

RECEIVED

By clerk at 11:33 am, Apr 18, 2011

Annual 2010 Report for Water Licence 2BB-MEL0914 Agnico – Eagle Mines Limited CP 87, 765 Chemin de la Goldex Val d'Or, QC, J9P4N9 Ph. 819 874 5980 Fax 819 874 3318

Contact: John Witteman, 819 277 5444, jwitteman@agnico-eagle.com

The Licensee shall file an Annual Report on the appurtenant undertaking with the Board no later than March 31st of the year following the calendar year being reported which shall contain, but not be limited to, the following information:

a) monthly and annual quantities in cubic metres of all freshwater obtained from Meliadine and Pump Lakes at Monitoring Stations MEL-1 and MEL-2, respectively;

Table 1. Water Use for 2010 (m³/day)¹

	MEL – 1	MEL-1	MEL-2	Mel -2
	Meliadine Lake	Meliadine Lake	Lake A8 (Pump)	Lake A8 (Pump)
	(m ³ /day) average	(m3/month)	(m3/day) ¹	(m3/month)
Jan-10	1	31	-	-
Feb-10	1	28	-	-
Mar-10 ²	2.9	89.9	90	990
Apr-10	4.3	129	135	4,185
May-10	4.6	142.6	135	4,050
Jun-10 ³	5.9	177	135	4,185
Jul-10	6.2	186	135	4,050
Aug-10	6.5	201.5	135	4,185
Sep-10	8.4	252	135	4,050
Oct-10 ⁴	6.5	201.5	135	1,350
Nov-10 ⁵	1	30	-	-
Dec-10	1	31	-	-

¹ From July 13 to Oct 2 water use per drill was measured at 45 m³/day using a meter.

²The camp opened 5 March 2010. Drilling began March 24th with a second drill on March 26th.

³ The BIODISK was commissioned thereby allowing the use of flush toilets leading to increased water use each month of 2010

⁴ Drilling stopped 10 October 2010 and last of drillers left camp 22 October. The monthly quantity of water used for drilling is for the first 10 days of the month.

⁵ The camp went into care and maintenance 3 November 2010. Two persons remained in camp to feed the BIODISK and keep it warm. The aim was to keep the bacteria viable over the winter period.

a) the monthly and annual quantities in cubic metres of Minewater pumped from the underground;

Underground exploration was inactive during 2010. No water was pumped from the underground.

b) an estimate of the current volume of waste rock and ore stockpiled on site;

The current volume of waste rock and ore remains unchanged from 2008. The volume of waste rock is $35,692 \text{ m}^3$ while the ore's volume is $8,710 \text{ m}^3$. This is detailed in the table below.

Waste Rock and Ore resulting from the Underground Exploration and Bulk Sampling Program 2007 - 2008

Overburden Portal	tonnes 25,890	cubic meters 12,945	*SG
	·	·	I
Waste Rock Portal	17,609	6,289	2.8
Waste Rock Decline	82,328	29,403	2.8
Ore	25,521	8,710	2.93
Total Rock	125,458	44,402	

^{* -} SG - specific gravity

c) tabular summaries of all data generated under the Monitoring Program, Part J

Please see Appendix A for data tables of the 2010 monitoring data. The data tables include supplementary data collected during periods of flow beyond that required by the Water Licence.

The location of sampling stations is shown on Figure 1 in Appendix A.

d) a summary of modification and/or major maintenance work carried out on the Water Supply Facilities, Bulk Fuel Storage Facility; Bermed Fuel Containment Facilities, and Sewage Disposal Facility, including all associated structures, and an outline of any work anticipated for the next year;

AEM has approval to construct additional fuel storage at its present fuel storage area. A lined, bermed area is being constructed in 2011 having space for 10 - 113,000 litre fuel bladders. The 10 bladders combined will hold 1,000,000 litres.

The BIODISK and the associated wash car were commissioned over several months in 2010. The wash car included flush toilets, which replaced the earlier Pacto toilets. The latter used no water. Understandably water use increased with the use of flush toilets. The organic loading to the BIODISK was progressively increased over the year thereby allowing the bacteria time to establish and populate the rotating disks. Rather than shutting the BIODISK down at the end of the field season in early November and killing the bacteria, it was decided to keep the system

functioning over the winter by keeping it warm and feeding the bacteria. Two persons remained in camp starting in November with that purpose in mind.

In 2011, sewage sludge may have to be removed from the BIODISK. The measurement of the depth of sludge in the clarifying chambers will determine if this is necessary.

AEM's Work Plan for 2011 is attached in Appendix B

e) a list of unauthorized discharges and follow-up action taken;

There were no unauthorized discharges in 2010.

f) updates or revisions to the Abandonment and Restoration Plan, Site Water Management Plan, Waste Rock and Ore Storage Management Plan, Spill Contingency Plan and the Operations and Maintenance Manual; revisions may be subject to Board approval;

At the request of technical staff with the NWB all management plans were updated in August 2010. The following were submitted to the Board:

- Meliadine Gold Project Waste Management Plan August 2010
- Meliadine Gold Project Waste Rock Management Plan August 2010
- Meliadine Gold Project Water Management Plan August 2010
- Meliadine Gold Project Reclamation and Closure Plan November 2010¹
- Meliadine Gold Project Spill Plan November 2010. This plan addresses Part H, clause 1 from amendment 1 granted 28 June 2010. This clause states:

"The Board has approved the Plan entitled "Fuel Management and Spill Contingency Plan, Comaplex Minerals Corp. Meliadine West Project" revised September 2009. The Licensee shall submit to the Board for review within thirty (30) days following issuance of this Amendment, an addendum to the approved Plan in the format set out by the Consolidation of Spill Contingency Planning and Reporting Regulations R-068-93 addressing the following issues:

- a) Include an effective period for the Plan;
- b) Update contact info as per INAC, GN-DOE and EC comments;
- c) Include a copy of the NT/NU Spill Report Form;
- d) Reference to Waste Manifests for the shipping of hazardous materials should be provided; and
- e) INAC recommends the relocation of all fuel to secondary containment areas."
- g) An updated estimate of the current Meliadine Lake Gold Project restoration liability, as required under Part B, Item 3, based upon the results of the restoration research, project development monitoring, and any modifications to the site plan;

There were no changes in project operation, project components and/or technology during 2010. As a result no update was made to the restoration liability.

CP 87, 765 Chemin de la mine Goldex, Val d'Or, QC, J9P4N9 ph. 819 874 5980 fax 819 874 3318

¹ The original plan was dated August 2010 but this was subsequently updated in November 2010 to also cover licence 2BE-MEP0813.

However, there was considerable discussion on the future reclamation liability with INAC. This resulted in the Board providing the following advice

"Given that the Kivalliq Inuit Association currently holds security in the amount of \$950,000, and that the current NWB security amount has been posted as required with the Minister, the NWB feels that there is sufficient security held at this time, to allow for parties to refine and further consult each other on their respective estimates for expanding the project and possible inclusion of the forthcoming all-weather road proposal. Therefore, the Licensee is asked to update the security estimate at the time of submitting the fourth amendment application."

Meetings will be held in 2011 with INAC to resolve the difference in opinion on what should be the proper restoration liability.

h) a brief description of follow-up action taken to address concerns detailed in inspection and compliance reports prepared by the Inspector;

Concerns were raised about the house keeping in the area (Drillers Maintenance Shop) surrounding this area and the inspector would like the company to look into the possible contamination of the ground around and under these buildings.

205 litre open drums are being supplied to Boart for disposal of absorbents, oily rags and other hazardous waste. When full, these barrels will be sent south to a hazardous waste management facility, and

Regular inspections of the Boart Longyear area are being carried out by AEM employees. Needed improvements to the area are noted and transmitted to Boart.

Walk way through-out the camp should be distinguished so erosion is minimized. This could be accomplished by either boardwalks, gravel paths or something else the company feels would accomplish this.

Gravel was used to improve the walkways.

An unapproved land-farm was observed during the inspection. An approval for this activity should be applied for and obtained or the material should be put into appropriate containers and removed from the site.

The report dealing with this issue was appended to the 2009 Annual Report. AEM responded to this recommendation in a letter to the INAC inspector. The 2010 inspection report and AEM's response can be found in Appendix C.

The company should ensure all waste are stored appropriately on site as well as are disposed of at a licenced waste disposal facility that is able to handle these materials.

Hazardous wastes that need to be sent to a licenced waste disposal facility are being consolidated on site for future shipment.

i) a summary of drilling activities and progressive reclamation of drill sites;

In 2010, the following diamond drilling for mineral resources was carried out:

	Number of Drill Holes	Metres drilled on each deposit
Tiriganiaq	58	20,775
F Zone	48	6,201
Pump	no work	
Westmeg	7	1400
Wolf	15	3,545
Total	128	31,921

Anecdotal observations of progressive reclamation at drill holes shows vegetation establishing itself over time. It is not new vegetation but earlier vegetation re-emerging. When drill cuttings are concentrated it takes longer than when the cuttings are more diffuse. This is understandable as concentrated drill cuttings may smother or inhibit the re-emergence of plants while diffuse cuttings do not.

Sewage sludge will be used at select drill sites for reclamation with the results documented with annual photos. The area will be posted giving the date and that sewage sludge was applied.

j) a summary of any abandonment and restoration work completed during the year and an outline of any work anticipated for the next year;

Reclamation of the Meliadine East Camp on Atulik Lake (2BE-MER0813) continued with the following taking place:

- Spring 2010 Most fuel and some tents removed overland to the Meliadine camp,
- Summer 2010 Preparation of materials for winter backhaul, camp clean-up, instaberms and remaining fuel flown back to the Meliadine camp,
- Winter 2011 demobilization of prepared materials, and
- Summer 2011 Final clean-up and submission of Final Plan.

There were no reclamation activities related to licence 2BB-MEL0914.

k) a summary of any specific studies or reports requested by the Board, and a brief description of any future studies planned or proposed;

No specific studies or reports were requested by the Board during 2010.

In 2011 water quality monitoring will continue beyond that required by the Water Licence. As well, baseline water quality information will be collected from small lakes around the Meliadine site. The data will be used in the draft Environmental Impact Statement.

I) a public consultation/participation report describing consultation with local organizations and residents of the nearby communities, if any were conducted;

In 2010 the following consultation was carried out by Comaplex Minerals:

- Meeting with the KIA in Vancouver January 18 met with Luis Manzo, Veronica Tattuinee,
- Comaplex made a presentation to the Kivallig Chamber of Commerce on March 16th.
- town hall meetings were held by Comaplex in Chesterfield Inlet (June 2) and in Rankin Inlet (June 3). The Rankin Inlet town hall meeting was particularly well attended. This was the last public meeting before AEM purchased Comaplex Minerals.

AEM carried out the following consultation for the remainder of 2010:

- From Aug. 9-31, 11 meetings were held in Rankin Inlet to familiarize local leaders with AEM and to update them about AEM's preliminary plans for the Meliadine Gold Project. Organizations that participated in these meetings included the Kivalliq Inuit Association; Kivalliq Chamber of Commerce; hunters and trappers organization; mayor and hamlet council; Board of Directors of Sakku Investments Corp.; M.L.A. Lorne Kusugak; Shawn Maley of the Government of Nunavut Community; and representatives of government services. AEM also participated in a meeting of the Kivalliq Socio-economic Monitoring Committee.
- On Sept. 15, 2010 AEM hosted a one-day visit to the Meadowbank Gold Mine by 40 community leaders and elders from Rankin Inlet, including the mayor and council, hunters and trappers, community elders (including a number who had worked underground at the North Rankin Nickel Mine in their younger days) and business leaders. The objective was to show the group the type of mining operation constructed and operated by AEM, and to let them see for themselves the number of Inuit already employed at Meadowbank. Comments from the elders included:
 - My nieces and nephews work at Meadowbank, it makes my mind at ease, when young people are hired by AEM;
 - This is a very good expose of this tour, even the descriptions with the tour are very clear.
 AEM is a good example for other mines;
 - Thank you to AEM for the tour, if this is similar to what is going to happen with Meliadine Project, AEM works will prosper even more, because they work with the communities; and

- When Inuit are hired, and the company works with communities, it makes everybody happy.
- On Oct. 18, 2010 AEM hosted a dinner with invited community representatives and elders at the Sinniktarvik Hotel in Rankin Inlet. The dinner was an informal event to allow community members to meet the management team from Agnico-Eagle Mines and ask about the current status of the Meliadine Project. A total of 28 elders and community leaders attended.
- Finally, AEM has opened an office in Rankin Inlet, thereby allowing individuals or groups to readily obtain information about the road and other aspects of the overall project. AEM remains available to discuss the road with any interested parties and will look for feedback about its operation once constructed.

Section F, clause3. Drill holes shall be immediately sealed and permanently capped to prevent induced contamination of groundwater or salinization of surface waters. The Licensee shall report all artesian flow occurrences within the Annual Report, including the location (GPS coordinates) and dates.

No drill holes had artesian flow. Some drill holes penetrated the permafrost layer, which on occasion resulted in flow part way up the drill stem but not to surface.

