RIGGING

- Loads should be well secured
- Slings should be adequate to the task
- Slings should be un-kinked and load balanced and secured
- No sudden stops
- No obstructions while lifting or traveling
- No loose items on load or crane before lift
- Bumping into runway stops is prohibited
- Hoist line must be vertical prior to the lift (remove slack in the hoist slowly)
- No crane load should pass overhead of personnel, clear the area before making the lift
- No one is to ride the crane without permission

The most important job of any crane operation is rigging of the load. Poor rigging may result in personnel injury, property damage, or other serious hazards. Rigging is the most time consuming of any crane operation and represents the single most hazardous potential of crane operation. In a multi-sling operation, each leg must be of the same length and must contribute equally to load distribution. Nylon slings are susceptible to damage by sharp corners on the item to be rigged. Caution must be taken to ensure that slings are not damaged by sharp corners or by excessive loading. Rigging requires years of practice to perfect. If in doubt about the security of your rigging, ask for help. Rigging should be checked by lifting the load a few inches off the ground to ensure that no swing develops and that the load is completely secure. Remember it is important to take the time to accomplish this task correctly. Not doing so may result in catastrophic consequences. One of the most important things to check before lifting a load is to look for loose items. such as screws or tools, which may have been used to secure the load. Such items can become projectiles during a lift. This is the reason why crane operators or especially tag line operators should wear hard hats when operating the crane and why it is essential to make sure the path of the crane does not pass over the head of any individual.

Spreader bars must be used when lifting the B30. Slings are to be attached at the lifting lugs located at the Four Inside Corners of the B30.

34, 200 Lbs
3,650
4,634
3,900
22,000

Overall Dimensions 311 Inch Long x 143 Inch Wide x 186 Inch High

(Refer to the General Arrangement Drawing for exact dimensions)

The following handling and installation instructions are intended to help customers install the RBC properly and efficiently.

Handling and installation instructions are only recommendations. They do not relieve the purchaser from full responsibility for proper inspection, handling and installation. Improper handling or installation, which results in damage or tank failure, is the sole responsibility of the purchaser. Failure by the customer to comply with the handling or installation instructions will void the tank warranty. Unknown situations or conditions are also the burden of the purchaser.

The presence of SEPROTECH SYSTEMS personnel or an authorized representative at the installation site does not relieve the purchaser of their responsibilities.

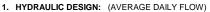
DO NOT fully assemble RBC prior to lifting. First install the tank, and then assemble the shaft and other components onto installed tank.

INSPECTION

At the time of delivery, the customer shall be responsible for inspecting the tank for damage during transit. Both the inside and the outside of the tank must be inspected. If damage has occurred it should be noted on the delivery receipt prior to signing acceptance, whether it be a SEPROTECH SYSTEMS truck of common carrier. If a SEPROTECH SYSTEMS truck makes delivery, the factory should be immediately contacted prior to unloading or acceptance. The customer accepts all future responsibility for a damaged tank if the procedures set forth are not followed.

Minor damage can be repaired at the delivery site.

SEPROTECH SYSTEMS tanks are designed to withstand normal handling. Note the following handling precautions:


- 1. NEVER roll or slide a RBC. Lift the tank using a crane or other approved method.
- 2. Operators of hoist equipment should follow proper rigging procedures at all times. NEVER allow RBC to swing out of control.
- 3. Do not drop or allow hard impact from tools, spreader bars, etc.
- 4. Avoid the use of equipment inside the tank that could scratch or damage the inner corrosion barrier.
- 5. NEVER use cables or chains around tank.
- 6. NEVER lift tank by using fittings. Use designated lifting lugs.
- 7. If RBC is being stored prior to installation, be sure to lay on padded surface and tie down securely.

DESIGN BRIEF

SHANCO NUNAVUT - RETRO-FIT

*Note that since this is a retro-fit that has not been tested in the field, effluent values are target values.

1 unit at	14	m3/day =	14	m3/day = Q
Peak Flow	41			
design based on a	24	hour day.		

