

Solid Waste Management Report

Hamlet of Arviat

Prepared By:

Nuna Burnside Engineering and Environmental Ltd. PO Box 879 Building 764, Fred Coman Way Iqaluit NU X0A 0H0 and

15 Townline Orangeville ON L9W 3R4

Prepared for:

Hamlet of Arviat

December 2010

File No: N-O 157460

The material in this report reflects best judgement in light of the information available at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. Nuna Burnside Engineering and Environmental Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

i i

Solid Waste Management Report

December 2010

Table of Contents

1.0	Introduction	1
1.1	Background	1
1.2	Scope of Study	1
1.3	Site Description	2
2.0	Physical Setting	3
2.1	Site Location	
2.2	Topography and Drainage	
2.3	Geology and Morphology	
2.4	Climate	
3.0	Municipal Solid Waste Disposal Site	Δ
3.1	Landfill Operations	
3.2	New Municipal Waste Site	
3.3	Landfill Capacity Assessment	
3.4	Environmental Impact Assessment	
3.5	Recommendations	
4.0	Bulky Metals Waste Area	11
4.1	Waste Placement History and Filling Methods	
4.2	Site Security	
4.3	Environmental Conditions of the Site	11
4.4	Recommended Site Improvements	13
4.5	Abandonment and Restoration Plan	14
5.0	Hazardous Waste Storage Area	15
5.1	Assessment of Contaminated Soil and Water	15
5.2	Proposed Improvements to Site	15
6.0	Implementation Schedule	17
7.0	Summary	18
8.0	References	19

Solid Waste Management Report

December 2010

Table of Contents (Continued)

Tables

Table 1	Contaminated Soil Sample Results at Bulky Metals Area	12
Table 2	Soil Samples at Hazardous Waste Storage Area	15

Figures

- 1 Site Location
- 2 Community Plan
- 3 Solid Waste Disposal Area
- 4 Solid Waste Disposal Area Sample Locations
- 5 Bulky Metals Waste Area
- 6 Bulky Metals Waste Area Sample Locations
- 7 Hazardous Waste Storage Area

Appendices

- A Nunavut Water Board Licence
- B Photographs
- C Calculation Worksheets
- D Sampling Results

Solid Waste Management Report

December 2010

1.0 Introduction

1.1 Background

The existing Solid Waste Management Facility is out of compliance with the NWB license and existing regulations. In 2008, Community and Government Services (CGS) of the Government of Nunavut (GN), retained Nuna Burnside Engineering and Environmental Ltd. (Nuna Burnside), on behalf of the Hamlet of Arviat, to conduct a project entitled "Detailed Design and Inspection Services for the New Municipal Site with Access Road, Arviat, Nunavut".

The subsequent studies determined the existing landfill site was nearing capacity, was unsuitable for expansion, and a new site in a new location was required. Studies and public consultation were conducted through 2009, including the assessment and design of a site west of the Hamlet.

The Hamlet has postponed deciding on the location of a new facility until after the Community Plan was completed in 2010, and final approvals and making the document public is expected in early 2011.

Until the Hamlet approves the type and location of a new Solid Waste Management Facility, the existing facilities will continue to be used.

In recognition of the fact the exiting facilities cannot be brought into full compliance, a best efforts policy is recommended to maximize the effectiveness and minimize the environmental impact of the existing facilities, until new facilities can be constructed, licensed, and commissioned.

1.2 Scope of Study

This report has been completed as a condition of the Nunavut Water Board licence 3AM-ARV1015 issued August 23, 2010. This report meets the requirements outlined in Part D, Item 14 of the licence. A copy of the licence is provided in Appendix A. The report includes the following aspects as required by the licence:

- As-built drawings of the Solid Waste Disposal Facility, Hazardous Waste Storage Area and Bulky Metals Area
- A capacity assessment of the Solid Waste Disposal Facility
- An inventory and assessment of contaminated soil and water at the Solid Waste Disposal Facility, Bulky Metals Area and Hazardous Waste Storage Area
- A plan for the treatment and disposal of contaminated soil and water including proposed effluent quality limits for dewatering contaminated soil

Solid Waste Management Report

December 2010

Recommendations for water and wastewater containment, treatment and drainage control

- Recommended measures to optimize solid waste management, and
- A schedule for implementing recommended measures.

1.3 Site Description

The Hamlet of Arviat provides regular solid waste pickup for residents, businesses, and institutions. Solid waste is disposed of at the Hamlet's Solid Waste Management Facility. The Solid Waste Management Facility includes a landfill site for municipal solid waste and a long-term storage area for bulky metals. Currently waste oil, glycol, and other hazardous wastes are stored in a designated area next to the Public Works garage.

The current Solid Waste Management Facility consists of the following components:

- Municipal Solid Waste Disposal Area (Landfill) approximately 2.0 km south of the centre of the community
- Bulky Metals Waste Area (located north of the landfill approximately 1.5 km from the centre of the community but only 500 m from the south edge of the residential area)
- Hazardous Waste Storage Area (currently next to the Hamlet garage).

Figure 2 illustrates the locations of the solid waste disposal facilities in Arviat.

Solid Waste Management Report

December 2010

2.0 Physical Setting

2.1 Site Location

The Hamlet of Arviat is located within the Kivalliq Region, Nunavut, at general latitude 61°6'N and general longitude 94°3'W (Figure 1). The Community is located approximately 225 km south of Rankin Inlet and 265 km north of Churchill Manitoba. The Hamlet of Arviat is predominately residential with a few small commercial and institutional establishments. Hunting and fishing in the traditional manner is still a prime occupation for many of the inhabitants.

2.2 Topography and Drainage

The topography surrounding the Hamlet of Arviat is relatively flat with a sight rise when moving inland away from Hudson Bay. Local bedrock is generally overlain by glacial fluvial sediments. Arviat is located in the physiographic region of the Hudson Bay lowlands, characterized by low topographic relief, occasional bedrock outcrops and glacial and glacio-fluvial overburden sediments. Boulder fields and eskers are common. Approximately 20 to 30 percent of the land is shallow ponds with depths of 1 m or less. Land between the ponds is marshy, vegetated by grasses and sedges.

2.3 Geology and Morphology

The Hamlet of Arviat is located on the northern shore of a peninsula on the west coast of Hudson Bay, in a zone of continuous permafrost, extending from 30 m to over 100 m. The active layer varies between 0.5 and 0.3 m. The predominant local vegetation consists of mosses and lichens on rocky outcrops, with hardy grasses and sages in swampy and/or more sheltered areas.

2.4 Climate

The closest climate station to Arviat is the Rankin Inlet Airport Weather Station. The Rankin Inlet area receives an average of 18.1 cm of rainfall and 119.7 cm of snowfall per annum. Mean annual precipitation totals 29.7 cm per annum. July mean high and low temperatures are 14.9°C and 5.9°C, respectively. January mean high and low temperatures are -28.3°C and -35.5°C, respectively. Winds are generally northwest, and average 23 km/h (Rankin Inlet Weather Station, Climate Normals 1991-2000, Environment Canada, 2010).

Solid Waste Management Report

December 2010

3.0 Municipal Solid Waste Disposal Site

The municipal solid waste disposal site (landfill) is located 2.8 km southeast of Arviat (Figure 2). The landfill is located along the south esker, less than 1 km north of the Hudson Bay. The landfill site consists of a non-lined area surrounded by a three metre high containment berm. The landfill area footprint is about $160 \times 200 \text{ m}$ measured from the inside of the containment berms and $170 \times 210 \text{ m}$ when including the berms. Photographs of the landfill are included in Appendix B.

The landfill site began receiving waste in 1977. A Design and Operations Brief for the site was prepared by Associated Engineering Alberta Ltd in 1985 which described how the landfill should be expanded and how it should be operated. There are no plan drawings, as-built plans, or other documents describing the actual construction of the landfill. Figure 3 provides the current conditions of the landfill as recorded during a site visit in September 2010. These will have to be considered "asbuilts" with respect to the requirements in the licence (Part H, Item 14-a) as no other drawings or information can be found.

3.1 Landfill Operations

3.1.1 Site Security

The landfill has operated without a dedicated operator or manager. A chain-link fence surrounds the landfill area, but locals and animals are free to enter through the entrance of the landfill. There is no gate.

3.1.2 Solid Waste Sources and Composition

The waste in the landfill generally consists of domestic wastes, construction debris, fuel drums, scrap wood, and animal carcasses. Municipal waste in remote northern communities like Arviat is generally composed of 60% to 80% paper and food and 15% to 30% recyclable materials such as aluminum and glass containers (GLL, 2007).

Over the past 30 years, waste disposal practices have changed with increasing government control and education. It can be assumed that small quantities of hazardous waste has been deposed of at the site. Historically waste included domestic sewage in the form of honey bags and unknown amounts of hazardous waste (EBA, 1995). In Arviat historic documentation and local knowledge indicates

Solid Waste Management Report

December 2010

sewage (including honey bags) has always been disposed of separately from the landfill.

3.1.3 Waste Placement History and Filling Methods

The landfill site began receiving waste in 1977 (AESL, 1985) and has operated as an open dump for approximately 30 years. Waste initially was dumped at the edge of the esker. The eastern berm of the sewage lagoon was used as the eastern boundary. Over the years the landfill has expanded with the construction of the south and western berms.

Historically there has been no compaction of waste and the landfill is covered infrequently with fill. Burning was historically used to reduce volumes of waste and is uncontrolled with no segregation of combustible material from non-combustible materials. Observations made in July, September, and November 2010 noted some separation of waste into burnable and non-burnable. Cover material had been applied in the summer of 2010 to reduce the amount of waste exposed at surface, and damaged fencing had been repaired.

3.2 New Municipal Waste Site

3.2.1 Background

In August 2008, Community and Government Services (CGS) issued a RFP for the provision of engineering services for a New Municipal Waste Site with Access Road for the Hamlet of Arviat.

The Hamlet and CGS had recognized that the existing landfill was nearing capacity and that it was situated too close to the airport. It was also recognized, the existing Bulky Metals Area was in the path of expanding residential development. The handling and storage of hazardous wastes were out of compliance with regulations. The project was awarded to Nuna Burnside and work commenced in September 2008.

3.2.2 Studies and Community Consultation

The project commenced with a desk top review of the community and consultation with Mayor and Council, SAO, CGS engineers, and community members.

The process included the following reports, which have been interspersed with consultation, site visits, and field studies:

Solid Waste Management Report

December 2010

 "Preliminary Report of Potential Locations New Municipal Waste Disposal Site and Access Road, Arviat, Nunavut", by Nuna Burnside Engineering and Environmental Ltd., September 2008

- "Selection of a New Municipal Solid Waste Disposal Site and Access Road, Arviat, Nunavut", by Nuna Burnside Engineering and Environmental Ltd., October 2008
- "Location of a New Solid Waste Disposal Site and Access Road, Arviat, Nunavut", by Nuna Burnside Engineering and Environmental Ltd., February 2009
- "Snowdrift Assessment, Proposed Landfill Access Road, Arviat, Nunavut", by RWDI Inc., February 5, 2009
- "Public Consultation for a New Municipal Solid Waste Disposal Site, Arviat, Nunavut", by Nuna Burnside Engineering and Environmental Ltd., August 2009
- "Solid Waste Disposal Site and Access Road, Hamlet of Arviat, Nunavut", Design Drawings Set by Nuna Burnside Engineering and Environmental Ltd., May 2009
- "Assessment of Potential Bird Hazards to Aircraft Safety Associated with Proposed Sites for a Landfill at Arviat, Nunavut – A Stage 1 Analysis", by LGL Limited, July 30, 2009.

3.2.3 Conclusions and Recommendations for a New Municipal Solid Waste Disposal Site

The reports concluded that the existing landfill site is nearing capacity and should be closed as soon as a new facility is located and constructed. This effort was undertaken by CGS in 2008, by retaining Nuna Burnside to conduct the work. In the winter of 2009, Mayor and Council approved a new site on the Dionne Road west of the Hamlet. Design Drawings were prepared. However, due to community concerns, the development of the new site was put on hold until further community consultation could be undertaken.

Community consultation was conducted in 2009, however no consensus could be reached. The Hamlet decided to postpone a decision until after the new Community Plan had been completed. In November 2010, the Hamlet indicated that the Community Plan had been completed, however it could not be released publically or to Nuna Burnside until the appropriate sign offs had been completed through the GN. This is expected sometime in the winter of 2011.

In the interim, Nuna Burnside has recommended following the best possible practices for utilizing the existing waste management facilities until a new facility can be constructed.

Solid Waste Management Report

December 2010

Based on the time line of a new site decision being made in 2011, a new facility could realistically be operating in two years. To be conservative and allow for contingencies, it is recommended that the closure of the exiting landfill site be based on a target date of 2015. For this reason, the remaining capacity of the exiting landfill has been based on a conceptual plan to have the waste level rise above the level of the berms prior to closure. This is outlined in the landfill capacity estimate and the Abandonment and Restoration Plan for the existing landfill.

3.3 Landfill Capacity Assessment

As early as 2008, CGS staff have planned to close the existing landfill site, as it was reaching capacity and plan for a new waste management facility for Arviat. The existing landfill was noted to be in an unsuitable location, due to the proximity of the airport, so expansion was not an option.