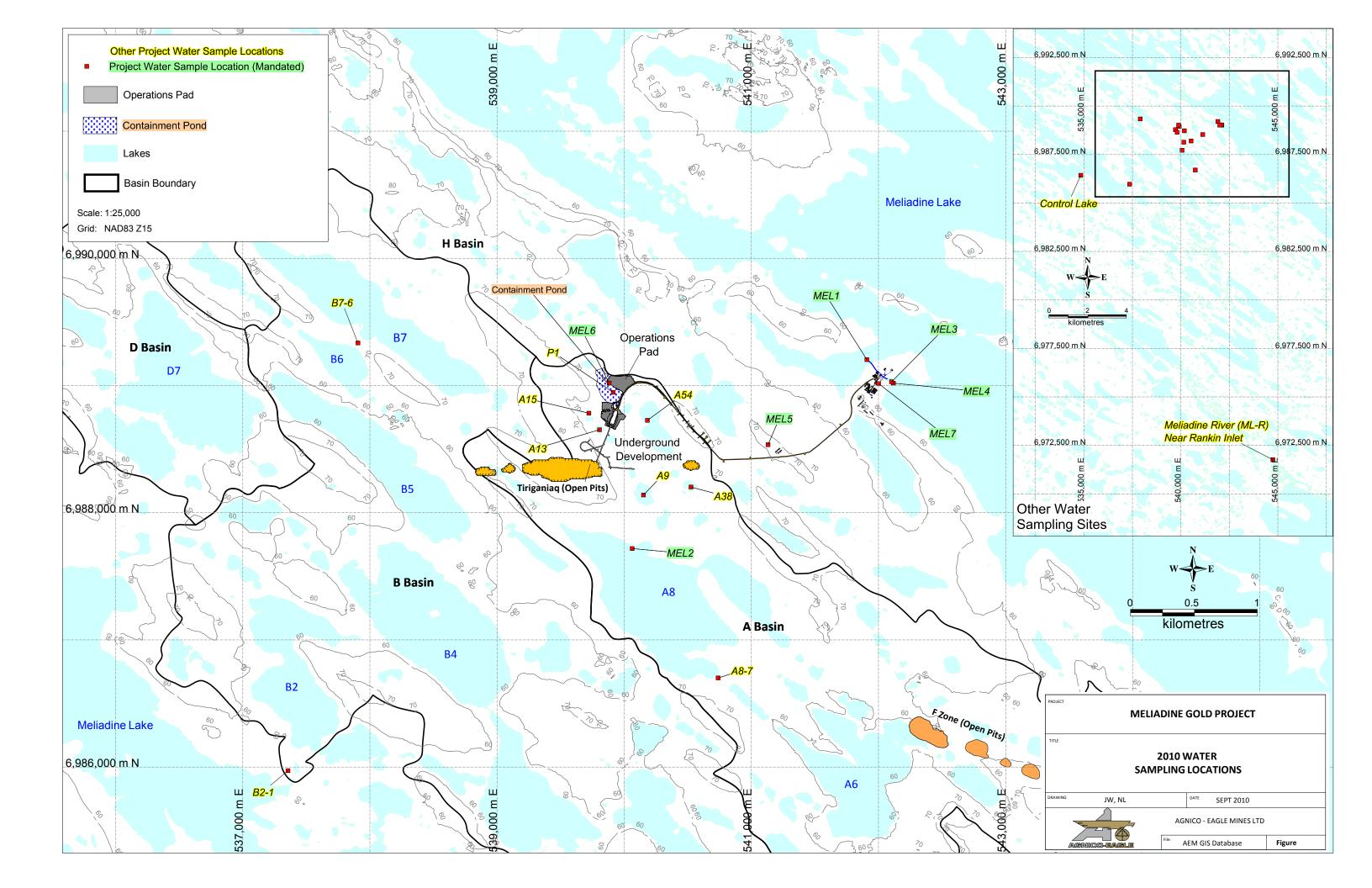
Section F, clause 4. Where drilling activity has penetrated below the permafrost layer, the NWB requests that the proponent record the depth of permafrost and location of the drill hole to be included within the Annual Report.

The lower permafrost boundary varies from point-to-point. AEM's estimate for this boundary is from approximately 425 to 450 metres. The only way we are sure a hole penetrates the permafrost boundary is when the presence of water is detected.

Drill holes passing through the permafrost boundary are in the Table 2 below. These are angled drill holes exceeding 600 metres in length.

HoleID	Easting	Northing	Length	DateEnded	CoordSys
M10-870	538905.094	6988904.204	647.96	22/04/2010	NAD 83
M10-886	538935.055	6988809.756	600.00	02/05/2010	NAD 83
M10-900	538720.051	6988884.980	666.00	14/05/2010	NAD 83
M10-907	538820.004	6988800.409	602.85	22/05/2010	NAD 83
M10-940	538623.927	6988885.131	654.00	07/07/2010	NAD 83
M10-952	538623.971	6988885.332	702.00	21/07/2010	NAD 83
M10-966	538539.965	6988897.869	741.00	23/08/2010	NAD 83
M10-975W1	538540.011	6988897.446	699.00	08/09/2010	NAD 83
M10-982	538437.945	6988891.002	704.20	21/09/2010	NAD 83
M10-984A	539360.098	6988844.750	621.00	21/09/2010	NAD 83

Section H, clause 3. The Licensee shall review the (Spill Contingency) Plan referred to in this Part as required by changes in operation and/or technology and modify the Plan accordingly. Further revisions to the Plan are to be submitted in the form of an Addendum to be included with the Annual Report, unless directed otherwise by an Inspector.


The Spill Management Plan was updated November 2010 and forwarded to the NWB. No further updates were prepared since that time.

Section I, Clause 4. The Licensee shall review the (Abandonment and Restoration) Plan referred to in this Part as required by changes in operation and/or technology and modify the Plan accordingly. Revisions to the Plan are to be submitted in the form of an Addendum to be included with the Annual Report.

The Abandonment and Restoration Plan was updated November 2010 and forwarded to the NWB. No further updates were prepared since that time.

Appendix A

Figure 1. Water Sampling Locations and Water Quality Data Tables

June 2010

CCME						0.1	variable		0.005			
MMER									0.5			
					Alkalinity,							
					Total (as	Aluminum		Antimony	Arsenic	Barium	Beryllium	Bicarbonat
Sample	Sample	Sample		field temp	CaCO3)	(AI)-Total	Ammonia-	(Sb)-Total	(As)-Total	(Ba)-Total	(Be)-Total	e (HCO3)
ID	Date	Time	field PH	(°C)	(mg/L)	(mg/L)	N (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
A13	20-Jun-10	14:20	7.7	13.4	22.6	0.048	<0.050	<0.0016	0.0032	0.0751	< 0.0040	27.6
A15	20-Jun-10	14:40	7.7	14.2	27.6	0.015	<0.050	<0.00040	0.00299	0.0713	<0.0010	33.7
A38	20-Jun-10	14:00	7.9	9.1	50.7	0.014	0.200	<0.00040	0.00285	0.0394	<0.0010	61.8
A54	20-Jun-10	14:10	8.0	10.4	49.4	0.044	0.739	<0.00040	0.00323	0.0401	< 0.0010	60.2
A8-7	20-Jun-10	13:40	7.5	3.0	14.9	<0.010	<0.050	<0.00040	0.00108	0.0125	< 0.0010	18.1
A9	20-Jun-10	15:00	8.0	12.1	34.6	<0.010	<0.050	0.00058	0.00203	0.0709	< 0.0010	42.2
B7-6	20-Jun-10	13:00	7.5	5.4	16.1	<0.010	< 0.050	<0.00040	0.00072	0.0154	< 0.0010	19.6
CONTROL	20-Jun-10	13:20	7.4	4.1	22.3	<0.010	< 0.050	<0.00040	<0.00040	0.0095	< 0.0010	27.2
MEL-1	20-Jun-10	10:00	7.1	4.2	<5.0	<0.010	<0.050	<0.00040	<0.00040	<0.0030	< 0.0010	5.6
MEL-2	20-Jun-10	10:20	7.7	2.8	9.6	<0.010	<0.050	<0.00040	0.00074	0.0086	< 0.0010	11.7
MEL-3	20-Jun-10	10:40	7.1	9.8	52.0	0.034		0.00086	0.00423	0.0112	< 0.0010	63.5
MEL-4	20-Jun-10	11:00	6.8	4.0	<5.0	<0.010	<0.050	<0.00040	<0.00040	<0.0030	<0.0010	<5.0
MEL-4dup	20-Jun-10	00:00			<5.0	<0.010	<0.050	<0.00040	<0.00040	<0.0030	< 0.0010	<5.0
ML-R	21-Jun-10	08:30			25.4	0.011	<0.050	<0.00040	<0.00040	0.0133	< 0.0010	31.0
P1	20-Jun-10	14:30	8.0	11.6	51.2	0.018	1.07	<0.00040	0.00670	0.0234	<0.0010	62.5
		CCME	ammonia gu	ideline is 0.85	3 mg/L N for	r sample sites	s A54, A38 ar	nd P1 based	on field pH a	nd field tem	perature.	

											0.002-	
CCME			0.000017					0.001			0.004	
MMER											0.3	
				Calcium								
		Boron (B)-	Cadmium	(Ca)-	Calcium	Carbonate		Chromium	Cobalt (Co)-	Conductivit	Copper	Hardness
Sample	BOD5	Total	(Cd)-Total	Dissolved	(Ca)-Total	(CO3)	Chloride	(Cr)-Total	Total	y (EC)	(Cu)-Total	(as CaCO3)
ID	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(CI) (mg/L)	(mg/L)	(mg/L)	(uS/cm)	(mg/L)	(mg/L)
A13		<0.050	<0.000050	103	107	<5.0	228	<0.0050	<0.0020	835	<0.0040	284
A15		<0.050	<0.000050	71.7	74.4	<5.0	141	<0.0050	<0.0020	547	0.0015	215
A38		<0.050	<0.000050	53.5	49.7	<5.0	89.6	<0.0050	<0.0020	461	0.0013	167
A54		<0.050	<0.000050	49.9	50.7	<5.0	94.6	<0.0050	<0.0020	498	0.0014	156
A8-7		<0.050	<0.000050	9.78	10.8	<5.0	13.2	< 0.0050	<0.0020	81.1	<0.0010	29.8
A9		<0.050	<0.000050	59.8	66.9	<5.0	123	<0.0050	<0.0020	502	0.0012	175
B7-6		<0.050	<0.000050	13.2	14.4	<5.0	18.0	<0.0050	<0.0020	103	<0.0010	38.0
CONTROL		<0.050	<0.000050	7.01	6.98	<5.0	4.93	<0.0050	<0.0020	59.7	<0.0010	21.2
MEL-1		<0.050	<0.000050	1.58	1.92	<5.0	1.51	<0.0050	<0.0020	13.9	<0.0010	4.9
MEL-2		<0.050	<0.000050	6.66	7.20	<5.0	9.26	< 0.0050	<0.0020	55.4	< 0.0010	20.5
MEL-3	8.1	<0.050	<0.000050	15.7	15.3	<5.0	21.4	<0.0050	<0.0020	213	0.0068	45.9
MEL-4	<2.0	<0.050	<0.000050	1.16	1.33	<5.0	0.96	<0.0050	<0.0020	9.09	<0.0010	3.4
MEL-4dup		<0.050	<0.000050	1.18	1.49	<5.0	1.23	< 0.0050	<0.0020	9.72	<0.0010	3.5
ML-R		<0.050	<0.000050	8.96	9.72	<5.0	9.51	<0.0050	<0.0020	88.5	0.0011	27.9
P1		<0.050	<0.000050	33.3	32.2	<5.0	39.2	<0.0050	<0.0020	290	0.0013	100

				0.001-								0.025-
CCME			0.3	0.007							0.073	0.015
MMER				0.2								0.5
						Magnesiu	Magnesiu				Molybdenu	
	Hydroxide		Iron (Fe)-	Lead (Pb)-	Lithium (Li)-	m (Mg)-	m (Mg)-	Manganese	Mercury	MF - Fecal	m (Mo)-	Nickel (Ni)-
Sample	(OH)	Ion Balance	Total	Total	Total	Dissolved	Total	(Mn)-Total	(Hg)-Total	Coliforms	Total	Total
ID	(mg/L)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	()	(mg/L)	(mg/L)
A13	<5.0	91.2	0.507	0.00051	0.065	6.57	6.73	0.111	<0.00010		< 0.0050	0.0051
A15	<5.0	103	0.218	0.00011	0.026	8.73	8.62	0.0679	<0.00010		< 0.0050	0.0051
A38	<5.0	104	0.063	< 0.00010	<0.010	8.19	7.35	0.0058	<0.00010		< 0.0050	0.0027
A54	<5.0	92.9	0.107	0.00020	<0.010	7.64	7.76	0.0039	<0.00010		<0.0050	0.0033
A8-7	<5.0	Low EC	0.078	< 0.00010	<0.010	1.31	1.42	0.0292	<0.00010		< 0.0050	<0.0020
A9	<5.0	90.9	0.144	< 0.00010	0.030	6.20	6.75	0.0039	<0.00010		< 0.0050	0.0029
B7-6	<5.0	99.8	0.090	< 0.00010	<0.010	1.22	1.34	0.0240	<0.00010		< 0.0050	<0.0020
CONTROL	<5.0	Low EC	0.099	< 0.00010	<0.010	0.89	0.88	0.0151	<0.00010		< 0.0050	<0.0020
MEL-1	<5.0	Low EC	0.027	< 0.00010	<0.010	0.23	0.26	0.0073	<0.00010		< 0.0050	<0.0020
MEL-2	<5.0	Low EC	0.052	< 0.00010	<0.010	0.93	0.96	0.0469	<0.00010		< 0.0050	<0.0020
MEL-3	<5.0	98.1	0.179	0.00288	<0.010	1.63	1.61	0.0762	<0.00010	Note	< 0.0050	0.0025
MEL-4	<5.0	Low EC	<0.010	< 0.00010	<0.010	0.12	0.13	0.0030	<0.00010	Note	< 0.0050	<0.0020
MEL-4dup	<5.0	Low EC	0.017	<0.00010	<0.010	0.13	0.16	0.0036	<0.00010		<0.0050	<0.0020
ML-R	<5.0	Low EC	0.057	<0.00010	<0.010	1.33	1.44	0.0062	<0.00010		<0.0050	<0.0020
P1	<5.0	93.1	0.064	0.00015	<0.010	4.17	4.13	0.0246	<0.00010		<0.0050	0.0030
		Note: Faeca	l coliforms to	ests are time	& temperati	ure sensitive	. Samples we	ere not receiv	ed by the la	boratory wit	hin the recor	nmended 24
		temperature	e.									