2. INFLUENT PARAMETERS:

2. INFLUENT PARAMETERS:			Ontario Application?	n	y/n
BOD (biochemical oxygen demand) =	491	mg/l	Designated Model?	у	y/n
SS (suspended solids) =	491	mg/l	What Model?	B30	MODIFIED
TKN =	70	mg/l			with extra media
Phosphorus =	n/a	mg/l	In concrete tank?	Full Steel	
· <u> </u>		=			

3. TREATED EFFLUENT QUALITY:

BOD (biochemical oxygen demand) =	20	mg/l
SS (suspended solids) =	20	mg/l
NH3-N =	2	mg/l this effluent of
Phosphorus =	n/a	mg/l

concentration is expected after the retro-fit

4. R.B.C. SURFACE AREA REQUIRED (AO):

a) Removal in Primary Settling Tank (P.S.T.)

a) Removal in Filmary Setting Fank (,,			
Primary BOD Removal =	10%			(Ref.1)
Primary Tank. Eff. BOD =	490.9090909	mg/l x	90%	
to RBC =	441.8181818	mg/l		
b) RBC BOD Loading.				
Applied Load =	441.8181818	mg/l	14	m3/day
	5.96	kg BOD/day		
c) Area required to reduce BOD to			20 mg/l (AO)	
Applied Load =	5.96	kg BOD/day	5.96	kg BOD/ day
For	20	mg/l* use	1.95	kg/day/100 m2 (*in a nitrification application, reduce
	306	m2		BOD to 30 mg/l, the nitrification

TABLE #1 **BOD REMOVAL RATES** Seprotech Curve

process completes the BOD reduction)

	Sepiole	on Guive	
Req. effl.	lbs/day/1000 ft2	kg/day/100 m2	1
5	1.25	0.61	1
10	2.65	1.29	
15	2.00	0.98	* For effluent strengths less than 20 mg/l, filtration
20	2.65	1.29	is required. Filtration removes the sloughed
25	3.35	1.64	biomass 50% of which is BOD. Therefore, to obtain
30	4.00	1.95	effluent strengths of 5 and 10 mg/l BOD use the
35	4.60	2.25	loading rates for 10 and 20 mg/l respectively with
40	5.15	2.52	filtration.
50	6.00	2.92	
60	7.15	3.52	
70	8.28	4.05	No temperature
80	9.40	4.59	correction required
90	10.53	5.13	Refs. 13,14,&15
	USE	1.95	1

d) NH3-N to be removed

a) NH3-N to be removed											
(Assume Organic Nitrogen is con	verted to Ammo	nia NH3)									
Removed to	5	mg/l	=		70	les	ss	5	times	13,500	litres/day
=	0.88	kg/day	=		1.93	lb/d	lay				
Area Required to reduce NH3-N to	5	mg/l				_					
=	0.88	kg/day		over	0.147	kg NH3-N	l/day/100 m	12	(Ref. 12)		
=	597	m2	=								
Residual NH3-N to be removed	_						_				
below 5 mg/l =	5	mg/l	less		2	mg/l ti	imes	13,500	litres/day		
Area Required to reduce NH3-N to	0.041	kg/day									
Alea Required to reduce NH3-N to	0.041	kg/day		over	0.089	ka NH3-N	I/day/100 m	12	(Ref. 12)		
	46	- '	=	0.00	0.000	g	, aay, . oo	-	. ,	2 - Brenne	ar .
Total Nitrification Assa Described						(D-(40)					-
Total Nitrification Area Required =	642	m2	=			(Ref. 12)			Req'd NH3-N		
									concentratio		
e) Total Surface Media Required										(kg/day/	
Total Surface Media Required =	948	m2							(mg/l)	100m2)	
									1	0.037	7
f) Staging									1.5	0.061	Ī
Hydraulic Loading	(0.13 L/d/m2							2	0.089	9
B.O.D.post primary	!	5.96 kg BOD/c	lay						2.5	0.110)
Media req'd(B.O.D)		306 m2							3	0.123	3
Media req'd(nitrfct'n)		642 m2							3.5	0.135	5
Total req'd		948 m2						No temperature	9 4	0.147	7
Min req'd to prevent 1st st. overload		192 m2					C	orrection require	d 4.5	0.147	7
Min req'd to prevent 2nd st. overload		71 m2						Refs. 13,14,&1	5 5	0.147	7

DESIGN BRIEF SEPROTECH SYSTEMS INC.

