sediments, there is a chance of retrieving a sample containing background metal levels, particularly in lakes somewhat removed from mineralization, although if sampled in more detail anomalous values could be obtained. Consequently, sample site selection is critical and more than one sample site per lake (Hoffman, 1976) or an increase in sample density may be warranted for regional lake sediment surveys. It is suggested that multiple samples from different parts of the lake be taken if regional sampling is at low densities (i.e. one lake sampled per 8 to 10 miles²). Anomalies can then be classified into a priority rating scheme based on the number of anomalous samples, relative to the total collected per lake, and their relative degree of contrast.

2. Detailed

Assuming that a regional geochemical survey has located anomalous metal values a detailed survey and geologic evaluation would be warranted. At this stage, soils, seepage waters, snow-melt runoff or even lake waters could be used. The latter may be preferred as an intermediate or semi-detailed exploration phase if regional sampling was at very low densities (1 sample per ≥ 8 mile²). In this case, a sample density of at least 1 sample per mile², combined with a rough geologic inspection, would be required. The geologic evaluation would consist of sampling any gossan or mineralized float from the area and roughly mapping the area to determine if the geologic

environment is conducive to hosting stratabound massive sulphides. Should the area appear favorable during geologic inspection, then several tens of soil samples at wide intervals (>800 feet) should be collected.

Follow-up work on areas that continue to produce geochemical anomalies, combined with favorable geologic settings, would most certainly involve detailed soil grid sampling at intervals ranging from 50 to 400 feet. Because the anomaly source (mineralization) needs to be precisely determined for drilling, immobile elements (Ag, Fe and Pb) are preferred because they are less affected by post-glacial weathering than mobile elements (Cu and Zn). Consequently, the optimum sample type (organic-rich L-F-H horizon versus mineral soil) and - if the latter type is chosen - sample depth must be established.

Except for the L-F-H horizon, visually recognizable soil horizons are rarely present; therefore, sampling of mineral soil is usually at some arbitrary depth(s) (0 to 14 inches, 14 to 25 inches or deeper). Mobile element patterns are poorly developed in all soil layers but are best defined in the L-F-H horizon; whereas, immobile element patterns are more than adequately developed in all soil layers, although best defined in the deeper soil. Differences between the soil layers, however, are somewhat subjective, especially for immobile elements. As a result, selection of sample type and depth, depends on many factors besides the degree of geochemical pattern development.

Because field seasons are short and exploration expensive, rapid and easy geochemical sampling, preparation and analysis are preferred. Sampling of permafrost where Cu, Pb, Zn patterns have remained relatively unaffected by postglacial chemical and physical weathering is perhaps ideal. Unfortunately, the time and cost of such sampling procedures excludes these methods. Relative to mineral soil, sampling and preparation of the L-F-H horizon requires more time and effort as large areas (tens of square feet) may need to be scavenged to obtain sufficient sample. Consequently, unless resources are freely available, sampling of the shallow (0 to 14 inches depth) mineral soil is preferred.

Although this study shows the minus 80-mesh fraction to be more than adequate, the use of a finer soil fraction, may be more advantageous (cf. Shilts, 1973a). It is suggested that decreasing the size fraction may well decrease extraneous variation; thereby, enabling geochemical anomalies to be better defined and, for elements where the detection limit is an inhibiting factor (e.g. Pb), attainment of better precision.

In addition, partial and total extractions on various size fractions suggest that anomalous metal concentrations in coarse fractions composed of rock/mineral fragments seem likely.

As a result, sampling and analytical procedures based on this possibility may be useful in relating/tracing highly mobile elements (Cu and Zn), to their bedrock source when 'standard'

procedures (i.e. total extraction, minus 80-mesh) appear inadequate due to intense hydromorphic dispersion.

The use of seepage and/or snow-melt waters, although potentially quite effective, has many disadvantages. For example, seepages occur at insufficient densities for highly detailed surveys. Furthermore, the actual source of mineralization revealed by seepage anomalies can be some distance away. Although snow-melt runoff can very effectively outline areas of Cu-Zn mineralization, timing the sample program is critical as the bulk of snow-melt runoff occurs over short (<3 weeks) time periods. Most importantly, however, is the restriction of analysis to the more mobile elements and the possibility of poor reproduction in both media.

IV CONCLUSIONS

Geochemical studies at Bathurst Norsemines reveal extensive geochemical dispersion in soil, groundwater, snow-melt runoff and lake waters and sediments. Except for limiting the depth of soil sampling to ~5 feet, the effects of permafrost on geochemical programs are minimal. Hydromorphic and clastic dispersion patterns are well developed, perhaps better developed than in temperate climates. Significant inhibiting or complicating factors, with regard to geochemical dispersion, in soil, water and sediment are not present.