Page 3

CCME	2.9		0.06			6.5 - 9.0	0.03					
MMER						6.0 - 9.5						
								Potassium				Sodium
		Nitrate and		Oil and	Orthophos		Phosphoru	(K)-	Potassium	Selenium	Silver (Ag)-	(Na)-
Sample	Nitrate (as	Nitrite as N	Nitrite (as	Grease	phate (PO4-		s, Total	Dissolved	(K)-Total	(Se)-Total	Total	Dissolved
ID	N) (mg/L)	(mg/L)	N) (mg/L)	(mg/L)	P) (mg/L)	рН (рН)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
A13	<0.050	<0.071	<0.050		<0.010	7.51	<0.020	4.97	5.12	0.0052	<0.0020	12.9
A15	<0.050	<0.071	<0.050		<0.010	7.66	<0.020	3.19	3.26	0.00157	<0.00050	9.9
A38	0.655	0.655	<0.050		<0.010	7.96	<0.020	4.11	3.61	0.00084	<0.00050	18.3
A54	1.25	1.25	<0.050		<0.010	7.97	<0.020	3.80	3.97	0.00102	<0.00050	17.9
A8-7	<0.050	<0.071	<0.050		<0.010	7.40	<0.020	0.63	0.71	<0.00040	<0.00010	1.9
A9	<0.050	<0.071	<0.050		<0.010	7.79	<0.020	2.64	2.94	<0.00040	<0.00050	7.9
B7-6	<0.050	<0.071	<0.050		<0.010	7.40	<0.020	0.71	0.85	<0.00040	<0.00010	1.8
CONTROL	<0.050	<0.071	<0.050		<0.010	7.49	<0.020	0.91	0.90	<0.00040	<0.00010	3.0
MEL-1	<0.050	<0.071	<0.050		<0.010	6.93	<0.020	<0.50	0.15	<0.00040	<0.00010	<1.0
MEL-2	<0.050	<0.071	<0.050		<0.010	7.18	<0.020	<0.50	0.46	<0.00040	<0.00010	1.5
MEL-3	<0.050	<0.071	<0.050	<1.0	0.414	7.37		2.69	2.69	<0.00040	<0.00010	21.5
MEL-4	<0.050	<0.071	<0.050	<1.0	<0.010	6.75	<0.020	<0.50	<0.10	<0.00040	<0.00010	<1.0
MEL-4dup	<0.050	<0.071	<0.050		0.010	6.81	0.094	<0.50	0.12	<0.00040	<0.00010	<1.0
ML-R	<0.050	<0.071	<0.050		<0.010	7.67	<0.020	1.13	1.28	<0.00040	<0.00010	5.0
P1	1.54	1.54	<0.050		<0.010	7.98	<0.020	2.46	2.48	0.00061	<0.00050	6.5
	hrs & at too	high a										

CCME										0.03
MMER										0.5
							Total			
	Sodium	Sulfate	TDS	Thallium	Tin (Sn)-	Titanium	Kjeldahl	Uranium	Vanadium	Zinc (Zn)-
Sample	(Na)-Total	(SO4)	(Calculated	(TI)-Total	Total	(Ti)-Total	Nitrogen	(U)-Total	(V)-Total	Total
ID	(mg/L)	(mg/L)) (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
A13	13.2	4.73	374	<0.00040	<0.050	<0.0024	0.70	<0.00040	<0.0020	<0.016
A15	9.8	7.70	259	<0.00010	<0.050	<0.0010	0.91	<0.00010	0.0016	<0.0040
A38	16.7	25.3	232	<0.00010	<0.050	<0.0010	1.32	0.00033	<0.0010	<0.0040
A54	18.2	29.5	239	<0.00010	<0.050	< 0.0010	1.58	0.00041	< 0.0010	<0.0040
A8-7	2.3	1.36	37.1	<0.00010	<0.050	<0.0010	0.35	<0.00010	<0.0010	<0.0040
A9	9.1	6.60	227	<0.00010	<0.050	<0.0010	0.84	<0.00010	<0.0010	<0.0040
B7-6	2.2	1.36	46.0	<0.00010	<0.050	<0.0010	0.38	<0.00010	<0.0010	<0.0040
CONTROL	2.9	0.97	31.1	<0.00010	<0.050	<0.0010	0.56	<0.00010	<0.0010	<0.0040
MEL-1	<1.0	0.83	4.2	<0.00010	<0.050	<0.0010	<0.20	<0.00010	<0.0010	<0.0040
MEL-2	1.7	1.14	25.3	<0.00010	<0.050	<0.0010	0.41	<0.00010	<0.0010	<0.0040
MEL-3	20.9	15.1	109	<0.00010	<0.050	0.0026		<0.00010	<0.0010	0.0088
MEL-4	1.1	0.70	2.9	<0.00010	<0.050	<0.0010	<0.20	<0.00010	<0.0010	<0.0040
MEL-4dup	1.7	0.85	3.4	<0.00010	<0.050	<0.0010	<0.20	<0.00010	<0.0010	<0.0040
ML-R	5.7	3.44	44.6	<0.00010	<0.050	<0.0010	0.47	<0.00010	<0.0010	<0.0040
P1	6.8	17.6	141	<0.00010	<0.050	<0.0010	2.04	0.00030	<0.0010	<0.0040

	Α	В	С	D	Е	F	G	Н	I	J	K	L	М
1	ССМЕ					0.1			0.005	variable			
2	MMER								0.5				
				_	Alkalinity					Ammonia			- (-)
	Sample	Sampling	рН	Temp	mg	Aluminium		Silver (Ag)	Arsenic	(NH3-NH4)	Barium	Beryllium	Boron (B)
3	name:	date:	Field	(°C)	CaCO3/L	(AI) mg/L	(Sb) mg/L	mg/L	(As) mg/L	mg N/L	(Ba) mg/L	(Be) mg/L	mg/L
4	B7-6	22-07-2010	7.69	18.7	39	<0.002	<0.0001	<0.0005	0.0019	<0.05	0.0227	<0.0005	<0.01
5	A8	22-07-2010	8.24	20.4	42	<0.002	<0.0001	<0.0005	0.0029	< 0.05	0.0184	<0.0005	<0.01
6	B2-1	22-07-2010	7.69	18.9	41	0.410	<0.0001	<0.0005	0.0010	0.05	0.0122	<0.0005	<0.01
7	Control Lake	22-07-2010	8.08	18.5	29	0.086	<0.0001	<0.0005	<0.0005	0.05	0.0074	<0.0005	<0.01
8	A8-7	22-07-2010	8.10	19.3	42	0.529	<0.0001	<0.0005	0.0029	<0.05	0.0197	<0.0005	<0.01
9	A-38	22-07-2010	8.69	19.2	60	<0.002	<0.0001	<0.0005	0.0046	0.06	0.0611	<0.0005	<0.01
10	A-54	22-07-2010	8.93	18.1	56	<0.002	< 0.0001	<0.0005	0.0044	<0.05	0.0490	<0.0005	<0.01
11	P-1	22-07-2010	7.50	18.2	142	<0.002	<0.0001	<0.0005	0.0216	0.10	0.0554	<0.0005	<0.01
12	A-13	22-07-2010	8.42	19.2	60	<0.002	<0.0001	<0.0005	0.0049	0.05	0.0838	<0.0005	<0.01
13	A-15	22-07-2010	8.20	19.2	65	0.006	<0.0001	<0.0005	0.0054	0.06	0.1248	<0.0005	<0.01
14	A-9	22-07-2010	8.39	19.5	58	<0.002	<0.0001	<0.0005	0.0041	0.05	0.0785	<0.0005	<0.01
15	Mel-4	22-07-2010	7.79	15.0	38	<0.002	<0.0001	<0.0005	<0.0005	< 0.05	0.0065	<0.0005	<0.01
16	Mel-1	22-07-2010	7.56	15.0	36	<0.002	<0.0001	<0.0005	0.0016	< 0.05	0.0068	<0.0005	<0.01
17	ML-R	22-07-2010			39	<0.002	<0.0001	<0.0005	0.0009	0.08	0.0087	<0.0005	<0.01
18	Mel-7												
19		C	CME ammon	ia guideline	is 1.56 mg/L	N for sample	e site P1, 0.0	6 forA54, 0.1	17 for A38 ba	sed on field	pH and field	temperatur	e.

	Α	N	0	Р	Q	R	S	Т	U	V	W	Х	Υ
							0.002-						
1	CCME	0.000017			0.001		0.004			0.3		29	
2	MMER						0.3					15	
	Sample	Cadmium	Calcium	Chloride	Chromium	Conductivit	Copper	Hardness mg	Tin (Sn)	Iron (Fe)	Lithium (Li)	Total Suspended	Magnesiu m (Mg)
3	name:	(Cd) mg/L	(Ca) mg/L	mg/L	(Cr) mg/L	μmhos/cm	(Cu) mg/L	CaCO3/L	mg/L	mg/L	mg/L	Solids mg/L	
4	B7-6	<0.00008	26.6	32.9	<0.0006	247	0.0007	78	<0.001	<0.01	<0.1	5	2.9
5	A8	<0.00008	24.2	30.6	<0.0006	248	0.0006	76	<0.001	<0.01	<0.1	5	3.9
6	B2-1	<0.00008	14.5	8.5	<0.0006	144	0.0516	45	<0.001	<0.01	<0.1	3	2.1
\vdash	Control Lake		9.0	8.0	<0.0006	103	0.0007	27	<0.001	<0.01	<0.1	3	1.2
8	A8-7	<0.00008	25.3	31.9	<0.0006	249	0.0011	79	<0.001	<0.01	<0.1	6	3.9
9	A-38	<0.00008	83.4	175	<0.0006	996	0.0031	278	<0.001	<0.01	<0.1	5	17.0
10	A-54	<0.00008	79.3	174	<0.0006	1005	0.0021	271	<0.001	<0.01	<0.1	8	17.7
11	P-1	<0.00008	82.7	92.1	<0.0006	737	0.0011	256	<0.001	<0.01	<0.1	4	12.0
12	A-13	<0.00008	105	197	<0.0006	947	0.0025	321	<0.001	<0.01	<0.1	4	14.4
13	A-15	<0.00008	165	313	<0.0006	1372	0.0026	489	<0.001	0.18	<0.1	10	18.6
14	A-9	<0.00008	97.6	193	<0.0006	852	0.0023	299	<0.001	<0.01	<0.1	4	13.4
15	Mel-4	<0.00008	7.6	9.4	<0.0006	97	0.0007	26	<0.001	<0.01	<0.1	2	1.6
16	Mel-1	<0.00008	6.6	7.5	<0.0006	87	0.0017	22	<0.001	<0.01	<0.1	3	1.4
17	ML-R	<0.00008	8.5	10.7	<0.0006	89	0.0008	29	<0.001	<0.01	<0.1	3	1.8
18	Mel-7											8	
19													

	Α	Z	AA	AB	AC	AD	AE	AF	AG	AH	Al	AJ	AK
					0.025-						0.001-		
1	CCME			0.073	0.015	2.9	0.06	0.03	6.5 - 9.0	6.5 - 9.0	0.007		
2	MMER				0.5				6.0 - 9.5	6.0 - 9.5	0.2		
								Ortho-					
				Molybdenu		Nitrate	Nitrite	Phosphate					
	Sample	Manganese	Mercury	m (Mo)	Nickel (Ni)	(NO3) mg	(NO2) mg	(O-PO4)			Lead (Pb)	Potassium	Selenium
3	name:	(Mn) mg/L	(Hg) mg/L	mg/L	mg/L	N/L	N/L	mg P/L	pН	pH (field)	mg/L	(K) mg/L	(Se) mg/L
4	B7-6	0.0277	<0.00001	<0.0005	0.0014	0.03	< 0.01	0.02	6.49	7.69	0.0363	0.91	<0.001
5	A8	0.0157	<0.00001	<0.0005	0.0012	0.01	<0.01	0.02	7.04	8.24	0.0197	0.89	<0.001
6	B2-1	0.0201	<0.00001	<0.0005	0.0014	0.02	<0.01	0.01	6.97	7.69	<0.0003	0.59	<0.001
7	Control Lake	<0.0005	<0.00001	<0.0005	0.0005	0.01	<0.01	0.01	6.85	8.08	0.0049	0.55	<0.001
8	A8-7	0.0199	<0.00001	<0.0005	0.0012	0.02	0.01	0.02	7.17	8.10	<0.0003	0.89	<0.001
9	A-38	0.0072	<0.00001	<0.0005	0.0068	0.31	0.02	0.01	7.94	8.69	0.0632	6.2	<0.001
10	A-54	0.0046	<0.00001	<0.0005	0.0048	1.4	0.05	0.01	8.24	8.93	<0.0003	6.2	<0.001
11	P-1	0.2600	<0.00001	<0.0005	0.0070	0.02	0.03	0.01	7.54	7.50	<0.0003	4.0	<0.001
12	A-13	0.0248	<0.00001	<0.0005	0.0072	0.02	<0.01	0.01	7.52	8.42	<0.0003	3.7	0.002
13	A-15	0.0043	<0.00001	0.0005	0.0094	0.01	<0.01	0.02	7.69	8.20	<0.0003	4.3	0.005
14	A-9	0.0069	<0.00001	<0.0005	0.0075	0.02	<0.01	0.03	7.73	8.39	0.0160	2.8	0.001
15	Mel-4	0.0021	<0.00001	<0.0005	0.0012	0.02	<0.01	0.02	6.70	7.79	<0.0003	0.33	<0.001
16	Mel-1	0.0010	<0.00001	<0.0005	0.0089	0.02	<0.01	0.01	6.65	7.56	<0.0003	0.27	<0.001
17	ML-R	<0.0005	<0.00001	<0.0005	<0.0005	0.04	<0.01	<0.01	6.77		<0.0003	0.57	<0.001
18	Mel-7								7.78				
19													

