

# **Wolf River Water Supply Impact Assessment Report**

### Prepared By:

Nuna Burnside Engineering and Environmental Ltd. PO Box 879 Building 764, Fred Coman Way Iqaluit NU X0A 0H0

and

Nuna Burnside Engineering and Environmental Ltd. 15 Townline Orangeville ON L9W 3R4

Prepared for:

Hamlet of Arviat

December 2010

File No: N-O15746

The material in this report reflects best judgement in light of the information available at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. Nuna Burnside Engineering and Environmental Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Wolf River Water Supply Impact Assessment Report

December 2010

### **Table of Contents**

| <b>1.0</b><br>1.1               | IntroductionStudy Background                                            |        |
|---------------------------------|-------------------------------------------------------------------------|--------|
| 2.0<br>2.1<br>2.2<br>2.3<br>2.4 | Site Location  Climate  Topography and Geomorphology  Drainage  Geology | 2<br>2 |
| 3.0                             | Wolf River Water Supply Intake                                          | 4      |
| 4.0                             | Field Work                                                              | 5      |
| 5.0                             | Future Water Supply Demands                                             | 6      |
| <b>6.0</b><br>6.1<br>6.2        | Impact Assessment Water Balance Fish Impact Assessment                  | 10     |
| 7.0                             | Mitigation Measures                                                     | 12     |
| 8.0                             | Recommendations                                                         | 13     |
| 9.0                             | Implementation Schedule                                                 | 14     |
| 10.0                            | References                                                              | 15     |
| Table                           | es                                                                      |        |
| Table<br>Table                  |                                                                         |        |
| Fiaure                          | es                                                                      |        |

- 1 Site Location Map
- 2 Wolf River Water Supply Intake
- 3 Topography and Geomorphology
- 4 Interpreted Wolf River Drainage Basin
- 5 Surficial Geology
- Bedrock Geology 6
- Sampling Locations 7

Wolf River Water Supply Impact Assessment Report

December 2010

# **Appendices**

A Climate Data

B Photographs

C As-Built Drawing

D Calculation Worksheets

E Sampling Results

Wolf River Water Supply Impact Assessment Report

December 2010

#### 1.0 Introduction

Arviat is located at (61°06'N, 94°03'W) on the western coastline of Hudson Bay, 225 km south of Rankin Inlet and 265 km north of Churchill, Manitoba (Figure 1). The community is situated on the northern shore of a peninsula that extends easterly into Hudson Bay.

The Hamlet of Arviat operates their municipal water supply facility under the Nunavut Water Board (NWB) License 3AM-ARV1015. The licence was issued on August 23, 2010 and expires on August 31, 2015. The Hamlet of Arviat currently receives water from the Wolf River water supply located 8.0 km southwest of the Hamlet (Figure 2). Water is pumped from the river during late summer and held in reservoirs located just outside of the community. Water is delivered to residents by water truck. A truck fill station is located beside the reservoirs.

# 1.1 Study Background

A study was completed in 2005 by IEG Environmental to evaluate the community's water supply options. Based on the geomorphological study and river flow estimates, it found that the Wolf River supply was the best option for the Hamlet and that it is sustainable and should have sufficient capacity to meet the Hamlet's needs for the next 20 years.

There are some concerns in the community with regards to the long term capacity of the Wolf River Water Supply. These concerns were expressed in the public hearings conducted in 2010 as part of the approval process for the Hamlet of Arviat's Class A licence. This study was listed as a condition of the licence in Part C, Item 8.

Wolf River Water Supply Impact Assessment Report

December 2010

#### 2.0 Site Location

### 2.1 Climate

The closest climate station to Arviat is the Rankin Inlet Airport Weather Station located 225 km north of Arviat. The Rankin Inlet area receives an average of 18.1 cm of rainfall and 119.7 cm of snowfall per annum. Mean annual precipitation totals 29.7 cm per annum. In July mean high and low temperatures are 14.9°C and 5.9°C, respectively. January mean high and low temperatures are -28.3°C and -35.5°C, respectively. Winds are generally north-west, and average 23 km/h (Rankin Inlet Weather Station, Climate Normals 1991-2000, Environment Canada, 2010). Climate data is included in Appendix A.

# 2.2 Topography and Geomorphology

The topography surrounding the Hamlet of Arviat is relatively flat with a slight rise when moving inland away from Hudson Bay. Topographic highs in the area are found along eskers made of glacially deposited sands and gravels. Approximately 20 to 30 percent of the land is shallow ponds with depths of 1 m or less. Land between the ponds is marshy tundra vegetated by grasses and sedges. Figure 3 illustrates the topography and land cover of the area. The area is located in a zone of continuous permafrost, extending from 30 m to over 100 m.

# 2.3 Drainage

Drainage around the Hamlet of Arviat and surrounding areas all eventually go into Hudson Bay. Since the area is so flat the main drainage divides located along eskers and bedrock outcrops. The Wolf River is located southwest of the community. The Wolf River drainage area is an estimated 650 km² (IEG Environmental, 2005). The interpreted drainage basin of Wolf River is shown in Figure 4.

#### 2.4 Geology

Arviat is located in the physiographic region of the Hudson Bay lowlands, characterized by low topographic relief, occasional bedrock outcrops and glacial and glacio-fluvial overburden sediments. Boulder fields and eskers are common. The Wolf River is located in a flat area that was once a glacial lake basin. The surficial geology includes alluvium deposits with some marine silt and sand as shown in Figure 5. Lakes that feed the Wolf River are formed in off lap sediments that have been affected by periglacial process and gullying.

Wolf River Water Supply Impact Assessment Report

December 2010

Local bedrock is Archean in age and generally overlain by glacial fluvial sediments. Bedrock on the peninsula where the Hamlet is located consists of tonalites, diorites and gabbros. Bedrock at the Wolf River intake consists of granitic rocks, granites and granodiorites. The bedrock geology of the area is displayed in Figure 6.

Wolf River Water Supply Impact Assessment Report

December 2010

# 3.0 Wolf River Water Supply Intake

The Hamlet of Arviat water supply intake is located on Wolf River approximately 8 km southwest of the community. The Hamlet pumps water from the intake during the late summer months August and September and stores the water in its water reservoirs to be used throughout the year. The water is typically pumped for approximately 27-30 days until the reservoirs are full. In 2010 due to technical issues the pumping period extended from August 17<sup>th</sup> to approximately October 25, 2010. The reservoir consists of two cells. Cell one has a storage capacity of 87,000 m<sup>3</sup> and Cell two is 56,000 m<sup>3</sup> with a total storage of 145,000 m<sup>3</sup>.

The intake consists of a pumphouse which houses a pump and generator and a fuel storage tank (Figure 2). The intake pumps from a large ponded area of the river approximately 30 metres from the river bank.

The intake screen is metal with 3/16 inch round holes throughout. A 150 ø reinforced suction hose is connected to the pump to provide suction. The screen on the intake is described in 1991 tender specs as a "Dolphin" floating suction strainer with 18/8 stainless steel strainer and tube with adaptors to 150 ø reinforced suction hose. The top of the intake floats at surface and the bottom of the intake is 3 to 4 feet off of the bottom.

The intake pipe consists of (ten) 4 meter lengths of tan, 150 ø reinforced suction hose. (Tender Specs,1991). The inside diameter of the pipe is 6 inches. Water is transported from the pumphouse to the water reservoirs (8 km away) by way of a black 8" HDPE pipe. Pictures of the intake are provided in Appendix B.

The pump used at the intake is a 4" Gorman Rupp self priming centrifugal pump. Based on the flow rate curve provided by the pump manufacturer and the intake design, the maximum pumping capacity is 34 L/s. The Hamlet does not currently measure the flow rate of water at the intake pump house however it is likely less than the maximum capacity. To be conservative, we have assumed that the pump is running at maximum capacity for the calculations in this report.

There were no "as-built" drawings of the intake created after construction of the facility in the early nineties. Nuna Burnside has produced an as-built drawing (Appendix C-1) based on field observations and information provided by the Hamlet and GN.

Wolf River Water Supply Impact Assessment Report

December 2010

### 4.0 Field Work

In July and September 2010, Nuna Burnside visited the site to collect information on the intake and river for use in this assessment. A topographic survey was completed around the intake area. Stream bottom profiles were collected upstream and downstream of the intake and flow rates were estimated. River flow calculations are provided in Appendix D.

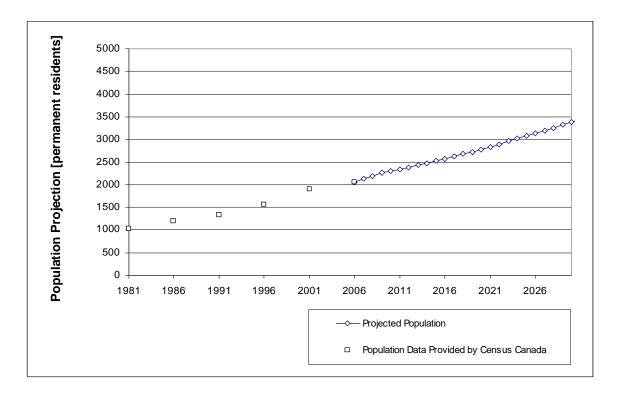
Water quality samples were taken up stream and downstream of the intake. Sampling locations are shown in Figure 7. There were no adverse water quality results identified. A summary of the results and laboratory Certificates of Analysis are provided in Appendix E.

Wolf River Water Supply Impact Assessment Report

December 2010

# 5.0 Future Water Supply Demands

The Nunavut Bureau of Statistics has projected population growth for communities in the Kivalliq region such as Arviat to have a 3.2% growth rate. Population projections from 2009 to 2036 were obtained from data provided on their website. Table 1 and Graph A show the projected population of the Hamlet for the next 10 years. Detailed calculations are shown in Appendix D.


