expenditures on them during this summer. We are currently evaluating this. Prospecting and mapping activities will take place and diamond drilling is a possibility for these concessions.
- 3) The **ANT 1 Concession** is an active exploration area. No assessments costs are required for 2010, however we may decide to drill more holes on this target.
- 4) The **WOLF NW area** is an active area of exploration that requires more diamond drilling. We have no current plans to drill the area in 2010 but the question is still being internally debated.
- 5) **GEOTECHNICAL studies** are planned for the road alignment and stream/river crossings along the proposed route. Shallow drill holes penetrating down no more than 10 meters into bedrock are anticipated where crossing structures will be required.
- 6) Claim PB1 and Concession ANT 3 host an interesting gold occurrence that may be drilled in concert with the road and bridge geotechnical program (5). We are also considering ground geophysics for these mineral parcels.
- 7) The **Meliadine Lake Camp** will see the commissioning of its **BIODISK** waste water treatment system and wash car. Plans for this are on file with regulatory agencies.
- 8) The **Meliadine East Camp** will be decommissioned and cleaned-up. Useful materials will be transported to the Meliadine Lake Camp. The camp will be prepared for winter demobilization during the summer. Closure of the site is anticipated for the summer of 2011.

Period of Land Use Operations

January 1 – December 31, 2010 Approximate detailed timetable is:

February 1 – early May: winter re-supply and camp work, Mel East Camp materials preliminary clean-up and transport of materials to Mel West.

Late March-early May: Snow removal from the portal. Spring drill program. Building of the Fuel Retention Berm, Road Maintenance.

June 1 - October 15: Summer drill program, geotechnical and environmental programs, surface exploration work.

October 15 - December 31: camp maintenance and upgrading.

Contractors

Diamond Drilling	Boart Longyear	Saskatoon	306-931-4466
Helicopter	Heli-Transport	Trois Rivieres	819-377-3344
Expediting	M&T Enterprise Ltd.	Rankin Inlet	867-645-2778

Workforce:

<u>Phase 1</u>: Feb 20 - March 7: 2-8 people; camp work, gear and fuel remobilization.

<u>Phase 2</u>: March 7 - ~October 15: 20-45 people; surface drilling program (~25,000 meters). Golder environmental, geochemical, geotechnical work.

Phase 3: October 15- December 31: 2-5 people; camp maintenance and upgrades.

Comaplex will hire local workers for camp and field assistance as required as per previous years. The local hires may be from Rankin Inlet, Chesterfield Inlet, Whale Cove or Arviat. Surface contractors all hire local personnel for their projects directly.

Environmental Management:

Fuel on site at the Meliadine West camp is stored in double walled fuel vaults (Enviro tanks). It is our intention to complete the fuel retention berm during the spring and summer of 2010. The following table shows the capacities at the site with no further bladder purchases. All bulk fuel at the site for 2010 will be stored in the steel Enviro tanks. The fuel retention berm, after construction, will have the space and capacity to contain up to 10 - 113,000 litre bladders.

Table: Meliadine Gold Project – Fuels in Storage 2010

	Capacity - litres				
Location	Number	Size (It)	Design	Actual	Description
Camp	3	50000	150000	141000	Steel Enviro tanks
Main	11	50000	550000	517000	Steel Enviro tanks
Portal	2	11400	23800	22370	Steel Enviro tanks
P-50 Drums	94	205	19270	19270	Drums from MEL E
			743070	699640	Total P-50 (lt)

Camp - Jet A	3	50000	150000	141000	Jet A - Steel Enviro tanks
Jet B - Drums	92	205	18860	18860	Drums from MEL E
			168860	159860	Total Jet Fuel (It)

While it is not Comaplex's intention to use drummed fuel, the consolidation of the property resulted in Comaplex acquiring the drummed quantities shown above. The goal is to use this fuel up and move the empties south. Additionally, Comaplex retains some gasoline (< 10 barrels, as needed) in barrels for the operation of snowmobiles and pumps.