	А	AL	AM	AN	AO	AP	AQ	AR	AS	AT	AU	AV	AW
1	ССМЕ										0.03		
2	MMER										0.5		
												Bicarbonat	
					Sulfate							e (HCO3)	Hydroxide
	Sample	Sodium	Dissolved	Strontium	(SO4) mg	Temperatu	Titanium	Turbidity	Uranium	Vanadium	Zinc (Zn)	mg	mg
3	name:	(Na) mg/L	Solids mg/L	(Sr) mg/L	SO4/L	re C	(Ti) mg/L	NTU	(U) mg/L	(V) mg/L	mg/L	CaCO3/L	CaCO3/L
4	B7-6	4.5	164	0.18	8	18.7	0.01	0.61	< 0.001	<0.0005	<0.001	39	<2
5	A8	5.9	165	0.14	8	20.4	0.01	0.70	< 0.001	<0.0005	<0.001	42	<2
6	B2-1	5.6	96	0.06	7	18.9	0.01	0.59	<0.001	<0.0005	<0.001	41	<2
7	Control Lake	5.5	68	<0.05	5	18.5	<0.01	0.40	< 0.001	<0.0005	<0.001	29	<2
8	A8-7	6.3	166	0.15	7	19.3	0.02	0.74	< 0.001	<0.0005	<0.001	42	<2
9	A-38	45.5	664	0.72	48	19.2	0.06	1.1	< 0.001	<0.0005	<0.001	60	<2
10	A-54	51.3	670	0.73	57	18.1	0.05	0.94	<0.001	<0.0005	<0.001	36	10
11	P-1	22.1	491	0.44	21	18.2	0.05	1.4	<0.001	<0.0005	<0.001	142	<2
12	A-13	21.4	631	0.88	14	19.2	0.08	1.2	<0.001	<0.0005	<0.001	60	<2
13	A-15	22.1	914	1.2	9	19.2	0.11	3.8	<0.001	<0.0005	<0.001	65	<2
14	A-9	20.6	568	0.64	14	19.5	0.06	0.92	<0.001	<0.0005	<0.001	58	<2
15	Mel-4	7.4	64	<0.05	3	15.0	<0.01	0.30	<0.001	<0.0005	<0.001	38	<2
16	Mel-1	5.9	58	<0.05	2	15.0	<0.01	0.25	<0.001	<0.0005	<0.001	36	<2
17	ML-R	8.6	59	<0.05	2		<0.01	0.36	<0.001	<0.0005	<0.001	39	<2
18	Mel-7												
19													

	Α	AX	AY	AZ
1	CCME			
2	MMER			
3	Sample name:	Total oil and grease mg/L	BOD5	Faecal Coliforms
4	B7-6		БОБЗ	Comornis
5	A8			
6	B2-1			
_	Control Lake			
8	A8-7			
9	A-38			
10	A-54			
11	P-1			
12	A-13			
13	A-15			
14	A-9			
15	Mel-4	<1	<2.0	35
16	Mel-1			
17	ML-R			
18	Mel-7	<1	8.9	440
19				

Control Lake 2 A8-7 2 Dup-1 (A8-7) 2	26-08-2010 26-08-2010	pH Field 7.02 7.33	Temp (°C)	Alkalinity mg CaCO3/L	Aluminium (AI) mg/L	Antimony (Sb) mg/L	Silver (Ag)	0.5 Arsenic (As)	Ammonia (NH3-NH4)	Barium (Ba)
Control Lake 2 A8-7 2 Dup-1 (A8-7) 2	26-08-2010 26-08-2010	Field 7.02	(°C)	CaCO3/L						Barium (Ba)
A8-7 2 Dup-1 (A8-7) 2	26-08-2010	_	11			(30) 1116/ 5	mg/L	mg/L	mg N/L	mg/L
Dup-1 (A8-7)		7 22		28	0.018	<0.0001	<0.0005	<0.0005	<0.05	0.0068
- ' ' -	26.00.2042	7.33	11.1	42	0.021	<0.0001	<0.0005	0.0022	<0.05	0.0160
A-38 2	26-08-2010	7.36		41	0.008	<0.0001	<0.0005	0.0008	< 0.05	0.0174
	26-08-2010	7.69	9.4	79	0.015	<0.0001	<0.0005	0.0027	0.05	0.0535
A-54 2	26-08-2010	7.55	9.8	56	<0.002	<0.0001	<0.0005	0.0017	0.25	0.0533
P-1 2	26-08-2010	7.63	9	136	0.006	0.0001	<0.0005	0.0023	2.9	0.0841
A-13 2	26-08-2010	7.59	9	55	0.004	<0.0001	<0.0005	0.0017	0.08	0.0873
A-15 2	26-08-2010	7.55	8.8	56	0.065	<0.0001	<0.0005	0.0015	0.05	0.0892
A-9 2	26-08-2010	7.66	.8	65	0.024	<0.0001	<0.0005	0.0038	0.09	0.0776
Mel-4	27-08-2010	6.90	11.1	21	0.022	<0.0001	<0.0005	<0.0005	<0.05	0.0064
Mel-1 2	27-08-2010	6.79	10.2	19	0.020	<0.0001	<0.0005	<0.0005	<0.05	0.0067
ML-R 2	26-08-2010	6.90	11.4	22	0.015	<0.0001	<0.0005	<0.0005	< 0.05	0.0095
Mel-7	27-08-2010	6.96								
				CCME gu	ideline for am	monia at P1 is	8.45 based on f	ield pH and Ter	mperature	

ССМЕ			0.000017			0.001		0.002-0.004		
MMER			0.000017			0.001		0.3		
IVIIVILIX								0.3		
Sample	Beryllium (Be)	Boron (B) mg/L	Cadmium (Cd) mg/L	Calcium (Ca)	Chloride mg/L	Chromium	Conductivity µmhos/cm	Copper (Cu)	Hardness mg	Tin (Sn) mg/L
		6/ =	(90,)	8/ =		(9.78/ =			0000/2	(0,8/ =
Control Lake	<0.0005	<0.01	<0.00008	8.0		<0.0006	161	0.0013	24	< 0.001
A8-7	<0.0005	<0.01	<0.00008	21.3		<0.0006	303	0.0009	64	<0.001
Dup-1 (A8-7)	<0.0005	<0.01	<0.00008	20.3		<0.0006	231	0.0007	61	<0.001
A-38	<0.0005	<0.01	<0.00008	65.6		<0.0006	932	0.0021	210	<0.001
A-54	<0.0005	<0.01	<0.00008	77.4		<0.0006	1079	0.0015	248	<0.001
P-1	<0.0005	<0.01	<0.00008	120		<0.0006	1177	0.0022	343	<0.001
A-13	<0.0005	<0.01	<0.00008	82.8		<0.0006	953	0.0017	245	<0.001
A-15	<0.0005	<0.01	<0.00008	84.4		<0.0006	961	0.0015	248	<0.001
A-9	<0.0005	<0.01	<0.00008	72.6		<0.0006	857	0.0025	212	<0.001
Mel-4	<0.0005	<0.01	<0.00008	5.4		<0.0006	142	0.0012	17	<0.001
Mel-1	<0.0005	<0.01	<0.00008	5.5		<0.0006	136	0.0009	17	<0.001
ML-R	<0.0005	<0.01	<0.00008	6.8		<0.0006	152	0.0011	21	<0.001
Mel-7			T	T						

0.3		29				0.073	0.025-0.15	2.9	
		15					0.5		
Iron (Fe) mg/L	Lithium (Li) mg/L	Total Suspended Solids mg/L	Magnesium (Mg) mg/L	Manganese (Mn) mg/L	Mercury (Hg) mg/L	Molybdenum (Mo) mg/L	Nickel (Ni) mg/L	Nitrate (NO3) mg N/L	Kjeldahl nitrogen mg N/L
<0.01	<0.1	2	0.93	0.0013	<0.00001	<0.0005	0.0006	0.05	<1
<0.01	<0.1	2	2.7	0.0056	<0.00001	<0.0005	0.0015	0.02	<1
<0.01	<0.1	9	2.5	0.0068	0.00024	<0.0005	0.0021	0.02	<1
<0.01	<0.1	1	11.1	0.0082	<0.00001	<0.0005	0.0062	0.04	<1
<0.01	<0.1	1	13.2	0.0097	<0.00001	<0.0005	0.0064	0.82	<1
<0.01	<0.1	1	10.6	0.0065	<0.00001	<0.0005	0.0110	6.5	3
0.57	<0.1	3	9.2	0.0217	<0.00001	<0.0005	0.0080	0.07	<1
0.84	<0.1	10	9.1	0.0291	<0.00001	<0.0005	0.0071	0.05	<1
0.08	<0.1	12	7.5	0.0219	<0.00001	<0.0005	0.0069	0.09	1
<0.01	<0.1	1	0.85	0.0027	<0.00001	<0.0005	0.0030	0.03	<1
<0.01	<0.1	1	0.87	0.0014	0.00023	<0.0005	0.0006	0.38	1
<0.01	<0.1	<1	1.0	0.0021	0.00021	<0.0005	0.0006	0.41	<1
		9							
	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.57 0.84 0.08 <0.01	Lithium (Li) Iron (Fe) mg/L <0.01	Total Suspended Solids mg/L	Total Suspended Magnesium Solids mg/L (Mg) mg/L	Total Suspended Magnesium Manganese (Mg) mg/L (Mg) mg/L (Mn) mg/	Total Suspended Solids mg/L (Mg) mg/L (Mn) mg/L mg/L mg/L Suspended (Mg) mg/L (Mn) mg/L mg/L mg/L Solids mg/L (Mg) mg/L (Mn) mg/L mg/L mg/L Solids mg/L (Mg) mg/L mg/L mg/L mg/L Solids mg/L (Mg) mg/L mg/L mg/L mg/L Solids mg/L (Mg) mg/L mg/L mg/L Solids mg/L (Mg) mg/L mg/L mg/L Solids mg/L (Mg) mg/L mg/L	Total Suspended Solids mg/L (Mg) mg/L (Mn) mg/L (Mn) mg/L (Mo) m	Total Suspended Solids mg/L Wagnesium (Mg) mg/L (Mn) mg/L mg/L Wagnesium (Mg) mg/L (Mn) mg/L mg/L Wagnesium (Mg) mg/L (Mn) mg/L mg/L (Mo) mg/L mg/L Wagnesium (Mo) mg/L mg/L Wagnesium (Mo) mg/L mg/L (Mo) mg/L (Mo) mg/L mg/L (Mo) mg/L	Total

					0.001-					
CCME	0.06	0.03	6.5 - 9.0	6.5 - 9.0	0.007					
MMER			6.0 - 9.5	6.0 - 9.5	0.2					
Sample	Nitrite (NO2)	Ortho- Phosphate (O-			Lead (Pb)	Potassium (K)	Selenium (Se)	Sodium (Na)	Dissolved	Strontium (Sr)
name:	mg N/L	PO4) mg P/L	pH (lab)	pH (field)	mg/L	mg/L	mg/L	mg/L	Solids mg/L	mg/L
Control Lake A8-7		0.04 0.05	7.67 7.78	7.02 7.33	0.0052 <0.0003	0.55 0.84	<0.001 <0.001	3.7 3.9	107 202	<0.05 0.14
Dup-1 (A8-7)		0.04		7.36	<0.0003	0.91	<0.001	3.8	154	0.14
A-38		0.07	7.59	7.69	0.0098	5.1	<0.001	25.5	621	0.63
A-54		0.09	7.72	7.55	<0.0003	6.8	<0.001	34.6	719	0.78
P-1		0.08	7.59	7.63	0.0029	6.2	<0.001	18.9	784	0.80
A-13		0.08	7.68	7.59	<0.0003	2.8	0.003	10.3	635	0.71
A-15		0.07	7.7	7.55	0.0036	2.1	0.002	9.6	641	0.69
A-9		0.08	7.67	7.66	0.0022	2.4	0.002	9.5	571	0.69
Mel-4		0.05	7.45	6.90	0.0388	0.43	<0.001	3.7	95	<0.05
Mel-1		0.02	7.43	6.79	<0.0003	0.37	<0.001	3.3	90	<0.05
ML-R		0.02	7.62	6.90	0.0006	0.63	<0.001	4.4	101	<0.05
Mel-7				6.96						

CCME							0.03			
MMER							0.5			
Sample	Sulfate (SO4)	Temperature	Titanium (Ti)		Uranium (U)	Vanadium (V)	Zinc (Zn)	Bicarbonate (HCO3) mg	Carbonate	Hydroxide mg
name:	mg SO4/L	C	mg/L	Turbidity NTU	, ,	mg/L	mg/L	CaCO3/L	(CO3) (mg/L)	CaCO3/L
name.	111g 304/ L	Temperature	1116/ L	Tarbiaity ivio	1116/ L	1116/ L	mg/ L	Cacos/L	(COS) (Mg/L)	Cacos, L
Control Lake		C field	<0.01	0.71	<0.001	0.0005	0.001	28	<2	<2
A8-7		11	<0.01	0.43	<0.001	<0.0005	< 0.001	42	<2	<2
Dup-1 (A8-7)		11.1	< 0.01	0.51	<0.001	<0.0005	< 0.001	41	<2	<2
A-38			0.03	0.92	< 0.001	<0.0005	0.005	79	<2	<2
A-54		9.4	0.03	0.96	<0.001	<0.0005	0.001	56	<2	<2
P-1		9.8	0.02	0.51	<0.001	<0.0005	0.004	136	<2	<2
A-13		9	0.04	0.40	<0.001	0.0006	0.005	55	<2	<2
A-15		9	0.04	6.9	<0.001	0.0005	0.006	56	<2	<2
A-9		8.8	0.03	2.1	<0.001	0.0020	0.013	65	<2	<2
Mel-4		.8	<0.01	0.31	<0.001	<0.0005	<0.001	21	<2	<2
Mel-1		11.1	<0.01	0.41	<0.001	<0.0005	0.002	19	<2	<2
ML-R		10.2	<0.01	0.60	<0.001	<0.0005	0.006	22	<2	<2
Mel-7		11.4								

