NWB Annua	l Report		Year being reported: 2007 ▼	
License No:	2BE-GOO051	10	Issued Date: March 11, 2005 Expiry Date: March 31, 2010	
	Project Name	e:	Goose Lake Camp	
	Licensee:	Dund	ee Precious Metals	
	Mailing Addr	ess:	Suite 3060, Royal Bank Plaza 200 Bay Street Toronto, ON M5J 2J1	
			filing Annual Report (if different from Name of Licensee please clarify ne two entities, if applicable):	7
	As above.			
General Bac	kground Infor	matio	n on the Project (*optional):	_
	Mineral explor	ation i	ncluding diamond drilling.	
with	Part B	 	Item 2	
			and waste disposal activities, including, but not limited to: me eywater management; drill waste management; solid and haza	
waste manag		ila gi	by water management, arm waste management, some and maze	li dodo
	Water Source Water Quanti	` '	Goose Lake and unnamed lakes in vicinity of drilling 130 Quantity Allowable Domestic (cu.m/day) 6.7 Actual Quantity Used Domestic (cu.m/day) Quantity Allowable Drilling (cu.m) Total Quantity Used Drilling (cu.m)	
	Solid W Sewage Drill W Greywa Hazard Other: Additional De	Vaste Diseaste aster lous tails: ined 13 s cond	t and/or Disposal sposal 30 m3/day allowable for domestic use and drilling/trenching. lucted on any of the Goose Lake, Boulder Pond or Boot Lake	
	Details of haz	ardous	s waste shipped out of camp are attached.	

A list of unauthorized discharges and a summary of follow-up actions taken.

Spill No.: 07-168 (as reported to the Spill Hot-line)

Date of Spill: April 18, 2007

Date of Notification to an Inspector: April 18, 2007

Additional Details: (impacts to water, mitigation measures, short/long term monitoring, etc)

The spill was completely contained and cleaned up. An improved marking system was developed to aid in future snow clearing operations and avoid equipment-fuel drum collisions.

Another small spill occurred early in the morning of April 2. During a fuel transfer from Hercules aircraft to the bulk storage tanks, approximately 10L was released to the ground resulting from a transfer pump mislatch. The spill was completely contained and cleaned up. The volume was below DPM's threshold for reporting (25L), so an internal report was generated and filed.

Revisions to the Spill Contingency Plan

Other: (see additional details)

Additional Details:

A 2007 Spill Contingency Plan was submitted to the NWB in December 2006. Revisions to this document were resubmitted in July, 2007. An addendum to the 2007 Plan was requested in December, 2007 requesting that the plan be updated specific to the Goose Lake camp. In light of the timing of the request, in lieu of an addendum, the Plan was rewritten and resubmitted for the 2008 season on March 10, 2008.

Revisions to the Abandonment and Restoration Plan

Other: (see additional details)

Additional Details:

A 2007 Spill Contingency Plan was submitted to the NWB in December 2006. Revisions to this document were resubmitted in July, 2007. An addendum to the 2007 Plan was requested in December, 2007 requesting that the plan be updated specific to the Goose Lake camp. In light of the timing of the request, in lieu of an addendum, the Plan was rewritten and resubmitted for the 2008 season on March 10, 2008.

Progressive Reclamation Work Undertaken

Additional Details (i.e., work completed and future works proposed)

Cleanup activities are ongoing across the entire Back River project. Numerous pallets of waste material, old equipment and crushed fuel drums have been stockpiled at Goose Lake for backhaul on Hercules supply flights during 2008.

Results of the Monitoring Program including:

The GPS Co-ordinates (in degrees, minutes and seconds of latitude and longitude) of each location where sources of water are utilized;

	Details described below
	Additional Details:
	65*32'42" N, 106*25'29" W - domestic water source for camp
	The GPS Co-ordinates (in degrees, minutes and seconds of latitude and longitude) of each location where wastes associated with the licence are deposited;
	Details described below
	Additional Details:
	65*32'37" N, 106*25'36" W - Incinerator 65*32'39" N, 106*25'39" W - Greywater sump 65*32'30" N, 106*25'35" W - Drill cuttings sump (cuttings captured at rig with megabag system)
	Results of any additional sampling and/or analysis that was requested by an Inspector
	Additional sampling requested by an Inspector or the Board (See below)
	Additional Details: (date of request, analysis of results, data attached, etc)
	Water samples were collected prior to discharging meltwater from the bermed fuel storage area. Tests were negative for BTEX, F1, F2 hydrocarbons (results attached).
	During an inspection in July, 2007, the inspector requested samples be taken of the meltwater which accumulated in the exploration trenches at Goose Lake. A report outlining those results is attached.
Any other de	etails on water use or waste disposal requested by the Board by November 1 of the year ed.
J I	No additional sampling requested by an Inspector or the Board ▼
	Additional Details: (Attached or provided below)
Any respons	ses or follow-up actions on inspection/compliance reports
	Inspection Report received by the Licensee (Date):
	Additional Details: (Dates of Report, Follow-up by the Licensee) Inspection report received October 26, 2007.
	Copies of plans associated with the bulk fuel storage area were requested, and are attached to this report.
	Approval for the Trenching Plan was requested, and is attached to this report.

Any additional comment	s or infor	mation for the Board to consider		
Date Submitted:	March 3	31, 2008		
Submitted/Prepared by:	Dan Ru	ssell, P.Geo.		
Contact Information:	Tel:	416-365-2841		
	Fax:	416-365-9080		
	email:	drussell@dundeeprecious.com (preferred method)		
			4	

Date	Packing Slip Number	ltem	Quantity	Disposal Facility	Receiver Number	Comments
13-Jun-07	50	HC contaminated soils	138 drums	Newalta Corp., Leduc, AB	AHR 10052	Disposal coordinated through
		HC contaminated water	1 drum			Discovery Mining Services
31-Jul-07	63	Waste flammable liquids	4 drums	Clean Harbours, Ryley, AB	ABR 1089	and KBL Environmental,
		Lube oil w/ lead	1 drum			Yellowknife.