Media Distribution After Retro-fit

	ACTUAL AREA (m2)
First Stage	205
Second Stage	140
Third Stage	784
Fourth Stage	0
TOTAL	1,129

Minimum First Stage Media Area

Maximum loading to prevent first stage overload = kg/day/100 m2 5.96 kg of post primary BOD/day divided by max. loading times 100 m2 192

> BOD remaining for 2nd Stage = kg/day Minimum Media 2nd Stage = 71.38

5. PRIMARY SETTLING TANK (P.S.T.) (per RBC unit):

a) Primary Settling Tank Influent Flows	i	(per RBC unit)			
Average Daily Flow =	13,500	litres/day			
Recycle at	507%	% =	68472	litres/day	The actual volume per bucket may change in the field
Total Average Flow =	81,972	litres/day			depending on how much wastewater each bucket
Peak Daily Flow =	40,500	litres/day			picks up
Peak Flow including Recycle =	108,972	litres/day			

b) Loading Rates

Average Overflow Rate = 16,000 Litres/day/m2 (Ref.5) Peak Overflow Rate = 24,000 Litres/day/m2 (rounded) (Ref.7) Detention Time = hours use 4 hrs (Ref.6)

> 14.0 m2

3 m2

c) Surface Area Required

i) by Average Overflow Rate = Total Average Flow divided by Average Overflow Rate 5.12 m2 ii) by Peak Flow Rate = Peak Flow divided by Peak Overflow Rate 4.54 m2 Therefore, use 5.12 m2 to compare with actual area of P.S.T.

3.35 m x P. S. T. Surface Area for Model B30 4.19

> Safety factor of: times supplied. Therefore Surface Area Acceptable

Volume Required Q x Detention Time / 24 hrs / day 2.3 P.S.T. Tank Capacity for this B30 27 m3 (after allowance for sludge) 12.0 safety factor Therefore Volume Acceptable

6. FINAL SETTLING TANK (F.S.T.):

a) Loading Rates

Average Overflow Rate = 24000 Litres/day/m2 [Ref. 10] Peak Overflow Rate = 44822 Litres/day/m2 [Ref. 10] Detention Time = 3 hours

b) Surface Area Required

F. S. T. Surface Area for Model

i) by Average Overflow Rate Average Flow divided by Average Overflow Rate 0.56 m2 ii) by Peak Flow Rate = Peak Flow divided by Peak Overflow Rate 0.30 m2

Therefore, use 0.56 m2 to compare with actual area of F.S.T. B30

> Safety factor of times supplied. Therefore Surface Area Acceptable

Volume Required Q x Detention Time / 1000 / 24 hrs / day 1.7 4.0 m3 F.S.T. Tank Capacity for this B30 (after allowance for sludge) safety factor

Therefore Volume Acceptable

DESIGN BRIEF SEPROTECH SYSTEMS INC.

3.35 m x

1.0

7. SLUDGE CALCULATIONS:

Assumptions	Used for	Calculation	of Sludge	Accumulation

1. Inlet 155:	491	mg/i
2. Outlet TSS:	20	mg/l
3. Inlet BOD5:	491	mg/l
4. Outlet BOD5:	20	mg/l
5. Average Daily Flow:	34	m3/day
6. Proportion of inlet BOD5 soluble:	70%	
7. Total incoming solids	16.57	kg/d
8. Inert portion of solids (30%)	4.97	kg/d
9. Assuming Aerobic digester removal efficiency, 50%.	5.80	kg/d
10. BOD removed in secondary treatment	14.24	kg/d
11. Sludge produce due to BOD removal	4.27	kg/d
12. Aerobic digester removal efficiency 50%.	2.14	kg/d
13. Total sludge produced per day	12.90	kg/d
Information Pertaining to the ROTORDISK Used in Calculation of Sludge Accumulation		