ССМЕ			
MMER			
			Faecal
Sample	Total oil and		Coliforms
name:	grease mg/L	BOD5	(colonies/dL)
Tidine.	B1 case 1116/ 2	3033	(6010111163) 412)
Control Lake			
A8-7			
Dup-1 (A8-7)			
A-38			
A-54			
P-1			
A-13			
A-15			
A-9			
Mel-4	<1	<1	Note
Mel-1		<1	
ML-R			
Mel-7	<1	7	Note
	Note: Faecal (Coliforms are ti	me and
	temperature s	ensitive. The sa	amples arrived
	in the laborate	ory well past the	е
	recommended	I 24 hours and a	at an elevated
	temperature.		
	,		

CCME					0.1			0.005	variable			
MMER								0.5				
Sample	Sampling	рН	Temp	Alkalinity mg	Aluminium	Antimony	Silver (Ag)	Arsenic (As)	Ammonia (NH3-NH4)	Barium (Ba)		
name:	date:	Field	(°C)	CaCO3/L	(AI) mg/L	(Sb) mg/L	mg/L	mg/L	mg N/L	mg/L		
Control Lake	23-09-2010	7.8	6.5	32	0.008	<0.0001	<0.0005	0.0055	<0.05	0.0071		
A8-7	23-09-2010	7.76	6.5	46	0.040	<0.0001	<0.0005	<0.0005	<0.05	0.0164		
A8	23-09-2010	7.67	6.7	43	0.002	<0.0001	<0.0005	0.0049	<0.05	0.0160		
A-38	23-09-2010	7.58	4.4	97	0.002	<0.0001	<0.0005	0.0114	<0.05	0.0572		
DUP-A38	26-08-2010			97	<0.002	<0.0001	<0.0005	0.0020	<0.05	0.0576		
A-54	23-09-2010	7.78	4.1	60	<0.002	0.0001	<0.0005	0.0035	0.13	0.0539		
P-1	23-09-2010	7.66	4.2	168	<0.002	<0.0001	<0.0005	0.0012	2.0	0.1260		
A-13	23-09-2010	7.69	4.2	55	0.002	<0.0001	<0.0005	<0.0005	<0.05	0.0882		
A-15	23-09-2010	7.76	3.4	54	0.008	<0.0001	<0.0005	0.0068	<0.05	0.0805		
A-9	23-09-2010	7.68	4.2	83	<0.002	<0.0001	<0.0005	0.0079	<0.05	0.0783		
Mel-4	24-09-2010	7.45	6.5	23	<0.002	0.0007	<0.0005	<0.0005	<0.05	0.0058		
Mel-1	24-09-2010	7.71	5.4	23	<0.002	<0.0001	<0.0005	0.0024	<0.05	0.0056		
ML-R	23-09-2010	7.94	5.4	28	<0.002	<0.0001	<0.0005	0.0008	<0.05	0.0090		
Mel-7		6.64										
B2-1	23-09-2010	7.8	6.3	53	0.002	<0.0001	<0.0005	0.0056	0.09	0.0104		
B7-6	23-09-2010	7.77	6.2	38	0.061	0.0022	<0.0005	0.0074	<0.05	0.0220		
Trip blank	01-01-1900			6	<0.002	<0.0001	<0.0005	<0.0005	<0.05	<0.0005		
Field blank	01-01-1900			6	<0.002	<0.0001	<0.0005	0.0031	0.06	<0.0005		
				CCME guideline for ammonia at P1 is 3.97 based on field pH and Temperature Trip or field blanks are above detection								

					l					
CCME			0.000017			0.001		0.002-0.004		
MMER								0.3		
Sample	Beryllium (Be)	Boron (B)	Cadmium	Calcium (Ca)		Chromium	Conductivity	Copper (Cu)	Hardness mg	
name:	mg/L	mg/L	(Cd) mg/L	mg/L	Chloride mg/L	(Cr) mg/L	μmhos/cm	mg/L	CaCO3/L	Tin (Sn) mg/L
Control Lake	<0.0005	<0.01	0.00017	9.9	9.1	0.0056	88	0.0011	30	<0.001
A8-7	<0.0005	<0.01	0.00015	25.3	33.6	0.0068	177	0.0010	79	<0.001
A8	0.0006	<0.01	0.00014	25.2	33.8	0.0053	195	0.0008	78	<0.001
A-38	<0.0005	<0.01	0.00021	85.5	185	0.0060	629	0.0024	286	< 0.001
DUP-A38	<0.0005	<0.01	0.00026	85.7	181	0.0027	662	0.0014	286	< 0.001
A-54	<0.0005	<0.01	0.00012	95.8	235	0.0091	727	0.0020	329	<0.001
P-1	0.0010	<0.01	0.00028	172	255	0.0103	898	0.0043	516	<0.001
A-13	<0.0005	<0.01	<0.00008	110	230	0.0064	676	0.0012	343	<0.001
A-15	<0.0005	<0.01	<0.00008	110	223	0.0070	702	0.0011	350	<0.001
A-9	<0.0005	<0.01	0.00033	99.3	175	0.0071	600	0.0020	303	< 0.001
Mel-4	<0.0005	<0.01	0.00017	6.4	9.5	0.0030	74	0.0005	20	< 0.001
Mel-1	<0.0005	<0.01	0.00016	7.0	9.0	<0.0006	75	0.0005	22	< 0.001
ML-R	0.0016	<0.01	<0.00008	8.6	13.8	0.0021	101	0.0006	28	< 0.001
Mel-7										
B2-1	<0.0005	<0.01	<0.00008	16.3	11.2	0.0059	123	0.0011	50	< 0.001
B7-6	<0.0005	<0.01	0.00017	29.7	44.7	0.0047	211	0.0010	86	< 0.001
Trip blank	<0.0005	<0.01	<0.00008	0.16	<0.5	0.0027	2	0.0010	<1	< 0.001
Field blank	<0.0005	<0.01	<0.00008	0.06	<0.5	0.0025	2	0.0013	<1	<0.001

								1	
0.3		29				0.073	0.025-0.15	2.9	
		15					0.5		
		Total							Kjeldahl
	Lithium (Li)	Suspended	Magnesium	Manganese	Mercury (Hg)	Molybdenum	Nickel (Ni)	Nitrate (NO3)	nitrogen mg
Iron (Fe) mg/L	mg/L	Solids mg/L	(Mg) mg/L	(Mn) mg/L	mg/L	(Mo) mg/L	mg/L	mg N/L	N/L
0.11	<0.1	1	1.3	0.0040	<0.00001	<0.0005	0.0015	0.05	<1
0.18	<0.1	2	4.0	0.0098	<0.00001	<0.0005	0.0038	<0.01	<1
0.18	<0.1	1	3.8	0.0106	<0.00001	<0.0005	0.0035	0.14	2
0.80	<0.1	2	17.8	0.0102	<0.00001	<0.0005	0.0129	0.06	<1
0.75	<0.1	2	17.7	0.0098	<0.00001	<0.0005	0.0117	0.11	<1
0.71	<0.1	2	22.0	0.0079	<0.00001	<0.0005	0.0134	0.84	<1
1.3	<0.1	1	21.2	1.389	<0.00001	<0.0005	0.0368	1.0	2
1.5	<0.1	<1	16.8	0.0427	<0.00001	<0.0005	0.0139	0.09	<1
1.8	<0.1	3	18.3	0.0739	<0.00001	<0.0005	0.0152	0.02	<1
0.81	<0.1	3	13.5	0.0076	<0.00001	<0.0005	0.0129	0.15	<1
0.03	<0.1	4	1.2	0.0028	<0.00001	<0.0005	0.0010	0.02	1
0.05	<0.1	3	1.3	0.0024	<0.00001	<0.0005	0.0014	0.14	1
0.07	<0.1	3	1.8	0.0022	<0.00001	<0.0005	0.0014	0.14	1
		12							
0.19	<0.1	2	2.3	0.0118	<0.00001	<0.0005	0.0024	0.45	3
0.26	<0.1	1	3.1	0.0048	<0.00001	<0.0005	0.0042	0.18	<1
<0.01	<0.1		<0.02	<0.0005	<0.00001	<0.0005	<0.0005	<0.01	
<0.01	<0.1		<0.02	<0.0005	<0.00001	<0.0005	<0.0005	<0.01	
	Iron (Fe) mg/L 0.11 0.18 0.18 0.80 0.75 0.71 1.3 1.5 1.8 0.81 0.03 0.05 0.07 0.19 0.26 <0.01	Lithium (Li) Iron (Fe) mg/L mg/L	Total Suspended Solids mg/L O.11 <0.1 1 1 1 1	Total Suspended Magnesium Solids mg/L (Mg) mg/L	Total Suspended Magnesium Manganese Magnesium Magnesiu	Total Suspended Magnesium Manganese Mercury (Hg) mg/L (Mg) mg/L (Mn) mg/L mg/L (Mn) mg/L mg/L (Mn) mg/L (Mn) mg/L mg/L (Mn) mg/L	Total	Total	Total

					0.001-					
CCME	0.06	0.03	6.5 - 9.0	6.5 - 9.0	0.007					
MMER			6.0 - 9.5	6.0 - 9.5	0.2					
		Ortho-								
Sample	Nitrite (NO2)	Phosphate (O-			Lead (Pb)	Potassium (K)	Selenium (Se)	Sodium (Na)	Dissolved	Strontium (Sr)
name:	mg N/L	PO4) mg P/L	pH (lab)	pH (field)	mg/L	mg/L	mg/L	mg/L	Solids mg/L	mg/L
Control Lake	<0.01	<0.01	7.25	7.8	<0.0003	1.6	<0.001	5.4	59	<0.05
A8-7	<0.01	<0.01	7.53	7.76	<0.0003	2.1	<0.001	5.7	118	0.15
A8	<0.01	<0.01	7.42	7.67	0.0027	2.2	<0.001	5.5	130	0.15
A-38	<0.01	<0.01	7.87	7.58	0.0014	9.3	<0.001	39.6	419	0.73
DUP-A38	<0.01	<0.01			<0.0003	8.8	<0.001	39.7	441	0.72
A-54	0.01	<0.01	7.72	7.78	0.0019	11.6	<0.001	52.5	485	0.85
P-1	0.05	<0.01	7.3	7.66	<0.0003	11.1	<0.001	32.7	599	0.95
A-13	<0.01	<0.01	7.61	7.69	0.0033	5.0	0.006	15.6	450	0.83
A-15	0.01	<0.01	7.48	7.76	0.0008	5.1	0.010	13.6	468	0.78
A-9	<0.01	<0.01	7.9	7.68	<0.0003	5.1	0.006	16.0	400	0.82
Mel-4	<0.01	<0.01	7.05	7.45	0.0010	1.0	<0.001	5.0	49	<0.05
Mel-1	<0.01	<0.01	7.04	7.71	0.0226	1.1	<0.001	4.8	50	<0.05
ML-R	<0.01	<0.01	7.14	7.94	0.0003	1.6	<0.001	7.8	67	<0.05
Mel-7			6.73	6.64						
B2-1	<0.01	<0.01	7.46	7.8	<0.0003	1.7	<0.001	6.2	82	0.07
B7-6	<0.01	<0.01	7.39	7.77	<0.0003	2.2	<0.001	4.4	141	0.22
Trip blank	<0.01	<0.01			0.0014	0.17	<0.001	<0.05	1	<0.05
Field blank	<0.01	<0.01			<0.0003	0.11	<0.001	<0.05	1	<0.05

CCME							0.03			
MMER							0.5			
Sample	Sulfate (SO4)	Temperature	Titanium (Ti)		Uranium (U)	Vanadium (V)	Zinc (Zn)	Bicarbonate (HCO3) mg	Carbonate	Hydroxide mg
name:	mg SO4/L	С	mg/L	Turbidity NTU	\ , ,	mg/L	mg/L	CaCO3/L	(CO3) (mg/L)	CaCO3/L
Control Lake	3	6.5	<0.01	0.39	<0.001	<0.0005	0.005	32	<2	<2
A8-7	4	6.5	<0.01	0.34	<0.001	<0.0005	0.009	46	<2	<2
A8	3	6.7	<0.01	0.36	<0.001	<0.0005	0.006	43	<2	<2
A-38	35	4.4	0.04	0.69	<0.001	<0.0005	0.005	97	<2	<2
DUP-A38	27		0.04	0.77	<0.001	<0.0005	<0.001	97	<2	<2
A-54	60	4.1	0.05	0.39	<0.001	<0.0005	0.011	60	<2	<2
P-1	68	4.2	0.10	0.24	0.001	<0.0005	0.015	168	<2	<2
A-13	20	4.2	0.05	5.0	<0.001	<0.0005	0.022	55	<2	<2
A-15	25	3.4	0.05	1.7	<0.001	<0.0005	0.011	54	<2	<2
A-9	10	4.2	0.04	0.73	<0.001	<0.0005	0.010	83	<2	<2
Mel-4	4	6.5	<0.01	0.31	<0.001	<0.0005	<0.001	23	<2	<2
Mel-1	<1	5.4	<0.01	0.29	<0.001	<0.0005	0.002	23	<2	<2
ML-R	2	5.4	<0.01	0.56	<0.001	<0.0005	0.004	28	<2	<2
Mel-7										
B2-1	11	6.3	<0.01	0.45	<0.001	<0.0005	0.005	53	<2	<2
B7-6	4	6.2	0.01	0.42	<0.001	<0.0005	0.010	38	<2	<2
Trip blank	<1		<0.01	0.18	<0.001	<0.0005	<0.001	6	<2	<2
Field blank	<1		<0.01	0.14	<0.001	<0.0005	0.003	6	<2	<2

	T	I	T			
CCME						
MMER						
IVIIVIEK						
			Faecal			
Sample	Total oil and		Coliforms			
name:	grease mg/L	BOD5	(colonies/dL)			
Control Lake						
A8-7						
A8						
A-38						
DUP-A38						
A-54						
P-1						
A-13						
A-15						
A-9						
Mel-4	<1	5	Note			
Mel-1						
ML-R						
Mel-7	2	22	Note			
B2-1						
B7-6						
Trip blank						
Field blank						
	Note: Faecal Coliforms are time and					
	amples arrived					
	in the laborato	ry well past th	ll past the			
	24 hours and	at an elevated				
	temperature.					