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

ANALYTICAL REPORT

DUNDEE PRECIOUS METALS

ATTN: DAN RUSSELL

3060 - 200 BAY STREET

ROYAL BANK PLAZA, SOUTH TOWER

TORONTO ON M5J 2J1

Reported On: 18-JUL-07 10:03 AM

Revision: 1

Lab Work Order #:

L519167

Date Received: 18-JUN-07

Project P.O. #:

Job Reference:

Legal Site Desc:

CofC Numbers:

A048058

Other Information:

Comments:

RON MINKS

Director, Western Canada Operations

For any questions about this report please contact your Account Manager:

ALAINA HUNTER

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd.
Part of the ALS Laboratory Group

9936-67 Avenue, Edmonton, AB T6E 0P5

Phone: +1 780 413 5227 Fax: +1 780 437 2311 www.alsglobal.com

A Campbell Brothers Limited Company

Sample Details/Parameters	Result	Qualifier* D.L.	Units	Extracted	Analyzed	Ву	Batch
L519167-1 TF-001							
Sampled By: NOT PROVIDED on 17-JUN-07 @ 16:30							
Matrix: WATER							
BTEX, F1 (C6-C10) and F2 (>C10-C16)		A CONTRACTOR OF THE CONTRACTOR					
BTEX and F1 (C6-C10)		TA PER					
Benzene	<0.00050	0.0005	mg/L	29-JUN-07		MDD	R542564
Toluene	<0.00050	0.0005	mg/L		29-JUN-07	MDD	R542564
EthylBenzene	<0.00050	0.0005	mg/L		29-JUN-07	MDD	R542564
Xylenes	<0.00050	0.0005	mg/L	29-JUN-07 29-JUN-07		MDD	R542564
F1(C6-C10) F1-BTEX	<0.1 <0.1	0.1	mg/L mg/L	29-JUN-07		MDD MDD	R542564 R542564
F2 (>C10-C16)	V 0.1	0.1	mg/L	23-3014-07	23-0011-07	IVIDD	11342304
F2 (>C10-C16)	<0.05	0.05	mg/L	22-JUN-07	23-JUN-07	GRB	R540170
Surr: 2-Bromobenzotrifluoride	100	65-146	%	22-JUN-07		GRB	R540170
L519167-2 TF-002	,		18				
Sampled By: NOT PROVIDED on 17-JUN-07 @ 16:30							
Matrix: WATER		The state of the s					
BTEX, F1 (C6-C10) and F2 (>C10-C16)		The second secon					
BTEX and F1 (C6-C10)							
Benzene	<0.00050	0.0005	mg/L	29-JUN-07	29-JUN-07	MDD	R542564
Toluene	<0.00050	0.0005 0.0005	mg/L	29-JUN-07 29-JUN-07		MDD	R542564
EthylBenzene Xylenes	<0.00050 <0.00050	0.0005	mg/L	29-JUN-07 29-JUN-07		MDD MDD	R542564 R542564
F1(C6-C10)	<0.1	0.0005	mg/L mg/L	29-JUN-07		MDD	R542564
F1-BTEX	<0.1	0.1	mg/L	29-JUN-07		MDD	R542564
F2 (>C10-C16)	-0.1	0.1	9, _	25 5511 51	20 00.1 0.	WIDD	110 12001
F2 (>C10-C16)	<0.05	0.05	mg/L	22-JUN-07	23-JUN-07	GRB	R540170
Surr: 2-Bromobenzotrifluoride	113	65-146	%	22-JUN-07		GRB	R540170
* Refer to Referenced Information for Qu	alifiers (if any) and N	Methodology.					
						-	

Reference Information

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Preparation Method Reference(Based On)	Analytical Method Reference(Based On)
BTX,F1-ED	Water	BTEX and F1 (C6-C10)	EPA 5030	EPA 5030/8015&8260-P&T GC-MS & FID
F2-ED	Water	F2 (>C10-C16)		EPA 3510/8000-GC-FID
	8		** Laboratory Methods employed follow generally based on nationally or interna	
Chain of Custody	numbers:			
A048058				
The last two letter	rs of the above	test code(s) indicate the labor	ratory that performed analytical analysis for the	at test. Refer to the list below:
Laboratory Definit	tion Code L	aboratory Location	Laboratory Definition Code	Laboratory Location
ED	-	LS LABORATORY GROUP - DMONTON, ALBERTA, CAN	ADA	

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds. The reported surrogate recovery value provides a measure of method efficiency. The Laboratory control limits are determined under column heading D.L.

mg/kg (units) - unit of concentration based on mass, parts per million.

mg/L (units) - unit of concentration based on volume, parts per million.

< - Less than.

D.L.. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. UNLESS OTHERWISE STATED, SAMPLES ARE NOT CORRECTED FOR CLIENT FIELD BLANKS.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

Back River Environment Exploration Trench Water Sampling Report

March 28, 2008

Background

During an inspection by Indian and Northern Affairs Canada in July of 2007, the exploration trenches behind the camp at Goose Lake were noted to have water in them. This item was raised as an issue of concern by the inspector due to the possibility of metals leaching from the bedrock to the water and potential impacts should the water drain from the trenches to the surrounding environment and ultimately into Goose Lake.

At the time of the inspection, the inspector requested that Dundee Precious Metals collect water samples to determine the potential impacts on any receiving water body. In the inspector's report dated October 26, 2007, it was stated that results from testing were not conclusive, with elevated levels of trace metals above the CCME Guidelines for the Protection of Aquatic life noted. A directive was issued to develop a plan to address the water collected in the trenches. This report outlines the results of sampling events conducted by Dundee Precious Metals as well as by Gartner Lee Limited as part of their environmental baseline program in 2007. Recommendations for addressing the collection of water are included in the conclusion.