Ideally the landfill would be closed as soon as possible and a new facility developed, to address landfilling, bulky metals, and hazardous waste issues. Until a new facility can be constructed, the existing facilities must continue to operate.

Based on a conservative timeline to close the landfill following the construction, licensing, and commissioning of a new facility, a date of 2015 has been estimated. It is therefore necessary, as there is no practical alterative to plan the capacity of the existing landfill until 2015. This is not ideal, but there are no other realistic alternatives.

It is strongly recommended that a faster timeline be aggressively pursued. Based on a target closure date of prior to 2015, the landfill capacity has been estimated to fill the site level with the berms and then mound above this level as little as possible. The Abandonment and Restoration Plan for the site is based on this capacity assessment.

The estimate of the amount of waste the Hamlet will generate through to 2015 is based on population data provided by Census Canada and average annual waste generation rates for northern communities in Canada.

Solid waste projections for the Hamlet are provided in Appendix C. The table is based on the Census 2006 population of 2,060 and a growth rate of 3.2 percent. The table assumes that 20 percent of the waste is combustible and that there is no compaction. It also assumes that a volume of cover material is used annually equal to 20% of the annual volume of waste.

Solid Waste Management Report

December 2010

A topographic survey of the waste area was completed in September 2010 to create a contour map of the current waste in the landfill. Contours of the waste are shown in Figure 3. Volume calculations based on the contours estimates that the landfill has 12.800 m³ left to fill waste to the level of the access road and berms.

Waste calculations show that in the next 5 years (2011 through 2015), the Hamlet will need 67,885 m³ of space for their waste including cover volume (Appendix C). Once the landfill is filled level to the berms it will need to start building up from the berms. The waste will need to be piled and compacted on a 3.1 slope. A new landfill site will need to be constructed, licensed, and in operation prior to 2015.

3.4 Environmental Impact Assessment

3.4.1 Birds and Animals

A Bird Hazard to Aircraft Study was completed by LGL Limited in July 2009. The results of the study concluded that the landfill was too close to the airport as the birds attracted by the landfill are a hazard to aircraft. Since the application of soil cover is rare, the presence of scavengers is likely. Polar bears are observed at the landfill seasonally.

3.4.2 Surface Water Drainage

All precipitation that falls on the site eventually drains from the site as leachate. The average total precipitation for Arviat is 297 mm per year and the average evapotranspiration rate is 200 mm per year (Appendix C) thus resulting in a total input of precipitation to the landfill of 3,288 m³/year.

A containment berm is built around the landfill area to contain surface water runoff from the site. Water that enters the landfill drains to areas of lowest elevation on the south side of the landfill. Surface water ponding is present at the south-east corner of the site and the south-west corner of the site. Water eventual discharges at the south-west corner of the site. After discharging from the landfill, the water collects in a pond adjacent to the south-west corner, and from there flows through a culvert under a road and west into a wetland area.

3.4.3 Environmental Sampling

Monitoring of the site is required by the NWB licence. The licence requires that water samples be taken from the discharge location (ARV-2a) monthly from May to September inclusive. ARV-2b would be from the new landfill site not yet located. In 2010 water samples were taken at ARV-2 (equivalent to ARV-2a) in July, August, September and

Solid Waste Management Report

December 2010

November. As shown on Figure 4, sample ARV-2 was actually collected at the discharge of a leachate impacted pond outside the landfill berm. It is proposed that this leachate pond be considered part of the landfill leachate discharge system, along with the outlined contaminant attenuation zone (CAZ).

In September 2010, a more extensive water sampling program was completed which included sampling of the leachate at the discharge point and within the down gradient contaminant attenuation zone (wetland). A test pit was excavated in November 2010 outside of ARV-2 to determine the depth of active zone and soil characteristics. Sampling locations are identified on Figure 4.

Water sample results were compared to the CCME's Canadian Water Quality Standards for Protection of Aquatic Life. A summary of the results is provided in Appendix D, Table D-1. At the landfill discharge point (ARV-2) exceedences were noted for the parameters of iron, lead, copper, zinc and phenols. All samples taken down gradient of the landfill within the wetland contaminant attenuation zone (CAZ) (LF-1 to LF-3) met the CCME water quality guidelines.

It should be noted that the CCME guidelines are generic guidelines and do not take into account regional differences in geology, soil, or climate, nor do they account for site-specific factors that may influence bioavailability or toxicity of contaminants. The guidelines are set to account for the most sensitive receptors that may be exposed to the contaminant. Because of their conservative nature, exceedences do not necessarily mean that there is a human or environmental risk. The above noted metals may be naturally present in soils around Arviat at the concentrations detected.

3.5 Recommendations

3.5.1 Contaminant Attenuation Zone (CAZ)

A Contaminant Attenuation Zone (CAZ) located down gradient of the landfill should be established and incorporated into the NWB licence. The wetland area identified as the CAZ in Figure 3 would act as a buffer and treatment area for the landfill discharge before leachate enters the natural environment.

Wetland CAZ systems operate by dispersing leachate over an area of sufficient size, to allow natural processes such as sedimentation, adsorption by soil particles, uptake, and digestion of nutrient components by plants, microbial decomposition of complex molecules, physical entrainment in changing flow regimes, and dilution by intermixing with the natural water system. The CAZ should be included in future amendments to the Community Land Use Plan and set aside so that the land can not

Solid Waste Management Report

December 2010

used for anything else. The CAZ should also be included as an amendment to the current NWB licence.

3.5.2 Leachate Management

The creation of leachate within the landfill is inevitable and the water must drain somewhere. The important thing is that the leachate does not harm the environment or public health. The landfill has been designed to drain leachate out of waste at the southwest corner of the site (Figure 3).

Currently a natural pond is located in this location. The pond drains through a culvert located under an ATV trail into the wetland. This culvert can be used as a control point for drainage. Sand bags could be piled in front of the culvert to hold back drainage, however the capacity of the pond is limited. Typically for landfills in Nunavut the design and operations plan includes sampling of the water would occur monthly during thawed conditions (as per Licence). Once the results of sampling are received (usually 5-7 working days after arrival of samples at lab) water can be released to the wetland as long as all water quality guidelines are met. If water does not meet water quality guidelines another disposal method should be used. Disposal options are dependent on the water quality and could include:

- Transportation and disposal in the sewage lagoon
- Pre-treatment (filter, chemical, etc.) prior to discharge to the sewage lagoon, or
- Containment and storage, if deemed to be hazardous waste.

Site specific water quality guidelines should be established that account for naturally occurring metals. A background study should be completed to determine a baseline for metal concentrations in surface water in the area. This would include taking surface water samples from wetlands around Arviat that are not near waste disposal sites. Once background levels are known, site specific guidelines should be submitted to the NWB for approval and used for comparison when sampling leachate from the landfill.

As the landfill reaches capacity and waste fills the area inside the berm, the pond between the berm and the culvert with the CAZ will become an important component of the leachate management system, as there will no longer be room for leachate to pond within the berms.

Solid Waste Management Report

December 2010

4.0 Bulky Metals Waste Area

A Bulky Metals Waste Area is located on the east side of the landfill access road and 500 m south of the edge of the residential area (Figure 5). Vehicles, heavy equipment, empty 45 gallon drums, fuel tanks and other metal wastes are disposed at this site.

There are no as-built drawings or plans for the bulky metals waste area. The site is located along an esker and is raised from the surrounding tundra. The approximate footprint of the site is approximately 39,000 m².

Photographs of the bulky waste area are included in Appendix B. Figure 5 provides a record of existing conditions on the site.

4.1 Waste Placement History and Filling Methods

Historical records indicate some burial occurred during the mid-1970's until 1977, when the area was used as a disposal area for domestic wastes. The filled area has been closed with a layer of fill.

Seven hundred and fifty m³ of contaminated soil were reportedly removed from the N.W.T. Power Corporation (NWTPC) tank farm and brought to the Bulky Waste site for landfarming (EBA, 1995). Some of the soil has been spread over the former landfill with approximately half of the soil still in piles (~300 m³). The soil is believed to be contaminated with diesel.

Metal wastes have been disposed of at the site manually by residents. Some segregation has occurred as vehicles tend to be stored along the south side of the site and "white waste" (appliances) are stored at the back of the site.

4.2 Site Security

The bulky metals waste dump area has operated without any dedicated operator or manager. It is common for community residents to be scavenging the dump for metal and spare parts. Reuse and recycling is encouraged. There is no fence around the site.

4.3 Environmental Conditions of the Site

Soil and water sampling was completed at the Bulky Metals Waste site in September and November 2010.

Solid Waste Management Report

December 2010

In September 2010, soil samples were taken from the contaminated soil piles. There are two main piles of soil at the site. Two samples were taken from each pile at approximately 20 to 30 cm below surface (HW-P1-A, HW-P1-B, HW-P2-A and HW-P2-B). A surface water sample (BW-1) was taken from ponded water just south of the Bulky Waste Area.

As part of the field program, a topographic survey was completed to outline the waste footprint and to determine the direction of drainage on the site. Contours and drainage are provided in Figure 5. The topographic survey was also used to estimate the volume of the contaminated soil piles. Based on the survey, the volume of soil is estimated to be approximately 218 m³. It is assumed the remainder of the reported 750 m³ of contaminated soil that was deposited at the site has been spread out over the site.

In November 2010, two test pits were excavated down gradient of site to identify and sample the active zone. The test pits were dug to a depth of 1.1 m. The test pit intersected vegetation from 0 to 0.2 m below ground surface (bgs). From 0.2 metres to 0.8 m was silty fine sand with roots and organics. From 0.8 to 1.1 m bgs was grey silty sand. A soil sample from each test pit (ARV-5-1 and ARV-5-2) was collected and submitted for grain size analysis. Grain size analysis results identified soil sample ARV-5-1 to be sandy loam and ARV-5-2 to be silt loam. A grain size distribution plot is provided in Appendix C.

Groundwater samples from the seepage into the test pits were also collected.

4.3.1 Sampling Results

Sampling locations are shown in Figure 6. A summary of the sampling results and certificates of analysis are provided in Appendix D.

Soil samples taken from the suspected contaminated soil piles were analyzed for metals, petroleum hydrocarbons, BTEX, PAHs, phenols and PCBs. The results were compared to CCME soil quality guidelines for industrial land use and coarse grained soil. Exceedences are provided in Table 1.

Table 1 Contaminated Soil Sample Results at Bulky Metals Area

Parameter	CCME Guideline	BW-P1-A	BW-P1-B	BW-P2-A	BW-P2-B
PH C6-C10 (F1)	320	<5	11	<5	<5
PH C>10-C16 (F2)	260	1200	3400	240	130

Solid Waste Management Report

December 2010

Parameter	CCME Guideline	BW-P1-A	BW-P1-B	BW-P2-A	BW-P2-B
PH C>13-C34 (F3)	1700	430	1800	9100	130
PH C>34-C50 (F4)	3300	<50	<50	730	79

PH = petroleum hydrocarbons

Samples from the contaminated soil piles exceeded the CCME guidelines for petroleum hydrocarbons F2 (C>10-C16) and F3 (C>16-C34).

Surface water sampled in September 2010 was analysed for petroleum hydrocarbons, PAHs and VOCs. The results were compared to the Canadian Water Quality Guidelines for the Protection of Aquatic Life – Fresh Water. No exceedences were identified.

Groundwater samples taken from seepage within the test pits were analysed for petroleum hydrocarbons, metals and inorganics, VOCs and BTEX. The results were compared to exceedences for some metals including aluminum, arsenic, barium, boron, iron, lead and zinc were identified.

4.4 Recommended Site Improvements

The Hamlet has identified the Bulky Waste Area as an area of public concern. Plans for a new Bulky Metals Area are included in the plans for a new Solid Waste Disposal Area for the Hamlet and will be built when the new site is built.

Until a new bulky waste area is commissioned, materials will continue to be placed in the current Bulky Materials Disposal Area. The site requires organization and removal and/or burial of waste that no longer has any reuse potential. Abandoned vehicles should be drained of all fluids and labelled to identify that they are no longer a risk for spills. Tanks and oil drums can be crushed to reduce their volume. Hazardous waste such as car batteries should be collected and moved to the Hamlet's hazardous waste storage area. The contaminated soil piles should be moved to the Solid Waste Disposal site and used as cover material.

Efforts should be made by the community to segregate any materials that may have a future use prior to the burial (e.g., recently placed material). Materials that no longer have recycling or reuse potential should to be buried in a suitable location acceptable to the community.

In the Hamlet's Community Plan, a 450 m buffer surrounds the waste disposal area and is designated as restrictive to development. The Hamlet is expanding to the south creating more residential housing which is approaching the 450 m buffer around the site. The 450 m buffer is typically used for landfill sites, used for the disposal of municipal

Solid Waste Management Report

December 2010

waste. Landfill sites receiving municipal waste generate dust and smoke (from burning), odours, noise, and attract scavengers (birds, foxes, and bears). The Bulky metals area does not contain putresible waste and does not have the same impacts as a landfill site. The contamination from the site does not extend 450 meters and that the site does not pose a threat to residential land use. Issues typical of waste disposal sites such as odour, attracting animals, noise and dust are not issues at the Bulky Metals site and thus a 450 meters buffer area is not required for health and safety issues. Until a new bulky metals site is commissioned, the buffer area around the site be reduced to 200 meters. The Bulky Metals area should not be expanded towards the north to avoid land use conflicts with proposed residential areas.