Water Sampling

Water sampling on the Meliadine West property has been taking place since the mid 1990's. Water sampling in the area of the Tiriganiaq gold deposit was initiated in detail in July 2007 (prior to the commencement of site disturbance for the underground exploration decline), with a second set of water samples taken in the late fall of 2007 (prior to freeze-up). Water sampling continued in 2008 with numerous sample sites tested. All of the results were compiled and distributed to the KIA and NWB as received and also compiled on a yearly basis in an annual report submitted to the NWB, the KIA, and other related agencies.

The program of water sampling will continue in 2009, with the first samples taken during spring melt. Water results vary from one sample set to the next, one month to the next. No consistent high patterns were noted outside of the primary containment area or outside of the primary catchment basin (which includes Lake A54). Details are available in the water report. The location of the various sample sites are available in the **Site Water Management Plan** filed with the KIA, NIRB, and NWB or in the monthly or yearly water reports.

Detailed records of actual water consumption at both the camp and the portal site have been maintained since the fall of 2007. Water usage for the project is consistent with expectations and as presented in the various regulatory plans submitted in the past year. Due to the NWB/INAC request for metering of flow through water use at the drills and the need to account for both direct and indirect water use, an amendment request has been filed with the Nunavut Water Board to allow maximum daily water use of 290 m³.

Reclamation

All activities planned for the 2010 exploration season will be covered under the present reclamation bond / security deposit that has been posted by Comaplex for the project and which is held for the project by the Kivalliq Inuit Association. Final plans were submitted and accepted for the following permits during 2009:

- INAC Permit N2006X0012 CWM Claims Winter Road
- INAC Permit N2005C0014 CWM Drill Permit (Superceded by N2007C0041)

Reclamation of the Meladine East Camp on Atulik Lake will be initiated during the spring and summer of 2010. An anticipated timeline is given below:

 Spring 2010 – Fuel and some tents – overland transport to the Meliadine Lake camp

- Summer 2010 Preparation of materials for winter backhaul, camp clean-up
- Winter 2011 demobilization of prepared materials
- Summer 2011 Final clean-up and submission of Final Plan