Physical Setting

The trenches are located approximately 300 m south of the camp at Goose Lake (Figure 1). The only source of water to the trenches is precipitation, primarily from annual melt of snow which accumulates over the winter months, with minimal supplemental amounts of rainfall during the summer.

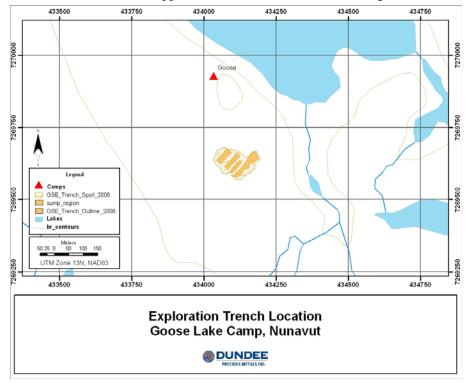


Figure 1. Location of the exploration trenches at Goose Lake, Nunavut.

Overburden from the construction of the trenches was pushed to the northeastern end, creating a physical barrier between the trenches and the stream and Goose Lake to the east and north. The lowest points (potential discharge points) for the trenches are at the southwestern end of each. At the time of sampling on July 9, 2007, the level of water in the trench which was sampled was below the lowest point along the rim, therefore there was no drainage occurring. Drainage is most likely to occur during freshet, with the water flowing out to the tundra southwest of the trenches, and eventually east to southeast toward the small stream which drains into Goose Lake. The primary source of outflow during the summer months is evaporation.

Sampling Procedures

A total of 2 samples were collected at the northeast and southwest ends of Trench #2 (second from left in Figure 1). These samples were labeled BR-TR01 and BR-TR02. A third sample, BR-TR03 was collected from standing water on the tundra approximately 15 m to the southwest of the trenches for comparative purposes, as this would be the first source of water contacted prior to entering the stream to the east.

Appropriate sampling supplies were obtained from ALS Laboratories in Yellowknife and consisted of 3 250 mL bottles for routine analysis (pH, conductivity, hardness, nutrients and major ions) and 3 125 mL bottles for trace metal samples. Each sample bottle was rinsed 3 times with a small amount of the water to be sampled. Field measurements of pH, conductivity, TDS and temperature were collected at the time of sampling.

The trace metal samples were filtered through $0.45 \mu m$ membranes and acidified with ultrapure HNO₃. All samples were kept cool with ice packs until delivered to ALS in Yellowknife for transport to the lab in Edmonton.

Analytical Results

Field measurements from the water sampling event are presented in Table 1 along with comparative lab values.

Sample ID	рН			Conductivity (μS/cm)		TDS (mg/L)		ture (°C)	Notes
	Field	Lab	Field	Lab	Field	Lab	Field	Lab	
BR-TR01	7.56	7.8	358	380	189	200	15.5	NA	Northeast end of trench #2
BR-TR02	7.58	7.8	366	383	195	201	15.7	NA	Southwest end of trench #2
BR-TR03	3.66	3.9	1242	1270	659	584	19.0	NA	Tundra

Table 1. Field measurements collected during trench water sampling event July 9, 2007

The analytical report from ALS Laboratory Group follows this report. Analytical values for pH, conductivity and TDS are in strong agreement with those collected in the field.

There is little to no difference between the analytical values for all parameters for samples BR-TR01 and BR-TR02. Many of the parameters are below detection limits, with the remainder returning results which are less than the CCME Guidelines for the Protection of Aquatic Life.

Several elements returned much higher results from sample BR-TR03 than the two samples from the trench. Most notable are Fe, Al, Cu, Ni, Se, and Sr, which are all in excess of the CCME Guidelines.

Discussion

The agreement between the analytical results for BR-TR01 and BR-TR02 indicates that the composition of the water is consistent throughout the trench sampled. Given the comparable size of the other trenches and the fact that they are overlying the same lithologic units, have similar areas of contact with those units, and are bounded on the sides by the same overburden material, it would be reasonable to assume a similar water quality for each of the trenches and that the samples collected are representative.

The analytical results from both of the trench samples suggests quite benign water chemistry. The neutral to slightly alkaline pH is sufficient to inhibit the leaching of most metals. Some elements such as As and Mo may be mobile under neutral to alkaline conditions, however the analytical results do not indicate elevated levels of these elements.

The sample of standing water collected from the tundra returned noticeably different analytical results. As the source of this water is the same as that in the trenches (melted snow), the highly acidic pH value may be derived from humic and fulvic acids resulting from contact of the water with organic matter in the upper part of the soil column. As a result of this greatly decreased pH, the ability of the water to leach metals is increased. In particular, Fe and Al are respectively 23 and 62 times the CCME Guidelines, and are also likely contributors to the acidity of the water. Copper, Ni and Se are also in excess of the guidelines by factors of 1.9, 1.4 and 1.9. On the other hand, a large number of other parameters are below the levels outlined in the CCME guidelines. Arsenic in particular shows no difference between the samples collected in the trench and that collected from the tundra.

Gartner Lee Limited conducted environmental baseline studies for DPM in 2007. During trips to site in July and August, samples were collected from the outlet of the stream east of the trenches which drains into Goose Lake. This stream would be the first watercourse encountered by runoff from the trench or the adjacent tundra. Neither sample collected from either trip returned any values in excess of the CCME Guidelines for the Protection of Aquatic Life, indicating that *if* water is draining into this stream from the naturally occurring standing water on the tundra southwest of the trenches, it is being sufficiently diluted by natural drainage so as to have no deleterious impact to Goose Lake.

Data from the Gartner Lee sampling events is not included with this report, but may be inspected upon request.