4.5 Abandonment and Restoration Plan

An Abandonment and Restoration Plan for the Bulky Metals Waste Area is discussed in the report "Solid Waste Management Facility Abandonment and Restoration Plan, by Nuna Burnside, dated December 2010."

Solid Waste Management Report

December 2010

5.0 Hazardous Waste Storage Area

The Hamlet of Arviat currently stores hazardous waste beside the public works garage (Figure 7). Metal drums of waste oils and fuels are stored outside behind the garage in rows. Some of the drums are stacked on skids while others are on the ground. Photos of the area are included in Appendix B.

Based on information from the Hamlet and field observations there is approximately 100 drums of waste stored at the Hazardous Waste Storage Area. Contents in the drums included aviation fuel, waste oil and diesel fuel.

5.1 Assessment of Contaminated Soil and Water

A site visit of the area in September 2010 identified stained soil beside the waste oil drums. Samples of the stained area were collected and analyzed for hydrocarbons, PAHs and VOCs. All three samples exceeded the CCME soil quality standards for petroleum hydrocarbons F3 and F4 (Table 2). A summary of the results is provided in Table D-4 in Appendix D.

Table 2 Soil Samples at Hazardous Waste Storage Area

Parameter	CCME	HW-1	HW-2	HW-3
	Guideline			
PH C6-C10 (F1)	320	<5	<5	<5
PH C>10-C16 (F2)	260	<10	<10	<10
PH C>13-C34 (F3)	1700	26000	32000	24000
PH C>34-C50 (F4)	3300	4800	6000	4400

PH = petroleum hydrocarbons

Surface water drainage from the site is towards the south (Figure 7). The NWB licence includes a monitoring program station at the Hazardous Waste Storage Area that requires monthly water quality sampling during periods of observed flow. During the site visits in September and November 2010 there was no flow in the immediate vicinity, thus samples were not collected.

5.2 Proposed Improvements to Site

A new Hazardous Waste Facility was included in the design of the new Solid Waste Management Facility in May 2009 however a site has not yet been approved by the Hamlet. In the interim, a designed hazardous waste area needs to be constructed at the Public Works yard. The area should be lined with an HDPE geomembrane and

Solid Waste Management Report

December 2010

surrounded with a perimeter berm. Ideally the area would be fenced to create a more permanent structure that would withstand weather and deter vehicles and residents from going in the area. The Environmental Guidelines for General Management of Hazardous Waste should be used as a reference for hazardous waste identification, storage, and control until an approved facility can be constructed.

Annually all accumulated drums should be labelled clearly with contents and stacked and strapped for easy transport. All wastes that have accumulated such as oils, fuels, batteries, antifreeze, solvents that cannot be rendered safe for landfilling or cannot be reused should be removed from the community and shipped to a proper disposal facility. Materials must be contained, manifested, and arrangements must be made with a shipper to back haul the materials to a licensed waste disposal site.

The Government of Nunavut Department of the Environment (GN-DOE) monitors the movement of hazardous wastes from generators, carriers to receivers of the wastes, through the use of a tracking document known as a Waste Manifest. A Waste Manifest must accompany all movements, and all parties must register with DOE by contacting:

- Robert Eno, Director, Environmental Protection Division (867) 975-7729
 reno@gov.nu.ca
- Ian Rumbolt, Manager of Pollution, Department of Environment (867) 975-7748
 irumbolt@gov.nu.ca
- Alain, Chouinard. Environmental Protection Officer Arviat (867) 857-2828
 AChouinard@gov.nu.ca.

Waste oils may be transported to a waste oil generator. A waste oil generator is located in the Hamlet of Rankin Inlet. The Hamlet would like to get an incinerator for its waste oil. The Community and Government Services (CGS) is in the process of evaluating this request.

Solid Waste Management Report

December 2010

6.0 Implementation Schedule

Once the NWB approves this report the Solid Waste Management Facility Operation & Maintenance Plan should be updated within 60 days. The updated O&M Plan will reflect the requirements of the new licence and recommendations in this report.

Refer to the plan for Compliance (separate document) for details.

Solid Waste Management Report

December 2010

7.0 Summary

The existing Solid Waste Management Facilities including the Solid Waste Disposal Site (landfill), the Bulky Metals Waste Area, and the Hazardous Waste Storage Area are all out of compliance with Nunavut regulations, the NWB license. as well as the recommendations of previous studies. The findings of recent studies and the proposed recommendation are provided to manage the facilities, is a practical cost effective manner with a "best efforts" approach to achieving compliance with the regulatory requirements as quickly as possible. The recommendations are included in the Plan for Compliance, which has been prepared (separate document) and submitted to the NWB. The Plan for Compliance outlines the work required and purposed schedule to address these issues.

Respectfully Submitted:

Stephanie Charity, P.Geo.

December 24, 2010

Date

∕Jim Walls, P.Geo.

in Walls

December 24, 2010

Date

OFESSIO

J.R. WALLS

MALMA

Solid Waste Management Report

December 2010

8.0 References

Assessment of Potential Bird Hazards to Aircraft Safety Associated with Proposed Sites for a Landfill at Arviat, Nunavut – A Stage 1 Safety Analysis, Prepared for: Nuna Burnside Engineering and Environmental Ltd. July 2009.

Assessment of Potential Bird Hazards to Aircraft Safety Associated with Proposed Sites for a Landfill at Arviat, Nunavut – A Stage 1 Analysis, by Nuna Burnside Engineering and Environmental Ltd., July 30, 2009.

Canada-Wide Standards for Petroleum Hydrocarbons (PHC) in Soil, Canadian Council of Ministers of the Environment, Winnipeg. May 1, 2001, Revised January 2008.

Canadian Climate Normals 1971-2000, Rankin Inlet A Weather Station, Environment Canada.

http://climate.weatheroffice.ec.gc.ca/climate normals/results e.html?StnID=1721& autofwd=1>. Accessed Sept 21, 2010.

Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health: Summary Table, Updated September, 2007. In: Canadian Environmental Quality Guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg.

Canadian Water Quality Guidelines for the Protection of Aquatic Life: Summary Table, Updated September, 2007. In: Canadian Environmental Quality Guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg.

City of Yellowknife Solid Waste Composition Study and Waste Reduction Recommendations. Gartner Lee Ltd, 2007.

Design and Operations Brief for Solid Waste Management Eskimo Point, NWT. Associated Engineering Alberta Ltd, March 1985.

Environmental Guideline for General Management of Hazardous Waste, Department of Sustainable Development, Environmental Protection Service, Government of Nunavut, January 2002.

Solid Waste Management Report

December 2010

Environmental Investigation of Current and Former Dump Sites Arviat NWT, EBA Engineering Consultants Limited, Yellowknife, November 1995.

Hamlet of Arviat Water License 3AM-ARV1015. Gjoa Haven, Nunavut. Nunavut Water Board. 23 Aug 2010.

Kivalliq Community Population Projections, 2009 to 2036. Nunavut Bureau of Statistics, August 16, 2010. http://www.gov.nu.ca/eia/stats/population.html. Accessed Sept 21, 2010.

Location of a New Solid Waste Disposal Site and Access Road, Arviat, Nunavut, by Nuna Burnside Engineering and Environmental Ltd., February 2009.

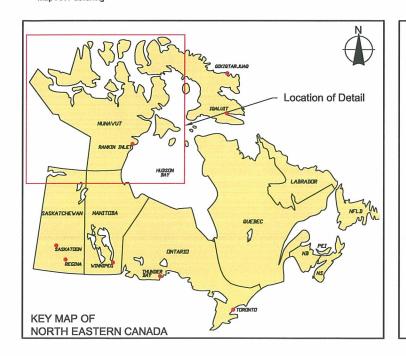
New Solid Waste Management Facility Design, Nuna Burnside Engineering and Environmental Ltd, May 2009.

Preliminary Report of Potential Locations New Municipal Waste Disposal Site and Access Road, Arviat, Nunavut, by Nuna Burnside Engineering and Environmental Ltd., September 2008.

Public Consultation for a New Municipal Solid Waste Disposal Site, Arviat, Nunavut, by Nuna Burnside Engineering and Environmental Ltd., August 2009.

Selection of a New Municipal Solid Waste Disposal Site and Access Road, Arviat, Nunavut, by Nuna Burnside Engineering and Environmental Ltd., October 2008.

Snowdrift Assessment, Proposed Landfill Access Road, Arviat, Nunavut, by RWDI Inc., February 5, 2009.


Solid Waste Disposal Site and Access Road, Hamlet of Arviat, Nunavut, Design Drawings Set by Nuna Burnside Engineering and Environmental Ltd., May 2009.

