BASELINE AQUATIC STUDIES PROGRAM IN THE ULU PROJECT AREA, NUNAVUT (1997)

BASELINE AQUATIC STUDIES PROGRAM IN THE ULU PROJECT AREA, NUNAVUT (1997)

Prepared for

ECHO BAY MINES LTD. Edmonton, Alberta

MAR 2 6 1999

PUBLIC REGISTRY

by

R.L. & L. ENVIRONMENTAL SERVICES LTD.

17312 - 106 Avenue Edmonton, Alberta T5S 1H9 Phone: (403) 483-3499

Principal Investigator: R. Pattenden

May 1998

ACKNOWLEDGEMENTS

R.L. & L. Environmental Services Ltd. would like to thank Mr. Rick Nutbrown and Mr. David Hohnstein, Environmental Coordinators, Echo Bay Mines Ltd. (Lupin) for providing assistance during the project.

We would also like to thank the staff of Echo Bay Mines Ltd. for their assistance during the spring and summer field programs. The study team gratefully acknowledges the assistance provided by Mr. John Buckland (helicopter pilot for Echo Bay Mines Ltd.) and Mr. Richard Ekpakohak (Ulu Exploration Site).

The following R.L. & L. Environmental Services Ltd. personnel participated in this project:

Richard Pattenden

- Project Manager, Field Biologist and Principal Author

Chantal Pattenden

- Field Technician

EXECUTIVE SUMMARY

The Ulu Deposit, located approximately 155 km north of the Lupin gold mine is currently being developed by Echo Bay Mines Ltd. The deposit and support facilities are situated in the headwater area of the Ulu Creek (local name) drainage, which contains several lakes that may be influenced by the proposed development. In order to access the site and transport ore for processing, a winter access road extending from Lupin may be required. The proposed road will consist of ice sections on frozen lakes and rivers, and overland sections that may require stream crossings (during the construction phase) during the open water period.

The 1996 study was designed to assess four proposed alternative routes for the winter access road. This entailed evaluation of fish and fish habitat in streams that were to be crossed. Fish communities in several lakes in the immediate vicinity of the Ulu Exploration Site were also inventoried to obtain pre-development baseline information. The 1997 program was a continuation of the 1996 study.

The winter access road route evaluated during the present study included portions of Routes One, Two and Three. The route surveyed traversed a rugged landscape of bedrock, boulders and glacial till. The majority of the watercourses crossed were small, shallow and ill-defined. As such, few contain habitat that was capable of sustaining fish populations.

Availability of overwintering habitat appeared to limit the distribution of fish in the study area. It is likely that most of the surveyed streams freeze completely during winter, therefore, deep-water refugia in the form of lakes must be accessible to fish. If access to critical deep-water habitat is restricted due to physical barriers to fish passage or intermittent water flow during the open water period, then the stream cannot be used by fish.

In total, 13 streams that had the potential to support fish were assessed during the spring (June) and summer (August) surveys, including: 2 streams along Route One, 10 streams along Route Two, and 1 along Route Three. Species encountered included Arctic grayling, burbot, lake trout and slimy sculpin. Good quality fish habitat was documented in only two of the streams: Stream 18.5 along Route One and Stream 41.8 along Route Two. Both were accessible to deep-water lakes. These streams likely were used on an opportunistic basis by some species such as lake trout and burbot that enter the watercourses to feed. However, for species such as Arctic grayling that require streams for spawning and rearing purposes, these watercourses provided critical habitat. As such, care should be taken during road construction and maintenance to avoid or minimize the impacts on these systems.

Surveys of six lakes in the Ulu Exploration Area were conducted in summer (July and August). Most lakes in the area (West Lake, Ulu Lake, Meadow Lake, Reno Lake South and Reno Lake North) were cold, well-oxygenated, nutrient poor systems. The physical characteristics of these lakes also were typical of subarctic systems. Most were

dominated by rocky shorelines and contained deep-water areas. Inlet and outlet streams associated with all of these waterbodies were small and several contained physical barriers to fish passage. As such, fish populations in these lakes were residents and could not move between waterbodies.

Water samples collected from seven sites in the Ulu Creek drainage provided baseline information on background concentrations of nutrients, metals and hydrocarbons. The hydrocarbon xylene, which occurred at slightly elevated levels in 1996, was not detectable at any site during the present study. This was also true for all other hydrocarbons analysed. At most sites, concentrations of nutrients and trace metals were near or below detectable limits. Exceptions occurred for several elements in East Lake. Levels of some elements (e.g., chloride and sodium), essential nutrients (e.g., ammonia, nitrogen) and trace metals (nickel, strontium and zinc) were above background concentrations recorded from other sites. These results were due to deposition of the camp's sewage effluent into East Lake and storage of waste rock material in the East Lake basin. The water chemistry results also suggested that concentrations of several elements were elevated in waterbodies immediately downstream of East Lake (Ulu Lake and Ulu Creek) and that these elevated levels were the result of water flow from East Lake into the drainage.

The aquatic biological communities of lakes in the Ulu Exploration Area were typical of subarctic tundra lakes. Plankton and benthic macroinvertebrates exhibited low densities and simple species assemblages. Similar results were found for the fish community. Only a single species, lake trout, was recorded in West Lake, Ulu Lake and Reno Lake South. Reno Lake North was the only waterbody where other species were encountered, which included round whitefish (during the present study) and Arctic char (during 1996). Catch rates recorded during sampling in all four lakes indicated that fish population densities were low. Two waterbodies in the Ulu Exploration Area did not contain fish: East Lake, which was too small and Meadow Lake which was too shallow. It should be noted that the inlet stream to Meadow Lake did contain small numbers of slimy sculpin.

An assessment of the fish community in the Ulu Creek drainage (Ulu Creek and Frayed Knots River) indicated that the system was used by fish. Young-of-the-year Arctic grayling were recorded in Ulu Creek near its confluence with the Frayed Knots River and slimy sculpin were present immediately upstream of Meadow Lake. In the Frayed Knots River, fish were distributed throughout the entire length sampled. All age-groups of Arctic grayling were recorded, as well as adults of round whitefish and lake trout.

TABLE OF CONTENTS

Page #
ACKNOWLEDGEMENTS
EXECUTIVE SUMMARY iii
TABLE OF CONTENTS
LIST OF TABLES vii
LIST OF FIGURES ix
1.0 INTRODUCTION 1 1.1 STUDY AREA 3 1.2 OBJECTIVES 3 1.3 SITE SELECTION, TIMING, AND LOGISTICS 6
2.0 METHODS 7 2.1 WINTER ACCESS ROAD STREAM CROSSINGS 7 2.1.1 Habitat Assessment 7 2.1.2 Fisheries Assessment 8 2.2 ULU EXPLORATION AREA 8 2.2.1 Water Chemistry 8 2.2.3 Limnology 9 2.2.4 Aquatic Invertebrates 9 2.2.5 Habitat 10 2.2.6 Fish 10 2.4 LABORATORY ANALYSES 11 2.4.1 Aquatic Invertebrates 11 2.4.2 Fish 13 3.0 WINTER ACCESS ROAD STREAM CROSSINGS 15 3.1 ROUTE ONE 15 3.2 ROUTE TWO 16
3.3 ROUTE THREE
4.0 ULU EXPLORATION AREA 25 4.1 EAST LAKE 25 4.1.1 Lake Morphology and Limnology 25 4.1.2 Water Chemistry 26 4.2 ULU LAKE 27 4.2.1 Lake Morphology and Limnology 27 4.2.2 Water Chemistry 27 4.2.3 Aquatic Invertebrates 28 4.2.4 Fisheries 30 4.3 WEST LAKE 31 4.3.1 Lake Morphology and Limnology 31 4.3.2 Aquatic Invertebrates 32 4.3.3 Fisheries 33

4.4 MEADOW LAKE	34
4.4.1 Lake Morphology and Limnology	34
4.4.2 Aquatic Invertebrates	
4.4.3 Fisheries	
4.5 RENO LAKE SOUTH	
4.5.1 Lake Morphology and Limnology	
4.5.2 Fisheries	
4.6 RENO LAKE NORTH	
4.6.1 Lake Morphology and Limnology	
- -	
4.6.2 Fisheries	
4.7 ULU CREEK DRAINAGE	
4.7.1 Physical Characteristics	
4.7.2 Water Chemistry	
4.7.3 Fish	41
SECTION 4.0 FIGURES	43
5.0 SUMMARY AND RECOMMENDATIONS	
5.1 WINTER ACCESS ROAD STREAM CROSSING SURVEY	
5.2 ULU EXPLORATION AREA	
5.3 RECOMMENDATIONS	65
5.3.1 Winter Access Road	65
5.3.2 Ulu Exploration Area	65
6.0 REFERENCES	67
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	01

#### PHOTOGRAPHIC PLATES

APPENDIX A CLASSIFICATION SYSTEMS AND METHODS APPENDIX B STREAM SURVEY INFORMATION SHEETS APPENDIX C LIMNOLOGY AND WATER CHEMISTRY APPENDIX D AQUATIC INVERTEBRATES APPENDIX E FISHERIES DATA

# LIST OF TABLES

Page #

Table 4.1	Routine water chemistry analyses results for a surface sample collected on 31 July from East Lake, Ulu Exploration Area 1997
Table 4.2	Routine water chemistry analyses results for a surface sample collected on 30 July from Ulu Lake, Ulu Exploration Area 1997
Table 4.3	Mean density ^a (± standard error) of benthic macroinvertebrates collected on 30 July from the littoral zone of Ulu Lake, Ulu Exploration Area 1997
Table 4.4	Summary life history information for fish species captured during gillnetting in Ulu Lake during 1996 and 1997
Table 4.5	Mean density ^a (± standard error) of benthic macroinvertebrates collected on 2 August from the littoral zone of West Lake, Ulu Exploration Area 1997.
Table 4.6	Summary life history information for fish species captured during gillnetting in West Lake during 1996 and 1997
Table 4.7	Mean density ^a (± standard error) of benthic macroinvertebrates collected on 31 July from the littoral zone of Meadow Lake, Ulu Exploration Area 1997
Table 4.8	Summary life history information for fish species captured during gillnetting in Reno Lake South during 1996 and 1997
Table 4.9	Summary life history information for fish species captured during gillnetting in Reno Lake North during 1996 and 1997
Table 4.10	Species composition of fish recorded in the Ulu Creek drainage during summer 1997 41
Table 5.1	Summary results for winter access road stream crossing survey, Ulu Project Area 1997 63

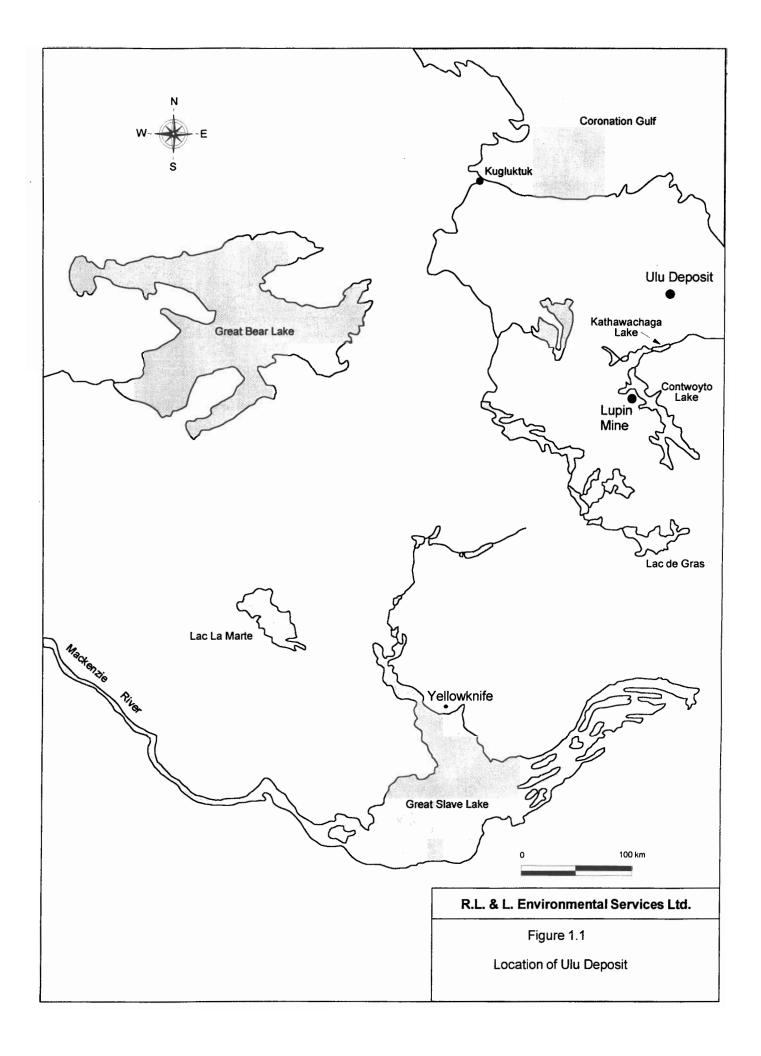
# LIST OF FIGURES

	Page #
Figure 1.1	Location of Ulu deposit relative to Echo Bay Mines Ltd. Lupin Mine Site
Figure 1.2	Ulu Project Area 1997
Figure 1.3	Ulu Exploration Area 1997
Figure 3.1	Route One stream crossings, Ulu Winter Access Road 1997 22
Figure 3.2	Route Two stream crossings, Ulu Winter Access Road 1997
Figure 3.3	Route Three stream crossings, Ulu Winter Access Road 1997
Figure 4.1	Ulu Exploration Area 1997
Figure 4.2	Bathymetry of East Lake, Ulu Exploration Area 1997
Figure 4.3	Dissolved oxygen and temperature profiles, and Secchi depth reading in East Lake on 31 July 1997, Ulu Exploration Area
Figure 4.4	Ulu Lake and Meadow Lake, Ulu Exploration Area 1997
Figure 4.5	Bathymetry of Ulu Lake, Ulu Exploration Area 1997
Figure 4.6	Dissolved oxygen and temperature profiles, and Secchi depth reading in Ulu Lake on 30 July 1997, Ulu Exploration Area
Figure 4.7	Length-frequency distribution and length-weight regression equation for lake trout sampled from Ulu Lake, Ulu Exploration Area
Figure 4.8	West Lake, Ulu Exploration Area 1997
Figure 4.9	Bathymetry of West Lake, Ulu Exploration Area 1997
Figure 4.10	Dissolved oxygen and temperature profiles, and Secchi depth reading in West Lake on 2 August 1997, Ulu Exploration Area
Figure 4.11	Length-frequency distribution and length-weight regression equation for lake trout sampled from West Lake, Ulu Exploration Area
Figure 4.12	Dissolved oxygen and temperature profiles, and Secchi depth reading in Meadow Lake on 31 July 1997, Ulu Exploration Area
Figure 4.13	Reno Lake South and Reno Lake North, Ulu Exploration Area 1997
Figure 4.14	Dissolved oxygen and temperature profiles, and Secchi depth reading at Sites 1 and 2 on Reno Lake South on 4 August 1997, Ulu Exploration Area
Figure 4.15	Length-frequency distribution and length-weight regression equation for lake trout sampled from Reno Lake South, Ulu Exploration Area

Figure 4.16	Dissolved oxygen and temperature profiles, and Secchi depth reading in Reno Lake North on 3 August 1997, Ulu Exploration Area
Figure 4.17	Length-frequency distributions and length-weight regression equations for lake trout and round whitefish sampled from Reno Lake North, Ulu Exploration Area 60
Figure 4.18	Water Sampling Sites, Ulu Exploration Area 1997 61
Figure 4.19	Trends in the concentrations of selected water chemistry parameters sampled on 1 August 1997 from waterbodies in the Ulu Exploration Area

# 1.0 INTRODUCTION

Echo Bay Mines Ltd. has been operating a gold mine and processing facility at Lupin, N.W.T. since 1982. In 1995, the mineral rights for the Ulu gold deposit were purchased by Echo Bay Mines Ltd. from BHP Minerals Ltd. The development plans for this deposit require extraction of the ore and transportation of the material, via a winter access road, to Lupin for processing.


The Ulu deposit is located approximately 155 km north of the Lupin mine and 510 km northeast of Yellowknife, N.W.T., at 66° 54'30" N, 110° 58' W (Figure 1.1). In order to access the Ulu deposit, a winter access road approximately 180 km in length, extending north from Lupin, which is on the west shore of Contwoyto Lake, may be required.

The winter access road will consist of overland sections and ice sections on rivers and lakes. Due to low snow pack levels in this region and the presence of numerous boulder fields, portions of the overland section will have to be built using gravel deposits extracted from the area (S. Barry Lowe, Land Use Administrator, Echo Bay Mines Ltd., pers. comm.). The overland sections will traverse several streams. As such, there is the potential to impact these systems.

The Ulu gold deposit is situated within the Hood River watershed. The deposit is located in the headwater area of the Ulu Creek drainage (local name), which connects to the Hood River via the Frayed Knots River (local name). Several small lakes are immediately adjacent to the deposit and can potentially be impacted by the development.

In 1996, R.L. & L. Environmental Services was contracted by Echo Bay Mines Ltd. to survey stream crossings along the four proposed winter access road routes. The survey was designed to document the habitat and fish use of each crossed stream. In addition to the road crossing survey, R.L. & L. Environmental Services Ltd. conducted preliminary baseline aquatic surveys of four lakes in the vicinity of the Ulu deposit.

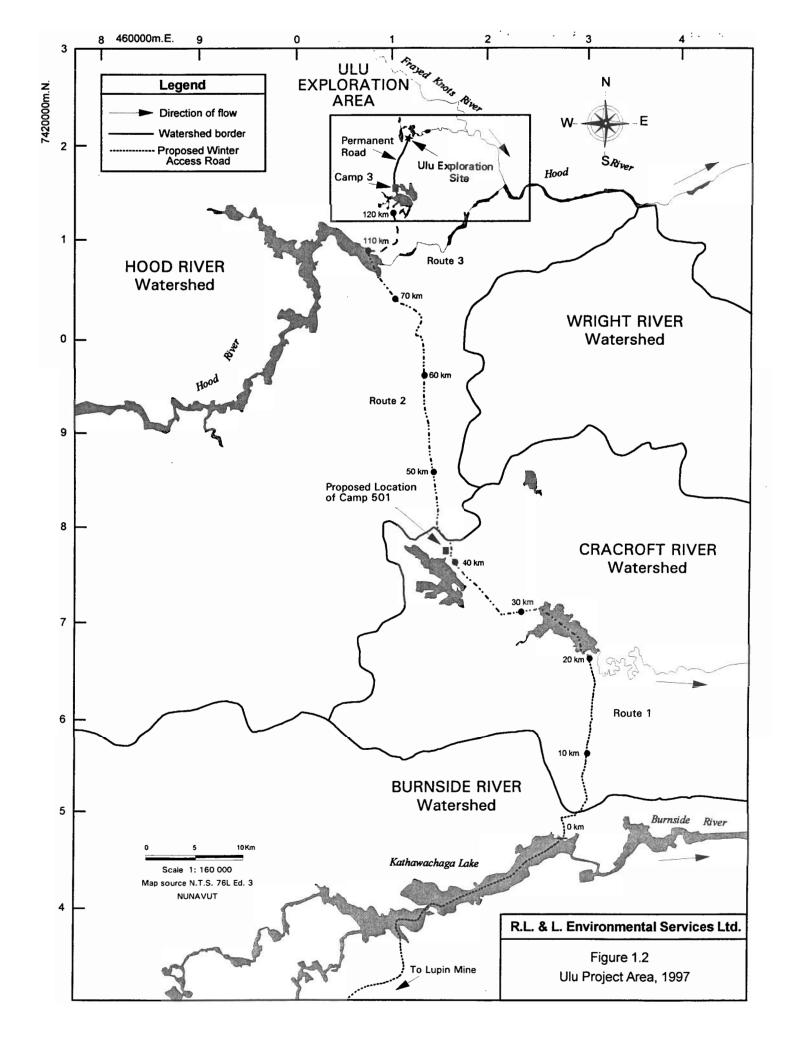
The 1997 work program, which is summarized in this document, was designed to address data gaps identified during the 1996 study. The present study included assessments of stream crossings along sections of the proposed winter access road routes not investigated in 1996 and collection of additional baseline information for the aquatic system in the vicinity of the Ulu deposit.

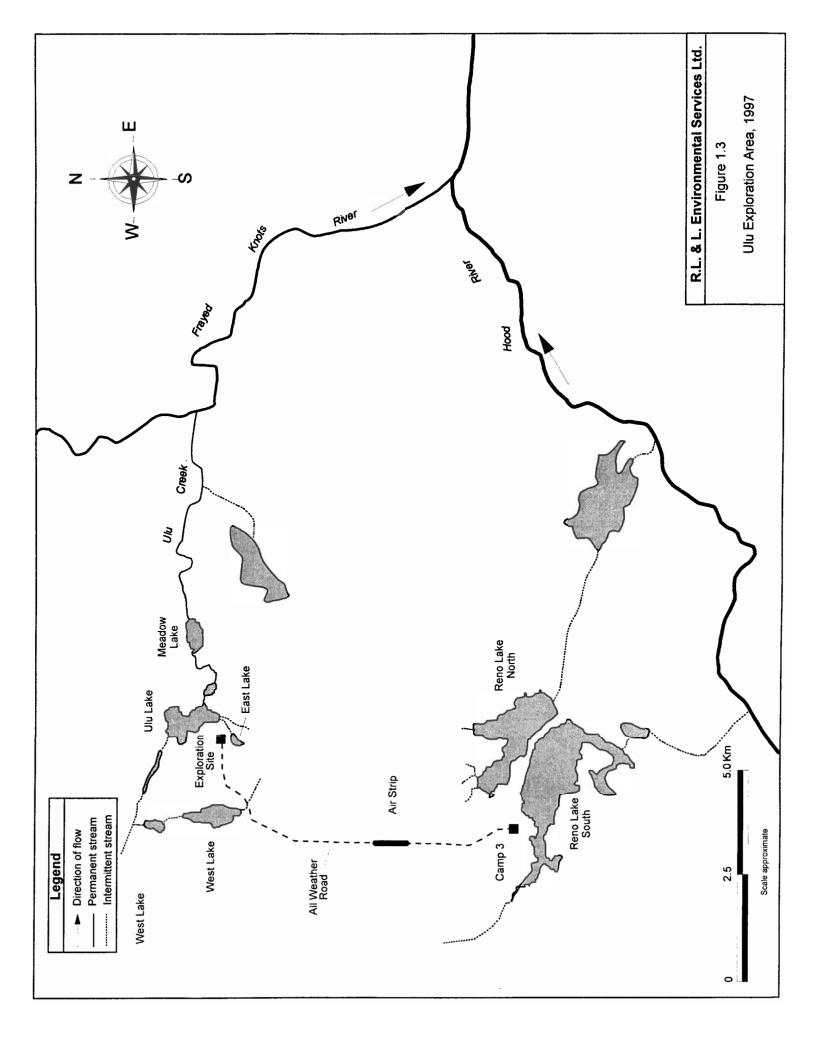


# 1.1 STUDY AREA

The proposed winter access road routes investigated in 1997 encompassed an area that extends from Contwoyto Lake to the south (66°03' N) and the Ulu deposit to the north (66°59' N). The eastern boundary was approximately 115° 15' W and to the west the approximate boundary was at 111°30' W. The northern portion of the winter access road is located in the Hood River drainage and the central portion is in the Cracroft River drainage. The southern portion of the route lies in the Burnside River drainage (Figure 1.2).

There were three proposed winter access road routes examined during the 1997 program. These included the following:


- Route One from the north end of Kathawachaga Lake Km 0 to Km 86.0;
- Route Two from Km 20.0 to the Hood River (Km 76.0); and,
- Route Three from the Hood River (Km 110.0) to Camp Three at Reno Lake South (Km 124.0).


The Ulu deposit study area (Ulu Exploration Area) is situated in the Hood River drainage (Figure 1.2). The proposed development is located in the headwater region of a small stream locally known as Ulu Creek and is situated on a ridge adjacent to three small waterbodies (Figure 1.3). Ulu Lake is located on the east side of the ridge. East Lake, which is immediately south of the ridge and drains into Ulu Lake, receives discharges of waste water from the development area. West Lake is west of the ridge and also drains into Ulu Lake. This waterbody is the source of potable water for the camp. Ulu Creek is the principal drainage system of the area. Water flows into Meadow Lake, which is situated 1.0 km downstream of Ulu Lake, and then continues on for 4.5 km before entering the Frayed Knots River (local name). The confluence of the Frayed Knots and Hood Rivers is 9.5 km downstream of this point.

The main fuel storage area known as Camp Three (capacity of 3 185 000 L of fuel) is located south of the Ulu deposit. This is a fuel storage area and proposed service depot for vehicles using the winter access road. It is situated on the top of a sand and gravel esker that separates Reno Lake North and Reno Lake South. These waterbodies drain directly into the Hood River, which is located approximately 4.5 km to the south.

# 1.2 OBJECTIVES

The purpose of the present study was to address data gaps identified by the 1996 program. The 1997 baseline aquatic studies program was designed to collect information for stream crossings not previously surveyed and to collect additional biological information for waterbodies in the vicinity of the proposed Ulu Exploration Site.





The specific objectives of the proposed 1997 program included the following:

- to assess the fish habitat and fish populations in streams to be crossed by the proposed winter access road that were not inventoried in 1996;
- to determine stream discharges during spring freshet and summer base flow periods at each stream crossing not inventoried in 1996;
- to describe the water chemistry characteristics of waterbodies in the Ulu Exploration Area;
- to describe the phytoplankton, zooplankton and benthic macroinvertebrate communities found in waterbodies in the Ulu Exploration Area;
- to describe the abundance, distribution, and biological characteristics of fish found in waterbodies in the Ulu Exploration Area and the habitat used by the fish; and,
- to assess the importance to fish populations of waterbodies situated within, immediately downstream, and immediately upstream of the development area.

# 1.3 SITE SELECTION, TIMING, AND LOGISTICS

Site selection was based on two criteria: the characteristics of the site should be representative of the area and where appropriate, sites previously sampled in 1996 were resampled in 1997.

The 1997 field sampling program was conducted during two periods. The spring session was completed between 16 and 20 June. This study component was designed to investigate fish use of streams along the proposed winter access road and to measure the discharge of these streams.

The second field period commenced on 28 July and was completed on 6 August. The sampling program during this period involved several components. Investigations included collection of fish and habitat data from streams previously sampled during the winter access road stream crossing survey. In addition to the stream crossing survey, a sampling program in the Ulu Exploration Area was completed. This required collection of water samples from sites in the Ulu Creek drainage, habitat surveys of lakes and streams, and inventories of biological communities (plankton, benthic macroinvertebrates and fish).

Access to the Ulu Project Area was by fixed-wing aircraft from Edmonton. During spring, accommodations were at the Lupin Mine. In summer, accommodations were at the Ulu Camp. Transportation of personnel and equipment to sampling sites along the winter access road routes and the Ulu Exploration Area was provided by helicopter.

# 2.0 METHODS

# 2.1 WINTER ACCESS ROAD STREAM CROSSINGS

There were three proposed winter access road routes examined during the present study. Similar to the 1996 investigation, routes were given a numeric designation (e.g., Route 1, Route 2 and Route 3). Streams that were to be crossed by the proposed route were assigned a unique identification number based on distance (in kilometres) from Kathawachaga Lake. For example, along Route 1, Stream 4.6 was located 4.6 km north of Km 0. It should be noted that no defined stream channels were identified between Kathawachaga Lake and Contwoyto Lake along the proposed route. Km 0 was established on the north shore of Kathawachaga Lake.

#### 2.1.1 Habitat Assessment

Habitat characteristics of the stream were assessed within 100 m upstream and 100 m downstream of each proposed crossing. Habitat type and instream cover were classified according to the R.L. & L. Habitat Classification System outlined in Appendix A1. In addition to documentation of general habitat characteristics of the stream at the crossing, cross section transects were established to assess the water depth, velocity, and substrate type. At each transect, measurements were taken at locations corresponding to ¼, ½ and ¾ of the stream's channel width. Substrate types were classified according to the Modified Wentworth Scale (Appendix A2).

Discharge was determined in all streams that had measurable flow. Water depth and mean velocity measurements were taken at a minimum of 10 intervals along a tag line positioned perpendicular to the flow. Water velocity was measured at 0.4 depth from the stream bottom using a Swoffer Model 2100 digital flow meter  $(\pm 0.005 \text{ m/s})$ . Water depth was measured using the flow meter wading rod  $(\pm 0.5 \text{ cm})$ . Discharge was calculated according to the methods outlined by Bovee and Cochnauer (1977).

Water conductivity was measured with an Oakton TDS Testr1 conductivity meter (0-1990  $\mu$ S·cm⁻¹;  $\pm 0.5 \mu$ Scm) whereas pH was measured with an Oakton Testr 2 meter ( $\pm 0.2$  pH units). Water temperatures were measured with an alcohol pocket thermometer ( $\pm 0.5$ °C).

Stream bank slopes at the crossing (i.e., between the water's edge and active flood plain) and the slopes of the approach (upslope from the flood plain) were estimated visually and spot checked using a Silva clinometer ( $\pm 1^{\circ}$ ). Bank cover (e.g., vegetation) and bank materials were estimated in the field as a percentage of the total bank area within a 2 m band adjacent to the stream.

A Garmin 45 Global Positioning System (GPS) was used to determine the Universal Transverse Mercator (UTM) coordinates of the sampled stream crossing using the NAD27 datum (Zone 12W). Photographs were taken at each stream crossing site using a Pentax MX 35 mm camera.

#### 2.1.2 Fisheries Assessment

A Smith-Root Model XII Programmable Output Waveform backpack electrofisher was utilized to capture fish at each assessed stream crossing. The electrofisher operator completed synoptic level sampling of areas suspected of containing fish (e.g., undercut banks and boulders). All captured fish were placed in a live-holding bucket.

All captured fish were identified to species and measured (fork length and weight). Non-lethal ageing structures were collected from sportfish species and archived. All fish were released near their collection point.

Fork lengths (to the nearest millimetre) were determined using a measuring board. Weights were determined using a top loading electronic balance ( $\pm 2$  g). Fish identifications were confirmed using keys in Freshwater Fishes of Canada (Scott and Crossman 1973).

Each stream crossing was rated for its potential quality as fish habitat for important species. Ratings were assigned using a scale of 0 (extremely poor) to 3 (excellent). Habitat categories evaluated included spawning, rearing, feeding and movement. Ratings were developed based on a visual assessment by an experienced of the observer.

# 2.2 ULU EXPLORATION AREA

# 2.2.1 Water Chemistry

Surface water samples were collected from seven sites in the Ulu Exploration Area. Samples were preserved and shipped to Norwest Labs in Edmonton for analyses. Parameters analysed are presented in Appendix A3 and included the following:

Parameter

Total Metals

Total Mercury

Major Cations (e.g., Ca, Mg, Na, K)

Alkalinity

Nutrients

Ammonia

Nitrate-Nitrogen

Nitrite-Nitrogen

Nitrate + Nitrite--Total Nitrogen

Total Kjeldahl Nitrogen

Total Phosphorous

Total Dissolved Phosphorous

Total Organic Carbon

Total Dissolved Solids

Oil and Grease

Total extractable and purgeable hydrocarbons

# 2.2.3 Limnology

Temperature and dissolved oxygen were measured in lakes using an Oxyguard Handy Mark II dissolved oxygen-temperature meter. Measurements were taken at 0.5 m intervals to within 0.5 m of the lake bottom (to avoid contamination of the probe with sediment). Water transparency was measured to the nearest 0.1 m using a standard Secchi disk (20 cm diameter).

Other measurements taken from the water surface included conductivity (Oakton TDS Testr1 conductivity meter 0-1990  $\mu$ S·cm⁻¹;  $\pm 0.5 \mu$ Scm) and pH (Oakton pH Testr 2 meter  $\pm 0.2$  pH units).

# 2.2.4 Aquatic Invertebrates

#### Phytoplankton

Phytoplankton were collected during the summer period from the euphotic zone of selected lakes. This zone is equal to the depth of 1% light penetration (approximately two times the Secchi depth). Vertical collections were made using a weighted plastic tube. A sample consisted of a composite of five discrete vertical collections within this zone. In lakes that were shallower than two times the Secchi depth, phytoplankton hauls encompassed the entire water column to 1 m above the lake bottom (to avoid contamination of the sample with sediment). Samples were placed in labelled 500 mL glass containers, preserved with 5% acid-Lugol's solution, and stored in the dark. Three drops of 100% formalin were added to each sample to prevent growth of bacteria and fungi during storage.

#### Zooplankton

Zooplankton samples were also collected during the summer period. A sample consisted of a composite of three vertical hauls at a particular site. The depth of each haul was equal to two times the Secchi depth. In lakes that were shallower than two times the Secchi depth, zooplankton hauls encompassed the entire water column to 1 m above the lake bottom (to avoid contamination of the sample with sediment). Zooplankton collections were made with a Wisconsin plankton net constructed with Nitex® mesh (net mouth diameter 13.34 cm). To prevent predation by cyclopoid copepods, each sample was immediately preserved in 5% formalin and stored in labelled 500 mL polyethylene bottles. Equipment was thoroughly rinsed after sampling at each site to prevent contamination.

#### Benthic Macroinvertebrates

Benthic macroinvertebrates were sampled from sites situated in the littoral zone (i.e., >2 m and <5.0 m depth) of selected lakes during summer. Three replicate samples were collected at each site using an Ekman grab sampler (area equal to 0.023 m²). Samples were then sieved through a 0.243 mm mesh to remove excess sediments, placed in labelled polyethylene bottles, and preserved in 10% formalin. Water depth and substrate type were recorded for each sample location.

#### 2.2.5 Habitat

#### Lakes

The physical habitat characteristics of selected lakes in the Ulu Exploration Area were assessed. Shoreline habitat was described visually based on three variables: shoreline slope, shoreline substrate type and presence of important features such as high quality rearing and spawning areas. Basin morphology was assessed using a Lowrance X15 paper recording depth sounder. Where sufficient data were available, a bathymetric map was developed for the lake.

#### Streams

The physical habitat available to fish in streams in the Ulu Exploration Area was documented during spring and summer. During spring, a reconnaissance level survey was undertaken on the ground to identify streams that provided habitat for fish populations residing in study area lakes. Streams containing barriers to fish passage at their confluence, or those that were ephemeral (water flow only during spring snow melt or high rainfall events), were recorded as having no value to fish and were excluded from more detailed surveys. Detailed surveys followed methods described in Section 2.1.1.

#### 2.2.6 Fish

#### Lakes

Fish sampling in lakes focussed on determining species composition and relative abundance during summer. The primary fish capture method was standard gang gillnetting. Each gang consisted of six panels (15.2 m x 2.4 m each) of sinking monofilament nylon netting of the following mesh sizes (stretched measure): 1.9 cm, 3.8 cm, 6.4 cm, 8.9 cm, 10.2 cm, and 12.7 cm. A variety of habitats were sampled using bottom and surface sets. Pertinent data recorded at each gill net site included set/pull time, set location/orientation, water depth, and substrate type. Catch rates were assessed by using a net-unit approach (i.e., 100 m² surface area of net fished for the equivalent of a 12-hour period constitutes one net-unit of effort). Catch-per-unit-effort (CPUE) was expressed as the number of fish (by species) per net-unit.

Additional capture techniques were employed during lake sampling. For larger size-classes of fish, angling with lures was used. To capture smaller size-classes of fish in habitats not effectively sampled by gillnetting, standard gee traps baited with cheese or meat were used in rocky shoreline areas. Dimensions of the gee traps were 0.4 m length x 0.2 m diameter with an aperture of 0.02 m.

#### Streams

During both the spring and summer sampling sessions, survey level fish sampling was conducted in representative sections of streams to assess fish species composition, relative abundance, and habitat utilization (spawning, rearing, feeding, and movements). During spring, surveys were undertaken on all streams that were associated with study area lakes. During summer, surveys were limited to streams that were deemed to have usable fish

habitat (e.g., flowing water). A variety of sampling methods were used to document the presence of fish in streams; these included visual observations, snorkelling, backpack electrofishing, and angling. The specific methods utilized depended on habitat conditions and stream discharge at the time of sampling. The backpack electrofisher employed during sampling was a Smith-Root Type XII, which is specifically designed for use in low conductivity water.

#### Fish Biological Characteristics

All captured fish were identified to species. Data recorded for each fish included fork length (to the nearest 2 mm), weight (to the nearest 2 g), sex and maturity. An appropriate ageing structure was also collected (Mackay et al. 1990) from a representative sample of captured fish. Data were recorded on standardized record sheets to facilitate data analyses in the laboratory.

To determine feeding habits, stomach contents of fish that succumbed during sampling were analysed in the field using the method described by Thompson (1959), which is a modification of the numerical method used by Hynes (1950). Each stomach was examined and evaluated for fullness and allotted a designated number of fullness points (i.e., 20 points for a full stomach and 0 points for an empty stomach). After points were allocated for the degree of fullness, the stomach was opened and the points allotted to individual food categories based on their volume. To account for the presence of empty stomachs, values of zero were incorporated into the analysis.

# 2.4 LABORATORY ANALYSES

# 2.4.1 Aquatic Invertebrates

#### Phytoplankton

Prior to enumeration, the phytoplankton samples were inverted gently, and 10 to 100 mL subsamples were dispensed into sedimentation chambers (Lund et al. 1958). After a 24 h sedimentation period, samples were processed. To obtain a comprehensive species list, the entire basal area of the chamber was scanned qualitatively with an inverted microscope (Wild M-40). Taxonomic keys used for identification included Prescott (1970), Taft and Taft (1971), and Webber (1971).

Once a comprehensive species list was formed, cell density was assessed. To calculate cell density (cells/mL), individual cells were enumerated within a specified area of the sedimentation chamber. This was accomplished by counting the number of cells along horizontal transects placed across the specified area. To calculate the cell density of each species in the sample, the number of cells within the specified area was extrapolated to the subsample, and then to the entire sample.

Cell biovolume ( $\mu$ m³/m³) was calculated by first measuring the physical dimensions (length, width, and depth) of between 10 and 30 cells of each species in the sample. Estimates of cell biovolume were then generated by

multiplying the mean dimension of cells belonging to a particular species by the number of cells enumerated for that species. The mean cell biovolume estimate for the subsample was then extrapolated to the entire sample. Species that were enumerated during the qualitative assessment, but not encountered (i.e., very low numbers or located outside the enumeration transects), were recorded as present.

For diatom identification and enumeration, a separate subsample was concentrated, dried onto a coverslip, ashed in a muffle furnace to remove organic matter, and mounted in Storax.

#### Zooplankton

Zooplankton counts were completed using a dissecting stereo-microscope (Wild M-5); identifications were made using a compound microscope equipped with a phase-contrast condenser (Wild M-20). Taxonomic keys used for crustacean plankton were Brooks, Wilson and Yeatman (in Edmondson 1959), supplemented by the keys of Brooks (1957), Smirnov (1971), Brandlova et al. (1972), Flössner (1972), and Kiefer (1978). The taxonomic key used for identification of rotifers was the Voigt revision by Koste (1978), supplemented by keys of Ahlstrom (1943) and Ruttner-Kolisko (1974). Chaoboridae were identified using the keys of Cook (1956) and Saether (1970). Specimens were identified to the lowest taxonomic level possible.

Enumeration of zooplankton in each sample involved different techniques that were dependent on taxonomic group. Cladocerans and copepods (all stages) were enumerated either from three 15 mL subsamples or from the entire sample using a dissecting microscope at magnifications of 12-50×. Subsampling was performed on samples that were subjectively assessed to have large numbers of specimens. Rotifers were enumerated from a subsample: a modified Folsom-style splitter was used to create subsamples. Each 15 mL subsample was allowed to settle for 24 h before processing. An inverted microscope (100 or 200×) was used to enumerate rotifers by counting either 6 fields (1 field = 0.02625 cm²) or the entire counting chamber (4.907 cm²). Subsamples were continually removed from the original sample until approximately 200 mature or identifiable rotifer organisms were processed. Species encountered, but not enumerated due to low numbers, were recorded as present.

Once numbers of organisms within each sample were established, these values were converted to densities per cubic metre. This was accomplished by determining the total volume filtered (i.e., net mouth area x depth of haul x number of hauls) and multiplying by the number of organisms enumerated.

Biomass of major taxonomic groups in each sample was also calculated. To calculate biomass, lengths were measured from the first 30 individuals observed in a sample. Lengths of larger zooplankton were measured directly with a microscope equipped with a calibrated Sigma Scan digitizing tablet. Smaller zooplankton, such as rotifers, were measured using an eyepiece graticule and corrected for magnification. Lengths were measured from the first 10-30 individuals of each species observed in each sample. Using length measurements from individual organisms, weights were calculated from published length-weight regression equations as follows:

Organism	Equation	Reference
Copepods (N1-adults)	$lnW(\mu g) = 1.9526 + 2.399 \cdot lnL(mm)$	Bottrell et al. (1976)
Daphnia spp.	$\ln W(\mu g) = 1.6 + 2.84 \cdot \ln L(mm)$	Bottrell et al. (1976)
Holopedium spp.	$lnW(\mu g) = 6.4957 + 3.052 \cdot lnL(mm)$	Downing (1984)
Rotifers	$\ln W(\mu g) = -10.3815 + 1.574 \cdot \ln L(\mu g)$	Stemberger and Gilbert (1987)

For each sample, a mean individual weight was calculated by averaging the estimated weights generated from the length-weight regression equation (it is important to average weights and not lengths; Bird and Prairie (1985)). Biomass for each taxonomic group was calculated by multiplying the number enumerated for that sample by the mean individual weight.

Zooplankton hauls cannot be considered adequately quantitative for sampling rotifers because coarser mesh sizes, (i.e., >0.065 mm), may allow small forms to escape. Consequently, numbers derived from zooplankton hauls should be considered as a relative comparison of abundance (Green 1977).

#### Benthic Macroinvertebrates

Samples were first processed to remove all extraneous substrate and organic matter. Individual samples were washed to remove the preservative and repeatedly elutriated to remove silt, sand, and gravel (i.e., inorganic materials). This procedure was continued until invertebrates were no longer observed in the elutriated water. The remaining organic and inorganic material was scanned (without a microscope) in an enamelled tray, and large animals (greater than 0.5 cm) were removed. The sample was then fractionated for ease of sorting (using a series of nested sieves) into: a large fraction containing filamentous algae, macrophyte pieces, and plant material (greater than 4 mm;), a coarse fraction (1 - 4 mm); a medium fraction (0.5 - 1 mm); and, a fine fraction (0.25 - 0.5 mm).

Using a dissecting microscope (6 to 42 × magnification), invertebrates were then sorted by major taxonomic group and identified to the lowest practical taxonomic level (genus or species when possible). More difficult groups, such as nematodes, were identified to a higher taxonomic level. Keys used for identification included Wiggins (1977), Merritt and Cummins (1984), Brinkhurst (1986), and Clifford (1991).

#### 2.4.2 Fish

Fish ageing followed the protocol outlined in Mackay et al. (1990). Otoliths were used to age lake trout; scales were used to age Arctic grayling. Otoliths, which had been stored dry in labelled envelopes, were first lightly ground and polished with emery cloth (400 grit) to allow sufficient light transmission. Then a binocular dissecting microscope, equipped with a transmitted light source, was used to obtain an age from each structure. Clean, nonregenerated scales were mounted on a glass slide, and a photocopy was made using a Canon PC Printer 80 microfiche reader/printer. Scales were then aged using this photocopy. Each structure was aged by two independent readers. When discrepancies in the assigned age occurred, the two readers conferred to arrive at a consensus. A third independent reader conducted a random check of selected structures to ensure quality control.

# 3.0 WINTER ACCESS ROAD STREAM CROSSINGS

The original objective of the 1997 winter access road stream crossing survey was to obtain additional fisheries information for crossings along Routes Two and Three that were not adequately sampled during the 1996 program. During early spring 1997, the preferred alignment of the winter access road was modified to include portions of Routes One, Two and Three. In addition to these changes, sections of these routes were realigned (Barry Lowe Land Use Administrator Echo Bay Mines Ltd., pers. comm.). The primary objective of the winter access road stream crossing survey was modified to address these changes. All stream crossings that had the potential to support fish were evaluated along the new routes.

Surveys were undertaken during spring (16 to 20 June) and summer (28 July to 6 August) to ensure that seasonal use of the streams by fish was documented. All crossings were first assessed visually from the air to document whether they had the potential to support fish (i.e., contained water and were accessible to fish). If the stream at the proposed crossing exhibited some potential to support fish, a ground survey was undertaken. The ground survey included a description of stream habitat characteristics and fisheries resources, as well as a rating of fish habitat quality. If the stream at the proposed crossing contained high quality habitat (e.g., spawning areas for Arctic grayling), a more detailed assessment of the stream was undertaken to quantify these habitat characteristics. The following section provides a description of each stream crossing that had the potential to support fish. All raw data are presented in Appendix B1.

# 3.1 ROUTE ONE

The new alignment of Route One crossed several watercourses, however, only two had the potential to support fish. These included Streams 3.1 and 18.5 that were situated between Kathawachaga Lake and Lake 501. None of these crossings were inventoried during the 1996 survey.

#### STREAM 3.1 UTM: 12W 0517728 7349569 PLATE 1

This stream is the outlet system to a small lake situated approximately 250 m upstream of the crossing and this stream drains directly into Kathawachaga Lake. Fish habitat at the crossing consisted of shallow RIFFLE/RUN complexes dominated by large boulder substrates. The wetted width of the stream at the crossing was 5 m during base flow and 15.0 m during the spring freshet. The stream banks were composed of boulders and were stable.

No fish were encountered during the spring survey, however, sixteen Arctic grayling were captured during the summer inventory (CPUE=5.6 fish/min). All individuals were juvenile fish between one and two years of age that likely originated from the headwater lake situated immediately upstream of the crossing. The absence of adult Arctic grayling in spring and young-of-the-year fish during summer suggests that this stream section is used only for rearing purposes by this species. Fish habitat within the study section was rated as high (3) for rearing and low (1) or nil (0) for all other life requisites (i.e., spawning, feeding, movement).

PLATE 2

STREAM 18.5 UTM: 12W 0520950 7363312

This stream is unique among the water courses crossed by the winter access road. The dominant substrate type within the stream and its banks was silt. Habitat at the crossing consisted of deep FLAT habitat interspersed by RIFFLE/RUN complexes dominated by large boulder substrates. The wetted width of the stream at the crossing was 8.0 m during base flow and 15.0 m during the spring freshet. The stream banks were low (0.5 m height), but were unstable due to the preponderance of silt substrates.

No fish were encountered during the spring survey, however, this likely was due to the large size of the stream, which precluded effective sampling. In summer, 40 young-of-the-year Arctic grayling were recorded within the surveyed section (CPUE=9.4 fish/min). These results suggest that either the stream section within the crossing was an important spawning and rearing area for this species, or Arctic grayling spawned at upstream locations and the young-of-the-year fish drifted downstream to rear in this section. The absence of suitable spawning substrates at the proposed crossing indicates that the latter explanation is correct. Fish habitat within the study section was rated as low (1) for spawning, high (3) for rearing, moderate for adult feeding (2) and high for movement (3).

# 3.2 ROUTE TWO

The modified alignment of Route Two crossed ten watercourses that had the potential to support fish. Only one of these crossings (Stream 45.3), was previously inventoried in 1996.

STREAM 36.7 UTM: 12W 0508025 73774431 PLATE 3

This crossing traverses a wide shallow watercourse that connects a headwater lake to Lake 501. The stream channel was ill-defined and dispersed. The stream substrate was dominated by large boulders and the stream channel was very wide (51.7 m). Flowing water was present during the spring survey, but the channel was dry during summer.

No fish were encountered at this crossing and fish habitat was extremely limited. Fish may move through the section during the spring period to access the headwater lake, however, it has little value for all other life requisites.

STREAM 41.8 UTM: 12W 0506176 7378165 PLATE 4

This stream connects a series of small headwater lakes to Lake 501 and is within the immediate vicinity of the proposed Lake 501 Camp and airstrip (Figure 3.1). Stream 41.8 was small with an average width of 1.0 m during base flow and 1.6 m during the spring freshet. The stream banks were well-defined and were composed of organic substrates underlain by gravels. Fish habitat consisted of extensive RUNS interspersed by RIFFLE and POOL habitats and gravel was the dominant substrate. The stream at the proposed crossing provided high quality habitat for fish.

Fish encountered during the survey included Arctic grayling, lake trout and slimy sculpin. During spring, the catch was dominated by Arctic grayling (7 juveniles and 3 adults). In summer, 40% of the catch consisted of juvenile lake trout (10 fish), while Arctic grayling accounted for 44% of the sample (8 young-of-the-year and 3 juveniles), and slimy sculpin comprised the remainder (16% or 4 fish). The presence of adult Arctic grayling in spring and young-of-the-year Arctic grayling in summer within the proposed crossing indicates that the area is used for spawning and rearing purposes. It is likely that juvenile lake trout moved up to this stream section during summer for rearing. Given the stream characteristics (i.e., well-defined channel, gravel substrates and water flow during summer) fish habitat within the crossing areas was rated as high (3) for spawning, rearing and movement, and moderate (2) for adult feeding.

An alternate crossing location on Stream 41.8 (UTM: 12W 0506536 7378573) was identified several hundred metres upstream of the proposed crossing. This site did not contain high quality fish habitat.

#### STREAM 43.5 UTM: 12W 0505153 7379179 PLATE 5

This crossing traverses a small ephemeral stream that flows into a small deep lake situated 100 m downstream of the crossing. The stream channel was well-defined, but small (1.0 wide during spring). Habitat at the crossing consisted of shallow RUN; the dominant substrates were gravel and sand. Water was present during spring, but this stream was dry at the time of the summer survey.

Two juvenile burbot were encountered during the spring survey (CPUE=0.4 fish/min). It is likely that these fish entered the stream for rearing purposes, but moved out of the system as flows receded. Fish habitat was limited at the crossing. It was rated as moderate for spawning and rearing, and nil for adult feeding and movement.

#### STREAM 45.3 UTM: 12W 0504814 7381306 PLATE 6

This crossing traverses a small, ill-defined stream dominated by boulder substrates, which flows into a small deep lake situated 200 m downstream of the crossing. Fish habitat at the crossing was DISPERSED. Water was present during spring, but this stream was dry at the time of the summer survey. No fish were recorded at this site. It is possible that some fish from the lake may move into the stream on an opportunistic basis to rear, but fish habitat was severely limited at the crossing.

#### STREAM 46.9 UTM: 12W 0505419 7382972 PLATE 7

This crossing traverses a wide shallow watercourse. The stream channel was ill-defined and dispersed. The stream substrate was dominated by large boulders and the stream channel was very wide (66.3 m). Flowing water was present during the spring survey, but the channel was dry during summer.

No fish were encountered at this crossing during the survey. Fish habitat at the stream crossing was extremely limited. Fish may move through the section during the spring period, however, it has little value for all other life requisites.

#### STREAM 56.1 UTM: 12W 0503839 7391026 PLATE 8

This crossing traverses a small well-defined stream with an average width of 2.5 m during base flow and 3.2 m during the spring freshet. The stream was dominated by cobble and gravel substrates. The stream banks were well-defined and were composed of organic substrates underlain by boulder substrates. Fish habitat consisted of RUNS interspersed by RIFFLE habitats. The stream at the proposed crossing provided good quality habitat for fish.