In soils, extensive well developed glacial dispersion is evident in a west-northwest direction away from mineralized

outcrops. The highest metal values occur approximately 1000 to 2000 feet down ice where geochemical indicator trains intercept the soil surface. Extensive chemical weathering has destroyed all traces of Ag, Cu, Pb and Zn sulphides.

Ag, Fe and Pb patterns are well developed and display a classic glacial (mechanical) mode of genesis. Anomalies for these elements are particularly well defined in the deeper soil. Conversely, Cu and Zn patterns are best developed in the L-F-H soil horizon. Although these elements were initially dispersed the same as Ag, Fe and Pb, they have undergone wide scale hydromorphic dispersion. Consequently, geochemical contrast is low and, in some cases, they form negative anomalies. A mobility order of Zn>Cu>Fe>Ag>Pb is suggested.

High levels of dissolved Cu and, in particular, Zn are found in seepage, pit and snow-melt waters. These media provide the highest geochemical contrast and delineate Cu-Zn mineralization better than soil samples.

Because of extensive hydromorphic dispersion, lake waters and sediments provide ideal regional sample media. Within individual lakes, waters are homogeneous while sediments are characterized by rapid changes in texture and metal content. Dispersion halos are somewhat larger in sediments than waters with Zn providing the largest halo followed by Cu and Pb. Within sediments, Cu and Zn trends closely parallel one another. Pb trends often diverge from those of Cu and Zn

because Cu and Zn enter the lake largely as dissolved species while Pb enters as a sorbed constituent on silt-clay particles. As a result, high Pb values are restricted to lakes immediately adjacent to mineralization and to water depths greater than 15 feet because at shallower depths, wave action and ice scour prevent deposition of silt-clay particles. Mn and Fe are not important scavengers of Cu, Pb and Zn in lake sediments and usually display negative correlations with these elements.

BIBLIOGRAPHY

- Abbey, S., 1967. Analysis of rocks and minerals by atomic absorption spectroscopy, Part 1, Determination of magnesium, lithium, zinc and iron. GSC Paper, 67-37.
- Allan, R.J., 1971. Lake sediment: A medium for regional exploration of the Canadian Shield. CIM Bull., V. 64, No. 714: 43-59.
- Allan, R.J., 1973. Surficial dispersion of trace metals in arctic Canada: A nickel deposit, Raglan area, Cape Smith-Wakeham Bay Belt, Ungrave (New Quebec) (35-H). GSC Paper 73-1B: 9-19.
- Allan, R.J., 1974a. Metal contents of lake sediment cores from established mining areas: An interface of exploration and environmental geochemistry. GSC Paper 74-1B: 43-49.
- Allan, R.J., 1974b. Trace metal dispersion in an arctic desert landscape: A Pb-Zn deposit on little Cornwallis Island, District of Franklin. GSC Paper 74-1B: 51-56.
- Allan, R.J., Cameron, E.M. and Durham, C.C., 1973a. Lake geochemistry - a low sample density technique for reconnaissance geochemical exploration and mapping of the Canadian Shield. In: M.J. Jones (Editor), Geochemical Exploration 1972., IMM Publ.: 131-160.
- Allan, R.J., Cameron, E.M. and Durham, C.C., 1973b. Reconnaissance geochemistry using lake sediments of a 36,000 square-mile area of the northwestern Canadian Shield. GSC Paper, 72-50.
- Allan, R.J., Cameron, E.M., Durham, C.C. and Lynch, J.J., 1972a. Geochemical methods of exploration in permafrost areas. GSC Paper, 72-1A: 62-68.
- Allan, R.J. and Crook, R.T., 1972b. Lake sediments from permafrost regions: Zn, Cu, Ni, Co and Pb content of the sub-2000 micron particle size ranges. GSC Paper 72-1B: 31-37.
- Allan, R.J. and Hornbrook, E.H.W., 1970. Development of geochemical techniques in permafrost terrain. Can. Min. J. 4, V. 91: 45-49.

Allan, R.J. and Hornbrook, E.H.W., 1971. Exploration geochemistry evaluation study in a region of continuous permafrost, N.W.T.; Canada. CIM Spec. Vol. 11: 53-66.

Allan, R.J., Lynch, J.J. and Lund, N.G., 1972c. Regional geochemical exploration in the Coppermine River area, District of Mackenzie: A feasibility study in permafrost terrain. GSC Paper, 71-33.

Allan, R.J. and Timperley, M.H., 1975. Prospecting by use of lake sediments in areas of industrial heavy metal contamination. In: M.J. Jones (Editor), Prospecting in areas of glaciated terrain 1975. IMM Publ.: 87-111.

Anderson, D.M. and Hoekstra, P., 1965. Migration of interlamellar water during freezing and thawing of Wyoming bentonite. SSSAP, 29: 498-564.

Anderson, D.M. and Morgenstern, N.R., 1973. Physics, chemistry and mechanics of frozen ground: A review. In: Permafrost, North American Contrib. 2nd. Intern. Conf. Natl. Acad. Sci., Washington, DC: 257-288.