**Table 1 Hamlet of Arviat Population Projections** 

| Year | Projected Population |
|------|----------------------|
| 2009 | 2254                 |
| 2010 | 2296                 |
| 2011 | 2339                 |
| 2012 | 2383                 |
| 2013 | 2428                 |
| 2014 | 2474                 |
| 2015 | 2521                 |
| 2016 | 2571                 |
| 2017 | 2622                 |
| 2018 | 2674                 |
| 2019 | 2728                 |

Wolf River Water Supply Impact Assessment Report

December 2010

**Graph A** Population Projections, Arviat Nunavut



The North West Territories Municipal and Community Affairs (MACA) planning guidelines suggest that the increase in the projected per capita water use in a community of less than 2000 people should be calculated using the following formulae. Although Arviat has a population greater than 2000, they are still on a truck distribution system and therefore this formula remains valid.

RWU x 
$$(1.0 + (0.00023 \times Population))$$

The RWU is the residential water use rate per capita. In the MACA guidelines it is assumed to be 90 L per capita for municipalities where water is not distributed by a piping system. A RWU of 65 L per capita (Lpcd) was used in the "Potable Water Supply Study" completed by IEG in 2005, to fit the recorded water usage rates for the Hamlet. This is a lower RWU than most communities however it has been confirmed that Arviat has a lower water use rate per capita than other communities. The factor 0.00023 x population represents commercial and industrial water use.

This equation was used to produce projected water use requirements for the next 10 years (Table 2 and Graph B). Calculations are included in Appendix D.


Wolf River Water Supply Impact Assessment Report

December 2010

**Table 2 Projected Water Use Requirements** 

| Year | Projected Population | Projected Daily<br>Consumption m <sup>3</sup> | Projected Annual<br>Consumption m <sup>3</sup> |
|------|----------------------|-----------------------------------------------|------------------------------------------------|
| 2009 | 2254                 | 222                                           | 81,199                                         |
| 2010 | 2296                 | 228                                           | 83,238                                         |
| 2011 | 2339                 | 234                                           | 85,346                                         |
| 2012 | 2383                 | 240                                           | 87,524                                         |
| 2013 | 2428                 | 246                                           | 89,773                                         |
| 2014 | 2474                 | 252                                           | 92,095                                         |
| 2015 | 2521                 | 259                                           | 94,491                                         |
| 2016 | 2571                 | 266                                           | 97,066                                         |
| 2017 | 2622                 | 273                                           | 99,721                                         |
| 2018 | 2674                 | 281                                           | 102,458                                        |
| 2019 | 2728                 | 289                                           | 105,331                                        |

**Graph B** Water Use Projections, Arviat Nunavut



Wolf River Water Supply Impact Assessment Report

December 2010

Water use data was obtained from the Hamlet for 2004 to 2010. Graph B plots the recorded water use data and the projected water use based on projected population increases for the next 10 years. Table 2 indicates that based on the MACA formulae, in 2009 the annual consumption should be 81,199 m³. The actual measured water consumption used in 2009 was 72,807 m³. The current license states that the allowable water use for the community is 86,000 m³ per year.

Graph B indicates that water use has levelled off over the past few years and that the actual water use is less than the projected water use. This is likely because the projected water use is determined based on population increases however water use in Arviat is controlled by the Hamlet's capacity to deliver water to its residents. Discussions with the Hamlet and residents confirm that there have been issues with meeting the demands of water supply with their current infrastructure, equipment and funding.

Wolf River Water Supply Impact Assessment Report

December 2010

# 6.0 Impact Assessment

#### 6.1 Water Balance

The Wolf River drainage area is an estimated 650 km<sup>2</sup> (IEG Environmental, 2005). The interpreted drainage basin of Wolf River is shown in Figure 4. Using an annual precipitation rate of 297 mm and an annual evapotranspiration rate of 200 mm, the net recharge to the catchment area is approximately 63,180,000 m<sup>3</sup> per year (calculation details are included in Appendix D).

The annual withdrawal rate of the Hamlet will be approximately 105,331 m³ by year 2019. This is less than 1 percent of the estimated river catchment recharge rate of approximately 63,180,000 m³ a year. Average flows for the Wolf River estimated using flow modeling resulted in 0.01 m³/s Dec-May and 11.6 m³/s June-Nov (IEG, 2005). The average flow of the river upstream of the intake was measured by Nuna Burnside to be approximately 14.3 m³/s in September 2010 which is a time when the river level is seasonally low. The maximum intake rate of the pump is 0.034 m³/sec. This is 0.2% of the total estimated flow of the river at the intake.

Since the volume of water pumped from the Wolf River at the intake is only a fraction of the total water in the river, pumping should not affect the water levels of the river.

# 6.2 Fish Impact Assessment

As part of the conditions of the NWB water licence (Part C Item 4) the water intake has been evaluated to ensure compliance with the DFO guidelines for freshwater intakes. Compliance with the guidelines provided by the Department of Fisheries and Oceans will ensure that fish are not impacted by the intake.

#### **6.2.1** Existing Intake Information

The existing intake location is at Wolf River. This intake operates during the summer months, pumping water from the river to fill the Hamlet reservoirs (Operations staff, pers. comm.). The intake floats approximately 1 to 1.2 metres off the river bed. Based on information gathered from a local fisherman, the main species of fish found in this location are grayling (*Thymallus arcticus*) and stickleback (*Gasterosteus*). Stickleback fish have been found in the Hamlet's reservoirs (observations by operations staff). The intake is a "Dolphin Floating Suction Strainer" used primarily for oil spills and dewatering applications in the mining industry and is described as a cylindrical perforated stainless steel screen (24.2cm long x 40.0cm diameter) with a sealed top and bottom.

Wolf River Water Supply Impact Assessment Report

December 2010

#### 6.2.2 DFO Fish Screen Guidelines

The DFO guideline on end-of-pipe intakes requires protection of fish with a minimum fork length of 25mm and a maximum screen opening of 2.54mm to prevent entrainment or impingement of fish. The DFO guideline is based upon fish swimming ability and water velocities around the intake being less than critical swimming velocities. This calculation requires a maximum intake flow rate to be provided.

# 6.2.3 Compliance of Existing Screen with DFO Guidelines

The intake screen open and effective areas were determined based on a round screen diameter of 3/16" (4.76mm). This resulted in an Open Screen Area of 37%. The velocity through the existing screen was estimated to be 0.29 m/s which is greater than the recommended velocity for swimming ability of subcarangiform fish (salmonids, cyprinids, percids) of 0.11m/sec. The opening of the existing screen is 4.76mm which also exceeds the recommended maximum opening of 2.54mm.

The existing screen does not comply with the DFO Freshwater Intake End-of-Pipe Intake Guidelines (DFO, 1995) based on screen opening and velocity.

A fabricated screen using the recommended sized opening (2.54mm or less) could be retrofitted to the existing intake. Based on the calculations used from the DFO guideline, a screen that was 40cm in diameter and 50cm long with a maximum screen opening of 2.54mm would comply with the DFO Fish Screen Guidelines. The supporting calculations are provided in Appendix D.

Wolf River Water Supply Impact Assessment Report

December 2010

# 7.0 Mitigation Measures

To ensure that the water level is not impacted by pumping the NWB license requires river water levels will be monitored at Wolf River monthly during thawed conditions. This data can then be used to establish typical water levels and provide a better understanding of fluctuations of flow in the river. A minimum water level should be established and used as a reference during pumping to ensure that pumping does not negatively affect the river water levels. The water level will be measured based on a benchmark location established on the pumphouse. The benchmark location is shown in Figure C-1 and as a photograph in Appendix B. In September 2010, the water level was measured as 2.36 m below the benchmark.

If impacts to river water levels are observed, mitigation measures could include reducing pumping rates and increasing the length of time of pumping.

Wolf River Water Supply Impact Assessment Report

December 2010

### 8.0 Recommendations

The current intake screen does not comply with the DFO guidelines for Freshwater Intakes. A new screen that meets the requirements as described in Section 6.23 is required to meet the license conditions.

The installation of a flow meter at the pump house would provide a better indication of the flow rate at the intake screen. A flow meter was recommended by INAC in their 2009 inspection of the facility.

Wolf River Water Supply Impact Assessment Report

December 2010

# 9.0 Implementation Schedule

A new screen should be installed before pumping begins in late summer 2011. Monitoring of water levels at the intake during thawed conditions should commence in the spring of 2011 as part of the annual monitoring program.

Wolf River Water Supply Impact Assessment Report

December 2010

#### 10.0 References

DFO, 1995. Freshwater Intake End of Pipe Fish Screen Guidelines, Department of Fisheries and Oceans, Government of Canada, 1995.

Environment Canada, 2010. Canadian Climate Normals 1971-2000, Rankin Inlet A Weather Station. Environment Canada.

<a href="http://climate.weatheroffice.ec.gc.ca/climate">http://climate.weatheroffice.ec.gc.ca/climate</a> normals/results e.html?StnID=1721& autofwd=1>. Accessed Sept 21, 2010.

IEG, 2005. Potable Water Supply Study, Arviat, NU, IEG Environmental, December 2005.

Nunavut Bureau of Statistics, 2010. Kivalliq Community Population Projections, 2009 to 2036, Government of Nunavut. <a href="http://www.gov.nu.ca/eia/stats/population.html">http://www.gov.nu.ca/eia/stats/population.html</a>. Accessed Sept 21, 2010.

OFESS/O

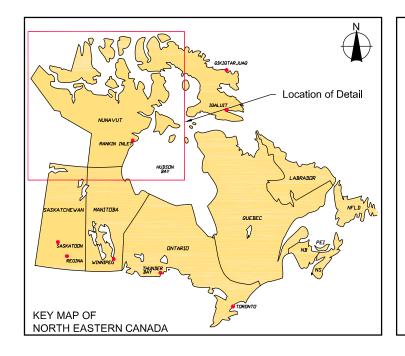
J.R. WALLS LICENSEE

WITING

Respectively Submitted,

Stephanie Charity, B.Sc., P.Geo.

Christopher Pfohl, A.Sc.T.