Figures

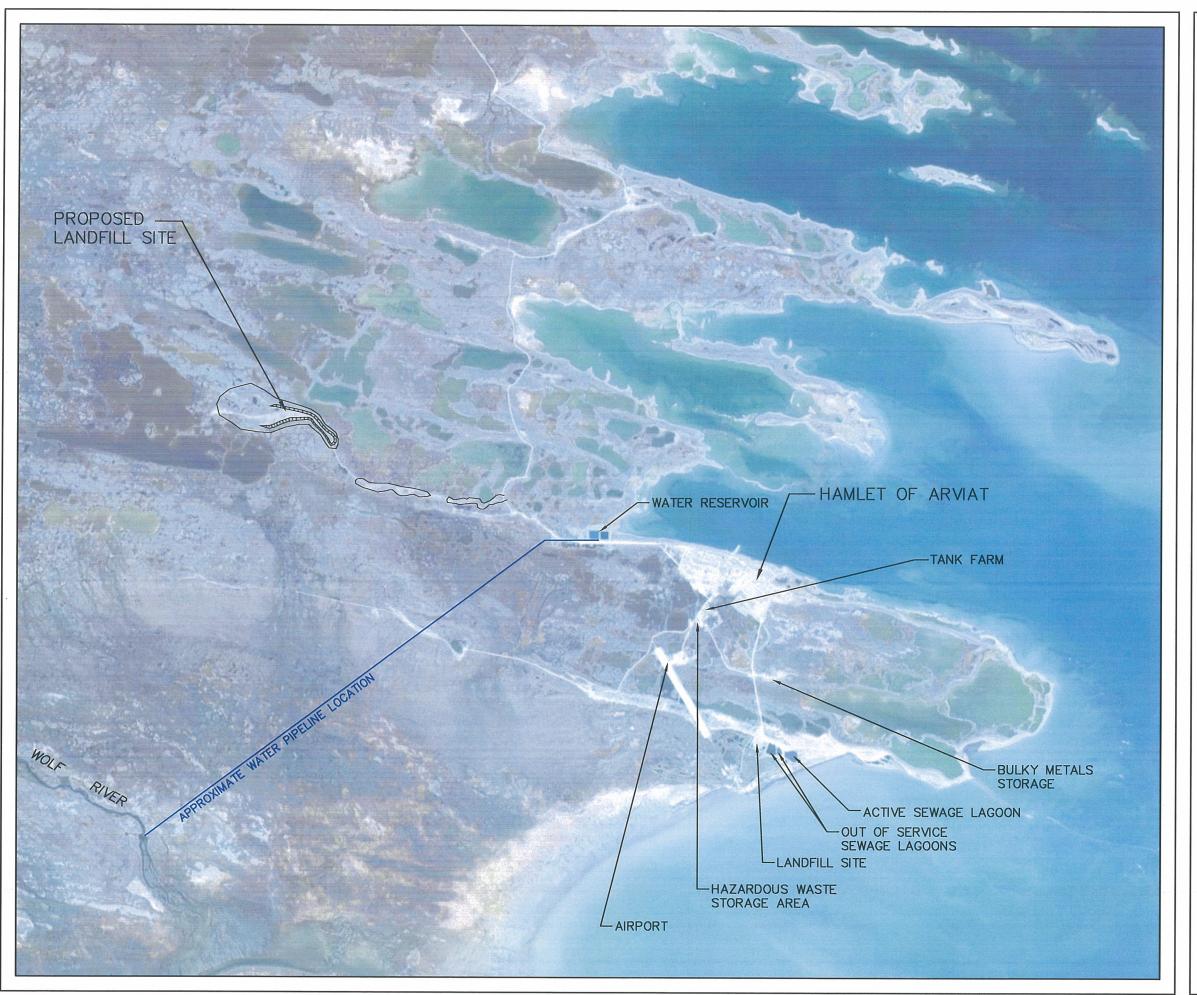
Map Reference: Map Art Publishing

FIGURE 1 - SITE LOCATION MAP

HAMLET OF ARVIAT HAMLET OF ARVIAT, NUNAVUT

SOLID WASTE MANAGEMENT REPORT

December, 2010


Project Number: N-O157460

Prepared by: C. Dickie

Verified by: S. Charity

N-O15746 SWMR 2010 SL.dwg

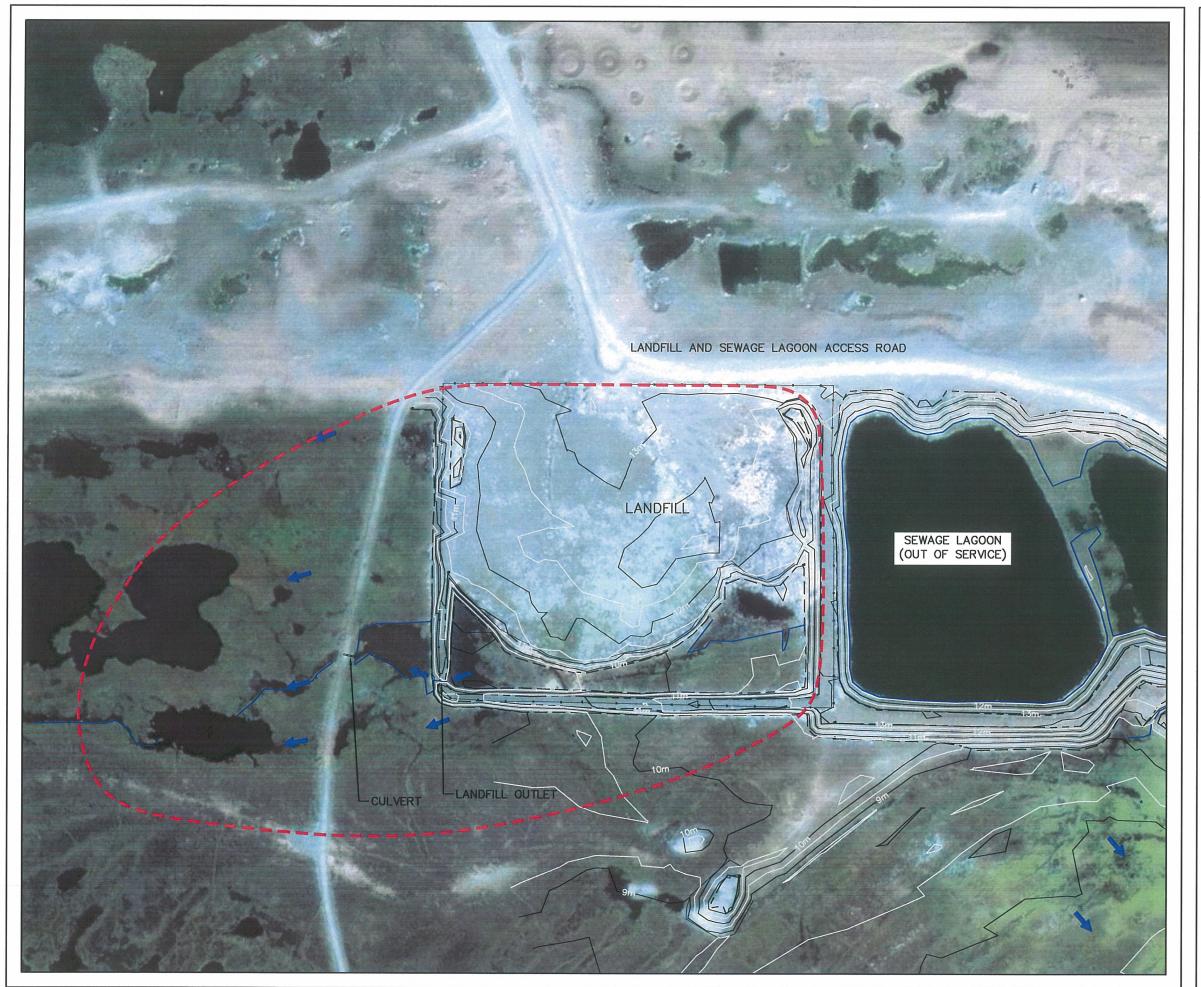
HAMLET OF ARVIAT HAMLET OF ARVIAT, NUNAVUT SOLID WASTE MANAGEMENT REPORT

COMMUNITY PLAN

Satellite Image Source:
Background colour satellite image obtained from Google Earth Pro.

Map Source:
Background physical features obtained from the National Topographic Database Website.

1:50,000


December, 2010 Project Number: N-O157460 Projection: UTM Zone 15 Datum: NAD83

Prepared by: C. Dickie

Verified by: S. Charity

N-O15746 SWMR 2010 CP.dwg

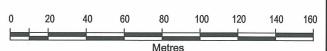
HAMLET OF ARVIAT HAMLET OF ARVIAT, NUNAVUT SOLID WASTE MANAGEMENT REPORT

SOLID WASTE DISPOSAL AREA

LEGEND

CONTAMINANT ATTENUATION ZONE

FLOW DIRECTION


10m

CONTAMINANT ATTENUATION ZONE
GROUND SURFACE / WASTE SURFACE CONTOUR

(Survey by Burnside, September 2010)

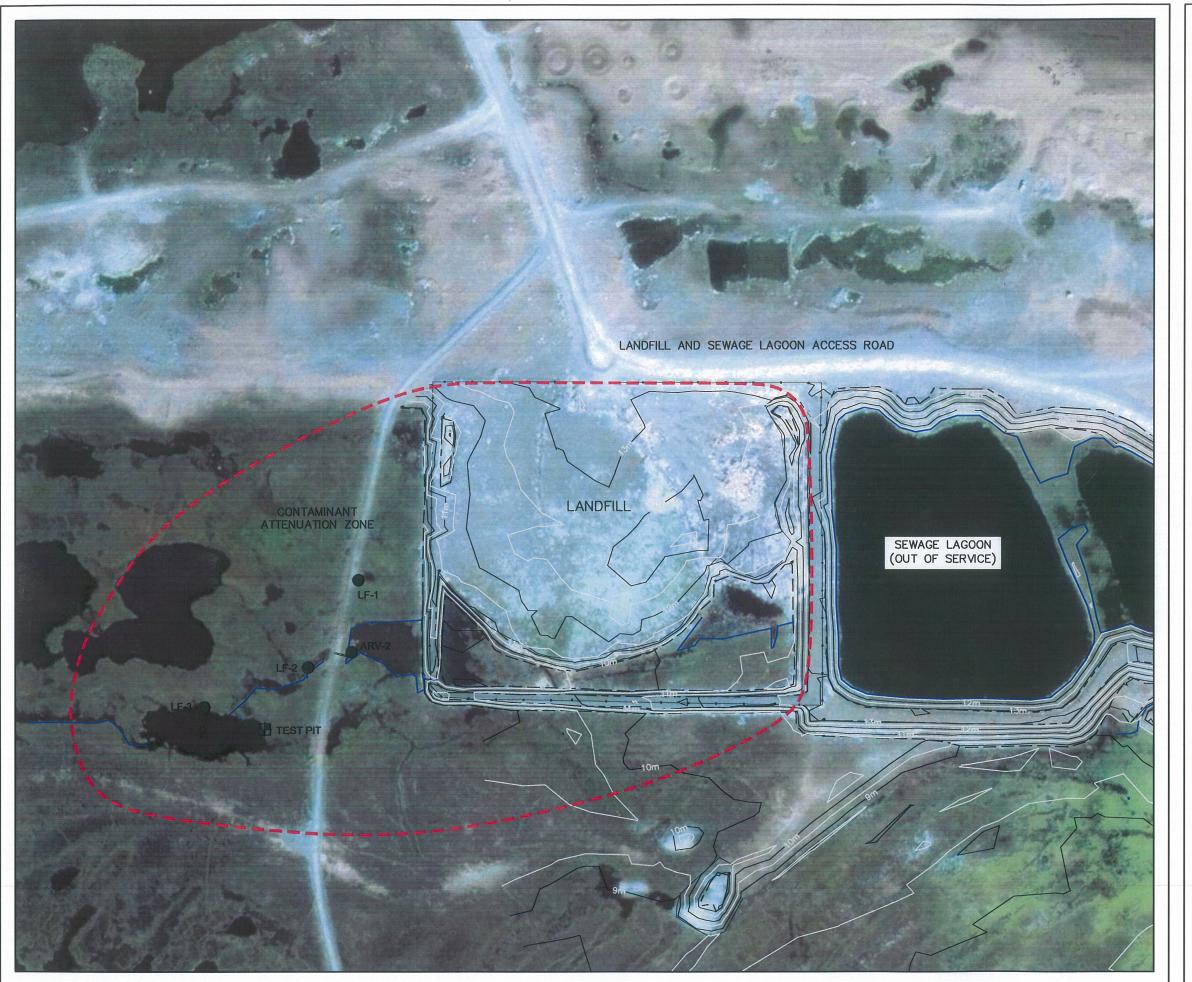
Satellite Image Source:
Quickbird Satellite Image @Digital Globe Inc., Date 2008

1:2,000

December, 2010 Project Number: N-O157460

Datum: NAD83

Prepared by: C. Dickie


Verified by: S. Charity

Projection: UTM Zone 15

N-O15746 SWMR SOLID WASTE DISPOSAL AREA.dwg

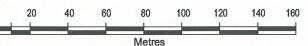
ot Time: Jan 21, 2011-1:41pm

HAMLET OF ARVIAT HAMLET OF ARVIAT, NUNAVUT SOLID WASTE MANAGEMENT REPORT

SOLID WASTE DISPOSAL AREA - SAMPLE LOCATIONS

LEGEND

WATER SAMPLE LOCATION

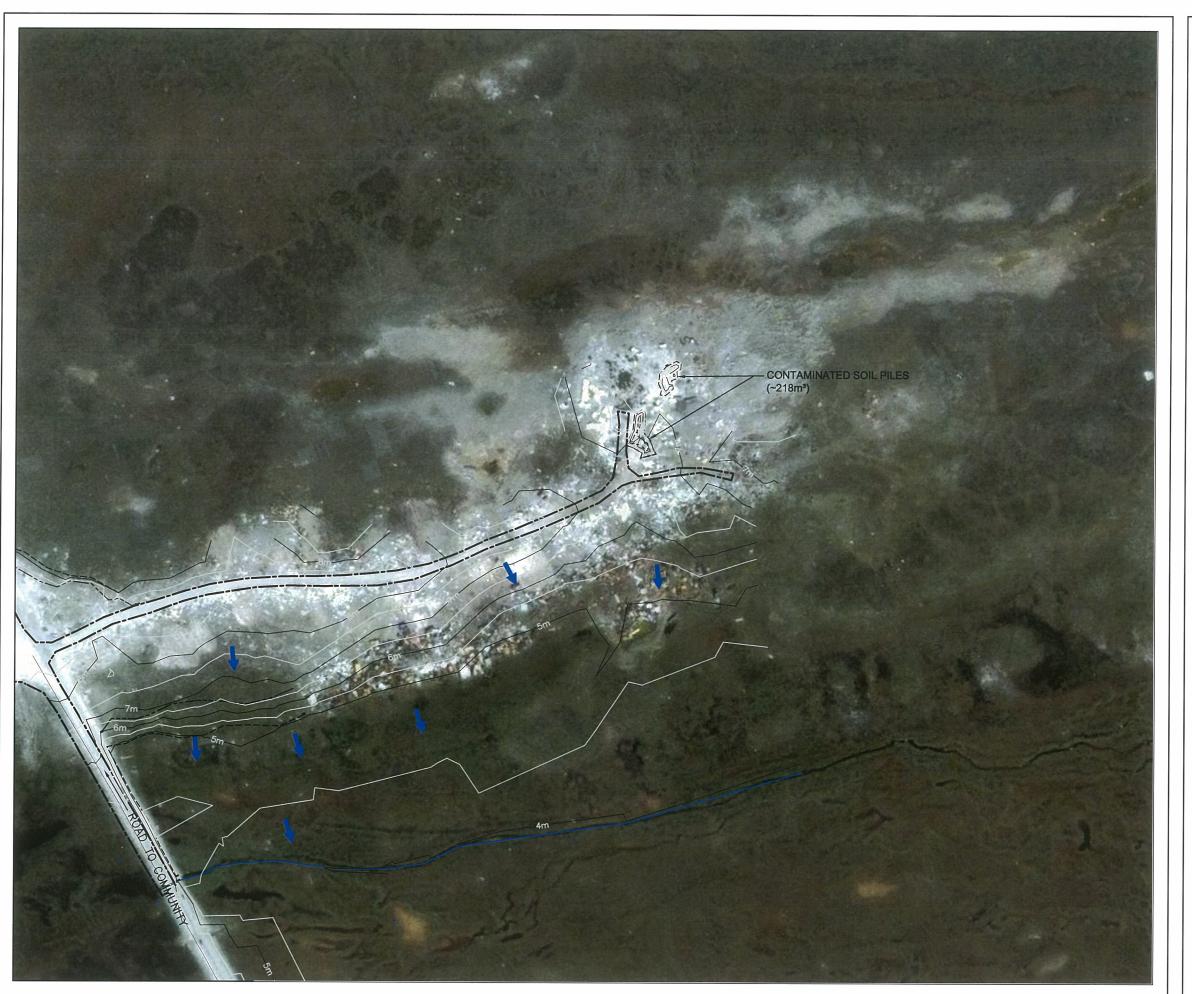

TEST PIT LOCATION

CONTAMINANT ATTENUATION ZONE

Satellite Image Source:
Quickbird Satellite Image ©Digital Globe Inc., Date 2008

1:2,000

December, 2010 Project Number: N-O157460 Projection: UTM Zone 15 Datum: NAD83


Prepared by: C. Dickie

Verified by: S. Charity

N-O15746 SWMR SOLID WASTE SAMPLE LOCATIONS.dwg

of Time: Jan 21 2011-3:46nm

HAMLET OF ARVIAT HAMLET OF ARVIAT, NUNAVUT SOLID WASTE MANAGEMENT REPORT

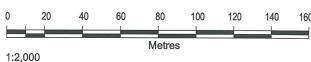
BULKY METALS WASTE AREA

LEGEND

SURFACE WATER FLOW DIRECTION

GROUND SURFACE CONTOUR (Survey by Burnside, September 2010)