Despite the existence of good quality spawning and rearing habitat, no fish were encountered at this crossing. It is likely that access to the site is limited by barriers to fish that were situated downstream of the crossing.

### STREAM 58.8 UTM: 12W 0503814 7393946 PLATE 9

This crossing traverses a wide shallow watercourse that is ill-defined and dispersed. The stream substrate was dominated by large boulders and the stream channel was very wide (65.0 m). No fish were encountered at this crossing during the survey and fish habitat at the stream crossing was extremely limited. Fish may move through the section during the spring period, however, it has little value for all other life requisites.

#### STREAM 64.8 UTM: 12W 0502654 7399260 PLATE 10

This crossing traverses a small shallow ill-defined stream that flows into a small deep basin immediately downstream of the crossing. The stream had an average width of 11.0 m during base flow and 11.2 m during the spring freshet and the substrate was dominated by cobbles and boulders. Fish habitat was dominated by DISPERSED areas interspersed by RIFFLE habitats. The stream at the proposed crossing provided good quality habitat for fish.

Two juvenile lake trout were encountered (CPUE=0.6 fish/min) and it is likely that these fish entered the stream for rearing purposes. Fish habitat was rated as nil to moderate for spawning and low to moderate for rearing.

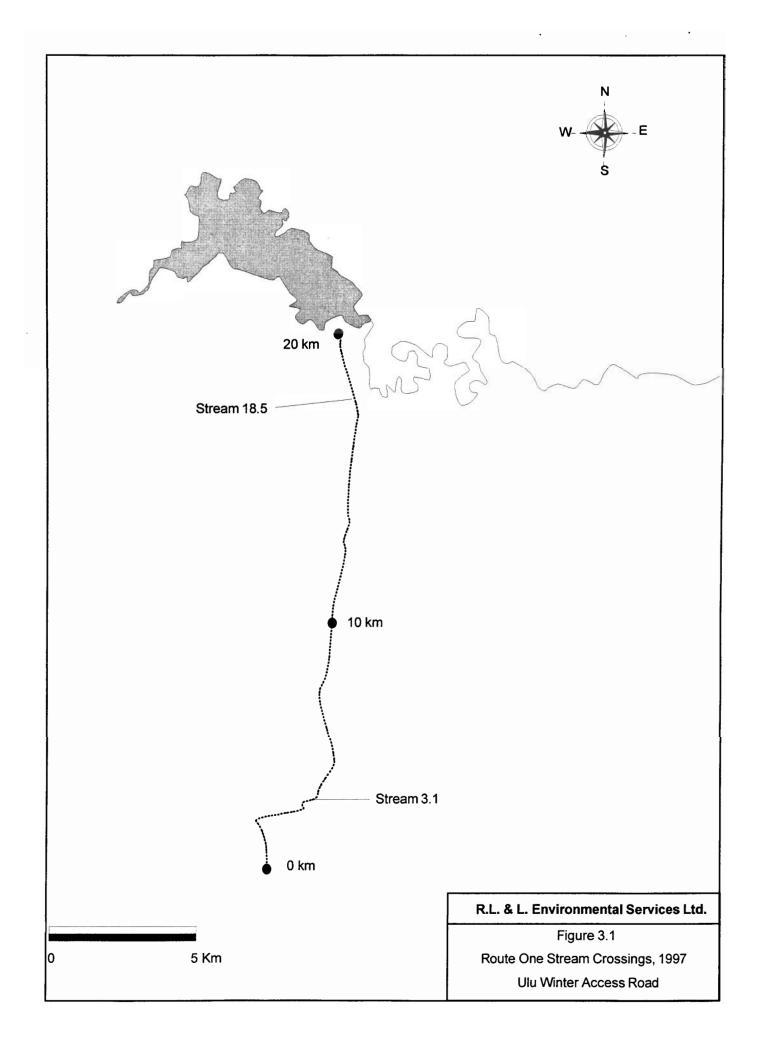
#### STREAM 66.1 UTM: 12W 0502253 7400217 PLATE 11

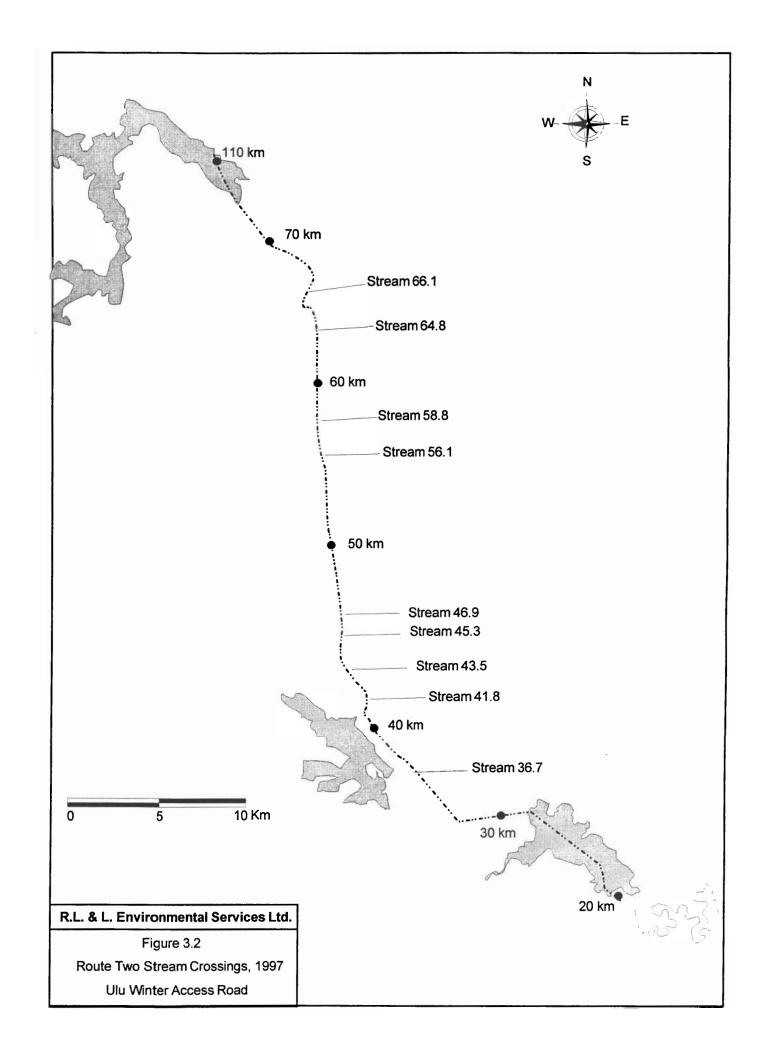
This crossing traverses a very wide shallow watercourse that is ill-defined and dispersed. The stream substrate was dominated by large boulders and the stream channel was 80.0 m wide. No fish were encountered at this crossing during the survey and fish habitat was extremely limited. Fish may move through the section during the spring period, however, it has little value for all other life requisites.

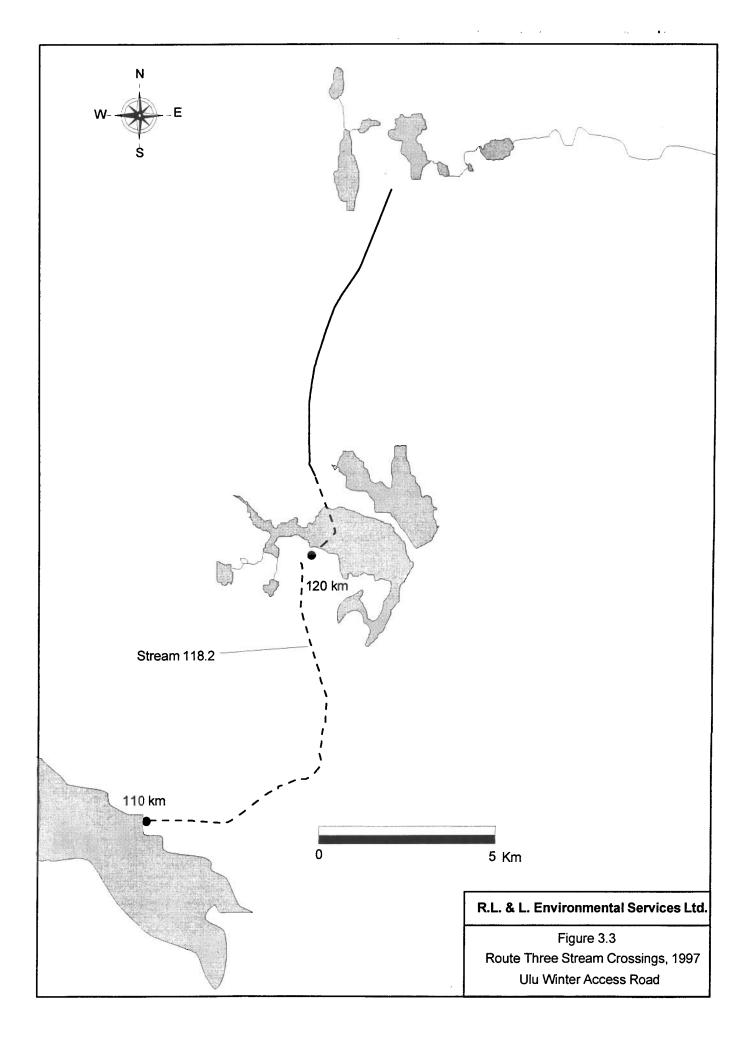
STREAM 70.8 UTM: 12W 0501018 7404130 PLATE 12

This crossing traverses a small ephemeral stream that flows into a small deep lake situated immediately downstream of the crossing. The stream channel was well-defined, but small (2.2 m wide during spring). Habitat at the crossing consisted of shallow RUN; the dominant substrates were gravels and cobbles. Water was present during spring, but this stream was dry at the time of the summer survey. No fish were recorded during the survey and fish habitat was limited at the crossing; it was rated as nil to low for all life requisites.

# 3.3 ROUTE THREE


The new alignment of Route Three crossed only one watercourse that had the potential to support fish (Stream 118.2), which was located just south of Camp 3 at Reno Lake. This crossing was not inventoried during the 1996 survey.


STREAM 118.2 UTM: 12W 0499705 7410668 PLATE 13


This small stream is situated north of the Hood River and drains into a small shallow lake situated approximately 1 km downstream of the crossing. Habitat recorded at the crossing consisted of shallow RIFFLE/RUN complexes interspersed by short sections of POOL habitat. The stream substrate was dominated by boulders. The wetted width of the stream at the crossing was 0.8 m during base flow and 1.7 m during the spring freshet. The stream banks were composed of boulder substrates, exhibited low slopes and were very stable.

Despite the presence of good quality spawning and rearing habitats at the crossing, no fish were encountered during the spring or summer surveys. The absence of fish suggests that this stream section is not accessible and therefore, has little value to fish. Consequently, fish habitat at the crossing was given a low or nil rating for all life requisites.

R.L. & L. ENVIRONMENTAL SERVICES LTD
SECTION 3.0 FIGURES







# 4.0 ULU EXPLORATION AREA

Baseline aquatic inventory data were collected from six lakes potentially influenced by the proposed development. West Lake, East Lake, Ulu Lake and Meadow Lake are situated immediately adjacent to or downstream of the Ulu deposit. Reno Lake South and Reno Lake North are located adjacent to the proposed service area and fuel depot at Camp 3. In addition to lake surveys, inventory data were also collected from Ulu Creek and Frayed Knots River, two streams that form the Ulu Creek drainage system between the development area and the Hood River (Figure 4.1.).

The 1997 program was a continuation of the baseline survey initiated in 1996 (R.L. & L. Environmental Services Ltd. 1996). Waterbodies investigated at that time included West Lake, Ulu Lake, Reno Lake South and Reno Lake North. Whenever appropriate, data from the 1996 survey have been incorporated and compared to the information presented for the current study. This section provides summary results for selected lakes and streams in the Ulu Exploration Area. A A

# 4.1 EAST LAKE

East Lake is located immediately south of the exploration area at the base of the ridge on which the site is located (Figure 4.1). East Lake receives inputs from surface water run off, from the camp's sewage disposal system and from the potential ore and waste rock stock piles. There are no defined inlet or outlet streams associated with this waterbody, however, excess water exists the basin via a subsurface watercourse that flows into Ulu Lake. The physical characteristics of the outlet channel create a complete barrier to fish passage. The small size and isolated position of East Lake precluded the existence of fish, therefore, no inventories of aquatic biological community were undertaken in this waterbody. Sampling undertaken in East Lake included measurements of lake morphology, lake limnology and water chemistry.

# 4.1.1 Lake Morphology and Limnology

East Lake is the smallest waterbody inventoried in the Ulu Exploration Area (1.8 ha) and consists of a single basin with a maximum water depth of 6.2 m (Figure 4.2). Based on a bathymetric assessment of the basin it has a maximum water capacity of 40 900 m³. The shoreline is dominated by large boulder substrates.

Temperature and dissolved oxygen profiles were recorded from the basin on 31 July (Figure 4.3; Appendix C1). The temperature profile indicated that a thermocline existed at 4.0 m depth. Water temperatures above this point were uniform (10.8°C) but dropped to 4.9°C at the bottom. Dissolved oxygen concentrations also differed dramatically (11.2 mg/L at the surface and 4.0 mg/L at the bottom). The existence of a thermocline in this small basin was likely due in part to its sheltered location which protects it from wind. However, the waterbody contained elevated concentrations of anions (see Section 4.1.2), which would have induced stratified conditions.

The decline in oxygen concentrations below the thermocline may have resulted from high oxygen demand and lack of mixing.

Water transparency was low in East Lake. Based on Secchi depth reading, the euphotic zone (depth to 1% light penetration where algae can still subsist= $2\times$ Secchi depth) was 0.9 m. The low value was due to the high density of the phytoplankton community at the time of sampling. This phytoplankton "bloom" was likely the result of the high nutrient load in this basin (see Section 4.1.2).

# 4.1.2 Water Chemistry

Routine water chemistry analyses were undertaken using a single grab sample collected from the water surface. Because of the influence from the Ulu Exploration camp sewage disposal system, the water chemistry of East Lake is not typical of an oligotrophic subarctic waterbody. The analyses indicated that levels of several parameters were elevated (Table 4.1; Appendix C2). For example, total dissolved solids was 276 mg/L and water hardness was 76.2 mg/L. Electrical conductivity was high (606 uS/cm), which was an indication of a high ion balance. Concentrations of ions such as chloride, sulphate, sodium and calcium were all elevated. Some nutrients followed a similar pattern; ammonia nitrogen was 3.88 mg/L and total nitrogen exceeded 7.7 mg/L.

Table 4.1 Routine water chemistry analyses results for a surface sample collected on 31 July from East Lake, Ulu Exploration Area 1997.

Parameter (mg/L unless otherwise indicated)	Value
Physical Tests	
Total Dissolved Solids	276
Hardness as CaCO3	76.2
pH @ 20°C	6.70
Dissolved Ions	
Ionic Balance (%)	105
Electrical Conductivity (uS/cm)	606
Alkalinity - Total as CaCO3	19
Alkalinity - Bicarbonate	23
Chloride	139
Sulphate	14.3
Potassium	2.86
Manganese	0.049
Magnesium	6.4
Sodium	82.4
Calcium	20
Iron	< 0.04
Nutrients	2014
Ammonia Nitrogen	3.88
Nitrate Nitrogen	7.79
Nitrite Nitrogen Nitrate + NitriteTotal Nitrogen Total Kjeldahl Nitrogen	0.08
Nitrate + NitriteTotal Nitrogen	7.87
Total Kjeldahl Nitrogen	2.95
Total Dissolved Phosphorous	0.07
Total Phosphorous	0.07

# 4.2 ULU LAKE

Ulu Lake is located immediately east of the exploration site at the base of the ridge on which the site is located (Figure 4.1). Ulu Lake receives inputs of water from surface runoff and from three inlet streams (Figure 4.4). However, its principal source of water originates from the West Lake drainage (Inlet 1), which enters at the northeast end of Ulu Lake. Although, no water was observed in this inlet stream during 1996 (R.L. & L. Environmental Services 1996), flows were documented in both spring and summer during the present study.

The outlet of Ulu Lake is located at its southeast corner. The outlet stream (Ulu Creek) is a small boulder-filled channel that exhibits largely subsurface water. Ulu Creek flows over a sheer bedrock face (>10 m in height) before it flows into Meadow Lake. The physical characteristics of this stream section created a complete barrier to fish passage, therefore, the fish community in Ulu Lake is resident.

# 4.2.1 Lake Morphology and Limnology

Ulu Lake is the largest waterbody surveyed in the vicinity of the Ulu deposit, but it has a small surface area (35.0 ha). It is bordered on the west and north sides by steep bedrock ridges, while to the east and south the topography becomes flatter. The entire shoreline is dominated by large rock substrates. Some smaller cobble and gravel substrates are present along the northern shoreline. The east side of the lake is shallow with a large boulder field near the outlet stream.

A bathymetric survey of Ulu Lake indicates that it consists of one large basin with several smaller sub-basins (Figure 4.5). The deepest area of the lake is located near its centre (16.3 m). The maximum water capacity of this waterbody is 1 430 000 m³.

Temperature and dissolved oxygen profiles were recorded from a single location on Ulu Lake on 30 July (Figure 4.6; Appendix C1). The temperature profile indicated uniform mixing (i.e., isothermal conditions). Water temperatures and oxygen concentrations did not vary between the surface and bottom (13.5°C and 10.4 mg/L). Water transparency in Ulu Lake was relatively high at the time of sampling (6.5 m).

#### 4.2.2 Water Chemistry

Routine water chemistry analyses were undertaken using a single grab sample collected from the water surface. The analyses indicated that levels of several parameters were typical of an oligotrophic subarctic lake (Table 4.2; Appendix C2). For example, total dissolved solids was 21 mg/L and water hardness was 10.9 mg/L. Electrical conductivity was low (42 uS/cm) as were concentrations of ions such as chloride, sulphate, sodium and calcium. Nutrients followed a similar pattern; ammonia nitrogen and total nitrogen were both below detectable levels (<0.05 mg/L).

Table 4.2 Routine water chemistry analyses results for a surface sample collected on 30 July from Ulu Lake, Ulu Exploration Area 1997.

Parameter (mg/L unless otherwise indicated)	Value
Physical Tests	
Total Dissolved Solids	21
Hardness as CaCO3	10.9
pH @ 20°C	6.70
Dissolved Ions	
Ionic Balance (%)	90
Electrical Conductivity (uS/cm)	42
Alkalinity - Total as CaCO3	6
Alkalinity - Bicarbonate	7
Chloride	5.2
Sulphate	5.7
Potassium	< 0.60
Manganese	0.004
Magnesium	1.1
Sodium	2.4
Calcium	2.5
Iron	< 0.04
Nutrients	
Ammonia Nitrogen	< 0.05
Nitrate Nitrogen	< 0.05
Nitrite Nitrogen	< 0.05
Nitrate + NitriteTotal Nitrogen	< 0.05
Total Kjeldahl Nitrogen	< 0.05
Total Dissolved Phosphorous	< 0.05
Total Phosphorous	0.24

# **4.2.3** Aquatic Invertebrates

Phytoplankton, zooplankton and benthic macroinvertebrate samples were collected from Ulu Lake on 30 July. Collections were undertaken to provide a qualitative assessment of the aquatic invertebrate community in Ulu Lake during the open water period. Relevant data are summarized in the following sections; all data are presented in Appendices D1 to D3.

#### Phytoplankton

Phytoplankton biovolume (microns cubed per metre cubed or  $\mu$ m³/m³) and density (No. cells/mL) are presented in this section because density alone does not provide an accurate assessment of a taxon's importance. Taxa that have large biovolumes due to large individual organism size may not be numerically abundant, but can contribute significantly to lake productivity. As such, an assessment of density alone does not reflect their importance to the system.

In total, 53 species of phytoplankton were identified from the sample collected from Ulu Lake, which represented a biovolume of 892 971  $\mu$ m³/m³ (Appendix D2). In terms of biovolume, the phytoplankton community was

dominated by golden-brown algae (74%) followed by lower percentages of diatoms (15%) and cryptomonads (7%). All other major groups of phytoplankton (green algae, dinoflagellates, euglenoids and cyanobacteria) contributed <2% to the phytoplankton community biovolume.

The relative importance of the most numerous species within each of the six major taxonomic groups varied. The golden-brown algae *Chrysosphaerella rodhei* was the dominant species in the sample (1561 cells/mL). The cyanobacterium *Aphanothece clathrata* was also abundant (932 cells/mL).

#### Zooplankton

Summary results of zooplankton biomass (micrograms per metre cubed or  $\mu g/m^3$ ) and density (No./m³) are both presented in this section because, as with phytoplankton, density alone does not provide an accurate assessment of a taxon's importance.

In total, 11 species were identified in the Ulu Lake sample, which represented a biomass of 5 733 491  $\mu$ g/m³ (Appendix D3). Cladocera was the dominant taxonomic group in terms of percent biomass (94%); each of the other groups (calanoid copepods, cyclopoid copepods and rotifers) accounted for <3% of the remaining biomass. Among the cladocera, *Holopedium sp.* was the numerically dominant genus (3321 animals/m³). Rotifers were dominated by *Kellicottia longispina* (204 074 animals/m³), while *Leptodiaptomus sicilis* dominated the calanoid copepods (10 009 animals/m³) and *Cyclops scutifer* was the most numerous cyclopoid copepod (6072 animals/m³).

### Benthic Macroinvertebrates

The sampling program was designed to obtain qualitative information of the benthic macroinvertebrate community. During summer, three replicate samples were collected from a single site located in the littoral zone (water depth <5 m) of Ulu Lake.

In total, 8 taxa were identified in the Ulu Lake sample, which represented a total mean density of 2913 animals/m². Summary data are provided in Table 4.3; all relevant data are presented in Appendix D4. Chironomidae larvae as a group were the most abundant taxa present with a mean density of 1196 animals/m². Sphaeriid clams also dominated the littoral benthic macroinvertebrate community (1290 animals/m²). The only other benthic invertebrate that exhibited a high density were ostracods (239 animals/m²).

Table 4.3 Mean density^a (± standard error) of benthic macroinvertebrates collected on 30 July from the littoral zone of Ulu Lake, Ulu Exploration Area 1997.

Taxonomic Group	Mean Density (No./m²)
ANNELIDA	
OLIGOCHAETA	
Lumbriculidae	43
ARTHROPODA	
HYDRACHNIDIA	65 (17.7)
CRUSTACEA	
COPEPODA	
Harpacticoida	174 (35.5)
OSTRACODA	239 (159.7)
INSECTA	
DIPTERA	
Chironomidae ^b	
Chironomini	203 (101.4)
Diamesinae/Orthocladiinae	500 (53.2)
Tanypodinae	449 (297.4)
Tanytarsini	43
Subtotal	1196 (452.0)
TRICHOPTERA	
Limnephilidae	87
MOLLUSCA	
PELECYPODA	
Sphaeriidae	1290 (101.4)
MICROTURBELLARIA	196 (88.7)
NEMATODA	130 (71.0)
Total No. Aquatic Taxa/m ²	8 (1.8)
Total No. of Aquatic Invertebrates/m ²	2913 (697.5)

^aMean density (No./m²) value and standard error generated using three replicate samples.

## 4.2.4 Fisheries

Fisheries collections were undertaken to provide a qualitative assessment of the fish community in Ulu Lake during the open water period. Relevant data are summarized in the following section; all data are presented in Appendices E1 and E2.

Two short duration gill net sets (total effort=13.5 h) and four gee traps (total effort= 16.0 h) were deployed in Ulu Lake. Only a single species, lake trout (*Salvelinus namaycush*), was encountered. The 14 fish recorded during one day of sampling represented a catch-per-unit-effort (CPUE) of 5.7 fish/100  $\text{m}^2 \cdot 12 \text{ h}$  or 1.0 fish/h of gill net set. The CPUE value recorded during the present study was slightly higher than the catch rate documented in 1996 (0.6 fish/h of gill net set). No fish were recorded in the gee traps.

^bSum of all subfamilies and tribes.

To properly assess the life history characteristics of fish captured in Ulu Lake, data for 1996 and 1997 were combined for the summary analyses (Table 4.4 and Figure 4.7). The median fork length of lake trout in the sample was 415 mm (n=20), while the median age was 12 (n=7). The largest fish encountered was 740 mm in fork length and weighed 9000 g.

Table 4.4 Summary life history information for fish species captured during gillnetting in Ulu Lake during 1996 and 1997.

Species	Sample	Fork Length Range	Weight Range	Age Range
	Size	(mm)	(g)	(Sample Size)
Lake trout	20	250-740	156-9000	7-18 (7)

Sexually mature fish were captured from Ulu Lake in 1997. These included three sexually mature females that ranged in fork length from 415 to 455 mm. These fish were aged between 13 and 18 years.

The stomach contents of seven fish that succumbed during sampling indicated that aquatic invertebrates were important food items consumed by lake trout in Ulu Lake. Zooplankton accounted for the highest percentage by volume (58%) followed by chironomid larvae (42%).

# 4.3 WEST LAKE

West Lake is situated adjacent to the ridge where the gold-bearing deposit is located (Figure 4.1). The lake serves as a source of potable water for the Ulu Exploration camp, which is located approximately 500 m to the east. The lake receives water from surface runoff water and from an intermittent stream that enters at the south end of the lake. The outlet of the lake is located at the north end, where there is a small boulder-filled channel that connects West Lake to the headwater stream of Ulu Lake. Water flow through the stream channel is largely subsurface, which does not permit fish to move between West Lake and Ulu Lake. As such, the fish community in West Lake is resident.

## 4.3.1 Lake Morphology and Limnology

West Lake is the second largest waterbody in the immediate vicinity of the Ulu deposit (8.6 ha). It is situated in a long narrow valley and its shoreline consists primarily of vertical bedrock faces and large boulder substrates (Figure 4.8). A large boulder reef located in the northern part of the lake partially divides the waterbody into two basins.

A bathymetric survey of West Lake indicates that it consists of two basins (Figure 4.9). The deepest and largest basin of the lake is located near its western side (14.0 m), while the second smaller and shallower basin (10.9 m) is situated to the north. The maximum water capacity of West Lake is 387 000 m³.

Temperature and dissolved oxygen profiles were recorded from a single location on West Lake on 2 August (Figure 4.10; Appendix C1). The temperature profile identified the existence of a thermocline at approximately 9.5 m. Water temperatures and oxygen concentrations above this thermocline generally did not vary (12.5°C and 10.8 mg/L). Below the thermocline the water temperature fell to 7.8°C, while dissolved oxygen rose to 12.9 mg/L. The water transparency in West Lake was high at the time of the sampling (10.1 m).

# 4.3.2 Aquatic Invertebrates

Phytoplankton, zooplankton and benthic macroinvertebrate samples were collected from West Lake. Collections were undertaken to provide a qualitative assessment of the aquatic invertebrate community in West Lake during the open water period.

### Phytoplankton

In total, 30 species of phytoplankton were identified from the sample collected from West Lake, which represented a biovolume of 1 014 328  $\mu$ m³/m³ (Appendix D2). In terms of biovolume, the phytoplankton community was dominated by golden-brown algae (93%) followed by a much lower percentage of green algae (3%) and cryptomonads (3%). All other major groups of phytoplankton (diatoms, dinoflagellates, euglenoids and cyanobacteria) contributed <1% to the phytoplankton community biovolume.

The relative importance in terms of density of the most numerous species within each of the six major taxonomic groups varied. Of the two groups with the greatest biovolume, *Chrysochromulina parva* was the dominant golden-brown algae species numerically (992 cells/mL). In the cyanobacterian group, *Anacystis montana* was most abundant species (1784 cells/mL).

#### Zooplankton

In total, 8 species were identified in the West Lake sample, which represented a biomass of 223 498  $\mu$ g/m³ (Appendix D3). Calanoid copepods was the dominant taxonomic group in terms of percent biomass (62%); cyclopoid copepods and rotifers accounted for 27% and 11% of the remaining biomass. Cladocera were not present in this sample. Among the calaniod copepods, *Leptodiaptomus sicilis* was the numerically dominant species (8284 animals/m³). *Cyclops scutifer* was the most abundant cyclopoid copepod (313 animals/m³), while rotifers were dominated by *Kellicottia cochlearis* (189 982 animals/m³).

#### Benthic Macroinvertebrates

The sampling program was designed to obtain qualitative information of the benthic macroinvertebrate community. During summer, three replicate samples were collected from a single site located in the littoral zone of West Lake.

In total, 7 taxa were identified in the sample representing a total mean density of 3971 animals/m². Summary data are provided Table 4.5; all relevant data are presented in Appendix D4. Chironomidae larvae as a group were the

most abundant taxa present with a mean density of 2551 animals/ $m^2$ . Sphaeriid clams were the only other taxa to dominate the littoral benthic macroinvertebrate community (1246 animals/ $m^2$ ). All other benthic macroinvertebrates exhibited densities of <150 animals/ $m^2$ .

#### 4.3.3 Fisheries

Two short duration gill net sets (total effort=13.3 h) and four gee traps (total effort=25.7 h) were deployed in West Lake. Only a single species, lake trout, was encountered. The 12 fish recorded during one day of sampling represented a CPUE of 4.1 fish/100  $m^2 \cdot 12$  h or 0.9 fish/h of gill net set. The CPUE value recorded during the present study was higher than the catch rate documented in 1996 (0.2 fish/h of gill net set). A possible explanation for this discrepancy may be the difference in sampling locations. No fish were recorded in the gee traps.

To properly assess the life history characteristics of fish captured in West Lake, data for 1996 and 1997 were combined for the summary analyses (Table 4.6 and Figure 4.11). The median fork length of lake trout in the sample was 387 mm (n=15), while the median age was 12 (n=3). The largest fish encountered was 422 mm in fork length and weighed 954 g.

Sexually mature fish were captured from West Lake in 1997. These included three sexually mature females that ranged in fork length from 399 to 422 mm. These fish were all aged 12 years.

Table 4.5 Mean density^a (± standard error) of benthic macroinvertebrates collected on 2 August from the littoral zone of West Lake, Ulu Exploration Area 1997.

Taxonomic Group	Mean Density (No./m²)
ANNELIDA	
OLIGOCHAETA	
Lumbriculidae	109 (17.7)
CRUSTACEA	
OSTRACODA	109 (53.2)
INSECTA	
DIPTERA	
Chironomidae ^b	
Chironomini	87 (0.0)
Diamesinae/Orthocladiinae	188 (29.0)
Tanypodinae	2000 (87.0)
Tanytarsini	275 (29.0)
Subtotal	2551 (145.0)
MOLLUSCA	
PELECYPODA	
Sphaeriidae	1246 (282.1)
NEMATODA	130
Total No. Aquatic Taxa/m²	7 (0.9)
Total No. of Aquatic Invertebrates/m ²	3971 (226.4)

^aMean density (No./m²) value and standard error generated using three replicate samples.

^bSum of all subfamilies and tribes.

Table 4.6 Summary life history information for fish species captured during gillnetting in West Lake during 1996 and 1997.

Species	Sample	Fork Length Range	Weight Range	Age Range
	Size	(mm)	(g)	(Sample Size)
Lake trout	15	334-422	432-954	12-12 (3)

The stomach contents of four fish that succumbed during sampling indicated that aquatic invertebrates and fish were equally important food items consumed by lake trout in West Lake. Zooplankton, chironomid larvae and fish each accounted for the 33% of the stomach contents by volume.

# 4.4 MEADOW LAKE

Meadow Lake is situated immediately downstream of Ulu Lake and forms part of the Ulu Creek drainage system (Figure 4.1). The primary source of water for Meadow Lake is Ulu Creek, which enters at the west end of the lake (Figure 4.4). The outlet of Meadow Lake is situated along the eastern shore, where there is a small boulder field. Both the inlet and outlet streams traverse steep terrain and form complete barriers to fish passage. As such, any fish residing in Meadow Lake would be resident.

# 4.4.1 Lake Morphology and Limnology

Meadow Lake is the second smallest waterbody in the immediate vicinity of the Ulu deposit; it has a surface area of 14.0 ha. The lake is situated in a broad valley that is surrounded by steep rocky terrain. The parent material dominating the area is glacial till, which is composed of cobbles, gravels and sands. As such, the Meadow Lake basin is dominated by smaller substrates composed principally of sands. The shoreline exhibited a gentle slope and was dominated by tundra vegetation (e.g., sedges and shrubs).

A preliminary bathymetric survey of Meadow Lake indicates that it consists of one simple basin. Meadow Lake is shallow (maximum depth=3.7 m) with the deepest area located adjacent to the eastern shore.

Temperature and dissolved oxygen profiles were recorded from a single location on Meadow Lake on 31 July (Figure 4.12; Appendix C1). The temperature profile indicated uniform mixing (i.e., isothermal conditions). Water temperatures and oxygen concentrations did not vary between the surface and bottom (10.8°C and 10.3 mg/L, respectively). Water transparency in Meadow Lake was to the lake bottom (3.0 m).

# 4.4.2 Aquatic Invertebrates

Phytoplankton, zooplankton and benthic macroinvertebrate samples were collected from Meadow Lake. Collections were undertaken to provide a qualitative assessment of the aquatic invertebrate community in Meadow Lake during the open water period.

## Phytoplankton

In total, 61 species of phytoplankton were identified from the sample collected from Meadow Lake, which represented a biovolume of 263 767  $\mu$ m³/m³ (Appendix D2). In terms of biovolume, the phytoplankton community was largely composed of cryptomonads (25%), golden-brown algae (24%), green algae (21%) and dinoflagellates (18%). All other major groups of phytoplankton (diatoms, euglenoids and cyanobacteria) contributed <8%.

Individual species of phytoplankton were not abundant. The cyanobacteria *Microcystis flos-aquae* was the dominant species numerically in the sample (157 cells/mL). The green algae *Oocystis pusilla* was the next most numerous species (152 cells/mL).

## Zooplankton

In total, 8 species were identified in the Meadow Lake sample, which represented a biomass of 113 292  $\mu$ g/m³ (Appendix D3). Cladocera was the dominant taxonomic group in terms of percent biomass (55%) followed by cyclopoid copepods (25%), rotifers (12%) and calanoid copepods (8%). Among the cladocera, *Daphnia middendorffiana* was the numerically dominant species (1175 animals/m³). Rotifers were dominated by *Conochilus unicornis* (63 884 animals/m³), while *Leptodiaptomus sicilis* dominated the calanoid copepods (1205 animals/m³) and *Ectocyclops phaleratus* was the most numerous cyclopoid copepod (573 animals/m³).

#### Benthic Macroinvertebrates

The sampling program was designed to obtain qualitative information of the benthic macroinvertebrate community. During summer, three replicate samples were collected from a single site located in the littoral zone of Meadow Lake.

In total, 11 taxa were identified in the sample representing a total mean density of 22 275 animals/m². Summary data are provided Table 4.7; all relevant data are presented in Appendix D3. Chironomidae larvae as a group were the most abundant taxa present with a mean density of 10 889 animals/m². Ostracods and nematodes were the only other abundant taxa (8986 animals/m² and 1884, respectively). No other benthic macroinvertebrates exceeded a density of 300 animals/m²).

## 4.4.3 Fisheries

Two short duration gill net sets (total effort=9.1 h) and four gee traps (total effort= 9.0 h) were deployed in Meadow Lake to sample the fish community. Despite this sampling effort, no fish were captured. These results indicate that a viable fish community does not reside in Meadow Lake. Its small size, shallow water depth and isolated position within the watershed (inlet and outlet streams are barriers to fish passage) severely limits its value as fish habitat. It should be noted, however, that small numbers of slimy sculpin (*Cottus cognatus*) were recorded in the inlet area to Meadow Lake during backpack electrofishing in Ulu Creek. As such, Meadow Lake is used for overwintering purposes by this species.

Table 4.7 Mean density^a (± standard error) of benthic macroinvertebrates collected on 31 July from the littoral zone of Meadow Lake, Ulu Exploration Area 1997.

Taxonomic Group	Mean Density (No./m²)
ANNELIDA	
OLIGOCHAETA	-
Lumbriculidae	174 (25.1)
Naididae	43
CRUSTACEA	
HYDRACARINA	65 (17.7)
OSTRACODA	8986 (1281.0)
INSECTA	
COLEOPTERA	
Dytiscidae	43 (0.0)
DIPTERA	
Chironomidae ^b	
Chironomini	43
Diamesinae/Orthocladiinae	812 (237.3)
Tanypodinae	4899 (427.7)
Tanytarsini	5145 (415.8)
Subtotal	10 899 (1081.0)
MOLLUSCA	
PELECYPODA	
Sphaeriidae	283 (159.7)
MICROTURBELLARIA	109 (17.7)
NEMATODA	1884 (446.5)
Total No. Aquatic Taxa/m ²	10 (0.3)
Total No. of Aquatic Invertebrates/m ²	22 275 (1361.2)

^aMean density (No./m²) value and standard error generated using three replicate samples.

# 4.5 RENO LAKE SOUTH

Reno Lake South is located south of the esker on which Camp 3 is situated (Figure 4.1). This waterbody is isolated from other lakes in the immediate vicinity and drains into the Hood River via a subsurface stream channel that is located at the southwestern end of the lake. There are several small streams draining into Reno Lake South along its northwestern shoreline. One watercourse did contain flowing water during the entire open water period, however, most streams entering Reno Lake South are intermittent. Given these characteristics, the fish community in Reno Lake South is resident.

# 4.5.1 Lake Morphology and Limnology

Reno Lake South is the larger of the two waterbodies surveyed in the vicinity of Camp 3 (276.4 ha) (Figure 4.13). A preliminary bathymetric survey of this lake indicates that it contains several basins. A long shallow (<1.0 m) basin dominated by sand substrates is situated west of the narrows that are found directly south of Camp 3, while

^bSum of all subfamilies and tribes.

the largest basin in the lake exists east of these narrows. This large eastern basin is also dominated by sand substrates and is generally shallow (<3.0 m), however, a water depth of 12.3 m was recorded at one location near its western shore. Reno Lake South also contains two smaller basins at its southern end. The first is a narrow deep trench (maximum depth = 10.0 m) dominated by rock substrates. The second smaller basin, situated due west of this trench, also contains rock substrates, but is much shallower (maximum depth <6.5 m). The northern shoreline of the lake is composed of sand with isolated boulder outcroppings. The southern shoreline of the lake consists of bedrock outcroppings.

Temperature and dissolved oxygen profiles were recorded at two locations on Reno Lake South on 4 August (Figure 4.14; Appendix C1). The temperature profile indicated uniform mixing (i.e., isothermal conditions) at both sites. Water temperatures and oxygen concentrations generally did not vary between the surface and bottom (12.0°C and 10.3 mg/L). Water transparency in Reno Lake South was high at the time of the sampling (7.5 m).

# 4.5.2 Fisheries

Two short duration gill net sets (total effort=12.9 h) and four gee traps (total effort=33.7 h) were deployed in Reno Lake South. Lake trout was the only species encountered. The 26 fish recorded during one day of sampling represented a catch-per-unit-effort (CPUE) of 11.6 fish/ $100 \,\mathrm{m}^2 \cdot 12$  h or 1.4 fish/h of gill net set. The CPUE value recorded during the present study was higher than the catch rate documented in 1996 (0.7 fish/h of gill net set). No fish were captured in the gee traps.

To properly assess the life history characteristics of fish captured in Reno Lake South, data for 1996 and 1997 were combined for the summary analyses (Table 4.8 and Figure 4.15). The median fork length of lake trout in the sample was 310 mm (n=50) and the median age was 4 years (n=3). The largest fish encountered was 466 mm in fork length and weighed 1098 g.

Table 4.8 Summary life history information for fish species captured during gillnetting in Reno Lake South during 1996 and 1997.

Species	Sample	Fork Length Range	Weight Range	Age Range
	Size	(mm)	(g)	(Sample Size)
Lake trout	50	210-466	84-1098	4-5 (3)

No sexually mature fish were captured from Reno Lake South in 1997.

The stomach contents of eighteen fish that succumbed during sampling indicated that aquatic invertebrates were important food items. Zooplankton accounted for the highest percentage by volume (62%) followed by smaller amounts of chironomid larvae (19%), and sphaeriid clams (19%).

# 4.6 RENO LAKE NORTH

Reno Lake North is located immediately north of Camp 3 and is separated from Reno Lake South by a narrow esker (Figure 4.1). Similar to Reno Lake South, this waterbody is isolated from other lakes in the immediate vicinity and drains into the Hood River via a subsurface stream channel that is located at the southern end of the lake. There are several small intermittent streams draining into Reno Lake South along its northern shoreline. Given these characteristics, the fish community in Reno Lake North is resident.

# 4.6.1 Lake Morphology and Limnology

Reno Lake North is the smaller of the two waterbodies surveyed in the vicinity of Camp 3 (133.3 ha) (Figure 4.13). A preliminary bathymetric survey of this lake indicates that it contains one large basin. The western arm of the lake is very shallow (<0.50 m) and is dominated by sand substrates. Sand substrates also dominate in the remainder of the lake, although rock substrates are present along the northern shoreline. The northeastern part of the main basin of the lake is the deepest, with a maximum depth of approximately 18 m near the eastern shore. The shoreline of Reno Lake North is uniform, with sand and gravel found on the southeast, northwest and southern shorelines. Along the northern shoreline the geology changes into a series of boulder areas interspersed with bedrock outcrops.

Temperature and dissolved oxygen profiles were recorded at one location on Reno Lake North on 3 August (Figure 4.16; Appendix C1). The temperature profile indicated uniform mixing (i.e., isothermal conditions). Water temperatures and oxygen concentrations generally did not vary between the surface and bottom (12.0°C and 10.4 mg/L). Water transparency in Reno Lake North was relatively low at the time of the sampling (4.8 m), which likely resulted from high water turbidity. High wind speeds and wave action at the time of sampling had caused suspension of sands.

## 4.6.2 Fisheries

Two short duration gill net sets (total effort=10.9 h) and four gee traps (total effort=33.6 h) were deployed in Reno Lake North. In total, 46 fish were captured during one day of sampling (36 lake trout and 10 round whitefish). It should be noted that in 1996, Arctic char (*Salvelinus alpinus*) was also captured in addition to lake trout and round whitefish. The 46 fish recorded represented a catch-per-unit-effort (CPUE) of  $14.0 \, \text{fish}/100 \, \text{m}^2 \cdot 12 \, \text{h}$  or  $4.2 \, \text{fish}/\text{h}$  of gill net set. The CPUE value recorded during the present study was higher than the catch rate documented in 1996 (1.1 fish/h of gill net set). No fish were captured in the gee traps.

To properly assess the life history characteristics of fish captured in Reno Lake North, data for 1996 and 1997 were combined for the summary analyses (Table 4.9 and Figure 4.17). The median fork length of lake trout in the sample was 384 mm. The largest lake trout encountered was 445 mm in fork length and weighed 1252 g. The

median fork length of round whitefish in the sample was 399 mm. The limited sample of five Arctic char indicates that the median size of fish in the population is 380 mm. No fish sampled from Reno Lake North were aged.

Table 4.9 Summary life history information for fish species captured during gillnetting in Reno Lake North during 1996 and 1997.

Species	Sample Size	Fork Length Range (mm)	Weight Range (g)
Lake trout	58	192-445	74-1252
Round whitefish	25	160-427	52-932
Arctic char ^a	5	375-419	606-890

^a Fish captured during 1996 program.

Several sexually mature fish were captured from Reno Lake North in 1997. Four lake trout ranged in fork length between 386 and 403 mm fork length. The three sexually mature round whitefish encountered during sampling ranged in size from 410 to 419 mm fork length.

The stomach contents of sixteen lake trout that succumbed during sampling indicated that aquatic invertebrates were important food items. Zooplankton accounted for the highest percentage by volume (50%) followed by smaller amounts of chironomid larvae (21%), and gastropods (24%). The stomach contents of three round whitefish also contained aquatic invertebrates, however, the sample was dominated by sphaeriid clams (100% by volume).

## 4.7 ULU CREEK DRAINAGE

The Ulu Creek drainage is the outlet system for waterbodies in the immediate vicinity of the Ulu Exploration Area (Figure 4.1). Water originating in East and West lakes flows into Ulu Lake. Ulu Creek originates as the outlet stream to Ulu Lake. Water from Ulu Lake drains into Meadow Lake via Ulu Creek and then flows east 4.5 km before entering the Frayed Knots River. From this point, the Frayed Knots River flows in a southerly direction for 9.5 km before entering the Hood River.

### 4.7.1 Physical Characteristics

Ulu Creek is a small stream that is ill-defined near its origin at Ulu Lake. Further downstream near Meadow Lake it becomes well-defined with an average width of 4.1 m and an average depth of 2.6 m (Appendix B2). The discharge of Ulu Creek on 16 June (spring period) was 1.82 cms near the outlet to Ulu Lake. Later on in summer during the base flow period (29 July) discharge at the same location was only 0.09 cms. At its confluence with the Frayed Knots River, the discharge of Ulu Creek on 29 July was 0.16 cms. For much of its length, Ulu Creek exhibits a low gradient and is dominated by organic and sand substrates. However, it does traverse three high

gradient areas that are barriers to fish passage. The first is located only 0.9 km upstream of its confluence with the Frayed Knots River, therefore, Ulu Creek upstream of this barrier is not accessible to fish.

The Frayed Knots River is a much larger system than Ulu Creek; it has an average width of 40 m. Although not measured, the discharge of this river during base water flow in summer was estimated to be 10 cms. The river in the study section is characterized by extensive areas of low to moderate gradients containing sand, gravel, cobble and boulder substrates. These sections are interspersed by high gradient areas containing large boulder substrates. Typically, these high gradient areas terminate in large deep plunge pools. The depth of this river varies depending on location. In moderate gradient areas containing rock substrates, water depth rarely exceeds 1.0 m. However, several of the plunge pools exhibited depths >3.0 m. The Frayed Knots River within the section investigated does not contain any barriers to fish passage, therefore, this river has the potential to be used by fish originating from the Hood River.

## 4.7.2 Water Chemistry

The water sampling program initiated in 1996, which was designed to describe background water chemistry of lakes and streams in the Ulu Exploration Area, was repeated for selected waterbodies in 1997. An important objective of the 1997 program was to assess whether elevated concentrations of the hydrocarbon xylene, which were documented for some sites in 1996, persisted to the present period. The water sample collection sites used during the present study (Figure 4.18) corresponded closely with locations sampled in 1996. Exceptions included the omission of the West Lake site, the outlet of Ulu Lake (Site 6) and the second downstream site on the Hood River, and the inclusion of East Lake. Collections were made on 1 August 1997 during the base water flow period. Summary data are presented in this section; all raw data are provided in Appendix C2.

In general, concentrations of most water chemistry parameters were at or near the background levels documented in 1996 for most sites. These included parameters for routine water quality, nutrients, organics, total mercury and trace elements. More importantly, the slightly elevated levels of xylene recorded at Ulu Lake, at Station 4 in the Frayed Knots River and in the Hood River in 1996 were not recorded at these sites or any others during the present study. Xylene and all other hydrocarbons were below detectable levels.

The results of the water chemistry analyses did indicate that concentrations of several parameters were elevated in East Lake. For example, levels of the nutrients (Kjeldahl nitrogen, ammonia and total nitrogen) were several magnitudes higher in East Lake than in surrounding waterbodies (Figure 4.19). Despite these high values, only the level of ammonia (3.88 mg/L) was above the Canadian environmental water quality guidelines for the protection of aquatic life (CCME 1993). Levels of selected elements such as calcium, sodium, chloride and sulphur were also elevated as were levels for the trace metals nickel, strontium, and zinc. None of these elements exhibited concentrations above acceptable limits. These results, were expected for East Lake because it is the receiving waterbody for the camp's sewage effluent and the exploration site's waste rock dump.

Elevated levels of some elements were not restricted to East Lake, but were also evident to a lesser degree in the lakes and streams situated immediately downstream: Ulu Lake and Ulu Creek (Figure 4.19). These included elements such as calcium, sodium, chloride and sulphur, as well as the trace metals nickel, strontium and zinc. Levels recorded in these waterbodies were low, and in the case of trace metals, near background levels. However, the results provide a strong indication that East Lake is an integral part of the Ulu Lake drainage. Any chemical inputs into East Lake would reach Ulu Lake and Ulu Creek and possibly other waterbodies situated further downstream.

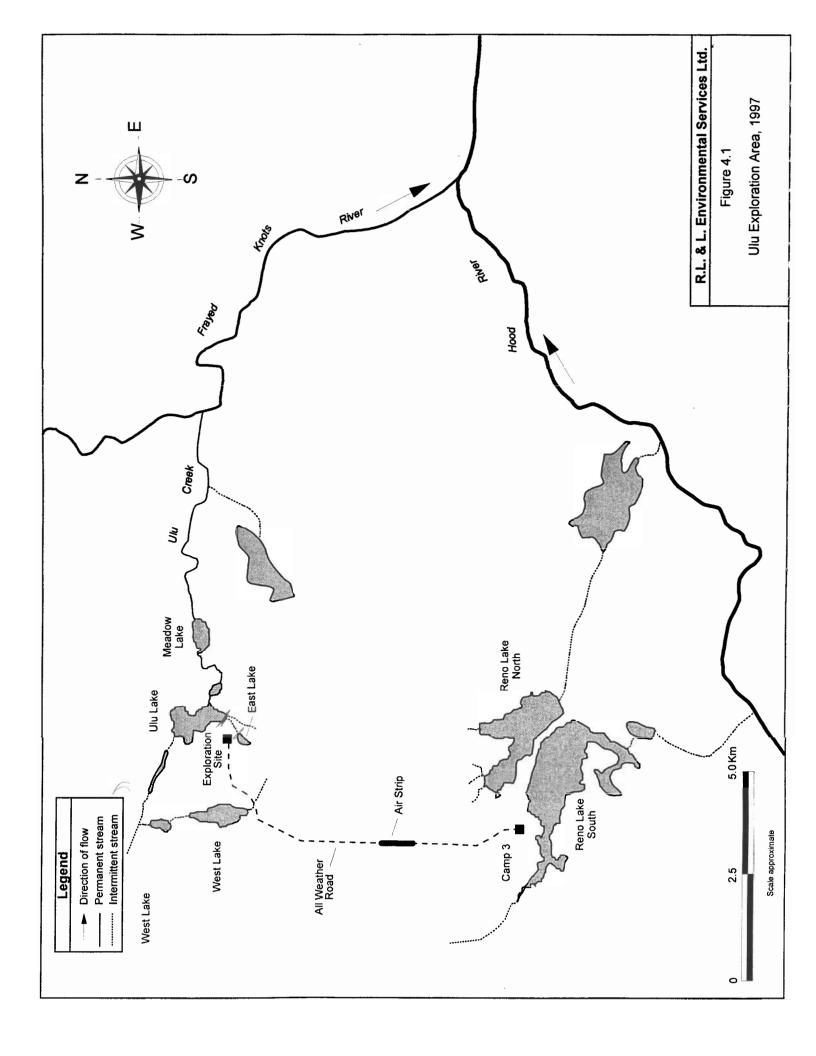
## 4.7.3 Fish

The fish community in the Ulu Creek drainage was investigated during the summer field session using a variety of methods including backpack electrofishing, angling and snorkelling. The sampling program was designed to document presence or absence of fish species and life stages (young-of-the-year, juveniles and adults) in the system to assess its importance to fish.