Jim Walls



**Figures** 



Map Reference: Map Art Publishing

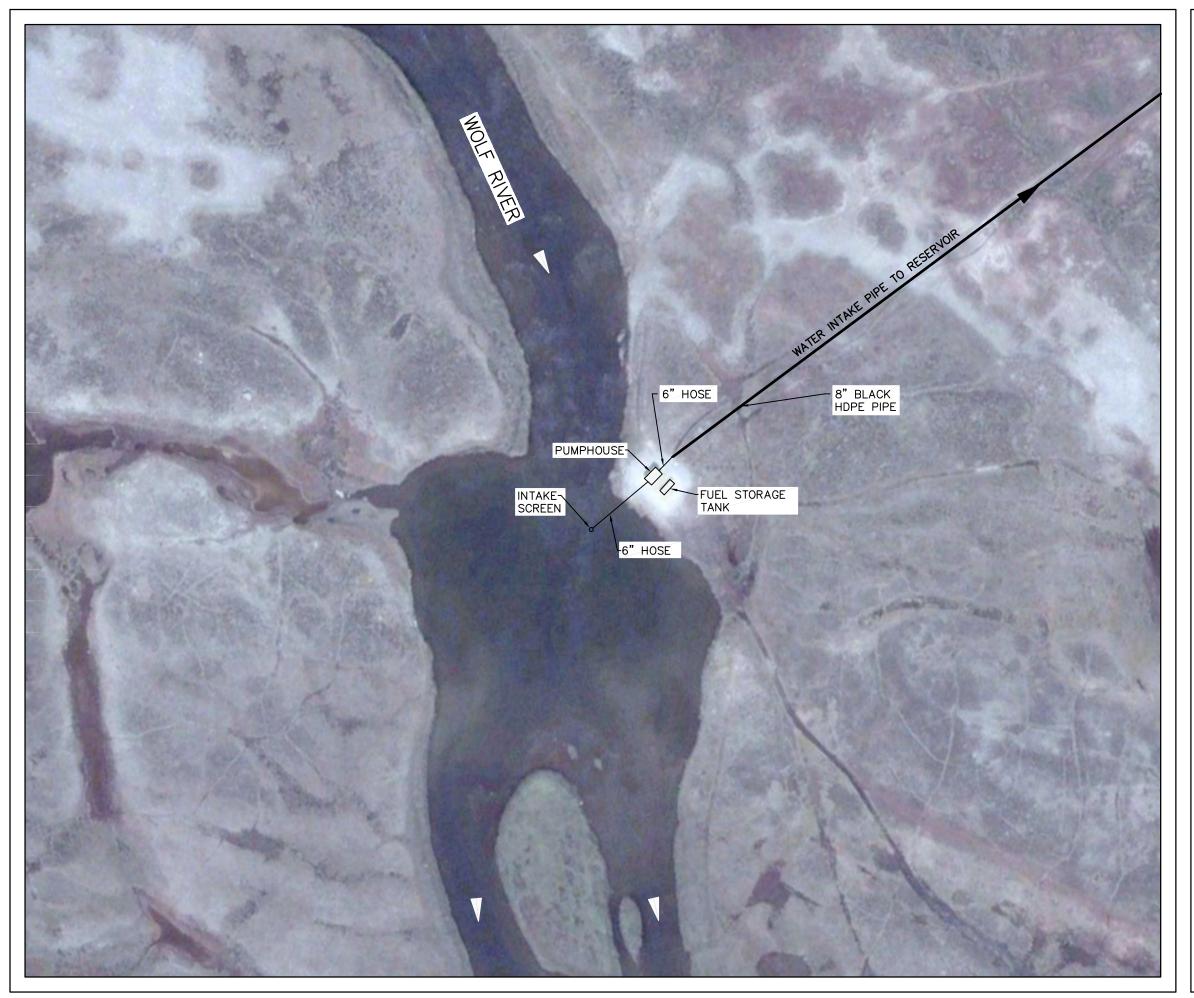


# FIGURE 1 - SITE LOCATION MAP

HAMLET OF ARVIAT HAMLET OF ARVIAT, NUNAVUT

# WOLF RIVER WATER SUPPLY IMPACT ASSESSMENT

December, 2010


Project Number: N-O15746

Prepared by: C. Dickie

Verified by: S. Charity



N-O15746 WOLF RIVER IMPACT ASSESS 2010 SL.dwg



HAMLET OF ARVIAT HAMLET OF ARVIAT, NUNAVUT WATER SUPPLY IMPACT ASSESSMENT

# **WOLF RIVER WATER SUPPLY INTAKE**

### LEGEND



WATER FLOW DIRECTION

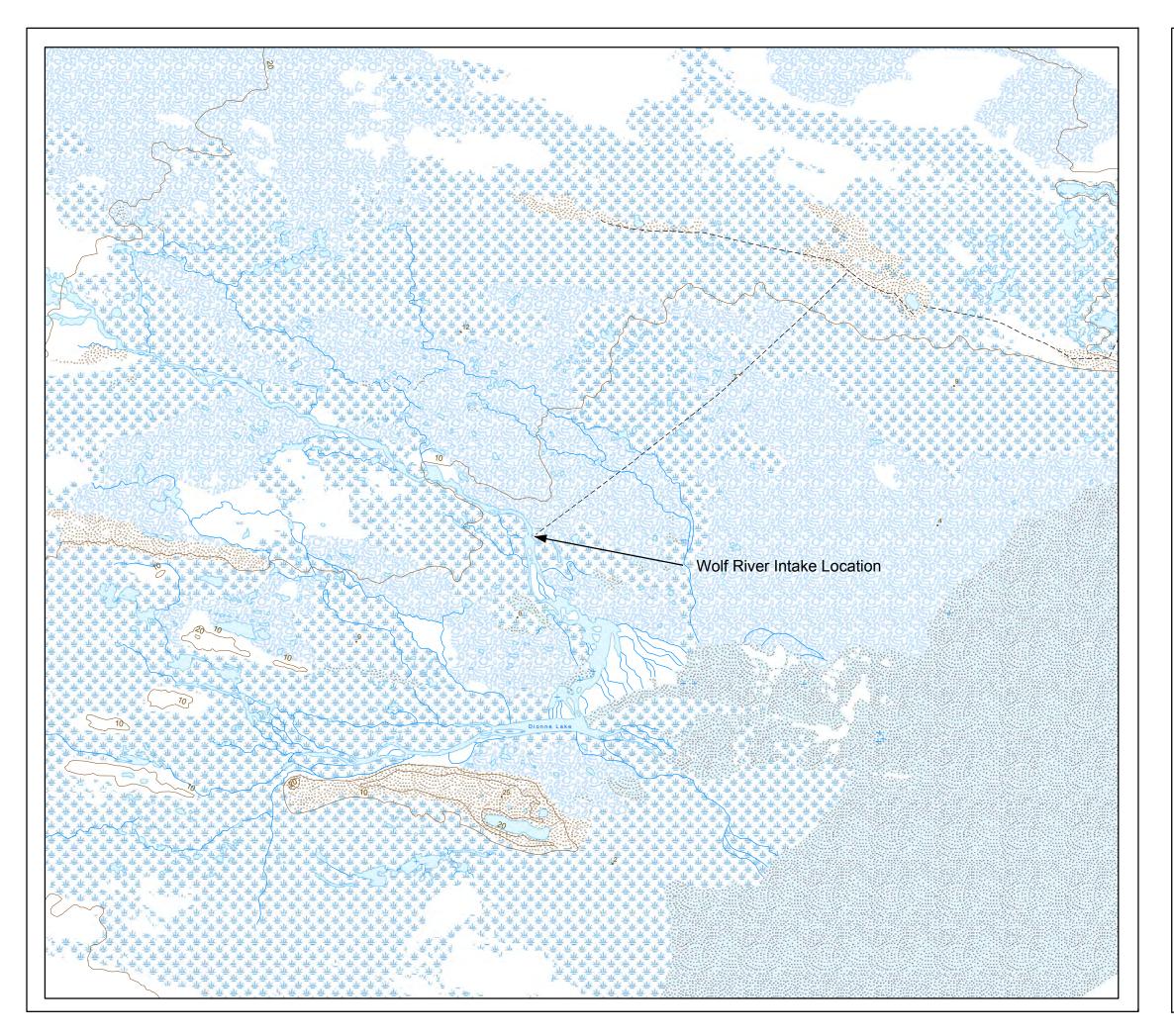
Satellite Image Source:

Background colour satellite image obtained from Google Earth Pro. © Google Earth

Pro: Image © 2010 DigitalGlobe, Photo Date: July, 2006



December, 2010


Projection: UTM Zone 15 Datum: NAD83 Project Number: N-015746

Prepared by: C. Dickie

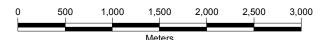
Verified by: S. Charity



N-O15746 WOLF RIVER IMPACT ASSESS 2010 WATER INTAKE.dwg



# FIGURE 3 HAMLET OF ARVIAT HAMLET OF ARVIAT, NUNAVUT WATER SUPPLY IMPACT ASSESSMENT


# TOPOGRAPHY & GEOMORPHOLOGY

# **LEGEND**

- Elevation Point
- Rock
- Water Course Permanecy: None
- ---- Water Course Permanecy: Intermittent
  - Water Course Permanecy: Permanent
- Water Course Permanecy: Unknown
- ----- Portage
- ----- Trail
- ---- Trail: Undefined
  - --- Contour
- Sand Area
- Sand & Gravel Pit
- <u>ஈ</u> ் ு wetland

  - Waterbody: Permanent
- Waterbody: Intermittent
- Tundra Pond
- © Department of Natural Resources Canada. All rights reserved





Scale: 1:40,000 December, 2010 Project Number:N-O157460 Projection: UTM Zone 15 Datum: NAD 83

Prepared By: Z. Nevar, C. Dickie

Verified By: S. Charity



 $E. Project N Jobs NO Jobs NO 15746 IARVIAT\_2010 ASSESSMENT STUDIES IMAP(157460\_WOLFRIVER\_IMPACT\_ASSESS\_2010\_TOPOGRAPHY.mxd) AND STUDIES IMAP(157460\_WOLFRIVER\_IMPACT\_ASSESS\_2010\_TOPO$ 