Andrews, J.T., 1966. Cainozoic glaciations and crustal movements of the arctic. GSC Paper, 66-26.

Bird, J.B., 1967. Physiography of Arctic Canada. John Hopkins Press, Baltimore, Md.: 336 pp.

Blake, W., 1963. Notes on Glacial Geology of the northeast District of Mackenzie, N.W.T. GSC Paper, 63-28.

Bolviken, B. and Sinding-Larsen, R., 1973. Total error and other criteria in the interpretation of stream-sediment data. In: M.J. Jones (Editor), Geochemical Exploration 1972, IMM Publ.: 285-295.

Boyle, R.W., Hornbrook, E.H.W., Allan, R.J., Dyck, W. and Smith, A.Y., 1971. Hydrogeochemical methods - application in the Canadian Shield; CIM Bull, V. 64, No. 715: 60-71.

Boyle, R.W. and Gleeson, C.F., 1975. Keno Hill Pb-Zn-Ag area, Yukon territory. J. Geochem. Explor., 4: 78-82.

Bradshaw, P.M.D., Thompson, I., Smee, B.W. and Larsson, J.O., 1974. The application of different analytical extractions and soil profile sampling in exploration geochemistry. J. Geochem. Explor., 3: 209-225.

Brewer, M.C., 1958. The thermal regime of an arctic lake. Trans. Amer. Geophys. Union, V. 39, No. 2: 278-284.

Brown, R.J.E., 1970. Permafrost in Canada. University of Toronto Press, Toronto: 234 pp.

Brown, R.J.E. and Kupsch, W.O., 1974. Permafrost Terminology, technical memorandum No. 111, NRCC (Ottawa) Publ., 14274: 62 pp.

Brundin, N.H. and Bergstrom, J., 1976. Regional prospecting for ores based on heavy minerals in glacial till. J. Geochem. Explor., 7: 1-19.

Bryson, R.A., Irving, W.N. and Larsen, J.A., 1965. Radiocarbon and soil evidence of former forest in the southern Canadian tundra. Science, V. 147: 46-48.

Cachau-Herreillat, F. and LaSalle, P., 1971. The utilization of eskers as ancient hydrographic networks for geochemical prospecting in glaciated areas (abst.) Toronto IGES. p. 121.

Cameron, E.M., 1975a. Geochemical methods of exploration for massive sulphide mineralization in the Canadian Shield: In Geochemical Exploration, 1974, Fifth Int. Geochem. Explor. Symp., Proc.: 21-49.

Cameron, E.M., 1975b. Integrated studies on mineral resource appraisal in the Beechey Lake belt of the Northern Shield. GSC Paper, 75-1A: 189-192.

Cameron, E.M., 1977a. Geochemical dispersion in mineralized soils of a permafrost environment. J. Geochem. Explor., 7: 301-326.

Cameron, E.M., 1977b. Geochemical dispersion in lake waters and sediments from massive sulphide mineralization, Agricola Lake area, Northwest Territories. J. Geochem. Explor; 7: 327-348.

Cameron, E.M. and Ballantyne, S.B., 1975. Experimental hydrogeochemical surveys of the High Lake and Hackett River areas, Northwest Territories. GSC Paper, 75-29.

Cameron, E.M. and Durham, C.C., 1974a. Follow-up investigations on the Bear-slave geochemical operation. GSC Paper, 74-1A: 53-60.

Cameron, E.M. and Durham, C.C., 1974b. Geochemical studies on the eastern part of the Slave Province, 1973. GSC Paper, 74-27.

Cameron, E.M. and Durham, C.C., 1975. Soil geochemistry of the Agricola Lake massive sulphide prospect. GSC Paper, 75-1A: 199-202.

Cameron, E.M. and Lynch, J.J., 1975. Hydrogeochemical studies in the Agricola Lake area, 1974. GSC Paper, 75-1A: 203-208.

Canada Department of Agriculture, 1970. The system of soil classification for Canada. Queens Printer, Ottawa, 249 pp.

Chao, T.T., 1972. Selective dissolution of manganese oxides from soils and sediments with acidified hydroxylamine hydrochloride. SSSAP, 36: 764-768.

Chao, T.T. and Theobald, P.K., Jr., 1976. The significance of secondary iron and manganese oxides in geochemical exploration. Econ. Geol., V. 71, No. 8: 1560-1569.

Charlier, R.H., 1969. The geographic distribution of polar desert soils in the northern hemisphere. GSA Bull. V. 80: 1985-1996.

Chester, R. and Hughes, M.J., 1967. A chemical technique for the separation of ferro-manganese minerals, carbonate minerals and adsorbed trace elements from pelagic sediments. Chem. Geol. 2: 249-262.

Chowdhury, A.N. and Bose, B.B., 1971. Role of 'humus matter' in the formation of geochemical anomalies. In: R.W. Boyle and J.I. McGerrigle (Editors), Geochemical Exploration, CIM Spec. Vol. 11: 410-413.