Contacts

Project Manager: Doug Dumka Calgary office: 403-750-2559

Martin Eastwood Meliadine Site: 403-451-3236

Camp Manager: Herb Scharer Meliadine site: 403-451-3236

Meliadine Lake Camp: Local - 867-645-3308

Satellite Business: 403-451-3236 Satellite General: 403-451-3237

Emergency

Project Manager: Doug Dumka Office: 403-750-2559

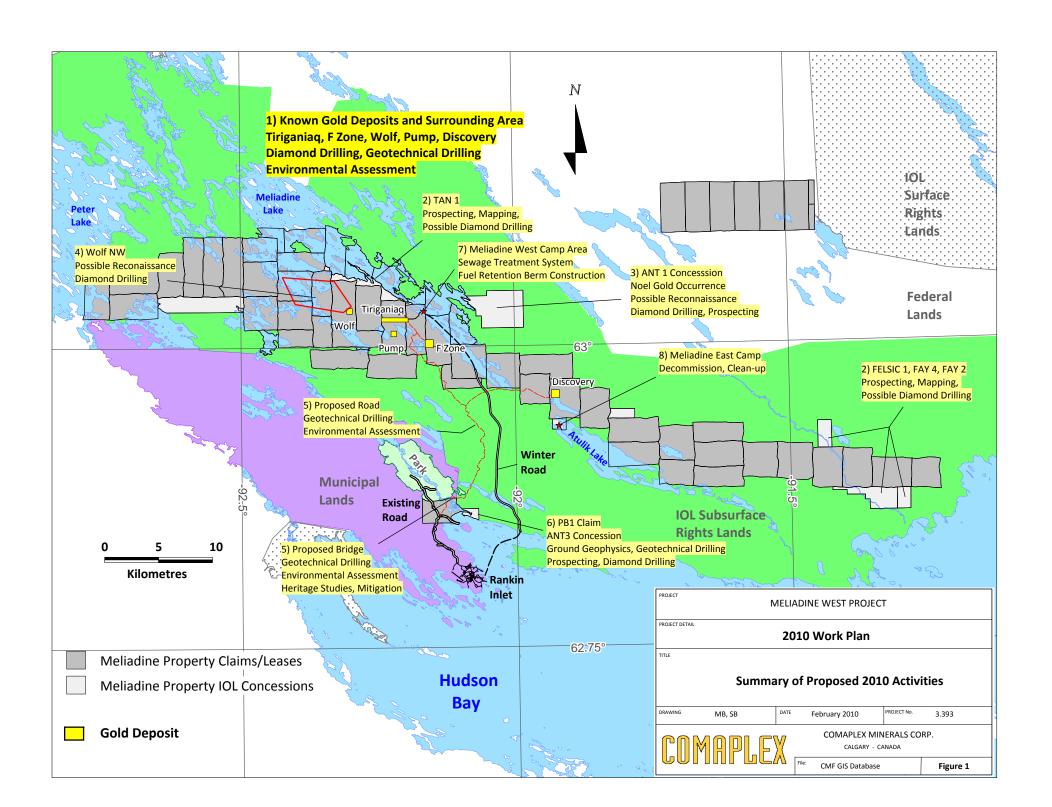
Cel: 403-200-0980

Martin Eastwood Cel: 416-892-8156

Camp Manager: Herb Scharer Meliadine Site: 403-451-3236

Chief Operating Officer: Mark Balog Home: 403-288-9355

Office: 403-750-2560 24 Hr Cel: 403-620-1432


M & T Enterprises-Expediter Hamish Tatty Office: 867-645-2778

Home: 867-645-2973

2010 MAJOR EQUIPMENT LIST

Item	Year	Make	Model	Serial #	Comment
CAMP					
75-kVA diesel generator ¹	1998	Caterpillar	P62.5ESP		On site; main genset
60-kVA diesel generator ²		Caterpillar	D60P1S		On site; main genset
50-kVA diesel generator		Caterpillar	D50-4S		On site; coreshack genset
100-kVA diesel generator		Caterpillar	D100P1S		On site; main genset
Pickup w/Mat-tracks		GMC	Suburban		On site
Compact Tractor Loader Backhoe		Kubota	BX24		On site; purchased in 2009
30 or 35-kVA diesel generator ³		Lamborghini			On site; backup genset
1,2 - one of these gensets (blue) replaced with the 100-kVA genset in 2008 and currently out of service		•			
³ - unsure on actual kVA rating					
OPERATIONS PAD					
Sample Tower (CMF)		Gorf Man.			On site
Conveyor System (CMF)		Gorf Man.			On site
EXPLOSIVES MAGAZINES					
10 Explosive Magazines	2007	Walker	Type 4		EMPTY
DECLINE TENT AND AREA					
680-kVA generators (3)	2007	Caterpillar	C18		On site
Drill jumbo	2004		Drift Runner		On site
Scissorlift		MacLean			On site
Scooptram	2001		210		On site
Scooptram		Wagner	ST-3.5		On site
Haul truck	1986	EJC	416		On site
Tractor	1999	John Deere	MUT-5200		On site
Crew cab / flat deck truck	2007	Ford	F-550		On site
Light plant					On site
DIAMOND DRILLS					
Diamond drill			Longyear	LF-70	On site
Diamond drill			Longyear	LF-70	On site
Diamond drill			Longyear	LF-70	On site
AIRCRAFT					
Helicopter			Aerospatiale	A-Star B2	Based at Mel West cam0
<u>OTHER</u>					
Snow machines (5)		Yamaha	Bravo		On site
Quads (2)		Bombardier			On site
Portable gas powered gensets (4)		Various makes			On site
Honda portable generating units		Honda			
Outboard motor and boat		Yamaha			
computers, software, plotters, printers, satellite com systems		Various			
survey gear (several different instruments) TENTS: Meliadine West camp		Various Various			
50,000 liter steel double walled Enviro fuel tanks		various Enviro-Tank			
37,800 liter Steel double walled Enviro fuel tanks		LIMIO-TAIK			
113,000 liter Arctic grade fuel bladder and Insta-berm					
Sewage Treatment Plant		BIODISK			
new Wash Car		ATCO			
2003 Chevrolet K2500 4x4 Suburban	2003	Chevrolet			
set of Mattracks all terrain tracks for the truck	_000	Mattracks			
2004 F150 4x4 crew cab truck	2004	Ford			