HAMLET OF ARVIAT HAMLET OF ARVIAT, NUNAVUT WATER SUPPLY IMPACT ASSESSMENT

# INTERPRETED WOLF RIVER DRAINAGE BASIN

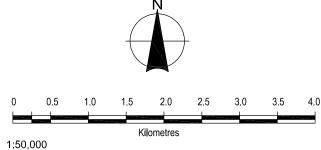
# LEGEND

—10m — EXISTING CONTOUR, 10m INTERVAL

Obtained from the National Topographic Digital

Database

— INTERPOLATED CONTOUR, 1m INTERVAL


Obtained by using AutoCAD to interpolate 1m contours from the National Topographic Digital 10m contours

INTERPOLATED MAJOR DRAINAGE BOUNDARY

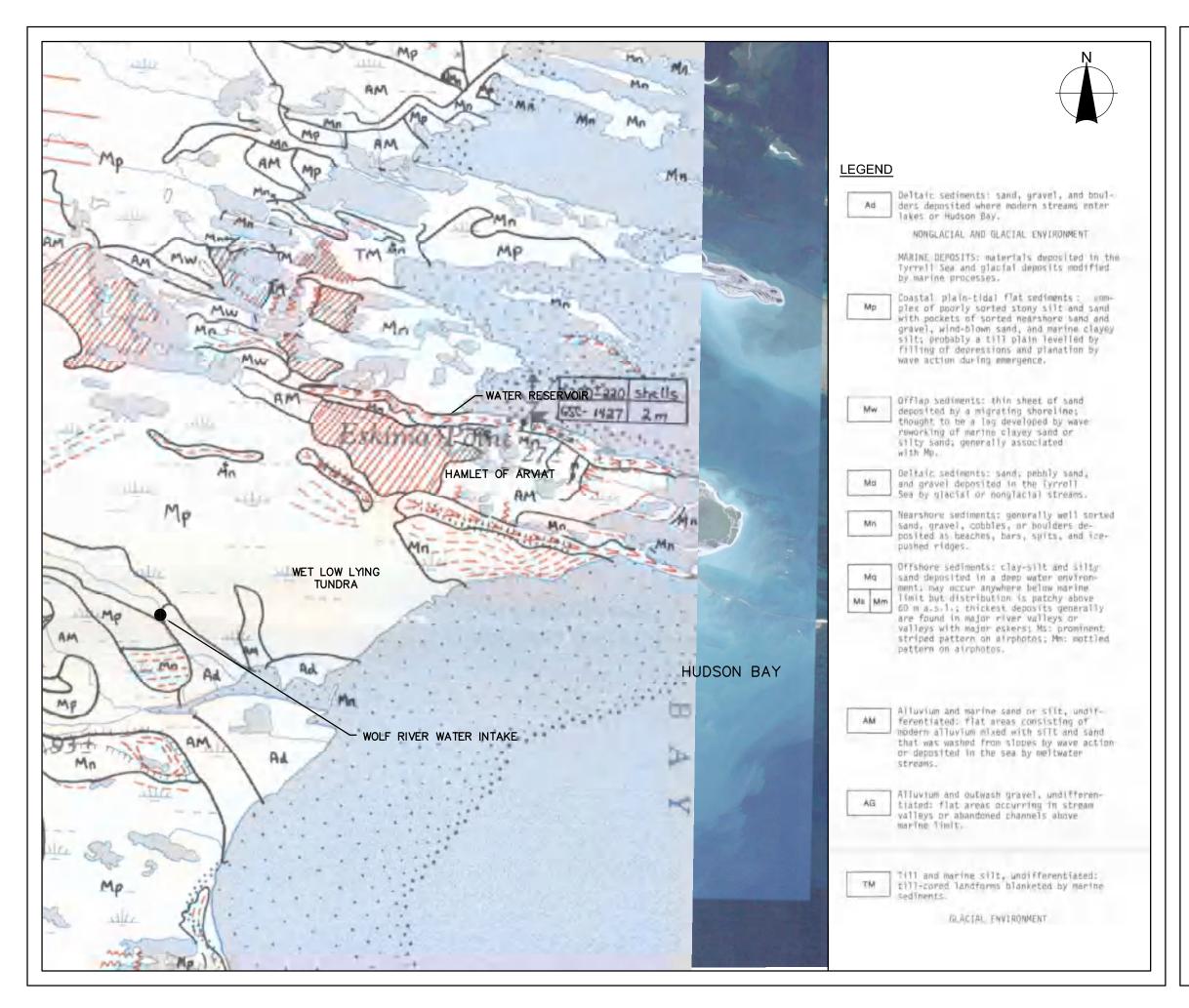
INTERPOLATED WOLF RIVER DRAINAGE

INTERPOLATED SURFACE WATER & SHALLOW GROUNDWATER FLOW DIRECTION

Map Source:
Background mapping obtained from the National Topographic Digital Database.



December, 2010


Projection: UTM Zone 15 Datum: NAD83 Project Number: N-015746

Prepared by: C. Dickie

Verified by: S. Charity



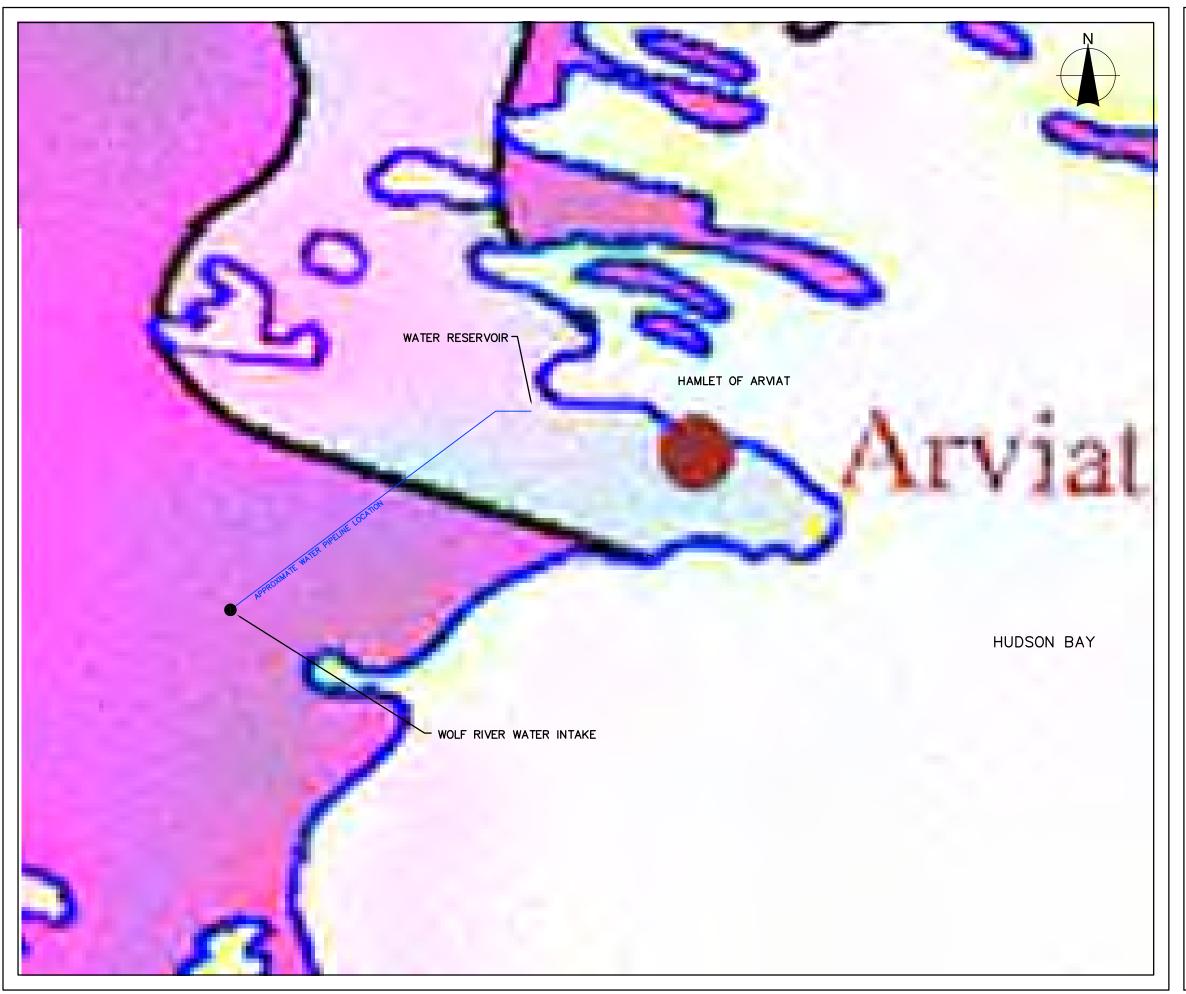
N-O15746 WOLF RIVER IMPACT ASSESS 2010 DRAINAGE BASIN.dwg