Coker, W.B. and Nichol, I., 1975. The relation of lake sediment geochemistry to mineralization in the northwest Ontario region of the Canadian Shield. Econ. Geol. V. 70, No. 1: 202-218.

Corte, A.E., 1962. Vertical migration of particles in front of the moving freezing plane. Jour. Geophysical Res. V. 67, No. 3: 1085-1090.

Craig, B.G., 1960. Surficial geology of North-central District of Mackenzie, N.W.T. GSC Paper, 60-18.

Dall'aglio, M. and Tonani, F., 1973. Hydrogeochemical exploration for sulphide deposits: Correlation between sulphate and other constituents. In: M.J. Jones (Editor), Geochemical Exploration 1972, IMM Publ.: 305-314.

Davenport, P.H. and Nichol, I., 1973. Bedrock geochemistry as a guide to areas of base-metal potential in volcanosedimentary belts of the Canadian Shield. In: M.J. Jones (Editor), Geochemical Exploration 1972., IMM Publ.: 45-57.

Day, J.H. and Rice, H.M., 1964. The characteristics of some permafrost soils in the Mackenzie Valley, N.W.T. Arctic, V. 17 No. 4: 223-236.

Dreimanis, A., 1958. Tracing ore boulders as a prospecting method in Canada. CIM Bull; V. 51: 73-80.

Ellis, A.J., Tooms, J.S., Webb, J.S. and Bicknell, J.V., 1967. Application of solution experiments in geochemical prospecting. Trans. Instn. Min. Metall. (Sect. B: Applied Earth Science), V. 76: 25-39. Discussions V. 76: 216-217, V. 77: 136.

Fletcher, W.K., 1970. Some applications of background correction to trace metal analysis of geochemical samples by atomic-absorption spectrophotometry. Econ. Geol., V. 65: 588-589.

Fletcher, W.K., 1971. Atomic absorption methods. Geology department, University of British Columbia.

Fortescue, J.A.C., 1974. Exploration geochemistry and the landscape. CIM Bull., V. 67, No. 751: 80-87.

Fortescue, J.A.C. and Hornbrook, E.H.W., 1969. Progress report on biogeochemical research at the Geological Survey of Canada 1963-1966. GSC Paper, 67-23.

Fortescue, J.A.C. and Hughes, O.L., 1965. Cu, Zn and Pb in lower till material collected near a massive sulphide orebody in the clay belt of northern Ontario. GSC Paper, 65-2, part II: 23-27.

Foster, J.R., 1971. The reduction of matrix effects in atomic absorption analysis and the effeciency of selected extractions on rock-forming minerals. CIM Spec. Vol. 11: 554-560.

Foster, J.R., 1973. The effeciency of various digestion procedures on the extraction of metals from rocks and rock-forming minerals. CIM Bull., V. 66, No. 736: 85-92.

Fraser, J.A., 1964. Geological notes on the north-eastern district of Mackenzie, Northwest Territories. GSC Paper 63-40.

Frith, R.A., Fyson, W.K. and Hill, J.D., 1977. The geology of the Hackett-Back River greenstone belt - second preliminary report. GSC Paper, 77-1A: 415-423.

Frith, R.A. and Hill J.D., 1975. The geology of the Hackett-Eack River greenstone belt - preliminary account. GSC Paper, 75-1C: 367-370.

Fryer, B.J. and Hutchinson, R.W., 1976. Generation of metal deposits on the sea floor. Can. J. Earth Sci. 13: 126-135.

Garrels, R.M. and Christ, C.L., 1965. Solutions, minerals, and equilibria. Harper and Row, New York, N.Y.: 450 pp.

Garrett, R.G., 1969. The determination of sampling and analytical errors in exploration geochemistry. Econ. Geol. V. 64: 568-569.

Garrett, R.G., 1971. The dispersion of copper and zinc in glacial overburden at the Louvem deposit, Val d'or, Quebec. Cli Spec. Vol. 11: 156-158.

Garrett, R.G., 1973. The determination of sampling and analytical errors in exploration geochemistry - a reply. Econ. Geol., V. 68: 282-283.

Garrett, R.G. and Hornbrook, E.H.W., 1976. The relationship between zinc and organic carbon in center-lake bottom sediments. J. Geochem. Explor., 5: 31-38.

Gatehouse, S., Russell, D.W. and Van Moort, J.C., 1977. Sequential soil analysis in exploration geochemistry. J. Geochem. Explor., 8: 483-494.

Gleeson, C.F. and Hornbrook, E.H.W., 1975. Semiregional geochemical studies demonstrating the effectiveness of till sampling at depth. In: I.L. Elliot and W.K. Fletcher (Editors), Geochemical Exploration 1974: 612-630.

Gold, L.W. and Lachenbruch, A.H., 1973. Thermal Conditions in Permafrost: A Review of North American Literature. In: North American Contribution on Permafrost, second international conference: National Academy of Sciences, Washington, D.C.: 3-25.