1. All sludge accumulates in the PST	(sludge settled in the FST is pumped back to the PST).

2. PST Surface Area:	14.0 m2
3. PST Volume:	27.0 m3
4. PST Sludge Storage Capacity:	13.5 m3

TOTAL Mass of sludge produced that accumulates in the PST:

Volume of Wet Sludge produced Daily:	0.2581	m3/day
Depth of Wet Sludge produced Daily:	0.0184	m/day
Frequency of Pump-Outs:	52	days

12.9 kg/day

SUMMARY OF REFERENCES

excerpt from "Design of Municipal Wastewater Treatment Plants Volume 1", Chapters 1-12, WEF Manual of Practice No. 8, ASCE Manual and Report on Engineering Practice No. 76, p. 475, which states, "Sedimentation with coagulation may remove 60 to 90% of the TSS, 40 to 70% of BOD5, 30 to 60% of COD, 70 to 90% of the Phosphorus, and 80 to 90% of the bacteria loadings. In comparison, sedimentation without coagulation, may remove only 40 to 70% of the TSS, 25 to 40%of the BOD5, 5 to 10% of the Phosphorus loadings, and 50 to 60% of the bacteria loadings."

excerpt from "Manual of Policy, Procedures and Guidelines for Private Sewage Disposal Systems, Ontario Regulation 374/81 under part VII of the Environmental Protection Act", May 1982, ISBN 0-7743-7303-2, section 12.7.1, which states, "if it is a system operating on the rotating biological disc or similar principle involving contact of the biomass with air, provide a disc area so that the daily loading of sewage will not be in excess of 1.25 kg of BOD5 per 100 sq.m. of disc area, or a hydraulic loading in excess of 45 l/sq.m. of disc area".

excerpt from "Pilot Plant Studies of Rotating Biological Contactors treating municipal Wastewater", by: K.L. Murphy and R.W. Wilson, International Environmental Consultants Ltd., Toronto Ontario, prepared for Central Mortgage and Housing Corporation, Ottawa, Ontario.

excerpt from "Design of Municipal Wastewater Treatment Plants Volume 1", Chapters 1-12, WEF Manual of Practice No. 8, ASCE Manual and Report on Engineering Practice No. 76, p. 776, which states, "...whenever the first stage loading limit exceeded 3.1 kg BOD5/100 sq.m.day(6.4 lbs. BOD5/d/1000 sq.ft.), the system was associated with the presence of sulfur-oxidizing organisms".

excerpt from "EPA Process Design Manual, On-site Wastewater Treatment and Disposal Systems", Oct 1980, EPA 625/1-80-012, section 6.4.2.4.e., p.149, which states, "...average flow design values normally range from 200 to 400 gpd/sq.ft.(8 to 16 cu.m./d/sq.m.)".

excerpt from " O&M of Trickling Filters, RBC's, and Related Processes, Manual of Practice OM-10, 1988, Water Pollution Control Federation, p. 105, which states, "Weir overflow rates typically range from 125 to 250 cu.m./m.d (10,000 to 20,000 USgpd/ft.)...The wastewater detention time in a settling basin is normally between 1 to 3 hours, but has been as high as 10 hours with excellent results". [use 4 hours]

excerpt from "EPA Process Design Manual, Wastewater Treatment Facilities for Sewered Small Communities", Oct 1977, EPA-625/1-77-009, section 6.4.2., which states, "the peak overflow rate may be 2,500 to 3,000 USgpd/sq.ft. (100 to 120 cu.m./sq.m.d) for primary clarifiers followed by biological treatment processess".

" Clarifiers handling chemical flocs, such as aluminum or iron coagulants, should be designed for peak overflow rates no longer than 600 and 800 USgpd/sq.ft.(24 and 32 cu.m./sq.m.d)".

excerpt from "Design of Municipal Wastewater Treatment Plants Volume 1", Chapters 1-12, WEF Manual of Practice No. 8, ASCE Manual and Report on Engineering Practice No. 76, p. 484, which states, "TSS removal efficiencies in primary sedimentation tanks usually range between 50 and 65%. Many designers assume a removal efficiency of 60% for

DESIGN BRIEF SEPROTECH SYSTEMS INC.