Three species of fish were recorded in Ulu Creek (Table 4.10). These were Arctic grayling (13% of sample), burbot (1%), and slimy sculpin (86%). All the Arctic grayling and burbot, along with the majority of slimy sculpin were recorded in the short section of Ulu Creek immediately upstream of its confluence with the Frayed Knots River. The remainder of the slimy sculpin were captured in the inlet area of Meadow Lake. Although considerable effort was expended to locate fish throughout Ulu Creek (see Appendix E1), no fish were encountered outside of these two small areas. The catch-per-unit-effort was indicative of the low numbers of fish encountered during sampling. CPUE values did not exceed 1.3 fish/min of sampling.

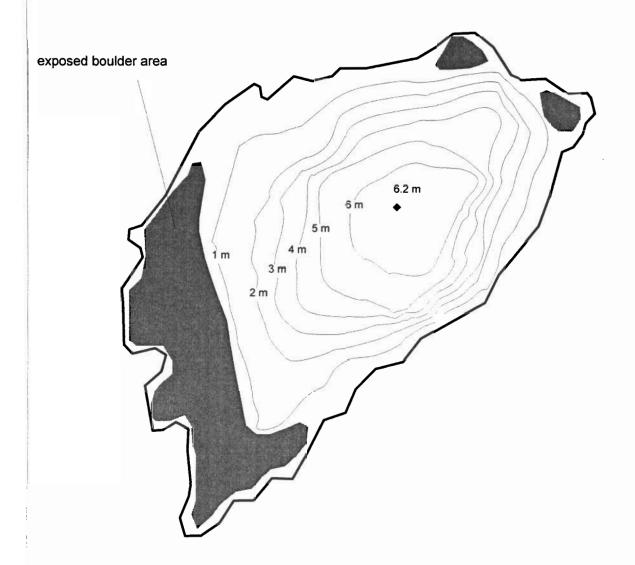
All the Arctic grayling recorded in Ulu Creek were young-of-the-year fish. These results suggested that the stream was used for spawning and rearing purposes by this species. It is most likely that adult fish entered Ulu Creek during early spring to spawn and then migrated out of the system upon completion of spawning.

Table 4.10 Species composition of fish recorded in the Ulu Creek drainage during summer 1997.


Stream	Species	Number	Percent	Average CPUE	Age-Group		
					Ү-о-у	Juvenile	Adult
Ulu Creek	Arctic grayling	13	13.0	0.19	<b>√</b>		
	Burbot	1	1.0	0.02		<b>✓</b>	
	Slimy sculpin	86	86.0	1.30	√	✓	<b>√</b>
Frayed Knots River	Arctic grayling	143	47.8	1.10	<b>✓</b>	<b>V</b>	<b>√</b>
	Lake trout	24	8.0	0.18			✓
	Round whitefish	82	27.4	0.63			<b>√</b>
	Slimy sculpin	50	16.7	0.38	✓	✓	<b>√</b>

Four species of fish were recorded from the Frayed Knots River. Arctic grayling accounted for the highest percentage of fish encountered (48%). Round whitefish was second in importance (27%) followed by lower percentages of lake trout (8%) and slimy sculpin (17%). Arctic grayling and slimy sculpin were distributed throughout the river section inventoried, however, lake trout and round whitefish were restricted to the large plunge pools at the base of rapid areas. Although relatively high numbers of fish were recorded the CPUE values were low for all species (<1.0 fish/min). This was due to the large sampling effort expended (Appendix E1).

All age-groups of Arctic grayling were recorded during the survey of the Frayed Knots River. Young-of-the-year and juvenile Arctic grayling were distributed in shallow-water areas along the river margins. In contrast, adult Arctic grayling were located in large pools at the base of rapids. The lake trout and round whitefish age-groups encountered consisted entirely of adults and these fish were restricted to pool areas. The presence of large pools >3.0 m in depth strongly indicates that overwintering habitat is available for fish populations residing in the Frayed Knots River.


A small number of fish were sampled from the Ulu Creek drainage to assess their life history characteristics. The median fork length of the young-of-the-year Arctic grayling recorded in Ulu Creek was 29 mm (n=6). Adult Arctic grayling captured in the Frayed Knots River ranged in fork length from 300 to 417 mm and were 5 to 10 years of age (n=15). The seven lake trout captured in the Frayed Knots River ranged from 336 to 655 mm fork length.

R.L. & L. ENVIRONMENTAL SERVICES L	10
SECTION 4.0 FIGURES	
	- 1





Lake Surface Area = 1.8 hectares Lake Volume = 40 900 cubic metres



R.L. & L. Environmental Services Ltd.

Figure 4.2

Bathymetry of East Lake
Ulu Exploration Area 1997



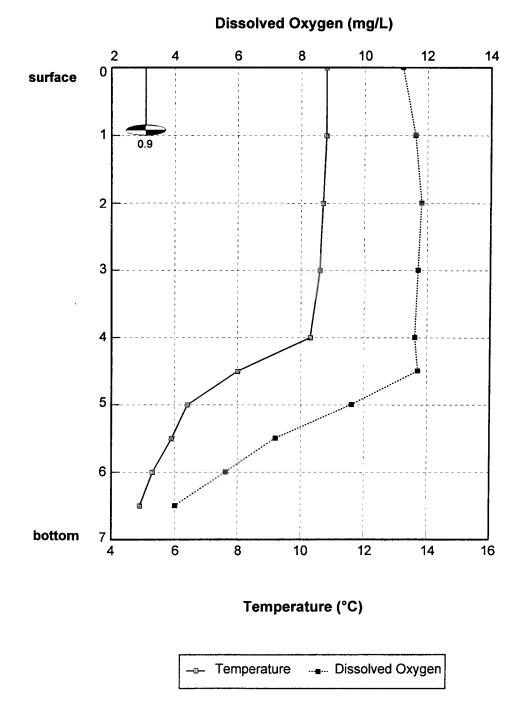
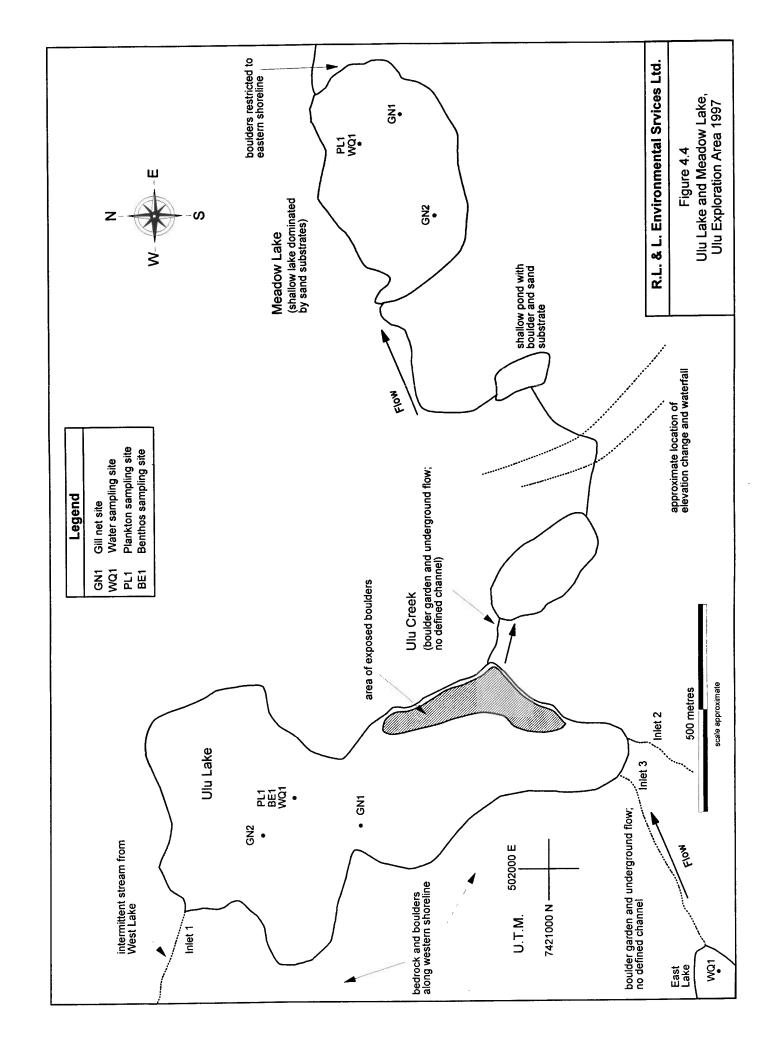
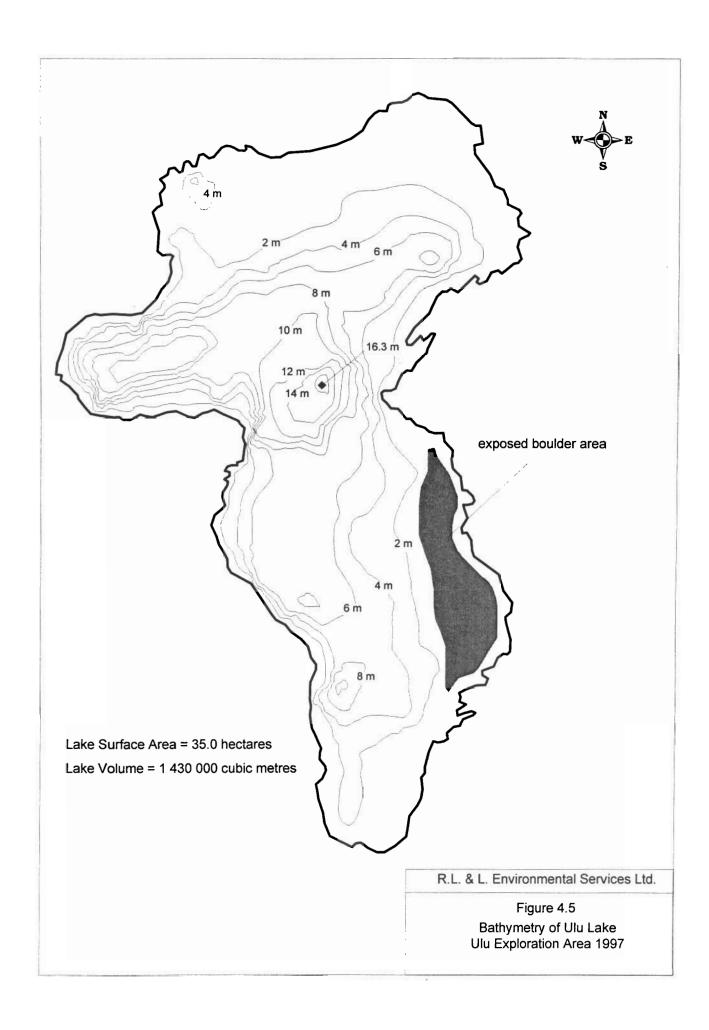
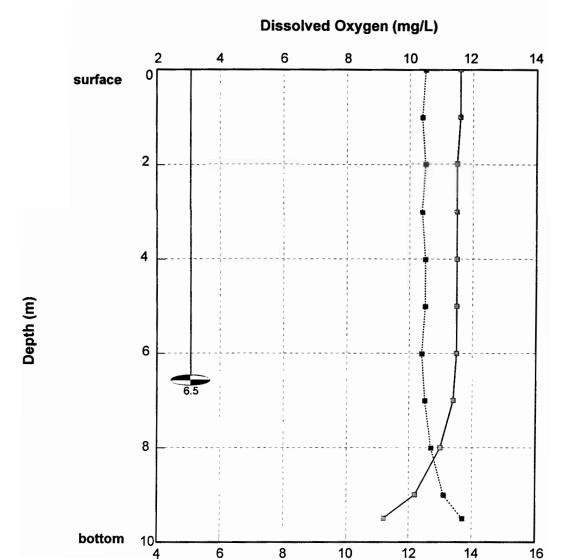






Figure 4.3 Dissolved oxygen and temperature profiles, and Secchi depth reading in East Lake on 31 July 1997, Ulu Exploration Area.







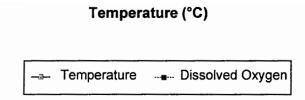



Figure 4.6 Dissolved oxygen and temperature profiles, and Secchi depth reading in Ulu Lake on 30 July 1997, Ulu Exploration Area.

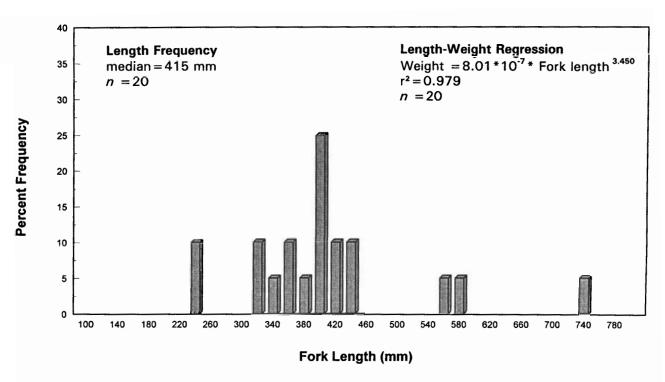
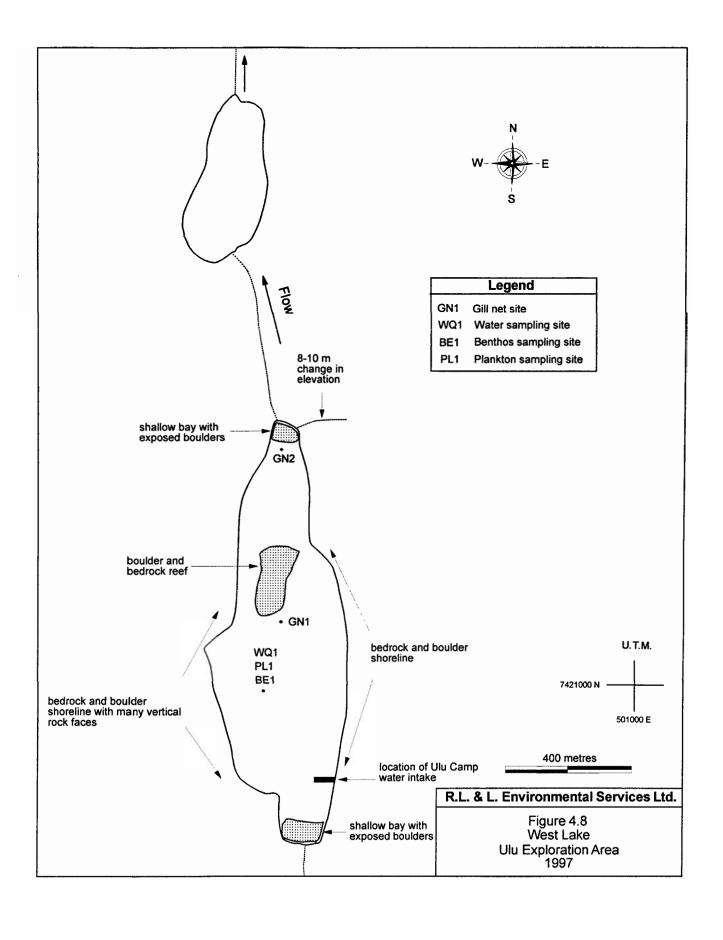
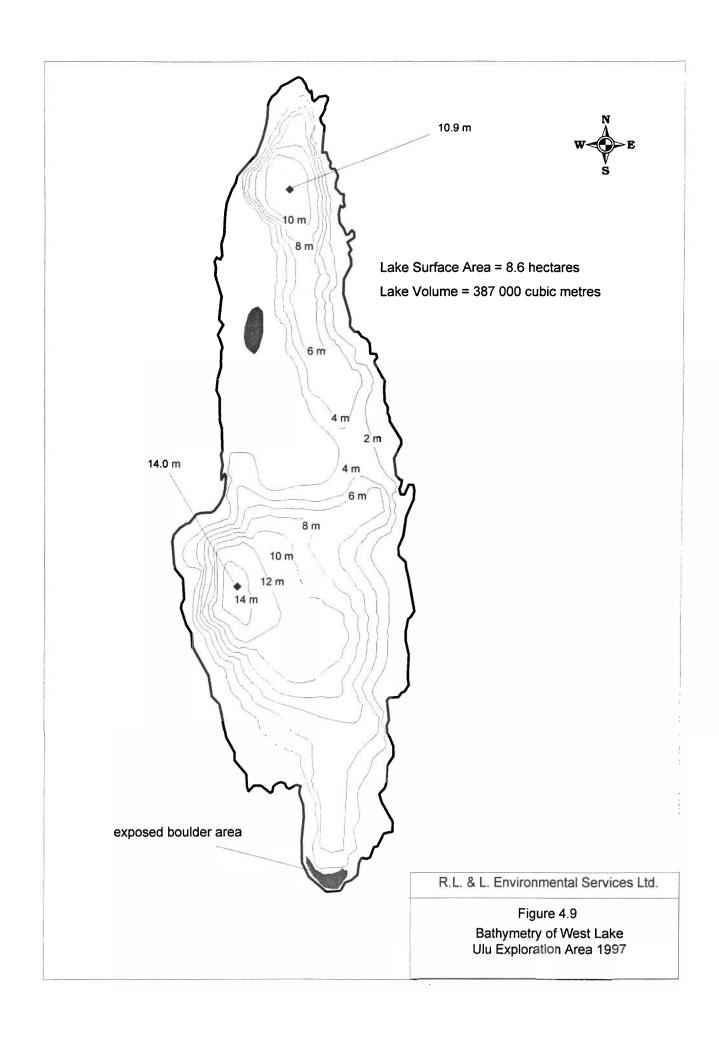
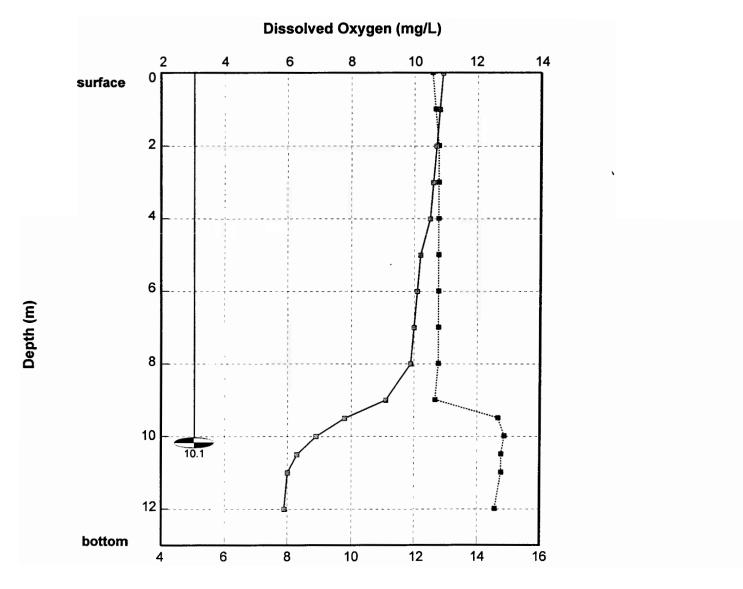






Figure 4.7 Length-frequency distribution and length-weight regression equation for lake trout sampled from Ulu Lake, Ulu Exploration Area (Data for 1996 and 1997 combined).







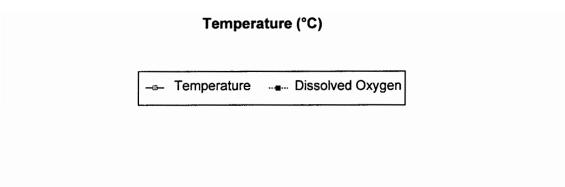



Figure 4.10 Dissolved oxygen and temperature profiles, and Secchi depth reading in West Lake on 2 August 1997, Ulu Exploration Area.

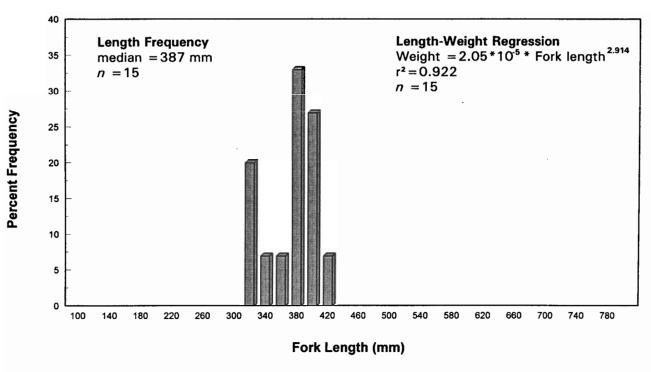
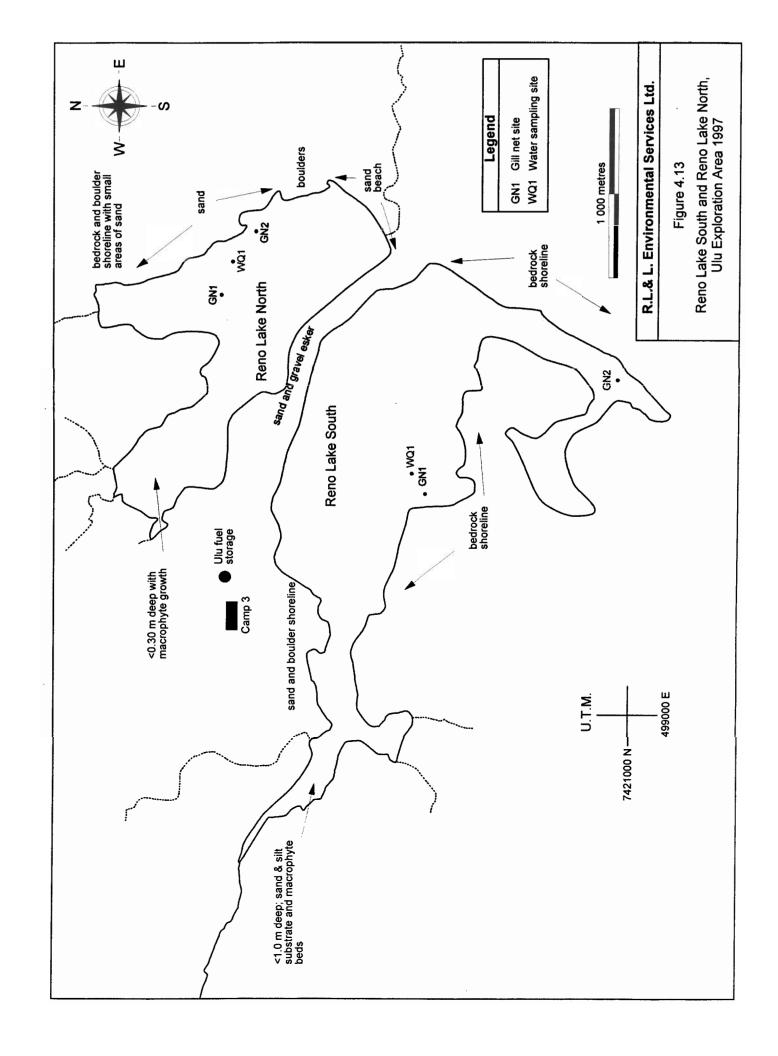




Figure 4.11 Length-frequency distribution and length-weight regression equation for lake trout sampled from West Lake, Ulu Exploration Area (Data for 1996 and 1997 combined).

Dissolved Oxygen (mg/L)

Figure 4.12 Dissolved oxygen and temperature profiles, and Secchi depth reading in Meadow Lake on 31 July 1997, Ulu Exploration Area.



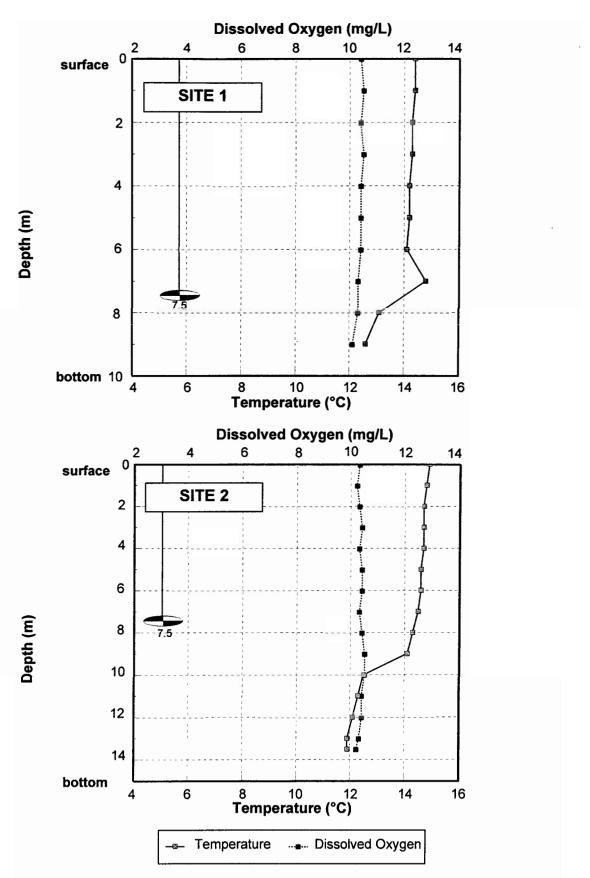



Figure 4.14 Dissolved oxygen and temperature profiles, and Secchi depth reading at Sites 1 and 2 on Reno Lake South on 4 August 1997, Ulu Exploration Area.

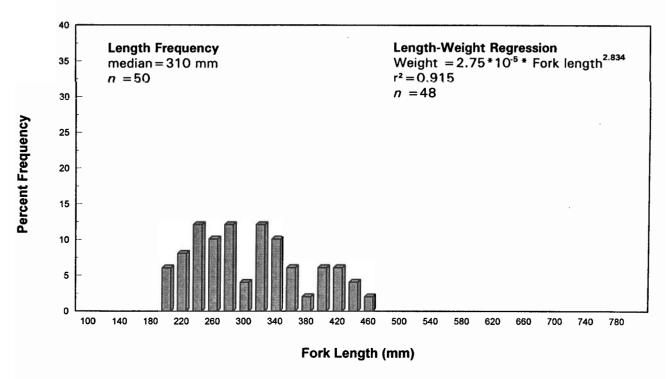
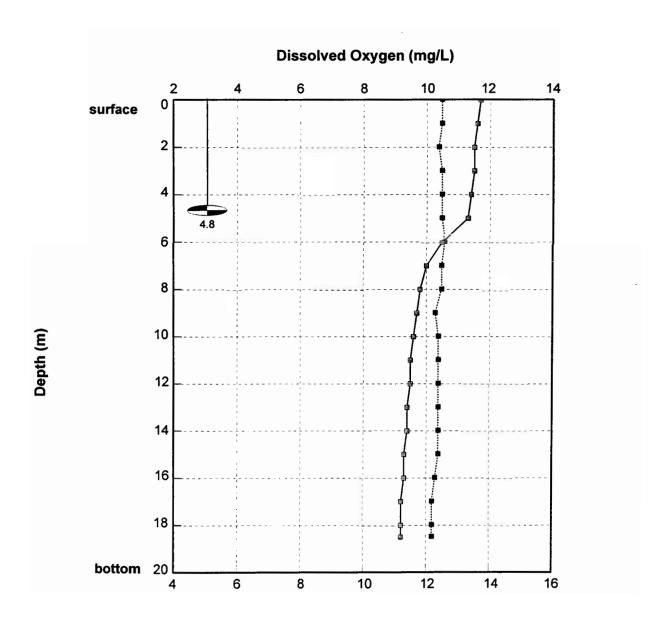




Figure 4.15 Length-frequency distribution and length-weight regression equation for lake trout sampled from Reno Lake South, Ulu Exploration Area (Data for 1996 and 1997 combined).



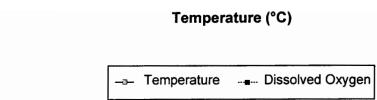
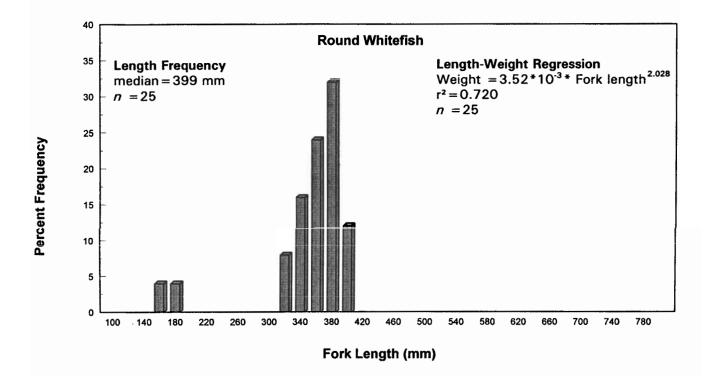




Figure 4.16 Dissolved oxygen and temperature profiles, and Secchi depth reading in Reno Lake North on 3 August 1997, Ulu Exploration Area.



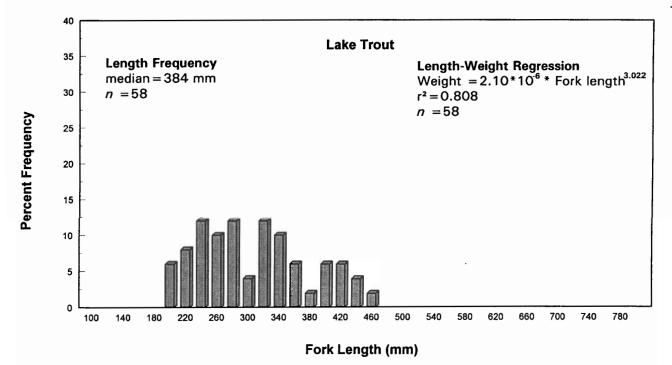



Figure 4.17 Length-frequency distributions and length-weight regression equations for lake trout and round whitefish sampled from Reno Lake North, Ulu Exploration Area (Data for 1996 and 1997 combined).

# 5.0 SUMMARY AND RECOMMENDATIONS

# 5.1 WINTER ACCESS ROAD STREAM CROSSING SURVEY

In total, 13 streams that were crossed by the proposed route of the winter access road had the potential to support fish. These included two watercourses along Route One, ten streams along Route Two, and one system along Route Three. With the exception of one stream along Route 2, all surveyed streams had not been previously evaluated during the 1996 investigation.

Surveyed streams ranged in size from 0.8 to 80.0 m in width and exhibited a wide variety of habitat features. In general, streams crossed by the proposed winter access road were small, ill-defined and dominated by boulder substrates. Most streams provided little or no habitat for fish. This was due principally to the small size of most watercourses and the absence of suitable deep-water overwintering habitat. Table 3.1 provides a summary of the winter access road stream crossing survey.

During the 1997 survey, only a limited number of streams provided suitable fish habitat at the proposed crossings. These systems included Streams 3.1 and 18.5 along Route One and Streams 41.8, 43.5 and 64.8 along Route Two. Of these watercourses, only Streams 18.5 and 41.8 contained high quality fish habitat that may be critical to the well-being of fish populations. Both these watercourses provided high quality rearing habitat for Arctic grayling. Stream 41.8 also contained high quality spawning habitat for this species.

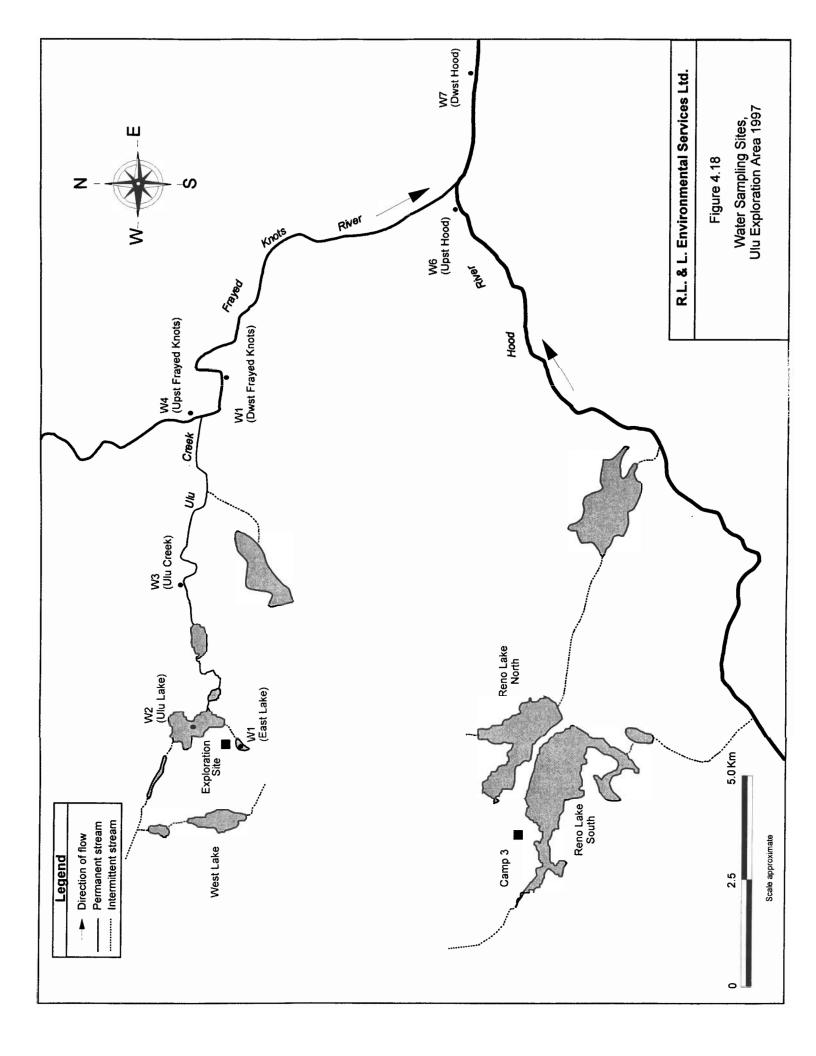
Table 5.1 Summary results for winter access road stream crossing survey, Ulu Project Area 1997.

Route	Stream Number	Habitat Type	Fish Captured	Habitat Potential ^a
One	3.1	Well-defined boulder-filled stream.	Arctic grayling	moderate
	18.5	Well-defined stream with banks dominated by silt.	Arctic grayling	high
Two	41.8	Well-defined stream with gravel substrates.	Arctic grayling, lake trout, slimy sculpin	high
	43.5	Intermittent stream.	Burbot	low
	45.3	Intermittent ill-defined stream.	none	negligible
	46.9	Shallow, wide, ill-defined stream.	none	negligible
	56.1	Well-defined stream with downstream barrier.	none	negligible
	58.8	Shallow, wide, ill-defined stream.	none	negligible
	64.8	Small, ill-defined stream.	lake trout	low
	66.1	Shallow, wide, ill-defined stream.	none	negligible
	70.8	Intermittent stream.	none	negligible
Three	118.2	Boulder-filled intermittent stream.	none	negligible

a negligible indicates severely limited fish habitat; low indicates a limited amount of suitable fish habitat; medium indicates that fish may use the stream as there is suitable habitat present; and, high indicates that high quality habitat was present at the crossing and that this habitat may be critical to the well-being of fish populations.

# **5.2 ULU EXPLORATION AREA**

Similar to results for 1996, analysis of the water samples obtained from seven sites within the Ulu Creek drainage during the summer program indicated that the system was largely nutrient poor. Concentrations of essential nutrients (i.e., nitrogen, phosphorus, and carbon) were at very low levels at most sites. East Lake did not follow this pattern. In this waterbody, concentrations of essential nutrients were several magnitudes higher than in surrounding lakes.


In general, concentrations of other water chemistry parameters at sampling sites were similar to the background levels documented in 1996. These included total mercury, trace metals and hydrocarbons. The slightly elevated levels of the hydrocarbon xylene recorded at Ulu Lake, at Station 4 in the Frayed Knots River and in the Hood River in 1996, were not recorded at these sites or any others during the present study. Xylene and all other hydrocarbons were below detectable levels.

Similar to the results for nutrients, concentrations of several elements in East Lake were elevated relative to other waterbodies in the Ulu Exploration Area. Levels of calcium, sodium, chloride and sulphur were higher as were levels of the trace metals nickel, strontium, and zinc. None of these elements exhibited concentrations above acceptable limits. These results were expected for East Lake, as it is the receiving waterbody for the exploration site's waste rock dump.

Elevated levels of some elements were not restricted to East Lake; but, were present to a lesser degree at sites situated immediately downstream of the lake: Ulu Lake and Ulu Creek. These included calcium, sodium, chloride and sulphur, as well as the trace metals nickel, strontium and zinc. Levels recorded in these waterbodies were low, and in the case of trace metals, near background levels. However, the results provide a strong indication that East Lake is an integral part of the Ulu Lake drainage. Chemical inputs into East Lake can reach Ulu Lake and Ulu Creek and possibly other waterbodies situated further downstream.

The physical characteristics, limnology and aquatic biological communities recorded in surveyed lakes in the Ulu Exploration Area were typical of oligotrophic subarctic waterbodies. Water temperatures were cool and oxygen levels were generally high. In sampled waterbodies, the plankton and benthic macroinvertebrate communities were made up of low densities of organisms composed of simple species assemblages. Fish were captured in four of the sampled lakes: West Lake, Ulu Lake, Reno Lake South and Reno Lake North. Given its small size and isolated position in the watershed, a viable fish population cannot exist in East Lake. Similarly, the shallow water depth of Meadow Lake, prevents fish populations from becoming established in this waterbody.

The fish communities in sampled lakes were simple; most contained only a single species (lake trout). In fact, the two other species encountered (Arctic char and round whitefish) occurred only in Reno Lake North. Catch-per-



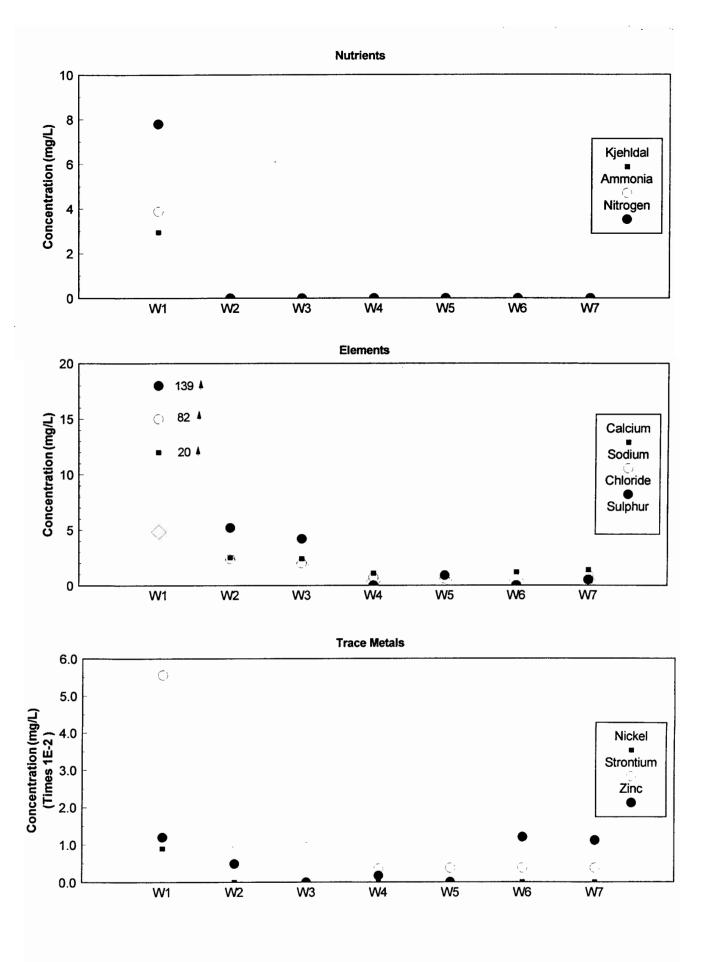



Figure 4.19 Trends in the concentrations of selected water chemistry parameters sampled on 1 August 1997 from waterbodies in the Ulu Exploration Area.

unit-effort values recorded in all four lakes were low. Life history information obtained from captured fish in each of these lakes indicates that they are slow-growing and long-lived.

An assessment of the fish community in the Ulu Creek drainage (Ulu Creek and Frayed Knots River) indicates that the system is used by fish. Young-of-the-year Arctic grayling were recorded in Ulu Creek near its confluence with the Frayed Knots River and slimy sculpin were present immediately upstream of Meadow Lake. In the Frayed Knots River, all age-groups of Arctic grayling, as well as adults of round whitefish and lake trout were recorded.

### 5.3 RECOMMENDATIONS

### 5.3.1 Winter Access Road

The proposed route for the winter access road traverses an area that is characterized as having poor quality fish habitat. Of the 13 crossing locations assessed in June and August 1996, good fish habitat was encountered in only two streams. As such, the impact of winter access road construction and maintenance should have minimal impacts on fish and fish habitat at most of the stream crossings. To avoid negatively impacting the limited number of crossings that contain good quality habitat, consideration should be given to selection of alternate crossing sites.

If this is not an appropriate option, it is recommended that biological monitoring of the crossing during road construction be undertaken to ensure that the quality of fish habitat in the stream is not degraded (e.g., introduction of deleterious substances, barriers to fish passage). A mitigative strategy should also be developed and incorporated into the maintenance plan to minimize future impacts. For example, the requirement for, timing of and methods to be used, for culvert and ice-dam removal each spring should be considered.

### 5.3.2 Ulu Exploration Area

The water quality in most of the Ulu Exploration Area waterbodies is typical of an unperturbed system. East Lake has experienced an introduction of nutrients, trace metals and other elements from the Ulu Camp and exploration site. The water chemistry data suggest that this material has the potential to move to downstream lakes and streams. As such, a water sampling program should be established in order to monitor this potential impact, particularly if the size of the Ulu Camp and associated exploration activity increases.

Since the East Lake and Ulu Lake systems will be receiving effluent from the development area and camp, additional information is needed to fully understand the dynamics and to assess the potential impacts. To accomplish this a water budget for each lake should be developed.

To better assess the potential impacts of development on the aquatic biological community in the Ulu Exploration Area, baseline information should be collected from selected waterbodies in the Ulu Creek drainage where data

Knots River systems.		

### **6.0 REFERENCES**

- Ahlstrom, EH 1943. A revision of the rotatorian genus *Keratella* with descriptions of three new species and five new varieties. Bull. Amer. Mus. Nat. Hist. 80(12): 411-57.
- Barnett, B.S., and R.W. Schneider. 1974. Fish populations in dense submersed plant communities. Hyacinth Control J. 12: 12-14.
- Bird, D.F. and Y.T.-Prairie. 1985. Practical guidelines for the use of zooplankton length-weight regression equations. J. Plank. Res. 7: 955-960.
- Bovee, K.D. and T. Cochnauer. 1977. Development and evaluation of weighted criteria, probability of use curves for instream flow assessments: fisheries. Instream Flow Inf. Pap. 3 FWS/OBS-77/63. Cooperative Instream Flow Ser. Group. Fort Collins, Colorado, U.S.A., 131 p.
- Brandlova, J., Z. Brandl, and C.H. Fernando. 1972. The Cladocera of Ontario with remarks on some species and distribution. Can. J. Zool. 50(11): 1373-403.
- Brinkhurst, R.O. 1986. Guide to the freshwater aquatic microdrile oligochaetes of North America. Can. Spec. Publ. Fish. Aquat. Sci. 84: 259 p.
- Brooks, J.L. 1957. The systematics of North American Daphnia. Mem. Connecticut Acad. Arts Sci. 13: 1-180.
- Canadian Councils of Ministers of the Environment (CCME). 1993. Canadian water quality guidelines. Prepared by the Task Force on Water Quality Guidelines of the Canadian Council of Ministers of the Environment. Water Quality Objectives Division, Water Quality Branch, Inland Waters Directorate, Environment Canada, Ottawa, Ontario. 358 p. + 12 app.
- Clifford, H.F. 1991. Aquatic invertebrates of Alberta. University of Alberta. Press, Edmonton. 538 p.
- Cook, E.F. 1956. The Nearctic Chaoborinae (Diptera: Culicidae). Bull. Minn. Agric. Exp. Sta. 218: 102 p.
- Edmondson, W.T. 1959. Freshwater biology. 2nd edition John Wiley and Sons, New York, New York. 1248 p.
- Flössner, D. 1972. Krebstiere, Crustacea: Kiemen und Blattfüsser, Brachiopoda, Fischäuse, Brachiura. Die Tierwelt Deutschlands. 60. Teil. Gustav Fischer Verlag, Jena. 501 p.
- Green, J. 1977. Sampling rotifers. Arch. Hydrobiol. Bieh. Ergebn. Limnol. 8: 9-12.
- Hynes, H.B.N. 1950. The food of freshwater sticklebacks (*Gasterosteus aculeatus* and *Pygosteus pungitius*) with a review of methods used in studies of the foods of fisheries. J. Animal Ecol. 19(1): 36-58.
- Kiefer, F. 1978. Zur Kenntnis des Diacyclops tames (S.A. Forces, 1882) (Copepoda, Cyclopoida). Crustaceana 34(2): 214-16.
- Koste, W. 1978. Rotatoria. Die Rädertiere Mitteleuropas. Ein Bestimmungswerk, begrunder von Max Voigt. Überordnung Monogononta. Gebrüder Bortraeger, Berlin, Stuttgart. Vol. I: 673 p. Vol. II: 469 p.
- Mackay, W.C., G.R. Ash, and H.J. Norris. (editors). 1990. Fish ageing methods for Alberta. R.L. & L. Environmental Services Ltd. in assoc. with Alberta Fish and Wildlife Division and University of Alberta, Edmonton. 113 p.

- Merritt, R.W., and K.W. Cummins. editors. 1984. An introduction to the aquatic insects of North America. 2nd edition. Kendall/Hunt Publishing Company, Dubuque, Iowa, U.S.A. 722 p.
- Prescott, G.W. 1970. Algae of the Western Great Lakes area. Wm. C. Brown Co. Publ., Dubuque, Iowa. 977 p.
- R.L. & L. Environmental Services Ltd. 1996. Fisheries assessment of streams and lakes in the Ulu Project Area, Nunavut. Report Prepared for Echo Bay Mines Ltd. R.L. & L. Report No. 521F: 59 p. + 3 app.
- Ruttner-Kolisko, A. 1974. Plankton rotifers: Biology and taxonomy. Die Binnengewasser, Vol. 26/1, Supplement. 146 p.
- Saether, O.A. 1970. Nearctic and Palaearctic *Chaoborus* (Diptera: Chaoboridae). Fisheries Research Board of Canada Bulletin 174:1-57 p.
- Scott, W.B. and E.J. Crossman. 1973. Freshwater Fishes of Canada. Fisheries Research Board of Canada, Bulletin 184. Department of Fisheries and Oceans, Ottawa, Ontario. 966 p.
- Smirnov, N.N. 1971. Fauna of the U.S.S.R. Crustacea: Chydoridae. Vol 1, No. 2. Akad. Nauk. SSSR, New Series No. 101 (Translated from Russian). Israel Program for Scientific Translations, Jerusalem. 644 p.
- Taft, C.E., and C.W. Taft. 1971. The algae of Western Lake Erie. Bull. Ohio Biol. Surv. 4: 1-189.
- Thompson, R.B. 1959. Food of squawfish, *Ptychocheilus oregonensis* (Richardson) of the Columbia River. U.S. Dep. of Int., Fish, Wildl. Serv. Fish. Bull. 158(60): 43-58.
- Webber, C.I. 1971. A guide to the common diatoms of water pollution surveillance system stations. U.S. Environmental Protection Agency, National Environmental Research Centre Analytical Quality Control Laboratory, Cincinnati, Ohio.
- Wiggins, G.B. 1977. Larvae of the North American caddisfly genera (Trichoptera). University of Toronto Press, Toronto, Canada. 401 p.

R.L. & L. ENVIRONMENTAL SERVICES LTD
PHOTOGRAPHIC PLATES
·

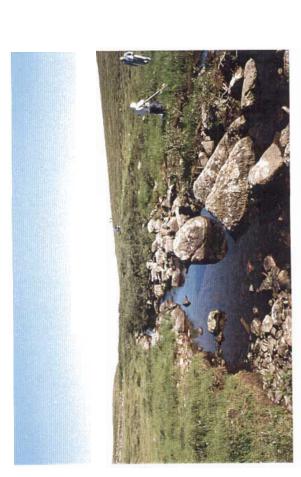



Plate 1 Route 1 - Stream 3.1 looking upstream (1 August 1997).

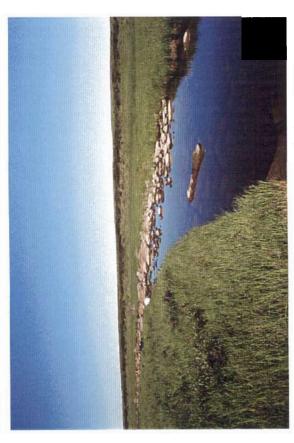
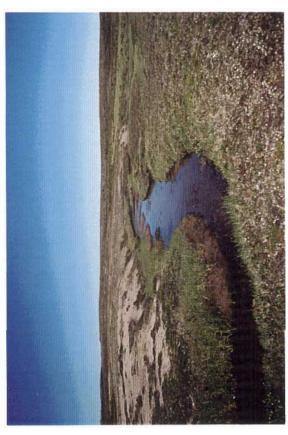




Plate 2 Route 1 - Stream 18.5 looking upstream (1 August 1997).



3 Route 2 - Stream 36.7 looking upstream (18 June 1997).



ate 4 Route 2 - Stream 41.8 looking downstream (1 August 1997).

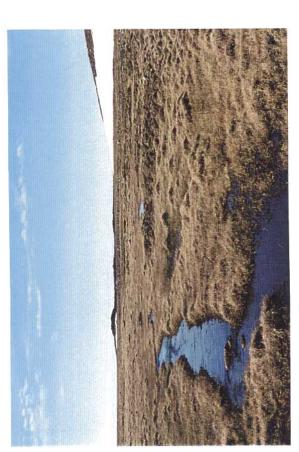



Plate 5 Route 2 - Stream 43.5 looking upstream (18 June 1997).

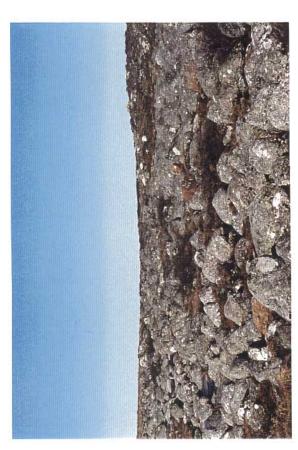



Plate 6 Route 2 - Stream 45.3 looking upstream (18 June 1997).

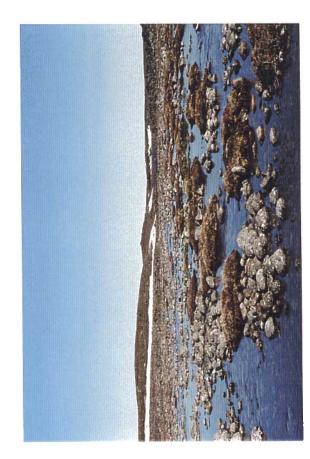



Plate 7 Route 2 - Stream 46.9 looking downstream (18 June 1997).

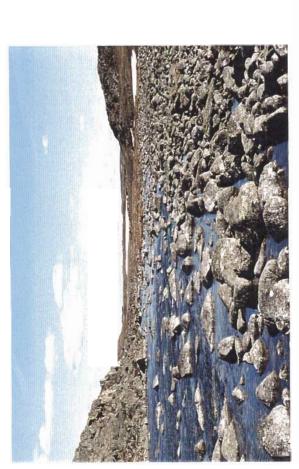
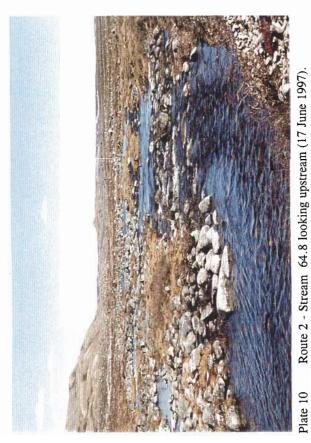





Plate 8 Route 2 - Stream 56.1 looking downstream (1 August 1997).