Govett, G.J.S., 1973. Differential secondary dispersion in transported soils and post-mineralization rocks: An electrochemical interpretation. In: M.J. Jones (Editor), Geochemical Exploration 1972, IMM Publ.: 81-91.

Govett, G.J.S., 1976. Detection of deeply buried and blind sulphide deposits by measurement of H and conductivity of closely spaced surface soil samples. J. Geochem. Explor., 6: 359-382.

Hawkes, H.E. and Webb, J.S., 1962. Geochemistry in mineral exploration. Harper and Row, New York, N.Y.: 415 pp.

Higashi, A. and Corte, A.E., 1971. Solifluction: A model experiment. Science, V. 171: 480-482.

Hill, D.E. and Tedrow, J.C.F., 1961. Weathering and soil formation in the arctic environment. Amer. Jour. of Sci. V. 259: 84-101.

Hoffman, S.J., 1976. Mineral exploration of the Nechako Plateau, Central British Columbia, using lake sediment geochemistry. PhD. thesis, University of British Columbia: 347 pp. unpublished.

Holmes, R. and Tooms, J.S., 1973. Dispersion from a submarine exhalative orebody. In: M.J. Jones (Editor), Geochemical Exploration 1972, IMM Publ.: 193-202.

Horsnail, R.F., Nichol, I. and Webb, J.S., 1969. Influence of variations in the secondary environment on metal distribution in drainage sediments. Quarterly Colo. Sch. Mines. V. 64, No. 1: 307-322.

Hornbrook, E.H.W. and Allan, R.J., 1970. Geochemical exploration feasibility study within the zone of continuous permafrost, Coppermine Region, NWT. GSC Paper, 70-36.

Howarth, R.J., 1971. Empirical discriminant classification of regional stream-sediment geochemistry in Devon and East Cornwall: Trans. Instn. Min. Metall. (Sect. B: Applied Earth Science), V. 80: 142-149.

Howarth, R.J., 1973. The pattern recognition problem in applied geochemistry. In: M.J. Jones (Editor), Geochemical Exploration 1972, IMM Publ.: 259-273.

Ivanov, O.P., 1966. Major factors in the development of oxidized zones of sulfide deposits under permafrost conditions. Geokhimiya, No. 9.

James, P.A., 1970. The soils of the Ranken Inlet area, Keewatin, NWT, Canada Arctic and Alpine Research, V. 2: 293-302.

Johnston, G.H. and Brown, R.J.E., 1964. Some observations on permafrost distribution at a lake in the Mackenzie Delta, NWT. Arctic, V. 17, No. 3: 163-175.

Jonasson, I.R., 1976. Detailed hydrogeochemistry of two small lakes in the Grenville Geological Province. GSC Paper, 76-13.

Jonasson, I.R. and Allan, R.J., 1973. Snow: A sampling medium in hydrogeochemical prospecting in temperate and permafrost regions. In: M.J. Jones (Editor), Geochemical Exploration 1972, IMM Publ.: 161-178.

Karrow P.F. and Anderson, T.W., 1975. Palynological study of lake sediment profiles from south-western New Brunswick: Discussion. Can. J. Earth Sci. 12: 1808-1812.

Kozhara, V.L., 1964. Lithochemical and biogeochemical prospecting in permafrost landscapes (in Russian). GSC translation No. 314, 1970: 15 pp.

Lambert, I.B. and Sato, T., 1974. Kuruko and associated ore deposits of Japan. Econ. Geol. V. 69: 1215-1236.

Larsen, J.A., 1972. Observations of well-developed podzols on tundra and of patterned ground within forested boreal regions. Arctic, V. 25, No. 2: 152-154.

Lee, H. 1971. Mineral discovery in the Canadian Shield using the physical aspects of overburden. CIM, V. 64; No. 715: 32-36.

Lepeltier, C., 1969. A simplified statistical treatment of geochemical data by graphical representation. Econ. Geol. V. 64: 538-550.

Levinson, A.A., 1974. Introduction to exploration geochemistry. Applied Publishing Ltd, Wilmette: 614 pp.

Livingston, D., 1963. Chemical composition of rivers and lakes: Data of geochemistry. USGS Prof. Paper, 440G.

Lyons, J.B. and Midke, J.E., 1973. Holocene history of a portion of northernmost Ellesmere Island. Arctic, V. 26, No. 4.

Mackay, J.R. and MacKay, D.K. 1976. Cryostatic pressures in non-sorted circles (mud-hummocks), Inuvik, Northwest Territories. Can. J. Earth Sci. 13: 889-897.

Mackereth, F.J.H., 1966. Some chemical observations on post glacial lake sediments. Phil. Trans. Royal Soc. (B) V. 250: 165-213.

MacNeill, R.J., 1973. Far north property promising. Western Miner, V. 46, No. 10: 88-96.