# HAMLET OF ARVIAT HAMLET OF ARVIAT, NUNAVUT WATER SUPPLY IMPACT ASSESSMENT

# SURFICIAL GEOLOGY

#### LEGEND


| Symbols                                                                                                                                                                                                                                   |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                                                                                                                                                                           |  |  |  |  |  |
| Small bestrock syttems                                                                                                                                                                                                                    |  |  |  |  |  |
| Drumlin or Huting (direction of ice flow known, immoun)                                                                                                                                                                                   |  |  |  |  |  |
| Erag and Eall (direction of the film known)                                                                                                                                                                                               |  |  |  |  |  |
| i thear feature related to the flow but obscured by collification processes, water-laid deposits, were reworking, or trees.                                                                                                               |  |  |  |  |  |
| Glacial atriae (direction of its markers known, amenom, location of measurement at centre of staff, pider string gray with broken staff).                                                                                                 |  |  |  |  |  |
| Frend of ribbind or minor moraline ridges                                                                                                                                                                                                 |  |  |  |  |  |
| Humocky morates                                                                                                                                                                                                                           |  |  |  |  |  |
| DeGreen expaines; straight, approximately I makink end expaine<br>ridges built parallel to an ice front, possibly deposited<br>annually by floated the subserved in a set or late.                                                        |  |  |  |  |  |
| Arms of ristons forced by particle allowers                                                                                                                                                                                               |  |  |  |  |  |
| Trynd of mearthors cartha fidges ortainsating as teaches. Ears,                                                                                                                                                                           |  |  |  |  |  |
| There (drengton of the trees, unknown), may be confused with as obstured by nearshare features, peniested beneath water works where known or inferred.                                                                                    |  |  |  |  |  |
| Seltuster Johnson, steam hided channel commonly cut in bedrack of 1111                                                                                                                                                                    |  |  |  |  |  |
| or sitry and more with up to in our such a quaric deposits                                                                                                                                                                                |  |  |  |  |  |
| Turbid lake: combains continue) involof suspended rediment<br>during for-free derivors; rarely cocurs above marine limit,<br>and loalsates (obtaining or a) teration of the active layer<br>due no aver eaching or aniffortion surgestes. |  |  |  |  |  |
| Lines of marter subpergence                                                                                                                                                                                                               |  |  |  |  |  |
| Calarpamenti spenerally in unconsoliazena aminones                                                                                                                                                                                        |  |  |  |  |  |
| Pulso-like feature                                                                                                                                                                                                                        |  |  |  |  |  |
| Tallen discritis commonly formed where ice shows or bank<br>failures have discounted the vegetation out over alluyist<br>sand                                                                                                             |  |  |  |  |  |
| Geological boundary                                                                                                                                                                                                                       |  |  |  |  |  |
| Sperocarbon, data.                                                                                                                                                                                                                        |  |  |  |  |  |
| Satellite Image Source: Background colour satellite image obtained from Google Earth Pro.  Surficial Geology Map Source: Surficial Geology Map 8-1980 obtained from the Natural Resources Canada, MIRAGE website.                         |  |  |  |  |  |
| 0 1.0 2.0 3.0 4.0 5.0 6.0                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                                                                                                                                                                                                           |  |  |  |  |  |
| Kilometres                                                                                                                                                                                                                                |  |  |  |  |  |
| 1:75,000                                                                                                                                                                                                                                  |  |  |  |  |  |
| December, 2010 Projection: UTM Zone 15 Project Number: N-0157460 Datum: NAD83                                                                                                                                                             |  |  |  |  |  |
|                                                                                                                                                                                                                                           |  |  |  |  |  |



Verified by: S. Charity

N-O15746 WOLF RIVER IMPACT ASSESS 2010 SG.dwg

Prepared by: C. Dickie

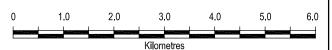


HAMLET OF ARVIAT HAMLET OF ARVIAT, NUNAVUT WATER SUPPLY IMPACT ASSESSMENT

# **BEDROCK GEOLOGY**

# <u>LEGEND</u>

**ARCHEAN** 


Atd

Tonalites, diorites, and gabbros

Agd

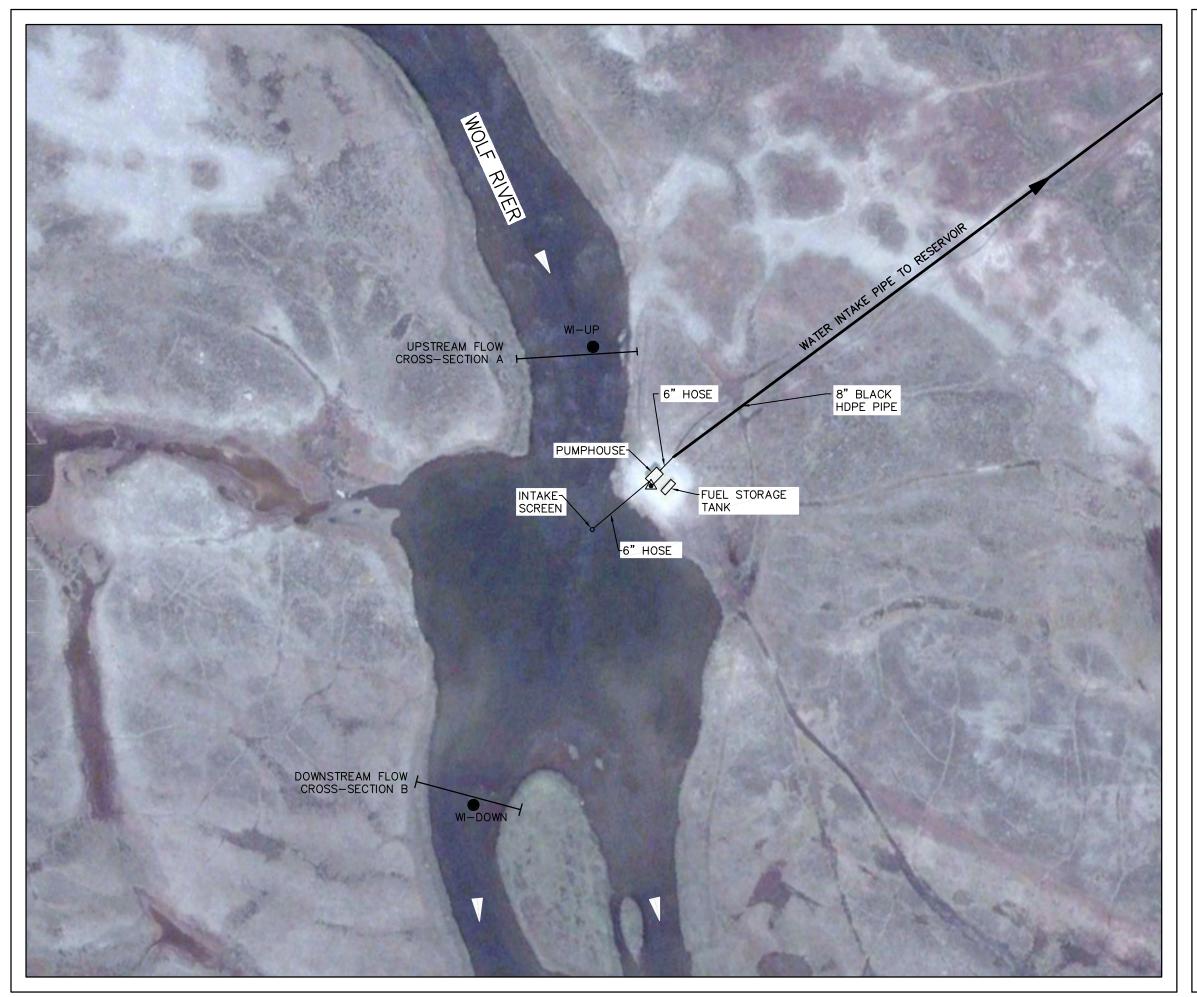
Granitic rocks, granites, and granodiorites

Bedrockl Geology Map Source:
Bedrock Geology Map Open File 4236 obtained from the Natural Resources Canada, MIRAGE website.



1:75,000 December, 2010

Project Number: N-015746


Projection: UTM Zone 15 Datum: NAD83

Prepared by: C. Dickie

Verified by: S. Charity



N-O15746 WOLF RIVER IMPACT ASSESS 2010 BG.dwg



HAMLET OF ARVIAT HAMLET OF ARVIAT, NUNAVUT WATER SUPPLY IMPACT ASSESSMENT

# **SAMPLING LOCATIONS**

# LEGEND

WATER SAMPLE LOCATION

WATER ELEVATION BENCHMARK

WATER FLOW DIRECTION

Satellite Image Source:

Background colour satellite image obtained from Google Earth Pro. © Google Earth

Pro: Image © 2010 DigitalGlobe, Photo Date: July, 2006



1:1,500

December, 2010

Projection: UTM Zone 15 Datum: NAD83 Project Number: N-015746

Prepared by: C. Dickie

Verified by: S. Charity



N-O15746 WOLF RIVER IMPACT ASSESS 2010 SAMPLE LOCATIONS.dwg



# Appendix A Climate Data

# **Climate Data**

#### **Rankin Inlet Climate Normals Data Summary**

|                           | Jan   | Feb   | Mar   | Apr   | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov   | Dec   | Annual<br>Total |
|---------------------------|-------|-------|-------|-------|------|------|------|------|------|------|-------|-------|-----------------|
| Total Precipitation (mm)  | 6.6   | 8.9   | 12.6  | 14.3  | 18.4 | 29.8 | 39.5 | 57.6 | 43.8 | 34.6 | 19.8  | 11.3  | 297.2           |
| Rain (mm)                 | 0.0   | 0.1   | 0.0   | 1.0   | 7.4  | 25.0 | 39.5 | 57.3 | 39.2 | 11.9 | 0.1   | 0.0   | 181.5           |
| Snow (cm)                 | 6.7   | 9.3   | 12.9  | 13.6  | 11.5 | 4.9  | 0.0  | 0.3  | 4.6  | 23.1 | 20.9  | 11.9  | 107.8           |
| Wind Speeds (km/hour)     | 23.9  | 23.9  | 23.4  | 22.4  | 22.1 | 19.8 | 19.2 | 21.1 | 24.2 | 26.5 | 25.3  | 24.0  |                 |
| Average Temperatures (°C) | -31.9 | -30.1 | -25.2 | -16.3 | -5.9 | 4.2  | 10.4 | 9.5  | 3.4  | -5.3 | -17.8 | -26.7 |                 |

<sup>\*</sup>Canadian Climate Normals 1971-2000, Environment Canada, Rankin Inlet Airport Weather Station

Specific climate data for Arviat was not available. The closest weather station is located in Rankin Inlet, 225 km north of Arviat.