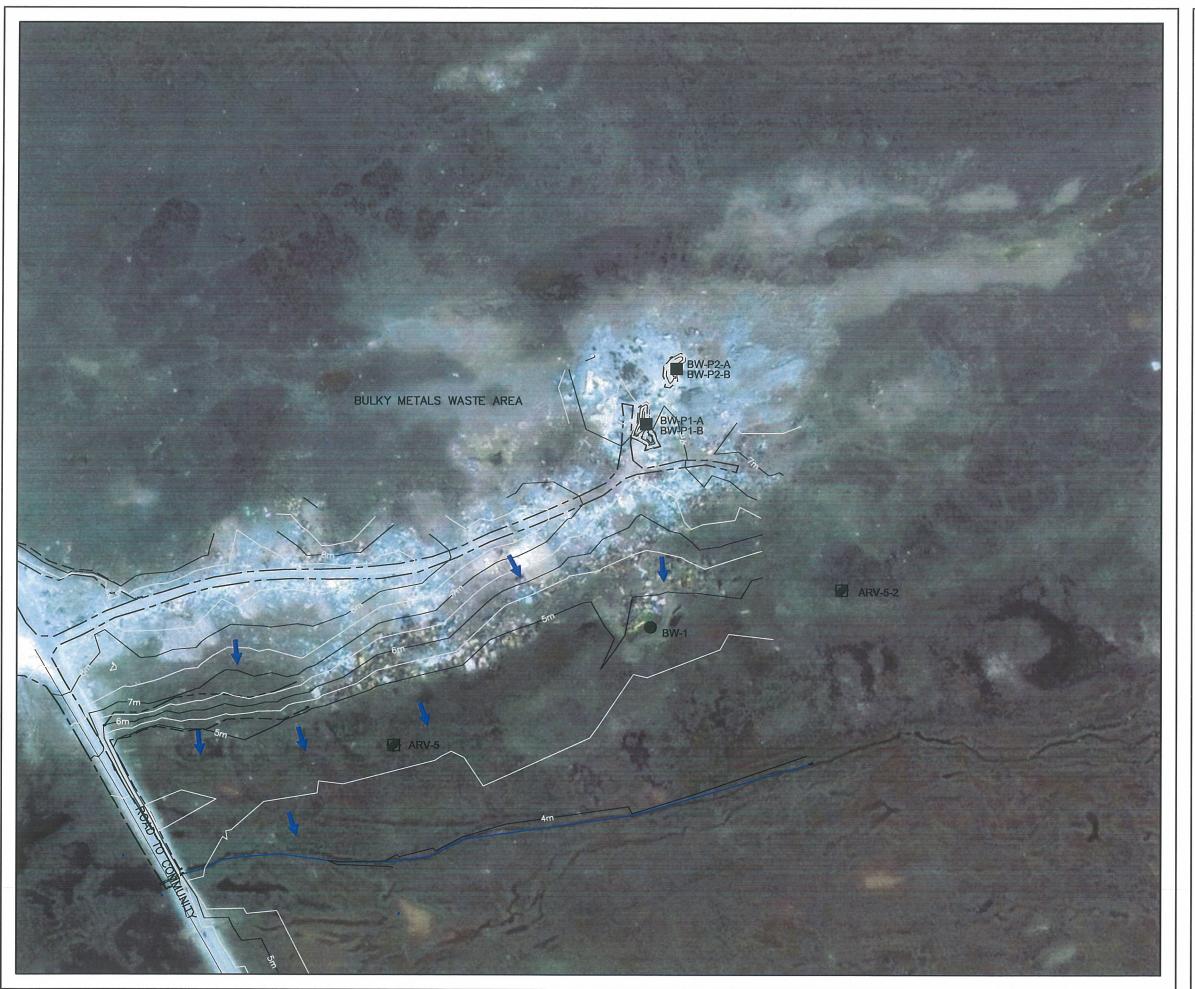
TOP OF BANK (Survey by Burnside, September 2010)


BOTTOM OF BANK (Survey by Burnside, September 2010)

GRAVEL DRIVE/ROAD

(Survey by Burnside, September 2010)

Satellite Image Source:
Quickbird Satellite Image @Digital Globe Inc., Date 2008


December, 2010 Project Number: N-O157460 Projection: UTM Zone 15 Datum: NAD83

Prepared by: C. Dickie

Verified by: S. Charity

N-O15746 SWMR BULKY METALS AREA.dwg

HAMLET OF ARVIAT HAMLET OF ARVIAT, NUNAVUT SOLID WASTE MANAGEMENT REPORT

BULKY METALS WASTE AREA - SAMPLE LOCATIONS

LEGEND

WATER QUALITY SAMPLE LOCATION

TEST PIT LOCATION WITH WATER QUALITY

SOIL SAMPLE LOCATION

SURFACE WATER FLOW DIRECTION

GROUND SURFACE CONTOUR
(Survey by Burnside, September 2010)

Satellite Image Source:

Quickbird Satellite Image ©Digital Globe Inc., Date 2008

1:2,000

December, 2010 Project Number: N-O157460

Prepared by: C. Dickie

Projection: UTM Zone 15 Datum: NAD83

Verified by: S. Charity

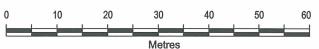
N-O15746 SWMR BULKY METALS SAMPLE LOCATIONS.dwg

Plot Time: Jan 21, 2011—2:11pm

HAMLET OF ARVIAT HAMLET OF ARVIAT, NUNAVUT SOLID WASTE MANAGEMENT REPORT

HAZARDOUS WASTE STORAGE AREA

LEGEND


SOIL SAMPLE LOCATION

SURFACE WATER DRAINAGE FLOW DIRECTION

Satellite Image Source:
Quickbird Satellite Image ©Digital Globe Inc., Date 2008

1:750

December, 2010 Project Number: N-O157460

Prepared by: C. Dickie

Projection: UTM Zone 15 Datum: NAD83

Verified by: S. Charity

N-O15746 SWMR HAZARDOUS WASTE AREA.dwg

Plot Time: Jan 21, 2011—2:17pm

Appendix A Nunavut Water Board Licence

WATER LICENCE NO: 3AM-ARV1015

Hamlet of Arviat, Nunavut

NUNAVUT WATER BOARD

LICENCE NO: 3AM-ARV1015

TABLE OF CONTENTS

WATER I	LICENCE No. 3AM-ARV1015	1
PART A:	SCOPE, DEFINITIONS AND ENFORCEMENT	2
1. 2. 3.	SCOPE DEFINITIONS ENFORCEMENT	2 2 5
PART B:	GENERAL CONDITIONS	5
PART C:	CONDITIONS APPLYING TO WATER USE AND MANAGEMENT	8
PART D:	CONDITIONS APPLYING TO WASTE DISPOSAL AND MANAGEMENT	9
PART E:	CONDITIONS APPLYING TO MODIFICATIONS AND CONSTRUCTION	11
PART F:	CONDITIONS APPLYING TO OPERATIONS AND MAINTENACE	12
PART G:	CONDITIONS APPLYING TO ABANDONMENT, RESTORATION AND CLOSURE	14
PART H:	CONDITIONS APPLYING TO THE MONITORING PROGRAM	15

NUNAVUT WATER BOARD

WATER LICENCE No. 3AM-ARV1015

Pursuant to the *Nunavut Waters and Nunavut Surface Rights Tribunal Act* and the *Agreement Between the Inuit of the Nunavut Settlement Area and Her Majesty the Queen in right of Canada*, the Nunavut Water Board, hereinafter referred to as the Board, hereby grants to

	HAMLET OF ARVIAT			
(Licensee or Applicant)				
	ARVIAT, NUNAVUT	X0C 0E0		
(Mailing Address)				
		vert or otherwise use water or dispose s contained within this Licence:	of	
Licence Number/Type:	3AM-ARV1015 TYPE "A"			
Water Management Area:	NUNAVUT 06			
Location:	ARVIAT, KIVALLIQ REGION, NUNAVUT LATITUDE: 61° 06' 30" N, LONGITUDE: 94° 03' 31" W			
Classification:	MUNICIPAL UNDERTAKING			
Purpose:	DIRECT USE OF WATER AND DEPOSIT OF WASTE			
Quantity of Water use not to Exceed:	EIGHTY-SIX THOUSAND (86,000) CUBIC METRES PER ANNUM			
Date of Licence Issuance:	AUGUST 23, 2010			
Expiry of Licence:	AUGUST 31, 2015			
This Licence, issued and r annexed conditions.	ecorded at Gjoa Haven,	Nunavut, includes and is subject to	the	
7.1clo_				
Thomas Kabloona, Nunavut Water Board Chair	APPROVED BY:	Minister of Indian and Northern Affairs Canada		
DATE LI	CENCE APPROVED:			

PART A: SCOPE, DEFINITIONS AND ENFORCEMENT

1. SCOPE

- a. This Licence allows for the use of Water and disposal of Waste including operation of a Water Supply Facility, Solid Waste Disposal Facility, Hazardous Waste Storage Area, Bulky Metals Area, and Sewage Disposal Facility; as well as construction and operation of a New Solid Waste Disposal Facility and/or Hydrocarbon Impacted Soil Storage and Treatment Facility, upon approval by the Board, by the Hamlet of Arviat, Nunavut for a municipal undertaking (Latitude 61° 06' 30" N and Longitude 94° 03' 31" W);
- b. This Licence is issued subject to conditions contained herein with respect to the taking of Water and the depositing of Waste of any type in any Waters or in any place under any conditions where such Waste or any other Waste that results from the deposits of such Waste may enter any Waters. Whenever new regulations are made or existing regulations are amended by the Governor in Council under the Act, or other statutes imposing more stringent conditions relating to the quantity, type or manner under which any such Waste may be so deposited, this Licence shall be deemed to be subject to such requirements; and
- c. Compliance with the terms and conditions of this Licence does not absolve the Licensee from responsibility for compliance with all applicable legislation, guidelines and directives.

2. DEFINITIONS

In this Licence, these definitions apply and changes may be made at the discretion of the Board.

- "Act" means the Nunavut Waters and Nunavut Surface Rights Tribunal Act;
- "<u>Amendment</u>" means a change to original terms and conditions of this Licence requiring correction, addition or deletion of specific terms and conditions of the Licence and/or modifications inconsistent with the terms of the set terms and conditions of the Licence:
- "Analyst" means an Analyst designated by the Minister under Section 85 (1) of the Act;
- "Applicant" means the Licensee;
- "Appurtenant undertaking" means an undertaking in relation to which a use of Waters or a deposit of Waste is permitted by a licence issued by the Board;
- "Board" means the Nunavut Water Board established under the *Nunavut Land Claims Agreement*;

- "<u>Bulky Metals Area</u>" comprises the area and associated structures designed to contain bulky metal waste as described in the Application for Water Licence Renewal filed by the Applicant on January 5, 2009;
- "<u>Effluent</u>" means treated or untreated liquid waste material that is discharged into the environment from a structure such as a settling pond or a treatment plant;
- "Engineer" means a professional engineer registered to practice in Nunavut in accordance with the Consolidation of Engineers and Geoscientists Act S. Nu 2008, c.2 and the Engineering and Geoscience Professions Act S.N.W.T. 2006, c.16 Amended by S.N.W.T. 2009, c.12;
- "<u>Final Discharge Point</u>" in respect of an Effluent, means an identifiable discharge point of a facility beyond which the operator of the facility no longer exercises control over the quality of the Effluent:
- "<u>Freeboard</u>" means the vertical distance between water line and the designed maximum operating height on the crest of a dam or dyke's upstream slope;
- "Geotechnical Engineer" means a professional engineer registered with the Northwest Territories and Nunavut Association of Professional Engineers and Geoscientists and whose principal field of specialization is with the engineering properties of earth materials in dealing with man-made structures and earthworks that will be built on a site. These can include shallow and deep foundations, retaining walls, dams, and embankments;
- "<u>Grab Sample</u>" means a single Water or wastewater sample taken at a time and place representative of the total discharge;
- "<u>Greywater</u>" means all liquid wastes from showers, baths, sinks, kitchens and domestic washing facilities, but does not include toilet wastes;
- "Hazardous Waste" means waste classified as "hazardous" by Nunavut Territorial or Federal legislation, or as "dangerous goods" under the *Transportation of Dangerous Goods Act*;
- "<u>Hazardous Waste Storage Area</u>" comprises the area and associated structures designed to contain Hazardous Waste as described in the Application for Water Licence Renewal filed by the Applicant on January 5, 2009;
- "<u>Hydrocarbon Impacted Soil Storage and Treatment Facility</u>" means an area designed to treat Petroleum Hydrocarbon-Impacted Soil, as referred to in the Application for Water Licence Renewal filed by the Applicant on January 5, 2009;
- "Inspector" means an Inspector designated by the Minister under Section 85 (1) of the Act;
- "Licensee" means the holder of this Licence;