Appendix B

Agnico Eagle Mines Limited

2011 Work Plan

MELIADINE GOLD PROJECT

2011 Work Plan

Prepared for the Kivalliq Inuit Association December 2010

Meliadine Gold Project 2011 Work Plan

1. Location

The Meliadine Gold Project is located approximately 35 kilometres northwest of Rankin Inlet, Nunavut. The camp is located at 63° 1′ 42″ North latitude, 92° 10′ 15″ West longitude.

2. Proponent

Agnico-Eagle Mines Ltd., Toronto, Ontario

Contact: Denis Vaillancourt

Exploration Manager

765, Chemin de la mine Goldex Val d'Or, Ouébec, I9P4N9

819 874 5980

denis.vaillancourt@agnico-eagle.com

John Witteman

Environment and Regulatory Consultant

819 277 5444

John.witteman@agnico-eagle.com

3. Land Use Authorization

The Meliadine East and West mineral properties were merged under Comaplex Minerals Corp. in 2009. Agnico-Eagle Mines Ltd. completed the purchase of the outstanding shares in Comaplex Minerals Corp. on July 7, 2010. The merged property is now called the Meliadine Gold Project. The mineral rights are now 100% controlled by Agnico-Eagle Mines Ltd.

This work plan covers proposed activities for the Meliadine Gold Project in 2011. The activities proposed by Agnico-Eagle Mines for 2011 will expand on the work done in 2010. These activities are described below and are authorized by various authorizing agencies. The Meliadine Gold Project is located on Inuit Owned Land administered by the Kivalliq Inuit Association where the larger part of the activities is carried out within commercial lease KVCL102J168.

4. Permitting Summary

The following table summarizes the permits issued for the Meliadine Gold Project.

Licence Number	Explanation	Issued By	NIRB File	Expiry	Note
KVL100B195	Meliadine Prospecting - Land Use	KIA		31-0ct-11	Renewed Aug 12/10
KVL302C268	NTI Parcel Drilling incl Tiriganiaq	KIA		01-Jul-11	Renewed
KVCL102J168	Commercial Lease	KIA	07EN044	30-Jun-11	Annual fees in June
KVRW98F149	Meliadine Right-of-way	KIA		30-Apr-11	Renewed
KVRW07F02	Overland Right-of-way	KIA	07AN063	26-0ct-11	Renewed Aug 12/10
KVCA07Q08	Mainland Esker Quarry Permit	KIA		15-Sep-11	renewed Sept 7/10
KVPL10D02	Meliadine Production Lease	KIA			to be negotiated
KVCA10Q03	Permanent Road Quarries	KIA			to be negotiated
KVRW10F04	Permanent Road Right-of-way	KIA			to be negotiated
KVL308C07	Mel E Exploration RI01	KIA		13-Jun-11	Renewed
N2010C0002	PB1, Geotech Drilling Permit	INAC	10EN006	11-Apr-12	Permit granted
N2007C0041	CWM Claims Drilling	INAC	05EN006	13-Apr-11	Extended
N2006X0012	CWM Claims Winter Road	INAC	06RN050	27-Jun-09	Expired, final plan submitted
2008QP0036	Quarrying Meliadine Islands	INAC	08EN005	13-Apr-09	Application sent on 21 Sept 2010
N2007Q0040	Mel Lake Esker - Quarrying	INAC	05EN006	13-Apr-12	Extended
2010QP0129	Quarrying Meliadine Islands	INAC	08EN005	18-Nov-11	Issued Nov 18, 2010
	WCCB Program Authorization	WCB		31-Dec-11	Annual Renewal
	Hamlet Disposal Authorization	Hamlet		Aug - 11	Annual Renewal
2BB-MEL0914	Bulk Sampling -Water Licence	NWB	07EN044	31-Jul-14	2of 3 amendments granted
2BE-MEP0813	Exploration - Water Licence	NWB	08EN043	31-0ct-13	Assigned to Comaplex

Agnico-Eagle anticipates a diamond drill program of about 70,000 metres for 2011, with site operations beginning in February, 2011.

Agnico-Eagle anticipates a limited underground program, starting in April-May, 2011. This program will extend the existing bulk sample drifts on the 1000 and 1100 lode structures by about 125 metres, each, and will process a bulk sample of about 25,000 tonnes. The procedure in processing the ore remains unchanged with it first being crushed and then passed through the sample tower to obtain a representative sample for testing in southern laboratories. Afterwards the remaining ore will be stored on the waste rock pad.

5. Equipment on Site

Major equipment on site is listed in Appendix A. Additional heavy equipment will be mobilized to and stored on the property in 2011, listed in Appendix B. The existing plant at the portal site, bought from J. S. Redpath on completion of the bulk sample program in 2008 will suffice for the proposed 2011 underground program. No additional equipment will be brought to the site for this purpose.

Agnico-Eagle has contracted Nunami Helicoptor Transport Corporation, a joint venture between Sakku Investments and Helicopter Transport Services, for helicopter support, and Boart Longyear for drill services in 2011.

Agnico-Eagle presently has one contractor, M&T Enterprises Ltd, scheduled to provide logistical services over the early-2011 winter road. M&T Enterprises will construct and maintain this winter road.

Three LF70 diamond drills and 2 Fly 38 diamond drills, belonging to Boart Longyear, are currently stored on the Meliadine property. Agnico-Eagle plans to mobilize additional diamond drills to the property over the early-2011 winter road.

6. Proposed Activities

- 1. Mobilization of the following fuel, equipment, materials and supplies over the permitted right of way winter access road (KIA permit KVRW98F149) or the permitted overland route (KIA permit KVRW07F02):
 - i. Total fuel scheduled for mobilization into camp in the winter of 2011 is approximately 2,000,000 liters of P50 and 200,000 liters of Jet A. This will begin in mid- to late February as in previous years. The total amount scheduled to be hauled exceeds the total storage on site because the site storage will be topped off at the end of the winter road season in April, 2011, to replace fuel burned between startup in February, 2011, and April. Fuel for 2011 will be stored in the existing steel double-walled tanks on the site. Additionally Agnico-Eagle will construct a lined berm for ten 114,000-litre (nominal capacity) fuel bladders in early 2011, immediately adjacent to the existing tank farm. Approvals were received from the Kivalliq Inuit Association on January 23, 2009 and from the Nunavut Water Board on December 2, 2008.
 - ii. Drilling supplies as in previous years (core boxes, racks, salt, drill rods, etc.).
- iii. Heavy equipment listed in Appendix B.
- iv. A 100-person self-contained trailer camp, complete with two 850-kVA diesel generators, from temporary storage in Rankin Inlet, shipped to Rankin Inlet during the 2010 barge season.

- 2. **INAC** approved an extension of a land use permit and issued a quarry permit for the previously used island quarries in Meliadine Lake. Up to 45,818 cubic metres of sand and gravel will be sourced here in early 2011.
- 3. Agnico-Eagle proposes to install a **100-person**, **self-contained trailer camp** adjacent to the existing exploration camp in early 2011.
- 4. Agnico-Eagle anticipates a **drill program** of about 70,000 metres in 2011. Drilling will target the known gold zones Tiriganiaq, F Zone, Discovery, Westmeg, Pump and Wolf; some diamond drilling will be conducted on reconnaissance drill targets in the wider property. The drill program will run from February to November of 2011.
- 5. The **Meliadine East camp** on Atulik Lake was decommissioned during the summer of 2010 and the winter of 2010-2011. The core shack and storage building remain. Workers will be transported to the site from the Meliadine camp when drilling is undertaken at Discovery.
- 6. Agnico-Eagle anticipates a **limited underground program**, starting in April-May, 2011. This program will extend the existing bulk sample drifts on the 1000 and 1100 lode structures by about 125 metres, each, and will process a bulk sample of about 25,000 tonnes. The approval from the NWB is pending for the underground program.
- 7. Agnico-Eagle commissioned its **BIODISK sewage treatment system** during the summer of 2010. Water license 2BB-MEL0914 includes terms and conditions for the installation, operation and monitoring of this system. Some construction work is required on the sump system of the BIODISK unit. Plans for this construction are on file with the KIA and the NWB. The system is being kept active over the winter as it is heated and the bacteria fed. Two employees remain on site over the camp close down period.
- 8. Agnico-Eagle is planning to perform **geotechnical drilling** on the sites of the proposed plant site, open pit mines, water crossings along the all weather road, and tailings and rock stockpile areas.
- 9. **Maintenance** of the existing two kilometer road between camp and the portal site will take place as required. A culvert installed in the area of the **Primary Containment Area** is a source of seepage and will be removed in 2011, likely after the spring melt during a low-flow period. Spring melt pad run-off water contained in the primary containment area will only be released when sampling results are received indicating that acceptable water quality standards are met.
- 10. Golder Associates Ltd. was contracted by Comaplex, and subsequently by Agnico-Eagle, to collect **mining geotechnical data** on specific targets on the Meliadine property in 2010. This work will continue in 2011 and is, in most cases, a continuation of work completed in previous years.

- 11. Comaplex, and subsequently Agnico-Eagle contracted Golder Associates to collect **socioeconomic and traditional knowledge baseline data** and prepare the chapter(s) for the EIS for socioeconomic, traditional knowledge and archaeology impacts for the proposed mine area and within the Kivalliq region.
- 12. Preparation of a draft Environmental Impact Statement will begin in early 2011 with completion and submission to the Nunavut Impact Review Board in early 2012.
- 13. Routine **water sampling**. This work has continued since the 1990s and is reported annually. The sampling program was expanded in 2010 to include the B basin drainage to the west arm of Meliadine Lake and this is shown on figure 1. Monthly and annual reports required under the water licence are filed accordingly with the Nunavut Water Board, Kivalliq Inuit Association and Nunavut Impact Review Board.

Records of actual water consumption at both the camp and the diamond drills are maintained and remain within the 290 m³/day allowed under AEM's water licence. Water usage for the project is consistent with expectations and as presented in the various regulatory plans submitted in the past year.

- 14. In connection with the planned underground program, the selected underground contractor, Sakku/Procon JV, will procure approximately 23 tonnes of **explosives and blasting accessories** at suppliers' magazines at Thompson, Manitoba, in February, 2011. Agnico-Eagle will arrange for this material to be air-freighted direct to the ice airstrip on Meliadine Lake. Agnico-Eagle site labour will receive the explosives and store them in the permitted magazines on the site.
- 15. AEM will be applying to construct an all weather road from Rankin Inlet to the Meliadine site. This road will allow the delivery of fuel to the underground program in 2012 and 2013 when more fuel will be required than can be stored on site. Road construction would begin in September 2011 and will be completed within 6 months. The road is shown on figure 2.
- 16. An emergency airstrip is planned for 2011 and will be located within the first kilometre of the permanent road right-of –way as shown on figure 2.

7. Areas of Activity

Figure 3 shows the location of various activities.

- 1) **KNOWN GOLD DEPOSITS AND SURROUNDING AREAS:** Most diamond drilling will target the Tiriganiaq, Westmeg, F Zone, Pump, Wolf and Discovery Gold Deposits and nearby areas. These gold deposits will also have geotechnical drilling conducted on them where necessary.
- 2) **ASSESSMENT EXPLORATION** The FELSIC 1, FAY 4, FAY2 and TAN1 concessions require expenditures on them during this summer. AEM is currently evaluating this.

Prospecting and mapping activities will take place and diamond drilling is a possibility for these concessions.

- 3) The **ANT 1 Concession** is an active exploration area. No assessments costs are required for 2011, however AEM may decide to drill more holes on this target.
- 4) The **WOLF NW area** is an active area of exploration that requires more diamond drilling and some drill homes may be scheduled for this area.
- 5) **GEOTECHNICAL studies** are planned for the road alignment and stream/river crossings along the proposed route. Shallow drill holes penetrating down no more than 10 meters into bedrock are anticipated where crossing structures will be required. Both the Meliadine and Char rivers were drilled in 2010 to determine the depth of bedrock so as to allow the design of the bridge abutments.
- 6) **Claim PB1 and Concesssion ANT 3** host an interesting gold occurrence that may be drilled in concert with the road and bridge geotechnical program. AEM is also considering ground geophysics for these mineral parcels.

8. Period of Land Use Operations, 2011

January-February:

- Camp care and maintenance.
- M&T Enterprises constructs winter road from Rankin Inlet to site and ice airstrip on Meliadine Lake.
- Initiate preparation of a draft Environmental Impact Statement for the Meliadine Gold Project.
- Apply to build an all weather road between Rankin Inlet and the site.

February-May:

- Materials and fuel re-supply.
- Mobilize trailer camp and heavy equipment.
- Quarrying on island eskers in Meliadine Lake.
- Construct camp pad and fuel containment berm.
- Install fuel bladders.
- Restart diamond drilling, 4 rigs.
- Airlift approximately 23 tonnes of explosives direct to Meliadine Lake for storage in existing magazines.
- Camp installation.

April-May:

- Supplies and equipment mobilization by winter road.
- Underground contractor (Sakku/Procon JV) mobilizes to site.
- Reopening of portal site and portal.
- Accelerated diamond drill program, 6 rigs.

June-October:

- Summer drill program, 6 rigs.
- Geotechnical and environmental programs.
- Surface exploration (prospecting).
- Underground excavation of bulk sample.
- Processing of bulk sample at portal site.
- Demobilization of underground contractor
- Initiate the building of the all weather road.