EquipementListSimple_Feb10 1 of 1

Appendix D

Response to Inspection Report of 2008

and

Inspection Report 2009

August 13, 2009 3.393, G0-02

Manager of Licensing Nunavut Water Board PO Box 119 Gjoa Haven, Nunavut X0B 0J0 867 360 6338

Water Resources Officer Nunavut District, Nunavut Region PO Box 100 Iqaluit, Nunavut X0A 0H0 867 975 4295

Re: Inspector Direction August 13, 2008 – Outstanding Issues

The Inspectors Directive of August 13, 2008 pertaining to NWB License 2BB-MEL0709, recently renewed as 2BB-MEL0914, is summarized below along with the status of responses to the directive.

• Immediately cease the activity of urinating out of doors and to provide the Inspector within 30 days a plan to address this waste management issue

All toilets wastes are incinerated pending commissioning of our waste water treatment system.

• Within 30 days install flow meters on the intake for all domestic and drilling uses of water

A flow meter has been installed at the outflow point of the water storage tanks housed in the current dry/showers tent. This meter measures all water used in the camp. Some water is periodically allowed to flow through the camp over the peninsula via an overflow pipe and allowed to enter Meliadine Lake. This water is not impacted by camp activities but is pumped through installed piping. The system is designed to prevent freezing during winter months. Comaplex is reviewing the flow meter location in view of comments included in renewed License 2BB-MEL0914 Part III: General Considerations – D – Water Use.

Flow meters for drill pumps have been ordered and we expect to have them installed by August 15, 2009.

Comaplex anticipates having to submit for an amendment to License 2BB-MEL0914 based on the terms and conditions of the license and this direction.

• To within 30 days discontinue the discharge of grey water at the current location and install means by which grey water will not be deposited directly into Meliadine Lake.

Comaplex has never deposited grey water *directly* into Meliadine Lake. Grey water is passed through a sump before discharging to a wetland area. We are trying to decommission this system in favour of a completely upgraded waste treatment system that includes a BIODISK waste water treatment plant and an upgraded sump and wetland system. Preliminary details of this plan have been forwarded to regulators and met with general approval pending the submission of detailed design drawings and plans. These detailed plans are in preparation and Comaplex is obligated to submit then before September 30, 2009 as a condition of License 2BB-MEL0914.

• To undertake and provide within 30 days a report signed and stamped by an engineer certified and licensed to work in the Nunavut Territory, detailing the structural integrity of the installed secondary containment and the ability of that containment in it's current configuration to prevent the release of hydrocarbons into the environment.

and

• To undertake and provide to the inspector within 30 days a report detailing the capacity of the secondary containment currently in use for these Bladders taking into account the deformation of the surrounding material encroaching on the side walls of the containment structure. This report should also indicate if the current capacity of the secondary containment is adequate to hold 110% of the capacity of the bladder.

and

• To cease using the 2 aforementioned bladders contained at the site until such time as the reports noted above are submitted, reviewed and accepted by the Inspector.

and

• To install barrier devices and other adequate means to prevent accidental damage from mechanized vehicles prior to continuing to use the Bladders on site.