MacNeill, R.J., 1976. Twenty years of persistence at Bathurst Norsemines is paying off. Western Miner, V. 49, No. 9: 28-33.

Mairov, N.P., 1966. On the selection of fractions from moraine deposits for analysis during lithogeochemical surverying (in Russian). GSC translation No. 390, 1971: 6 pp.

Manskaya, S.M. and Drozdova, T.V., 1968. Geochemistry of organic substances. Pergamon Press, translated and edited by L. Shapiro and I.A. Breger: 347 pp.

Maynard, D.E. and Fletcher, W.K., 1973. Comparison of total and partial extractable copper in anomalous and background peat samples. J. Geochem. Explor., 2: 19-24.

Mehrtens, M.B., Tooms, J.S. and Troup, A.G., 1973. Some aspects of geochemical dispersion from base-metal mineralization within glaciated terrain in Norway, North Wales and British Columbia, Canada. In: M.J. Jones (Editor), Geochemical Exploration 1972, IMM Publ.: 105-115.

Moran, S.R., 1971. Glaciotectonic structures in drift. In: Till: A Symposium (R.P. Goldthwaite, Editor). Ohio State University Press: 127-148.

Murmann, R.P., 1973. Ionic mobility in permafrost: In Permafrost, North American contrib. 2nd. Intern. Conf. Natl. Acad. Sci., Washington, DC: 352-359.

Nichol, H., 1976. Climatic variability and recent cooling in northern Canada during the present interglacial. GSA annual meeting, Denver, Colorado. GSA abstracts, V. 8, No. 6: 1028.

Nichol, I., 1975. Promising future in store for lake sediment reconnaissance. The Northern Miner, March 6: 44-46.

Nichol, I., Coker, W.B., Jackson, R.G. and Klassen, R.A., 1975. Relation of lake sediment composition in different limnological environments in Canada. In: M.J. Jones (Editor), Prospecting in areas of glaciated terrain 1975, IMM Publ., 112-125.

Parslow, G.R., 1974. Determination of background and threshold in exploration geochemistry. J. Geochem. Explor., 3: 319-336.

Peachey, D. and Allen, B.P., 1977. An investigation into the selective dissolution of sulphide phases from stream sediments and soils. J. Geochem. Explor., 8: 571-577.

Pitul'ko, V.M., 1968. Features of geochemical searches for rare-metal deposits in permafrost areas (in Russian). Geologiya i Razvedka 1968, No. 11: 43-52, translation in Intern. Geol. Rev., V. 11: 1239-1246, CA 70-98653.

Porter, S.C. and Denton, G.H., 1967. Chronology of neoglaciation in the north American Cordillera. Amer. Jour. of Sci. V. 265: 177-210.

Price, L.W., 1972. The periglacial environment, permafrost, and man. Association of American Geographers Resource Paper, No. 14, Washington, D.C.: 87 pp.

Ridler, R.H. and Shilts, W.W., 1974. Exploration for Archean polymetallic sulphide deposits in permafrost terrains: An integrated geological/geochemical technique; Kaminak Lake area, District of Keewatin. GSC Paper 73-74.

Rose, A.W., 1975. The mode of occurrence of trace elements in soils and stream sediments applied to geochemical exploration. In: W.K. Fletcher and I.L. Elliot (Editors), Geochemical Exploration 1974, IMM Publ.: 691-705.

Sangster, D.F., 1972. Precambrian volcanogenic massive sulphide deposits in Canada: A review. GSC Paper 72-22.

Scott, J.S., 1976. Geology of Canadian tills. In: Glacial Till edited by R.F. Legett. Royal Society of Canada, Special Publication 12: 50-66.

Sharp, R.P., 1960. Glaciers. University of Oregon books (eleventh printing) Eugene, Oregon: 78 pp.

Shilts, W.W., 1971. Till studies and their application to regional drift prospecting. Can. Min. Jour., V. 92, No. 4: 45-49.

Shilts, W.W., 1972. Drift prospecting in the Kaminak Lake area, District of Keewatin. GSC Paper, 72-1A: 182-189.

Shilts, W., 1973a. Drift prospecting: Geochemistry of eskers and till in permanently frozen terrain; District of Keewatin, Northwest territories. GSC Paper, 72-45.

Shilts, W.W., 1973b. Till indicator train formed by glacial transport of nickel and other ultramafic components: A model for drift prospecting. GSC Paper, 73-1A: 213-218.

Shilts, W.W., 1973c. Glacial dispersal of rocks, minerals, and trace elements in Wisconsin till, south-eastern Quebec, Canada. GSA Memoir, 136: 189-219.

Shilts, W.W., 1974a. Zinc-lead-silver-rich sulphide float and associated geochemical anomalies found during drift prospecting studies in the Spi Lake area, south-east District of Keewatin. GSC Open File Report 190: 5 pp.