Appendix B Photographs

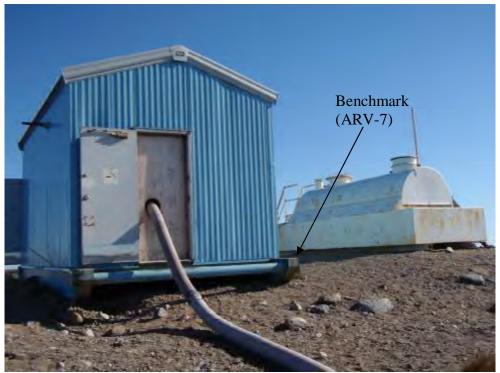



Photo 1: Wolf River Water Intake Pumphouse



Photo 2: Wolf River Water Intake





Photo 3: Water intake pipe



Photo 4: Water intake floating in water





Photo 6: Water Intake Screen

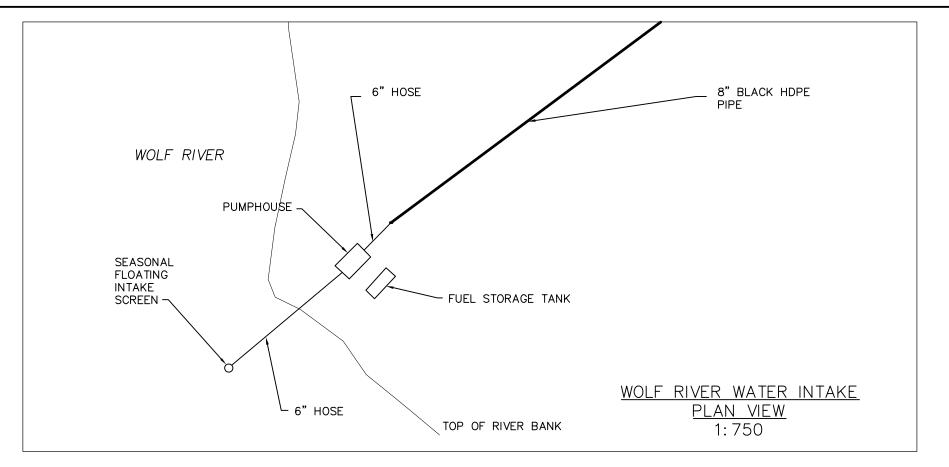


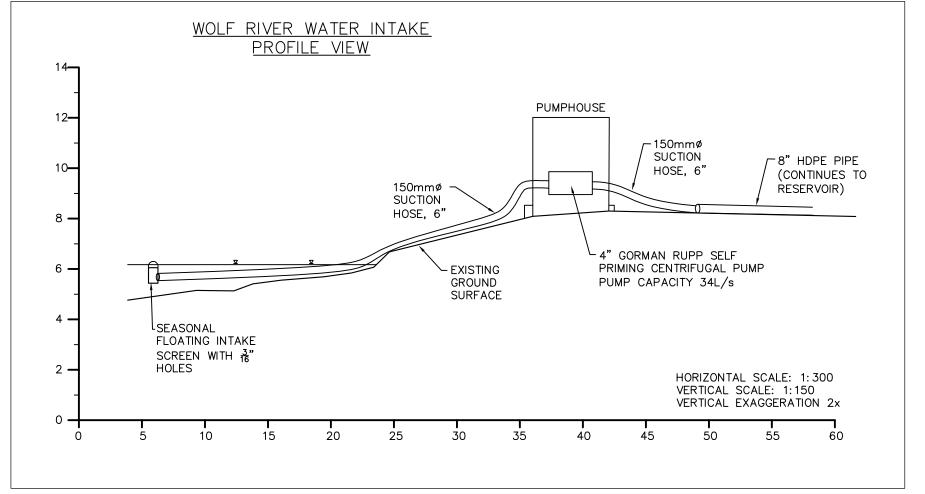
Photo 5: Looking downstream of Intake





Photo 8: Upstream of Wolf River Intake





Photo 7: Water pipeline going back towards Arviat





# Appendix C As-Built Drawing





- This drawing is th exclusive property of Nuna Burnside Engineering and Environmental Ltd. and the reproduction of any part without prior written consent of this office is strictly prohibited.
- 2. Drawing has been completed based on field observations by Nuna Burnside.
- This drawing is to be read and understood in conjunction with all other plans and documents applicable to this project.
- 4. Do not scale the drawings.

| No. | Issue / Revision           | Date      |
|-----|----------------------------|-----------|
| 1   | Client Review and Approval | Dec, 2010 |
|     |                            |           |
|     |                            |           |
|     |                            |           |
|     |                            |           |
|     |                            |           |
|     |                            |           |
|     |                            |           |
|     |                            |           |



Project Title

# HAMLET OF ARVIAT

ARVIAT, NUNAVUT
WOLF RIVER WATER SUPPLY
IMPACT ASSESSMENT

Drawing Title

# WOLF RIVER WATER INTAKE PLAN AND PROFILE DETAILS

| Drawn       | Checked | Designed           | Checked | Drawing No. |  |
|-------------|---------|--------------------|---------|-------------|--|
| CD          | SC      | SC                 | GP      | • 4         |  |
| Scale<br>AS | NOTED   | Project No<br>N-01 | 157460  | C-1         |  |

| | | N 015746 WOLF RIVER IMPACT ASSESS PLAN DETAILS.dwg 9 Plotted: Dec 22, 2010—2:00pm



# Appendix D Calculation Worksheets

# **Wolf River Flow Calculations**

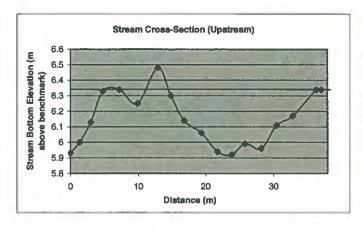
### **FLOW MEASUREMENTS**

| Trial | Distance (m) | Time (sec) | Flow (m/s) |     |
|-------|--------------|------------|------------|-----|
| 1     | 60           | 72         | 0.83       |     |
| 2     | 60           | 92         | 0.65       |     |
| 3     | 10           | 21         | 0.48       |     |
| 4     | 10           | 19         | 0.53       |     |
|       |              | Average    | 0.62       | m/s |

### **Depth Measurements - River Cross-sections**

### Section A - Upstream of Intake

Avg Flow Velocity Water Elevation


0.62 m/s

6.34 m above benchmark

West Bank

| Distance (m) | Bottom of<br>Stream<br>Elevation<br>(m abm) | Water Depth | Average<br>Velocity (m/s) | Area (m²)  | Flow (m³/s) |
|--------------|---------------------------------------------|-------------|---------------------------|------------|-------------|
| 0            | 5.93                                        | 0.41        | 0                         | 0.00       | 0.00        |
| 1.35         | 6                                           | 0.34        | 0.62                      | 0.51       | 0.31        |
| 3            | 6.13                                        | 0.21        | 0.62                      | 0.45       | 0.28        |
| 4.8          | 6.33                                        | 0.01        | 0.62                      | 0.20       | 0.12        |
| 7.2          | 6.34                                        | 0           | 0                         | 0.01       | 0.00        |
| 9.9          | 6.25                                        | 0.09        | 0.62                      | 0.12       | 0.08        |
| 12.9         | 6.48                                        | 0           | 0                         | 0.14       | 0.00        |
| 14.85        | 6.3                                         | 0.04        | 0.62                      | 0.04       | 0.02        |
| 16.8         | 6.14                                        | 0.2         | 0.62                      | 0.23       | 0.15        |
| 19.35        | 6.06                                        | 0.28        | 0.62                      | 0.61       | 0.38        |
| 21.75        | 5.94                                        | 0.4         | 0.62                      | 0.82       | 0.51        |
| 23.85        | 5.92                                        | 0.42        | 0,62                      | 0.86       | 0.53        |
| 25.8         | 5.99                                        | 0.35        | 0.62                      | 0.75       | 0.47        |
| 28.2         | 5.96                                        | 0.38        | 0.62                      | 0.88       | 0.54        |
| 30.45        | 6.11                                        | 0.23        | 0.62                      | 0.69       | 0.43        |
| 32.85        | 6.17                                        | 0,17        | 0.62                      | 0.48       | 0.30        |
| 36.3         | 6.34                                        | 0           | 0                         | 0.29       | 0.00        |
| 37.05        | 6.34                                        | 0           | 0                         | 0.00       | 0.00        |
|              |                                             |             |                           | Total Flow | 4.11        |

East Bank





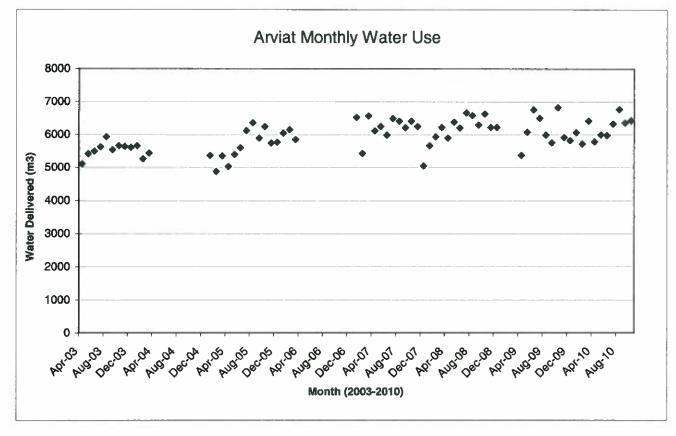
# Water Use Projections for the Hamlet of Arviat, Nunavut