- "Modification" means an alteration to a physical work that introduces a new structure or eliminates an existing structure and does not alter the purpose or function of the work, but does not include an expansion, and changes to the operating system that are consistent with the terms of this Licence and do not require amendment;
- "Monitoring Program" means a monitoring program established to collect data on surface Water and groundwater quality, Waste and Waste deposition, to assess impacts to the freshwater aquatic environment of an appurtenant undertaking;
- "New Solid Waste Disposal Facility" comprises the area and associated structures designed to contain solid waste as referred to in the Application for Water Licence Renewal filed by the Applicant on January 5, 2009;
- "Nunavut Land Claims Agreement" (NLCA) means the "Agreement Between the Inuit of the Nunavut Settlement Area and Her Majesty the Queen in right of Canada", including its preamble and schedules, and any amendments to that agreement made pursuant to it;
- "Petroleum Hydrocarbon Impacted Soil" means soil in which the primary petroleum product present, as determined by laboratory analysis consistent with that described in the *Canada-Wide Standards for Petroleum Hydrocarbons in Soil*, generally consists of fuel oil, diesel fuel, gasoline and/or jet fuel;
- "Sewage" means all Toilet Wastes and Greywater;
- "Sewage Disposal Facilities" comprises the area, including wetland and engineered lagoon designed to contain Sewage as described in the Application for Water Licence filed by the Applicant on September 2, 2003, and illustrated in Arviat Sewage Lagoon drawings prepared by FSC Architects and Engineers for Government of Nunavut, Job No. 507-340, FSC Project No. 2003-0440-003, Submission for Tender July 11th, 2003;
- "Sewage Sludge" means the semi-solid Sewage material which settles at the bottom of the Sewage lagoon;
- "<u>Solid Waste Disposal Facilities</u>" comprises the area and associated structures designed to contain solid waste as described in the Application for Water Licence filed by the Applicant on September 2, 2003;
- "<u>Toilet Wastes</u>" means all human excreta and associated products, but does not include Greywater;
- "Waste" means, as defined in section 4 of the Act, any substance that, by itself or in combination with other substances found in Water, would have the effect of altering the quality of any Water to which the substance is added to an extent that is detrimental to its use by people or by any animal, fish or plant, or any Water that would have that effect because of the quantity or concentration of the substances contained in it or because it has been treated or changed, by heat or other means;

"<u>Waste Disposal Facilities</u>" means all facilities designated for the disposal of Waste including the Sewage Disposal Facilities, Solid Waste Disposal Facilities, Hazardous Waste Storage Area, Bulky Metals Area, and upon approval by the Board, New Solid Waste Disposal Facility, and/or Hydrocarbon Impacted Soil Storage and Treatment Facility, as described in the Application for Water Licence Renewal filed by the Applicant on January 5, 2009;

"Water" means water as defined in section 4 of the Act;

"Water Supply Facilities" comprises the area and associated intake infrastructure at the Wolf River Water Supply, as described in the Application for Water Licence Renewal filed by the Applicant on January 5, 2009 and illustrated in Arviat Water Supply Filtration Upgrade drawings prepared by Dillon Consulting for Government of Nunavut Public Works and Services, Issued for Tender, April 2008, Project No. 078254; Figure 4 – Hamlet of Arviat Water Licence Submission Wolf River Water Intake drawing prepared by Nuna Burnside, December 2008, Project Number N-O15746;

"Work Plan" refers to the electronic document (letter) from Jim Walls, P.Geo., Nuna Burnside Engineering and Environmental Ltd., to Bryan Purdy, Government of Nunavut Community Government Services, Re: Work Plan to Address INAC, DFO, and NWB Licence Compliance Issues GN File 08-3025 Hamlet of Arviat, Nunavut File No. N-0 15746.1, dated June 23, 2010.

3. ENFORCEMENT

- a. Failure to comply with this Licence will be a violation of the Act, subjecting the Licensee to the enforcement measures and the penalties provided for in the Act.
- b. All inspection and enforcement services regarding this Licence will be provided by Inspectors appointed under the Act.
- c. For the purpose of enforcing this Licence and with respect to the use of Water and deposit or discharge of Waste by the Licensee, Inspectors appointed under the Act, hold all powers, privileges and protections that are conferred upon them by the Act or by other applicable law.

PART B: GENERAL CONDITIONS

- 1. This Licence incorporates a previously issued Type B licence, NWB3ARV0308, to the Hamlet of Arviat, which allowed for the use of water and disposal of waste.
- 2. In the event of a conflict between the previously issued Type B licences and this Type A Licence, the condition of this Type A Licence prevails.
- 3. The Licensee shall file an annual report with the Board for review, no later than March 31 st

of the year following the calendar year being reported, which shall contain the following information collected during that period:

- a. Tabular summaries of all data generated under the Monitoring Program;
- b. The monthly and annual quantities of freshwater obtained from all sources;
- c. The monthly and annual quantities of Wastes removed for disposal from Water Supply Facilities and Waste Disposal Facilities;
- d. A summary of modifications and/or major maintenance work carried out on Water Supply Facilities and Waste Disposal Facilities including all associated structures and facilities;
- e. A list of unauthorized discharges and summary of follow-up actions taken;
- f. Any revisions to approved plans and manuals as required by Part B, Item 12, submitted in the form of an addendum;
- g. A summary of the status of implementation of the Work Plan, including an indication of the status of the funding required to carry out the Work Plan and an estimated timeframe for receipt of the necessary funding;
- h. A fiscal update of the Licensee's funding commitments associated with all facilities governed by this Licence including all associated structures and facilities for the upcoming year and identifying shortfalls in such funding commitments for the previous year;
- i. A summary of abandonment and restoration work completed during the year and an outline of any work anticipated for the next year;
- j. A summary of any studies, reports and plans requested by the Board that relate to Waste disposal, Water use or reclamation, and a brief description of any future studies planned; and
- k. Any other details on water use or waste disposal requested by the Board by November 1st of the year being reported.
- 4. The Licensee shall comply with the Monitoring Program described in this Licence and any Amendments to the Monitoring Program as may be made from time to time, pursuant to the conditions of this Licence.
- 5. The Monitoring Program and compliance dates specified in the Licence may be modified at the discretion of the Board.
- 6. Metres, devices or other such methods used for measuring the volumes of Water used and Waste discharged, shall be installed, operated and maintained by the Licensee to the satisfaction of an Inspector.
- 7. The Licensee shall, within ninety (90) days after the first visit by the Inspector following approval of this Licence, post the necessary signs, to identify the stations of the Monitoring Program. All signage postings shall be in Inuktitut and English.
- 8. The Licensee shall, for all plans submitted under this Licence, include a proposed timetable for implementation. Plans submitted, cannot be undertaken without subsequent written Board approval and direction. The Board may alter or modify a plan if necessary to

- achieve the legislative objectives and will notify the Licensee in writing of acceptance, rejection or alteration of the plan.
- 9. In the event that a plan is not found acceptable to the Board, the Licensee shall, within thirty (30) days of notification by the Board, provide a revised version to the Board, for approval in writing.
- 10. The Licensee shall, for all plans submitted under this Licence, implement the plan as approved by the Board in writing.
- 11. Every plan to be carried out pursuant to the terms and conditions of this Licence shall become a part of this Licence, and any additional terms and conditions imposed upon approval of a plan by the Board become part of this Licence. All terms and conditions of the Licence should be contemplated in the development of a plan where appropriate.
- 12. The Licensee shall review the plans and manuals referred to in this Licence as required by changes in operation and/or technology and revise accordingly. Revisions to the plans or manuals are to be submitted in the form of an addendum to be included with the annual report required by Part B, Item 3, complete with a revisions list detailing where significant content changes are made.
- 13. The Licensee shall ensure a copy of this Licence is maintained at the municipal office and at the site of operation at all times.
- 14. Any communication with respect to this Licence shall be made in writing to the attention of:

Manager of Licensing Nunavut Water Board

P. O. Box 119

Gjoa Haven, NU X0B 1J0 Telephone: (867) 360-6338 Fax: (867) 360-6369

Email: <u>licensing@nunavutwaterboard.org</u>

15. Any notice made to an Inspector shall be made in writing to the attention of:

Water Resources Officer
Nunavut District, Nunavut Region

P.O. Box 100

Igaluit, NU X0A 0H0

Telephone: (867) 975-4295 Fax: (867) 979-6445

16. The Licensee shall submit one (1) paper copy and one (1) electronic copy of all reports, studies, and plans to the Board or as otherwise requested by the Board. Reports or studies submitted to the Board by the Licensee shall include an executive summary in English and

Inuktitut.

- 17. The Licensee shall ensure that any document(s) or correspondence submitted by the Licensee to the Board, is received by the Board and maintain on file a copy of the acknowledgment of receipt issued by the Manager of Licensing.
- 18. This Licence is assignable as provided for in Section 44 of the Act.
- 19. The expiry or cancellation of this Licence does not relieve the Licensee from any obligation imposed by the Licence, or any other regulatory requirement.
- 20. The Licensee shall file a Water Licence Renewal Application with the Board no later than September 1, 2014.

PART C: CONDITIONS APPLYING TO WATER USE AND MANAGEMENT

- 1. The Licensee shall obtain all freshwater from Wolf River at Monitoring Program Station ARV-1 as otherwise approved by the Board in writing.
- 2. The annual quantity of water used for all purposes shall not exceed eighty-six thousand (86, 000) cubic metres per annum, or as otherwise approved by the Board in writing.
- 3. The Licensee shall equip all water intake hoses with a screen of an appropriate mesh size to ensure that fish are not entrained and shall withdraw Water at a rate such that fish do not become impinged on the screen.
- 4. The Licensee shall submit to the Board for approval in writing by December 31, 2010, asbuilt drawings stamped and signed by an Engineer confirming compliance with the DFO guideline "Freshwater Intake End of Pipe Fish Screen Guideline". The drawings shall include information regarding the operating capacity of the pump used and the intake screen size.
- 5. The Licensee shall not remove any material from below the ordinary high water mark of any Water body.
- 6. The Licensee shall not cause erosion to the banks of any body of Water and shall provide necessary controls to prevent such erosion.
- 7. Sediment and erosion control measures shall be implemented prior to and maintained during construction and operation to prevent entry of sediment into Water.
- 8. The Licensee shall submit to the Board for review by December 31, 2010, the Water balance assessment for Wolf River and an assessment of the potential effects of drawdown of Wolf River on the aquatic environment. The assessment shall include recommended mitigation measures and an implementation schedule.

9. The Licensee shall maintain the Water Supply Facilities to the satisfaction of the Inspector.

PART D: CONDITIONS APPLYING TO WASTE DISPOSAL AND MANAGEMENT

- 1. The Licensee shall direct all Sewage to the Sewage Disposal Facility.
- 2. All Effluent discharged from the Sewage Disposal Facilities at Monitoring Program Station ARV-4 shall not exceed the following Effluent quality limits, or as otherwise approved by the Board in writing:

Parameter	Maximum Concentration of any Grab Sample
Fecal Coliform	1 x 10 ⁴ CFU/dl
BOD ₅	80 mg/l
Total Suspended Solids	100 mg/l
Oil and Grease	No visible sheen
рН	Between 6 and 9

- 3. A Freeboard limit of 1.0 metre, or as recommended by a qualified Geotechnical Engineer and as approved by the Board in writing, shall be maintained at all dams, dyke or structures intended to contain, withhold, divert or retain Water or Wastes.
- 4. The Licensee shall provide at least ten (10) days notification to an Inspector, prior to initiating any planned discharges from any Waste Disposal Facility.
- 5. The Licensee shall submit to the Board for approval in writing by December 31, 2010, a Sewage Disposal Facility Report. The Report shall include:
 - a. As-built drawings and design plans of the Sewage Disposal Facility (including the lagoon and wetland) signed and stamped by an Engineer;
 - b. A preliminary discharge and wetland hydrology assessment;
 - c. The results of an inspection by a Geotechnical Engineer of the Sewage Disposal Facility lagoon including its berms and an evaluation of the impact of sewage seepage through the lagoon berms on the environment;
 - d. An evaluation of the long term impacts of the Sewage Disposal Facility on the environment;
 - e. A Sludge Management Plan that addresses sludge assessment and disposal methods. The Plan shall be incorporated in to the Sewage Disposal Facility Operations and Maintenance Manual referred to in Part F Item 1b;
 - f. Recommended measures to optimize the Sewage Disposal Facility; and
 - g. A schedule for implementing recommended measures.
- 6. The Licensee shall, prior to commissioning of the New Solid Waste Disposal Facility, or as otherwise approved by the Board in writing:

- a. Dispose of and contain all non-Hazardous, non-bulky metal, solid Waste at the Solid Waste Disposal Facility;
- b. Dispose of and contain all bulky metal Waste at the Bulky Metals Area; and
- c. Segregate and securely store all hazardous materials and Hazardous Waste within the Hazardous Waste Storage Area in a manner as to prevent the deposit of deleterious substances into any Water, until such a time that the materials have been removed for proper disposal at a licensed facility.
- 7. The Licensee shall not open burn plastics, wood treated with preservatives, electric wire, styrofoam, asbestos or painted wood to prevent the deposition of Waste materials of incomplete combustion and/or leachate from contaminated ash residual, from impacting any surrounding Waters, or as otherwise approved by the Board in writing.
- 8. The Licensee shall maintain records of all Waste removed from site and records of confirmation of proper disposal of removed Waste. These records shall be made available to an Inspector upon request.
- 9. The Licensee shall store and contain all Petroleum Hydrocarbon Impacted Soil in a manner as to prevent the deposit of deleterious substances into any Water.
- 10. The Licensee shall submit to the Board for approval in writing, at least sixty (60) days prior to the commissioning of a Hydrocarbon Impacted Soil Storage and Treatment Facility, a Hydrocarbon Impacted Soil Storage and Treatment Facility Management Plan including proposed Effluent quality limits for Monitoring Program Station ARV-10.
- 11. The Licensee shall dispose of all Effluent from contaminated soil areas and the Hydrocarbon Impacted Soil Storage and Treatment Facility, that exceed Effluent quality limits approved by the Board in Part D Item 14 (c) and Part D Item 10 respectively, off site at a licensed hazardous waste facility, or as otherwise approved by the Board in writing.
- 12. The discharge locations for all treated Effluents from the Hydrocarbon Impacted Soil Storage and Treatment Facility and contaminated soil areas shall be located at a minimum of thirty one (31) metres from the ordinary high water mark of any Water body and where direct or indirect flow into a Water body is not possible and no additional impacts are created.
- 13. The Licensee shall, prior to the removal of any treated soil from the Hydrocarbon Impacted Soil Storage and Treatment Facility, obtain written documentation from the Government of Nunavut Environmental Protection Service, confirming that the soils have been treated in accordance with the Government of Nunavut's "Environmental Guideline for Contaminated Site Remediation, 2009" for its intended use.
- 14. The Licensee shall submit to the Board for approval in writing by December 31, 2010, a Solid Waste Management Report. The Report shall include:

- a. As-built drawings of the Solid Waste Disposal Facility, Hazardous Waste Storage Area, and Bulky Metals Area, signed and stamped by an Engineer;
- b. Capacity assessment of the Solid Waste Disposal Facility;
- c. An inventory and assessment of contaminated soil and water at the Solid Waste Disposal Facility, Bulky Metals Area, and Hazardous Waste Storage Area, and a plan for the treatment and disposal of contaminated soil and water including proposed Effluent quality limits for Monitoring Program Station ARV-11;
- d. Recommendations for Water and wastewater containment, treatment, and drainage control. This Plan shall be incorporated into the Solid Waste Disposal Facility Operations and Maintenance Plan referred to in Part F Item 2d.
- e. Recommended measures to optimize solid waste management; and
- f. A schedule for implementing recommended measures.
- 15. Licensee shall implement measures to ensure hazardous materials and/or leachate from the Waste Disposal Facilities does not enter Water.
- 16. Licensee shall, annually between the months of June and September, undertake a geotechnical inspection to be carried out by a Geotechnical Engineer that takes into account all facilities intended to contain, withhold, divert or retain Water or Wastes. The inspection shall be conducted in accordance with the Canadian Dam Safety Guidelines, where applicable.
- 17. The Licensee shall, within sixty (60) days of completion of the geotechnical inspection referred to in Part D, Item 16, submit to the Board for review, the Geotechnical Engineer's inspection Report. The Licensee shall include a cover letter outlining an implementation plan to address the recommendations of the Geotechnical Engineer.
- 18. The Licensee shall maintain and operate all Water Supply Facilities and Waste Disposal Facilities in such a manner as to prevent structural failure.

PART E: CONDITIONS APPLYING TO MODIFICATIONS AND CONSTRUCTION

- 1. The Licensee shall, at least sixty (60) days prior to construction of the New Solid Waste Disposal Facility and/or the Hydrocarbon Impacted Soil Storage and Treatment Facility, or any dams, dykes or structures intended to contain, withhold, divert or retain Water or Wastes, submit to the Board, for approval in writing, final design Plans and construction drawings signed and stamped by an Engineer.
- 2. The Licensee shall obtained approval from the Board in writing prior to the construction of any dams, dykes or structures intended to contain, withhold, divert or retain Water or Wastes.
- 3. The Licensee may, without written approval from the Board, carry out Modifications provided that such Modifications are consistent with the terms of this Licence and the following requirements are met:

- a. The Licensee has notified the Board in writing of such proposed Modifications at least sixty (60) days prior to beginning the Modifications to include:
 - i. A description of the facilities and/or works to be constructed;
 - ii. The proposed location of the structure(s);
 - iii. Identification of any potential impacts to the receiving environment;
 - iv. A description of any monitoring required, including sampling locations, parameters measured and frequencies of sampling;
 - v. Schedule for construction;
 - vi. Drawings of engineered structures signed and stamped by an Engineer; and
 - vii. Proposed sediment and erosion control measures.
- b. The proposed Modifications do not place the Licensee in contravention of the Licence or the Act;
- c. The Board has not, within sixty (60) days following notification of the proposed Modifications, informed the Licensee that review of the proposal will require more than sixty (60) days; and
- d. The Board has not rejected the proposed Modifications;
- 4. Modifications for which any of the conditions referred to above have not been met can be carried out only with approval from the Board in writing.
- 5. The Licensee shall provide as-built plans and drawings of the construction and/or Modifications referred to in Part E of this Licence within ninety (90) days of completion of the Construction or Modification. These plans and drawings shall be signed and stamped by an Engineer.

PART F: CONDITIONS APPLYING TO OPERATIONS AND MAINTENACE

- 1. The Licensee shall, within sixty (60) days following Board approval of the Sewage Disposal Facility Report referred to in Part D, Item 5, submit to the Board, for approval in writing, a revision to the Plan entitled "Sewage Treatment Facility Operation and Maintenance (O&M) Plan, Hamlet of Arviat" May 2009, revised May 2010, to address the following:
 - a. Requirements of the Licence;
 - b. Sludge Management Plan referred to in Part D Item 5e; and
 - c. Results of the Sewage Disposal Facility Report referred to in Part D Item 5.
- 2. The Licensee shall, within sixty (60) days following Board approval of the Solid Waste Disposal Facility Report referred to in Part D Item 14, submit to the Board, for approval in writing, a revision to the Plan entitled "Solid Waste Management Facility Operation and Maintenance (O&M) Plan, Hamlet of Arviat" January 2009, revised May 2010, to address the following:
 - a. Requirements of the Licence;
 - b. Bulky Waste Management Plan;

- c. Hazardous Waste Management Plan including Hazardous Waste containment and segregation measures, and procedures for the movement of Hazardous Waste;
- d. Recommendations for Water and wastewater containment, treatment, and drainage control as referred to in Part D Item 14(d); and
- e. Results of the Solid Waste Disposal Facility Report referred to in Part D Item 14.
- 3. The Licensee shall, at least three (3) months prior to commissioning the New Solid Waste Disposal Facility and/or Hydrocarbon Impacted Soil Storage and Treatment Facility, submit to the Board, for approval in writing, a revised Solid Waste Management Facility Operations and Maintenance (O&M) Plan referred to in Part F Item 2 to address the New Solid Waste Disposal Facility and/or Hydrocarbon Impacted Soil Storage and Treatment Facility.
- 4. The Licensee shall, in preparation of the revised plan referred to in Part F, Item 3, consult Environment Canada for guidance related to Petroleum Hydrocarbon Impacted Soils storage and treatment facility design, siting, operation, monitoring, sampling and analytical methods, decommissioning and closure, as well as record keeping and reporting.
- 5. The Licensee shall, by December 31, 2010, submit to the Board for review, an Addendum to the approved Plan entitled "Environmental Emergency Contingency Plan, Hamlet of Arviat" May 2009, revised May 2010, to address reviewers' comments including the following:
 - a. Procedures for the movement of Hazardous Waste;
 - b. Contact information for the Government of Nunavut Department of Environment Manager of Pollution; and
 - c. Detailed information regarding clean-up methods/procedures for spills on Water or ice.
- 6. If, during the period of this Licence, an unauthorized discharge of Waste and or Effluent occurs, or if such discharge is foreseeable, the Licensee shall:
 - a. Employ as required, the approved Environmental Emergency Contingency Plan referred to in Part F Item 5;
 - b. Report the incident immediately via the 24-Hour Spill Reporting Line (867) 920-8130 and to the Inspector at (867) 975-4295; and
 - c. For each spill occurrence, submit a detailed report to the Inspector, no later than thirty (30) days after initially reporting the event, which includes the amount and type of spilled product, the GPS location of the spill, and the measures taken to contain, clean up and restore the spill site.

PART G: CONDITIONS APPLYING TO ABANDONMENT, RESTORATION AND CLOSURE

- 1. The Licensee shall, by December 31, 2010, submit to the Board, for review, an interim Abandonment and Restoration Plan for the Solid Waste Disposal Facility, Bulky Metals Area, Hazardous Waste Storage Area and any contaminated sites identified in the Solid Waste Management Report referred to in Part D Item 14 (c). The Plan shall incorporate, where applicable, the appropriate sections described in Part G Item 3.
- 2. The Licensee shall, by December 31, 2010, submit to the Board, for approval in writing, a Final Abandonment and Restoration Plan for the two abandoned sewage lagoons. The Plan shall incorporate, where applicable, the appropriate sections described in Part G Item 3.
- 3. The Licensee shall, at least six (6) months prior to abandoning any facilities or upon submission of final design drawings for the construction of new facilities to replace existing ones, submit to the Board, for approval in writing, a Final Abandonment and Restoration Plan for the facilities being decommissioned. The Plan shall incorporate, where applicable, information on the following:
 - a. Water intake facilities;
 - b. The water treatment and waste disposal sites and facilities;
 - c. Former dump sites;
 - d. Petroleum and chemical storage areas;
 - e. Any site affected by waste spills:
 - f. Leachate prevention;
 - g. An implementation and completion schedule;
 - h. Maps delineating all disturbed areas, and site facilities;
 - i. Consideration of altered drainage patterns;
 - i. Type and source of cover materials;
 - k. Future area use:
 - 1. Hazardous Wastes; and
 - m. A proposal identifying measures by which restoration costs will be financed by the Licensee upon abandonment.
- 4. The Licensee shall carry out progressive reclamation of any Water Supply Facilities and Waste Disposal Facilities no longer required for the Licensee's operations.
- 5. In order to promote growth of vegetation and the needed microclimate for seed deposition, all disturbed surfaces shall be prepared by ripping, grading, or scarifying the surface to conform to the natural topography.
- 6. The Licensee shall, prior to the use of reclaimed soils that have been contaminated by hydrocarbons, or soils referred to in Part D, Item 14(c), consult with the Government of Nunavut, Department of Environment and obtain written confirmation that the soil meets

- the objectives as outlined in the Government of Nunavut's *Environmental Guideline for Contaminated Site Remediation*, March 2009 (Revised).
- 7. The Licensee shall complete the restoration work within the time schedule specified in an approved Abandonment and Restoration Plan, or as subsequently revised and approved by the Board in writing.
- 8. The Licensee shall complete all restoration work prior to the expiry of this Licence.

PART H: CONDITIONS APPLYING TO THE MONITORING PROGRAM

1. The Licensee shall maintain Monitoring Program Stations at the following locations:

Station Number	Description	Frequency	Status
ARV-1	Raw water supply at Wolf River prior to treatment.	Monthly	Active (Volume)
ARV-2a	Effluent from the discharge point of the Solid Waste Disposal Facility.	Quality Monthly during the months of May to August and prior to discharge of accumulated impacted water. Acute Toxicity	Active (Quality and Acute Toxicity)
ARV-2b	Effluent from the discharge point of the New Solid Waste Disposal Facility.	Annually Quality Monthly during the months of May to August and prior to discharge of accumulated impacted water. Acute Toxicity Annually	Active (Quality and Acute Toxicity)
ARV-3	Raw Sewage at truck offload point.	Monthly	Not active

ARV-4	Effluent from the	Quality	Active
	discharge point of the	Monthly during the	(Quality and Acute
	Sewage Disposal	months of May to	Toxicity)
	Facility (end of	August.	
	Wetland).		
		Acute Toxicity	
		Annually	
ARV-5	Discharge from the	Monthly during	New
	Bulky Metal Waste	periods of observed	(Quality)
	Area.	flow.	
ARV-6	Discharge from the	Monthly during	New
	Hazardous Waste	periods of observed	(Quality)
	Storage Area.	flow.	
ARV-7	Water level in Wolf	Monthly during	New
	River.	periods of open water.	(Water level)
ARV-8	Water level in Sewage	Monthly during	New
	Disposal Facility	thawed conditions.	(Sewage level)
	lagoon.		
ARV-9	Sewage Sludge	Monthly	New
	removed from the		(Volume)
	Sewage Disposal		
	Facility.		
ARV-10	Effluent from the	To be determined in	New
	Final Discharge Point	accordance with Part	(To be determined
	of the Hydrocarbon	D Item 10	in accordance with
	Impacted Soil Storage		Part D Item 10)
	and Treatment		
	Facility		
ARV-11	Effluent discharge	To be determined in	New
	from dewatering	accordance with Part	(To be determined
	contaminated soil	D Item 14 (c)	in accordance with
	areas.		Part D Item 14 (c))

- 2. The Licensee shall, by December 31, 2010, maintain a water level Monitoring Program Station (ARV-7) at Wolf River.
- 3. The Licensee shall, by December 31, 2010, maintain a lagoon level Monitoring Program Station (ARV-8) at the Sewage Disposal Facility.
- 4. The Licensee shall provide the GPS co-ordinates (in degrees, minutes and seconds of latitude and longitude) of all locations where sources of Water are utilized for all purposes and at all Monitoring Program Stations.
- 5. The Licensee shall confirm the locations and GPS coordinates for all Monitoring Program Stations referred to in Part H Item 1 with an Inspector.