Conclusion and Recommendations

The likelihood of water from the trench having a deleterious impact to any water course is negligible; water chemistry from the trenches does not indicate the presence of any elements of concern. Metal concentrations for several parameters are slightly elevated when compared to those values obtained by sampling conducted by Gartner Lee at the outlet of the stream draining into Goose Lake, but remain well within acceptable limits. Furthermore, the supply of water is replenished each year by snowfall, and it is not expected that the reaction kinetics of leaching of deleterious elements is sufficiently rapid to raise the concentrations to excessive levels.

Should the water from the trenches need to be discharged for any particular reason, the net result would be dilution of several parameters in the naturally occurring water on the tundra, which occurs between that in the trench and the nearest water courses.

Given these results, it is recommended that the most practical and reasonable option for addressing the accumulation of water in the trenches is to do nothing. No impact to any watercourse has been demonstrated and the removal of the water and monitoring of the pumps would create extra work for camp personnel as well as unnecessary fuel consumption and exhaust emissions.

Environmental Division

ANALYTICAL REPORT

DUNDEE PRECIOUS METALS

ATTN: DAN RUSSELL Reported On: 18-JUL-07 04:55 PM

Revision: 1

3060 - 200 BAY STREET ROYAL BANK PLAZA, SOUTH TOWER

TORONTO ON M5J 2J1

Lab Work Order #: L528696 Date Received: 11-JUL-07

Project P.O. #: Job Reference: Legal Site Desc:

CofC Numbers: A038595

Other Information:

Comments:

RON MINKS

Director, Western Canada Operations

For any questions about this report please contact your Account Manager:

ALAINA HUNTER

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

Sample Details/Parameters	Result	Qualifier* D.L.	Units	Extracted	Analyzed	Ву	Batch
L528696-1 BR-TR01							
Sampled By: NOT PROVIDED on 09-JUL-07 @ 16:30							
Matrix: WATER							
Dissolved Metals							
Dissolved Major Metals							
Iron (Fe)	0.008	0.005	mg/L		14-JUL-07	HAS	R548469
Manganese (Mn)	0.138	0.001	mg/L		14-JUL-07	HAS	R548469
Dissolved Trace Metals (Low Level)							
Silver (Ag)	<0.0002	0.0002	mg/L		17-JUL-07	CVM	R549188
Aluminum (Al)	0.03	0.01	mg/L		17-JUL-07	CVM	R549188
Arsenic (As)	0.0011	0.0004	mg/L		17-JUL-07	CVM	R549188
Boron (B)	0.018	0.002	mg/L		17-JUL-07	CVM	R549188
Barium (Ba)	0.0126	0.0001	mg/L		17-JUL-07	CVM	R549188
Beryllium (Be)	< 0.0005	0.0005	mg/L		17-JUL-07	CVM	R549188
Bismuth (Bi)	<0.00005	0.00005	mg/L		17-JUL-07	CVM	R549188
Cadmium (Cd)	<0.0001	0.0001	mg/L		17-JUL-07	CVM	R549188
Cobalt (Co)	0.0006	0.0001	mg/L		17-JUL-07	CVM	R549188
Chromium (Cr)	0.0017	0.0004	mg/L		17-JUL-07	CVM	R549188
Copper (Cu)	0.0017	0.0006	mg/L		17-JUL-07	CVM	R549188
Molybdenum (Mo)	0.0007	0.0001	mg/L		17-JUL-07	CVM	R549188
Nickel (Ni)	0.0022	0.0001	mg/L		17-JUL-07	CVM	R549188
Lead (Pb)	<0.0001	0.0001	mg/L		17-JUL-07	CVM	R549188
Antimony (Sb)	<0.0004	0.0004	mg/L		17-JUL-07	CVM	R549188
Selenium (Se)	0.0007	0.0004	mg/L		17-JUL-07	CVM	R549188
Tin (Sn)	0.0015	0.0002	mg/L		17-JUL-07	CVM	R549188
Strontium (Sr)	0.133	0.0001	mg/L		17-JUL-07	CVM	R549188
Titanium (Ti)	0.0005	0.0003	mg/L		17-JUL-07	CVM	R549188
Thallium (TI)	<0.00005	0.00005	mg/L		17-JUL-07	CVM	R549188
Uranium (U)	0.0011	0.0001	mg/L		17-JUL-07	CVM	R549188
Vanadium (V)	0.0005	0.0001	mg/L		17-JUL-07	CVM	R549188
Zinc (Zn)	0.006	0.002	mg/L		17-JUL-07	CVM	R549188
Lithium (Li)-Dissolved	0.0023	0.0001	mg/L		17-JUL-07	CVM	R549188
Silicon (Si)-Dissolved	0.4	0.1	mg/L		14-JUL-07	HAS	R548469
Thorium (Th)-Dissolved	<0.05	0.05	mg/L		17-JUL-07	CVM	R549188
Routine Water Analysis						l	
Chloride (CI)	63	1	mg/L		15-JUL-07	RGM	R548389
ICP metals and SO4 for routine water						l	
Calcium (Ca)	38.7	0.5	mg/L		15-JUL-07	EOC	R548557
Potassium (K)	1.1	0.5	mg/L		15-JUL-07	EOC	R548557
Magnesium (Mg)	18.3	0.1	mg/L		15-JUL-07	EOC	R548557
Sodium (Na)	<1	1	mg/L		15-JUL-07	EOC	R548557
Sulfate (SO4)	60.9	0.5	mg/L		15-JUL-07	EOC	R548557
Ion Balance Calculation						l	
Ion Balance	95.0		%		16-JUL-07		
TDS (Calculated)	200		mg/L		16-JUL-07	l	
Hardness (as CaCO3)	172		mg/L		16-JUL-07	l	
Nitrate+Nitrite-N	0.2	0.1	mg/L		14-JUL-07	BLI	R548166
Nitrate-N	0.2	0.1	mg/L		14-JUL-07	BLI	R548166
Nitrite-N	<0.05	0.05	mg/L		14-JUL-07	BLI	R548166
pH, Conductivity and Total Alkalinity						l	
рН	7.8	0.1	рН		14-JUL-07	JWU	R548688
Conductivity (EC)	380	0.2	uS/cm		14-JUL-07	JWU	R548688
Bicarbonate (HCO3)	36	5	mg/L		14-JUL-07	JWU	R548688
Carbonate (CO3)	<5	5	mg/L		14-JUL-07	JWU	R548688