#### **Key Assumptions**

Starting Year: 2006 Starting Population: 2060
Population Growth Rate: 3.2% Residential Water Usage Rate [L/cd]:: 65.0

| Planning<br>Year | Calendar<br>Year | Projected<br>Population <sup>1</sup> | Projected<br>Water<br>Consumption <sup>2</sup> |              |               |          |           |
|------------------|------------------|--------------------------------------|------------------------------------------------|--------------|---------------|----------|-----------|
|                  |                  |                                      | [Lpcd]                                         | [Litres/day] | [Litres/year] | [m3/day] | [m3/year] |
|                  | 2006             | 2060                                 | 95.8                                           | 197342       | 72,029,764    | 197      | 72,030    |
|                  | 2007             | 2126                                 | 96.8                                           | 205762       | 75,103,183    | 206      | 75,103    |
|                  | 2008             | 2195                                 | 97.8                                           | 214704       | 78,367,133    | 215      | 78,367    |
| 0                | 2009             | 2254                                 | 98.7                                           | 222464       | 81,199,256    | 222      | 81,199    |
|                  | 2010             | 2296                                 | 99.3                                           | 228051       | 83,238,491    | 228      | 83,238    |
|                  | 2011             | 2339                                 | 100.0                                          | 233825       | 85,346,223    | 234      | 85,346    |
|                  | 2012             | 2383                                 | 100.6                                          | 239791       | 87,523,861    | 240      | 87,524    |
|                  | 2013             | 2428                                 | 101.3                                          | 245953       | 89,772,845    | 246      | 89,773    |
| 5                | 2014             | 2474                                 | 102.0                                          | 252314       | 92,094,649    | 252      | 92,095    |
|                  | 2015             | 2521                                 | 102.7                                          | 258879       | 94,490,778    | 259      | 94,491    |
|                  | 2016             | 2571                                 | 103.4                                          | 265935       | 97,066,316    | 266      | 97,066    |
|                  | 2017             | 2622                                 | 104.2                                          | 273210       | 99,721,473    | 273      | 99,721    |
|                  | 2018             | 2674                                 | 105.0                                          | 280707       | 102,457,919   | 281      | 102,458   |
| 10               | 2019             | 2728                                 | 105.8                                          | 288578       | 105,330,846   | 289      | 105,331   |
|                  | 2020             | 2784                                 | 106.6                                          | 296832       | 108,343,792   | 297      | 108,344   |
|                  | 2021             | 2841                                 | 107.5                                          | 305331       | 111,445,688   | 305      | 111,446   |
|                  | 2022             | 2898                                 | 108.3                                          | 313926       | 114,583,041   | 314      | 114,583   |
|                  | 2023             | 2957                                 | 109.2                                          | 322926       | 117,867,823   | 323      | 117,868   |
|                  | 2024             | 3017                                 | 110.1                                          | 332184       | 121,247,241   | 332      | 121,247   |
|                  | 2025             | 3076                                 | 111.0                                          | 341394       | 124,608,646   | 341      | 124,609   |
|                  | 2026             | 3136                                 | 111.9                                          | 350866       | 128,065,986   | 351      | 128,066   |
|                  | 2027             | 3196                                 | 112.8                                          | 360446       | 131,562,615   | 360      | 131,563   |
|                  | 2028             | 3257                                 | 113.7                                          | 370295       | 135,157,796   | 370      | 135,158   |
| 20               | 2029             | 3319                                 | 114.6                                          | 380421       | 138,853,529   | 380      | 138,854   |
|                  | 2030             | 3379                                 | 115.5                                          | 390329       | 142,469,988   | 390      | 142,470   |
|                  | 2031             | 3439                                 | 116.4                                          | 400344       | 146,125,735   | 400      | 146,126   |
|                  | 2032             | 3499                                 | 117.3                                          | 410468       | 149,820,771   | 410      | 149,821   |
|                  | 2033             | 3561                                 | 118.2                                          | 421042       | 153,680,249   | 421      | 153,680   |
|                  | 2034             | 3623                                 | 119.2                                          | 431731       | 157,581,679   | 432      | 157,582   |
|                  | 2035             | 3685                                 | 120.1                                          | 442534       | 161,525,061   | 443      | 161,525   |
|                  | 2036             | 3747                                 | 121.0                                          | 453453       | 165,510,394   | 453      | 165,510   |
|                  | 2037             | 3867                                 | 122.8                                          | 474913       | 173,343,117   | 475      | 173,343   |
|                  | 2038             | 3991                                 | 124.7                                          | 497540       | 181,602,031   | 498      | 181,602   |
| 30               | 2039             | 4119                                 | 126.6                                          | 521379       | 190,303,374   | 521      | 190,303   |

1) Population in 2006 taken from Statistics Canada 2006 Census of Population. A population growth of 3.2% was applied to the subsequent years.


Note:

<sup>2)</sup> The projected water consumption is based on the Nunavut water usage formula [ RWU L/c/d x (1 + (0.00023 x [population]).

<sup>3)</sup> The Residential Water Usesage Rate is estimated to be 90 L/c/d for municipalities where water is not distributed by a piping system. To fit the recorded water use data the RWU rate was lowerd to 65 L/c/d.

# **Recorded Water Use - Hamlet of Arviat**

| Year | Recorded Water<br>Use (m³) |
|------|----------------------------|
| 2003 | 66,399                     |
| 2005 | 67,745                     |
| 2007 | 73,686                     |
| 2008 | 74,900                     |
| 2009 | 72,807                     |
| 2010 | 73,523                     |



# **Hydrology Calculations, Hamlet of Arviat**

Annual Rainfall (m/year) Evapotranspiration (m/year)

0.2972

\*Canadian Climate Normals 1971-2000, Environment Canada, Rankin Inlet Airport Weather Station

Specific values for Arvlat were not available, estimated using several references, see below.

### **Wolf River Drainage Basin**

| River Catchment Area (m <sup>2</sup> )*  | 650,000,000 |
|------------------------------------------|-------------|
| Rain and Runoff (m³/year)                | 193,180,000 |
| Evapotranspiration (m³/year)             | 130,000,000 |
| Net Recharge of Catchment Area (m³/year) | 63,180,000  |

<sup>\*</sup> IEG Environmental, 2005

#### **Evapotranspiration Rates**

| Location                     | Value (mm) | Reference                        |
|------------------------------|------------|----------------------------------|
| Arviat, Nunavut              | 203        | FSC Architects & Engineers, 2003 |
| Mackenzie Basin, Yukon       | 241        | Serrereze et al, 2003            |
| Lena Basin, Russai           | 182        | Serrereze et al, 2003            |
| Knob Lake, Quebec            | 280        | Church, 1974                     |
| Boot Creek, Inuvik, NWT      | 75         | Church, 1974                     |
| Mackenzie River Basin, Yukon | 216        | Yi Yip, 2008                     |
| Average                      | 200        | -                                |

#### References:

FSC Architects & Engineers, 2003. Design Concept for Arviat Sewage Lagoon prepared for Department of Community Government and Transportation, Government of Nunavut.

Church, M. 1974. Hydrology and Permafrost with Reference to Northern North America. In Proceedings: Workshop Seminar on Permafrost Hydrology, 7-20. Ottawa: Canadian National Committee, International Hydrological Decade (IHD).

Yi Yip, Q.M. 2008. Climate Impacts on Hydrometric Variables in Mackenzie River Basin. University of Waterloo, Waterloo, 2008.

Serreze, M.C., D.H. Bromwich, M.P. Clark, A.J. Etringer, T. Zhang and R. Lammers, 2003. Large-scale hydro-climatology of the terrestrial Arctic drainage system. Journal Geophysical Research, 108(D2). Doi:10. t029/2002JD000919

Date: November 23, 2010

Municipality: Hamlet of Arviat

Project No.: N-O157460

Prepared by: C. Phohl

Checked by: M. Hartley

#### **End-of-Pipe Fish Screen Size Calculations**

ASSUMPTIONS: Screen has a maximum opening of 2.54 mm

Target fish minimum fork length is 25 mm Maximum endurance swimming time is 10 min

Approximate approach velocity (subcarangiform) is 0.11 m/s Approximate approach velocity (anguilliform) is 0.038 m/s