Shilts, W.W., 1974b. Physical and chemical properties of unconsolidated sediments in permanently frozen terrain, District of Keewatin. GSC Paper, 74-1A: 229-235.

Shilts, W.W., 1975. Principles of geochemical exploration for sulphide deposits using shallow samples of glacial drift. CIM Bull., V. 68, No. 757: 73-80.

Shilts, W.W., 1976. Glacial till and mineral exploration. In: Glacial Till (edited by R.F. Leggett). Royal Society of Canada, Special Publication 12: 205-224.

Shilts, W.W., 1978. Nature and genesis of mud boils, central Keewatin, Canada. Can. J. Earth Sci., 15: 1053-1068.

Shilts, W.W. and Dean, W.E., 1975. Permafrost features under arctic lakes, District of Keewatin, Northwest Territories. Can. J. Earth Sci., 12: 649-662.

Shvartsev, S.L., 1965. Hydrogeochemical prospecting in northern marshy areas. International Geol. Review, V. 8, No. 10: 1151-1156.

Shvartsev, S.L., 1971. Hydrogeochemical prospecting for blind ores in permafrost. International Geol. Rev. V. 14, No. 10.

Sinclair, A.J., 1976. Applications of probability graphs in mineral exploration. Richmond Printers, Richmond, B.C.: 95 pp.

Skinner, R.G., 1972. Drift prospecting in the Abitibi clay belt: Overburden drilling program methods and cost. GSC Open File Report No. 116: 27 pp.

Stanton, R.E., 1966. Rapid methods of trace analysis for geochemical application. Edward Arnold Ltd., London: 88 pp.

Stigzelius, H., 1977. Recognition of mineralized areas by regional geochemistry survey of the till-blanket in northern Finland. J. Geochem. Explor., 8: 473-481.

Szabo, N.L., Govett, G.J.S. and Lajtai, E.Z., 1975. Dispersion trends of elements and indicator pebbles in glacial till around Mt. Pleasant, New Brunswick. Can. J. Earth Sci., V. 12, No. 9: 1534-1536.

Stremyakov, A.Ya., 1958. Application of hydrogeochemical method of exploration of ore deposits under permafrost conditions. Razved. i. Okhr. Nedr., V. 24, No. 3: 46-47.

Taber S., 1929. Frost heaving. Reprinted from the Journal of Geology, V. 37, No. 5

Tarnocai, C., 1977. Soils of North-central Keewatin. GSC Paper, 77-1A: 61-64.

Taylor, A.E. and Judge, A.S., 1974. Canadian geothermal data collection - Northern Wells, 1955 to February 1974. Geothermal Service of Canada, Dept. of Energy, Mines and Resources, Ottawa: 1-142.

Tedrow, J.C.F., 1966. Polar desert soils. Soil Sci. Soc. Amer. Proc. V. 30, No. 3: 381-387.

Thompson, M. and Howarth, R.J., 1973. The rapid estimation and control of precision by duplicate determinations. Analyst. V. 98: 153-160.

Timperley, M.H. and Allan, R.J., 1974. The formation and detection of metal dispersion halos in organic lake sediments. J. Geochem. Explor., 3: 167-190.

Tremblay, L.P., 1971. Geology of Beechey Lake map-area, District of Mackenzie. GSC Memoir, 365: 56 pp.

Tremblay, L.P., 1976. Geology of the Northern Contowoyto Lake area, District of Mackenzie. GSC Memoir 381: 56 pp.

Tricart, J., 1970. Geomorphology of cold environments. Macmillian & Co. Ltd., London.

Troup, A.G., 1969. Geochemical investigations of ferromanganese concentrations from 3 Canadian lakes. M.Sc. thesis McMaster U, Hamilton, Ont.: 82 pp.

Tyutyunov, I.A., 1960. The processes leading to alteration and reconstruction of soils and rocks at negative temperatures. Izd-vu Acad. Nauk U.S.S.R., Moscow (in Russian).

Tyutyunov, I.A., 1961. Introduction to the theory of the formation of cryogenic rocks. Izd-vu Acad. Nauk U.S.S.R., Moscow (in Russian).