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Ву	Batch
L528696-1 BR-TR01								
Sampled By: NOT PROVIDED on 09-JUL-07 @ 16:30								
Matrix: WATER Routine Water Analysis								
pH, Conductivity and Total Alkalinity								
Hydroxide (OH)	<5		5	mg/L		14-JUL-07	JWU	R548688
Alkalinity, Total (as CaCO3)	29		5	mg/L		14-JUL-07	JWU	R548688
L528696-2 BR-TR02				<u>_</u>				
Sampled By: NOT PROVIDED on 09-JUL-07 @ 16:30								
' '								
Matrix: WATER Dissolved Metals								
Dissolved Metals Dissolved Major Metals								
Iron (Fe)	0.010		0.005	mg/L		14-JUL-07	HAS	R548469
Manganese (Mn)	0.139		0.001	mg/L		14-JUL-07	HAS	R548469
Dissolved Trace Metals (Low Level)				J				
Silver (Ag)	<0.0002		0.0002	mg/L		17-JUL-07	CVM	R549188
Aluminum (AI)	0.03		0.01	mg/L		17-JUL-07	CVM	R549188
Arsenic (As)	0.0013		0.0004	mg/L		17-JUL-07	CVM	R549188
Boron (B)	0.018		0.002	mg/L		17-JUL-07	CVM	R549188
Barium (Ba)	0.0125		0.0001	mg/L		17-JUL-07	CVM	R549188
Beryllium (Be)	<0.0005		0.0005	mg/L		17-JUL-07	CVM	R549188
Bismuth (Bi)	<0.00005		0.00005	mg/L		17-JUL-07	CVM	R549188
Cadmium (Cd)	<0.0001		0.0001	mg/L		17-JUL-07	CVM	R549188
Cobalt (Co)	0.0006		0.0001	mg/L		17-JUL-07	CVM	R549188
Chromium (Cr)	0.0014		0.0004	mg/L		17-JUL-07	CVM	R549188
Copper (Cu)	0.0016		0.0006	mg/L		17-JUL-07	CVM	R549188
Molybdenum (Mo)	0.0008		0.0001	mg/L		17-JUL-07	CVM	R549188
Nickel (Ni)	0.0031		0.0001	mg/L		17-JUL-07	CVM	R549188
Lead (Pb) Antimony (Sb)	<0.0001		0.0001	mg/L mg/L		17-JUL-07 17-JUL-07	CVM CVM	R549188 R549188
Selenium (Se)	<0.0004 0.0007		0.0004	mg/L		17-JUL-07	CVM	R549188
Tin (Sn)	<0.0007		0.0004	mg/L		17-30L-07 17-JUL-07	CVM	R549188
Strontium (Sr)	0.136		0.0002	mg/L		17-30L-07	CVM	R549188
Titanium (Ti)	0.0003		0.0003	mg/L		17-JUL-07	CVM	R549188
Thallium (TI)	<0.0005		0.00005	mg/L		17-JUL-07	CVM	R549188
Uranium (U)	0.0011		0.0001	mg/L		17-JUL-07	CVM	R549188
Vanadium (V)	0.0004		0.0001	mg/L		17-JUL-07	CVM	R549188
Zinc (Zn)	0.006		0.002	mg/L		17-JUL-07	CVM	R549188
				-				
Lithium (Li)-Dissolved	0.0019		0.0001	mg/L		17-JUL-07	CVM	R549188
Silicon (Si)-Dissolved	0.4		0.1	mg/L		14-JUL-07	HAS	R548469
Thorium (Th)-Dissolved	<0.05		0.05	mg/L		17-JUL-07	CVM	R549188
Routine Water Analysis				-				
Chloride (CI)	63		1	mg/L		15-JUL-07	RGM	R548389
ICP metals and SO4 for routine water				-				
Calcium (Ca)	38.4		0.5	mg/L		15-JUL-07	EOC	R548557
Potassium (K)	1.3		0.5	mg/L		15-JUL-07	EOC	R548557
Magnesium (Mg)	18.3		0.1	mg/L		15-JUL-07	EOC	R548557
Sodium (Na)	<1		1	mg/L		15-JUL-07	EOC	R548557
Sulfate (SO4)	61.3		0.5	mg/L		15-JUL-07	EOC	R548557
Ion Balance Calculation	<u>.</u>			0.		40 11 " 5=		
Ion Balance	94.9			%		16-JUL-07		
TDS (Calculated)	201			mg/L		16-JUL-07		
Hardness (as CaCO3)	171			mg/L		16-JUL-07	5	DE 40:22
Nitrate+Nitrite-N	0.2		0.1	mg/L		14-JUL-07	BLI	R548166