Route 2 - Stream 58.8 looking upstream (17 June 1997). Plate 9



Route 2 - Stream 64.8 looking upstream (17 June 1997).



Route 2 - Stream 66.1 looking downstream (17 June 1997). Plate 11



Route 2 - Stream 70.8 looking downstream (17 June 1997). Plate 12

ory Data	Waterbody
Fish Life Histor	Area
Appendíx É2 - F	Sample Project

Comments	ST5; 5 ZOO	ST5; 5 ZOO	ST20; 20 PEL	ST10; 5 ZOO, 5 PEL	ST5; 5 ZOO	ST15; 15 ZOO												
Code	-	<del>-</del>	<b>←</b>	<del>-</del>	<del>-</del>	-	0	0	0	0	0	0	0	0	0	0	0	0
Weight Maturity Age Structure Capture Code	N G N	N O	N O	N G	N ©	N O	AL	٩٢	AL									
Structure	ОТ	ТО	10	ТО	OT	ТО	SC	SC	SC	SC	SC	SC					SC	SC
Age		4					တ	7	9	7	5	9					9	10
Maturity	66	<u>6</u>	ω.	7		16	10	20	20	9	10	10					10	10
	166	112	908	262	364	454												
Fork Length	258	217	424	295	326	352	385	380	399	380	368	348	355	655	468	336	417	402
Species Fork Lengtl	LKTR	LKTR	LKTR	LKTR	LKTR	LKTR	ARGR	ARGR	ARGR	ARGR	ARGR	ARGR	LKTR	LKTR	LKTR	LKTR	ARGR	ARGR
Site ID	85	85	85	98	98	98	95	92	95	95	95	95	95	92	92	95	92	93
Waterbody	Reno S L	Reno S L	Reno S L	Reno S L	Reno S L	Reno S L	Frayed Knot R											
Area	Camp Three	Camp Three	Camp Three	Camp Three	Camp Three	Camp Three	Ulu Exploration Area											
Project Number	929	929	929	929	929	920	920	929	920	920	220	929	929	920	920	240	929	920
Sample Project Number Number	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180

Data
History
Life
- Fist
E2
Appendix

Comments																		
apo:	0	0	0	0	0	0	0	0	0	0	0 RND	0 RND	0 RND	0 RND	0	0	0	0
Capture C	AL.	AL	N O	N O	N O	N O	Ħ	Ш	Ħ	핌								
Structure	SC	SC	SC	SC	SC	SC			SC									
Age (	7	9	တ		တ	თ			ω									
Species Fork Weight Maturity Age Structure Capture Code Length	20	20	20	10	10	10			20									
Fork Length	332	300	368	395	381	375	436	454	375	364					27	32	34	36
Species	ARGR	ARGR	ARGR	ARGR	ARGR	ARGR	LKTR	LKTR	ARGR	LKTR	LKTR	RNWH	LKTR	LKTR	ARGR	ARGR	ARGR	ARGR
Site	93	93	93	92	92	95	95	92	92	92	78	78	77	85	34	34	34	34
Waterbody	Frayed Knot R	Reno N L	Reno N L	Reno N L	Reno S L	041.8	041.8	041.8	041.8									
Area	Ulu Exploration Area	Ulu Exploration Area	Ulu Exploration Area	Ulu Exploration Area	Ulu Exploration Area	Ulu Exploration Area	Ulu Exploration Area	Ulu Exploration Area	Ulu Exploration Area	Ulu Exploration Area	Camp Three	Camp Three	Camp Three	Camp Three	Route 2	Route 2	Route 2	Route 2
Project Number	929	920	920	920	929	920	920	920	920	929	929	920	920	920	920	929	920	920
Sample Project Number Number	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198

Appendix £2 - Fish Lite History Data	
endix £2 - Fish Lite History Da	Ġ
endix £2 - Fish L	at
endix £2 - Fish L	
endix £2 - Fish L	istory
endix £2 - Fish L	I
endix £2 - F	Lite
Suc	Fish
Suc	
Suc	É2
	Suc

Sample Project Number Number 127 570	Area Camp Three	Waterbody Reno N L	Site ID	Species Fork Length	Fork Length	Weight 580	Weight Maturity Age Structure Capture Code	Structure	Capture	Code	Comments ST10: 10 ZOO
	Camp Three	Reno N L	78	RNWH		888	2 -	5 6	N O	- ~	ST10; 10 ZOO
570 Cam	Camp Three	Reno N L	78	RNWH	289	278	~	OT	GN	_	ST15; 15 GAS
570 Can	Camp Three	Reno N L	78	LKTR	390	664	16	10	N S	<del></del>	ST10; 10 GAS
570 Car	Camp Three	Reno N L	78	RNWH	419	742	7	OT	N G N	~	ST5; 5 PEL
570 Caı	Camp Three	Reno N L	84	LKTR	390	909			AL	0	
570 Са	Camp Three	Reno N L	8	LKTR	355	456			AL	0	
570 Ca	Camp Three	Reno N L	78	LKTR	391	602			N Ö	0	
570 Ca	Camp Three	Reno N L	78	LKTR	372	592			N B	0	
570 Ca	Camp Three	Reno N L	78	LKTR	440	345			N G	0	
570 Cal	Camp Three	Reno N L	78	LKTR	399	702			N O	0	
570 Ca	Camp Three	Reno N L	78	LKTR	372	466			N B	0	
570 Cal	Camp Three	Reno N L	78	LKTR	392	756			N B	0	
570 Ca	Camp Three	Reno N L	78	LKTR	383	642			N S	0	
570 Ca	Camp Three	Reno N L	78	LKTR	403	809	7	TO	N B	<del></del>	ST10; 10 CHI
570 Car	Camp Three	Reno N L	78	LKTR	386	889	17	TO	N G	<b>~</b>	ST5; 5 ZOO
570 Car	Camp Three	Reno N L	78	LKTR	301	302	<del>-</del>	TO	N G	<del>-</del>	ST10; 10 ZOO; AB PAR
570 Cal	Camp Three	Reno S L	82	LKTR	326	350			N O	0	

ď
ā
≥
2
<u>S</u>
I
9
Ξ
7
ish L
Fish L
: - Fish L
<b>E2 - Fish L</b>
x E2 - Fish L
dix E2 - Fish L
andix E2 - Fish L
pendix E2 - Fish L
\ppendix E2 - Fish L

Comments									ST5; 5 CHI; AB PAR	STO	ST10; 10 ZOO	ST5; 5 ZOO	ST5; 5 ZOO	ST10; 5 CHI, 5 ZOO	STO	ST10; 10 ZOO	ST10; 10 ZOO	ST15; 15 CHI
Code	0	0	0	0	0	0	0	0	₹~	<del></del>	₩	<del>-</del>	τ	-	_	<del></del>	<b>~</b>	<del></del>
Weight Maturity Age Structure Capture Code	N O D	OS	B	N9	N O	N9	N O	N O	N9	B	O O N	ON ON	B	N O	N O	N9	N O	N O
Structure									OT	OT	OT	ТО	OT	OT	OT	OT	OT	OT
y Age											2						4	
Maturit									66	16	66	16	7	16	<del></del>	66	66	66
Weight	302	1098	242	644	344	84	198	432	156	474	96	436	242	354	166	164	116	154
	308	466	294	398	311	210	267	372	254	368	218	356	283	350	251	247	222	245
Species Fork Length	LKTR	LKTR	LKTR	LKTR	LKTR	LKTR	LKTR	LKTR	LKTR	LKTR	LKTR	LKTR	LKTR	LKTR	LKTR	LKTR	LKTR	LKTR
Site	85	82	82	98	98	88	86	88	86	86	98	86	86	82	85	82	82	82
Waterbody	Reno S L	Reno S L	Reno S L	Reno S L	Reno S L	Reno S L	Reno S L	Reno S L	Reno S L	Reno S L	Reno S L	Reno S L	Reno S L	Reno S L	Reno S L	Reno S L	Reno S L	Reno S L
Area	Camp Three	Camp Three	Camp Three	Camp Three	Camp Three	Camp Three	Camp Three	Camp Three	Camp Three	Camp Three	Camp Three	Camp Three	Camp Three	Camp Three	Camp Three	Camp Three	Camp Three	Camp Three
Project Number	570	929	929	929	929	920	929	270	929	220	929	920	929	929	929	929	920	570
Sample Project Number Number	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162

Data
<b>History</b>
Life I
2 - Fist
endix E
App

570 570 570 570 570	Ulu Exploration Area	West L	66 67 67 67 66 67 76	KTA KATA KATA KATA KATA KATA KATA KATA	422 408 395 377 377 334 411	954 856 748 660 632 432 656 846	17	5 2	р	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L 0 0 0 1 0 0 1 ST	ST5; 5 UNID
รี	Ulu Exploration Area Camp Three Camp Three Camp Three Camp Three Camp Three	West L Reno N L	76 78 78 78 78 78 78	LKTR LKTR LKTR LKTR LKTR LKTR LKTR LKTR	378 392 393 397 321 321 345	748 502 586 456 712 712 300				G G G G G G F		

Data
story
ife H
Fish L
( E2 -
cipendix
Αp

Sample Number	Sample Project Number Number	Area	Waterbody	Site	Species	Fork Length	Site Species Fork Weight Maturity Age Structure Capture Code ID	rity Age S	tructure Ca	ipture (	ode:	Comments
109	570	Camp Three	Reno N L	78	LKTR	296	254			NS NS	0	
110	570	Camp Three	Reno N L	78	LKTR	358	318			R	0	
11	929	Camp Three	Reno N L	78	RNWH	427	932			R	0	
112	929	Camp Three	Reno N L	78	RNWH	401	748			N B	0	
113	929	Camp Three	Reno N L	78	LKTR	298	188			NS	0	
114	929	Camp Three	Reno N L	78	LKTR	414	850			N	0	
115	929	Camp Three	Reno N L	78	RNWH	422	812			N	0	
116	929	Camp Three	Reno N L	77	LKTR	337	218			N G	0	
117	929	Camp Three	Reno N L	77	LKTR	445	1252			N B	0	
118	929	Camp Three	Reno N L	77	LKTR	368	878			N GN	0	
119	929	Camp Three	Reno N L	77	LKTR	387	514			N9	0	
120	929	Camp Three	Reno N L	77	LKTR	412	884			N G	0	
121	929	Camp Three	Reno N L	77	LKTR	402	660 16		ОТ	N G	1 ST10; 5	ST10; 5 ZOO, 5 CHI
122	570	Camp Three	Reno N L	77	LKTR	368	604 7		OT	R	1 ST10; 5	ST10; 5 ZOO, 5 UNID
123	570	Camp Three	Reno N L	77	LKTR	333	424 11		OT	N G N	1 ST5; 1 F	ST5; 1 PEL, 2 CHI, 2 ZOO
124	570	Camp Three	Reno N L	77	LKTR	192	74 1	2	ОТ	N B	1 ST10; 5	ST10; 5 ZOO, 5 CHI
125	570	Camp Three	Reno N L	77	RNWH	410	726 7		OT	N G	1 ST10; 10 PEL	0 PEL
126	929	Camp Three	Reno N L	77	RNWH	409	714 7		ОТ	N B	1 ST15; 15 PEL	5 PEL

ta
ä
5 S
Hist
Life
_
Fish
Ë2 -
XID
ē
App
Ø

ample umber	Sample Project Number Number	Sample Project Area Wate	<b>Vater</b> Waterbody	Site	Species	Fork Length	Species Fork Weight Maturity Age Structure Capture Code Length	Age S	tructure	Capture	Code	Comments	
55	570	Route 2	041.8	34	ARGR	188	70	က	SC	<b>L</b>	0		
99	929	Route 2	041.8	34	ARGR	184	99	က	SC	П	0		
22	920	Route 2	041.8	34	LKTR	26	10			Ħ	0		
28	929	Route 2	041.8	34	LKTR	133	24			日	0		
29	920	Route 2	041.8	34	ARGR	91	9	_	SC	Ш	0		
09	929	Route 2	041.8	34	SLSC	82	9			Ш	0		
61	929	Route 2	041.8	34	SLSC	99				出	0		
62	920	Route 2	041.8	34	LKTR	105				日	0		
63	220	Route 2	041.8	34	LKTR	79				Ħ	0		
64	929	Route 2	041.8	8	LKTR	82				Ш	0		
65	920	Route 2	041.8	34	LKTR	72				品	0		
99	929	Route 2	041.8	34	LKTR	9/				П	0		
29	929	Route 2	041.8	34	LKTR	71				日	0		
89	920	Route 2	041.8	34	LKTR	75				出	0		
69	929	Route 2	041.8	34	SLSC	96	ဖ			吊	0		
20	920	Route 2	064.8	4	LKTR	174	72			出	0		
71	220	Route 2	064.8	41	LKTR	169	56			Ħ	0		
72	929	Ulu Exploration Area	Reno S Cr	45	SLSC	80				핌	0		

Data
History
sh Life
<b>≣2</b> - Fisl
Appendix E

Comments																		
						ST5; 5 ZOO	ST10; 10 ZOO	ST5; 5 ZOO	ST15; 15 Z00	STO					ST10; 10 CHI	ST15; 15 CHI		
Code	0	0	0	0	0	-	<b>~</b>	~	~	~	0	0	0	0	~	_	0	
Species Fork Weight Maturity Age Structure Capture Code Length	出	Н	N O	N O	N O	N O	N O	N S	GN	N O	В	ß	Ö	ß	Ö	ß	GN	
Structur						PO	PO	O	O	PO					O	PO		
y Age S						ω	9	7	12	8					10	13		
Maturit			17	•		7	17	7	~	7					~	17		
Weight			1032	0006	820	446	926	156	632	2300	1176	2104	964	412	208	930	952	
Fork Length	110	112	445	740	404	340	415	255	378	562	439	574	431	332	359	415	412	
Species	SLSC	SLSC	LKTR															
Site	45	45	48	48	48	48	48	48	48	48	49	49	49	49	49	49	99	
Waterbody	Reno S Cr	Reno S Cr	Ulu L	West L														
Area	Ulu Exploration Area	Ulu Exploration Area	Ulu Exploration Area	Ulu Exploration Area	Ulu Exploration Area	Ulu Exploration Area	Ulu Exploration Area	Ułu Exploration Area	Ulu Exploration Area									
Project Number	929	220	220	920	929	220	220	220	929	929	929	929	220	220	929	929	220	
Sample Project Number Number	73	74	75	9/	77	78	79	80	18	82	83	84	85	98	87	88	88	

Data
History
sh Life
E2 - Fist
Appendix

Comments																		
Code	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Species Fork Weight Maturity Age Structure Capture Code Length	EF	Ħ	Ħ	Ħ	EF	FF	Ħ	EF	EF	EF	FF	EF	EF	EF	EF	EF	EF	FF
Fork We Length	49	50	43	86	80	72	28	30	30	30	30	30	105	52	84	112	114	22
Species F	SLSC	SLSC	SLSC	SLSC	SLSC	SLSC	ARGR	ARGR	ARGR	ARGR	ARGR	ARGR	BURB	SLSC	SLSC	SLSC	SLSC	SLSC
Site S	24	24	24	24	24	24	24	24	24	24	24	24	24	30	30	30	30	30
Waterbody	Ulu Cr																	
Area	Ulu Exploration Area	Ulu Exploration Area	Ulu Exploration Area	Ulu Exploration Area	Ulu Exploration Area	Ulu Exploration Area	Ulu Exploration Area	Ulu Exploration Area	Ulu Exploration Area	Ulu Exploration Area	Ulu Exploration Area	Ulu Exploration Area	Ulu Exploration Area	Ulu Exploration Area	Ulu Exploration Area	Ulu Exploration Area	Ulu Exploration Area	Ulu Exploration Area
Project Number	920	929	929	929	920	929	929	920	929	929	929	920	920	920	920	920	920	920
Sample Project Number Number	19	20	21	22	23	24	25	56	27	28	29	30	31	32	33	34	35	36

Data
History
Life
- Fish
E2
ndix
Appe

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
出	끕	毌	出	Ш	出	ĘF	Ħ	Ħ	Ħ	Н	Ħ	出	出	出	出	出	Ŧ
		SC	SC	SC	SC	SC											
		<del>-</del>	~	~	~	~											
		20	18	16	41	22											
56	90	115	11	112	17	118	14	39	36	36	35	37	36	40	37	14	40
SLSC	SLSC	ARGR	ARGR	ARGR	ARGR	ARGR	ARGR	ARGR	ARGR	ARGR	ARGR	ARGR	ARGR	ARGR	ARGR	ARGR	ARGR
30	30	31	31	31	31	31	32	32	32	32	32	32	32	32	32	32	32
Ulu Cr	Ulu Cr	003.0	003.0	003.0	003.0	003.0	018.5	018.5	018.5	018.5	018.5	018.5	018.5	018.5	018.5	018.5	018.5
Ulu Exploration Area	Ulu Exploration Area	Route 1	Route 1	Route 1	Route 1	Route 1	Route 1	Route 1	Route 1	Route 1	Route 1	Route 1	Route 1	Route 1	Route 1	Route 1	Route 1
570	929	920	929	220	929	920	220	220	220	929	929	220	929	929	929	220	920
37	38	39	40	4	42	43	44	45	46	47	48	49	20	51	52	53	54
	570 Ulu Exploration Area Ulu Cr 30 SLSC 56 EF	570 Ulu Exploration Area Ulu Cr 30 SLSC 56 570 Ulu Exploration Area Ulu Cr 30 SLSC 90	570       Ulu Exploration Area       Ulu Cr       30       SLSC       56       EF         570       Ulu Exploration Area       Ulu Cr       30       SLSC       90       EF         570       Route 1       003.0       31       ARGR       115       20       1       SC       EF	570       Ulu Exploration Area       Ulu Cr       30       SLSC       56       F       FF         570       Ulu Exploration Area       Ulu Cr       30       SLSC       90       1       EF         570       Route 1       003.0       31       ARGR       115       20       1       SC       EF         570       Route 1       003.0       31       ARGR       111       18       1       SC       EF	570       Ulu Exploration Area       Ulu Cr       30       SLSC       56       F       F         570       Ulu Exploration Area       Ulu Cr       30       SLSC       90       7       EF         570       Route 1       003.0       31       ARGR       111       18       1       SC       EF         570       Route 1       003.0       31       ARGR       111       18       1       SC       EF         570       Route 1       003.0       31       ARGR       112       16       1       SC       EF	570       Ulu Exploration Area       Ulu Cr       30       SLSC       56       T       FF         570       Ulu Exploration Area       Ulu Cr       30       SLSC       90       T       EF         570       Route 1       003.0       31       ARGR       111       18       1       SC       EF         570       Route 1       003.0       31       ARGR       112       16       1       SC       EF         570       Route 1       003.0       31       ARGR       112       16       1       SC       EF         570       Route 1       003.0       31       ARGR       111       14       1       SC       EF	570         Ulu Exploration Area         Ulu Cr         30         SLSC         56         7         F           570         Ulu Exploration Area         Ulu Cr         30         SLSC         90         7         EF           570         Route 1         003.0         31         ARGR         111         18         1         SC         EF           570         Route 1         003.0         31         ARGR         112         16         1         SC         EF           570         Route 1         003.0         31         ARGR         111         14         1         SC         EF           570         Route 1         003.0         31         ARGR         111         14         1         SC         EF           570         Route 1         003.0         31         ARGR         111         14         1         SC         EF	570         Ulu Exploration Area         Ulu Cr         30         SLSC         56         ARGR         115         20         1         EF           570         Ulu Exploration Area         Ulu Cr         30         SLSC         90         1         EF           570         Route 1         003.0         31         ARGR         111         18         1         SC         EF           570         Route 1         003.0         31         ARGR         111         14         1         SC         EF           570         Route 1         003.0         31         ARGR         111         14         1         SC         EF           570         Route 1         003.0         31         ARGR         118         22         1         SC         EF           570         Route 1         018.5         32         ARGR         41         ARGR         <	570       Ulu Exploration Area       Ulu Cr       30       SLSC       56       Action 10 cm       Berroll         570       Ulu Exploration Area       Ulu Cr       30       SLSC       90       1       EF         570       Route 1       003.0       31       ARGR       111       18       1       SC       EF         570       Route 1       003.0       31       ARGR       111       14       1       SC       EF         570       Route 1       003.0       31       ARGR       111       14       1       SC       EF         570       Route 1       003.0       31       ARGR       118       22       1       SC       EF         570       Route 1       018.5       32       ARGR       39       39       AR	570         Ulu Exploration Area         Ulu Cr         30         SLSC         56         ARGR         115         20         1         EF           570         Ulu Exploration Area         Ulu Cr         30         SLSC         90         1         EF           570         Route 1         003.0         31         ARGR         111         18         1         SC         EF           570         Route 1         003.0         31         ARGR         111         14         1         SC         EF           570         Route 1         003.0         31         ARGR         118         22         1         SC         EF           570         Route 1         018.5         32         ARGR         31         ARGR         31         ARGR         31         ARGR         31         ARGR         32         32         ARGR         33         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34<	570         Ulu Exploration Area         Ulu Cr         30         SLSC         56         ARGR         115         20         1         EF           570         Ulu Exploration Area         Ulu Cr         30         SLSC         90         1         EF           570         Route 1         003.0         31         ARGR         111         18         1         SC         EF           570         Route 1         003.0         31         ARGR         111         14         1         SC         EF           570         Route 1         003.0         31         ARGR         118         22         1         SC         EF           570         Route 1         018.5         32         ARGR         31         ARGR         31         ARGR         32         32         ARGR         33         ARGR         33         ARGR         33         ARGR         33         ARGR         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34 <td< td=""><td>570         Ulu Exploration Area         Ulu Cr         30         SLSC         56         Area         FF           570         Ulu Exploration Area         Ulu Cr         30         SLSC         90         7         FF           570         Route 1         003.0         31         ARGR         111         18         1         SC         EF           570         Route 1         003.0         31         ARGR         111         14         1         SC         EF           570         Route 1         003.0         31         ARGR         111         14         1         SC         EF           570         Route 1         018.5         32         ARGR         41         22         1         SC         EF           570         Route 1         018.5         32         ARGR         39         ARGR         39         ARGR         36         ARGR</td><td>570         Ulu Exploration Area         Ulu Cr         30         SLSC         56         7         FF           570         Ulu Exploration Area         Ulu Cr         30         SLSC         90         1         EF           570         Route 1         003.0         31         ARGR         111         18         1         SC         EF           570         Route 1         003.0         31         ARGR         112         16         1         SC         EF           570         Route 1         003.0         31         ARGR         118         22         1         SC         EF           570         Route 1         018.5         32         ARGR         39         ARGR         39         ARGR         39         ARGR         39         ARGR         39         ARGR         36         <t< td=""><td>570         Ullu Exploration Area         Ullu Cr         30         SLSC         56         ARGR         115         20         1         EF           570         Ullu Exploration Area         Ullu Cr         30         SLSC         90         1         SC         EF           570         Route 1         003.0         31         ARGR         111         18         1         SC         EF           570         Route 1         003.0         31         ARGR         112         14         1         SC         EF           570         Route 1         003.0         31         ARGR         118         22         1         SC         EF           570         Route 1         018.5         32         ARGR         39         ARGR         39         ARGR         39         ARGR         39         ARGR         36         EF           570         Route 1         018.5         32         ARGR         36         ARGR         36         ARGR         36         ARGR         36         ARGR         37         ARGR         37         ARGR         37         ARGR         37         ARGR         37         ARGR         36</td><td>570         Ulu Exploration Area         Ulu Cr         30         SLSC         56         According to the polyment of the polym</td><td>570         Ulu Exploration Area         Ulu Cr         30         SLSC         66         Amount of the content of the cont</td><td>570         Ulu Exploration Area         Ulu Cr         30         SLSC         66         Amount of the control of the cont</td></t<></td></td<>	570         Ulu Exploration Area         Ulu Cr         30         SLSC         56         Area         FF           570         Ulu Exploration Area         Ulu Cr         30         SLSC         90         7         FF           570         Route 1         003.0         31         ARGR         111         18         1         SC         EF           570         Route 1         003.0         31         ARGR         111         14         1         SC         EF           570         Route 1         003.0         31         ARGR         111         14         1         SC         EF           570         Route 1         018.5         32         ARGR         41         22         1         SC         EF           570         Route 1         018.5         32         ARGR         39         ARGR         39         ARGR         36         ARGR	570         Ulu Exploration Area         Ulu Cr         30         SLSC         56         7         FF           570         Ulu Exploration Area         Ulu Cr         30         SLSC         90         1         EF           570         Route 1         003.0         31         ARGR         111         18         1         SC         EF           570         Route 1         003.0         31         ARGR         112         16         1         SC         EF           570         Route 1         003.0         31         ARGR         118         22         1         SC         EF           570         Route 1         018.5         32         ARGR         39         ARGR         39         ARGR         39         ARGR         39         ARGR         39         ARGR         36         ARGR         36 <t< td=""><td>570         Ullu Exploration Area         Ullu Cr         30         SLSC         56         ARGR         115         20         1         EF           570         Ullu Exploration Area         Ullu Cr         30         SLSC         90         1         SC         EF           570         Route 1         003.0         31         ARGR         111         18         1         SC         EF           570         Route 1         003.0         31         ARGR         112         14         1         SC         EF           570         Route 1         003.0         31         ARGR         118         22         1         SC         EF           570         Route 1         018.5         32         ARGR         39         ARGR         39         ARGR         39         ARGR         39         ARGR         36         EF           570         Route 1         018.5         32         ARGR         36         ARGR         36         ARGR         36         ARGR         36         ARGR         37         ARGR         37         ARGR         37         ARGR         37         ARGR         37         ARGR         36</td><td>570         Ulu Exploration Area         Ulu Cr         30         SLSC         56         According to the polyment of the polym</td><td>570         Ulu Exploration Area         Ulu Cr         30         SLSC         66         Amount of the content of the cont</td><td>570         Ulu Exploration Area         Ulu Cr         30         SLSC         66         Amount of the control of the cont</td></t<>	570         Ullu Exploration Area         Ullu Cr         30         SLSC         56         ARGR         115         20         1         EF           570         Ullu Exploration Area         Ullu Cr         30         SLSC         90         1         SC         EF           570         Route 1         003.0         31         ARGR         111         18         1         SC         EF           570         Route 1         003.0         31         ARGR         112         14         1         SC         EF           570         Route 1         003.0         31         ARGR         118         22         1         SC         EF           570         Route 1         018.5         32         ARGR         39         ARGR         39         ARGR         39         ARGR         39         ARGR         36         EF           570         Route 1         018.5         32         ARGR         36         ARGR         36         ARGR         36         ARGR         36         ARGR         37         ARGR         37         ARGR         37         ARGR         37         ARGR         37         ARGR         36	570         Ulu Exploration Area         Ulu Cr         30         SLSC         56         According to the polyment of the polym	570         Ulu Exploration Area         Ulu Cr         30         SLSC         66         Amount of the content of the cont	570         Ulu Exploration Area         Ulu Cr         30         SLSC         66         Amount of the control of the cont

### Appendix E2 R.L. & L. ENVIRONMENTAL SERVICES LTD. FISH SPECIES ABBREVIATIONS

ABBR.	COMMON NAME	SCIENTIFIC NAME	ABBR.	COMMON NAME	SCIENTIFIC NAME
CTTR	Cutthroat trout	Oncorhynchus clarki	BURB	Burbot	Lota lota
BLTR	Bull trout	Salvelinus malma	SLSC	Slimy sculpin	Cottus cognatus
LKTR	Lake trout	Salvelinus namaycush	SPSC	Spoonhead sculpin	Cottus ricei
ARCH	Arctic char	Salvelinus alpinus	PRSC	Prickly sculpin	Cottus asper
ARGR	Arctic grayling	Thymallus arcticus	SHSC	Shorthead sculpin	Cottus confusus
MNWH	Mountain whitefish	Prosopium williamsoni	PSSC	Pacific staghorn sculpin	Leptocottus armatus
RNWH	Round whitefish	Prosopium cylindraceum	MTSC	Mottled sculpin	Cottus bairdi
PGWH	Pygmy whitefish	Prosopium coulteri	TRSC	Torrent sculpin	Cottus rhotheus
LKWH	Lake whitefish	Coregonus clupeaformis	BRST	Brook stickleback	Culaea inconstans
BRWH	Broad whitefish	Coregonus nasus	NNST	Ninespine stickleback	Pungitius pungitius
CISC	Ciscoe	Coregonus artedii	THST	Threespine stickleback	Gasterosteus aculeatus
INCO	Inconnu	Stenodus leucichthys	RDSH	Redside shiner	Richardsonius balteatus
PINK	Pink salmon	Oncorhynchus gorbuscha	NRSQ	Northern squawfish	Ptychocheilus oregonensis
CHUM	Chum salmon	Oncorhynchus keta	PRDC	Pearl dace	Semotilus margarita
соно	Coho salmon	Oncorhynchus kisutch	PEAM	Peamouth	Mylocheilus caurinus
SOCK	Sockeye salmon	Oncorhynchus nerka	FLCH	Flathead chub	Platygobid gracilis
KOKA	Kokanee	Oncorhynchus nerka	LKCH	Lake chub	Couesius plumbeus
CHIN	Chinook salmon	Oncorhynchus tshawytscha	LNDC	Longnose dace	Rhinichthys cataractae
LNSC	Longnose sucker	Catostomus catostomus	FNDC	Finescale dace	Pfrille neogaeus
WHSC	White sucker	Catostomus commersoni	NRDC	Northern redbelly dace	Chrosomus eos
LRSC	Largescale sucker	Catostomus macrocheilus	LPDC	Leopard dace	Rhinichthys falcatus
BRSC	Bridgelip sucker	Catostomus columbianus	EMSH	Emerald shiner	Notropis atherinoides
MNSC	Mountain sucker	Catostomus platyrhynchus	SPSH	Spottail shiner	Notropis hudsonius
CARP	Сагр	Cyprinus carpio	FTMN	Fathead minnow	Pimephales promelas
CHIS	Chiselmouth	Acrocheilus alutaceus	TRPR	Trout-perch	Percopsis omiscomaycus
SMBS	Smallmouth bass	Micropterus dolomievi	IWDR	lowa darter	Etheostoma exile
LKST	Lake sturgeon	Acipenser fulvescens	STFL	Starry flounder	Platichthys stellatus
WHST	White sturgeon	Acipenser transmontanus	LNSM	Longfin smelt	Spirinchus thaleichthys
GOLD	Goldeye	Hiodon alosdides	EUAL	Eualchon	Thaleichthys pacificus
NRPK	Northern pike	Esox lucius	PCLM	Pacific lamprey	Entosphenus tridentatus
WBLM	Western brook lamprey	Lampetra richardsoni	ARLM	Arctic lamprey	Lampetra japonica
LSCS	Least cisco	Coregonus sardinella	ARCS	Arctic cisco	Coregonus autumnalis

SE	K AND	MATURITY DESCRIP	TIONS	OTHER	CODES		
<u>M</u>	<u>F</u>	CLASS Immature A	DESCRIPTION Sex indeterminable due to small gonad size.	CODE SC OT	AGEING METHODS Scales Otoliths	CODE CL CS	AGEING METHODS Cleithra Cleithra and scales
01	11	Immature B	Small gonad size; fish has never spawned and will not spawn during the coming spawning season.	SO FR SF	Scales and otoliths Fin ray Scales and fin rays	VE OB LF	Vertebrae Other bones Length-frequency
02	12	Maturity questionable	Small gonad size; it cannot be determined if fish is immature or if it will spawn during the coming spawning season.	CODE FD SL	CAPTURE METHODS Found dead Set line		
03	13	Developing A	Definite gonad development; fish has never spawned before but will spawn during the coming season.	DN GN ES EF	Dip net Gill net Electroshocker - Boat shock Electrofisher - backpack sh		
04	14	Developing B	Definite gonad development; the fish has spawned before and will spawn during the coming season.	BS OB TU	Beach seine Observed - not captured Trap - fish moving upstrear		
05	15	Developing C	Definite gonad development; the fish has spawned before but will not spawn during the coming spawning season, i.e., alternate year spawners.	TD AL AF AB	Trap - fish moving downstr Angling (Using lures) Angling (Using flies) Angling (Using bait)	eam	
06	16	Developing D	Used to indicate definite gonad development when the classification into categories "developing A,B, or C cannot be determined, or when such a breakdown is unsuitable or unnecessary.	CR CF GE GT	Creel - sampled from a fish Commercial fisherman's ca Small Gee trap Large Gee trap		eel
07	17	Gravid/fully developed	Sexual organs fill ventral cavity testes white, drops of milt fall with pressure; eggs completely round, some already translucent.	CODE Y, W, R F	TAG CODE Color code for tag (i.e., Ye Fin clip: 1=Adipose, 2=R. 4=R. Pelvic, 5=L. Pelvic,	Pectoral,	3=L. Pectoral,
08	18	Ripe	Roe or milt are extruded by slight pressure on the belly.				
09	19	Spent	Spawning completed; resorption of residual ovarian tissue is not yet complete.	CODE 0 1	CAPTURE CODE First capture, released First capture, sacrificed		
10	20	External	Sex determined by external characteristics; maturity and sex not verified by gonad examination.	2 3	Recapture, released Recapture, sacrificed		
99	99	Adult/Juvenile	Based on fish size; sex not determined.	CODE ZOO CHI TRI FIS DIP COL PEL BRA INS ROD GAS UNI	STOMACH CONTENT C Zooplankton Chirnomids Trichopterans Fish Dipterans Coleopterans Pelecypods Brachiopods Insects Rodent Gastropods Unidentified	ODE	

ata
Ö
tory
His
Life
Fish I
4
<b>E</b> 2
d ÿ
pen
Ap

Sample Project Number Number	Sample Project Number Number	Area	Waterbody S	Site S	Species Fork Length		Weight Maturity Age Structure Capture Code	ge Stri	rcture Ca	apture	Code	Comments
-	570	Ulu Exploration Area	Ulu Cr	7	SLSC	137	24			出	0	
7	929	Ulu Exploration Area	Ulu Cr	2	SLSC	129	24			EF	0	
ო	920	Ulu Exploration Area	Ulu Cr	2	SLSC	110	16			EF	0	
4	929	Ulu Exploration Area	Ulu Cr	7	SLSC	114	18			Ħ	0	
5	220	Ulu Exploration Area	Reno S Cr	7	SLSC	66	10			H	0	
9	929	Route 2	041.8	4	ARGR	154	30	2	SC	Ш	0	
7	570	Route 2	041.8	4	ARGR	160	48	8	SC	Ħ	0	
∞	220	Route 2	041.8	4	ARGR	187	80	ю	SC	Ħ	0	
თ	929	Route 2	041.8	4	ARGR	239	156		SC	Ħ	0	
10	220	Route 2	041.8	4	ARGR	172	09	e e	SC	Ħ	0	
<del>;</del>	929	Route 2	041.8	4	ARGR	149	34	8	SC	Ħ	0	
12	570	Route 2	043.5	15	BURB	105	9			Ħ	0	
13	220	Route 2	043.5	15	BURB	71				EF	0	
<del>1</del>	220	Route 2	064.8	21	LKTR	289	240			Ħ	0	
15	220	Ulu Exploration Area	Ulu Cr	23	SLSC	42				П Г	0	
16	220	Ulu Exploration Area	Ulu Cr	23	SLSC	42				丑	0	
17	220	Ulu Exploration Area	Ulu Cr	23	SLSC	4				Ħ	Ó	
18	220	Ulu Exploration Area	Ulu Cr	23	SLSC	58				Ħ	0	

## APPENDIX E2 FISH LIFE HISTORY DATA

Effort
s and
Methods
Sampling I
- Fish
四
Appendix

Effort	25020	30600	30300	30060	30060	8100	18000	28560	31800	30780	29160	29400	1800	1800	009	1800	1800
Method	N9	GT	GT	GT	GT	AL	N O	N O	GT	GT	CT.	GT	AL	AL	SN	AL	AL
Northing Method	7415002	7415495	7414973	7414571	7414932		7413889	7412822	7414380	7413686	7414462	7414329					
Easting	502081	501817	501755	501875	502417		500841	501466	500115	500823	499630	499574					
Utm Zone	12W																
Date	08/03/97	08/03/97	08/03/97	08/03/97	08/03/97	08/03/97	08/04/97	08/04/97	08/04/97	08/04/97	08/04/97	08/04/97	08/05/97	08/05/97	08/01/97	08/05/97	08/05/97
SiteID	78	79	80	81	82	84	85	86	87	88	88	06	95	93	94	92	86
Site	2	~	2	3	4	<del></del>	~	2	<del></del>	2	က	4	~	7	ဗ	က	4
Waterbody	Reno N L	Reno S L	Frayed Knot R														
Region	Ulu Exploration Area																
Project Number	570	920	920	570	920	920	920	570	570	920	920	920	920	920	920	570	920

Effort
and
Methods
Sampling
- Fish
E1
Appendix

Number		Vaterbody	פופ	OIEID OIEID	Dale	Zone	Easting	Northing Method	Metnoa	1011
570	Ulu Exploration Area	Ulu Cr	-	-	06/16/97	12W	503050	7421350	EF	1425
570	Ulu Exploration Area	Ulu Cr	7	2	06/16/97	12W	503127	7421503	Н	378
570	Ulu Exploration Area	Ulu Cr	က	က	06/17/97	12W	502425	7421360	Ħ	112
570	Ulu Exploration Area	Ulu L Inlet 2	4	4	06/17/97	12W	502138	7420999	띰	158
570	Winter Access Road	118.2	118.2	10	06/17/97	12W	499705	7410668	Ħ	178
570	Ulu Exploration Area	Reno S Cr	-	7	06/17/97	12W	498530	7415167	日	230
920	Winter Access Road	003.0	3.1	12	06/18/97	12W	517728	7349569	Ħ	245
570	Winter Access Road	041.8	41.8	14	06/18/97	12W	506176	7378165	EF	273
570	Winter Access Road	043.5	43.5	15	06/18/97	12W	505153	7379179	Ш	295
570	Winter Access Road	045.3	45.3	16	06/18/97	12W	504814	7381306	Ш	194
570	Winter Access Road	046.9	46.9	17	06/18/97	12W	505419	7382972	Ē	179
570	Winter Access Road	0.950	56.1	18	06/17/97	12W	503839	7391026	Щ	212
570	Winter Access Road	064.8	64.8	21	06/17/97	12W	502654	7399260	Ш	215
570	Winter Access Road	070.8	70.8	22	06/17/97	12W	501018	7404130	Ш	61
570	Ulu Exploration Area	Ulu Cr	-	23	07/29/97	12W	506974	7421319	吊	382
920	Ulu Exploration Area	Ulu Cr	-	24	07/29/97	12W	506814	7421379	Ħ	544
570	Ulu Exploration Area	Ulu Cr	-	56	07/29/97	12W	506240	7421205	描	644
920	Ulu Exploration Area	Ulu Cr	-	28	07/29/97	12W	505153	7421425	Ħ	104
920	Ulu Exploration Area	Ulu Cr	7	30	07/29/97	12W			Ħ	366
570	Winter Access Road	003.0	3.1	31	08/01/97	12W	517764	7349456	EF	170
570	Winter Access Road	018.5	18.52	32	08/01/97	12W	521012	7363146	띰	255
920	Winter Access Road	041.8	41.8	34	08/01/97	12W	506199	7377974	Ш	305

Appendix E1 - Fish Sampling Methods and Effort

Project Number	Region	Waterbody	Site	SiteID	Date	Utm Zone	Easting	Northing Method	Method	Effort
570	Winter Access Road	026.0	56.1	39	08/01/97	12W	503972	7390775	EF	157
570	Winter Access Road	064.8	64.8	4	08/01/97	12W	502670	7399049	Ħ	200
920	Winter Access Road	118.2	118.2	44	08/01/97	12W	499717	7410482	핌	79
929	Ulu Exploration Area	Reno S Cr	-	45	08/05/97	12W	498624	7415039	Ħ	375
920	Ulu Exploration Area	Frayed Knot R	<del>-</del>	46	08/01/97	12W			SN	3600
570	Ulu Exploration Area	Frayed Knot R	7	47	08/01/97	12W			SN	009
920	Ulu Exploration Area	Ulu L	_	48	07/30/97	12W			N9	24300
220	Ulu Exploration Area	Ulu L	7	49	07/30/97	12W	502069	7421575	ß	24300
240	Ulu Exploration Area	Ulu L	<del></del>	20	07/30/97	12W			GT	28800
240	Ulu Exploration Area	Olu L	7	51	07/30/97	12W			GT	28800
920	Ulu Exploration Area	Meadow L	<del>-</del>	26	07/31/97	12W	503542	7421538	N S	17100
920	Ulu Exploration Area	Meadow L	7	22	07/31/97	12W	503396	7421312	N S	15600
920	Ulu Exploration Area	Meadow L	<del>-</del>	28	07/31/97	12W	503256	7421316	GT	16200
570	Ulu Exploration Area	Meadow L	7	29	07/31/97	12W	503636	7421260	GT	16020
929	Ulu Exploration Area	West L	-	99	08/02/97	12W	500681	7421033	N S	23760
929	Ulu Exploration Area	West L	7	29	08/02/97	12W	500629	7421273	N S	24000
570	Ulu Exploration Area	West L	-	89	08/02/97	12W	500727	7420893	GT	23100
570	Ulu Exploration Area	WestL	7	69	08/02/97	12W	500664	7421203	GT	23160
220	Ulu Exploration Area	WestL	က	20	08/02/97	12W	500581	7420960	GT	23160
920	Ulu Exploration Area	WestL	4	71	08/02/97	12W	500655	7420705	GT	23160
220	Ulu Exploration Area	WestL	~	9/	08/02/97	12W			ΑΓ	5400
920	Ulu Exploration Area	Reno N L	-	7.7	08/03/97	12W	502252	7414862	B	14160

## APPENDIX E1 FISH SAMPLING EFFORT

# APPENDIX E FISHERIES DATA

Toyonomia Crown		Ulu Lake		M	eadow La			West Lake	
Taxonomic Group	1	Replicate 2	3	1	Replicate 2		4	Replicate	2
ANNELIDA		2	3			3	1	2	3
OLIGOCHAETA									
Lumbriculidae	1			5	4	3	3	2	
Naididae				1	7	3	3	2	
Naluluae				1				:	
ARTHROPODA				1					
HYDRACARINA				'					
Lebertia			1	:	. 1				
Unidentified		2	'		1	1		;	
Onidentined		2				,			
CRUSTACEA		1		:				ļ	
CLADOCERA				1				n	
		1						1	
Chydoridae Unidentified	4								
	1								
Daphnidae					_				
Daphnia					3	1			
Unidentified	24	3	12					: 1	
COPEPODA	_						:		
Harpacticoida	5	3			6		İ		2
OSTRACODA	1	10		149	246	225		4	1
33113133211				1.40	2.70			1 1	•
INSECTA									
DIPTERA					1				
Chironomidae				1					
Orthocladiinae/Diamesinae	10	13		26	. 8	22	5	3	5
Chironomini	4	0	1		•	1	2	2	•
Tanypodinae	24	4	3	122	93	123	48	42	48
Tanytarsini	1	7	3	120	101	134	7	7	5
Chironomidae Pupae	1			5	6	3	,	1	1
Omionomidae Fupae				3	3	3			,
COLEOPTERA				1					
Dytiscidae									
Agabus					1			1	
Desmopachria				1		1			
		į.				•			
TRICHOPTERA					1			1	
Limnephilidae									
Pseudostenophylax		2							
MOLLUSCA								!	
PELECYPODA									
Sphaeriidae		1							
Pisidium		3		1		•	1	1	
Unidentified	32	32	25	. 2	11		26	19	41
MICROTURBELLARIA									
TRICLADIDA								1	
Dugesia	7	: 2		2	3				
		1		,				,	
NEMATODA		1	5	24	59	47	Topological Control	3	A
Total Number of Taxa	11	11	8	13	14	11 Mg	8	11	9

		Density (No. /mL)			iovolume (µm³/n	
	Ulu Lake	West Lake	Meadow Lake	Ulu Lake	West Lake	Meadow Lake
Taxonomic Group	30 July 97	2 August 97	31July 97	30 July 97	2 August 97	31July 97
PYRROPHYTA (Dinoflagellates)						
Glenodinium sp.	7	. 7	3	1731	2537	1666
Gumnotinium helveticum	P		1	P		40 204
Gymnodinium uberrimum	Р		P	P		. P
Peridinium aciculiferum	2		2	6870		4793
Unidentified cyst	P	Р	P	P	Р	P
Total Pyrrophyta	9	700	6	8601	2537	46 663
EUGELNOPHYTA						
		1	Р	1		Р
Euglena sp. Trachelomonas bacillifera		10	P	1		P
	-		P		1	F
Trachelomonas sp.	Р	TOTAL SECTION OF CONTRACTOR SECTION SE	The state of the s	P	EXCURSION ASSISTANCE ASSISTANCE	Mary September 1
Total Euglenophyta	BESTELL STOP	<b>多。但是一个人的</b>	Total marine for the same	SECRETARY OF SECRETARY	35% 经基础的	
CHLOROPHYTA (Green Algae)					1	
Ankistrodesmus convolutus	2		3	26		66
Ankistrodesmus falcatus		14	Р		261	P
Ankistrodesmus gelifactus	16	96	16	234	2500	454
Arthrodesmus angularis	Р			Р		
Carteria sp.		:	P			Р
Chlamydomonas sp	Р	124	5	Р	14 927	369
Coelastrum printzii		I.	P	! !		Р
Cosmarium sp.			P			P
Cosmarium sp.			P			P
Cosmarium impressulum			P			P
Cosmarium humile			P			Р
Crucigenia rectangularis			42			8526
Euastrum bidentatum			P			P
Eudorina elegans			P			P
Monoraphidium sp.	5		'	28		'
Nephrocytium limneticum	P			20 P		
Oocystis elliptica	13	7	2	7193	5005	918
	13	'	152	7193	5005	19 923
Oocystis pusilla Pediastrum tetras	41		P .	3308		19 923 P
	41 P		3	9306 P		
Scenedesmus bijuga		24		-	0074	76
Sphaerocystis schroeteri	26	34	31	5423	8671	11 954
Staurastrum sp.	_		Р	0.45	450-	Р
Teilingia granulata	5	14		815	1527	
Tetraedron minimum	20	Р	2	831	Р	69
Tetraedron triangulare	Р		P	Р		P
Westella linearis  Total Chlorophyta	128	289	31 287	17 859	32 891	12 176 54 531
	promise to the management		No. of the second second		West Market State Pelifer	
CYANOPHYTA (Cyanobacteria)	050	4704	40	2010	0504	0.4
Anacystis montana	252	1784	46	3212	9524	34
Aphanizomenon flos-aquae	P			P		
Aphanothece clathrata	932		i	3392		
Dactylococcopsis linearis	Р			Ρ.		
Dicothrix orsiniana	P		26	P		214
Gomphosphaeria lacustris	P			Р		
Microcystis flos-aquae			157			19 626
Oscillatoria limnetica	P			Р		
otal Cyanophyta	1184	1784	229	6604	9524	20 874
otal Algal Density per Sample (No./mL)	3445	4137	829			
otal Algal Biovolume per Sample (µm³/m³)	2000年	· 外方数。		892 971	1 014 328	263 767
otal Number of Taxa per Sample	53	30	61		A STATE OF THE STA	

¹P=present, but not encountered in routine cell counts.

Appendix D3 Density and biomass of zooplankton collected from sampled lakes during summer, Ulu Exploration Area 1997.

Taxonomic Group		Density (No./m³)			Biomass (µg/m³)	
	Ulu Lake	Meadow Lake	West Lake	Ulu Lake	Meadow Lake	West Lake
	30 July 97	31 July 97	2 August 97	30 July 97	31 July 97	2 August 97
CALANOIDA		,		:		
Heterocope sp.	95	P1	. Р	8,387	P	Р
Leptodiaptomus sicilis	10,009	1,205	8,284	124,031	9,568	137,858
copepodids	142	P	136	541	P	517
nauplii			5,089			1,098
CYCLOPOIDA						
Cryptocyclops bicolor			P			Р
Cyclops scutifer	6,072		313	71,730		4,123
Ectocyclops phaleratus		573	109		3,303	612
copepodids	2,562	134,157	136	9,817	24,737	269
nauplii	674,333		308,721	83,035		56,924
CLADOCERA	1	:				
Daphnia middendorffiana	95	1,175		5,684	62,412	
Daphnia schoderi				P	1	
Eubosmina sp.	P			Р	i i	
Holopedium sp.	3,321			5,397,449		
ROTIFERA						
Conochilus unicornis	106,474	63,884		9,408	5,645	
Euchlanis diliata	4,436			366		
Keratella cochlearis	22,182	25,554	189,982	1,830	2,109	15,677
Kellicottia longispina	204,074	57,496	71,243	18,184	5,123	6,348
Lecane luna		6,388			396	
Lepadella patella			1,696			74
Polyarthra delichoptera	31,055			2,299		
Syncheata sp.	8,873	The second secon		732	1	
Total Density and Biomass	1,073,722	290,432	585,710	5,733,491	113,292	223,498

P=Present, but not encountered in routine cell counts.

Appendix D1 Summary of phytoplankton, zooplankton, and benthic macroinvertebrate collection data from sampled lakes during summer, Ulu Exploration Area 1997.

			Zoo	Zooplankton				Phytop	<b>Phytoplankton</b>		ă	Benthos	
Lake	Date	UTM No. of Area Coordinates Replicates Sampled	No. of Replicates	Area Sampled	Secchi Disk Depth	Haul Depth	Volume Filtered	No. Hauls	Haul	Haul Volume No. Haul UTM Sample No. of Depth Filtered Hauls Depth Coordinates Depth Replicates	Sample Depth	Sample No. of Depth Replicates	Substrate Composition
				(m²)	(m)	<u>E</u>	(m ₃ )		(m)		(E)		
₽	30 Jul 97	Ulu 30 Jul 97 12W 052069	ო	0.014	6.5	9.0	0.378	S	9.0	9.0 12W 0502263	4.0	က	silt/clay
wope	31 Jul 97	7421575 Meadow 31 Jul 97 12W 0503571	ო	0.014	3.0	2.5	0.105	2	2.5	7420995 12W 0503571	3.2	က	silt/clay
est	2 Aug 97	7421413 West 2 Aug 97 12W 0500680 7420896	ო	0.014	10.1	12.0	12.0 0.504	S.	12.0	12.0 12W 0500681 7421033	5.5	က	silt/sand/gravel

Appendix D2 Density and biovolume of phytoplankton collected from sampled lakes during summer, Ulu Exploration Area 1997.