Comaplex removed the bladder installations referred to above shortly after the inspection of August 13, 2008. Subsequently, Comaplex submitted an amendment request to construct a engineered fuel facility that has been approved by both the NWB (December 2, 2008) and the KIA. Comaplex reserves the right to construct the facility under renewed license 2BB-MEL0914.

• Within 30 days apply to the Nunavut Water Board for an amendment to the current license to allow for land farming activities as found on site or to remove the noted contaminated soils from site within the same time period.

Comaplex has received direction in the terms and conditions of renewed license 2BB-MEL0914 for soils contained within its unauthorized landfarm at its development site. A third party sampling program has been initiated by Golder Associates to determine the concentration of hydrocarbons within the soils. Direction has been given to Comaplex to by September 30, 2009, provide a revised Abandonment and Restoration Plan that addresses the landfarm and contained soils. Included in this direction are sampling instructions and requests for disposal options for the soils. Additionally, the NWB has commented that it is amenable to the submission of an amendment request for the commissioning of a properly engineered landfarm facility. Comaplex will include a landfarm component in the anticipated amendment that addresses water consumption. This would principally be for future hydrocarbon impacts as the existing soils should meet disposal criteria. Generally, Comaplex is of the opinion that hydrocarbon impacted soils should be treated in a local facility because this is the lowest cost and most environmentally friendly solution.

• To provide the results of all baseline sampling conducted in accordance with the issued Bulk Sampling license as per the Inspector's request made during the period of inspection.

Comaplex has forwarded all baseline and monitoring data to the INAC inspector. All of this data currently resides on the NWB website contained in submissions to the water board. Comaplex believes a central repository of data for all parties, applicants and regulators, best serves the interests of all parties. This ensures everyone has access to the same material and avoids potential differences in datasets maintained by different parties. Comaplex has received sampling and data requests from regulators that are not distributed to all interested parties and believes this is a potential area of conflict. The NWB ftp site provides the function of being this central repository of data.

Yours Truly
B. Sandy Barham - Geologist Comaplex Minerals Corp.

cc. RCF - Attn. Russ Cranswick

WATER USE INSPECTION REPORT

Date: August 1,2009	Licensee Rep. (Name/Title): Martin Eastwood, John Witteman		
Licensee: Comaplex Minerals Corp		Licence No.: 2BB-MEL0914 (new)	

WATER SUPPLY

Source(s): Meliadine Lake	Quantity used: <90 M³ Estimate only. Meter now installed
Owner:/Operator: Comaplex Mineral Corp	

Indicate: A - Acceptable U - Unacceptable NA - Not Applicable NI - Not Inspected				
Intake Facilities: NA	Storage Structure: A	Treatment Systems: A	Chemical Storage: NI	
Flow Meas. Device: A	Conveyance Lines: A	Pumping Stations: A	Screen : NI	

Comments: Water is taken from Meliadine Lake for use in Camp. Water is run through filters and UV treatment prior to use in Camp. Water will be re-circulated in the intake line with an on-demand system feeding the camp recorded on newly installed meter. Water use for Drill units will have meters installed by August 21st and used until October 1st to determine baseline usage data for winter/spring usage.

WASTE DISPOSAL

Sewage: Incinerated (Prim./Sec/Ter.): None

Natural Water Body: No	Continuous Discharge (land or water): None	
Seasonal Discharge: None	Wetlands Treatment: None	Trench: None

Grey water: Discharge to sump. Sump is still requires further work.