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Ву	Batch
L528696-2 BR-TR02								
Sampled By: NOT PROVIDED on 09-JUL-07 @ 16:30								
Matrix: WATER								
Routine Water Analysis								
Nitrate-N	0.2		0.1	ma/l		14-JUL-07	DII	R548166
1 111				mg/L			BLI	
Nitrite-N	< 0.05		0.05	mg/L		14-JUL-07	BLI	R548166
pH, Conductivity and Total Alkalinity	7.0			الم		44 1111 07	15.471.1	DE 40000
Conductivity (EC)	7.8		0.1	pH uS/cm		14-JUL-07 14-JUL-07	JWU	R548688
Bicarbonate (HCO3)	383		0.2	mg/L		14-JUL-07	JWU	R548688 R548688
Carbonate (CO3)	35 <5		5 5	mg/L		14-JUL-07		R548688
Hydroxide (OH)	<5 <5		5	mg/L		14-30L-07	JWU	R548688
Alkalinity, Total (as CaCO3)	<5 29		5	mg/L		14-JUL-07	JWU	R548688
	29		5	IIIg/L		14-30L-07	3000	K040000
L528696-3 BR-TR03								
Sampled By: NOT PROVIDED on 09-JUL-07 @ 16:50								
Matrix: WATER								
Dissolved Metals								
Dissolved Major Metals								
Iron (Fe)	7.06		0.005	mg/L		14-JUL-07	HAS	R548469
Manganese (Mn)	0.218		0.001	mg/L		14-JUL-07	HAS	R548469
Dissolved Trace Metals (Low Level)				,,				
Silver (Ag)	<0.0002		0.0002	mg/L		17-JUL-07	CVM	R549188
Aluminum (Al)	0.31		0.01	mg/L		17-JUL-07	CVM	R549188
Arsenic (As)	0.0012		0.0004	mg/L		17-JUL-07	CVM	R549188
Boron (B)	0.045		0.002	mg/L		17-JUL-07	CVM	R549188
Barium (Ba)	0.319		0.0001	mg/L		17-JUL-07	CVM	R549188
Beryllium (Be)	<0.0005		0.0005	mg/L		17-JUL-07	CVM	R549188
Bismuth (Bi)	<0.00005		0.00005	mg/L		17-JUL-07	CVM	R549188
Cadmium (Cd)	0.0001		0.0001	mg/L		17-JUL-07	CVM	R549188
Cobalt (Co)	0.0218		0.0001	mg/L		17-JUL-07	CVM	R549188
Chromium (Cr)	0.0011		0.0004	mg/L		17-JUL-07	CVM	R549188
Copper (Cu)	0.0037		0.0006	mg/L		17-JUL-07	CVM	R549188
Molybdenum (Mo)	<0.0001		0.0001	mg/L		17-JUL-07	CVM	R549188
Nickel (Ni)	0.0361		0.0001	mg/L		17-JUL-07	CVM	R549188
Lead (Pb)	0.0005		0.0001	mg/L		17-JUL-07	CVM	R549188
Antimony (Sb)	<0.0004		0.0004	mg/L		17-JUL-07	CVM	R549188
Selenium (Se)	0.0019		0.0004	mg/L		17-JUL-07	CVM	R549188
Tin (Sn) Strontium (Sr)	<0.0002		0.0002	mg/L		17-JUL-07	CVM	R549188
Titanium (Ti)	2.58		0.0001	mg/L mg/L		17-JUL-07 17-JUL-07	CVM	R549188
Thallium (TI)	0.0006 <0.00005		0.0003	mg/L mg/L		17-JUL-07 17-JUL-07	CVM CVM	R549188
Uranium (U)	<0.0005 <0.0001		0.00005	mg/L		17-JUL-07 17-JUL-07	CVM	R549188 R549188
Vanadium (V)	<0.0001 0.0002		0.0001	mg/L		17-JUL-07 17-JUL-07	CVM	R549188
v anadidin (v)	0.0002		0.0001	ilig/L		17-JUL-U/	CVIVI	12349100
Lithium (Li)-Dissolved	0.0570		0.0001	mg/L		17-JUL-07	CVA	DE40499
` '	0.0570			•			CVM	R549188
Silicon (Si)-Dissolved	2.7		0.1	mg/L		14-JUL-07	HAS	R548469
Thorium (Th)-Dissolved	< 0.05		0.05	mg/L		17-JUL-07	CVM	R549188
Routine Water Analysis				,,		45 11 " 5=	.	
Chloride (CI)	384		1	mg/L		15-JUL-07	RGM	R548389
ICP metals and SO4 for routine water			-	,-		4=		
Calcium (Ca)	180		0.5	mg/L		15-JUL-07	EOC	R548557
Potassium (K)	6.4		0.5	mg/L		15-JUL-07	EOC	R548557
Magnesium (Mg)	8.9		0.1	mg/L		15-JUL-07	EOC	R548557
Sodium (Na)	5		1	mg/L		15-JUL-07	EOC	R548557
Sulfate (SO4)	<0.5		0.5	mg/L		15-JUL-07	EOC	R548557

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Ву	Batch
L528696-3 BR-TR03								
Sampled By: NOT PROVIDED on 09-JUL-07 @ 16:50								
Matrix: WATER								
Routine Water Analysis								
Ion Balance Calculation								
Ion Balance	93.2			%		16-JUL-07		
TDS (Calculated)	584			mg/L		16-JUL-07		
Hardness (as CaCO3)	486			mg/L		16-JUL-07		
Nitrate+Nitrite-N	<0.1		0.1	mg/L		14-JUL-07	BLI	R548166
Nitrate-N	<0.1		0.1	mg/L		14-JUL-07	BLI	R548166
Nitrite-N	<0.05		0.05	mg/L		14-JUL-07	BLI	R548166
pH, Conductivity and Total Alkalinity								
рН	3.9	RRV	0.1	pН		14-JUL-07	JWU	R548688
Conductivity (EC)	1270		0.2	uS/cm		14-JUL-07	JWU	R548688
Bicarbonate (HCO3)	<5		5	mg/L		14-JUL-07	JWU	R548688
Carbonate (CO3)	<5		5	mg/L		14-JUL-07	JWU	R548688
Hydroxide (OH)	<5		5	mg/L		14-JUL-07	JWU	R548688
Alkalinity, Total (as CaCO3)	<5		5	mg/L		14-JUL-07	JWU	R548688
* Refer to Referenced Information for Q	ualifiers (if any) and N	lethodolog	у.					