		Density (No. /mL			ovolume (µm³/	
	Ulu Lake	West Lake	Meadow Lake	Ulu Lake	West Lake	Meadow Lak
Taxonomic Group	30 July 97	2 August 97	31July 97	30 July 97	2 August 97	31July 97
BACILLARIOPHYTA (Diatoms)						
Achnanthes flexella		Р	2		Р	4040
Achnanthes minutissima	9	P	2	3442	P	504
Cyclotella bodanica	22	Р	_	112 273	P	;
Cyclotella giomerata	116	7	7	21 960	3543	1291
Eunotia sp.	110	•	P	21 300	, 5045	P
Eunotia arcus v.bidens			•		i	
Frustulia vulgaris	P		Р	P		P
Meridion circular		Р		-	Р	, <b>-</b>
		r	Р		F	P
Navicula cryptocephala	Р	P	P	Р	Р	P
Navicula sp.	P	P	P	P	P	; P
Navicula scandinavica	_		P	_		i P
Nitzschia filiformis	Р		_	Р		_
Nitzschia sp.			P			Р
Pinnularia sudetica			P			P
Pinnularia sp.	Р			Р		
Synedra sp.	2		3	975		1090
Synedra ulna			P			P
Tabellaria flocculosa	Р	Р	4	Р	Р	5026
otal Bacillariophyta	149	7	18	138 650	3543	11 951
CRYPTOPHYTA (Cryptomonads)						İ
Cryptomonas curvata	7		3	30 155		16 491
Cryptomonas ovata	2		1	4852		627
Cryptomonas reflexa	22	11	44	16 738	10 498	37 309
Katablepharis ovalis	P	62	24	70 730 P	6744	37 309
Rhodomonas minuta	48	69	52	7812	9005	8011
otal Cryptophyta	79	142	124	59 557	26 247	66 156
otal cryptopriyta	CALABO O CALBERT		1 APRIL 2 LA TANGGE 251	09 331	20 241	00 100
CHRYSOPHYTA (Golden-Brown Algae)						1
Bitrichia longispina			Ρ :			P
Chromulina sp.	P			P		
Chrysochromulina parva	177	992	9	5488	39 289	288
Chrysococcus sp.	Р	145		Р	66 527	
Chrysoikos skujai		Р			Р	
Chrysosphaerella rodhei	1561	248	100	51 6931	66 048	32 353
Chrysostephanosphaera globulifera			2			137
Dinobryon sertularia	54		12	45 317		10 457
Dinobryon sertularia v.protuberans	78	441	3	83 036	741 766	5436
Dinobryon sociale	P		1	Р		1,825
Dinobryon tabellariae	·	6	·	·	5911	1,020
Kephyrion boreale	Р	7	34	Р	1055	8378
Mallomonas sp.	2	,	3	3477	.000	4718
Ochromonas spa	P			P .		7710
	P	55	ļ.	P	15 932	
Ochromonas spb.	٠,	55	P	F	10 932	Р
Ophiocytium sp.	7	В	r	2405	P	P
Pseudokephyrion sp. Stichogloea doederleinii	7 17	P 14	Р.	2485 4965	3058	Р
	1/	14		AMNY	3058	P

^{*}P=present, but not encountered in routine cell counts.

# APPENDIX D AQUATIC INVERTEBRATE DATA



Calgary, AB Edmonton, AB Lethbridge, AB Langley, B.C. Winnipeg, MB

Phone (403) 291-2022 Phone (403) 438-5522 Phone (403) 329-9266 Phone (604) 530-4344 Phone (204) 982-8630 Fax (403) 291-2021 Fax (403) 434-8586 Fax (403) 327-8527 Fax (604) 534-9996 Fax (204) 275-6019

TO:

RL&L Environmental Services Ltd.

DATE SAMPLED: DATE RECEIVED: 1-Aug-97

ATTN:

Rick Pattenden

DATE RECEIVED:

7-Aug-97 14-Aug-97

LAB FILE#:

97-08-2769

Project: Project 570

Page 2

### **HYDROCARBON ASSESSMENT - WATER**

EDMONTON WO# 137101 LAB # CLIENT #	5 5 W5	6 6 W6	7 7 W7	Detection Limit
¹Non-Halogenated Aromatics:				
Benzene	< 0.001	<0.001	<0.001	0.001
Toluene	< 0.001	< 0.001	<0.001	0.001
Ethylbenzene	< 0.001	<0.001	<0.001	0.001
Total Xylenes (o, m & p)	<0.001	<0.001	<0.001	0.001
¹Total Purgeables (C5 - C10)	<0.01	<0.01	<0.01	0.01
² Total Extractables (C ₁₁ - C ₃₀ +)	<0.1	<0.1	<0.1	0.1

¹Assessment as per US EPA Method 8020

²Assessment as per Alta. Env. Method A108.0



13 AUG 97 13:42 DATE

3829 P.O. NO.

4 137101

W.O. NO. 7

PAGE

RL & L ENV. SERVICES 17312-106 AVENUE EDMONTON, AB T5S 1H9

RICK PATTENDEN PROJECT 570 01 08 97

#### WATER ANALYSIS REPORT

'note*

PH REPORTED AT ROOM TEMP

ELECTRICAL COND 'ELECTRICAL COND' (EC) is in microsiemens/cm and is a measure of solids in *note* solution

E.C. CORRECTED TO 25C

T ALKALINITY 'note*

'ALKALINITY' is CARBONATE/BICARBONATE expressed as CALCIUM CARBONATE

*note* HARDNESS

'HARDNESS' is calcium and magnesium expressed as CALCIUM CARBONATE

is expressed as nitrogen note* NO2&NO3-N



Langley, B.C.

Phone (403) 291-2022 Edmonton, AB Phone (403) 438-5522 Lethbridge, AB Phone (403) 329-9266 Phone (604) 530-4344 Winnipeg, MB Phone (204) 982-8630 Fax (403) 291-2021 Fax (403) 434-8586 Fax (403) 327-8527 Fax (604) 534-9996 Fax (204) 275-6019

TO:

RL&L Environmental Services Ltd.

DATE SAMPLED:

1-Aug-97

ATTN:

Rick Pattenden

DATE RECEIVED:

7-Aug-97

DATE REPORTED:

14-Aug-97

LAB FILE#:

97-08-2769

Project: Project 570

### **HYDROCARBON ASSESSMENT - WATER**

EDMONTON WO# 137101 LAB # CLIENT #	1 1 East L.	2 2 ULU L.	3 3 W3	4 4 W4	Detection Limit
¹Non-Halogenated Aromatics:					
Benzene	< 0.001	< 0.001	<0.001	<0.001	0.001
Toluene	< 0.001	<0.001	< 0.001	< 0.001	0.001
Ethylbenzene	< 0.001	<0.001	<0.001	<0.001	0.001
Total Xylenes (o, m & p)	<0.001	<0.001	<0.001	<0.001	0.001
¹Total Purgeables (C5 - C10)	<0.01	<0.01	<0.01	<0.01	0.01
² Total Extractables (C ₁₁ - C ₃₀ +)	<0.1	<0.1	<0.1	<0.1	0.1

R. Corbet, M.Sc., P. Ag. Manager - Organics

Results expressed in mg/L (ppm)

¹Assessment as per US EPA Method 8020

²Assessment as per Alta. Env. Method A108.0



EDMONTON CALGARY LANGLEY LETHBRIDGE WINNIPEG



DATE 13 AUG 97 13:42

P.O. NO.

3829

4 137101 W.O. NO.

5 PAGE

RL & L ENV. SERVICES 17312-106 AVENUE EDMONTON, AB

**RICK PATTENDEN** PROJECT 570 01 08 97

SAMPLE		7 <b>w</b> 7	
ROUTINE WATER			
PΗ		6.89	
ELECTRICAL COND	us/cm	16.0	
CALCIUM	mg/L	1.4	
MAGNESIUM	mg/L	0.5	
SODIUM	mg/L	0.9	
POTASSIUM	mg/L	0.69	
IRON	mg/L	<0.04	
MANGANESE	mg/L	<0.003	
SULPHATE	mg/L	1.4	
CHLORIDE	mg/L	0.5	
BICARBONATE	mg/L	9	
T ALKALINITY	mg/L	7	
HARDNESS	mg/L	5.6 10	
T DIS SOLIDS IONIC BALANCE	mg/L %	~87.1	
IONIC BALANCE	<b>o</b>		
WATER NUTRIENTS			
TOTAL KJEHL NIT	mg/L	<0.05	
AMMONIA-N	mg/L	<0.05	
NITRATE-N	mg/L	<0.05	
NITRITE-N	mg/L	<0.05	
PHOSPHORUS (TOT)	mg/L	0.18	
PHOSPHORUS, DISS	mg/L	0.12	
NO 2 & NO 3 - N	mg/L	<0.05	
ORGANICS			
OIL AND GREASE	mg/L	1	
TOT ORG CARBON	mg/L	2.2	
TOTAL, COLD VAPO			
MERCURY	mg/L	<0.0001	
TRACE ICP, TOTAL			
ALUMINUM	mg/L	0.018	-7
ANTIMONY	mg/L	<0.005	
ARSENIC	mg/L	<0.01	
BARIUM	mg/L	0.0017	



EDMONTON CALGARY LANGLEY LETHBRIDGE WINNIPEG

RL & L ENV. SERVICES

17312-106 AVENUE

EDMONTON, AB

T5S 1H9

SAMPLE

**RICK PATTENDEN** PROJECT 570 01 08 97

13 AUG 97 13:42 DATE

P.O. NO.

3829

4 137101 W.O. NO.

6 PAGE

WATER ANALYSIS REPORT

7

		<b>W</b> 7
TRACE ICP, TOTAL		
BERYLLIUM	mg/L	<0.0005
BISMUTH	mg/L	<0.003
BORON	mg/L	<0.007
CADMIUM	mg/L	<0.002
CALCIUM	mq/L	1.36
CHROMIUM	mg/L	<0.0008
COBALT	mg/L	<0.0007
COPPER	mg/L	0.001
IRON	mg/L	0.045
LEAD	mg/L	<0.002
LITHIUM	mg/L	0.00091
MANGANESE	mg/L	0.0020
MAGNESIUM	mg/L	0.596
MOLYBDENUM	mg/L	0.001
NICKEL	mq/L	<0.001
PHOSPHORUS	mg/L	0.010
POTASSIUM	mg/L	3.04
SELENIUM	mg/L	<0.003
SILICON	mg/L	0.191
SILVER	mg/L	<0.001
SODIUM	mg/L	0.422
STRONTIUM	mg/L	0.0038
SULPHUR	mg/L	0.477
THALLIUM	mg/L	<0.004
TIN	mq/L	<0.003
TITANIUM	mg/L	0.0007
VANADIUM	mg/L	<0.001
ZINC	mg/L	0.0112

Lab Manager:



3829 P.O. NO. 4 137101

13 AUG 97 13:42

3 PAGE

W.O. NO.

DATE

RL & L ENV. SERVICES 17312-106 AVENUE EDMONTON, AB T5S 1H9

**RICK PATTENDEN** PROJECT 570 01 08 97

68	ъ.	ж.	2.0	•	Ε	10	100	ы	и.	м	ж.	-	83	-	60	a.		600	ж.	200		9

SAMPLE		4	5	6
		w4	<b>w</b> 5	We
ROUTINE WATER				
Нq		6.84	6.84	6.90
ELECTRICAL COND	uS/cm	16.0	17.0	16.0
CALCIUM	mg/L	1.1	1.1	1.2
MAGNESIUM	mg/L	0.5	0.5	0.5
SODIUM	mg/L	0.7	0.6	<0.6
POTASSIUM	mg/L	<0.60	<0.60	<0.60
IRON	mg/L	<0.04	<0.04	<0.04
MANGANESE	mg/L	<0.003	<0.003	<0.003
SULPHATE	mg/L	1.1	1.2	1.3
CHLORIDE	mg/L	1.0	0.9	<0.5
BICARBONATE	mg/L	8	8	8
T ALKALINITY	mg/L	7	7	7
HARDNESS	mg/L	4.7	4.9	5.2
T DIS SOLIDS	mg/L	9	9	9
IONIC BALANCE	%	~76.0	~76.2	~81.5
WATER NUTRIENTS				
TOTAL KJEHL NIT	mg/L	<0.05	<0.05	<0.05
AMMONIA-N	mg/L	<0.05	<0.05	<0.05
NITRATE-N	mg/L	<0.05	<0.05	<0.05
NITRITE-N	mg/L	<0.05	<0.05	<0.05
PHOSPHORUS (TOT)	mg/L	0.18	0.19	0.16
PHOSPHORUS, DISS	mg/L	0.05	0.09	0.12
NO 2 & NO 3 - N	mg/L	<0.05	<0.05	<0.05
ORGANICS				
OIL AND GREASE	mg/L	2	<1	1
TOT ORG CARBON	mg/L	1.7	1.4	1.7
TOTAL, COLD VAPO				
MERCURY	mg/L	<0.0001	<0.0001	<0.0001
TRACE ICP, TOTAL				
ALUMINUM	mg/L	<0.008	<0.008	0.018
ANTIMONY	mg/L	<0.005	<0.005	<0.005
ARSENIC	mg/L	<0.01	<0.01	<0.01
BARIUM	mg/L	0.0009	0.0012	0.0016
		Lab Manager:		



CALGARY LANGLEY LETHBRIDGI WINNIPEG

RL & L ENV. SERVICES

17312-106 AVENUE

EDMONTON, AB

T5S 1H9

PH. (403) 438-5522 PH. (403) 291-2022 PH. (604) 530-4344 PH. (403) 329-9266 PH. (204) 982-8630 FAX (403) 438-039 FAX (403) 291-202 FAX (604) 534-999 FAX (403) 327-852 FAX (204) 275-601

RICK PATTENDEN PROJECT 570 01 08 97 DATE 13 AUG 97 13:42

P.O. NO.

3829

w.o. no. 4 137101

PAGE 4

# **WATER ANALYSIS REPORT**

SAMPLE		4	5	6
		w4	<b>W</b> 5	we
TRACE ICP, TOTAL				
BERYLLIUM	mg/L	<0.0005	<0.0005	<0.0005
BISMUTH	mg/L	<0.007	<0.007	<0.007
BORON	mg/L	0.003	0.002	0.002
CADMIUM	mg/L	<0.0005	<0.0005	<0.0005
CALCIUM	mg/L	1.21	1.25	1.34
CHROMIUM	mg/L	<0.0008	<0.0008	0.0008
COBALT	mg/L	<0.0007	<0.0007	<0.0007
COPPER	mg/L	<0.001	<0.001	0.002
IRON	mg/L	0.063	0.093	0.017
LEAD	mg/L	<0.002	<0.002	<0.002
LITHIUM	mg/L	0.00088	0.00099	0.00097
MANGANESE	mg/L	0.0031	0.0034	0.0016
MAGNESIUM	mg/L	0.549	0.589	0.574
MOLYBDENUM	mg/L	<0.001	0.001	0.001
NICKEL	mg/L	<0.001	<0.001	<0.001
PHOSPHORUS	mg/L	<0.006	<0.006	0.009
POTASSIUM	mg/L	<0.60	0.75	4.88
SELENIUM	mg/L	<0.003	<0.003	<0.003
SILICON	mg/L	0.162	0.179	0.193
SILVER	mg/L	<0.001	<0.001	<0.001
SODIUM	mg/L	0.521	0.556	0.377
STRONTIUM	mg/L	0.0036	0.0038	0.0038
SULPHUR	mg/L	0.364	0.454	0.460
THALLIUM	mg/L	<0.004	<0.004	<0.004
TIN	mg/L	<0.003	<0.003	<0.003
TITANIUM	mg/L	<0.0004	<0.0004	0.0006
VANADIUM	mg/L	<0.001	<0.001	<0.001
ZINC	mg/L	0.0017	0.0005	0.0120

Lab Manager:



EDMONTON CALGARY LANGLEY LETHBRIDGE WINNIPEG

DATE 13 AUG 97 13:42 3829

P.O. NO.

w.o. no. 4 137101

1 PAGE

RL & L ENV. SERVICES 17312-106 AVENUE EDMONTON, AB T5S 1H9

RICK PATTENDEN PROJECT 570 01 08 97

		EAST L.	ULU L.	w3
ROUTINE WATER				
рН		6.70	6.70	6.74
ELECTRICAL COND	uS/cm	606	42.0	39.0
CALCIUM	mg/L	20.0	2.5	2.4
MAGNESIUM	mg/L	6.4	1.1	1.2
SODIUM	mg/L	82.4	2.4	2.0
POTASSIUM	mg/L	2.86	<0.60	0.81
IRON	mg/L	<0.04	<0.04	0.10
MANGANESE	mg/L	0.049	0.004	<0.003
SULPHATE	mg/L	14.3	5.7	4.8
CHLORIDE	mg/L	139	5.2	4.2
BICARBONATE	mg/L	23	7	8
T ALKALINITY	mg/L	19	6	7
HARDNESS	mg/L	76.2	10.9	10.9
T DIS SOLIDS	mg/L	276	21	20
IONIC BALANCE	%	~105	~89.9	~92.2
WATER NUTRIENTS				
TOTAL KJEHL NIT	mg/L	2.95	<0.05	<0.05
AMMONIA-N	mg/L	3.88	<0.05	<0.05
NITRATE-N	mg/L	7.79	<0.05	<0.05
NITRITE-N	mg/L	0.08	<0.05	<0.05
PHOSPHORUS (TOT)	mg/L	0.07	0.24	0.22
PHOSPHORUS, DISS	mg/L	0.07	<0.05	0.05
NO 2 & NO 3 - N	mg/L	7.87	<0.05	<0.05
ORGANICS				
OIL AND GREASE	mg/L	<1	1	<1
TOT ORG CARBON	mg/L	6.8	1.5	1.8
TOTAL, COLD VAPO				
MERCURY	mg/L	<0.0001	<0.0001	<0.0001
FRACE ICP, TOTAL				
ALUMINUM	mg/L	0.023	0.023	0.031
ANTIMONY	mg/L	<0.005	<0.005	<0.005
ARSENIC	mg/L	<0.01	<0.01	<0.01
BARIUM	mg/L	0.0582	0.0043	0.0036
BERYLLIUM	mg/L	<0.0005	<0.0005	<0.0005



EDMONTON CALGARY LANGLEY LETHBRIDGE WINNIPEG

RL & L ENV. SERVICES 17312-106 AVENUE

EDMONTON, AB

T5S 1H9

PH. (403) 438-5522 PH. (403) 291-2022 PH. (604) 530-4344 PH. (403) 329-9266 PH. (204) 982-8630 FAX (403) 438-0396 FAX (403) 291-2021 FAX (604) 534-9996 FAX (403) 327-8527 FAX (204) 275-6019

RICK PATTENDEN PROJECT 570 01 08 97 DATE

13 AUG 97 13:42

P.O. NO.

3829

w.o. no. 4 137101

PAGE 2

# **WATER ANALYSIS REPORT**

SAMPLE		1	2	3
		EAST L.	ULU L.	. W3
TRACE ICP, TOTAL				
BISMUTH	mg/L	<0.007	<0.007	<0.007
BORON	mg/L	0.005	0.005	0.003
CADMIUM	mg/L	<0.0005	<0.0005	<0.0005
CALCIUM	mg/L	19.6	2.60	2.55
CHROMIUM	mg/L	<0.0008	<0.0008	<0.0008
COBALT	mg/L	0.0007	<0.0007	<0.0007
COPPER	mg/L	0.002	0.002	0.002
IRON	mg/L	0.039	0.037	0.123
LEAD	mg/L	<0.002	<0.002	<0.002
LITHIUM	mg/L	0.00130	0.00080	0.00116
MANGANESE	mg/L	0.0423	0.0058	0.0034
MAGNESIUM	mg/L	6.10	1.20	1.24
MOLYBDENUM	mg/L	0.002	<0.001	<0.001
NICKEL	mg/L	0.009	<0.001	<0.001
PHOSPHORUS	mg/L	0.024	<0.006	<0.006
POTASSIUM	mg/L	5.63	<0.60	<0.60
SELENIUM	mg/L	<0.003	<0.003	<0.003
SILICON	mg/L	0.673	0.417	0.286
SILVER	mg/L	<0.001	<0.001	<0.001
SODIUM	mg/L	71.8	2.00	1.66
STRONTIUM	mg/L	0.0556	0.0106	0.0093
SULPHUR	mg/L	4.84	2.13	1.85
THALLIUM	mg/L	<0.004	<0.004	<0.004
TIN	mg/L	<0.003	<0.003	<0.003
TITANIUM	mg/L	0.0018	<0.0004	0.0011
VANADIUM	mg/L	<0.001	0.001	<0.001
ZINC	mg/L	0.0120	0.0049	<0.0005

Lab Manager:

Damshus

Appendix C2A Summary of physical tests, dissolved anions, nutrients, and organic analyses of water samples collected during summer, Ulu Exploration Area 1997.

Variable and		W1	W2	W3	W4	WS	M6	٨٨
Detection Limits		(East Lake)	(Ulu Lake)	(Ulu Creek)	(Upst. Frayed Knots)	(Dwst. Frayed Knots)	(Upst. Hood)	(Dwst. Hood)
(mg/L unless otherwise stated)	ated)	1 August	1 August	1 August	1 August	1 August	1 August	1 August
Physical Tests								
Total Dissolved Solids	-	276	21	70	6	o	6	10
Hardness as CaCO3	0.1	76.2	10.9	10.9	4.7	6.4	5.2	5.6
На	0.1	6.7	6.7	6.74	6.84	6.84	6.9	6.89
Electrical Conductivity (uS/cm)	0.1	909	42	39	16	17	16	16
Ionic Balance (%)	(%)	~105	6.68~	~92.2	~76.0	~76.2	~81.5	~87.1
Dissolved Anions								
Total Alkalinity	_	19	9	7	7	7	7	7
Alkalinity - Bicarbonate	2	23	7	8	80	80	ω	o
Chloride	9.0	139	5.2	4.2	-	6.0	<0.5	0.5
Sulphate	0.3	14.3	5.7	4.8	77	1.2	1.3	1.4
Nutrients								
Ammonia Nitrogen	0.05	3.88	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Nitrate Nitrogen	0.05	7.79	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Nitrite Nitrogen	0.05	0.08	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Nitrite Nitrate Nitrogen	0.05	7.87	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Total Kjeldahl Nitrogen	0.05	2.95	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Total Phosphorus	0.05	0.07	0.24	0.22	0.18	0.19	0.16	0.18
Dissolved Phosphorus	0.05	0.07	<0.05	0.05	0.05	0.09	0.12	0.12
Organics								
Oil and Grease	-	₹	-	7	2	⊽	-	
Total Organic Carbon	0.5	6.8	1.5	1.8	1.7	41	17	2.2

Appendix C2B Total metals in water samples collected during summer, Ulu Exploration Area 1997.

Variabi	e and	W1	W2	W3	W4	W5	W6	W7
Detection	n Limits	(East Lake)	(Ulu Lake)	(Ulu Creek)	(Upst. Frayed Knots)	(Dwst. Frayed Knots)	(Upst. Hood)	(Dwst. Hood)
(mg	/L)	1 August	1 August	1 August	1 August	1 August	1 August	1 August
Numinum	0.008	0.023	0.023	0.031	<0.008	<0.008	0.018	0.018
ıntimony	0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005
Arsenic	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Barium	0.0002	0.0582	0.0043	0.0036	0.0009	0.0012	0.0016	0.0017
Beryllium	0.0005	<0.0005	<0.0005	<0.0005	< 0.0005	<0.0005	< 0.0005	< 0.0005
Bismuth	0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	< 0.007
3oron	0.002	0.005	0.005	0.003	0.003	0.002	0.002	<0.002
Cadmium	0.0005	<0.0005	< 0.0005	< 0.0005	<0.0005	<0.0005	< 0.0005	< 0.0005
Calcium	0.002	19.6	2.6	2.55	1.21	1.25	1.34	1.36
Calcium	0.1	20	2.5	2.4	1.1	1.1	1.2	1.4
Chromium	0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008	0.0008	<0.0008
Cobalt	0.0007	0.0007	<0.0007	< 0.0007	<0.0007	<0.0007	<0.0007	<0.0007
Copper	0.001	0.002	0.002	0.002	<0.001	<0.001	0.002	0.001
ron	0.003	0.039	0.037	0.123	0.063	0.093	0.017	0.045
ron	0.04	<0.04	<0.04	0.1	<0.04	<0.04	<0.04	<0.04
.ead	0.002	<0.002	<0.002	< 0.002	<0.002	<0.002	<0.002	<0.002
ithium	0.00006	0.0013	0.0008	0.00116	0.00088	0.00099	0.00097	0.00091
/lagnesium	0.1	6.4	1.1	1.2	0.5	0.5	0.5	0.5
/lagnesium	0.005	6.1	1.2	1.24	0.549	0.589	0.574	0.596
/langanese	0.0002	0.0423	0.0058	0.0034	0.0031	0.0034	0.0016	0.002
/langanese	0.003	0.049	0.004	<0.003	< 0.003	<0.003	<0.003	< 0.003
/fercury	0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	< 0.0001
Molybdenum	0.001	0.002	<0.001	<0.001	<0.001	0.001	0.001	0.001
tickel	0.001	0.009	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
hosphorus	0.006	0.024	<0.006	<0.006	<0.006	<0.006	0.009	0.01
otassium	0.6	2.86	<0.60	0.81	<0.60	<0.60	<0.60	0.69
otassium	0.6	5.63	<0.60	<0.60	<0.60	0.75	4.88	3.04
Selenium	0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	< 0.003
ilicon	0.004	0.673	0.417	0.286	0.162	0.179	0.193	0.191
Silver	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001
Sodium	0.004	71.8	2	1.66	0.521	0.556	0.377	0.422
Sodium	0.6	82.4	2.4	2	0.7	0.6	<0.6	0.9
Strontium	0.0001	0.0556	0.0106	0.0093	0.0036	0.0038	0.0038	0.0038
Sulphur	0.008	4.84	2.13	1.85	0.364	0.454	0.46	0.477
hallium	0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	< 0.004
ľin	0.003	<0.003	<0.003	< 0.003	< 0.003	<0.003	<0.003	< 0.003
litanıum	0.0004	0.0018	<0.0004	0.0011	< 0.0004	<0.0004	0.0006	0.0007
/anadium	0.001	<0.001	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Zinc	0.0005	0.012	0.0049	< 0.0005	0.0017	0.0005	0.012	0.0112

# APPENDIX C2 WATER CHEMISTRY DATA

Appendix C1 Temperature and dissolved oxygen profile data from sampled lakes, Ulu Exploration Area 1997.

	Ulu Lake		Mea
Denth	Temperature	Discolved	Donth
(a)	(30)		
ĺ	5	Cxygen (mg/L)	E)
0.0	13.6	10.5	0.0
1.0	13.6	10.4	0.5
2.0	13.5	10.5	1.0
3.0	13.5	10.4	1.5
4.0	13.5	10.5	2.0
5.0	13.5	10.5	2.5
6.0	13.5	10.4	3.0
2.0	13.4	10.5	Secchi Disk Reading
8.0	13.0	10.7	GPS Coordinates =
9.0	12.2	11.1	Conductivity = 20 µS
9.5	11.2	11.7	
Secchi Disk R	Secchi Disk Reading = 6.5 m		
GPS Coording	GPS Coordinates = 12W 0502069 7421575	39 7421575	
Conductivity = 20 µS/cm	= 20 µS/cm		

	31 July 97	
Depth	Temperature	Dissolved
Œ	(0,)	Oxygen (mg/L)
0.0	10.1	10.4
0.5	10.4	10.3
1.0	10.7	10.3
1.5	10.7	10.3
2.0	10.8	10.2
2.5	10.9	10.3
3.0	10.9	10.4
ecchi Disk Re	Secchi Disk Reading = 3.0 m	
PS Coordina	GPS Coordinates = 12W 0503571 7421413	71 7421413
Conductivity = 20 µS/cm	20 uS/cm	

		Dissolved	Oxygen	(mg/L)	10.6	10.7	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.7	12.7	12.9	12.8	12.8	12.6	12.4		7420896	
West Lake	2 August 97	Temperature	(°C)		12.9	12.8	12.7	12.6	12.5	12.2	12.1	12.0	11.9	11.1	8.6	8.9	8.3	8.0	7.9	7.8	ding = 10.1 m	s = 12W 0500680 7420896	90 uS/cm
		Depth	(m)		0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	9.5	10.0	10.5	11.0	12.0	12.5	Secchi Disk Reading = 10.1 m	<b>GPS</b> Coordinates	Conductivity = $190 \text{ uS/cm}$

Dissolved
Oxygen
(mg/L)
11.2
11.6
11.8
11.7
11.7
11.7
11.7
9.6
7.2
5.6

East Lake 31July 97 Temperature (°C)

THE PART OF THE	2 August 97			31July 97	
Depth	Temperature	Dissolved	Depth	Temperature	Dissolved
(m)	(°C)	Oxygen (mg/L)	(E)	(၁့)	Oxygen (ma/L)
0.0	12.9	10.6	0.0	10.8	11.2
1.0	12.8	10.7	1.0	10.8	11.6
2.0	12.7	10.8	2.0	10.7	11.8
3.0	12.6	10.8	3.0	10.6	11.7
4.0	12.5	10.8	4.0	10.3	11.6
5.0	12.2	10.8	4.5	8.0	11.7
0.9	12.1	10.8	5.0	6.4	9.6
7.0	12.0	10.8	5.5	5.9	7.2
8.0	11.9	10.8	0.9	5.3	5.6
9.0	11.1	10.7	6.5	6.4	4.0
9.5	8.6	12.7	Secchi Disk R	Secchi Disk Reading = 0.9 m	
10.0	8.9	12.9	GPS Coordina	GPS Coordinates = 12W 0502600 7421050	00 7421050
10.5	œ. 9.3	12.8	Conductivity = 280 µS/cm	280 µS/cm	
11.0	8.0	12.8			,
12.0	6.7	12.6			
12.5	7.8	12.4			
ecchi Disk R	cchi Disk Reading = 10.1 m				
>S Coordin≀	S Coordinates = 12W 0500680 7420896	80 7420896			
= dictivity	and notivity = 190 nS/cm				

Appendix C1 Concluded.

		-									-																	
,			Dissolved	Oxygen	(mg/L)	10.3	10.2	10.3	10.4	10.3	10.4	10.4	10.3	10.4	10.5	10.5	10.4	10.4	10.3	10.2		2 7414026						
South Reno Lake	Site 2	4 August 97	Temperature	(၁)		14.9	14.8	14.7	14.7	14.7	14.6	14.6	14.5	14.3	14.1	12.5	12.3	12.1	11.9	11.9	ading = 6.9 m	GPS Coordinates = 12W 0500962 7414026	10 uS/cm					
			Depth	(E)		0.0	1.0	5.0	3.0	0.4	5.0	0.9	7.0	8.0	0.6	10.0	11.0	12.0	13.0	13.5	Secchi Disk Reading = 6.9 m	GPS Coordinat	Conductivity = 10 µS/cm					
			Dissolved	Oxygen	(mg/L)	10.4	10.5	10.4	10.5	10.4	10.4	10.4	10.3	10.3	10.1		5 7412852											
South Reno Lake	Site 1	4 August 97	Temperature	(၃)		14.4	14.4	14.3	14.3	14.2	14.2	14.1	14.8	13.1	12.6	ading ≈ 7.5 m	GPS Coordinates = 12W 0501575 7412852	10 µS/cm										
			Depth	(E)		0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	0.6	Secchi Disk Reading = 7.5 m	GPS Coordinate	Conductivity = 10 µS/cm										
		8 4	Dissolved	Oxygen	(mg/L)	10.5	10.5	10.4	10.5	10.5	10.5	10.6	10.5	10.5	10.3	10.4	10.4	10.4	10.4	10.4	10.4	10.3	10.2	10.2	10.2		2 7414862	
North Reno Lake	1	3 August 97	Temperature	(၁)		13.7	13.6	13.5	13.5	13.4	13.3	12.5	12.0	11.8	11.7	11.6	11.5	11.5	4.11	11.4	11.3	11.3	11.2	11.2	11.2	ading = 4.8 m	GPS Coordinates = 12W 0502252 7414862	10 µS/cm
			Depth	(m)		0.0	1.0	2.0	3.0	4.0	5.0	0.9	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	18.5	Secchi Disk Reading = 4.8 m	GPS Coordinate	Conductivity = 10 µS/cm

# APPENDIX C1 OXYGEN AND TEMPERATURE PROFILES

# APPENDIX C LIMNOLOGY AND WATER QUALITY

Stream		Habitat Typ	e (%)	Substrate Type (%
Surveyed Length (m)	150	Pool	5	Organic
Temperature (oC)	6.0	Run	95	Silt
Conductivity (uS)	10.0	Flat		Sand
pН	7.4	Rf/Ra		Gravel
Colour	Clear	Dispersed		Cobble
Stage	High	Other		Boulder
Gradient (%)	1.0			Bedrock
Average Width (m)	4.0			, to the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of t
Average Depth (m)	1.00	Channel Ty	pe (%)	Bank Type (%)
Average Velocity (m)		Single		Defined
Discharge (cms)	1.12	Multiple		Illdefined
Photo Number	2.09	Dispersed		
1		Subsurface		

Stream Ba	nks	LUB	RUB
Slope (%)		1.0	1.0
Height (m)		0.2	0.2
Cover	Trees/shrubs		
(%)	Grass/forbs	100	100
	Rock		
	Exposed Soil		
Substrate	Organic	95	95
(%)	Silt		
	Sand		
	Gravel		
	Cobble		
	Boulder	5	5
	Bedrock		
Unstable B	lanks (%)	0	0

S	Sampling Techniques Numbers Recorded and Percent Compostion								
į	Method	Effort (s)	Species	YoY	Juvenile	Adult	Total	Percent	CPUE
	EF	230	Slimy sculpin				1	100	0.3

Summary of	ummary of Fork Length (mm) Information									
Specie	s	Average	Minimum	Maximum	Number					
Slimy scu	lpin	99.0	99	99	1					

### **Habitat Quality Rating**

Species	Spawning	Rearing	Feeding	Movement
Arctic grayling	2	2	2	2
Lake trout	0	1	0	0
Round whitefish	0	1	0	0

Area Ulu Explora	tion Area	Site	1							
Date 08/05/97	Waterl	body Frayed	Knot R		Reach	1				
Nad 27	Zor			East			Nor	th		
abitat Characteri							1101			
abitat Characten	Stics					ī				
Stream		Habitat Ty	pe (%)	Substrate	Type (%)	Str	eam Bank	<u>(\$</u>	LUB	RUI
Surveyed Length (m)		Pool		Organic		Slo	pe (%)			
Temperature (oC)		Run		Silt	50	Hei	ght (m)			
Conductivity (uS)		Flat	100	Sand		Cov	ver T	rees/shrul	os	
θ		Rf/Ra		Gravel		(%)	,	irass/forbs	10	10
Colour	Clear	Dispersed		Cobble			R	ock	10	10
Stage	Moderate	Other		Boulder	50		E	xposed So	oil	
Gradient (%)	1.0			Bedrock		Sut	ostrate C	Irganic		
Average Width (m)	40.0					(%		ilt	40	40
Average Depth (m)	1.50	Channel Ty	pe (%)	Bank Ty	/pe (%)			and	40	40
Average Velocity (m)		Single	100	Defined	100			iravel	-	-
Discharge (cms)		Multiple		Illdefined				obble		-
Photo Number		Dispersed				1 1	_	oulder	60	60
		Subsurface					_	edrock	- 00	- 00
	//////////////////////////////////////			1		J				-
sheries Resource	es					Uns	stable Bar	nks (%)	0	0
	ted to	fort (s)	Num	bers Record	ded and Pe YoY		postion		CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR	
Sampling Techniques	Eff	fort (s)		Species		rcent Com	postion	Total	Percent 69	
Sampling Techniques Method	Eff		Aı			rcent Com	postion Adult	Total	Percent	CPUE
Sampling Techniques Method	Eff		Sum	Species ctic grayling Lake trout mary of Fort Species	YoY k Length (r Avera	Juvenile  mm) Inform	postion Adult 9 4	Total 9 4	Percent 69 31	0.1 0.0
Sampling Techniques Method	Eff		Sum Ar	Species retic grayling Lake trout mary of Fort Species retic grayling	YoY k Length (r Avera	Juvenile mm) Informage Mi	Adult 9 4 enation inimum 348	Total 9 4 Maxim	Percent 69 31	0.1 0.0 0.0
Sampling Techniques Method	Eff		Sum Ar	Species ctic grayling Lake trout mary of Fort Species	YoY k Length (r Avera	Juvenile mm) Informage Mi	postion Adult 9 4	Total 9 4	Percent 69 31	CPUE 0.1 0.0
Sampling Techniques Method	Eff		Sum Ar	Species retic grayling Lake trout mary of Fort Species retic grayling	YoY  k Length (r  Avera  382. 453.	Juvenile  mm) Informage Mi 4	Adult 9 4 enation inimum 348	Total 9 4 Maxim	Percent 69 31	CPUE 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	Eff		Sum Ar	Species Tetic grayling Lake trout  mary of Fort Species Tetic grayling Lake trout  tat Quality R	YoY k Length (r Avera 382 453.	Juvenile  mm) Informage Mi 4	Adult 9 4  nation inimum 348 336	Total 9 4 Maxim 417 655	Percent 69 31	0.1 0.0 umber 7
Sampling Techniques Method	Eff		Sum Ar Habir	Species Tetic grayling Lake trout  mary of Fort Species Tetic grayling Lake trout  tat Quality R Species	YoY  k Length (r  Avera  382.  453.  ating  Spawn	Juvenile  mm) Informage Mi 4	postion Adult 9 4 nation inimum 348 336	Total 9 4 Maxim 417 655	Percent 69 31	CPUE 0.1 0.0 umber 7 4
Sampling Techniques Method	Eff		Sum Ar Habir	Species retic grayling Lake trout mary of For Species retic grayling Lake trout tat Quality R Species retic grayling	YoY  k Length (r  Avera  382. 453.  ating  Spawn	Juvenile  mm) Informage Mi 4	postion Adult 9 4 nation inimum 348 336	Total 9 4	Percent 69 31	CPUE 0.1 0.0 umber 7 4
Sampling Techniques Method	Eff		Sum Ar Habir	Species retic grayling Lake trout mary of For Species retic grayling Lake trout tat Quality R Species retic grayling	YoY  k Length (r  Avera  382. 453.  ating  Spawn	Juvenile  mm) Informage Mi 4	postion Adult 9 4 nation inimum 348 336	Total 9 4	Percent 69 31	CPUE 0.1 0.0 umber 7 4

Area Ulu Explora	tion Area	Site	2	2,000000 80						
Date 08/05/97	Water	body Frayed I	Cnot R		Reach	2				
Nad 27	Zor	ne 12V	٧	East	-		Nort	:h		
abitat Characteri	stics									
Stream		Habitat Ty	ne (%)	Substrate	Type (%)	Str	am Bank	e.	LUB	RU
Surveyed Length (m)		Pool	DC 1701	Organic	1 7 0 ( 70)	1 1 —	oe (%)	<u> </u>	LOD	7
Temperature (oC)		Run	40	Silt	20		ght (m)			
Conductivity (uS)		Flat	40	Sand	20					-
oH		Rf/Ra	60	Gravel	-	(%)	-	rees/shrub		-
Colour	Clear	Dispersed		Cobble		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	U	rass/forbs		10
Stage	Moderate	-		Boulder	80			ock	15	15
Gradient (%)	Woderate	Other		Bedrock	- 00		E	xposed Soi	11	
Average Width (m)	40.0			Deditork		1 1	strate O	rganiç		
Average Depth (m)	0.50	Channel Ty	ne (%)	Bank Ty	ne (%)	(%	) s	ilt	20	20
Average Velocity (m)	-		-	Defined			S	and		
Discharge (cms)		Single	100	Illdefined	100	<b>i</b> i	_	ravei		
Photo Number		Multiple Dispersed		ilidefined			-	obble		
noto Number		Subsurface					_	oulder	80	80
		Substitute					В	edrock		
						Uns	table Ban	ks (%)	0	0
			Manage	h D						
		fort (a)	Num	bers Record				Total	Descent	CDU
Method	Ef	fort (s)		Species	ed and Pe YoY	rcent Com Juvenile	Adult	Total	Percent	
	Ef	fort (s) 1800	Aı					Total 7	Percent 78 22	0.1 0.0
Method	Ef		Aı	Species ctic grayling			Adult 7	7	78	0.1
Method	Ef		Aı	Species rctic grayling Lake trout mary of Fork	YoY	Juvenile	Adult 7 2 ation	7 2	78 22	0.1
Method	Ef		Sum	Species retic grayling Lake trout mary of Fork Species	YoY  Length (r	Juvenile nm) Inform	Adult 7 2 ation nimum	7 2 Maximu	78 22	0.1 0.0
Method	Ef		Sum	Species rctic grayling Lake trout mary of Fork	YoY	Juvenile nm) Inform	Adult 7 2 ation	7 2	78 22	0.1
Method	Ef		Sum Ar	Species retic grayling Lake trout mary of Fork Species retic grayling	YoY  Length (r  Avera  350.	Juvenile nm) Inform	Adult 7 2 ation nimum	7 2 Maximu	78 22	0.1 0.0
	Ef		Sum Ar	Species retic grayling Lake trout mary of Fork Species retic grayling	YoY  Length (r  Avera  350.	Juvenile nm) Informage Mi	Adult 7 2 ation nimum 300	7 2 <b>Maximu</b> 402	78 22 m Nu	0.1 0.0 umber 4
Method	Ef		Sum Ar	Species retic grayling Lake trout mary of Fork Species retic grayling tat Quality Re	YoY  Length (r  Avera  350.  ating  Spawr	Juvenile nm) Informage Mi	Adult 7 2 ation nimum 300	7 2 Maximu 402	78 22 m Nu	0.1 0.0 umber 4
Method	Ef		Sum Ar Habi	Species retic grayling Lake trout mary of Fork Species retic grayling	YoY  Length (r  Avera  350.	Juvenile nm) Informage Mi	Adult 7 2 ation nimum 300	7 2 <b>Maximu</b> 402	78 22 m Nu	0.1 0.0 umber 4
Method	Ef		Sum Ar Habi	Species retic grayling Lake trout mary of Fork Species retic grayling tat Quality Re Species ctic grayling	YoY  Length (r  Avera  350.  ating  Spawn	Juvenile nm) Informage Mi	Adult 7 2 ation nimum 300 earing 1	Maximu 402	78 22 m Nu	0.1 0.0 umber 4
Method	Ef		Sum Ar Habi	Species retic grayling Lake trout mary of Fork Species retic grayling tat Quality Re Species ctic grayling	YoY  Length (r  Avera  350.  ating  Spawn	Juvenile nm) Informage Mi	Adult 7 2 ation nimum 300 earing 1	Maximu 402	78 22 m Nu	0.1 0.0 umber 4
Method AL	Ef		Sum Ar Habi	Species retic grayling Lake trout mary of Fork Species retic grayling tat Quality Re Species ctic grayling	YoY  Length (r  Avera  350.  ating  Spawn	Juvenile nm) Informage Mi	Adult 7 2 ation nimum 300 earing 1	Maximu 402	78 22 m Nu	0.1 0.0 umber 4
Method	Ef		Sum Ar Habi	Species retic grayling Lake trout mary of Fork Species retic grayling tat Quality Re Species ctic grayling	YoY  Length (r  Avera  350.  ating  Spawn	Juvenile nm) Informage Mi	Adult 7 2 ation nimum 300 earing 1	Maximu 402	78 22 m Nu	0.0 umber 4

Sampling Techniques		Numbers Recorded	d and Per	cent Comp	ostion			
Method	Effort (s)	Species	YoY	Juvenile	Adult	Total	Percent	CPUE
EF	158	None Captured						
		Summary of Fork L	ength (m	m) Inform	ation			
		Summary of Fork I Species	ength (m Averaç		ation nimum	Maxim	um N	lumber
						Maxim	um M	lumber
		Species				Maxim	um P	lumber
		Species	Averag			Maxim	um M	lumber
		Species None Measured	Averag	ge Mir		Maxim Feedir		lumber

Area	Ulu Exploration	on Area	Site	5					
Date	06/17/97	Waterbody	Ulu L Inlet	3	Reach				
Nad	27	Zone	12W	East	50	2093	North	7421057	

# **Habitat Characteristics**

<u>Stream</u>		Habitat Tyr	oe (%)	Substrate 1	ype (%)
Surveyed Length (m)	150	Pool		Organic	20
Temperature (oC)	4.5	Run		Silt	
Conductivity (uS)	240.0	Flat		Sand	
pН	7.1	Rf/Ra		Gravel	
Colour	Clear	Dispersed	100	Cobble	
Stage	Moderate	Other		Boulder	80
Gradient (%)	3.5			Bedrock	
Average Width (m)	30.0				
Average Depth (m)	0.10	Channel Ty	pe (%)	Bank Tyr	<u>e (%)</u>
Average Velocity (m)		Single		Defined	
Discharge (cms)		Multiple	20	Illdefined	100
Photo Number	2.06	Dispersed			
		Subsurface	80		

Stream Ba	nks	LUB	RUB
Slope (%)	ſ	0.1	0.1
Height (m)		0.2	0.2
Cover	Trees/shrubs	50	50
(%)	Grass/forbs		
	Rock	50	50
	Exposed Soil		
Substrate	Organic	50	50
(%)	Silt		
	Sand		
	Gravei		
	Cobble		
	Boulder	50	50
	Bedrock		
Unstable B	anks (%)	0	0

# **Fisheries Resources**

Sampling Techniques		Numbers Recorded	d and Per	cent Com	ostion				
Method	Effort (s)	Species	YoY	Juvenile	Adult	Total	Percent	CPUE	
Not Sampled		None Captured							
		Summary of Fork I	Length (m	m) Inform	ation				
		Species	Averag	Average Minimum		Maxim	um I	Number	
		None Measured							
		Habitat Quality Rat	ing						
		Species	Spawni	ng Re	earing	Feedi	ng M	ovemen	
		None Rated							

Method	Effort (s)	Species	YoY	Juvenile	Adult	Total	Percent	CPUE
EF	112	None Captured				1.000		

Summary of Fork Length (mm) Information

Species Average Minimum Maximum Number

None Measured

**Habitat Quality Rating** Species Spawning Rearing Feeding Movement Lake trout 0 1 0 0 Round whitefish 0 0 0 1 0 Arctic grayling 1 1 0

Stream		Habitat Typ	e (%)	Substrate Type (%)		
Surveyed Length (m)	149	Pool		Organic	0	
Temperature (oC)	7.0	Run	41	Silt	0	
Conductivity (uS)	10.0	Flat		Sand	1	
pН	8.0	Rf/Ra	36	Gravel	8	
Colour	Clear	Dispersed		Cobble	36	
Stage	High	Other	22	Boulder	38	
Gradient (%)	3.5	1		Bedrock	17	
Average Width (m)	21.6					
Average Depth (m)	0.33	Channel Typ	oe (%)	Bank Type (%)		
Average Velocity (m)	0.64	Single	75	Defined	68	
Discharge (cms)	1.82	Multiple	25	Illdefined	32	
Photo Number	1.25	Dispersed			0.0000	
		Subsurface				

Stream Ba	nks	LUB	RUB
Slope (%)	1	1.0	1.0
Height (m)		0.1	0.1
Cover	Trees/shrubs	20	10
(%)	Grass/forbs	75 -	80
	Rock	5	10
	Exposed Soil		
Substrate	Organic	70	70
(%)	Silt		
	Sand		
	Gravel		
	Cobble		
	Boulder	30	30
	Bedrock		
Unstable B	sanks (%)	0	0

Sampling Techniques		Numbers Recorded and Percent Compostion						
Method	Effort (s)	Species	YoY	Juvenile	Adult	Total	Percent	CPUE
EF	378	Slimy sculpin				4	100	0.6

	Summary of Fork	Length (mm) li	nformation		
	Species	Average	Minimum	Maximum	Number
1	Slimy sculpin	122.5	110	137	4

# **Habitat Quality Rating**

Species	Spawning	Rearing	Feeding	Movement
Lake trout	0	2	0	0
Round whitefish	0	2	0	0
Arctic grayling	3	3	2	1

Area	Ulu Explorati	ion Area	Site	1					
Date	07/29/97	Wate	rbody Ulu Cr			Reach 7			
Nad	27		ne 12V	V	East	504202	North	742145	9
	Characteris								
abitat	Characteris	tics				1		r, de adquisit de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitució	
Stream	-		Habitat Ty	pe (%)	Substrate	Type (%)	Stream Banks	LUB	RUI
Gurveye	d Length (m)		Pool		Organic		Slope (%)		
empera	ture (oC)		Run		Silt		Height (m)		
Conduct	ivity (uS)		Flat		Sand		Cover Trees/shrubs	60	60
Н		200	Rf/Ra	40	Gravel		(%) Grass/forbs		-
Colour	1	Clear	Dispersed	60	Cobble		Rock	40	40
Stage		Low	Other		Boulder	100	Exposed Soil		
Gradient	(%)	3.0			Bedrock		Substrate Organic		
Average	Width (m)	5.5					(%) Silt		
verage	Depth (m)	0.25	Channel Ty	pe (%)	Bank Ty	<u>rpe (%)</u>	Sand		
_	Velocity (m)		Single		Defined	60	Gravel		-
Discharg	e (cms)		Multiple	40	Illdefined	40	Cobble		
Photo Nu	umber	1.07	Dispersed	60			Boulder	100	100
			Subsurface			I	Bedrock	100	100
							Unstable Banks (%)	0	0
sheries	Resources	S							
ampling	Techniques			Num	bers Record	ded and Percent	Compostion		
	Method	E	ffort (s)		Species		renile Adult Total F	Percent	CPUE
	Not Sampled			No	ne Captured				
					mary of Fort Species ne Measured	k Length (mm) I Average	nformation Minimum Maximum	n Nu	mber
				No Habi	Species ne Measured tat Quality R Species	Average			mber
				No Habi	Species ne Measured	Average	Minimum Maximum		
ommer	nts			No Habi	Species ne Measured tat Quality R Species	Average	Minimum Maximum		

.