October-December:

- Wind-down of diamond drill program
- Build the abutments for the bridges for the all weather road at the Meliadine, Char and M5.0 locations.
- Continue the construction of the all weather road.
- Camp care and maintenance.

9. Contractors

Diamond Drilling	Boart Longyear	Saskatoon	306-931-4466
Helicopter	Nunami Helicopter	Rankin Inlet	867-645-2805
Expediting	M&T Enterprises	Rankin Inlet	867-645-2778
Underground Mining	Sakku/Procon JV	Burnaby	604-291-8292
Camp Supply & Installation	Kivalliq Summit	Rankin Inlet	867-645-2400
Site Services	Inukshuk Const.	Halifax	902-429-0272

10. Workforce

The camp capacity and occupancy, by month, will be as follows:

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Capacity	75	75	75	173	173	173	173	173	173	173	173	173
Occupancy	18	48	75	111	104	112	112	112	98	48	5	2

Agnico-Eagle will hire local workers for camp and field assistance as required as per previous years. The local hires may be from Rankin Inlet, Chesterfield Inlet, Whale Cove or Arviat. Contractors all hire local personnel for their projects directly.

11. Environmental Management

Fuel on site at the Meliadine West camp is stored in double-walled fuel vaults (Envirotanks). It is Agnico-Eagle's intention to construct a fuel retention berm early in 2011 and install ten bladders of nominal 114,000-litre capacity, each. The following table shows the

capacities at the site. All bulk fuel at the site for 2011 will be stored in the steel Enviro-tanks and bladders.

12. Fuel Storage

			Capacity	(Litres)	
Location	Number	Size (lt)	Design	Actual	Description
Camp	3	50,000	150,000	141,000	Steel Enviro tanks
Tank Farm	11	50,000	550,000	517,000	Steel Enviro tanks
Camp - Jet A	3	50,000	150,000	141,000	Steel Enviro tanks
Tank Farm	10	114,000	1,140,000	1,000,000	Bladders

Drums: Some P50 and Jet A stored in drums at Meliadine East camp was brought to the Meliadine exploration camp when Meliadine East camp was demobilized in 2010. This fuel will be used up and the drums will be returned to Rankin Inlet for disposal at an approved site or future use by others.

Additionally, Agnico-Eagle retains some gasoline (< 10 barrels, as needed) in barrels for the operation of snowmobiles and small pumps. These are stored on a lined area at the tank farm.

13. Water Sampling

Water sampling on the Meliadine property has been taking place since the mid-1990's. Water sampling in the area of the Tiriganiaq gold deposit was initiated in detail in July, 2007 (before the start of site disturbance for the underground exploration decline), with a second set of water samples taken in the late fall of 2007 (before freeze-up). Water sampling continued in 2008, 2009 and 2010, with numerous sample sites tested. These are shown on figure 3. All of the results were compiled and distributed to the KIA and NWB as received and also compiled on a yearly basis in an annual report submitted to the NWB, the KIA, and other related agencies.

The program of water sampling will continue in 2011, with the first samples taken during spring melt. Water results vary from one sample set to the next, one month to the next. No consistent high patterns were noted outside of the primary containment area or outside the primary catchment basin (which includes Lake A54). Details are available in the annual water report. The location of the various sample sites are available in the **Meliadine Gold Project Water Management Plan** filed with the KIA, NIRB, and NWB or in the monthly or yearly water reports.

Detailed records of actual water consumption at both the camp and the portal site have been maintained since the fall of 2007. Water usage for the project is consistent with expectations and as presented in the various regulatory plans submitted in the past year.

Due to the NWB/INAC request for metering of flow through water use at the drills and the need to account for both direct and indirect water use, an amendment request has been filed with the Nunavut Water Board to allow maximum daily water use of 290 m3. This amendment was granted June 28, 2010.

For licence 2BE-MEP0813, an amendment was filed with the NWB to increase water use on the MEL East property to 299 m³/day on October 24, 2010. This amendment is pending.

14. Reclamation

All activities planned for the 2011 exploration season will be covered under the present reclamation bond / security deposit of \$950,000 that was posted by Comaplex for the project and taken over by Agnico-Eagle, and which is held by the Kivalliq Inuit Association. A separate security deposit for the same activities is held by the NWB for \$639,000. All management plans were updated in August, 2010, with final approvals pending.

- 1. INAC Permit N2006X0012 CWM Claims Winter Road final plan submitted,
- 2. INAC Permit N2005C0014 CWM Drill Permit (Superceded by N2007C0041),
- 3. Reclamation of the Meladine East Camp on Atulik Lake was initiated during the spring and summer of 2010. An anticipated timeline of activities is given below:
 - i. Winter 2010 Fuel and camp infrastructure overland transport to the Meliadine Lake,
 - ii. Summer 2010 Preparation of materials for winter backhaul, camp clean-up,
- iii. Winter 2011 demobilization of prepared materials, and
- iv. Summer 2011 Final clean-up and submission of Final Plan.

15. Contacts

Vice-President, Canada: Paul-Henri Girard	Cadillac office	819-874-7822
	Val D'Or office	819-759-3700
Area Manager, Nunavut: Denis Gourde	Cadillac office	819-874-7822
	Val D'Or office	819-759-3700
Project Manager: Eric Lamontagne	Cadillac office	819-874-7822
	Val D'Or office	819-759-3700
Exploration Manager: Denis Vaillencourt	Val d'Or office	819-874-5980
(primary contact)		
AEM Toronto head office		416-947-1212
M & T Enterprises, Hamish Tatty	Office	867-645-2778
		0.4-400-0
	Home	867-645-2973

Appendix A. Major Equipment on Site, November, 2010

Item	Year	Make/Model	Serial #	Comment
CAMP 75-kVA diesel generator #1 60-kVA diesel generator #2 50-kVA diesel generator coreshack genset	1998 1997	Caterpillar P62 Caterpillar D60 2005 Caterp		On site; main genset On site; main genset On site;
100-kVA diesel generator		2007 Caterp	illar D100P1S	On site; main
genset Pickup w/Mat-tracks Backhoe 35-kVA diesel generator #3	2006 2009	GMC Suburbar Kubota BX24 Lamborghini	1	On site On site On site; backup gense
OPERATIONS PAD Sample Tower Conveyor System	2007	2007 Gorf M Gorf Manufact	anufacturing uring	On site On site
EXPLOSIVES MAGAZINES Explosive Magazines (10)		2007 Walke	· Holdings,Type	e 4 9 empty
DECLINE TENT AND AREA 680-kVA generators (3) Drill jumbo Scissorlift Scooptram Scooptram Haul truck Tractor Crew cab / flat deck truck Light plant Compressor	2004 2007 2001 1994 1986	MTI Drift Runn MacLean EJC 210 Wagner ST-3.5 EJC 416 1999 John D 2007 Ford F	; eere MUT-5200	On site On site
DIAMOND DRILLS Diamond drills (3)		Longy	ear LF-70	On site
OTHER Snow machines (5) Quads (2) Portable gas powered gensets Honda portable generating ur Outboard motor and boat Computers, software, plotters Survey gear (several different Tents: Meliadine camp 50,000-litre steel double-wall 37,800 liter Arctic grade fuel	nits s, printe t instrur ed Envi	Bomba Variou Honda Yamah rs, satellite com nents) Variou Variou ro tanks (17)	s makes a munication sys s	On site On site On site On site On site On site Stems On site/Ranki On site On site On site
Meliadine Gold Project	Diauuci	Z007 SLI IIIC	Tusti ies	Work Plan 201

113,000 liter Arctic grade fuel bladder 2007	7	SEI Inc	lustries		On site
Insta-berm 200	7	Rayma	ıc		On site
Sewage Treatment Plant		2009	BIODISK		On site
Wash car 2009	9	ATCO			On site
Suburban pickup		2003	Chevrolet K2500 4x4	1	On site
Mattracks all-terrain tracks for Suburban		2008	Mattracks		On site

Meliadine Gold Project Work Plan 2011 December 2010 11

Appendix B: Heavy Equipment for Mobilization in 2011

The following heavy equipment will be mobilized to site over the early-2011 winter road:

Appendix B1: Equipment owned by Inukshuk Construction Ltd., Rankin Inlet

Excavators

1 Caterpillar 345

Loaders

- 1 Caterpillar 9801 Caterpillar 972
- Dozers
- 1 Caterpillar D8R with ripper
- 1 Caterpillar D6H with winch