Reference Information

Qualifier		Description			
EHT	HT CL-ED - Exceeds Recommended Holding Time Prior To Analysis				
Sample Param	neter Qua	alifier key lis	sted:		
Qualifier	Descrip	otion			
RRV	Reported Result Verified By Repeat Analysis				
Methods List	ed (if ap	olicable):			
ALS Test Code		Matrix	Test Description	Preparation Method Reference(Based On)	Analytical Method Reference(Based On
CL-ED		Water	Chloride (CI)		APHA 4500 CI E-Colorimetry
ETL-ROUTINE-I	CP-ED	Water	ICP metals and SO4 f water	or routine	APHA 3120 B-ICP-OES
IONBALANCE-ED		Water	Ion Balance Calculation		APHA 1030E
_I-DIS-LOW-ED		Water	Lithium (Li)-Dissolved		EPA 6020
MET1-DIS-LOW-ED		Water	Dissolved Trace Meta Level)	Is (Low	EPA 6020
MET2-DIS-ED		Water	Dissolved Major Meta	Is	EPA 200.7
N2N3-ED		Water	Nitrate+Nitrite-N		APHA 4500 NO3-H - COLORIMETRY
NO2-ED		Water	Nitrite-N		APHA 4500 NO2B-Colorimetry
NO3-ED		Water	Nitrate-N		APHA 4500 NO3H-Colorimetry
P-DIS-LOW-ED		Water	Phosphorus (P)-Disso	lved	EPA 6020
PH/EC/ALK-ED		Water	pH, Conductivity and ⁻ Alkalinity	Total	APHA 4500-H, 2510, 2320
SI-DIS-ED		Water	Silicon (Si)-Dissolved		EPA 200.7
TH-DIS-LOW-E	D	Water	Thorium (Th)-Dissolve	ed	EPA 6020
				** Laboratory Methods employed follow generally based on nationally or interna	•
Chain of Cus	stody num	nbers:			
A038595					
The last two	letters of	the above to	est code(s) indicate the la	boratory that performed analytical analysis for the	at test. Refer to the list below:
Laboratory D	efinition (Code La	boratory Location	Laboratory Definition Code	Laboratory Location

ALS LABORATORY GROUP - EDMONTON, ALBERTA, CANADA

ED

Reference Information

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds. The reported surrogate recovery value provides a measure of method efficiency. The Laboratory control limits are determined under column heading D.L.

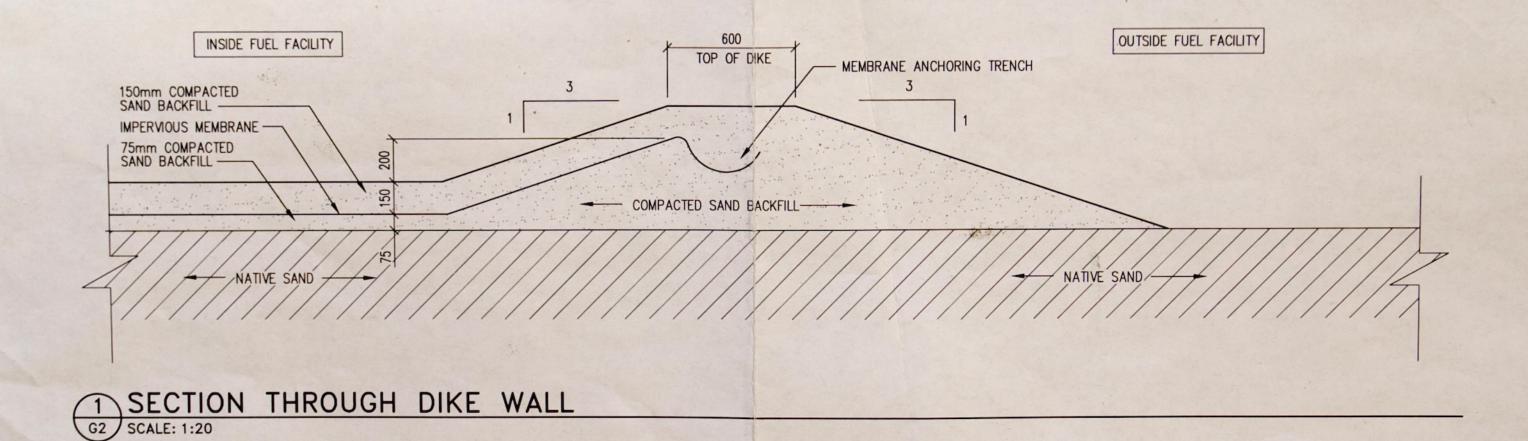
mg/kg (units) - unit of concentration based on mass, parts per million.

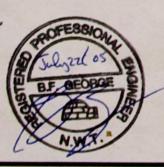
mg/L (units) - unit of concentration based on volume, parts per million.

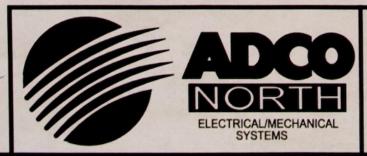
< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