-

# Echo Bay Mines Ltd. - Ulu Exploration Area Stream Survey

Area	Ulu Exploration	on Area	Site	1					
Date	06/16/97	Waterbody	Ulu Cr		Reach	8			
Nad	27	Zone	12W	East	503	3050	North	7421350	

# **Habitat Characteristics**

Stream		Habitat Ty	oe (%)	Substrate 1	Гуре (%
Surveyed Length (m)	218	Pool		Organic	0
Temperature (oC)	5.5	Run		Silt	0
Conductivity (uS)	20.0	Flat		Sand	0
pН	8.6	Rf/Ra		Gravel	0
Colour	Clear	Dispersed	100	Cobble	0
Stage	High	Other		Boulder	100
Gradient (%)	3.0			Bedrock	0
Average Width (m)	66.4				
Average Depth (m)	0.37	Channel Ty	pe (%)	Bank Type (%)	
Average Velocity (m)	0.19	Single	100	Defined	
Discharge (cms)		Multiple		Illdefined	100
Photo Number	2.01	Dispersed			
		Subsurface			

Stream Ba	ink <u>s</u>	LUB	RUB
Slope (%)		2.0	2.0
Height (m)		0.3	0.4
Cover	Trees/shrubs	20	10
(%)	Grass/forbs	20	20
	Rock	60	70
	Exposed Soil		
Substrate	Organic	20	30
(%)	Silt		
	Sand		
	Gravei		
	Cobble		
	Boulder	80	70
	Bedrock		
Unstable B	Banks (%)	0	0

# **Fisheries Resources**

Sampling Techniques		Numbers Recorded and Percent Compostion						
Method	Effort (s)	Species	YoY	Juvenile	Adult	Total	Percent	CPUE
EF	1425	None Captured						

Summary of Fork L	ength (mm) l	<u>nformation</u>		
Species	Average	Minimum	Maximum	Number
None Measured				

# **Habitat Quality Rating**

Species	Spawning	Rearing	Feeding	Movement
Lake trout	0	1	0	0
Round whitefish	0	1	0	0

Area	Ulu Explora	tion Area	Site	1					-	
Date	07/29/97		body Ulu Cr			Reach 5				
	27	Zor		,	East	505551	North		742132	2
Nad			121		Last	303331	North	-	742132	.5
bitat	Characteri	stics								
tream			Habitat Typ	oe (%)	Substrate	Type (%)	Stream Banks	<u> </u>	LUB	RUE
urveye	d Length (m)		Pool		Organic		Slope (%)			
empera	ture (oC)		Run		Silt		Height (m)			
Conduct	ivity (uS)		Flat		Sand		Cover Tr	ees/shrubs	50	50
Н			Rf/Ra	60	Gravel		10()	ass/forbs		
Colour		Clear	Dispersed	40	Cobble		1	ck	50	50
Stage		Moderate	Other		Boulder	100	1	posed Soil		- 00
Gradient	(%)	4.0			Bedrock		1			-
verage	Width (m)	5.0					Substrate Or			
-	Depth (m)	0.20	Channel Ty	pe (%)	Bank T	ype (%)	5	1		
	Velocity (m)		Single		Defined	40	l .	nd .		
	e (cms)		_	60	Illdefined			avel		
·		1.05	Multiple	60	maermea	60	1	bble		
hoto Nu	umber	1.05	Dispersed	40		1	Во	ulder	100	100
			Subsurface			ŀ	Be	drock		
		*******************************					Unstable Bank	cs (%)	0	0
	Resource Techniques Method		fort (s)	Num	bers Recor	ded and Percen YoY Ju	t Compostion venile Adult	Total P	ercent	CPUE
ampling	g Techniques		fort (s)	No	Species one Captured	YoY Ju	venile Adult	Total P	ercent	CPUE
Sampling	Techniques Method		fort (s)	Sum No	mary of For Species ne Measured	YoY Juv	Information Minimum	Maximum	Nu	CPUE mber
ampling	Techniques Method		fort (s)	Sum No Habi	Species mary of For Species ne Measured tat Quality I	YoY Juv d rk Length (mm) Average	venile Adult		Nu	
Sampling	Techniques Method		fort (s)	Sum No Habi	mary of For Species ne Measured	YoY Juv	Information Minimum	Maximum	Nu	mber
ampling	Techniques Method		fort (s)	Sum No Habi	Species mary of For Species ne Measured tat Quality I	YoY Juv	Information Minimum	Maximum	Nu	mber
ampling	Method Not Sampled		fort (s)	Sum No Habi	Species mary of For Species ne Measured tat Quality I	YoY Juv	Information Minimum	Maximum	Nu	mber
ampling	Method Not Sampled		fort (s)	Sum No Habi	Species mary of For Species ne Measured tat Quality I	YoY Juv	Information Minimum	Maximum	Nu	mber
ampling	Method Not Sampled		fort (s)	Sum No Habi	Species mary of For Species ne Measured tat Quality I	YoY Juv	Information Minimum	Maximum	Nu	mber

Stream	Zo	rbody Ulu Cr								
abitat Characteris	Zo			R	Reach	6				
abitat Characteris	stics	one 12V	V	East	50515	53	North	1	742142	25
Stream	วเเบอ									
			10(1)	01						
Curround Lanath I		Habitat Ty	pe (%)	Substrate T	ype (%)	ı —	am Banks	i	LUB	RUI
Surveyed Length (m)		Pool		Organic			e (%)			
Temperature (oC)		Run		Silt		Heig	iht (m)			1
Conductivity (uS)		Flat	100	Sand		Cov	er Tre	ees/shrubs	S	
oH [		Rf/Ra		Gravel		(%)	Gr	ass/forbs	100	100
Colour	Clear	Dispersed		Cobble			Ro	ck		
Stage	Low	Other		Boulder		1	Ex	posed Soi	il	
Gradient (%)	1.0			Bedrock		Sub	strate Or	ganic		
Average Width (m)	25.0					(%)		-	100	100
Average Depth (m)	0.35	Channel Ty	pe (%)	Bank Typ	oe (%)		Sa	nd		-
Average Velocity (m)		Single	100	Defined	100		Gra	avel		
Discharge (cms)		Multiple		Illdefined			Co	bble		1
Photo Number	1.06	Dispersed					Po	ulder		
	1.00				- 1		DO	ulder		
L	1.00	Subsurface						drock		
		Subsurface	Num	bers Recorde	ed and Pero		Bertable Bank	drock	0	0
Sampling Techniques Method	s	Subsurface		Species	ed and Perc		Bertable Bank	drock		
Sampling Techniques	s					cent Comp	Becatable Bank	drock		
Sampling Techniques Method	s	ffort (s)	Sum	Species	YoY	cent Comp Juvenile m) Inform	Becable Bank	drock	Percent	
	s	ffort (s)	Sum No Habi	Species one Captured mary of Fork Species	YoY  Length (m	Juvenile Juvenile m) Informi	Becable Bank  Dostion Adult	drock (s (%)  Total	Percent  M Nu	CPUE

Area	Ulu Explorati	on Area	Site	1							
Date	07/29/97	Water	rbody Ulu Cr		R	each	4				
Nad	27	Zo	ne 12V	N	East	50624	10	Nort	th	74212	05
abitat	Characteris	tics									
Stream		1100	Habitat Ty	ne (%)	Substrate T	vne (%)	Stre	am Bank	•	LUB	RUI
	d Length (m)	200	Pool	<del>pc ( /o/</del>	Organic	0	1 —	e (%)	3	LOB	10
	ature (oC)	200	Run	75	Silt	51	. i	)e (%) jht (m)		0.2	0.2
	tivity (uS)		Flat	25	Sand	0					0.2
эоглаас эН	avity (do)		Rf/Ra		Gravel	31	(%)		rees/shrubs	-	100
Colour	1	Clear	Dispersed		Cobble	0	1 707		rass/forbs	100	100
Stage		Low	Other	Action ( )	Boulder	18			ock		-
Gradien	t (%)	1.0	1		Bedrock	0			kposed Soil		
	Width (m)	3.1							rganic		
-	Depth (m)	0.32	Channel Ty	/pe (%)	Bank Type	e (%)	(%)	0.		100	100
_	Velocity (m)	0.17	Single	100	Defined	100			and	-	
Dischar	ge (cms)		Multiple		Illdefined	, 55	ı	_	ravei		-
Photo N	umber	1.04	Dispersed					_	obble oulder		-
			Subsurface					_	edrock	-	-
		***			J						
sherie	s Resources						Uns	table Ban	ks (%)	0	0
	s Resources		#a+/a)	Num	bers Recorde		ent Comp	postion		A A A A A A A A A A A A A A A A A A A	
			ffort (s) 644	,	bers Recorde Species one Captured		evoce mayar			Percent	
	g Techniques Method			No.	Species	YoY	ent Comp Juvenile	oostion Adult		Percent	
	g Techniques Method			Sum No	Species one Captured mary of Fork Species	YoY Length (mr	ent Comp Juvenile n) Inform e Mii	Adult	Total	Percent n No	CPUE

# APPENDIX B2 ULU EXPLORATION AREA STREAM SURVEYS

	Echo B	ay M	ines Ltd.	Winter A	ccess R	oad Alignmo	ent Surv	ey	Projec	570
Area	Route 3		Crossing	118.2	Date	06/17/97	Nad	27	Zone	12W
Initial Su	rvey Completed in 1996	No					East		49970	5
Detailed	Survey Warranted	Yes					North		741066	8

# **Crossing Characteristics**

Stream Habitat		Habitat Typ	oe (%)	Substrate 1	ype (%
Surveyed Length (m)	131	Pool	6	Organic	7
Temperature (O C)	8.0	Run	84	Silt	14
Conductivity (uS	10.0	Flat		Sand	0
pH	7.5	Rf/Ra	10	Gravel	0
Colour	Clear	Dispersed		Cobble	0
Stage	High	Other		Boulder	72
Gradient (%)	2.5	7		Bedrock	0
Average Width (m)	1.7	1			
Average Depth (m)	0.47	Channel Ty	pe (%)	Bank Typ	oe (%)
Average Velocity (m)	0.28	Single	100	Defined	100
Discharge (cms)	0.09	Multiple	1.00000	Illdefined	
		·			
Photo Number	2.07	Dispersed			

Stream Ba	<u>nks</u>	LUB	RUB
Slope (%)		0.1	0.1
Height (m)		0.2	0.2
Cover	Trees/shrubs	80	80
(%)	Grass/forbs	20	20
	Rock		
	Exposed Soil		
Substrate	Organic	95	95
(%)	Silt		
	Sand		
	Gravel		
	Cobble		
	Boulder	5	5
	Bedrock		
Unstable B	anks (%)	0	0

# **Fisheries Resources**

ampling Techniques		Species Composti	on and Ab	<u>undance</u>				
Method	Effort (s)	Species	YoY .	Juvenile	Adult	Total	Percent	CPUE
EF	178	None Captured						
		Summary of Fork	Lenath (mn	n) informa	ntion			
		Species	Average	-	imum	Maximo	um N	lumber
		None Measured						
			2	-				
		Habitat Quality Rat			_			
		Species	ing of Stre		<u>ng</u> aring	Feedir	ng Ma	ovemeni
					_	Feedir 0	ng Mo	ovemeni 0
		Species	Spawnin		_		ng <b>M</b> o	ovement 0 0

ł			
l l			
1			
į.			
1			
F			
E .			
*			
Ĺ			
<b>[</b>			

Average Width (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Resources  Campling Techniques  Amount of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state o	A stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Ban	etailed Survey Warranted  Frossing Characterist  Stream Habitat  Surveyed Length (m)  Temperature (° C)  Conductivity ( uS  pH  Colour	Habitat Ty 150 Pool 8.0 Run 10.0 Flat	Organic Silt	Type (%)	Stream Ba Slope (%)	th .	741048	
Attailed Survey Warranted No North 7  Prossing Characteristics  Stream Habitat  Surveyed Length (m) 150 Pool Organic  Imperature P C S 8.0 Run Silt Slope (%)  Conductivity ( uS 10.0 Flat Sand Colour  Clear Dispersed Cobble Boulder  Stream Banks  Slope (%)  Height (m)  Cover Trees/shrubs  (%) Grass/forbs  Rock  Exposed Soil  Substrate Organic  (%) Silt  Substrate	A stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Banks (%)  Stream Ban	etailed Survey Warranted  Frossing Characterist  Stream Habitat  Surveyed Length (m)  Temperature (° C)  Conductivity ( uS  pH  Colour	Habitat Ty 150 Pool 8.0 Run 10.0 Flat	Organic Silt	Type (%)	Stream Ba			
Stream Habitat  Habitat Type (%) Substrate Type (%) Surveyed Length (m) Surveyed (m) Surveyed Length (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Surveyed (m) Su	Aracteristics  It Habitat Type (%) Substrate Type (%)  It Habitat Type (%) Substrate Type (%)  Organic  Slope (%)  Height (m)  Slope (%)  Height (m)  Cover Trees/shrubs  Rock  Exposed Soil  Substrate Organic  (%) Grass/forbs  Rock  Exposed Soil  Substrate Organic  (%) Silt  Sand  Gravel  Cover Trees/shrubs  Rock  Exposed Soil  Substrate Organic  (%) Silt  Sand  Gravel  Cobble  Soubsurface  Defined  Illdefined  Defined  Subsurface  Subsurface  Species Compostion and Abundance  Redrock  Unstable Banks (%)  Summary of Fork Length (mm) Information  Species Average Minimum Maximum Number  None Measured  Habitat Quality Rating of Stream Crossing  Species Spawning Rearing Feeding Movement	Stream Habitat Surveyed Length (m) Temperature (° C) Conductivity (uS pH Colour	Habitat Ty 150 Pool 8.0 Run 10.0 Flat	Organic Silt	Type (%)	Slope (%)	nks		
Stream Habitat    Habitat Type (%)   Substrate Type (%)   Slope (%)   Slope (%)	Stream Banks LUB RUE  Stream Banks LUB RUE  Stream Banks LUB RUE  Slope (%)  Height (m)  Cover Trees/shrubs  Rock Exposed Soil  Substrate Organic  (%) Grass/forbs Rock Exposed Soil  Substrate Organic  (%) Silt  Substrate Organic  (%) Silt  Substrate Organic  (%) Silt  Substrate Organic  (%) Silt  Sand  Gravel  Cover Trees/shrubs  Rock Exposed Soil  Substrate Organic  (%) Silt  Sand  Gravel  Cobble  Boulder  Substrate  Cobble  Boulder  Subsurface  Subsurface  Species Composition and Abundance  None Captured  Summary of Fork Length (mm) Information  Species Average Minimum Maximum Number  None Measured  Habitat Quality Rating of Stream Crossing  Species Spawning Rearing Feeding Movement	Stream Habitat  Surveyed Length (m)  Temperature (° C)  Conductivity ( uS  pH  Colour	Habitat Ty 150 Pool 8.0 Run 10.0 Flat	Organic Silt	Type (%)	Slope (%)	nk <u>s</u>	LUB	RUE
Temperature (**) Conductivity ( uS   10.0   Flat   Sand   Gravel   Cobble   Stage   Low   Other   Bedrock   Exposed Soil   Substrate   Organic   (%) Silt   Sand   Gravel   Cobble   Exposed Soil   Substrate   Organic   (%) Silt   Sand   Gravel   Cobble   Exposed Soil   Substrate   Organic   (%) Silt   Sand   Gravel   Cobble   Exposed Soil   Substrate   Organic   (%) Silt   Sand   Gravel   Cobble   Bank Type (%)   Silt   Sand   Gravel   Cobble   Boulder   Bedrock   Cobble   Boulder   Cobble   Boulder   Bedrock   Cobble   Boulder   Bedrock   Cobble   Boulder   Bedrock   Cobble   Boulder   Bedrock   Cobble   Boulder   Cobble   Boulder   Cobble   Boulder   Cobble   Boulder   Cobble   Boulder   Cobble    C C) 8.0 Run Silt Sand Cover Trees/shrubs Cover Trees/shrubs Rock Exposed Soil Substrate Organic (%) Silt Sand Gravel Cobble Exposed Soil Substrate Organic (%) Silt Sand Gravel Cobble Sounder Subsurface Subsurface Species Compostion and Abundance Species Average Minimum Maximum Number None Measured Species Spawning Rearing Feeding Movement	Temperature (° C) Conductivity ( uS pH Colour	8.0 Run 10.0 Flat	Silt					_	
Temperature (**) Conductivity ( uS   10.0   Flat   Sand   Gravel   Cobble   Stage   Low   Other   Bedrock   Exposed Soil   Substrate   Organic   (%) Silt   Sand   Gravel   Cobble   Exposed Soil   Substrate   Organic   (%) Silt   Sand   Gravel   Cobble   Exposed Soil   Substrate   Organic   (%) Silt   Sand   Gravel   Cobble   Exposed Soil   Substrate   Organic   (%) Silt   Sand   Gravel   Cobble   Bank Type (%)   Silt   Sand   Gravel   Cobble   Boulder   Bedrock   Cobble   Boulder   Cobble   Boulder   Bedrock   Cobble   Boulder   Bedrock   Cobble   Boulder   Bedrock   Cobble   Boulder   Bedrock   Cobble   Boulder   Cobble   Boulder   Cobble   Boulder   Cobble   Boulder   Cobble   Boulder   Cobble    C C) 8.0 Run Silt Sand Cover Trees/shrubs Cover Trees/shrubs Rock Exposed Soil Substrate Organic (%) Silt Sand Gravel Cobble Exposed Soil Substrate Organic (%) Silt Sand Gravel Cobble Sounder Subsurface Subsurface Species Compostion and Abundance Species Average Minimum Maximum Number None Measured Species Spawning Rearing Feeding Movement	Temperature (° C) Conductivity ( uS pH Colour	10.0 Flat							
Average Width (m) Average Depth (m) Average Pelocity (m) Discharge (cms) Photo Number    Sampling Techniques   Method   Effort (s)	7.8 Rf/Ra	pH Colour			-11	Height (m)			-
Acception of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the colour of the	7.8 Rf/Ra Clear Dispersed Cobble Boulder Bedrock Exposed Soil Substrate Organic (%) Silt Sand Gravel Cobble Boulder Bedrock Single Defined Gravel Cobble Boulder Bedrock Subsurface Subsurface Species Compostion and Abundance None Captured Subsurd Fork Length (mm) Information Species Average Minimum Maximum Number None Measured Species Spawning Rearing Feeding Movement	Colour	7.0	Sand		Cover	Trees/shruhs		
Colour Stage	Clear Dispersed Cobble Boulder Bedrock Substrate Organic (%) Silt Sand Gravel Cobble Boulder Cobble Boulder Subsurface Defined Cobble Boulder Cobble Boulder Cobble Boulder Bedrock Unstable Banks (%)  Subsurface Species Compostion and Abundance Species YoY Juvenile Adult Total Percent CPUE None Captured  Summary of Fork Length (mm) Information Species Average Minimum Maximum Number None Measured  Habitat Quality Rating of Stream Crossing Species Spawning Rearing Feeding Movement		7.8 Rt/Ra	Gravel					-
Stage Cradient (%)	Low Other Bedrock Bedrock Substrate Organic (%) Silt Sand Gravel Cobble Boulder Bedrock Unstable Banks (%)  Sources  Sources  Subsurface  Species Compostion and Abundance None Captured  Subsurface  Subsurface  Species None Captured  Subsurface  Species Average Minimum Maximum Number None Measured  Habitat Quality Rating of Stream Crossing Species Spawning Rearing Feeding Movement	Stage	Clear Dispersed	Cobble					
Bedrock Average Width (m) Average Depth (m) Average Velocity (m) Single Defined Discharge (cms) Average Cems Average Velocity (m) Single Defined Discharge (cms) Average Species Compostion and Abundance Bedrock Effort (s) EF  Species Compostion and Abundance Species YoY Juvenile Adult Total Per None Captured  Summary of Fork Length (mm) Information Species Average Minimum Maximum None Measured  Habitat Quality Rating of Stream Crossing Species Spawning Rearing Feeding	Bedrock  In (m) 0.40 Channel Type (%) Bank Type (%) Sity (m) Single Defined Gravel Cobble Boulder Bedrock Subsurface Subsurface  Species Compostion and Abundance None Captured  Summary of Fork Length (mm) Information Species Average Minimum Maximum Number  None Measured  Habitat Quality Rating of Stream Crossing Species Spawning Rearing Feeding Movement		Low Other	Boulder			-		-
Average Violtn (m) Average Depth (m) Average Velocity (m) Average Velocity (m) Discharge (cms) Average Velocity (m) Defined Bank Type (%) Silt Sand Gravel Cobble Boulder Bedrock Unstable Banks (%)  Sheries Resources  Sampling Techniques Method Effort (s) EF 79  Species Compostion and Abundance Species YoY Juvenile Adult Total Per None Captured  Summary of Fork Length (mm) Information Species Average Minimum Maximum None Measured  Habitat Quality Rating of Stream Crossing Species Spawning Rearing Feeding	An (m) 0.40 Channel Type (%) Bank Type (%) Silt Sand Gravel Cobble Boulder Bedrock Unstable Banks (%)  Sources  Species Compostion and Abundance Species YoY Juvenile Adult Total Percent CPUE None Captured  Summary of Fork Length (mm) Information Species Average Minimum Maximum Number None Measured  Habitat Quality Rating of Stream Crossing Species Spawning Rearing Feeding Movement	Gradient (%)		Bedrock		Substrata	•		-
Average Depth (m) Average Velocity (m) Average Velocity (m) Discharge (cms) Average Velocity (m) Discharge (cms) Average Velocity (m) Discharge (cms) Average Velocity (m) Dispersed Subsurface  Subsurface  Species Compostion and Abundance Effort (s) EF T9  Species Compostion and Abundance None Captured  Subsurface  Species YoY Juvenile Adult Total Per None Captured  Summary of Fork Length (mm) Information Species Average Minimum Maximum None Measured  Habitat Quality Rating of Stream Crossing Species Spawning Rearing Feeding	Single Single Defined Gravel Cobble Boulder Bedrock Unstable Banks (%)  Sources  Single Subsurface Subsurface Species Compostion and Abundance None Captured  Summary of Fork Length (mm) Information Species Average Minimum Maximum Number None Measured  Habitat Quality Rating of Stream Crossing Species Spawning Rearing Feeding Movement	Average Width (m)	0.8						-
Average Velocity (m) Discharge (cms) Dispersed Subsurface Dispersed Subsurface Sempling Techniques EF F F F F F F Summary of Fork Length (mm) Information Species Average Minimum Maximum None Measured  Habitat Quality Rating of Stream Crossing Species Spawning Rearing Feeding	Single   Defined   Gravel   Cobble   Boulder   Bedrock   Unstable Banks (%)   Cobble   Boulder   Bedrock   Unstable Banks (%)   Cobble   Boulder   Bedrock   Unstable Banks (%)   Cobble   Boulder   Bedrock   Cobble   Cobble   Boulder   Bedrock   Cobble   Cob	Average Depth (m)	0.40 Channel Ty	rpe (%) Bank Ty	<u>/pe (%)</u>	,,,,,			
Discharge (cms) 0.00 Multiple 1.21 Dispersed Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface	Sources    Subsurface   Boulder   Bedrock   Unstable Banks (%)	Average Velocity (m)	Single	Defined					
Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsurface  Subsur	Sources  Species Compostion and Abundance hod Effort (s) F 79  Summary of Fork Length (mm) Information Species Average Minimum Maximum Number None Measured  Habitat Quality Rating of Stream Crossing Species Spawning Rearing Feeding Movement	Discharge (cms)	0.00	Illdefined					
Subsurface    Bedrock Unstable Banks (%)	Sources  Species Compostion and Abundance hod Effort (s) Species YoY Juvenile Adult Total Percent CPUE None Captured  Summary of Fork Length (mm) Information Species Average Minimum Maximum Number None Measured  Habitat Quality Rating of Stream Crossing Species Spawning Rearing Feeding Movement	Photo Number	1.21 Dispersed					-	
Sampling Techniques  Method Effort (s)  EF 79  Summary of Fork Length (mm) Information  Species Average Minimum Maximum  None Measured  Habitat Quality Rating of Stream Crossing  Species Spawning Rearing Feeding	Sources  Indiques Species Compostion and Abundance Hood Effort (s) Species YoY Juvenile Adult Total Percent CPUE  None Captured  Summary of Fork Length (mm) Information Species Average Minimum Maximum Number  None Measured  Habitat Quality Rating of Stream Crossing Species Spawning Rearing Feeding Movement		Subsurface		1				-
Sheries Resources  Sampling Techniques Method Effort (s) EF 79  Summary of Fork Length (mm) Information Species Average Minimum Maximum None Measured  Habitat Quality Rating of Stream Crossing Species Spawning Rearing Feeding	Species Compostion and Abundance hod Effort (s) Species YoY Juvenile Adult Total Percent CPUE None Captured  Summary of Fork Length (mm) Information Species Average Minimum Maximum Number None Measured  Habitat Quality Rating of Stream Crossing Species Spawning Rearing Feeding Movement				1	1			
Method Effort (s) Species YoY Juvenile Adult Total Per  FF 79 None Captured  Summary of Fork Length (mm) Information Species Average Minimum Maximum None Measured  Habitat Quality Rating of Stream Crossing Species Spawning Rearing Feeding	Species YoY Juvenile Adult Total Percent CPUE None Captured  Summary of Fork Length (mm) Information Species Average Minimum Maximum Number None Measured  Habitat Quality Rating of Stream Crossing Species Spawning Rearing Feeding Movement	sheries Resources		tore or the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the seco					The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
Summary of Fork Length (mm) Information Species Average Minimum Maximum None Measured  Habitat Quality Rating of Stream Crossing Species Spawning Rearing Feeding	Summary of Fork Length (mm) Information Species Average Minimum Maximum Number None Measured  Habitat Quality Rating of Stream Crossing Species Spawning Rearing Feeding Movement	Sampling Techniques							
Summary of Fork Length (mm) Information Species Average Minimum Maximum None Measured  Habitat Quality Rating of Stream Crossing Species Spawning Rearing Feeding	Summary of Fork Length (mm) Information  Species Average Minimum Maximum Number  None Measured  Habitat Quality Rating of Stream Crossing  Species Spawning Rearing Feeding Movement					Juvenile Adul	t Total P	ercent	CPUE
Species Average Minimum Maximum  None Measured  Habitat Quality Rating of Stream Crossing  Species Spawning Rearing Feeding	Species Average Minimum Maximum Number  None Measured  Habitat Quality Rating of Stream Crossing  Species Spawning Rearing Feeding Movement		10	None Captured					
Species Average Minimum Maximum  None Measured  Habitat Quality Rating of Stream Crossing  Species Spawning Rearing Feeding	Species Average Minimum Maximum Number  None Measured  Habitat Quality Rating of Stream Crossing  Species Spawning Rearing Feeding Movement			Cumman, of Far	l. l. a.s	m) Information			
None Measured  Habitat Quality Rating of Stream Crossing  Species Spawning Rearing Feeding	None Measured  Habitat Quality Rating of Stream Crossing  Species Spawning Rearing Feeding Movement						Marrimorro		
Habitat Quality Rating of Stream Crossing Species Spawning Rearing Feeding	Habitat Quality Rating of Stream Crossing Species Spawning Rearing Feeding Movement					e Minimum	Maximum	Nur	nber
Species Spawning Rearing Feeding	Species Spawning Rearing Feeding Movement			None Measured					
Proposed and Proposed to the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the C	Proposed to all the section of the contract of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the			Habitat Quality F	ating of Stre	am Crossing			
Arctic grayling 1 2 0	Arctic grayling 1 2 0 0			Species	Spawnin	g Rearing	Feeding	Move	ement
				Arctic grayling	1	2	0		0
				Species	Spawnin	g Rearing	F		

#### Echo Bay Mines Ltd. - Winter Access Road Alignment Survey Project 570 06/17/97 70.8 Date Nad 27 Area Route 2 Crossing Zone 12W Initial Survey Completed in 1996 No East 501018 **Detailed Survey Warranted** North 7404130 Yes

# **Crossing Characteristics**

Stream Habitat		Habitat Ty	pe (%)	Substrate 7	ype (%
Surveyed Length (m)	150	Pool		Organic	0
Temperature (° C)	9.5	Run		Silt	0
Conductivity ( uS	10.0	Flat		Sand	14
pН	7.4	Rf/Ra	100	Gravel	45
Colour	Clear	Dispersed		Cobble	38
Stage	High	Other		Boulder	3
Gradient (%)	5.0	1		Bedrock	0
Average Width (m)	2.2				
Average Depth (m)	0.09	Channel Ty	pe (%)	Bank Tyr	oe (%)
Average Velocity (m)	0.23	Single	100	Defined	100
Discharge (cms)	0.02	Multiple	1555.5	Illdefined	
Photo Number	2.08	Dispersed			
-		Subsurface			

Stream Ba	nks	LUB	RUB
Slope (%)	Ī	40.0	40.0
Height (m)		0.2	0.2
Cover	Trees/shrubs	70	70
(%)	Grass/forbs		
	Rock		
	Exposed Soil	30	30
Substrate	Organic	60	60
(%)	Silt		
	Sand	20	20
	Gravel	10	10
	Cobble	10	10
	Boulder		
	Bedrock		
Unstable E	Banks (%)	0	0

### **Fisheries Resources**

mpling Techniques		Species Composti	on and A	<u>bundance</u>				
Method	Effort (s)	Species	YoY	Juvenile	Adult	Total	Percer	t CPUE
EF	61	None Captured						
		Summary of Fork I	<u>ength (n</u> Avera		ation nimum	Maxim	um	Number
		None Measured		-0.0				
		None Measured  Habitat Quality Rat				Feedir	ng N	lovement
		None Measured	ing of Str Spawn		ing earing	Feedir 0	ng M	lovement

No. of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of		

Initial Survey Completed	d in 1996	Crossing	70.8			East			
Detailed Survey Warrant		No				Nort	h 🔚		
Crossing Character	istics				<del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del>				
Stream Habitat		Habitat Type (%	<u>%)</u> Substrate	Гуре (%)	Strea	m Ban	ıks	LUB	ı
Surveyed Length (m)		Pool	Organic		Slope	∍ (%)			
Temperature (° C)		Run	Silt		Heigl	ht (m)			
Conductivity ( uS		Flat	Sand		Cove	ır	Trees/shrubs		1
рН		Rf/Ra	Gravel		(%)		Grass/forbs		
Colour	Clear	Dispersed	Cobble				Rock		$\dagger$
Stage	Low	Other	Boulder				Exposed Soil		
Gradient (%)			Bedrock		Subs	trate	Organic		
Average Width (m)					(%)		Silt		-
Average Depth (m)		Channel Type (	%) Bank Ty	oe (%)			Sand		1
Average Velocity (m)		Single	Defined				Gravel		1
Discharge (cms)		Multiple	Illdefined				Cobble		
Photo Number		Dispersed					Boulder		
		Subsurface				ļ	Bedrock		
					Unst	able Ba	inks (%)		iΞ
Not Sampled			None Captured						
		<u>s</u>	ummary of Fork	Length (m					
		_	Species	Avera	ge Min	imum	Maximun	n Nu	ımb
		_	None Measured						
		н	abitat Quality Ra Species None Rated	ating of Str Spawn		ng aring	Feeding	Mov	/eme
					***				

Echo Bay Mines Ltd Winter Access Road Alignment Survey								ey	Projec	t 570	
Area	Route 2		Crossing	66.1	Date	06/17/97	Nad	27	Zone	12W	
Initial Sur	rvey Completed in 1996	No					East		502253	3	
Detailed S	Survey Warranted	No					North		740021	7	

# **Crossing Characteristics**

Stream Habitat	Habitat Typ	oe (%)	Substrate 1	ype (%	
Surveyed Length (m)	300	Pool		Organic	
Temperature (° C)	8.0	Run		Silt	
Conductivity (uS	10.0	Flat		Sand	
pН	7.5	Rf/Ra	100	Gravel	
Colour	Clear	Dispersed		Cobble	
Stage	Moderate	Other		Boulder	100
Gradient (%)	1.0			Bedrock	
Average Width (m)	80.0				
Average Depth (m)	0.25	Channel Ty	pe (%)	Bank Typ	e (%)
Average Velocity (m)		Single	100	Defined	
Discharge (cms)		Multiple		Illdefined	100
Photo Number	2.10	Dispersed			
		Subsurface			

Stream Ba	nk <u>s</u>	LUB	RUB
Slope (%)		1.0	1.0
Height (m)		0.2	0.2
Cover	Trees/shrubs	10	10
(%)	Grass/forbs	10	10
	Rock	80	80
	Exposed Soil		
Substrate	Organic	10	10
(%)	Silt		See - 1
	Sand		
	Gravel		
	Cobble		
	Boulder	90	90
	Bedrock		
Unstable E	lanks (%)	0	0

# **Fisheries Resources**

ampling Techniques		Species Composti	on and A	<u>bundance</u>				
Method	Effort (s)	Species	YoY	Juvenile	Adult	Total	Perce	nt CPUE
Not Sampled		None Captured	1					
		Summary of Fork						
		Species	Avera	ge Mir	nimum	Maxim	um	Number
		None Measured						
		Habitat Quality Rat				di		
		Habitat Quality Rat Species	Spawn		ing earing	Feedi	ng !	
		Habitat Quality Rat				Feedin 0	ng l	<b>M</b> ovement 0
		Habitat Quality Rat Species	Spawn				ng f	

^	_	m	m	^	n	ts
u	u	"	ш	e	п	LS

rea Rou	te 2	Crossi	ng	66.1	Date	08/01/9	7 Na	nd 27	Zone	12W
itial Survey Completed	d in 1996	No				The second	Ea	ıst	-	
etailed Survey Warrant		No						orth		
rossing Character										
Stream Habitat		Habitat Typ	e (%)	Substrate	Type (%	, T	Stream B	anks	LUB	RUE
Surveyed Length (m)		Pool		Organic	-	-) [	Slope (%)			1
Temperature (° C)	-273	Run		Silt		- 1	Height (m			
Conductivity ( uS		Flat		Sand		- 1	-			
pH		Rf/Ra		Gravel			Cover (%)	Trees/shrubs		
Colour	Clear	Dispersed		Cobble		-1 [	,,,,	Grass/forbs Rock		-
Stage	Low	Other		Boulder				Exposed Soil		-
Gradient (%)				Bedrock				•		
Average Width (m)					-		oubstrate (%)	Organic	-	-
Average Depth (m)		Channel Typ	e (%)	Bank Ty	<u>pe (%)</u>		( 70 )	Silt Sand		-
Average Velocity (m)		Single		Defined				Sand Gravel		-
Discharge (cms)		Multiple		Illdefined				Cobble		
Photo Number		Dispersed				-		Boulder		
_		Subsurface						Bedrock		
		-					l4-61-	Banks (%)		
Not Sampled			1901	ne Captured						
				mary of Fork						
				nary of Fork Species le Measured		(mm) Info	ormation Minimur	n Maximum	n Nu	mber
			Non Habita	Species	Ave	erage	Minimur			mber ement

	Echo B	ay M	ines Ltd	Winter A	Access R	oad Alignm	ent Surv	ey	Project	570
Area	Route 2		Crossing	64.8	Date	06/17/97	Nad	27	Zone	12W
Initial St	urvey Completed in 1996	No					East		502654	
Detailed	Survey Warranted	Yes					North		7399260	)

Stream Habitat		Habitat Typ	oe (%)	Substrate T	ype (9
Surveyed Length (m)	150	Pool		Organic	0
Temperature (° C)	7.5	Run	16	Silt	2
Conductivity (uS	10.0	Flat		Sand	0
pH	7.2	Rf/Ra	33	Gravel	10
Colour	Clear	Dispersed	51	Cobble	49
Stage	High	Other		Boulder	39
Gradient (%)	2.5	1		Bedrock	0
Average Width (m)	11.2	1			
Average Depth (m)	0.24	Channel Type	pe (%)	Bank Typ	e (%)
Average Velocity (m)	0.32	Single	100	Defined	29
Discharge (cms)	0.28	Multiple		Illdefined	71
Photo Number	2.11	Dispersed			
T.		Subsurface	- 5		

Stream Ba	nks	LUB	RUB
Slope (%)		1.0	1.0
Height (m)		0.2	0.2
Cover	Trees/shrubs	20	20
(%)	Grass/forbs	20	20
	Rock	60	60
	Exposed Soil		
Substrate	Organic	40	40
(%)	Silt		
	Sand	995 - F-400	
	Gravel		
	Cobble		
	Boulder	60	60
	Bedrock		
Unstable E	Banks (%)	0	0

#### **Fisheries Resources**

ampling Techniques		Species Composti	on and Ab	undance				
Method	Effort (s)	Species	YoY	Juvenile	Adult	Total	Percent	CPUE
EF	215	Lake trout			1	1	100	0.3
		Summary of Fork	Length (m		ation nimum	Maxim	um N	umber
		Lake trout	289.0		289	289		1
		Habitat Quality Rat				Feedir	ng Mo	vement
		Species	Spawnii		aring	Feedir	ng Mo	vement
						Feedir 0	ng Mo	vement 0 0

#### Comments

j	
ı	
ļ	
1	
- 1	

#### Echo Bay Mines Ltd. - Winter Access Road Alignment Survey Project 570 Crossing 64.8 Date 08/01/97 Nad 27 Zone 12W Route 2 Area Initial Survey Completed in 1996 No East 502670 7399049 **Detailed Survey Warranted** No North **Crossing Characteristics** Substrate Type (%) Stream Banks LUB RUB Stream Habitat Habitat Type (%) Surveyed Length (m) 150 Pool Organic Slope (%) Temperature ( 9.0 Run Silt Height (m) Conductivity (uS 20.0 Flat Sand Cover Trees/shrubs pН 7.8 Rf/Ra Gravel (%) Grass/forbs Cobble Colour Clear Dispersed Rock Boulder Stage Low Other **Exposed Soil** Gradient (%) **Bedrock** Substrate Organic Average Width (m) 11.0 (%) Silt Average Depth (m) 0.20 Channel Type (%) Bank Type (%) Sand Average Velocity (m) Defined Single Gravel Discharge (cms) 0.02 Multiple Illdefined Cobble Dispersed Photo Number 1.20 Boulder Subsurface **Bedrock** Unstable Banks (%) **Fisheries Resources Sampling Techniques Species Compostion and Abundance** Method Effort (s) **Species** YoY Juvenile Adult Total Percent **CPUE** EF 200 Lake trout 2 2 100 0.6 Summary of Fork Length (mm) Information Maximum Number **Species Average** Minimum 171.5 169 174 2 Lake trout **Habitat Quality Rating of Stream Crossing Spawning** Rearing Feeding Movement **Species** None Rated Comments

	Echo B	ay M	lines Ltd	Winter A	Access R	oad Alignm	ent Surv	ey	Projec	570
Area	Route 2		Crossing	58.8	Date	06/17/97	Nad	27	Zone	12W
Initial Surve	y Completed in 1996	No					East		503814	
Detailed Su	rvey Warranted	No			•		North		7393946	3

Stream Habitat		Habitat Typ	oe (%)	Substrate 7	Type (%
Surveyed Length (m)	200	Pool		Organic	
Temperature (° C)	8.0	Run		Silt	
Conductivity (uS	20.0	Flat		Sand	
pН	7.6	Rf/Ra		Gravel	
Colour	Clear	Dispersed	100	Cobble	1
Stage	Moderate	Other		Boulder	100
Gradient (%)	1.0			Bedrock	
Average Width (m)	65.0				
Average Depth (m)	0.20	Channel Ty	pe (%)	Bank Tyr	oe (%)
Average Velocity (m)		Single	100	Defined	
Discharge (cms)		Multiple		Illdefined	100
Photo Number	2.12	Dispersed			
		Subsurface			

Stream Ba	nks	LUB	RUB
Slope (%)		50.0	1.0
Height (m)		0.2	0.2
Cover	Trees/shrubs	20	
(%)	Grass/forbs	20	
	Rock	30	100
	Exposed Soil	30	
Substrate	Organic		
(%)	Silt		
	Sand		60
	Gravel		10
	Cobble		30
	Boulder	100	
	Bedrock		
Unstable B	Sanks (%)	0	0

#### **Fisheries Resources**

ampling Techniques		Species Composti	on and A	bundance				
Method	Effort (s)	Species	YoY	Juvenile	Adult	Total	Percent	CPUE
Not Sampled		None Captured						
		Summary of Fork	Length (n Avera		ation nimum	Maxim	um N	lumber
			Aveia	ge wii	milan	WIGAIIII	uiii i	dilloci
		Alana Managurand						
		None Measured						
		None Measured  Habitat Quality Rat  Species	ting of Str		ing earing	Feedi	ng Mo	ovemen
		Habitat Quality Rat				Feedii	ng Mo	ovemen 0

_					_
Co	m	m	ρ	n	ts

1	
1	
ł	
١	
I	
ı	
ı	
ı	
ı	
ł	
ł	
I	
I	
1	
ı	
I	
I	
ı	
ŧ	
₽	

rea Rou	ite 2	Cross	ing 58.8	Date 0	8/01/97	Nad	27 Zo	ne	12W
nitial Survey Completed	d in 1996	No				East			
etailed Survey Warran		No				North			
crossing Character	ISTICS								
Stream Habitat		Habitat Typ	e (%) Substrate	Type (%)	Stream	<u>Banks</u>	L	UB	RUE
Surveyed Length (m)		Pool	Organic		Slope (	%)		-	
Temperature (° C)		Run	Silt		Height	(m)			
Conductivity ( uS		Flat	Sand		Cover	Trees/s	shrubs		
pH		Rf/Ra	Gravel		(%)	Grass/f	forbs		
Colour	Clear	Dispersed	Cobble			Rock			
Stage	Low	Other	Boulder		1	Expose	ed Soil		
Gradient (%)			Bedrock		Substra	ate Organi			
Average Width (m)					(%)	Silt	_		
Average Depth (m)		Channel Type	be (%) Bank Ty	pe (%)		Sand		-	
Average Velocity (m)		Single	Defined			Gravel		-	
Discharge (cms)		Multiple	Illdefined			Cobble			
Photo Number		Dispersed				Boulde			
Ļ		Subsurface		1		Bedroc			
				1		Dearoc	K		
sheries Resources Sampling Techniques	<b>S</b>	o Andreas à Antres d'Arratte de Santociente	Species Compos	tion and Al	bundance	Talling to the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the sta	essa essa essa esta de la la la la la la la la la la la la la		~~~~~ <del>*</del>
Method	Eff	fort (s)	Species	YoY		dult To	tal Perc	ent (	CPUE
Not Sampled			None Captured				7		
			Summary of Fork	Length (m	ım) Informatio	<u>on</u>			
			Species	Length (m	<b>.</b>		ximum	Nun	nber
					<b>.</b>		ximum	Nun	nber
			Species	Averag	ge Minim	um Ma	eeding	Nun	

	Echo B	Bay M	lines Ltd	Winter A	Access R	oad Alignm	ent Surv	ey	Projec	ct 570
Area	Route 2		Crossing	56.1	Date	06/17/97	Nad	27	Zone	12W
Initial Surv	ey Completed in 1996	No					East		50383	9
Detailed St	urvey Warranted	Yes					North		739102	.6

Stream Habitat		Habitat Typ	e (%)	Substrate 1	Гуре (%
Surveyed Length (m)	153	Pool		Organic	0
Temperature (O C)	11.0	Run	54	Silt	0
Conductivity ( uS	20.0	Flat		Sand	6
pН	7.5	Rf/Ra	46	Gravel	27
Colour	Clear	Dispersed		Cobble	60
Stage	High	Other		Boulder	7
Gradient (%)	1.0	1		Bedrock	0
Average Width (m)	3.2				
Average Depth (m)	0.28	Channel Ty	pe (%)	Bank Typ	oe (%)
Average Velocity (m)	0.38	Single	100	Defined	100
Discharge (cms)	0.24	Multiple		Illdefined	
Discharge (onto)					

Stream Ba	nks	LUB	RUB
Slope (%)		1.0	1.0
Height (m)		0.2	0.2
Cover	Trees/shrubs		
(%)	Grass/forbs	95	95
	Rock	5	5
	Exposed Soil		
Substrate	Organic	90	90
(%)	Silt		
	Sand		
	Gravel		
	Cobble		
	Boulder	10	10
	Bedrock		
Unstable B	lanks (%)	0	0

#### Fisheries Resources

mpling Techniques		Species Composti	on and Ab	oundance				
Method	Effort (s)	Species	YoY	Juvenile	Adult	Total	Percen	t CPUE
EF	212	None Captured						1
		Summary of Fork	ength (m		ation nimum	Maximi	um	Number
			Averag	46 14111	minum	Maxilli		Number
		None Measured						
		Habitat Quality Rat Species	ing of Stre		ing earing	Feedir	ng M	lovemen
						Feedir 0	ng N	lovement 0
		Species	Spawni		aring	250	ng N	

_						
r	_	m	m	^	~	40
u	u	311	111	Œ		ĿЭ

F	
ı	
- 1	
- 1	
- 1	
- 1	
ı	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 8	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1-	

Surveyed Length (m) 150 Pool Organic Slope (%) Temperature (° C) 11.0 Run Silt Conductivity (uS 50.0 Flat Sand Flat Sand Colour Clear Dispersed Cobble Boulder Exposed Soil Substrate Organic (%) Silt Substrate Organic (%) Silt Sand Exposed Soil Substrate Organic (%) Silt Sand Gravel (%) Silt Sand Gravel (%) Silt Sand Gravel (%) Silt Sand Gravel (%) Silt Sand Gravel (%) Silt Sand Gravel (%) Silt Sand Gravel Cobble Boulder Bedrock Unstable Banks (%)  Photo Number 1.19 Dispersed Subsurface Species Compostion and Abundance	rea Rou	ite 2	Cros	sing	56.1	Date	08/01/	97	Nad	27	Zone	12V
Particled Survey Warranted No North 7390775  Prossing Characteristics  Stream Habitat	itial Survey Complete	d in 1996	No	1000					East		50397	2
Stream Habitat Stream Habitat Surveyed Length (m) 150 Pool Organic Imperature (P C) 11.0 Run Silt Conductivity (uS) 50.0 Flat Sand Height (m) Cover Trees/shrubs Cololur Clear Dispersed Cobble Radient (%) Grass/forbs Stream Habitat Sand Gravel Stream Habitat Substrate (res) Other Boulder Stream Habitat Silt Height (m) Cover Trees/shrubs (%) Grass/forbs Rock Exposed Soil Substrate Organic (%) Silt Substrate Organic (%) Silt Sand Gravel Other Boulder Sand Gravel Other Boulder Sand Gravel Other Single Defined Gravel Other Single Defined Gravel Other Subsurface Subsurface Subsurface Species Compostion and Abundance Species Average Minimum Maximum Number None Measured  Habitat Quality Rating of Stream Crossing Species Spawning Rearing Feeding Movement									North		73907	75
Surveyed Length (m) 150 Pool Organic Femerature (** C) 11.0 Run Silt Silt Height (m) Coorductivity (uS) 50.0 Flat Sand Gravel Clear Dispersed Cobble Boulder Bedrock Stage Low Other Boulder Bedrock Silt Silt Sand Gravel Cobble Single Defined Discharge (cms) O.01 Multiple Discharge (cms) O.01 Multiple Dispersed Subsurface Stage Silt Silt Sand Gravel Cobble Boulder Bedrock Subsurface Species YoY Juvenile Adult Total Percent CPUE None Captured Species Spawning Rearing Feeding Movement Reading Rearing Feeding Movement Reading Rearing Feeding Movement Reading Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Feeding Movement Rearing Fee	rossing Character	ristics										
Temperature (**) C   11.0   Run   Silt   Height (m)   Cover   Trees/shrubs   Grass/forbs   Rock   Stage   Low   Other   Boulder   Bedrock   Single   Defined   Gravel   Gravel   Gravel   Gravel   Single   Defined   Gravel   Gravel   Gravel   Gravel   Gravel   Grass/forbs   Gravel   Grave	Stream Habitat		Habitat Ty	pe (%)	Substrate	Type (%	6)	Strean	n Banks		LUB	RUI
Conductivity ( \( \alpha S \)  Solution  Stage  Colour  Clear Dispersed Cobble Boulder Bedrock  Average Width (m) Average Velocity (m) Single Dispersed Subsurface  Subsurface  Subsurface  Species Compostion and Abundance Bedrock  Species Average Minimum  Species Average Minimum  Maximum Number  None Measured  Cover Trees/shrubs Rock Exposed Soil Substrate Organic (%) Silt Sand Gravel Cobble Boulder Bedrock Unstable Banks (%)  Species Compostion and Abundance None Captured  Habitat Quality Rating of Stream Crossing Species Spawning Rearing Feeding Movement	Surveyed Length (m)	150	Pool		Organic			Slope	(%)			
Althologour Clear Dispersed Cobble Boulder Bedrock Exposed Soil Substrate Organic (%) Silt Sand Gravel (%) Single Defined Dispersed Cobble Boulder Bedrock Subsurface Subsurface Subsurface Species Compostion and Abundance Species Average Minimum Maximum Number None Measured Species Spawning Rearing Feeding Movement Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Space Spawning Rearing Feeding Movement Space Spawning Rearing Spawning Rearing Feeding Movement Space Spawning Rearing Feeding Movement Space Spawning Rearing Feeding Movement Space Spawning Rearing Feeding Movement Space Spawning Rearing Feeding Movement Space Spawning Rearing Feeding Movement Space Spawning Rearing Feeding Movement Space Spawning Rearing Feeding Movement Space Spawning Rearing Feeding Movement Space Spawning Rearing Feeding Movement Space Spawning Rearing Feeding Movement Space Spawning Rearing Feeding Movement Space Spawning Rearing Feeding Movement Space Spawning Rearing Feeding Movement Spawning Rearing Feeding Movement Space Spawning Rearing Feeding Movement Spawning Rear	emperature (° C)	11.0	Run		Silt			Height	(m)			
Colour Clear Dispersed Cobble Boulder Bedrock Substrate Organic (%) Silt Sand Gravel Cobble Boulder Bedrock Single Defined Gravel Cobble Boulder Bedrock Subsurface Subsurface Subsurface Species Compostion and Abundance Species YoY Juvenile Adult Total Percent CPUE Summary of Fork Length (mm) Information Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement None Measured Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Spaces Spawning Rearing Feeding Movement Spaces Spawning Rearing Feeding Movement Species Spawning Rearing Feeding Movement Spaces Spawning Rearing Species Spawning Rearing Feeding Movement Spaces Spawning Rearing Spaces Spawning Rearing Feeding Movement Spaces Spawning Rearing	Conductivity ( uS	50.0	Flat		Sand			Cover	Tre	ees/shrubs		
Stage	Н	8.0	Rf/Ra		Gravel			(%)	Gra	ass/forbs		
Bedrock Bedrock Substrate Organic (%) Silt Sand Gravel Cobble Boulder Bedrock Unstable Banks (%)  Single Defined Bank Type (%) Sand Gravel Cobble Boulder Bedrock Unstable Banks (%)  Sheries Resources  Sempling Techniques Method Effort (s)  EF 157  Species Compostion and Abundance Species YoY Juvenile Adult Total Percent CPUE  Summary of Fork Length (mm) Information Species Average Minimum Maximum Number None Measured  Habitat Quality Rating of Stream Crossing Species Spawning Rearing Feeding Movement	Colour	Clear	Dispersed		Cobble				Ro	ck		
Average Width (m) Average Poepth (m) Average Poepth (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity (m) Average Velocity	tage	Low	Other		Boulder				Ex	posed Soil		
Average Width (m) 2.5  Average Depth (m) 0.15  Channel Type (%) Bank Type (%)  Single Defined Gravel Cobble Boulder Bedrock Unstable Banks (%)  Sheries Resources  Sampling Techniques Method Effort (s) EF 157  Summary of Fork Length (mm) Information Species Average Minimum Maximum Number  None Measured  Habitat Quality Rating of Stream Crossing Species Spawning Rearing Feeding Movement	iradient (%)				Bedrock			Substr	ate Ord	nanic		
Average Depth (m) 0.15 Channel Type (%) Bank Type (%) Sand Gravel Cobble Boulder Bedrock Unstable Banks (%) Sheries Resources  Sampling Techniques FF 157  Species Compostion and Abundance Species YoY Juvenile Adult Total Percent CPUE FF 157  Summary of Fork Length (mm) Information Species Average Minimum Maximum Number None Measured  Habitat Quality Rating of Stream Crossing Species Spawning Rearing Feeding Movement	_	2.5					1 1			_		
Average Velocity (m)   Single   Defined   Gravel   Cobble   Boulder   Bedrock   Unstable Banks (%)   Sheries Resources  Sampling Techniques   Method   Effort (s)   Species   YoY   Juvenile   Adult   Total   Percent   CPUE    Summary of Fork Length (mm) Information   Species   Average   Minimum   Maximum   Number   None Measured    Habitat Quality Rating of Stream Crossing   Species   Spawning   Rearing   Feeding   Movement		0.15	Channel Ty	/pe (%)	Bank Ty	/pe (%)						
Discharge (cms) Photo Number  1.19 Dispersed Subsurface    Boulder Bedrock Unstable Banks (%)   Unstable Banks (%)   Sheries Resources   Species Compostion and Abundance			Single		Defined							
Sheries Resources  Sampling Techniques  Method Effort (s)  EF 157  Summary of Fork Length (mm) Information  Species Average Minimum Maximum Number  None Measured  Habitat Quality Rating of Stream Crossing  Species Spawning Rearing Feeding Movement	Discharge (cms)	0.01	Multiple	9	Illdefined							1
Sheries Resources  Sampling Techniques Method Effort (s) EF 157  Summary of Fork Length (mm) Information Species Average Minimum Maximum Number None Measured  Habitat Quality Rating of Stream Crossing Species Spawning Rearing Feeding Movement	hoto Number	1.19	Dispersed									-
Sheries Resources  Sampling Techniques Method Effort (s) EF 157  Summary of Fork Length (mm) Information Species Average Minimum Maximum Number None Measured  Habitat Quality Rating of Stream Crossing Species Spawning Rearing Feeding Movement			Subsurface									
Sampling Techniques  Method Effort (s)  EF 157  Species Compostion and Abundance Species YoY Juvenile Adult Total Percent CPUE  Summary of Fork Length (mm) Information Species Average Minimum Maximum Number  None Measured  Habitat Quality Rating of Stream Crossing Species Spawning Rearing Feeding Movement								Unetak	le Rank	s (%)		
None Measured  Habitat Quality Rating of Stream Crossing  Species Spawning Rearing Feeding Movement	Sampling Techniques Method	Eff		_	Species	Yo			Adult	Total F	Percent	CPUE
Habitat Quality Rating of Stream Crossing Species Spawning Rearing Feeding Movement	Sampling Techniques Method	Eff		N	Species one Captured	Yoʻ	Y Juve	enile A	<u>on</u>			
	Sampling Techniques Method	Eff		Sun	Species one Captured one Captured one Captured one Captured Species	Yo k Length	Y Juve	enile A	<u>on</u>			
	Sampling Techniques Method	Eff		Sun	Species one Captured onmary of Ford Species one Measured	k Lengti Av	Y Juve	formati Minin	<u>on</u> num	Maximun	n Ni	ımber
	Sampling Techniques Method	Eff		Sum No	Species  one Captured  mmary of Fort Species one Measured  itat Quality R Species	k Lengti Av	Y Juve	formati Minin	on num	Maximum	n Ni	ımber vemen

l

I,

	Echo B	ay M	lines Ltd	Winter A	Access R	oad Alignm	ent Surv	ey	Projec	ct 570	
Area	Route 2		Crossing	46.9	Date	06/18/97	Nad	27	Zone	12W	
Initial Survey	Completed in 1996	No					East		505419	9	
Detailed Surv	ey Warranted	Yes					North		738297	2	