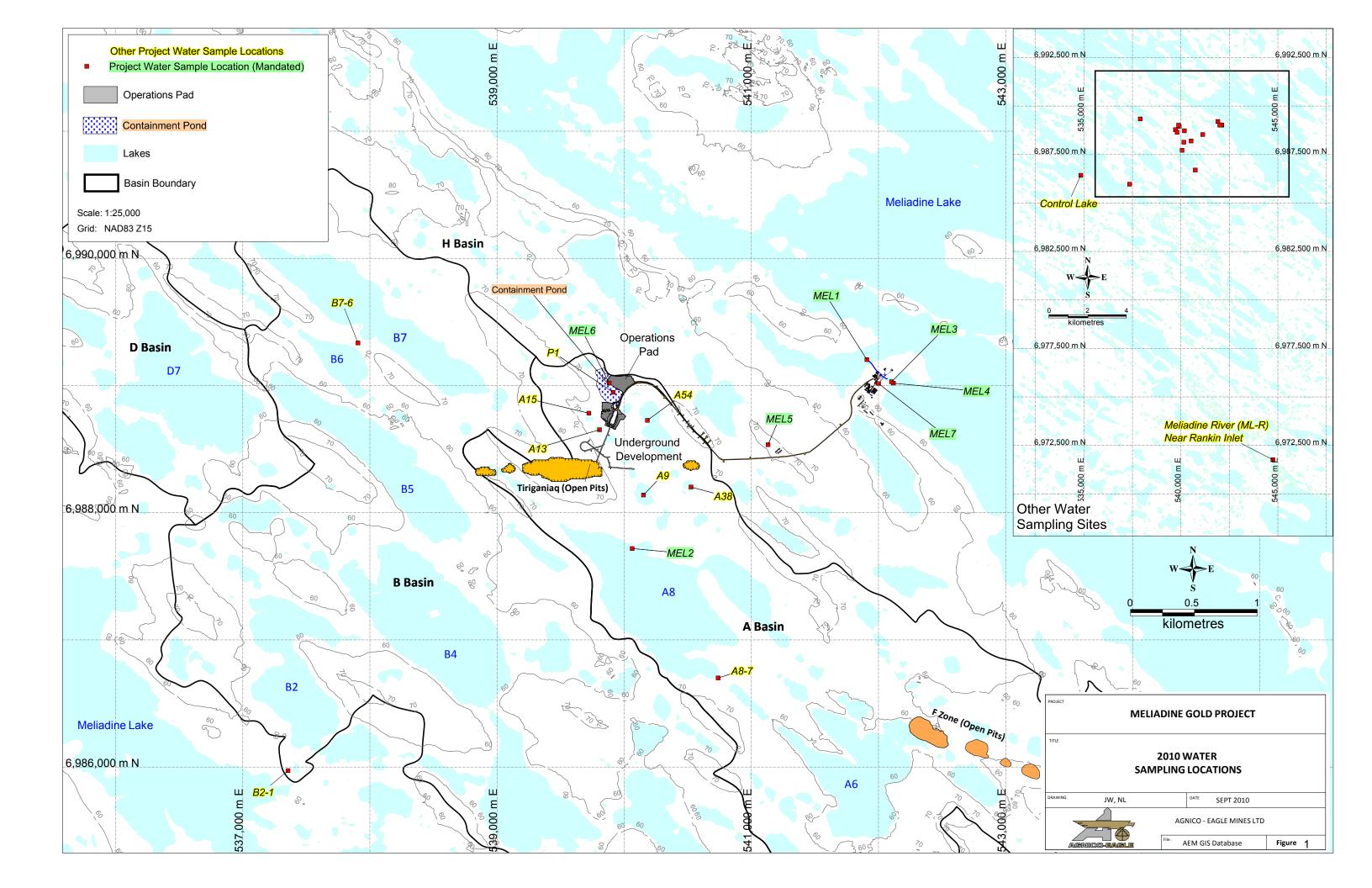
Trucks

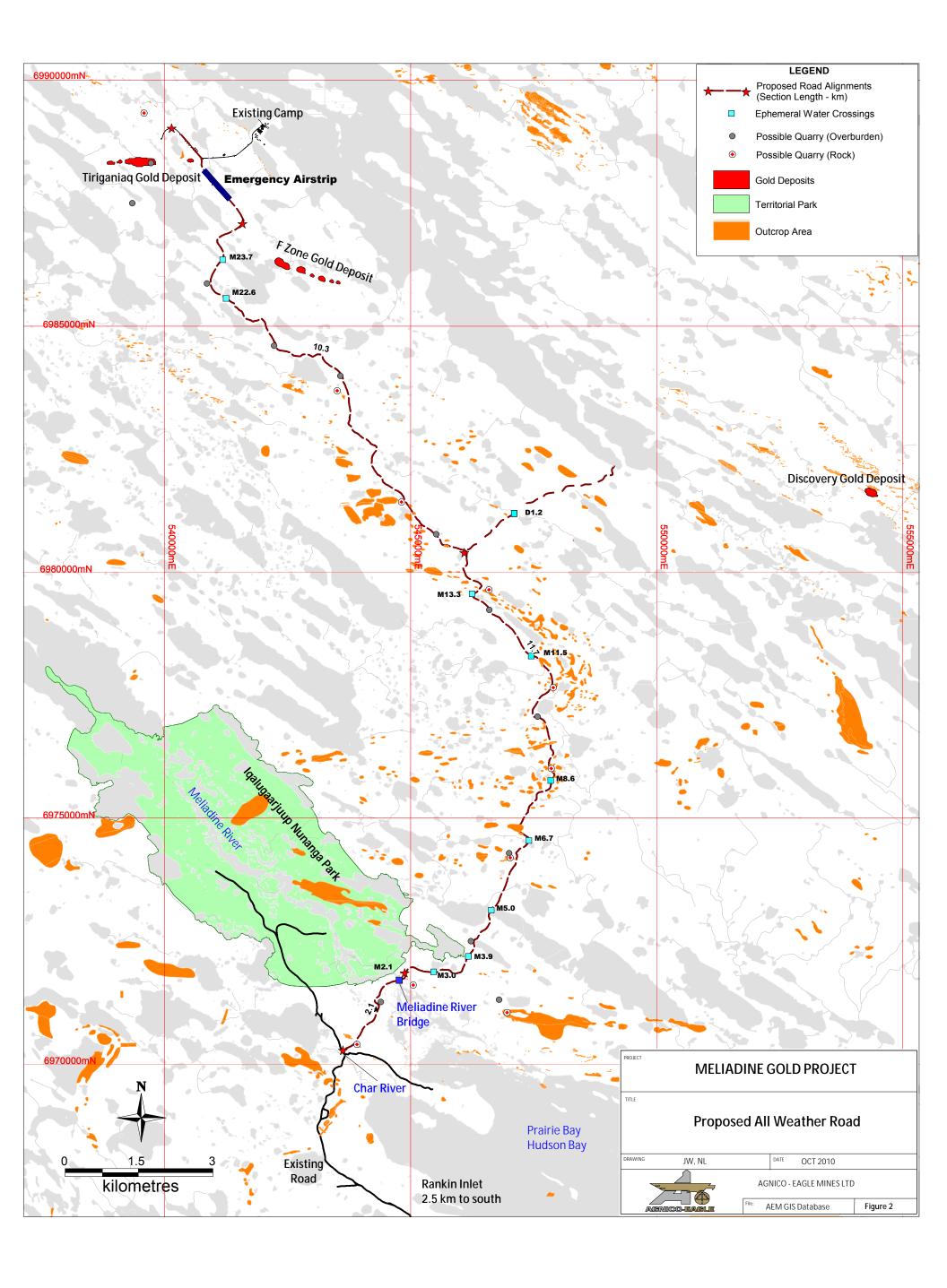
- 1 Caterpillar 735 Rock Truck
- 4 Tandem Rock Trucks

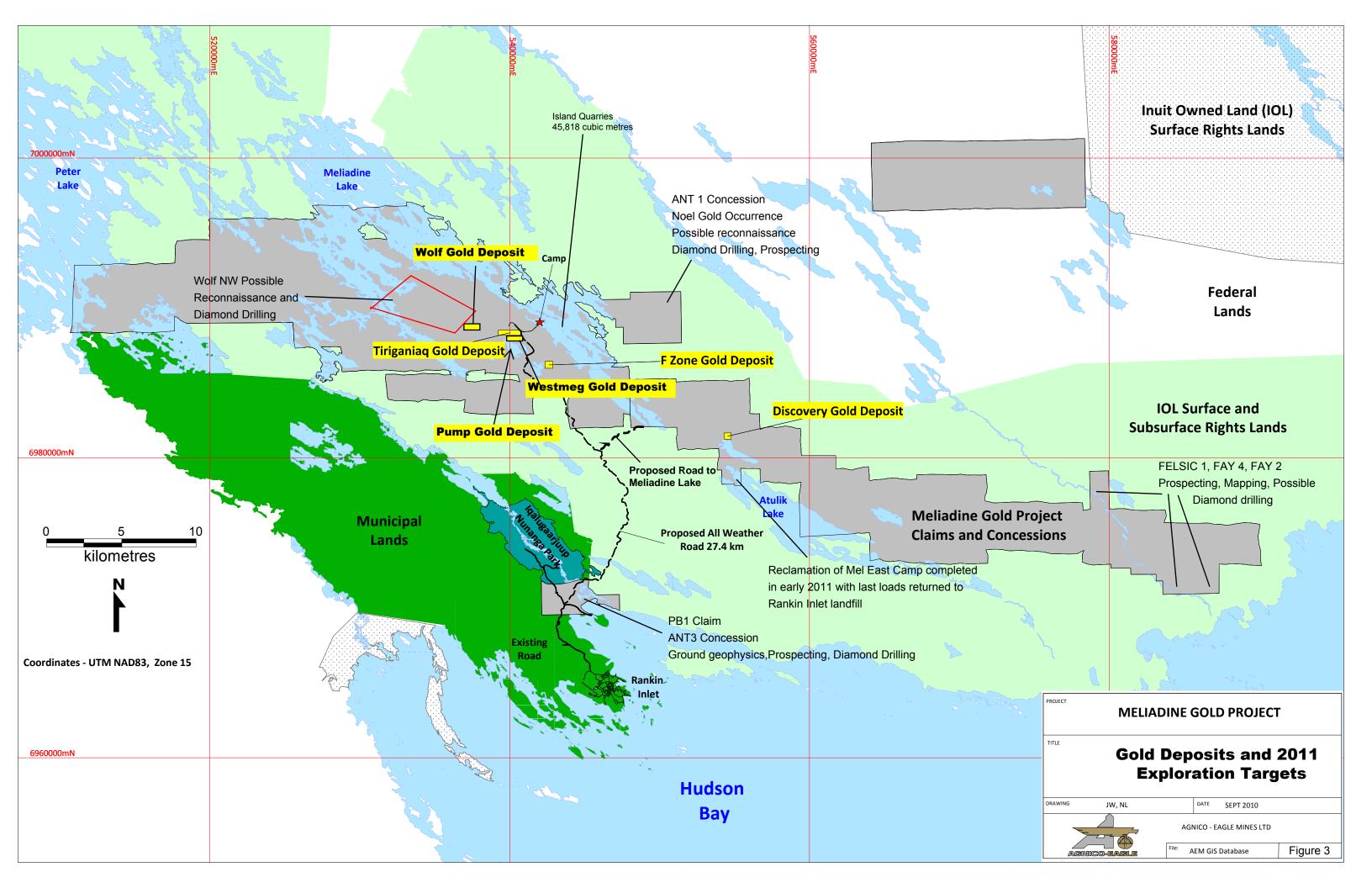
Compactor

1 Ingersoll Rand SD-100.

Crusher.


- 1 Nordberg LT105 Jaw Crusher
- 1 Nordberg HP-200 Cone Crusher
- 1 Nordberg HS-352 Screener


Miscellaneous


- 1 Fuel Truck
- 1 Welding Truck
- 2 Crew Cabs
- 1 Compressor, diesel, 210 cfm

Appendix B2: Equipment Owned by Agnico-Eagle Mines Ltd.

- 1 Caterpillar IT62 loader
- 1 Caterpillar 420E backhoe
- 1 Ford F250
- 1 Ford F350

Appendix C

Inspection Report 2010

and

Response to Inspection Report of 2010

November 3, 2010

John Witteman Comaplex Mineral Corp. Suite 901, 1015 4th St. SW Calgary, Alberta T2R 1J4

Re: Inspection of Water Licence 2BB-MEL0914

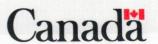
Dear: Mr. J Witteman

On July 20, 2010 an inspection of the above referenced site was conducted. Attached to this letter are my findings and observations contained in the "Inspection Report'. These documents should be kept on site for future reference and provided to the Water Resources Inspector upon request.

Please read the entire inspection report and in particular all comments and noncompliance issues. It is imperative that the company take action as soon as possible to bring any deficiencies into compliance with the "Water Licence" and minimize the impact of their operations on the surrounding environment.

Any work the company takes to correct the deficiencies note in this inspection should be documented and made available to any Inspector upon their request.

The "Water Licence" should be made available to all camp staff and reviewed on an ongoing basis or at a minimum at the opening of your camp each year. This will make everyone familiar with the requirements and any term and conditions.


If you have any concerns with respect to the inspection report or conditions of your "Water Licence" please feel free to call me at 867-975-4295 or Bryan Rayner at 867-975-4288 and we will do my best to clarify any questions you may have.

Yours truly,

Peter Kusugak

Field Operations

Nunavut Regional Office

Indian and Northern **Affairs Canada**

Affaires Indiennes et du Nord Canada

WATER USE INSPECTION REPORT

Date: July 20 , 2010	Licensee Rep. (Name/T Geologist and Herbert So	itle): Martin Eastwood/ Project Manager, Senior charer, camp manager
Licensee: Comaplex Mi	nerals Corp	Licence No: 2BB-MEL0914

WATER SUPPLY

Source(s): Meliadine Lake	Quantity used: <90 M³ Estimate only.
Owner:/Operator: Comaplex Mineral Corp/ Agnico Eagle (purchase summer 2010)	

Indicate: A - Acce	ptable U - Unacceptabl	e NA - Not Applicable	NI - Not Inspected
Intake Facilities: NI	Storage Structure: A	Treatment Sys: NA	Chemical Storage: NA
Flow Meas. Device:	Conveyance Lines: NA	Pumping Stations: NA	Screen : NA

Comments: Water is taken from Meliadine Lake for use in Camp. Water is run through filters and UV treatment prior to use in Camp. Water will be re-circulated in the intake line with an on-demand system feeding the camp.

WASTE DISPOSAL

Sewage: Incineration (Prim /Sec/Ter): No.

Natural Water Body:	Continuous Discharge (land or water): None	
Seasonal Discharge: NA	Wetlands Treatment: NA	Trench: NA

Grey water sumps: It was noted in the 2009 inspection report that work was needed in this area. Plans for new sump discharge have been approved and as soon as equipment is on site work will begin.

Indicate: A - Acceptable U - Unacceptable NA - Not Applicable NI - Not Inspected

Discharge Quality: NA	Decant Structure: NA Erosion: A			
Discharge Meas. Device: NA	Dyke Inspection: NA Seepages: A			
Dams, Dykes: A	Freeboard: A	Spills: A		
Construction: NI	O&M Plan: A A&R Plan: A			
Periods of Discharge: NA.	Effluent Discharge Rate: NA – not recorded			

Comments: Human waste is incinerated on site. Grey water is discharged from kitchen and dries to a sump. Work is to begin to improve sump discharge as soon as equipment is available on site.

Solid Waste:

Landfill: No	Burn & Landfill: NA	Other: Incinerated, ash back hauled
--------------	---------------------	-------------------------------------

Comments: Hazardous wastes are consolidated for shipment off site to approved hazardous waste storage area. An approved incinerator is on site. Metal wastes are shipped off site to Rankin Inlet. The area around the incinerator need to be improved so it does not become eroded from the activities in the area.

FUEL STORAGE:

Waste Oil Storage: Shipped off site Owner/Operator: Comaplex Minerals Corp. /Agnico-Eagle Ltd

Indicate: A - Acceptable U - Unacceptable NA - Not Applicable NI - Not Inspected

Berms & Liners: NI	Water within Berms: NA	Evidence of Leaks: NI	
Drainage Pipes: NI	Pump Station & Catchments Berm: NI		
Pipeline Condition: NI	Condition of Tanks: A- certification asked for by inspector		

Comments: It is important that the company ensures all fuels and liquid industrial wastes are place in acceptable secondary containment and that they are never with in 31 meters of any water body. Spill management plan dated July 2008 was available on site.

Indian and Northern Affaires Indiennes **Affairs Canada**

et du Nord Canada

Page 2

SURVEILLANCE NETWORK PROGRAM (SNP)

Samples Collected	Owner /Operator: Comaplex Minerals Corp. / Agnico-Eagle Ltd.

Samples Collected		Owner /Operator: Comaplex Minerals Corp. / Agnico-Eagle Ltd.	
Signs Posted	SNP: A		Warning: A
Records & Rep	orting: red	cords to be provided in	annual report
Geotechnical Ir	spection:	N/A	

Comments:

<u>Drillers Maintenance Shop</u>: Concerns were raise about the house keeping in the area surrounding this area and the inspector would like the company to look into the possible contamination of the ground around and under these buildings.

General comment of inspector and actions required by company:

As well as items note in the above text the company should take action in to following areas. Walk way through-out the camp should be distinguished so erosion is minimized. This could be accomplished by either boardwalks, gravel paths or something else the company feels would accomplish this.

An unapproved land-farm was observed during the inspection. An approval for this activity should be applied for and obtained or the material should be put into appropriate containers and removed from the site.

The company should ensure all waste are store appropriately on site as well as are disposed of at a licenced waste disposal facility that is able to handle these materials.

Bryan Rayner

Inspector's Name

Inspector's Signature

15 January 2011

Mr. Peter Kusugak, Manager, Field Operations Indian and Northern Affairs Canada Igaluit, Nunavut, XOA 0H0

RE: Inspection of Water Licence 2BB-MEL0914: Meliadine Gold Project: 10 July 2010

Dear Mr. Kusugak;

Agnico-Eagle Mines Limited, Nunavut Division (AEM) received the inspection report of 10 July 2010 prepared by Bryan Rayner. There is one point we would like to correct and this is in reference to the purported land farm at the site.

In 2008 upon the recommendation of the Kivalliq Inuit Association, soil stained with diesel fuel was placed on a liner at the underground exploration area. This liner was placed on the waste rock pad and within the drainage of the primary containment area. In 2009, analyses of the soil on the liner were undertaken and it was found that the soil quality meets the CCME Canada Wide Standard for Hydrocarbons in Soils for Residential/Parkland. With this being the case, AEM is of the opinion that the soil is remediated and no further action, monitoring, reporting or applying for approval for a land farm is required on our part. As a result we plan to leave the soil in place until such time the pad is expanded to accommodate future mine infrastructure.

We trust this addresses the point made in the inspection report that AEM should seek approval for a land farm.

Should have any concerns or questions, please do hesitate in getting touch with me at 819 277 5444 or jwitteman@agnico-eagle.com.

Yours sincerely,

John Witteman

Environmental Consultant

Cc. Denis Vaillancourt, Exploration Manager
David Frenette, Environment Coordinator, Exploration Division