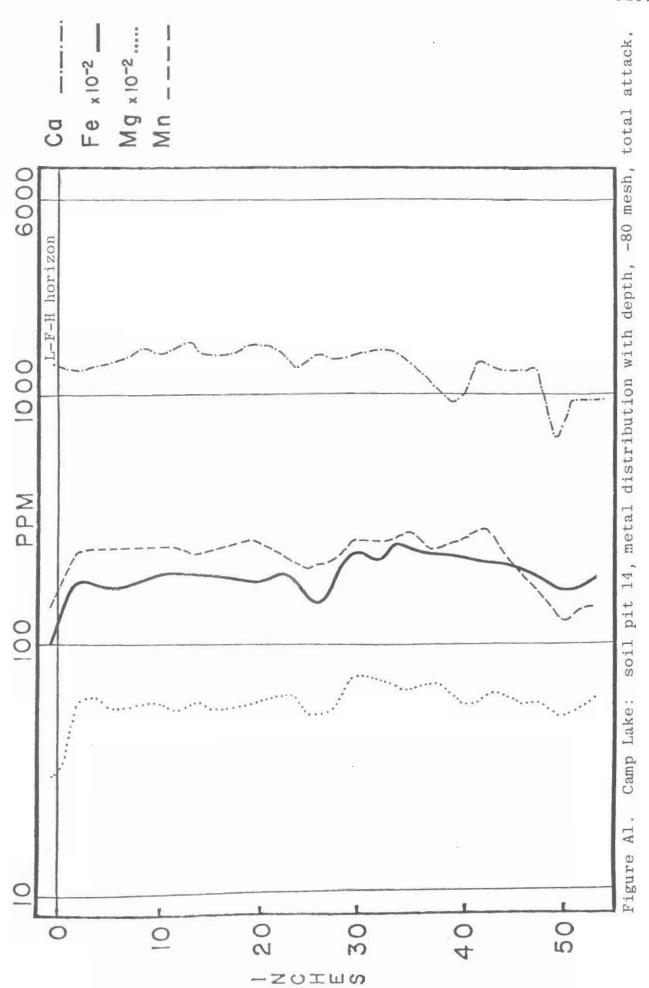
Ugolini, F.C. and Anderson, D.W., 1973. Ionic migration and weathering in frozen antarctic soils. Soil Sci., V. 115, No. 6: 461-470.

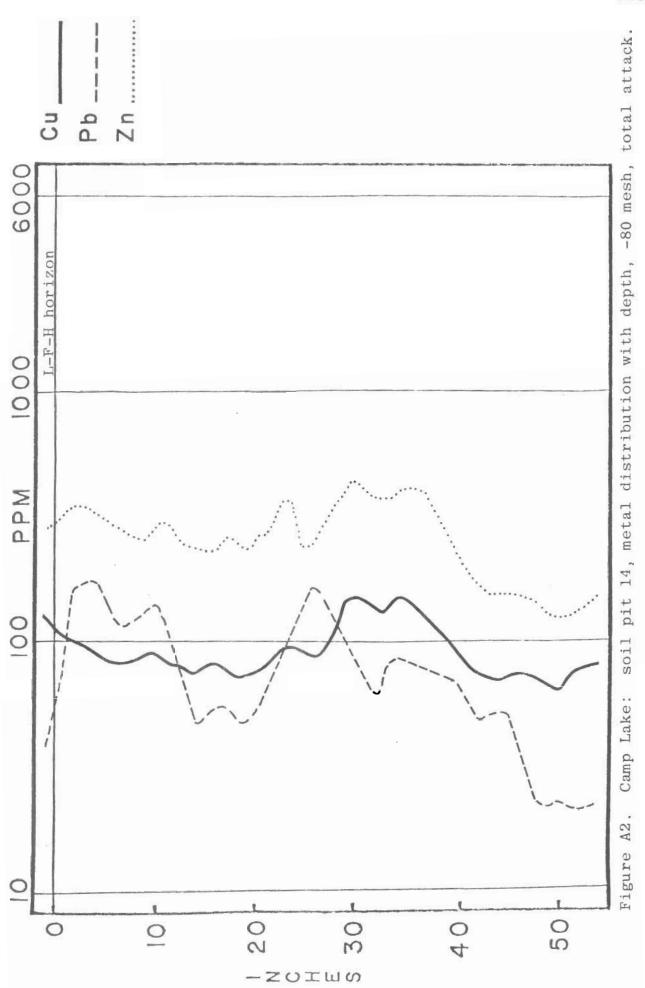
Wahl, H.J., 1965. Year-end report, Cornwallis project NWT. Dept. of Indian and Northern Affairs.

Washburn, A.L., 1956. Classification of patterned ground and review of suggested origins. GSA Bull., V. 67: 823-866.

Washburn, A.L., 1972. Periglacial processes and environments. Edward Arnold Ltd., London: 320 pp.

Weast, R.C., 1976. (Editor). Handbook of Chemistry and physics 56th edition, 1975-1976. CRC Press, Cleveland, Ohio,


Whitney, P., 1975. Relationship of manganese-iron oxides and associated heavy metals to grain size in stream sediments. J. Geochem. Explor., 4: 251-263.


Winter, T., 1976. Numerical simulation analysis of the interaction of lakes and ground-water. USGS Prof. Paper 1001.

Zontov, N.S., 1959. The wurmian oxidation zone in the Norilsk Cu-Ni sulphide deposits. Dokl. Acad. Sci. U.S.S.R., Earth Sci. Sect. 129: 1057-1059.

APPENDIX A

GEOCHEMICAL DATA FOR SOIL PITS
14, 17, 49, 52, 109, 113 AND 198
FROM THE CAMP LAKE AREA