Indicate: A - Acceptable U - Unacceptable NA - Not Applicable NI - Not Inspected

Discharge Quality: Unknown	Decant Structure: ∪	Erosion: None
Discharge Meas. Device: NA	Dyke Inspection: NI	Seepages: None
Dams, Dykes: NA	Freeboard: NA	Spills: NA
Construction: NI	O&M Plan: NA	A&R Plan: NA
Discharge: Not metered	Effluent Discharge Rate: None	

Comments: Human waste is incinerated on site. Grey water is discharged from kitchen and dries to a sump. Initial works undertaken by the licensee to slow the flow of water back to the lake require further efforts. Licensee plans to install a RBC unit pending approval from the NWB.

Solid Waste: Waste is incinerated on site. Ash is transported to Rankin Inlet.

Owner/Operator: Comaplex Minerals Inc.

Landfill: None	Burn & Landfill: NA	Other: (Barrels)

Comments: Hazardous wastes are consolidated for shipment off site to approved hazardous waste storage area. An approved incinerator is on site. Metal wastes are shipped off site to Rankin Inlet.

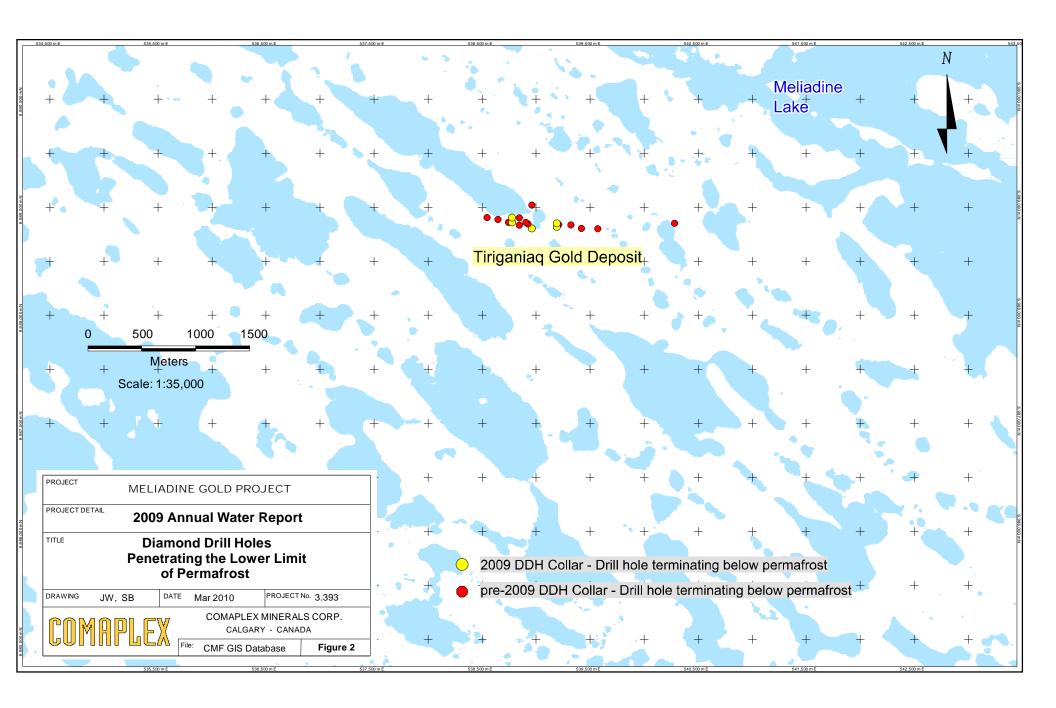
FUEL STORAGE: Fuel is stored in double walled metal storage tanks

Waste Oil Storage: Packaged for shipment off site **Owner/Operator:** Comaplex Minerals Corp. Indicate: **A** - Acceptable **U** - Unacceptable **NA** - Not Applicable **NI** - Not Inspected

Berms & Liners: NA	Water within Berms: NA Evidence of Leaks: None			
Drainage Pipes: None	Pump Station & Catchments Berm: NA			
Pipeline Condition: NI	Condition of Tanks: NI			

Comments: Secondary containment is sufficient for current fuel stock on site.