Given flow... Q (m³/s) 0.034 34

 Note 1
 Note 2
 Note 1
 Note 2
 Note 1
 Note 2

 Table 2 lookup for Open Screen Area Required:
 OSA (m²)
 0.31
 0.89
 0.31
 0.89

 % Open Area for given material (Table 3)
 %
 51
 51
 69
 69

 Calculate - Effective Screen Area
 ESA (m²)
 0.61
 1.75
 0.45
 1.29

 Given Screen Diamater
 D (m)
 0.40
 0.40
 0.40
 0.40

 Calculate Screen Length
 L (m)
 0.48
 1.39
 0.36
 1.03

Note 1: Subcarangiform swimming mode Note 2: Anguilliiform swimming mode

Ref: "Freshwater intake end-of-pipe fish screen guideline" DFO 1995



# Appendix E Sampling Results

Table E-1: Water Quality Sampling Results - Wolf River

| Parameter                       | Unit  | Detection<br>Limits | Canadian Drinking<br>Water Quality<br>Standards | Wolf River Water Intake 9/8/2010 9/8/2010 |         |  |
|---------------------------------|-------|---------------------|-------------------------------------------------|-------------------------------------------|---------|--|
|                                 |       |                     |                                                 | WI-Up                                     | WI-Down |  |
| Colour                          | TCU   | 5                   | 15*                                             | 8                                         | 9       |  |
| Electrical Conductivity         | μS/cm | 2                   | -                                               | 76                                        | 76      |  |
| рН                              | N/A   | -                   | 6.5-8.5                                         | 6.84                                      | 6.86    |  |
| Turbidity                       | NTU   | 0.5                 | 1                                               | 0.7                                       | 0.6     |  |
| Alkalinity (as CaCO3)           | mg/L  | 5                   | -                                               | 7                                         | 7       |  |
| Bicarbonate (as CaCO3)          | mg/L  | 5                   | -                                               | 7                                         | 7       |  |
| Total Hardness (as CaCO3)       | mg/L  | 10                  | 200*                                            | 16                                        | 15      |  |
| Ammonia as N                    | mg/L  | 0.02                | -                                               | <0.02                                     | 0.11    |  |
| Nitrate as N                    | mg/L  | 0.05                | 45                                              | <0.05                                     | <0.05   |  |
| Nitrite as N                    | mg/L  | 0.05                | 3.2                                             | <0.05                                     | <0.05   |  |
| Calcium                         | mg/L  | 0.05                | -                                               | 3.5                                       | 3.38    |  |
| Chloride                        | mg/L  | 0.1                 | 250*                                            | 16.6                                      | 16.7    |  |
| Fluoride                        | mg/L  | 0.05                | 1.5                                             | <0.05                                     | <0.05   |  |
| Magnesium                       | mg/L  | 0.05                | -                                               | 1.67                                      | 1.66    |  |
| Orthophosphate as P             | mg/L  | 0.1                 | _                                               | <0.1                                      | <0.1    |  |
| Potassium                       | mg/L  | 0.05                | _                                               | 0.76                                      | 0.74    |  |
| Reactive Silica                 | mg/L  | 0.05                | _                                               | <0.05                                     | <0.05   |  |
| Sodium                          | mg/L  | 0.05                | 200*                                            | 7.57                                      | 7.54    |  |
|                                 |       | 0.03                | 500*                                            | 3.1                                       | 3.16    |  |
| Sulphate Total Discolved Solids | mg/L  | 20                  | 500*                                            | 46                                        | 46      |  |
| Total Dissolved Solids          | mg/L  |                     | 500                                             | 5                                         |         |  |
| Total Organic Carbon            | mg/L  | 0.5                 | -                                               |                                           | 5       |  |
| Total Phosphorus                | mg/L  | 0.05                |                                                 | <0.05                                     | <0.05   |  |
| Aluminum                        | mg/L  | 0.004               | 0.1                                             | 0.008                                     | 0.007   |  |
| Arsenic                         | mg/L  | 0.003               | 0.025                                           | <0.003                                    | <0.003  |  |
| Barium                          | mg/L  | 0.002               | 1 -                                             | 0.005                                     | 0.006   |  |
| Boron                           | mg/L  | 0.01                | 5                                               | <0.010                                    | <0.010  |  |
| Cadmium                         | mg/L  | 0.002               | 0.005                                           | <0.002                                    | <0.002  |  |
| Chromium Total                  | mg/L  | 0.003               | 0.05                                            | <0.003                                    | <0.003  |  |
| Copper .                        | mg/L  | 0.003               | 1.0*                                            | <0.003                                    | <0.003  |  |
| Iron                            | mg/L  | 0.01                | 0.3*                                            | 0.043                                     | 0.038   |  |
| Lead                            | mg/L  | 0.002               | 0.01                                            | <0.002                                    | <0.002  |  |
| Manganese<br>                   | mg/L  | 0.002               | 0.05*                                           | 0.008                                     | 0.008   |  |
| Mercury                         | mg/L  | 0.0001              | 0.001                                           | -                                         | -       |  |
| Molybdenum                      | mg/L  | 0.002               | -                                               | <0.002                                    | <0.002  |  |
| Nickel                          | mg/L  | 0.003               | -                                               | <0.003                                    | <0.003  |  |
| Selenium                        | mg/L  | 0.004               | 0.01                                            | <0.004                                    | <0.004  |  |
| Silver                          | mg/L  | 0.002               | -                                               | <0.002                                    | <0.002  |  |
| Strontium                       | mg/L  | 0.005               | -                                               | 0.027                                     | 0.026   |  |
| Thallium                        | mg/L  | 0.006               | -                                               | <0.006                                    | <0.006  |  |
| Titanium                        | mg/L  | 0.002               | -                                               | <0.002                                    | <0.002  |  |
| Uranium                         | mg/L  | 0.002               | 0.02                                            | <0.002                                    | <0.002  |  |
| Vanadium                        | mg/L  | 0.002               | -                                               | <0.002                                    | <0.002  |  |
| Zinc                            | mg/L  | 0.005               | 5.0*                                            | < 0.005                                   | < 0.005 |  |

Guidelines: Canadian Drinking Water Quality Standards, Health Canada

<sup>\*</sup> Aesthetic Objective
"-" indicates that there is no guideline for drinking water



# Certificate of Analysis

AGAT WORK ORDER: 10T434776

PROJECT NO: N-015746

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

| CLIENT NAME: R.J. BURNSIDE & ASSOCIATES LTD |      |     |         |                  | ATTENTION TO: Stephanie Charity |                             |                    |  |
|---------------------------------------------|------|-----|---------|------------------|---------------------------------|-----------------------------|--------------------|--|
| BURNSIDE - Water Quality Assessment         |      |     |         |                  |                                 |                             |                    |  |
| DATE SAMPLED: Sep 08, 2010                  |      |     | DATE RE | CEIVED: Sep      | 13, 2010                        | DATE REPORTED: Sep 21, 2010 | SAMPLE TYPE: Water |  |
| Parameter                                   | Unit | G/S | RDL     | WI-Up<br>1987361 | WI-Down<br>1987362              |                             |                    |  |
| Aluminum                                    | mg/L |     | 0.004   | 0.008            | 0.007                           |                             |                    |  |
| Arsenic                                     | mg/L |     | 0.003   | < 0.003          | < 0.003                         |                             |                    |  |
| Barium                                      | mg/L |     | 0.002   | 0.005            | 0.006                           |                             |                    |  |
| Boron                                       | mg/L |     | 0.010   | < 0.010          | <0.010                          |                             |                    |  |
| Cadmium                                     | mg/L |     | 0.002   | < 0.002          | <0.002                          |                             |                    |  |
| Calcium                                     | mg/L |     | 0.05    | 3.50             | 3.38                            |                             |                    |  |
| Chromium                                    | mg/L |     | 0.003   | < 0.003          | < 0.003                         |                             |                    |  |
| Copper                                      | mg/L |     | 0.003   | < 0.003          | < 0.003                         |                             |                    |  |
| Iron                                        | mg/L |     | 0.010   | 0.043            | 0.038                           |                             |                    |  |
| Potassium                                   | mg/L |     | 0.05    | 0.76             | 0.74                            |                             |                    |  |
| Magnesium                                   | mg/L |     | 0.05    | 1.67             | 1.66                            |                             |                    |  |
| Manganese                                   | mg/L |     | 0.002   | 0.008            | 0.008                           |                             |                    |  |
| Molybdenum                                  | mg/L |     | 0.002   | < 0.002          | <0.002                          |                             |                    |  |
| Sodium                                      | mg/L |     | 0.05    | 7.57             | 7.54                            |                             |                    |  |
| Nickel                                      | mg/L |     | 0.003   | < 0.003          | < 0.003                         |                             |                    |  |
| Total Phosphorus                            | mg/L |     | 0.05    | < 0.05           | < 0.05                          |                             |                    |  |
| Lead                                        | mg/L |     | 0.002   | < 0.002          | <0.002                          |                             |                    |  |
| Selenium                                    | mg/L |     | 0.004   | < 0.004          | <0.004                          |                             |                    |  |
| Silver                                      | mg/L |     | 0.002   | < 0.002          | <0.002                          |                             |                    |  |
| Strontium                                   | mg/L |     | 0.005   | 0.027            | 0.026                           |                             |                    |  |
| Thallium                                    | mg/L |     | 0.006   | < 0.006          | <0.006                          |                             |                    |  |
| Titanium                                    | mg/L |     | 0.002   | < 0.002          | <0.002                          |                             |                    |  |
| Uranium                                     | mg/L |     | 0.002   | < 0.002          | <0.002                          |                             |                    |  |
| Vanadium                                    | mg/L |     | 0.002   | < 0.002          | < 0.002                         |                             |                    |  |
| Zinc                                        | mg/L |     | 0.005   | < 0.005          | < 0.005                         |                             |                    |  |
| Fluoride                                    | mg/L |     | 0.05    | < 0.05           | < 0.05                          |                             |                    |  |
| Chloride                                    | mg/L |     | 0.10    | 16.6             | 16.7                            |                             |                    |  |
| Nitrite as N                                | mg/L |     | 0.05    | < 0.05           | < 0.05                          |                             |                    |  |
| Ortho phosphate as P                        | mg/L |     | 0.10    | <0.10            | <0.10                           |                             |                    |  |
| Bromide                                     | mg/L |     | 0.05    | < 0.05           | <0.05                           |                             |                    |  |
| Nitrate as N                                | mg/L |     | 0.05    | < 0.05           | <0.05                           |                             |                    |  |
| Sulphate                                    | mg/L |     | 0.10    | 3.10             | 3.16                            |                             |                    |  |
| l '                                         |      |     |         |                  |                                 |                             |                    |  |

Certified By:

pH Units

6.86

6.84



CLIENT NAME: R.J. BURNSIDE & ASSOCIATES LTD

# Certificate of Analysis

AGAT WORK ORDER: 10T434776

PROJECT NO: N-015746

ATTENTION TO: Stephanie Charity

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

| BURNSIDE - Water Quality Assessment |       |     |         |             |          |                             |                    |
|-------------------------------------|-------|-----|---------|-------------|----------|-----------------------------|--------------------|
| DATE SAMPLED: Sep 08, 2010          |       |     | DATE RE | CEIVED: Sep | 13, 2010 | DATE REPORTED: Sep 21, 2010 | SAMPLE TYPE: Water |
|                                     |       |     |         | WI-Up       | WI-Down  |                             |                    |
| Parameter                           | Unit  | G/S | RDL     | 1987361     | 1987362  |                             |                    |
| Ammonia as N                        | mg/L  |     | 0.02    | <0.02       | 0.11     |                             |                    |
| Total Organic Carbon                | mg/L  |     | 0.5     | 5.0         | 5.0      |                             |                    |
| Electrical Conductivity             | uS/cm |     | 2       | 76          | 76       |                             |                    |
| Total Dissolved Solids              | mg/L  |     | 20      | 46          | 46       |                             |                    |
| Saturation pH                       |       |     |         | 9.66        | 9.67     |                             |                    |
| % Difference/ Ion Balance           |       |     | 0.1     | 0.9         | 1.3      |                             |                    |
| Total Hardness (as CaCO3)           | mg/L  |     | 10      | 16          | 15       |                             |                    |
| Langlier Index                      |       |     |         | -2.82       | -2.81    |                             |                    |
| Carbonate (as CaCO3)                | mg/L  |     | 5       | <5          | <5       |                             |                    |
| Bicarbonate (as CaCO3)              | mg/L  |     | 5       | 7           | 7        |                             |                    |
| Turbidity                           | NTU   |     | 0.5     | 0.7         | 0.6      |                             |                    |
| Alkalinity (as CaCO3)               | mg/L  |     | 5       | 7           | 7        |                             |                    |
| Hydroxide (as CaCO3)                | mg/L  |     | 5       | <5          | <5       |                             |                    |
| Reactive Silica                     | mg/L  |     | 0.05    | <0.05       | <0.05    |                             |                    |
| Colour                              | TCU   |     | 5       | 8           | 9        |                             |                    |
|                                     |       |     |         |             |          |                             |                    |

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Mile Muneman