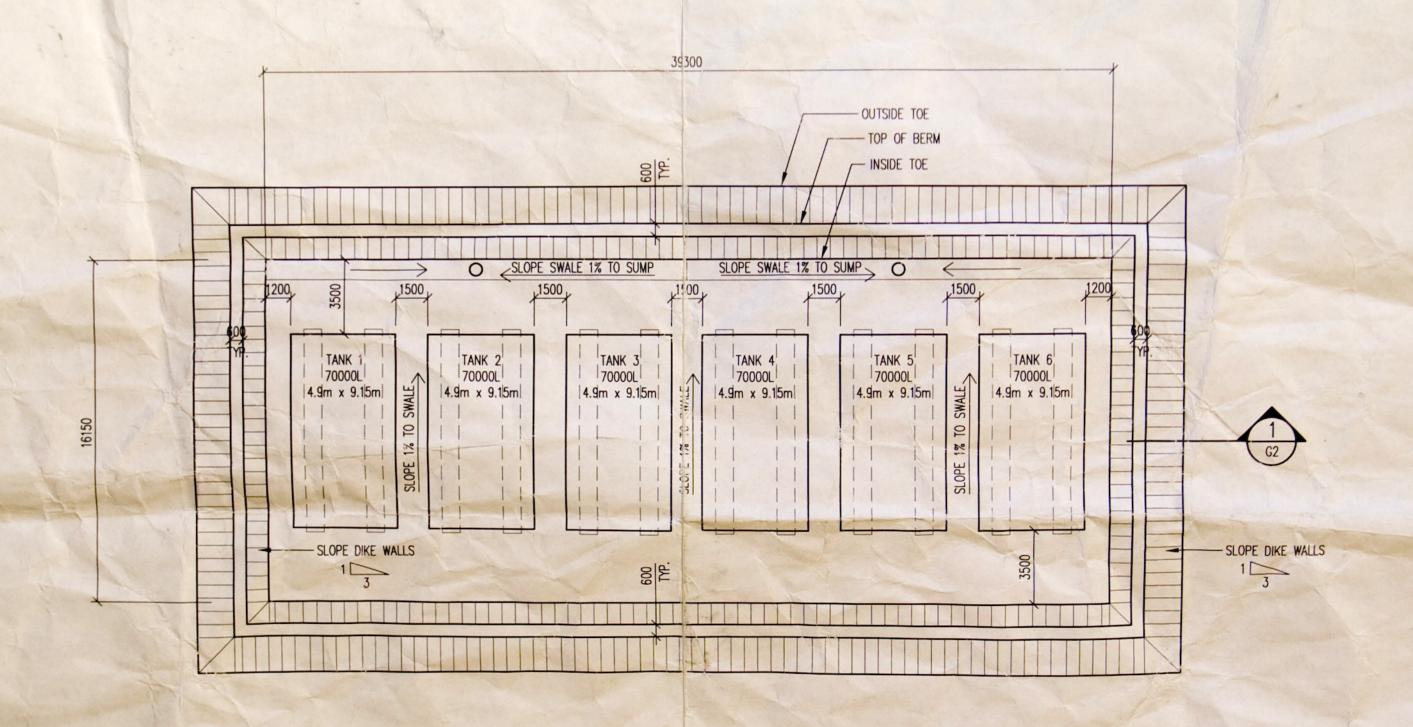

Test results reported relate only to the samples as received by the laboratory.


UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

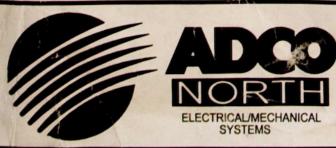

UNLESS OTHERWISE STATED, SAMPLES ARE NOT CORRECTED FOR CLIENT FIELD BLANKS.

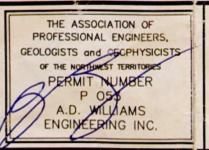
Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.


THE ASSOCIATION OF PROFESSIONAL ENGINEERS,
GEOLOGISTS and GEOPHYSICISTS
OF DE NORTHWEST TERRITORIES
PERMIT NUMBER
P 053
A.D. WILLIAMS
ENGINEERING INC.


A. D. Williams
Engineering Inc.
CONSULTING ENGINEERS


P.O. BOX 1529 Yellowknife, NT X1A 2P2 Ph: (867)873-2395 Fax: (867)873-2547 ADWEI PROJ. NUMBER: i10149


DUNDEE PRECIOUS	PF	BFG
MINERALS GOOSE AND GEORGE LAKES	BFG	JULY 2005
TAILS	PF BFG REV. BY DATE: BFG JULY SCALE: NTS PROJ. #	PROJ. # i10149
	#5MG G2	OF REV#

SITE PLAN
G1 SCALE: 1:200

A. D. Williams
Engineering Inc.
CONSULTING ENGINEERS

P.O. BOX 1529 Yellowknife, NT X1A 2P2 Ph: (867)873-2395 Fax: (867)873-2547 ADWEI PROJ. NUMBER: i10149

JOB.	DUNDEE PRECIOUS	
	MINERALS	
	GOOSE AND GEORGE LAKES	

GOOSE LAKE
SITE PLAN

DWN. BY:	DES BY:
PF	BFG
BFG	JULY 2005
SCALE: NTS	PROJ. # i10149
#5MC	OF REV#

P.O. Box 119 GJOA HAVEN, NU X0B 1J0 Tel: (867) 360-6338 FAX: (867) 360-6369

File: 2BE-GOO0510/D7

By Email and Regular Mail

dcater@dundeeprecious.com

July 25, 2006

Doug Cater
Exploration Manager
Back River Joint Venture
Dundee Precious Metals Inc.
P.O. Box 14
Suite 3220-666 Burrard Street
Vancouver, B.C. V6C 2X8

Subject: Dundee Precious Metals Inc.; Submission of a Trenching Plan for the Goose Lake

Project; Licence 2BE-GOO0510

Dear Mr. Cater;

The Nunavut Water Board ("NWB") would like to acknowledge receipt of the above Plan under Part D, Item 7 of Licence 2BE-GOO0510. The technical review of the Abandonment and Restoration Plan has been completed and no immediate concerns were identified by interested persons during this review period. The Board has taken into consideration the information submitted. The Plan was found to meet the requirements set out in the Licence under Part D, Item 7 and is hereby approved by the NWB.

The Licensee shall carry out the trenching activity in a manner as to prevent erosion and sedimentation of any surrounding water body. Sedimentation control measures shall be implemented, where necessary in order to ensure control.

Part E of the Licence provides conditions with respect to the protection of waters during operations. These items are intended to apply during trenching activities as well.

Should you have any further questions, please feel free to contact me at (780) 443-4406, at your earliest convenience.

Yours truly,

Original signed by:

Philippe Di Pizzo Executive Director

PDP/dh

Cc: Distribution list