SURVEILLANCE NETWORK PROGRAM (SNP)


Samples Collected : M Owner /Operator: M		Owner /Operator: M	Ionthly reports (SNP)are provided as required.		
3	3 INAC: Mine sump, Primary containment P1, Camp Sump		imary containment P1, Camp Sump		
Signs Posted	SNP: A		Warning: A		
Records & Reporting: records to be provided in annual report					
Geotechnical Inspection: N/A					

Non-Compliance of Act or Licence: New license issued and effective July 31st, 2009.

A.Keim	Sent by E-mail
Inspector's Name	Inspector's Signature

Appendix E

Location of Drill Holes Thought to Penetrate the Permafrost Layer					

Appendix F

Remediation of Hydrocarbon Contaminated Soil

MINERALS CORP

25 January 2010

Environmental Protection Service Department of Sustainable Development P.O. Box 1000, Station 1195 Iqaluit, Nunavut, XOA 0H0 Luis Manzo, Director of Lands Kivalliq Inuit Association P.O. Box 340 Sakku Building Rankin Inlet, NU

RE: Reclamation of Contaminated Soil: Meliadine Gold Project

Dear Madam / Sir;

During a 2008 inspection by the Kivalliq Inuit Association, it was noted that there was a diesel fuel spill at one of the fuelling locations near the exploration camp. At the time the Kivalliq Inuit Association inspector recommended Comaplex remove the contaminated soil. Comaplex used an adaptive management approach to excavate and contain the contaminated soil as soon as possible. This resulted in the contaminated soil being placed on an impermeable liner near the portal to the underground, on a 4 metre thick rock pad with the drainage controlled through a holding pond. The location is shown in the attached report from Golder Associates¹, which also interprets their results.

As is the standard practice with hydrocarbon contaminated soils, it was spread to a thickness averaging 30 – 40 cm and was turned in the summer of 2008 to allow aeration. Last year three samples were collected across the contaminated soil and sent to an accredited laboratory for hydrocarbon analyses. The analytical results of the same are presented in the table below.

¹ The Golder report is stamped by an engineer registered in Nunavut.

Table 1. Comparison of Soil Analytical Results to CCME Canada Wide Standard for Hydrocarbons in Soils for Residential/Parkland (mg/kg)

Residential/ Parkland - fine grained soils CCME guidelines	CCME Canada Wide Standard for hydrocarbons in Soil	Comaplex Soil Sample 1 collected 22 Jun 09	Comaplex Soil Sample 2 collected 22 Jun 09	Golder Soil Sample collected 8 Aug 09
Fraction 1	210	<5.0	<5.0	<10.0
Fraction 1 (BTEX)		<5.0	<5.0	
Fraction 2	150	21	147	76
Fraction 3	1300	148	260	209
Fraction 4	5600	52	63	<50
Total	500 (NWT guideline)	221	470	285
Benzene	0.5	<0.005	<0.005	<0.005
Toluene	0.8	<0.010	<0.010	<0.050
Ethylbenzene	1.2	<0.010	<0.010	<0.010
Xylene	1	<0.020	<0.020	<0.10

The results show the soil meeting the most stringent CCME Canada Wide Standard for hydrocarbons, and also Nunavut hydrocarbon guidelines for soil. With this being the case, Comaplex is of the opinion that the soil is remediated and no further action, monitoring or reporting is required on our part. As a result we plan to leave the soil in place until such time the pad is expanded to accommodate future mine infrastructure. This will only happen after completion of the Environmental Assessment and after all necessary authorisations are in place.

Should you have any questions or concerns with our letter or the attached report, please do not hesitate in contacting me at 403 750 2570 or JWitteman@Comaplex.com .

We look forward to receiving your reply to our letter.

Yours sincerely,

John Witteman
Environmental Consultant to Comaplex

Cc. Mark Balog, Chief Operating Officer
Licencing Coordinator, Nunavut Water Board