Stream Habitat		Habitat Typ	oe (%)	Substrate 1	Гуре (%
Surveyed Length (m)	100	Pool		Organic	0
Temperature (° C)	6.0	Run		Silt	0
Conductivity (uS	20.0	Flat		Sand	0
pН	8.3	Rf/Ra		Gravel	0
Colour	Clear	Dispersed	100	Cobble	0
Stage	Moderate	Other		Boulder	100
Gradient (%)	1.0			Bedrock	0
Average Width (m)	66.3				
Average Depth (m)	0.24	Channel Ty	pe (%)	Bank Tyr	oe (%)
Average Velocity (m)	0.09	Single		Defined	
Discharge (cms)		Multiple		Illdefined	100
	2.14	Dispersed	100		
Photo Number	2.17				

Stream Ba	nk <u>s</u>	LUB	RUB
Slope (%)	1	2.0	1.0
Height (m)	1	0.2	0.2
Cover	Trees/shrubs		
(%)	Grass/forbs	50	60
	Rock	50	40
	Exposed Soil		
Substrate	Organic	50	60
(%)	Silt		
	Sand		
	Gravel		
	Cobble		
	Boulder	50	40
	Bedrock		
Unstable B	anks (%)	0	0

#### Fisheries Resources

Sampling Techniques		Species Composti	on and A	bundance				
Method	Effort (s)	Species	YoY	Juvenile	Adult	Total	Percent	CPUE
EF	179	None Captured						
		Summary of Fork I	Length (n Avera		ation nimum	Maxim	um N	lumber
			Aveia	ge Will	mmann	HIGANIII	um I	idii.bei
		NODE MESSIFER						
		None Measured						
		Habitat Quality Rat	ing of Str		ing earing	Feedi	ng Mo	ovemen
		Habitat Quality Rat				Feedi	ng Mo	ovemen
		Habitat Quality Rat	Spawn				ng Mo	

Co	m	m	6	n	te
v			c		LO

E CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTO		

rea Ro	ute 2	Crossi	ng 46.9	Date	08/01/97	Nad	27	Zone	12W
itial Survey Complete	d in 1996	No				East			
etailed Survey Warrar	nted	No				North			
rossing Characte									
Stream Habitat		Habitat Typ	e (%) Substrate	e Type (%	Stre	am Banks		LUB	RUE
Surveyed Length (m)		Pool	Organic	7-7-1	Slop	e (%)			
Temperature (° C)		Run	Silt		<b>⊣</b>   • •	ht (m)			
Conductivity ( uS		Flat	Sand		Cov		es/shrubs		
pН		Rf/Ra	Gravel		(%)		ss/forbs		
Colour	Clear	Dispersed	Cobble			Roc	_		
Stage	Low	Other	Boulder				osed Soil		
Gradient (%)			Bedrock				_		-
Average Width (m)					(%)	strate Org Silt			-
Average Depth (m)		Channel Typ	oe (%) Bank T	ype (%)	_     ''"'	San			
Average Velocity (m)		Single	Defined			. Gra	-		-
Discharge (cms)		Multiple	Illdefined		1 1	Cob			-
Photo Number		Dispersed			-[0]		lder		-
		Subsurface					rock		-
		ą.				able Banks			
								- 1	
Not Sampled			None Captured Summary of For	rk Length	(mm) informa	ation			
Not Gampled						ation nimum	Maximum	Nu	mber
Not Gampled			Summary of Fo	Ave			Maximum	Nu	mber
Not Gampled			Summary of Fo	Ave	erage Mir	nimum	<b>M</b> aximum  Feeding		mber vement

# Echo Bay Mines Ltd. - Winter Access Road Alignment Survey

	Echo Bay Mines Ltd Winter Access Road Alignment Survey								Project 570		
Area	Route 2		Crossing	45.3	Date	06/18/97	Nad	27	Zone	12W	
Initial S	urvey Completed in 1996	Yes					East		50481	4	
Detailed	d Survey Warranted	Yes					North		738130	6	

# **Crossing Characteristics**

Stream Habitat		Habitat Ty	oe (%)	Substrate 7	ype (%
Surveyed Length (m)	150	Pool		Organic	5
Temperature (° C)	5.0	Run		Silt	0
Conductivity (uS	20.0	Flat		Sand	0
pH	7.8	Rf/Ra		Gravel	0
Colour	Clear	Dispersed	100	Cobble	0
Stage	High	Other		Boulder	95
Gradient (%)	2.0	7		Bedrock	0
Average Width (m)	25.4				
Average Depth (m)	0.17	Channel Ty	pe (%)	Bank Type (%)	
Average Velocity (m)	0.16	Single		Defined	
Discharge (cms)		Multiple		Illdefined	100
		Dispersed	100		
Photo Number	2.15	Dioporoda			

Stream Ba	nks	LUB	RUB	
Slope (%)		1.0	2.0	
Height (m)		0.2	0.2	
Cover	Trees/shrubs	40	40	
(%)	Grass/forbs	20	20	
	Rock	40	40	
	Exposed Soil			
Substrate	Organic	50	50	
(%)	Silt			
	Sand			
	Gravel			
	Cobble			
	Boulder	50	50	
	Bedrock			
Unstable B	Banks (%)	0	0	

#### **Fisheries Resources**

Method	Effort (s)	Species	YoY .	Juvenile	Adult	Total	Percer	nt CPUE
EF	194	None Captured						i
		Summary of Fork	Length (mn	n) Inform	ation			
		Species	Average	o Mir	nimum	Maxim		Number
		opecies	,,,,,,,,	Ç 19111	miiuiii	WIGAIIII	um	Mailinei
		None Measured	, , , o , u g		imiuni	Maxiii	um	Number
		None Measured  Habitat Quality Rat	ing of Stre	am Crossi	ing			
		None Measured		am Crossi		Feedii 0		Movemen 0

Сი	 	-	- 4	

ı	
100	

ea Roi	ute 2	Crossii	ng	45.3	Date	08/01/9	97 Nad	27	Zone	12V
tial Survey Complete	d in 1996	Yes		1	-		Eas	t		
tailed Survey Warrar	ited	No					Nor	th		
rossing Characte										
Stream Habitat		Habitat Type	e (%)	Substrate	Type (%)	7 [	Stream Bar	nks	LUB	RUI
Surveyed Length (m)		Pool		Organic		-	Slope (%)			
emperature (° C)		Run		Silt	-		Height (m)			
Conductivity (uS		Flat		Sand		1 1	Cover	Trees/shrubs		
Н		Rf/Ra		Gravel		1 1	(%)	Grass/forbs		
Colour	Clear	Dispersed		Cobble				Rock		
Stage	Low	Other		Boulder				Exposed Soil		
Gradient (%)				Bedrock			Substrate	•		
Average Width (m)								Silt		
Average Depth (m)		Channel Typ	e (%)	Bank Ty	pe (%)			Sand		
Average Velocity (m)		Single		Defined				Gravel		
Discharge (cms)		Multiple		Illdefined				Cobble		-
Photo Number		Dispersed						Boulder		
		Subsurface						Bedrock		
							Unstable Ba	anks (%)		
			Sumr	mary of Fork	<u>Length</u>	(mm) Inf	ormation			
				Species	Ave	rage	Minimum	Maximum	Nu	mber
			Non	e Measured						
				at Quality R	ating of S Spaw		rossing Rearing	Feeding	Mov	ement
			_	one Rated						

	Echo B	ay M	lines Ltd.	Winter A	Access R	oad Alignm	ent Surv	ey	Projec	t 570	
Area	Route 2		Crossing	43.5	Date	06/18/97	Nad	27	Zone	12W	
Initial Su	rvey Completed in 1996	No					East		505153	3	
Detailed	Survey Warranted	Yes					North		737917	9	

Stream Habitat		Habitat Typ	oe (%)	Substrate 1	ype (%
Surveyed Length (m)	157	Pool	0	Organic	10
Temperature (O C)	12.0	Run	100	Silt	6
Conductivity ( uS	20.0	Flat		Sand	28
pH	7.3	Rf/Ra		Gravel	40
Colour	Clear	Dispersed		Cobble	0
Stage	High	Other		Boulder	16
Gradient (%)	1.0	1		Bedrock	0
Average Width (m)	1.0	1			
Average Depth (m)	0.15	Channel Ty	pe (%)	Bank Tyr	e (%)
Average Velocity (m)	0.16	Single	100	Defined	100
Discharge (cms)	0.01	Multiple		Illdefined	
	V4.01027	-			
Photo Number	2.16	Dispersed	in manual		

Stream Ba	nks	LUB	RUB
Slope (%)	[	1.0	2.0
Height (m)		0.2	0.2
Cover	Trees/shrubs		
(%)	Grass/forbs	100	100
	Rock		
	Exposed Soil		
Substrate	Organic	95	95
(%)	Silt		
	Sand		
	Gravel		
	Cobble		
	Boulder	5	5
	Bedrock		
Unstable B	anks (%)	0	0

#### Fisheries Resources

Method	Effort (s)	Species Compost Species		Juvenile	Adult	Total	Percen	t CPUE
EF	295	Burbot		2		2	100	0.4
		Summary of Fork Species	Length (mr Averag		ation	Maxim		Number
		Species	Averag	ie iviii	umum	Maxilli	um	Mumber
		Burbot	88.0		71	105		2
		Burbot	88.0		71	105		2
		Burbot  Habitat Quality Ra  Species				105		2 ovement
		Habitat Quality Ra	ting of Stre		ng			
		Habitat Quality Ra Species	ting of Stre Spawnir		ing earing	Feedir		ovemen

#### Comments

40.000 m	
I	

Crossing Characteristic  Stream Habitat  Surveyed Length (m)  Temperature (° C)  Conductivity ( uS pH  Colour  Stage  Gradient (%)  Average Width (m)	No  Habitat Type  Pool Run Flat Rf/Ra Dispersed	Organic Silt Sand Gravel	10(1)	L ees/shrubs	UB RU
etailed Survey Warranted  Prossing Characteristic  Stream Habitat  Surveyed Length (m)  Temperature (° C)  Conductivity ( uS  pH  Colour  Stage  Gradient (%)	No  Habitat Type  Pool Run Flat Rf/Ra Dispersed	Organic Silt Sand Gravel	Stream Banks Slope (%) Height (m) Cover Tre		UB RU
Crossing Characteristic  Stream Habitat  Surveyed Length (m) Temperature (° C) Conductivity ( uS pH Colour Cle Stage Gradient (%)	Pool Run Flat Rf/Ra Dispersed	Organic Silt Sand Gravel	Slope (%) Height (m) Cover Tro		UB RU
Stream Habitat  Surveyed Length (m)  Temperature (° C)  Conductivity ( uS  pH  Colour  Stage  Cradient (%)	Habitat Type   Pool   Run   Flat   Rf/Ra   Dispersed	Organic Silt Sand Gravel	Slope (%) Height (m) Cover Tro		UB RU
Surveyed Length (m) Temperature (° C) Conductivity ( uS pH Colour Stage Cradient (%)	Pool Run Flat Rf/Ra Dispersed	Organic Silt Sand Gravel	Slope (%) Height (m) Cover Tro		
Temperature (° C) Conductivity ( uS pH Colour Cle Stage Lor Gradient (%)	Run Flat Rf/Ra Dispersed	Silt Sand Gravel	Height (m)	ees/shrubs	
Conductivity ( uS pH Colour Cle Stage Logardient (%)	Flat Rf/Ra ar Dispersed	Sand Gravel	Cover Tre	ees/shrubs	
pH Colour Cle Stage Lor Gradient (%)	Rf/Ra ar Dispersed	Gravel	10(1)	es/shrubs	
Colour Cle Stage Lo Gradient (%)	ar Dispersed			/6	
Gradient (%)		Cobble	1 1	ass/forbs	
Gradient (%)	w Other	Boulder	Ro	posed Soil	
Average Width (m)		Bedrock	1 1		
Average vilatil (III)			Substrate Or (%)		
Average Depth (m)	Channel Type	(%) Bank Type (%)			
Average Velocity (m)	Single	Defined	Sa		
Discharge (cms)	Multiple	Illdefined		avel	
Photo Number	Dispersed		1 1	bble	
	Subsurface		] [	ulder drock	
			Unstable Bank		
isheries Resources					
Sampling Techniques		Species Compostion and A	Abundance		Principality action to the control
Method	Effort (s)	Species YoY	Juvenile Adult	Total Perce	ent CPUE
Not Sampled		None Captured			
	:	Summary of Fork Length (I		Maximum	Number
		None Measured	ige milliman	Maximum	Humber
	!	Habitat Quality Rating of St Species Spawr		Feeding	Movement
		None Rated			

	Echo B	Bay M	lines Ltd.	Winter A	Access R	oad Alignm	ent Surv	ey	Projec	570
Area	Route 2		Crossing	41.81	Date	06/19/97	Nad	27	Zone	12W
Initial Surv	ey Completed in 1996	No					East		50653	6
Detailed Su	urvey Warranted	Yes					North		737857	3

Stream Habitat		Habitat Typ	e (%)	Substrate 1	Type (%
Surveyed Length (m)	39	Pool		Organic	0
Temperature (° C)	5.0	Run		Silt	0
Conductivity (uS	30.0	Flat		Sand	0
pН	7.5	Rf/Ra	100	Gravel	0
Colour	Clear	Dispersed		Cobble	0
Stage	Moderate	Other		Boulder	100
Gradient (%)	1.5	-		Bedrock	0
Average Width (m)	4.4				
Average Depth (m)	0.10	Channel Type	oe (%)	Bank Tyr	oe (%)
Average Velocity (m)	0.08	Single	33	Defined	
Discharge (cms)	0.04	Multiple	67	Illdefined	100
Photo Number	3.18	Dispersed			
		Subsurface			

Stream Ba	nks	LUB	RUB
Slope (%)		1.0	1.0
Height (m)		0.2	0.2
Cover	Trees/shrubs		
(%)	Grass/forbs	50	50
	Rock	50	50
	Exposed Soil		
Substrate	Organic		
(%)	Silt		
	Sand		
	Gravel		
	Cobble		
	Boulder	100	100
	Bedrock		
Unstable E	Banks (%)	0	0

#### **Fisheries Resources**

npling Techniques		Species Composti	on and A	<u>bundance</u>				
Method	Effort (s)	Species	YoY	Juvenile	Adult	Total	Percer	t CPUE
Not Sampled		None Captured						
		Summary of Fork I						
		Species	Avera	ge Mir	nimum	Maxim	um	Number
		None Measured						
			ing of Str Spawni		ng aring	Feedii	ng N	lovement
		None Measured  Habitat Quality Rat				Feedii 0	ng N	lovement 0
		None Measured  Habitat Quality Rat  Species					ng M	

#### Comments

ternate cossing located upstream of proposed crossing.

strate Type (%) anic d vel ble lder rock ank Type (%) ned fined	(%)	Stream Slope (9 Height ( Cover (%)	%) Tree Gras Rocl Expo te Orga Silt Sano	osed Soil anic	LUB	RUB
anic  d vel ble lder rock  ank Type (%)		Stream Slope (9 Height ( Cover (%)	Banks %) (m) Tree Gras Rock Expo te Orga Silt Sanc Grav	ss/forbs k osed Soil anic	LUB	RUB
anic  d vel ble lder rock  ank Type (%)		Stream Slope (9 Height ( Cover (%)	Banks %) Tree Gras Rocl Expo te Orga Silt Sanc	ss/forbs k osed Soil anic	LUB	RUB
anic  d vel ble lder rock  ank Type (%)		Slope (9 Height ( Cover (%)	%) Tree Gras Rocl Expo te Orga Silt Sano	ss/forbs k osed Soil anic	LUB	RUB
anic  d vel ble lder rock  ank Type (%)		Slope (9 Height ( Cover (%)	%) Tree Gras Rocl Expo te Orga Silt Sano	ss/forbs k osed Soil anic	LUB	RUB
d vel ble ider rock ank Type (%)	1	Height (Cover (%)	(m) Tree Gras Rocl Expo te Orga Silt Sand	ss/forbs k osed Soil anic		
vel ble lder rock ank Type (%)	1	Cover (%) Substra	Tree Gras Rock Expo site Orga Silt Sand Grav	ss/forbs k osed Soil anic		
vel ble lder rock ank Type (%)	1	(%) Substra	Gras Rock Expo site Orga Silt Sand Grav	ss/forbs k osed Soil anic		
ble ilder rock ank Type (%)	1	(%) Substra	Gras Rock Expo site Orga Silt Sand Grav	ss/forbs k osed Soil anic		
ank Type (%)	)		Rock Expo ite Orga Silt Sand Grav	k osed Soil anic		
ank Type (%)	1		Expo ete Orga Silt Sano Grav	osed Soil anic		
ank Type (%)	)		ste Orga Silt Sand Grav	anic d		
ned			Silt Sand Grav	d		
ned	)	(70)	Sand Grav	_		
ned			Grav	_		
-				101		
Timed						
		i i	Cobl	-		
			Boul	1		
			Bedr	ock		
		Unstable	e Banks	(%)		
of Fork Lenat	ith (mm)	) Informatio	on.			
				Maximum	Nu	mber
asured		- 1				
		Ci				
ality Rating of	of Stream pawning		ng	Feeding	Mov	ement
ie p	es Y tured  f Fork Lenges A	es YoY Ji tured  f Fork Length (mm es Average	f Fork Length (mm) Informations Average Minim	es YoY Juvenile Adult tured  f Fork Length (mm) Information es Average Minimum	es YoY Juvenile Adult Total P tured  f Fork Length (mm) Information es Average Minimum Maximum	es YoY Juvenile Adult Total Percent tured  f Fork Length (mm) Information es Average Minimum Maximum Nu

ı,

#### Echo Bay Mines Ltd. - Winter Access Road Alignment Survey Project 570 Area Route 2 Crossing 41.8 Date 06/18/97 Nad 27 Zone 12W 506176 Initial Survey Completed in 1996 No East 7378165 **Detailed Survey Warranted** Yes North

#### **Crossing Characteristics**

Stream Habitat		Habitat Tyr	oe (%)	Substrate 1	ype (9
Surveyed Length (m)	217	Pool	3	Organic	0
Temperature (° C)	8.0	Run	68	Silt	0
Conductivity ( uS	20.0	Flat		Sand	34
pH	7.5	Rf/Ra	29	Gravel	46
Colour	Clear	Dispersed		Cobble	20
Stage	High	Other		Boulder	0
Gradient (%)	2.0			Bedrock	0
Average Width (m)	2.6				
Average Depth (m)	0.27	Channel Ty	pe (%)	Bank Tyr	oe (%)
Average Velocity (m)	0.34	Single	100	Defined	100
Discharge (cms)	0.08	Multiple		Illdefined	
Photo Number	2.17	Dispersed			
		Subsurface			

Stream Ba	nks	LUB	RUB
Slope (%)	1	3.0	3.0
Height (m)		0.3	0.4
Cover	Trees/shrubs		
(%)	Grass/forbs	100	100
	Rock		
	Exposed Soil		
Substrate	Organic	100	100
(%)	Silt		
	Sand		
	Gravel		
	Cobble		
	Boulder		
	Bedrock		
Unstable B	Banks (%)	0	0

#### **Fisheries Resources**

mpling Techniques		Species Composti	on and Ab	<u>oundance</u>				
Method	Effort (s)	Species	YoY	Juvenile	Adult	Total	Percent	CPUE
EF	273	Arctic grayling		7	3	10	100	2.2
		Summary of Fork I	_ength (m Averag		ation nimum	Maximi	ım İ	lumber
		Arctic grayling	176.8		149	239		6
		Habitat Quality Rat Species	ing of Stre Spawni		ing earing	Feedir	ng Ma	ovemen
		•	3		3	2		3
		Arctic grayling	0					
		Arctic grayling  Lake trout	0		1	0		2

### Comments

	Echo Bay Mines Ltd Winter Access Road Alignment Survey							Proje	ct 570	
Area	Route 2		Crossing	41.8	Date	08/01/97	Nad	27	Zone	12W
Initial Surv	vey Completed in 1996	No					East		50619	9
Detailed S	urvey Warranted	No					North		737797	4

Stream Habitat		Habitat Type (9	6) Substrate Type (9
Surveyed Length (m)	150	Pool	Organic
Temperature (P C)	10.0	Run	Silt
Conductivity ( uS	40.0	Flat	Sand
pH	8.2	Rf/Ra	Gravel
Colour	Clear	Dispersed	Cobble
Stage	Low	Other	Boulder
Gradient (%)			Bedrock
Average Width (m)	1.0		
Average Depth (m)	0.30	Channel Type (	%) Bank Type (%)
Average Velocity (m)		Single	Defined
Discharge (cms)	0.01	Multiple	Illdefined
Photo Number	1.16	Dispersed	
-	3 00 00 00 00 00 00 00 00 00 00 00 00 00	Subsurface	

Stream Ba	<u>nks</u>	LUB	RUB
Slope (%)			
Height (m)			
Cover	Trees/shrubs		
(%)	Grass/forbs	*	
	Rock		
	Exposed Soil		
Substrate	Organic		
(%)	Silt		
	Sand		
	Gravel		
	Cobble		
	Boulder		
	Bedrock		
Unstable B	anks (%)		

#### **Fisheries Resources**

Sampling Techniques	
Method	Effort (s)
EF	305

Species Composti	on and A	bundance				
Species	YoY	Juvenile	Adult	Total	Percent	CPUE
Lake trout		10		10	40	2.0
Slimy sculpin				4	16	0.8
Arctic grayling	8	3		11	44	2.2

#### Summary of Fork Length (mm) Information

Species	Average	Minimum	Maximum	Number	
Arctic grayling	84.6	84.6 27		7	
Lake trout	87.8	71	133	9	
Slimy sculpin	81.3	66	96	3	

#### **Habitat Quality Rating of Stream Crossing**

Species	Spawning	Rearing	Feeding	Movement
Arctic grayling	3	3	2	3
Lake trout	0	3	1	1

## Comments

_	
1	
ŧ	
į.	
ŀ	
1	
ı	
1	
1	
1	
1	
l.	
1	
1	
1	
1	
*******	

	Echo Bay Mines Ltd Winter Access Road Alignment Survey							Project 5		
Area	Route 2		Crossing	36.7	Date	06/18/97	Nad	27	Zone	12W
Initial Survey Completed in 1996 No		No					East		508025	5
Detailed Sur	vey Warranted	Yes					North		737443	1

Surveyed Length (m)	150	Pool		Organic	0
					0
Temperature (° C)	3.0	Run		Silt	-
Conductivity ( uS	10.0	Flat		Sand	0
pH	7.5	Rf/Ra		Gravel	0
Colour	Clear	Dispersed	100	Cobble	0
Stage	High	Other		Boulder	100
Gradient (%)	2.0	7		Bedrock	0
Average Width (m)	51.7				
Average Depth (m)	0.26	Channel Ty	pe (%)	Bank Typ	e (%)
Average Velocity (m)	0.36	Single	100	Defined	
Discharge (cms)	A1 - 1	Multiple		Illdefined	100
Photo Number	2.18	Dispersed			
		Subsurface			

Stream Ba	nks	LUB	RUB
Slope (%)		1.0	1.0
Height (m)	1	0.2	0.2
Cover	Trees/shrubs		
(%)	Grass/forbs		
	Rock	100	100
	Exposed Soil		
Substrate	Organic		
(%)	Silt		
	Sand		
	Gravel		
	Cobble	13 11-17-1	
	Boulder	100	100
	Bedrock		
Unstable E	Banks (%)	0	0

#### Fisheries Resources

oling Techniques		Species Composti	on and A	bundance					
Method	Effort (s)	Species	YoY	Juvenile	Adult	Total	Perc	cent	CPUE
Not Sampled		None Captured							
		Summary of Fork	Length (m						
		Species	Avera	ge Mii	nimum	Maxim	um	Nu	mber
		None Measured							
		Habitat Quality Rat							
		Habitat Quality Rat Species	Spawn		ing earing	Feedi	ng	Move	ement
		Habitat Quality Rat				Feedii 0	ng	Move	ement
		Habitat Quality Rat Species	Spawn				ng	Move	ement

<b>^</b> -				- 4 -
CO	m	m	er	nts

1			
1			
į.			
I			

	Zone	Nad 27	08/01/97 Na	Date (	36.7	Crossing		ıte 2	rea Rou
		East	E:	tenses iLa			No	d in 1996	itial Survey Completed
		North				1	No		etailed Survey Warrant
						18			rossing Character
RUB	LUB	am Banks	Stream B	Type (%)	%) Substrate	bitat Type	Hal		Stream Habitat
		e (%)	Slope (%		Organic		Pool		Surveyed Length (m)
			Height (m		Silt		Run		Temperature (° C)
$\neg \vdash \vdash$			Cover		Sand		Flat		Conductivity (uS
		Grass/forbs	(%)		Gravel	a	Rf/R		Н
		Rock			Cobble	ersed	Disp	Clear	Colour
	,ii	Exposed Soil			Boulder	er	Othe	Low	Stage
	,,,				Bedrock	L			Gradient (%)
_	-	strate Organic	Substrate (%)						Average Width (m)
		Sinc	(70)	pe (%)	%) Bank Ty	nnel Type	Cha		Average Depth (m)
	-	Sand	•		Defined	le	Sing		Average Velocity (m)
		Gravel			Illdefined		Mult		Discharge (cms)
-		Cobble				ersed	1		Photo Number
		Boulder			-	surface			
		Bedrock				-			
TO THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY OF THE SECOND PROPERTY	nnen en  naza nazanasan waka mamiki bid di 2000 a dalam ya e a mamasa e		morrowick-kooloo liinkiilaa bahali	ricus control con commo della que kide spontal.			S	sheries Resources	
					Species Compo				Sampling Techniques
t CPUE	Percent	Adult Total P	Juvenile Adu	YoY	Species None Captured	)	ort (s	Ŀπ	Method Not Sampled
		-41	······································	la I a a a Alb (sa					
Manne E	um Nu		mm) Information age Minimur	<u>k Lengtn (n</u> Avera	Species				
VIIMBER			ugo minimo		None Measured				
Number									
	na Mov			•	labitat Quality F				
ovement	ng Mov			ating of Str	Species				
	ng Mov			•					
	g Mov			•	Species			and the first	omments
	ng Mov			•	Species				
	ng Mov			•	Species	í			
	ng Mov			•	Species	, i			
	ng Mov			•	Species			West regarded and the second	omments RY
	ng M			•	Species				Comments

#### Echo Bay Mines Ltd. - Winter Access Road Alignment Survey Project 570 Route 1 Crossing 18.52 Date 06/19/97 Nad 27 Zone 12W Area 520950 Initial Survey Completed in 1996 No East 7363312 **Detailed Survey Warranted** North No **Crossing Characteristics** Stream Habitat Substrate Type (%) Stream Banks LUB RUB Habitat Type (%) Surveyed Length (m) Organic Slope (%) 7.0 150 Pool 1.0 Temperature (º Run Silt Height (m) 0.5 3.5 Conductivity (uS 40 Flat Sand Cover Trees/shrubs Rf/Ra 60 Gravel pΗ (%) Grass/forbs 50 100 Colour Clear Dispersed Cobble Rock 50 Stage High Other Boulder 100 **Exposed Soil** Gradient (%) 2.5 **Bedrock** Substrate Organic Average Width (m) 15.0 (%) Silt 40 100 Average Depth (m) 0.35 Channel Type (%) Bank Type (%) Sand Average Velocity (m) 100 Single 100 Defined Gravel Discharge (cms) Multiple Illdefined Cobble Photo Number Dispersed 3.15 Boulder 60 Subsurface **Bedrock** Unstable Banks (%) 0 0 **Fisheries Resources Species Compostion and Abundance** Sampling Techniques YoY Method Effort (s) **Species** Juvenile Adult Total Percent CPUE Not Sampled None Captured Summary of Fork Length (mm) Information Average Minimum Maximum **Species** Number None Measured **Habitat Quality Rating of Stream Crossing** Feeding Species Spawning Rearing Movement Arctic grayling 0 3 3 Comments Crossing location No. 3 (survey stakes present)

#### Echo Bay Mines Ltd. - Winter Access Road Alignment Survey Project 570 Route 1 Crossing 18.52 Date 08/01/97 Nad 27 12W Area Zone Initial Survey Completed in 1996 No East 521012 **Detailed Survey Warranted** No North 7363146 **Crossing Characteristics** Stream Banks RUB **Stream Habitat** Habitat Type (%) Substrate Type (%) LUB Surveyed Length (m) Pool Organic Slope (%) Temperature (P 10.5 Silt Run Height (m) Conductivity (uS 20.0 Flat Sand Trees/shrubs Cover рΗ 7.9 Rf/Ra Gravel (%) Grass/forbs Colour Clear Dispersed Cobble Rock Stage Other Boulder Low **Exposed Soil** Gradient (%) Bedrock Substrate Organic Average Width (m) 8.0 (%) Silt Average Depth (m) 0.40 Channel Type (%) Bank Type (%) Sand Average Velocity (m) Defined Single Gravel Discharge (cms) 0.00 Multiple Illdefined Cobble Photo Number 1.15 Dispersed Boulder Subsurface **Bedrock** Unstable Banks (%) **Fisheries Resources** Sampling Techniques **Species Compostion and Abundance** Method Effort (s) **Species** YoY Juvenile Adult Total Percent **CPUE** EF 255 40 40 Arctic grayling 100 9.4 Summary of Fork Length (mm) Information **Species Average** Minimum Maximum Number Arctic grayling 38.0 35 41 11 **Habitat Quality Rating of Stream Crossing Species** Spawning Rearing Feeding Movement Arctic grayling 1 2 2 Comments Crossing previously sampled on 19 June.

	Echo Bay Mines Ltd Winter Access Road Alignment Survey								Projec	ct 570
Area	Route 1		Crossing	18.5	Date	06/18/97	Nad	27	Zone	12W
Initial Surv	ey Completed in 1996	No					East		520599	9
Detailed S	urvey Warranted	Yes					North		736309	7

Stream Habitat		Habitat Typ	oe (%)	Substrate 7	ype (%
Surveyed Length (m)	250	Pool		Organic	
Temperature (° C)	10.1	Run		Silt	
Conductivity ( uS	10.0	Flat	80	Sand	100
pH	7.1	Rf/Ra	20	Gravel	
Colour	Brown	Dispersed		Cobble	
Stage	High	Other		Boulder	-
Gradient (%)	2.0	1		Bedrock	
Average Width (m)	25.0				
Average Depth (m)	2.00	Channel Ty	pe (%)	Bank Tyr	oe (%)
Average Velocity (m)		Single	100	Defined	100
Discharge (cms)	1.62	Multiple		Illdefined	
Photo Number	2.29	Dispersed			
1		Subsurface	-		

Stream Ba	nks	LUB	RUB
Slope (%)		2.0	4.0
Height (m)		1.2	1.5
Cover	Trees/shrubs	50	50
(%)	Grass/forbs	50	50
	Rock		
	Exposed Soil		
Substrate	Organic		
(%)	Silt	50	100
	Sand		
	Gravel		
	Cobble		
	Boulder	50	
	Bedrock		
Unstable B	lanks (%)	0	0

#### **Fisheries Resources**

npling Techniques		Species Composti	on and A	<u>bundance</u>				
Method	Effort (s)	Species	YoY	Juvenile	Adult	Total	Percer	nt CPUE
Not Sampled		None Captured						
		Summary of Fork	Length (n	nm) Inform	ation			
		Species	Аvега	ge Mi	nimum	Maxim	um	Number
		None Measured						
		Habitat Quality Rat						
			ting of Str Spawn		i <u>ng</u> earing	Feedi	ng N	<b>f</b> lovement
		Habitat Quality Rat				Feedi	ng N	Novement 3
		Habitat Quality Rat	Spawn				ng N	

#### Comments

Crossing location No	. 1 (survey stakes present)		

# Echo Bay Mines Ltd. - Winter Access Road Alignment Survey Project 570

				The second second					
Area Route 1	Cro	ssing	18.51	Date	06/19/97	Nad	27	Zone	12W
Initial Survey Completed in 1996	6 No					East		52145	6
Detailed Survey Warranted	No					North		736426	7

## **Crossing Characteristics**

Stream Habitat		Habitat Tyj	oe (%)	Substrate 1	ype (%
Surveyed Length (m)	150	Pool		Organic	
Temperature (° C)	12.5	Run		Silt	100
Conductivity ( uS	20.0	Flat	100	Sand	
pΗ	7.4	Rf/Ra		Gravel	
Colour	Clear	Dispersed		Cobble	i u
Stage	High	Other		Boulder	
Gradient (%)	1.0			Bedrock	
Average Width (m)	19.0				
Average Depth (m)	2.00	Channel Ty	pe (%)	Bank Typ	oe (%)
Average Velocity (m)		Single	100	Defined	100
Discharge (cms)		Multiple		Illdefined	
Photo Number	3.14	Dispersed			
12		Subsurface			

Stream Ba	nks	LUB	RUB
Slope (%)	Ī	5.0	5.0
Height (m)	•	1.5	1.5
Cover	Trees/shrubs	50	50
(%)	Grass/forbs	50	50
	Rock		
	Exposed Soil		
Substrate	Organic		
(%)	Silt	100	100
	Sand		
	Gravel		
	Cobble		
	Boulder		
	Bedrock		
Unstable B	lanks (%)	0	0

#### Fisheries Resources

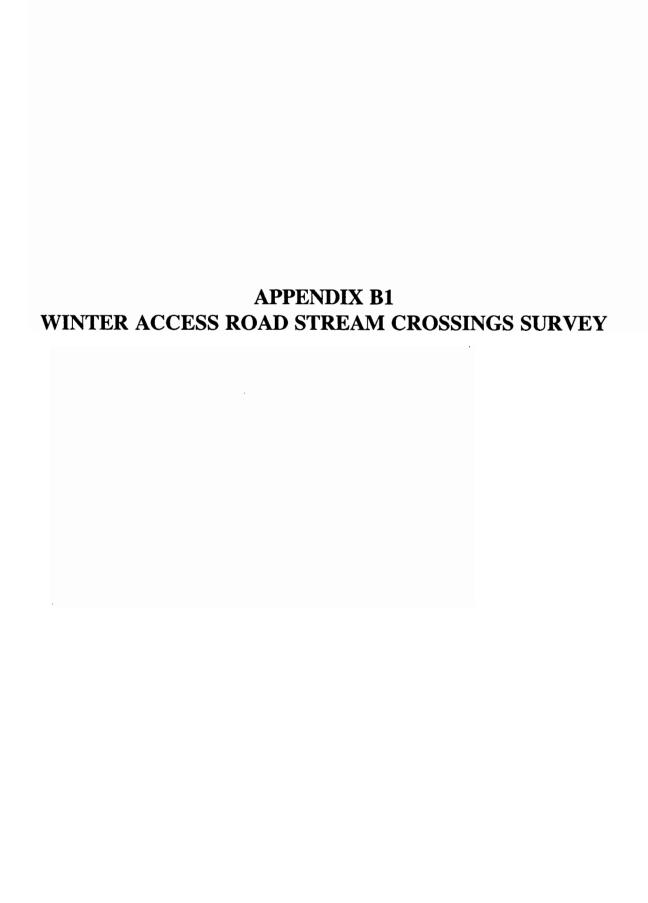
-		Species Composti						
Method	Effort (s)	Species	YoY J	luvenile	Adult	Total	Percent	CPUE
Not Sampled		None Captured	1					
		Summary of Fork I	Length (mm		tion mum	Maximu	ım N	lumber
		None Measured						
		Habitat Quality Rat Species	ing of Strea		g ring	Feedin	ıg Mo	ovement
						Feedin 2	g Mo	ovement 3
		Species	Spawning				g Mo	

#### Comments

Crossing location No. 2 (survey stakes present)	
NAME OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY	

	Echo B	ay M	lines Ltd	Winter	Access R	oad Alignm	ent Surv	ey	Projec	ct 570	
Area	Route 1		Crossing	3.1	Date	06/18/97	Nad	27	Zone	12W	
Initial Sur	rvey Completed in 1996	No					East		51772	8	
Detailed S	Survey Warranted	Yes					North		734956	9	

Stream Habitat		Habitat Typ	oe (%)	Substrate Type (%			
Surveyed Length (m)	150	Pool		Organic	5		
Temperature (° C)	6.0	Run		Silt	0		
Conductivity ( uS	10.0	Flat		Sand	0		
pH	7.0	Rf/Ra	100	Gravel	0		
Colour	Clear	Dispersed		Cobble	0		
Stage	Flood	Other		Boulder	95		
Gradient (%)	3.0	7		Bedrock	0		
Average Width (m)	15.0						
Average Depth (m)	0.38	Channel Ty	pe (%)	Bank Typ	e (%)		
Average Velocity (m)	0.86	Single		Defined			
Discharge (cms)	2.38	Multiple	100	Illdefined.	100		
7	2.28	Dispersed			1000000		
Photo Number	2.20						


Stream Ba	nks	LUB	RUB
Slope (%)		3.0	1.0
Height (m)		0.2	0.2
Cover	Trees/shrubs	80	80
(%)	Grass/forbs	+:/-	
	Rock	20	20
	Exposed Soil		
Substrate	Organic	50	50
(%)	Silt		
	Sand		
	Gravel		
	Cobble		
	Boulder	50	50
	Bedrock		
Unstable E	Banks (%)	0	0

#### **Fisheries Resources**

mpling Techniques		Species Composti	on and Al	<u>bundance</u>				
Method	Effort (s)	Species	YoY	Juvenile	Adult	Total	Percent	CPUE
EF	245	None Captured						
		Summary of Fork	Length (m		ation nimum	Maxim	um 1	Number
		Species	Averag	ac IAIII	milaiti	HIGAIIII	uiii I	<b>Tullibel</b>
							4	
		None Measured						
		None Measured  Habitat Quality Rat  Species	ing of Str		ing earing	Feedir	ng M	ovement
		Habitat Quality Rat				Feedir 0	ng M	ovement 1
		Habitat Quality Rat Species	Spawni				ng M	ovement 1

Comments			
	 **************************************	· · · · · · · · · · · · · · · · · · ·	

rea Rou	te 1	Crossing	3.1	Date 08/01	/97 Nad	27	Zone	12W
itial Survey Completed	l in 1996	No		111111111111111111111111111111111111111	East		51776	4
etailed Survey Warrant	ted	No			North		734945	6
rossing Character	istics							
Stream Habitat		Habitat Type (9	6) Substrate T	ype (%)	Stream Bank	<u>s</u>	LUB	RUE
Surveyed Length (m)	150	Pool	Organic		Slope (%)			
Temperature (° C)	9.0	Run	Silt		Height (m)			
Conductivity ( uS	10.0	Flat	Sand		Cover T	rees/shrubs		
оН	7.7	Rf/Ra	Gravel		(0/)	Grass/forbs		
Colour	Clear	Dispersed	Cobble		R	lock		
Stage	Low	Other	Boulder		E	xposed Soil		-
Gradient (%)			Bedrock		Substrate C			
Average Width (m)	5.0				10/1	ilt		-
Average Depth (m)	0.30	Channel Type (9	%) Bank Typ	e (%)		and		ļ
Average Velocity (m)		Single	Defined			ravel		
Discharge (cms)	0.01	Multiple	Illdefined			obble		
Photo Number	1.14	Dispersed				oulder	•	
		Subsurface				edrock		-
					Unstable Bar	IKS (70)		
		e	ummary of Fork	Longth (mm) l	nformation			
		3	Species	Average	Minimum	Maximum	. Nu	mber
			Arctic grayling	113.4	111	118		5
					1			
		<u>H</u>	abitat Quality Ra	ting of Stream Spawning	Crossing Rearing	Feeding	Mov	ement
				opawining			11.01	0
		_	Arctic grayling	1	2	0		U



# APPENDIX B STREAM SURVEY INFORMATION SHEETS





01 08 97

DATE 15 AUG 97 12:09

3829 P.O. NO.

w.o. no. 4 137101

PAGE

#### Quality Assurance Analysis

#### Client Material - Duplicate Analysis

M	ЕТНОО	ANALYSIS	-UNITS	D.L	RUN 1-	RUN 2-	RUN	11	RUN 2-	RUN	1R	UN 2-	RUN	1	- RUN	2-
Í	5021	рН		0.1	6.890	6.890										
	5022	E.C.	uS/cm	.1	16.00	16.00										
1	5031	нсоз	mg/L	5	9.147	9.390										
	4997	T. ALK.	mg/L	1	7.498	7.696										

QC/QA Manager:





DATE 15 AUG 97 12:09

P.O. NO.

w.o. no. 4 137101

3829

PAGE

#### Quality Assurance Analysis

#### Standard Reference Material Analysis

5032 NO3-NO3-NO3-NO3-NO3-NO3-NO3-NO3-NO3-NO3-									OG WITHI	TT C	MODICAL	<u> </u>	
METHOD ANALYSIS - UNITS-	1			STANDARD-					-	1		-WARNING	LIMITS
5041 OIL AND GREASE MSG/L GREASE MSG/L GREASE MSG/L GREASE MSG/L GREASE MSG/L GREASE MSG/L GREASE MSG/L REAGENT BLANK 0.008 0.0 1 0.0 123 0.001262 -0.008 0.0 130002 Sb mg/L REAGENT BLANK 0.005 0.0 1 0.0 121 -0.00108 -0.005 0.0 130001 As mg/L REAGENT BLANK 0.000 0.0 1 0.002044 123 0.000123 -0.004 0.0 130003 Ba mg/L REAGENT BLANK 0.0002 0 0.0 1 0.0 121 0.000078 -0.0002 0.0 1 38004 Be mg/L REAGENT BLANK 0.0005 0 0.0 1 0.0 121 0.000078 -0.0002 0.0 1 38041 Bi mg/L REAGENT BLANK 0.007 0.0 1 -0.00510 121 0.000078 -0.0005 0.0 1 38005 B mg/L REAGENT BLANK 0.002 0.0 1 0.001422 122 0.000355 -0.002 0.1 38006 Cd mg/L REAGENT BLANK 0.0002 0.0 1 0.001422 122 0.000355 -0.002 0.1 38007 Ca mg/L REAGENT BLANK 0.0002 0.0 1 0.001422 122 0.000355 -0.002 0.0 38008 Cr mg/L REAGENT BLANK 0.0002 0.0 1 0.000278 128 0.00041 -0.0005 0.0 38009 Co mg/L REAGENT BLANK 0.0008 0 0.0 1 0.000278 128 0.000152 -0.0008 0.0 38010 Cu mg/L REAGENT BLANK 0.0007 0 0.0 1 0.000278 128 0.00025 -0.001 0.0 38011 Fe mg/L REAGENT BLANK 0.001 0.0 1 0.0 121 -0.00004 -0.0007 0.0 38011 Fe mg/L REAGENT BLANK 0.001 0.0 1 0.0 121 -0.00004 -0.0007 0.0 38011 Fe mg/L REAGENT BLANK 0.0001 0.0 1 0.0 130 0.000205 -0.001 0.0 38013 Li mg/L REAGENT BLANK 0.000 0.0 1 0.0 121 0.0 121 0.0 0.0002 0.0 38013 Li mg/L REAGENT BLANK 0.0000 0.0 1 0.0 121 0.0 0.00021 -0.00006 0.000 0.0 138015 Mn mg/L REAGENT BLANK 0.0000 0.0 1 0.0 125 0.00051 -0.0002 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	METHOD	ANALYSIS	-UNITS			TA	RGET			l		ł	HIGH
SACON   STATE   STAT	5032	NO2 & NO3-N	mg/L	REAGENT BLANK	0.05		0.0	2	0.0	144	0.002521	-0.1	0.1
38002 Sb mg/L REAGENT BLANK 0.005 0.0 1 0.0 121 -0.00108 -0.005 0.  38001 As mg/L REAGENT BLANK .01 0.0 1 0.002044 123 0.000123 -0.004 0.  38003 Ba mg/L REAGENT BLANK 0.0002 0 0.0 1 0.0 121 0.000078 -0.0002 0.0  38004 Be mg/L REAGENT BLANK 0.0005 0 0.0 1 0.0 121 0.000078 -0.0002 0.0  38041 Bi mg/L REAGENT BLANK 0.0005 0 0.0 1 0.0 121 0.0000078 -0.0005 0.0  38005 B mg/L REAGENT BLANK 0.007 0.0 1 -0.00510 121 -0.00008 -0.007 0.0  38006 Cd mg/L REAGENT BLANK 0.002 0.0 1 0.001422 122 0.000355 -0.002 0.0  38007 Ca mg/L REAGENT BLANK 0.0005 0 0.0 1 -0.00029 125 0.000041 -0.0005 0.00  38008 Cr mg/L REAGENT BLANK 0.0008 0 0.0 1 0.000278 128 0.000152 -0.0008 0.00  38009 Co mg/L REAGENT BLANK 0.0007 0 0.0 1 0.000278 128 0.000152 -0.0008 0.00  38010 Cu mg/L REAGENT BLANK 0.0007 0 0.0 1 0.0 130 0.000205 -0.001 0.0  38011 Fe mg/L REAGENT BLANK 0.0003 0.0 1 0.0 132 0.000277 -0.003 0.0  38012 Pb mg/L REAGENT BLANK 0.0002 0.0 1 0.0 132 0.000277 -0.003 0.0  38013 Li mg/L REAGENT BLANK 0.0006 0. 0.0 1 0.0 121 0.000064 -0.0000 0.0  38015 Mn mg/L REAGENT BLANK 0.0002 0.0 1 0.0 122 0.000051 -0.0000 0.0  38016 Mn mg/L REAGENT BLANK 0.0005 0.0 1 0.0 122 0.000064 -0.0000 0.0  38017 Mo mg/L REAGENT BLANK 0.0001 0.0 1 0.0 122 0.000166 -0.001 0.0  38018 Ni mg/L REAGENT BLANK 0.001 0.0 1 0.000844 122 0.000166 -0.001 0.0  38019 P mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001181 -0.006 0.0  38020 K mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001181 -0.006 0.0	5041	-	mg/L	REAGENT BLANK	1		0.0	1	0.1001	26	0.3346	0.1	0.8
38001 As mg/L REAGENT BLANK	38000	Al	mg/L	REAGENT BLANK	0.008		0.0	1	0.0	123	0.001262	-0.008	0.008
38003 Ba mg/L REAGENT BLANK 0.0002 0 0.0 1 0.0 121 0.000078 -0.0002 0.0 0.0 1 38004 Be mg/L REAGENT BLANK 0.0005 0 0.0 1 0.0 121 0.00000 -0.0005 0.0 0.0 1 38041 Bi mg/L REAGENT BLANK 0.007 0.0 1 -0.00510 121 -0.00008 -0.007 0.0 0.0 1 38005 B mg/L REAGENT BLANK 0.002 0.0 1 0.001422 122 0.000355 -0.002 0.0 0.0 1 0.001422 122 0.000355 -0.002 0.0 0.0 1 0.001422 122 0.000355 -0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	38002	Sb	mg/L	REAGENT BLANK	0.005		0.0	1	0.0	121	-0.00108	-0.005	0.005
38004 Be mg/L REAGENT BLANK 0.0005 0 0.0 1 0.0 121 0.00000 -0.0005 0.00 38041 Bi mg/L REAGENT BLANK 0.007 0.0 1 -0.00510 121 -0.00008 -0.007 0.1 38005 B mg/L REAGENT BLANK 0.002 0.0 1 0.001422 122 0.000355 -0.002 0.1 38006 Cd mg/L REAGENT BLANK 0.0005 0 0.0 1 -0.00029 125 0.000041 -0.0005 0.00 38007 Ca mg/L REAGENT BLANK 0.002 0.0 1 0.0 122 0.0 -0.002 0.0 38008 Cr mg/L REAGENT BLANK 0.0008 0 0.0 1 0.000278 128 0.000152 -0.0008 0.00 38009 Co mg/L REAGENT BLANK 0.0007 0 0.0 1 0.0 121 -0.00004 -0.0007 0.00 38010 Cu mg/L REAGENT BLANK 0.001 0.0 1 0.0 130 0.000205 -0.001 0.0 38011 Fe mg/L REAGENT BLANK 0.003 0.0 1 0.0 132 0.000277 -0.003 0.0 38012 Pb mg/L REAGENT BLANK 0.002 0.0 1 0.0 131 0.000313 -0.002 0.0 38013 Li mg/L REAGENT BLANK 0.0006 0. 0.0 1 0.0 121 0.0 -0.00060 0.00 38015 Mn mg/L REAGENT BLANK 0.00006 0. 0.0 1 0.0 125 0.00051 -0.0002 0.00 38014 Mg mg/L REAGENT BLANK 0.0005 0.0 1 0.0 125 0.00051 -0.0002 0.00 38018 Ni mg/L REAGENT BLANK 0.001 0.0 1 0.000844 122 0.00016 -0.001 0.0 38018 Ni mg/L REAGENT BLANK 0.001 0.0 1 0.000844 122 0.00016 -0.001 0.0 38019 P mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001181 -0.006 0.00 38019 P mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001665 -0.004 0.000 38020 K mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001665 -0.004 0.000	38001	As	mg/L	REAGENT BLANK	.01		0.0	1	0.002044	123	0.000123	-0.004	0.004
38041 Bi mg/L REAGENT BLANK 0.007 0.0 1 -0.00510 121 -0.00008 -0.007 0.0	38003	Ba	mg/L	REAGENT BLANK	0.0002	0	0.0	1	0.0	121	0.000078	-0.0002	0.0002
38005 B mg/L REAGENT BLANK 0.002 0.0 1 0.001422 122 0.000355 -0.002 0.0 38006 Cd mg/L REAGENT BLANK 0.0005 0 0.0 1 -0.00029 125 0.000041 -0.0005 0.00 38007 Ca mg/L REAGENT BLANK 0.002 0.0 1 0.0 122 0.0 -0.002 0.0 38008 Cr mg/L REAGENT BLANK 0.0008 0 0.0 1 0.000278 128 0.000152 -0.0008 0.00 38009 Co mg/L REAGENT BLANK 0.0007 0 0.0 1 0.0 121 -0.00004 -0.0007 0.00 38010 Cu mg/L REAGENT BLANK 0.001 0.0 1 0.0 121 -0.00004 -0.0007 0.00 38011 Fe mg/L REAGENT BLANK 0.001 0.0 1 0.0 130 0.000205 -0.001 0.0 38012 Pb mg/L REAGENT BLANK 0.002 0.0 1 0.0 132 0.000277 -0.003 0.0 38013 Li mg/L REAGENT BLANK 0.0002 0.0 1 0.0 131 0.000313 -0.002 0.0 38015 Mn mg/L REAGENT BLANK 0.0006 0. 0.0 1 0.0 121 0.0 -0.00066 0.000 38014 Mg mg/L REAGENT BLANK 0.0005 0.0 1 0.0 125 0.000051 -0.0002 0.00 38017 Mo mg/L REAGENT BLANK 0.001 0.0 1 0.0 121 0.000864 -0.005 0.0 38018 Ni mg/L REAGENT BLANK 0.001 0.0 1 0.000844 122 0.000016 -0.001 0.0 38019 P mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001181 -0.006 0.00 38020 K mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001181 -0.006 0.000	38004	Вe	mg/L	REAGENT BLANK	0.0005	0	0.0	1	0.0	121	0.00000	-0.0005	0.0005
38006 Cd mg/L REAGENT BLANK 0.0005 0 0.0 1 -0.00029 125 0.000041 -0.0005 0.00 38007 Ca mg/L REAGENT BLANK 0.002 0.0 1 0.0 122 0.0 -0.002 0.0 38008 Cr mg/L REAGENT BLANK 0.0008 0 0.0 1 0.000278 128 0.000152 -0.0008 0.00 38009 Co mg/L REAGENT BLANK 0.0007 0 0.0 1 0.0 121 -0.00004 -0.0007 0.00 38010 Cu mg/L REAGENT BLANK 0.001 0.0 1 0.0 130 0.000205 -0.001 0.0 38011 Fe mg/L REAGENT BLANK 0.003 0.0 1 0.0 132 0.000277 -0.003 0.0 38012 Pb mg/L REAGENT BLANK 0.002 0.0 1 0.0 131 0.000313 -0.002 0.0 38013 Li mg/L REAGENT BLANK 0.0002 0.0 1 0.0 131 0.000313 -0.002 0.0 38015 Mn mg/L REAGENT BLANK 0.0002 0 0.0 1 0.0 121 0.0 -0.00006 0.000 38014 Mg mg/L REAGENT BLANK 0.0002 0 0.0 1 0.0 125 0.000051 -0.0002 0.00 38017 Mo mg/L REAGENT BLANK 0.001 0.0 1 0.000844 122 0.000016 -0.001 0.0 38018 Ni mg/L REAGENT BLANK 0.001 0.0 1 0.000844 122 0.000016 -0.001 0.0 38019 P mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001181 -0.006 0.0 38020 K mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001181 -0.006 0.0	38041	Bi	mg/L	REAGENT BLANK	0.007		0.0	1	-0.00510	121	-0.00008	-0.007	0.007
38007 Ca mg/L REAGENT BLANK 0.002 0.0 1 0.0 122 0.0 -0.002 0.0 38008 Cr mg/L REAGENT BLANK 0.0008 0 0.0 1 0.000278 128 0.000152 -0.0008 0.00 38009 Co mg/L REAGENT BLANK 0.0007 0 0.0 1 0.0 121 -0.00004 -0.0007 0.00 38010 Cu mg/L REAGENT BLANK 0.001 0.0 1 0.0 130 0.000205 -0.001 0.0 38011 Fe mg/L REAGENT BLANK 0.003 0.0 1 0.0 132 0.000277 -0.003 0.0 38012 Pb mg/L REAGENT BLANK 0.002 0.0 1 0.0 131 0.000313 -0.002 0.0 38013 Li mg/L REAGENT BLANK 0.0002 0.0 1 0.0 131 0.000313 -0.002 0.0 38015 Mn mg/L REAGENT BLANK 0.0006 0.0 0.0 1 0.0 121 0.0 -0.00006 0.000 38014 Mg mg/L REAGENT BLANK 0.0002 0 0.0 1 0.0 125 0.000051 -0.0002 0.00 38014 Mg mg/L REAGENT BLANK 0.005 0.0 1 0.0 125 0.000051 -0.0002 0.00 38018 Ni mg/L REAGENT BLANK 0.001 0.0 1 0.000844 122 0.000016 -0.001 0.0 38018 Ni mg/L REAGENT BLANK 0.001 0.0 1 -0.00062 129 0.00016 -0.001 0.0 38019 P mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001665 -0.004 0.0 38020 K mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001665 -0.004 0.0 0.0 38020 K mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001665 -0.004 0.0 0.0 38020 K mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001665 -0.004 0.0 0.0 38020 K mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001665 -0.004 0.0 0.0 38020 K mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001665 -0.004 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	38005	В	mg/L	REAGENT BLANK	0.002		0.0	1	0.001422	122	0.000355	-0.002	0.002
38008 Cr mg/L REAGENT BLANK 0.0008 0 0.0 1 0.000278 128 0.000152 -0.0008 0.00 38009 Co mg/L REAGENT BLANK 0.0007 0 0.0 1 0.0 121 -0.00004 -0.0007 0.00 38010 Cu mg/L REAGENT BLANK 0.001 0.0 1 0.0 130 0.000205 -0.001 0.0 38011 Fe mg/L REAGENT BLANK 0.003 0.0 1 0.0 132 0.000277 -0.003 0.0 38012 Pb mg/L REAGENT BLANK 0.002 0.0 1 0.0 131 0.000313 -0.002 0.0 38013 Li mg/L REAGENT BLANK 0.00006 0. 0.0 1 0.0 121 0.0 -0.00006 0.000 38015 Mn mg/L REAGENT BLANK 0.0002 0 0.0 1 0.0 125 0.000051 -0.0002 0.00 38014 Mg mg/L REAGENT BLANK 0.0005 0.0 1 0.0 125 0.000051 -0.0002 0.00 38017 Mo mg/L REAGENT BLANK 0.001 0.0 1 0.000844 122 0.000016 -0.001 0.00 38018 Ni mg/L REAGENT BLANK 0.001 0.0 1 0.000844 122 0.000016 -0.001 0.00 38019 P mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001181 -0.006 0.000 38020 K mg/L REAGENT BLANK 0.06 0.0 1 0.0 121 0.001665 -0.040 0.000	38006	Cđ	mg/L	REAGENT BLANK	0.0005	0	0.0	1	-0.00029	125	0.000041	-0.0005	0.0005
38009 Co mg/L REAGENT BLANK 0.0007 0 0.0 1 0.0 121 -0.00004 -0.0007 0.00 38010 Cu mg/L REAGENT BLANK 0.001 0.0 1 0.0 130 0.000205 -0.001 0.0 38011 Fe mg/L REAGENT BLANK 0.003 0.0 1 0.0 132 0.000277 -0.003 0.0 38012 Pb mg/L REAGENT BLANK 0.002 0.0 1 0.0 131 0.000313 -0.002 0.0 38013 Li mg/L REAGENT BLANK 0.00006 0. 0.0 1 0.0 121 0.0 -0.00006 0.000 38015 Mn mg/L REAGENT BLANK 0.0002 0 0.0 1 0.0 125 0.000051 -0.0002 0.00 38014 Mg mg/L REAGENT BLANK 0.005 0.0 1 0.0 125 0.000051 -0.0002 0.00 38017 Mo mg/L REAGENT BLANK 0.005 0.0 1 0.0 121 0.000864 -0.005 0.0 38018 Ni mg/L REAGENT BLANK 0.001 0.0 1 0.000844 122 0.000016 -0.001 0.0 38018 Ni mg/L REAGENT BLANK 0.001 0.0 1 0.000844 122 0.000016 -0.001 0.0 38019 P mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001881 -0.006 0.0 38020 K mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001881 -0.006 0.0 0.000 38020 K mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001881 -0.006 0.0 0.000 38020 K mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001665 -0.040 0.000 38020 K mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001665 -0.040 0.000 38020 K mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001665 -0.040 0.000 38020 K mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001665 -0.040 0.000 38020 K mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001665 -0.040 0.000 38020 K mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001665 -0.040 0.000 38020 K mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001665 -0.040 0.000 38020 K mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001665 -0.040 0.0000 38020 K mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001665 -0.040 0.0000 38020 K mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001665 -0.040 0.0000 38020 K mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001665 -0.040 0.0000 38020 K mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001665 -0.040 0.0000 38020 K mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001665 -0.040 0.0000 38020 K mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001665 -0.040 0.0000 38020 K mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001665 -0.040 0.0000 38020 K mg/L REAGENT BLANK 0.00000 1 0.0 121 0.001665 -0.040 0.0000 38020 K mg/L REA	38007	Ca	mg/L	REAGENT BLANK	0.002		0.0	1	0.0	122	0.0	-0.002	0.002
38010 Cu mg/L REAGENT BLANK 0.001 0.0 1 0.0 130 0.000205 -0.001 0.0 38011 Fe mg/L REAGENT BLANK 0.003 0.0 1 0.0 132 0.000277 -0.003 0.0 38012 Pb mg/L REAGENT BLANK 0.002 0.0 1 0.0 131 0.000313 -0.002 0.0 38013 Li mg/L REAGENT BLANK 0.0006 0. 0.0 1 0.0 121 0.0 -0.00006 0.000 38015 Mn mg/L REAGENT BLANK 0.0002 0 0.0 1 0.0 125 0.000051 -0.0002 0.00 38014 Mg mg/L REAGENT BLANK 0.0005 0.0 1 0.0 125 0.000051 -0.0002 0.00 38017 Mo mg/L REAGENT BLANK 0.005 0.0 1 0.0 121 0.000864 -0.005 0.0 38018 Ni mg/L REAGENT BLANK 0.001 0.0 1 0.000844 122 0.000016 -0.001 0.0 38018 Ni mg/L REAGENT BLANK 0.001 0.0 1 -0.00062 129 0.000196 -0.001 0.0 38019 P mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001181 -0.006 0.0 38019 P mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001181 -0.006 0.0 38020 K mg/L REAGENT BLANK 0.66 0.0 1 0.0 121 0.001665 -0.040 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	38008	Cr	mg/L	REAGENT BLANK	0.0008	0	0.0	1	0.000278	128	0.000152	-0.0008	3000.0
38011 Fe mg/L REAGENT BLANK 0.003 0.0 1 0.0 132 0.000277 -0.003 0.0 38012 Pb mg/L REAGENT BLANK 0.002 0.0 1 0.0 131 0.000313 -0.002 0.0 38013 Li mg/L REAGENT BLANK 0.00006 0. 0.0 1 0.0 121 0.0 -0.00006 0.000 38015 Mn mg/L REAGENT BLANK 0.0002 0 0.0 1 0.0 125 0.000051 -0.0002 0.00 38014 Mg mg/L REAGENT BLANK 0.005 0.0 1 0.0 125 0.000051 -0.0002 0.00 38017 Mo mg/L REAGENT BLANK 0.005 0.0 1 0.0 121 0.000864 -0.005 0.0 38018 Ni mg/L REAGENT BLANK 0.001 0.0 1 0.000844 122 0.000016 -0.001 0.0 38018 Ni mg/L REAGENT BLANK 0.001 0.0 1 -0.00062 129 0.000196 -0.001 0.0 38019 P mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001181 -0.006 0.0 38020 K mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001665 -0.040 0.0	38009	Co	mg/L	REAGENT BLANK	0.0007	0	0.0	1	0.0	121	-0.00004	-0.0007	0.0007
38012 Pb mg/L REAGENT BLANK 0.002 0.0 1 0.0 131 0.000313 -0.002 0.0 38013 Li mg/L REAGENT BLANK 0.00006 0. 0.0 1 0.0 121 0.0 -0.00006 0.000 38015 Mn mg/L REAGENT BLANK 0.0002 0 0.0 1 0.0 125 0.000051 -0.0002 0.00 38014 Mg mg/L REAGENT BLANK 0.005 0.0 1 0.0 121 0.000864 -0.005 0.0 38017 Mo mg/L REAGENT BLANK 0.001 0.0 1 0.000844 122 0.000016 -0.001 0.0 38018 Ni mg/L REAGENT BLANK 0.001 0.0 1 -0.00062 129 0.000196 -0.001 0.0 38019 P mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001181 -0.006 0.0 38020 K mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001655 -0.040 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	38010	Cu	mg/L	REAGENT BLANK	0.001		0.0	1	0.0	130	0.000205	-0.001	0.001
38013 Li mg/L REAGENT BLANK 0.00006 0. 0.0 1 0.0 121 0.0 -0.00006 0.000 38015 Mn mg/L REAGENT BLANK 0.0002 0 0.0 1 0.0 125 0.000051 -0.0002 0.00 38014 Mg mg/L REAGENT BLANK 0.005 0.0 1 0.0 121 0.000864 -0.005 0.0 38017 Mo mg/L REAGENT BLANK 0.001 0.0 1 0.000844 122 0.000016 -0.001 0.0 38018 Ni mg/L REAGENT BLANK 0.001 0.0 1 -0.00062 129 0.000196 -0.001 0.0 38019 P mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001181 -0.006 0.0 38020 K mg/L REAGENT BLANK 0.6 0.0 1 0.0 121 0.001665 -0.040 0.0	38011	Fe	mg/L	REAGENT BLANK	0.003		0.0	1	0.0	132	0.000277	-0.003	0.003
38015 Mn mg/L REAGENT BLANK 0.0002 0 0.0 1 0.0 125 0.000051 -0.0002 0.00 38014 Mg mg/L REAGENT BLANK 0.005 0.0 1 0.0 121 0.000864 -0.005 0.0 38017 Mo mg/L REAGENT BLANK 0.001 0.0 1 0.000844 122 0.000016 -0.001 0.0 38018 Ni mg/L REAGENT BLANK 0.001 0.0 1 -0.00062 129 0.000196 -0.001 0.0 38019 P mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001181 -0.006 0.0 38020 K mg/L REAGENT BLANK 0.6 0.0 1 0.0 121 0.001665 -0.040 0.0	38012	Pb	mg/L	REAGENT BLANK	0.002		0.0	1	0.0	131	0.000313	-0.002	0.002
38014 Mg mg/L REAGENT BLANK 0.005 0.0 1 0.0 121 0.000864 -0.005 0.0 38017 Mo mg/L REAGENT BLANK 0.001 0.0 1 0.000844 122 0.000016 -0.001 0.0 38018 Ni mg/L REAGENT BLANK 0.001 0.0 1 -0.00062 129 0.000196 -0.001 0.0 38019 P mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001181 -0.006 0.0 38020 K mg/L REAGENT BLANK 0.6 0.0 1 0.0 121 0.001665 -0.040 0.0	38013	Li	mg/L	REAGENT BLANK	0.00006	0.	0.0	1	0.0	121	0.0	-0.00006	0.00006
38017 MO mg/L REAGENT BLANK 0.001 0.0 1 0.000844 122 0.000016 -0.001 0.0 38018 Ni mg/L REAGENT BLANK 0.001 0.0 1 -0.00062 129 0.000196 -0.001 0.0 38019 P mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001181 -0.006 0.0 38020 K mg/L REAGENT BLANK 0.6 0.0 1 0.0 121 0.001665 -0.040 0.0	38015	Mn	mg/L	REAGENT BLANK	0.0002	0	0.0	1	0.0	125	0.000051	-0.0002	0.0002
38018 Ni mg/L REAGENT BLANK 0.001 0.0 1 -0.00062 129 0.000196 -0.001 0.0 38019 P mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001181 -0.006 0.0 38020 K mg/L REAGENT BLANK 0.6 0.0 1 0.0 121 0.001665 -0.040 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	38014	Mg	mg/L	REAGENT BLANK	0.005		0.0	1	0.0	121	0.000864	-0.005	0.005
38019 P mg/L REAGENT BLANK 0.006 0.0 1 0.0 121 0.001181 -0.006 0.0 38020 K mg/L REAGENT BLANK 0.6 0.0 1 0.0 121 0.001665 -0.040 0.0	38017	Мо	mg/L	REAGENT BLANK	0.001		0.0	1	0.000844	122	0.000016	-0.001	0.001
38020 K mg/L REAGENT BLANK 0.6 0.0 1 0.0 121 0.001665 -0.040 0.0	38018	Ni	mg/L	REAGENT BLANK	0.001		0.0	1	-0.00062	129	0.000196	-0.001	0.001
	38019	P	mg/L	REAGENT BLANK	0.006		0.0	1	0.0	121	0.001181	-0.006	0.006
38021 Se mg/L REAGENT BLANK 0.003 0.0 1 0.0 122 0.000126 -0.003 0.0	38020	K	mg/L	REAGENT BLANK	0.6		0.0	1	0.0	121	0.001665	-0.040	0.040
	38021	Se	mg/L	REAGENT BLANK	0.003		0.0	1	0.0	122	0.000126	-0.003	0.003
38023 Si mg/L REAGENT BLANK 0.004 0.0 1 0.0 122 0.000133 -0.004 0.0	38023	Si	mg/L	REAGENT BLANK	0.004		0.0	1	0.0	122	0.000133	-0.004	0.004

QC/QA Manager: #Sebud





PROJECT 570 01 08 97 DATE

15 AUG 97 12:09

P.O. NO.

3829

w.o. no. 4 137101

PAGE

#### Quality Assurance Analysis

#### Standard Reference Material Analysis

								QC WITH	[	-HIS	TORICAL	Ì	
			STANDARD					THIS ORDE	R	PR	ECISION	-WARNING	LIMITS
METHOD	ANALYSIS	-UNITS	DESCRIPTION	D.L	TARG	T	#	MEAN	% Y	#	MEAN	LOW	HIGP
38022	Ag	mg/L	REAGENT BLANK	0.001	0	0	1	0.0		122	0.000053	-0.001	0.00
38024	Na	mg/L	REAGENT BLANK	0.004	0	0	1	0.0		124	0.000138	-0.004	0.00
38025	Sr	mg/L	REAGENT BLANK	0.0001	0 0	0	1	0.0		121	0.000008	-0.0001	0.000
38099	s	mg/L	REAGENT BLANK	0.008	0	0	1	0.0		122	0.001138	-0.008	0.008
38069	Tl	mg/L	REAGENT BLANK	0.004	0	0	1	-0.00150		121	-0.00008	-0.004	0.00
38036	Sn	mg/L	REAGENT BLANK	0.003	0	0	1	0.001911		120	0.000360	-0.003	0.003
38026	Ti	mg/L	REAGENT BLANK	0.0004	0 0	0	1	0.000133		122	0.000077	-0.0004	0.000
38029	v	mg/L	REAGENT BLANK	0.001	0	0	1	0.000744		126	0.000055	-0.001	0.001
38030	Zn	mg/L	REAGENT BLANK	0.0005	0 0	0	1	0.0		130	0.000013	-0.0005	0.000

QC/QA Manager: /Ochun



PH. (403) 438-5522 FAX (403) 438-0396 PH. (403) 291-2022 FAX (403) 291-2021 PH. (604) 530-4344 FAX (604) 534-9996 PH. (403) 329-9266 FAX (403) 273-8527 PH. (204) 982-8630 FAX (204) 273-8019 PROJECT 570 01 08 97 DATE 15 AUG 97 12:09

3829

P.O. NO.

w.o. no. 4 137101

PAGE

#### Quality Assurance Analysis

#### Standard Reference Material Analysis

						1	QC WITH			TORICAL		
метнор	ANALYSIS	-UNITS	STANDARD	D.L	TARGET	#	-THIS ORDI MEAN	ER % Y	#	ECISION MEAN	-WARNING LOW	HIGH
	P (DISS)	mg/L	TKN-TP QC Low	.05	4.00	1	3.918	97.9	36	3.975	3.712	4.156
5032	NO2 & NO3-N	mg/L	HIGH CHEMICAL	0.05	3.0	2	3.015	100.5	191	3.009	2.85	3.16
5032	NO2 & NO3-N	mg/L	LOW CHEMICAL	0.05	0.40	2	0.3904	97.6	186	0.3984	0.3577	0.4367
5038	ORGANIC CARBON	mg/L	HIGH CHEMICAL	0.5	15	1	14.85	99.0	153	14.44	13.5	15.2
5038	ORGANIC CARBON	mg/L	LOW CHEMICAL	0.5	3.0	1	2.830	94.3	154	2.768	1.96	4.04
38016	Hg	mg/L	MTL STD QC HIGH	0.0001	.003	1	0.003140	104.7	124	0.003001	.0028	.0031
38016	Hg	mg/L	MTL STD QC LOW	0.0001	0.0008	1	0.000820	102.5	128	0.000793	0.00072	0.00088
38000	Al	mg/L	MTL STD QC HIGH	0.008	10.00	1	9.960	99.6	114	10.12	9.96	10.32
38000	Al	mg/L	MTL STD QC LOW	0.008	0.20	1	0.1975	98.7	124	0.1885	0.16	0.24
38002	Sb	mg/L	MTL STD QC LOW	0.005	0.050	1	0.04497	89.9	122	0.05345	0.040	0.060
38001	As	mg/L	MTL STD QC LOW	.01	0.050	1	0.05488	109.8	124	0.05120	0.040	0.060
38003	Ва	mg/L	MTL STD QC LOW	0.0002	0.005	1	0.005010	100.2	121	0.005127	0.004	0.006
38004	Ве	mg/L	MTL STD QC LOW	0.0005	0.005	1	0.004960	99.2	121	0.004988	0.004	0.006
38041	Bi	mg/L	MTL STD QC LOW	0.007	0.050	1	0.05048	101.0	122	0.05155	0.040	0.060
38005	В	mg/L	MTL STD QC LOW	0.002	0.20	1	0.2200	110.0	123	0.2063	0.16	0.24
38006	Cd	mg/L	MTL STD QC LOW	0.0005	0.005	1	0.005270	105.4	126	0.005247	0.004	0.006
38007	Ca	mg/L	MTL STD QC HIGH	0.002	20.00	1	20.84	104.2	114	20.69	20.27	20.97
38007	Ca	mg/L	MTL STD QC LOW	0.002	0.100	1	0.1012	101.2	123	0.1079	0.080	0.120
38008	Cr	mg/L	MTL STD QC LOW	0.0008	0.010	1	0.01171	117.1	129	0.01113	0.008	0.012
38009	Co	mg/L	MTL STD QC LOW	0.0007	0.010	1	0.01117	111.7	122	0.01068	0.008	0.012
38010	Cu	mg/L	MTL STD QC LOW	0.001	0.010	1	0.01112	111.2	131	0.01050	0.008	0.012
38011	Fe	mg/L	MTL STD QC HIGH	0.003	5.00	1	5.256	105.1	123	5.112	4.99	5.18
38011	Fe	mg/L	MTL STD QC LOW	0.003	0.050	1	0.04742	94.8	133	0.05175	0.040	0.060
38012	Pb	mg/L	MTL STD QC LOW	0.002	0.020	1.	0.01737	86.9	131	0.02072	0.016	0.024
38013	Li	mg/L	MTL STD QC LOW	0.00006	0.005	1	0.005190	103.8	122	0.004901	0.004	0.006

QC/QA Manager:



PH. (403) 438-5522 FAX (403) 438-0396 PH. (403) 291-2022 FAX (403) 291-2021 PH. (604) 530-4344 FAX (604) 534-992 PH. (403) 329-9266 FAX (403) 327-3527 PH. (204) 982-8630 FAX (204) 275-6019 PROJECT 570 01 08 97 DATE 15 AUG 97 12:09

P.O. NO.

3829

w.o. no. 4 137101

PAGE

#### Quality Assurance Analysis

#### Standard Reference Material Analysis

							QC WIT	H	-HIS	TORICAL		
1			STANDARD				-THIS ORD	ER	PR	ECISION	-WARNING	LIMITS
METHOD	ANALYSIS	-UNITS	DESCRIPTION	D.L	TARGET	#	MEAN	% Y	#	MEAN	LOW	HIGH
38015	Mn	mg/L	MTL STD QC HIGH	0.0002	1.00	1	1.045	104.5	116	1.018	0.97	1.04
38015	Mn	mg/L	MTL STD QC LOW	0.0002	0.005	1	0.005520	110.4	126	0.005335	. 0.004	0.00
38014	Mg	mg/L	MTL STD QC HIGH	0.005	5.00	1	4.803	96.1	111	4.773	4.70	4.8
38014	Mg	mg/L	MTL STD QC LOW	0.005	0.050	1	0.05352	107.0	114	0.05553	0.040	0.060
38017	Мо	mg/L	MTL STD QC LOW	0.001	0.010	1	0.01118	111.8	123	0.01041	0.008	0.01
38018	Ni	mg/L	MTL STD QC LOW	0.001	0.010	1	0.01032	103.2	129	0.01083	0.008	0.012
38019	P	mg/L	MTL STD QC LOW	0.006	0.050	1	0.05727	114.5	123	0.05380	0.040	0.06
38020	ĸ	mg/L	MTL STD QC HIGH	0.6	20.00	1	19.73	98.6	114	19.72	18.79	20.45
38021	Se	mg/L	MTL STD QC LOW	0.003	0.050	1	0.04932	98.6	123	0.05020	0.040	0.06
38023	Si	mg/L	MTL STD QC HIGH	0.004	5.00	1	4.896	97.9	114	4.915	4.84	4.97
38022	Ag	mg/L	MTL STD QC LOW	0.001	0.010	1	0.01175	117.5	121	0.01080	0.008	0.01
38024	Na	mg/L	MTL STD QC HIGH	0.004	20.00	1	20.45	102.3	117	20.17	18.86	20.7
38024	Na	mg/L	MTL STD QC LOW	0.004	0.50	1	0.4617	92.3	119	0.4375	0.40	0.60
38025	Sr	mg/L	MTL STD QC LOW	0.0001	0.005	1	0.005230	104.6	122	0.005269	0.004	0.00
38099	s	mg/L	MTL STD QC HIGH	0.008	20.00	1	21.01	105.0	113	20.39	19.80	20.98
38099	s	mg/L	MTL STD QC LOW	0.008	0.20	1	0.2099	105.0	123	0.2161	0.16	0.2
38069	Tl	mg/L	MTL STD QC LOW	0.004	0.050	1	0.05719	114.4	122	0.05165	0.040	0.060
38036	Sn	mg/L	MTL STD QC LOW	0.003	0.050	1	0.04855	97.1	121	0.04897	0.040	0.06
38026	Ti	mg/L	MTL STD QC LOW	0.0004	0.005	1	0.005140	102.8	122	0.004889	0.004	0.004
38029	v	mg/L	MTL STD QC LOW	0.001	0.010	1	0.01130	113.0	127	0.01074	0.008	0.012
38030	Zn	mg/L	MTL STD QC HIGH	0.0005	1.00	1	1.059	105.9	119	1.038	0.90	1.1
38030	Zn	mg/L	MTL STD QC LOW	0.0005	0.010	1	0.01095	109.5	131	0.01042	0.008	0.012
5029	cı	mg/L	REAGENT BLANK	0.5	0.0	2	0.01235		158	0.008089	-0.2	0.
5071	NH ₃ - N	mg/L	REAGENT BLANK	.05	0.0	2	0.0		151	0.000675	-0.05	0.05
5069	NO ₂ -N	mg/L	REAGENT BLANK	0.05	0.0	1	0.001000		85	0.000059	-0.1	0.

QC/QA Manager:



Calgary, AB Langley, B.C. Winnipeg, MB

Phone (403) 291-2022 Edmonton, AB Phone (403) 438-5522 Lethbridge, AB Phone (403) 329-9266 Phone (604) 530-4344 Phone (204) 982-8630

Fax (403) 291-2021 Fax (403) 434-8586 Fax (403) 327-8527 Fax (604) 534-9996 Fax (204) 275-6019

TO:

RL&L Environmental Services Ltd.

DATE SAMPLED:

1-Aug-97

ATTN:

Rick Pattenden

DATE RECEIVED: DATE REPORTED: 7-Aug-97 14-Aug-97

LAB FILE#:

97-08-2769

Project: Project 570

Page 4

# **TOTAL EXTRACTABLE HYDROCARBONS QUALITY ASSURANCE DATA**

(This QA/QC data is representative of the lab based quality assurance program and is not to be utilized as field data.) Calibration Check (CC)

	Actual Amt. (ng)	Detected Amt. (ng)		% Rec.	
DIESEL	2650	2553.7		96	
Accurac	y = Ave % Rec. MS + Ave % 2	Rec. MSD	=	118	_% Accuracy
% RSD	= Ave % Rec. MS - Ave % % Accuracy	Rec. MSD	=	6.4	_% RSD

The calculated values are based on matrix spike and duplicate recovery data performed on your samples at the time of analysis.

Date Acquired:

97-08-13

Analyst: GAVIN JANUARY





DATE 15 AUG 97 12:09

P.O. NO.

3829

w.o. no. 4 137101

PAGE

#### Quality Assurance Analysis

#### Standard Reference Material Analysis

			1						1		1	
			CHANDADD			1	QC WIT -THIS ORD		1	TORICAL ECISION	WADNING	TTMTMC
METHOD	ANALYSIS	-UNITS	STANDARD	D.L	TARGET	#	MEAN	% Y	#	MEAN	-WARNING LOW	HIGH
5001				0.1	0.10	,	0 220	100 4	221	0 170	0.00	0.2
5021	pН		HIGH CHEMICAL	0.1	9.18	1		100.4	231	9.178	9.08	9.2
5021	pН		LOW CHEMICAL	0.1	6.86	1	6.890	100.4	231	6.868	6.83	6.97
5022	E.C.	uS/cm	HIGH CHEMICAL	.1	2767	1	2750	99.4	145	2759	2740	278
5022	E.C.	uS/cm	LOW CHEMICAL	.1	80	1	76.00	95.0	145	82.78	75	80
5023	Ca	mg/L	MTL STD QC HIGH	.1	20.0	1	19.80	99.0	231	20.13	18.0	22.
5024	Mg	mg/L	MTL STD QC HIGH	.1	5.0	1	4.731	94.6	228	4.843	4.5	5.5
5025	Na	mg/L	MTL STD QC HIGH	0.6	20	1	19.60	98.0	222	19.59	18	2
15026	K	mg/L	MTL STD QC HIGH	.6	20.0	1	19.61	98.1	223	19.66	18.0	22.0
5027	Fe	mg/L	MTL STD QC HIGH	.04	5.0	1	5.320	106.4	204	5.329	4.50	5.
5028	SO ₄	mg/L	MTL STD QC HIGH	0.3	60.0	1	58.01	96.7	229	58.47	54.0	66
15016	Mn	mg/L	MTL STD QC HIGH	0.003	1.00	1	1.003	100.3	188	1.027	0.9	1.10
5029	Cl	mg/L	HIGH CHEMICAL	0.5	80	2	80.26	100.3	204	80.05	77.97	81.9
5029	Cl	mg/L	LOW CHEMICAL	0.5	15.0	2	15.05	100.3	199	14.84	14.37	15.39
4997	T. ALK.	mg/L	HIGH CHEMICAL	1	1000	1	992.3	99.2	125	989.8	974	101
4997	T. ALK.	mg/L	LOW CHEMICAL	1	125	1	124.2	99.4	125	124.4	124	129
5074	TKN	mg/L	TKN-TP QC High	0.05	30.0	1	30.45	101.5	130	30.27	27.136	32.28
5074	TKN	mg/L	TKN-TP QC Low	0.05	20.0	1	20.10	100.5	137	20.13	18.521	22.159
5071	NH ₃ - N	mg/L	HIGH CHEMICAL	.05	3.00	2	3.068	102.3	196	3.047	2.86	3.2
5071	NH ₃ - N	mg/L	LOW CHEMICAL	.05	0.8	2	0.8052	100.7	192	0.8038	0.7330	0.852
5069	NO -N	mg/L	LOW CHEMICAL	0.05	0.40	1	0.3980	99.5	86	0.3887	0.38	0.43
5069	NO ₂ -N	mg/L	TRACE CHEMICAL	0.05	0.09	1	0.08500	94.4	90	0.08999	.078	.10
5076	P(TOTAL)	mg/L	TKN-TP QC High	.05	9.00	1	9.038	100.4	102	8.876	8.475	9.399
5076	P(TOTAL)	mg/L	TKN-TP QC Low	.05	4.00	1	3.918	97.9	104	3.972	3.700	4.16
5078	P (DISS)	mg/L	TKN-TP QC High	.05	9.00	1	9.038	100.4	33	8.896	8.442	9.456

QC/QA Manager:



RICK PATTENDEN PROJECT 570 01 08 97

13 AUG 97 13:42 DATE

3829 P.O. NO.

w.o. no. 4 137101

10 PAGE

#### WATER ANALYSIS REPORT

07105L NO2&NO3-N

Automated colorimetry Cadmium reduction

Ref. APHA 4500-NO3-,F

OIL AND GREASE EPA1664 06005L TOT ORG CARBON

RL & L ENV. SERVICES

17312-106 AVENUE

EDMONTON, AB

T5S 1H9

Auto persulphate/UV digest. Colorimetric

Ref. MOE(Ontario Environment)

#### Method References:

- 1. APHA Standard Methods for the Examination of Water and Wastewater, American Public Health Assoc., 17th ed.
- a. Test Methods for Evaluating Solid Waste, Physical/Chemical ?. EPA Methods SW-846, 3rd ed., US EPA, 1986
  - b. Methods for Chemical Analysis of Water and Wastewater, US EPA, 1983
- 3. MSS Manual on Soil Sampling and Methods of Analysis, Cdn. Soc. of Soil Science, J. A. McKeague, 2nd ed.
- * NORWEST SOIL RESEARCH LTD has been accredited by the STANDARDS COUNCIL of CANADA for specific tests registered with the COUNCIL.

.ab Manager:	



Calgary, AB Edmonton, AB Lethbridge, AB Langley, B.C. Winnipeg, MB

Phone (403) 291-2022 Phone (403) 438-5522 Phone (403) 329-9266 Phone (604) 530-4344 Phone (204) 982-8630 Fax (403) 291-2021 Fax (403) 434-8586 Fax (403) 327-8527 Fax (604) 534-9996 Fax (204) 275-6019

TO:

RL&L Environmental Services Ltd.

DATE SAMPLED:

1-Aug-97

ATTN:

Rick Pattenden

DATE RECEIVED:

7-Aug-97

DATE REPORTED:

14-Aug-97

LAB FILE#:

97-08-2769

Project: Project 570

Page 3

# **BTEX QUALITY ASSURANCE DATA**

(This QA/QC data is representative of the lab based quality assurance program and is not to be utilized as field data.)

# Calibration - Check (CC)

	Expected	Detected	%		Acceptable
	Amt. (ng)	Amt. (ng)	Rec.		Range
Benzene	50.0	49.6	99		80-120
Toluene	50.0	47.4	95		80-120
Ethyl Benzene	50.0	51.5	103		80-120
M & P Xylenes	100.0	97.3	97		80-120
O-Xylene	50.0	50.6	101		80-120
Accuracy = Ave %	Rec. MS + Ave %	6 Rec. MSD	=	110	% Accuracy
	2		_		_
% RSD = Ave %	% Rec. MS - Ave %	Rec. MSD	=	2.9	% RSD
	% Accuracy				_
	70 Accuracy				

The calculated values are based on matrix spike and duplicate recovery data performed on your samples at the time of analysis.

Date Acquired:

97-08-13

Analyst: NANCY HUYNH



**RICK PATTENDEN** PROJECT 570 01 08 97

DATE 13 AUG 97 13:42

P.O. NO.

3829

4 137101 W.O. NO.

8 PAGE

RL & L ENV. SERVICES 17312-106 AVENUE EDMONTON, AB T5S 1H9

#### WATER ANALYSIS REPORT

PARAMETER	DATE OF- ANALYSIS	ANALYZED BY	PARAMETER	DATE OF- ANALYSIS	ANALYZED BY
рН	11Aug97	DARREN CRICHTON	ELECTRICAL COND	11Aug97	DARREN CRICHTON
CALCIUM	08Aug97	LANG QUE TRAN	MAGNESIUM	08Aug97	LANG QUE TRAN
SODIUM	08Aug97	LANG QUE TRAN	POTASSIUM	08Aug97	LANG QUE TRAN
IRON	08Aug97	LANG QUE TRAN	MANGANESE	08Aug97	LANG QUE TRAN
SULPHATE	08Aug97	LANG QUE TRAN	CHLORIDE	08Aug97	THERESA LIEU
BICARBONATE	11Aug97	DARREN CRICHTON	T ALKALINITY	11Aug97	DARREN CRICHTON
HARDNESS	11Aug97	LANG QUE TRAN	T DIS SOLIDS	11Aug97	LANG QUE TRAN
IONIC BALANCE	11Aug97	LANG QUE TRAN	TOTAL KJEHL NIT	11Aug97	THERESA LIEU
AMMONIA-N	08Aug97	THERESA LIEU	NITRATE-N	09Aug97	THERESA LIEU
NITRITE-N	08Aug97	THERESA LIEU	PHOSPHORUS (TOT)	11Aug97	THERESA LIEU
PHOSPHORUS, DISS	11Aug97	THERESA LIEU	NO2&NO3-N	08Aug97	THERESA LIEU
OIL AND GREASE	12Aug97	BARBARA CREPIN	TOT ORG CARBON	08Aug97	THERESA LIEU
MERCURY	13Aug97	LANG QUE TRAN	ALUMINUM	13Aug97	LANG QUE TRAN
ANTIMONY	13Aug97	LANG QUE TRAN	ARSENIC	13Aug97	LANG QUE TRAN
BARIUM	13Aug97	LANG QUE TRAN	BERYLLIUM	13Aug97	LANG QUE TRAN
BISMUTH	13Aug97	LANG QUE TRAN	BORON	13Aug97	LANG QUE TRAN
CADMIUM	13Aug97	LANG QUE TRAN	CALCIUM	13Aug97	LANG QUE TRAN
CHROMIUM	13Aug97	LANG QUE TRAN	COBALT	13Aug97	LANG QUE TRAN
COPPER	13Aug97	LANG QUE TRAN	IRON	13Aug97	LANG QUE TRAN
LEAD	13Aug97	LANG QUE TRAN	LITHIUM	13Aug97	LANG QUE TRAN
MANGANESE	13Aug97	LANG QUE TRAN	MAGNESIUM	13Aug97	LANG QUE TRAN
MOLYBDENUM	13Aug97	LANG QUE TRAN	NICKEL	13Aug97	LANG QUE TRAN
PHOSPHORUS	13Aug97	LANG QUE TRAN	POTASSIUM	13Aug97	LANG QUE TRAN
SELENIUM	13Aug97	LANG QUE TRAN	SILICON	13Aug97	LANG QUE TRAN
SILVER	13Aug97	LANG QUE TRAN	SODIUM	13Aug97	LANG QUE TRAN
STRONTIUM	13Aug97	LANG QUE TRAN	SULPHUR	13Aug97	LANG QUE TRAN
THALLIUM	13Aug97	LANG QUE TRAN	TIN	13Aug97	LANG QUE TRAN
TITANIUM	13Aug97	LANG QUE TRAN	VANADIUM	13Aug97	LANG QUE TRAN
ZINC	13Aug97	LANG QUE TRAN			



13 AUG 97 13:42 DATE

3829 P.O. NO.

4 137101 W.O. NO.

PAGE 9

RL & L ENV. SERVICES 17312-106 AVENUE EDMONTON, AB T5S 1H9

**RICK PATTENDEN** PROJECT 570 01 08 97

#### WATER ANALYSIS REPORT

The foll	owing published METHODS OF ANALYSIS were use	d:	
10301L	рН		Reported as CaCO3
	Electrometric (pH meter)		Ref. APHA 2340 B
	Ref. APHA 4500-H+	00203	T DIS SOLIDS
02041L ·	ELECTRICAL COND		SUM OF IONS CALCULATION
	Conductance meter		Ca + Mg + K + Na + SO4 + Cl + 0.6*T Al
	Ref. APHA 2510 B		Ref. APHA 1030 F
20103	CALCIUM	NWL4994	IONIC BALANCE
	ICP spectroscopy @ 317.9 nm	00100	IONIC BALANCE 2
	Ref. APHA 3120 B		%Diff=(Sum Cations-Sum Anions)/
12102L	MAGNESIUM		(Sum Cations+Sum Anions)*100
	ICP spectroscopy @ 285.2 nm		Ref. APHA 1030 F
	Ref. APHA 3120 B	07021P	TOTAL KJEHL NIT
11102L	SODIUM		Total, block digest with K2SO4/HgO
19111	POTASSIUM		and H2S04, auto phenate colorimetry.
	Diss., ICP Spectroscopy, Ref. APHA 3120 B		Ref.US EPA 351.2;Crowther MOE
26304L	IRON	07557	AMMONIA-N
16306L	SULPHATE		Automated phenate colorimetry
	ICP spectroscopy @ 180.7 nm		Ref. APHA 4500 NH3,H
	Ref. APHA 3120 B	07301	NITRATE-N
17203L	CHLORIDE		Diss., Auto. colorimetry, Cd reduction
	Automated colorimetry, Thiocyanate		Ref. APHA 4500 NO3-E
	Ref. APHA 4500 Cl-,E	07205	NITRITE-N
06201L	BICARBONATE		Automated colorimetry
	Potentiometric titration with standard		Ref. APHA 4500 NO2,B
	acid to pH 8.3 and pH 4.5	15406	PHOSPHORUS (TOT)
	Ref. APHA 2320 B		Total, Autoclave with persulphate/H2S04
10101	T ALKALINITY		Auto. colorimetry with ascorbic acid
	Potentiometric titration with standard		Ref. APHA 4500 P,B/E
	acid to pH 4.5 & pH 8.3. Report as CaCO3	15103	PHOSPHORUS, DISS
	Ref. APHA 2320 B		Diss., Autoclave with persulphate/H2S04
10602	HARDNESS		Auto. colorimetry with ascorbic acid
	Calculation from 2.5*Ca + 4.1*Mg		Ref. APHA 4500 P,E
Method R	eferences:		
1. APHA	Standard Methods for the Examination of W	ater and Was	tewater,
	American Dublic Health Acces 17th ad		

- American Public Health Assoc., 17th ed.
- 2. EPA a. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, 3rd ed., US EPA, 1986
  - b. Methods for Chemical Analysis of Water and Wastewater, US EPA, 1983
- 3. MSS Manual on Soil Sampling and Methods of Analysis, Cdn. Soc. of Soil Science, J. A. McKeague, 2nd ed.
- * NORWEST SOIL RESEARCH LTD has been accredited by the STANDARDS COUNCIL of CANADA for specific tests registered with the COUNCIL.

# APPENDIX A3 WATER CHEMISTRY PARAMETERS AND METHODS

<u>Channel Type</u> - Includes the following categories:

Single (C1) - Entire water flow of stream through one active channel.

Multiple (C2) - Water flow of stream through more than one active channel.

Dispersed (C3) - No defined channel.

Bank Type - Includes the following categories:

Well-defined (D1) - Well-defined boundary at water-bank interface of active stream channel. Ill-defined (D2) - Poorly defined boundary at water-bank interface of active stream channel.

#### **Lakes**

Provides a qualitative assessment of the physical characteristics of the littoral zone (zone of visible light penetration to bottom) and its potential as critical fish habitat (spawning and rearing).

<u>Slope</u> - The slope of the visible portion of the lake bottom adjacent to the shoreline. The lower the slope, the greater the amount of shallow water (littoral zone) available for use by smaller juveniles and young-of-the-year fish. Visual estimation of slope using three categories.

Low - 0 to 10% Moderate - 11 to 30% High - > 30%

<u>Substrate</u> - The dominant substrate in the visible portion of the lake bottom adjacent to the shoreline. The presence of rock (cobbles, boulders) indicates potential as a spawning habitat; presence of fines (organics, clay, silt, sand, gravel) indicates the potential as rearing habitat (enhances growth of macrophytes); presence of bedrock indicates limited value as fish habitat. Visual estimation of the percent cover by each substrate size and then grouping into three categories based on the following criteria:

Fines - >40% of bottom consists of organics, clays, silts, or gravel substrates.

Rock - >60% of bottom consists of cobbles or boulders.

Bedrock - > 40% of bottom consists of bedrock.

#### APPENDIX A2 - SUBSTRATE CLASSIFICATION SYSTEM

Modified Wentworth classification for substrate particle sizes

CLASSIFICATION	PARTICLE SIZE RANGE (mm)
Bedrock	-
Boulder	> 256
Cobble	32 - 256
Gravel	1 - 32
Sand	0.0625 - 0.2-1
Silt	0.0039-0.0625
Clay	< 0.0039
Organics	-

#### APPENDIX A1 - HABITAT CLASSIFICATION SYSTEM

#### **Streams**

Provides a qualitative assessment of the physical characteristics of a stream and its potential as fish habitat.

<u>Riffle</u> - Portion of channel with increased velocity relative to Run and Pool habitat types; broken water surface due to effects of submerged or exposed bed materials; shallow (less than 25 cm). Limited value as habitat for larger juveniles and adults (i.e., feeding), but may be used extensively by young-of-the-year and small juveniles.

RF - Typical riffle habitat type; provides limited cover for all life stages.

RF/BG - Riffle habitat type with abundance of large cobble and boulder substrates. Limited cover for juveniles and adults; but, may be used extensively by young-of-the-year fish.

<u>Rapids</u> (RA) - Portion of channel with highest velocity relative to other habitat types. Deep (>25 cm); often formed by channel constriction. Substrate extremely coarse; dominated by large cobble and boulder substrates. Habitat provided for juveniles and adults in pocket eddies associated with substrate.

<u>Run</u> - Portion of channel characterized by moderate to high current velocity relative to Pool and Flat habitats; water surface largely unbroken. Potentially high habitat value for all life stages. Can be differentiated into five types based on depth and cover.

R1 - Maximum depth exceeding 1.5 m; average depth 1.0 m. High cover at all flow conditions. Highest quality habitat for larger juveniles and adults; limited value for young-of-the-year-fish.

R2/BG - Maximum depth reaching 1.0 m and generally exceeding 0.75 m; presence of large cobble or boulder substrates in channel. High cover at all flows. Moderate to high quality habitat for larger juveniles and adults.

R2 - Maximum depth reaching 1.0 m and generally exceeding 0.75 m. High cover during most flows, but not during base flows. Moderate quality habitat for juveniles and adults; limited value for young-of-the-year-fish.

R3/BG - Maximum depth of 0.75 m, but averaging < 0.50 m; presence of large cobble or boulder substrates in channel. Moderate cover at all flows. Moderate quality habitat for juveniles and adults; but, the value to young-of-the-year-fish is potentially high.

R3 - Maximum depth of 0.75 m, but averaging < 0.50 m. Low cover at all flows. Lowest quality habitat for juveniles and adults; but, the value to young-of-the-year-fish is potentially high.

<u>Flat</u> - Area of channel characterized by low current velocities (relative to RF and Run cover types); near-laminar (i.e., non-turbulent) flow. Depositional area dominated sand/silt substrates. Differentiated from Pool habitat type by high channel uniformity and lack of direct association with riffle/run complex. Potential habitat value for all life stages is moderate to high. Can be differentiated into five types based on depth and cover.

F1 - Maximum depth exceeding 1.5 m; average depth 1.0 m or greater. High cover at all flows. Highest quality habitat for larger juveniles and adults; limited value for young-of-the-year-fish.

F2/BG - Maximum depth reaching 1.0 m and generally exceeding 0.75 m; presence of cobble or boulder substrates in channel. High cover at all flows. Moderate to high quality habitat for juveniles and adults.

- F2 Maximum depth exceeding 1.0 m; generally exceeding 0.75 m. High cover during most flows, but not during base flows. Moderate quality habitat for juveniles and adults; limited value for young-of-the-year-fish.
- F3/BG Maximum depth of 0.75 m, but averaging < 0.50 m; presence of large cobble or boulder substrates in channel. Moderate cover at all flows. Moderate quality habitat for juveniles and adults; but, the value to young-of-the-year-fish is potentially high.
- F3 Maximum depth of 0.75 m, averaging less than 0.50 m. Low cover at all flows. Lowest quality habitat for juveniles and adults; but, the value to young-of-the-year-fish is potentially high.
- <u>Pool</u> Discrete portion of channel featuring increased depth and reduced velocity (downstream oriented) relative to Riffle and Run habitat types. Normally featuring Riffle/Run associations. Principal habitat value for all life stages is cover. When in close association with Riffle/Run habitats, value can be very high. Can be differentiated into three types based on depth.
  - P1 Maximum depth exceeding 1.5 m; average depth 1.0 m or greater; high cover at all flow conditions. Often intergrades with deep-slow type of R1. Highest quality habitat for larger juveniles and adults; limited value for young-of-the-year-fish.
  - P2 Maximum depth reaching or exceeding 1.0 m, generally exceeding 0.75 m. High cover at all but base flows. Moderate quality habitat for juveniles and adults; limited value for young-of-the-year-fish.
  - P3 Maximum depth of 0.75 m, averaging < 0.50 m. Low instream cover; includes small pocket eddies. Lowest quality habitat for all life stages.
- <u>Dispersed</u> (DIS) Portion of stream exhibiting no defined channel. Water depth rarely exceeding 0.25 m and often dispersed over boulder fields. Very limited value as fish habitat.

#### <u>Habitat Features</u> - Includes the following instream features:

- Chutes (CH) Area of channel constriction; generally resulting in channel deepening and increased velocity. Associated habitat types are Pool, Run, and Rapid.
- Ledges (LG) Areas of bedrock intrusion into the channel; often creates Chutes and Pool habitat.
- Falls (FAL) Area of channel exhibiting rapid vertical decent over boulder and bedrock. Often a barrier to fish passage.
- Cascade (CAS) Area of channel exhibiting rapid decent over boulder and bedrock, but, with no well defined vertical decent (i.e., falls). Often a barrier to fish passage.
- Outlet/Inlet (Out) Confluence of stream and lake; can be the outlet or inlet.

# APPENDIX A CLASSIFICATION SYSTEMS AND METHODS



Plate 13 Route 1 - Stream 118.2 looking upstream (17 June 1997).



Plate 14 Ulu Creek looking downstream (29 July 1997).



Plate 15 Frayed Knots River looking upstream (5 August 1997).



Plate 16 Snorkelling on the Frayed Knots River (3 August 1997).