- 6. The Licensee shall determine the locations and GPS coordinates of any additional Monitoring Program Stations required for any new Waste Disposal Facilities with an Inspector.
- 7. The Licensee shall measure and record in cubic metres, the monthly and annual quantities of Water extracted for all purposes at Monitoring Program Station ARV-1.
- 8. The Licensee shall carry out, at a minimum, weekly inspections at Monitoring Program Stations ARV-2a, ARV-5, ARV-6, and Station ARV-2b upon commissioning of the New Solid Waste Disposal Facility, from May to August inclusive, to identify Effluent or Water flow in order to fulfill the monitoring requirements of Part H, Item 9. A record of inspections shall be retained and made available to an Inspector upon request.
- 9. The Licensee shall sample monthly at Monitoring Program Stations ARV-2a, ARV-4, ARV-5, ARV-6, and Station ARV-2b upon commissioning of the New Solid Waste Disposal Facility, during the months of May to August, inclusive. Samples shall be analyzed for the following parameters:

BOD₅ Faecal Coliforms
pH Conductivity
Total Suspended Solids Ammonia Nitrogen
Nitrate – Nitrite Oil and Grease (visual)

Total PhenolsSulphateSodiumPotassiumMagnesiumCalciumTotal ArsenicTotal Cadmium

Total Copper Total Chromium
Total Iron Total Lead
Total Mercury Total Nickel
Total Zinc Total Phosphorous

- 10. The Licensee shall conduct the following acute toxicity tests at Monitoring Program Stations ARV-2a and ARV-4, and Station ARV-2b upon commissioning of the New Solid Waste Disposal Facility, once annually between June and September, approximately midway through the discharge period:
 - a. Biological Test Method: Reference Method for Determining Acute Lethality of Effluents to Rainbow Trout (Reference Method EPS 1/RM/13), July 1990, published by the Department of the Environment, as amended in December 2000, and as may be further amended from time to time
 - b. Biological Test Method: Reference Method for Determining Acute Lethality of Effluents to Daphnia magna (Reference Method EPS 1/RM/14), July 1990, published by the Department of the Environment, as amended in December 2000, and as may be further amended from time to time.

- 11. The Licensee shall, when flow volumes at Monitoring Program Stations ARV- 2a, ARV- 2b and ARV-4 are not sufficient to conduct the tests required by Part H Item 10, collect samples upstream where adequate flow volume exists.
- 12. The Licensee shall record water elevation monthly, during open water at Monitoring Program Station ARV-7.
- 13. The Licensee shall record water elevations monthly during thawed conditions at Monitoring Program Station ARV-8.
- 14. The Licensee shall measure and record in cubic metres the monthly and annual quantities of Sewage sludge removed from the Sewage Disposal Facility at Monitoring Program Station ARV-9.
- 15. The Licensee shall submit to the Board for review, by December 31, 2010 a revision to the approved Plan entitled "Environmental Monitoring Program and Quality Assurance/Quality Control (QA/QC) Plan, Hamlet of Arviat" May 2009, revised May 2010, to address the following:
 - a. All monitoring requirements listed under Part H of the Licence;
 - b. A covering letter from an accredited laboratory confirming acceptance of the Quality Assurance/ Quality Control (QA/QC) Plan for analyses to be performed under this Licence as required under Part H, Item 17.
- 16. The Licensee shall, at least six (60) days prior to commissioning the New Solid Waste Disposal Facility and/or Hydrocarbon Impacted Soil Storage and Treatment Facility, submit to the Board, for approval in writing, a revision to the Environmental Monitoring Program and Quality Assurance/Quality Control (QA/QC) Plan, referred to in Part H Item 15, to address the New Solid Waste Disposal Facility and/or Hydrocarbon Impacted Soil Storage and Treatment Facility.
- 17. The Licensee shall annually review the QA/QC Plan referred to in Part H, Item 15 and modify it as necessary. The revised QA/QC Plan shall be submitted to the Board for review, accompanied by a current approval letter from an accredited lab and shall meet the standards as set out in Part H, Item 20 and Part H, Item 21 of the Licence.
- 18. The Licensee shall measure and record the volume of all contaminated soil, from all locations entering the Hydrocarbon Impacted Soil Storage and Treatment Facility.
- 19. The Licensee shall assess and record the concentration of Petroleum Hydrocarbon Impacted Soil entering any Hydrocarbon Impacted Soil Storage and Treatment Facility from all sources, as per the CCME Canada-Wide Standard for Petroleum Hydrocarbons (PHC) in Soil, User Guide, January 2008.

- 20. All sampling, sample preservation and analyses shall be conducted in accordance with methods prescribed in the current edition of *Standard Methods for the Examination of Water and Wastewater*, or by such other methods approved by the Board.
- 21. All analyses shall be performed in a laboratory accredited according to ISO/IEC Standard 17025. The accreditation shall be current and in good standing.
- 22. The Licensee shall include all of the data and information required by the Monitoring Program in the Licensee's Annual Report, as required per Part B, Item 3(a) or as otherwise requested by an Inspector.
- 23. Modifications to the Monitoring Program may be made only upon written request and subsequent approval of the Board in writing.

provide the findings with recommendations by December 31, 2010⁸⁵ as well as the commitments outlined in the Licensee's Work Plan. 86

Specifically, Part D Item 5 of the Licence requires the Licensee to submit to the Board for approval in writing by December 31, 2010 a Sewage Disposal Facility Report. The Report shall include:

- a. As-built drawings and design plans of the Sewage Disposal Facility (including the lagoon and wetland) signed and stamped by an Engineer;
- b. A preliminary discharge and wetland hydrology assessment;
- c. The results of an inspection by a Geotechnical Engineer of the Sewage Disposal Facility lagoon including its berms and an evaluation of the impact of sewage seepage through the lagoon berms on the environment;
- d. An evaluation of the long term impacts of the Sewage Disposal Facility on the environment;
- e. A Sludge Management Plan that addresses sludge assessment and disposal methods. The Plan shall be incorporated in to the Sewage Disposal Facility Operations and Maintenance Manual;
- f. Recommended measures to optimize the Sewage Disposal Facility; and
- g. A schedule for implementing recommended measures.

Solid Waste including Bulky Metal Waste and Hazardous Waste

As identified by INAC⁸⁷ at the Hearing, the Hamlet operates a Bulky Metal Waste Area and Hazardous Waste Storage area in addition to the Solid Waste Disposal Facility, and these areas are not addressed in the expired licence NWB3ARV0308. To address this issue, the Board requires the Licensee as a condition in Part D Item 6 of the Licence to, unless otherwise approved by the Board in writing:

- a. Dispose of and contain all non-hazardous, non-bulky metal, solid waste at the Solid Waste Disposal Facility;
- b. Dispose of and contain all bulky metal waste at the Bulky Metals Area; and
- c. Segregate and securely store all hazardous materials and Hazardous Waste within the Hazardous Waste Storage Area in a manner as to prevent the deposit of deleterious substances into any water, until such a time that the materials have been removed for proper disposal at a licensed facility.

To address the issues presented by parties regarding solid waste disposal including management of contaminated soils ⁸⁸, and runoff management ⁸⁹, the Board accepts the Licensee's request to include conditions in the Licence to conduct studies and provide the

Reasons for Decision for 3AM-ARV1015

⁸⁵ Transcript, Jim Walls, Nuna Burnside, at p. 35-36, lines 22-11.

⁸⁶ Exhibits 3 and 4, Work Plan to Address INAC, DFO and NWB License Compliance Issues, from Jim Walls to Bryan Purdy, dated June 23, 2010.

⁸⁷ Transcript, Ian Parsons, INAC, at p. 76 -77, lines 15-8

⁸⁸ Transcript, Ian Parson, INAC, at p. 76-77, lines 21-2 and Paula Smith, INAC, at p. 92-93, lines 26-13.

⁸⁹ Transcript, Ian Parsons, INAC, at p. 76, lines 5-8 and Paula Smith, EC, at p. 92, lines 10-23.

Appendix B Photographs

Solid Waste Disposal Site - Landfill, looking south across fill area at front of landfill.

Date: 9/11/2010

Solid Waste Disposal Site - Northwest side of landfill with waste covered.

Date: 9/11/2010

Solid Waste Disposal Site - Looking southeast along north fence of landfill.

Date: 9/11/2010

Solid Waste Disposal Site - Accumulated surface water at southeast corner of landfill.

Date: 9/11/2010

Solid Waste Disposal Site - Outside of south berm of landfill.

Date: 9/11/2010

Solid Waste Disposal Site - Outside of west berm of landfill.

Date: 9/11/2010

Solid Waste Disposal Site - Discharge point of surface water from landfill.

Date: 7/26/2010

Solid Waste Disposal Site - ARV-2 monitoring station sample location at culvert, downstream of landfill discharge. Date: 7/26/2010

Solid Waste Disposal Site - Wetland area down gradient of landfill, Contaminant Attenuation Zone. Date: 9/9/2010

Bulky Metals Waste Area - Contaminated soil piles and old fuel tanks and drums.

Date: 9/8/2010

Bulky Metals Waste Area - Stock piles of contaminated soil.

Date: 9/8/2010

Bulky Metals Waste Area - Looking towards waste area from wetland south of site.

Date: 9/8/2010

Bulky Metals Waste Area - Water ponding on south side of disposal area, sample location BW-1.

Date: 9/8/2010

Hazardous Waste Storage Area - Waste oil drums stored next to Hamlet garage.

Date: 9/9/2010

Hazardous Waste Storage Area - Stained soil beside waste oil drums.

Date: 9/9/2010

Hazardous Waste Storage Area - Surface drainage on south side of Hazardous Waste Storage Area.

Date: 9/9/2010

Appendix C Calculation Worksheets

Waste uantity Calculations - Hamlet of Arviat Nunavut

Calendar ear	Pro ected Population people	Annual olume of Solid Waste m³	Annual olume of Combustible Solid Waste m³	Annual olume of Combustible Solid Waste After Burning m ³	Annual olume of ncombustible Solid Waste m³	Total Annual olume of ncombustible and Combusted (Burned) Solid Waste m ³	Annual olume of Cover Material m ³	Total Annual olume of Waste and Cover Material m ³
2006	2060	10527	2105	632	8421	9053	1811	10863
2007	2126	10864	2173	652	8691	9343	1869	11212
2008	2195	11216	2243	673	8973	9646	1929	11575
2009	2266	11579	2316	695	9263	9958	1992	11950
2010	2339	11952	2390	717	9562	10279	2056	12335
2011	2414	12336	2467	740	9868	10609	2122	12730
2012	2492	12734	2547	764	10187	10951	2190	13142
2013	2572	13143	2629	789	10514	11303	2261	13563
2014	2655	13567	2713	814	10854	11668	2334	14001
2015	2740	14001	2800	840	11201	12041	2408	14449
2016	2828	14451	2890	867	11561	12428	2486	14914
2017	2919	14916	2983	895	11933	12828	2566	15393
2018	3013	15396	3079	924	12317	13241	2648	15889
2019	3110	15892	3178	954	12714	13667	2733	16401
2020	3210	16403	3281	984	13122	14107	2821	16928
2021	3313	16929	3386	1016	13544	14559	2912	17471
2022	3420	17476	3495	1049	13981	15030	3006	18035
2023	3530	18038	3608	1082	14431	15513	3103	18616
2024	3643	18616	3723	1117	14893	16010	3202	19211
2025	3760	19214	3843	1153	15371	16524	3305	19828
2026	3881	19832	3966	1190	15866	17055	3411	20467
2027	4006	20471	4094	1228	16377	17605	3521	21126
2028	4135	21130	4226	1268	16903.9	18172	3634	21806
2029	4268	21809	4362	1309	17447.6	18756	3751	22507

Calculation Assumptions

20% of waste is combustible
30% of combustible waste is remaining after burning
There is no compaction.
20% cover material required per volume of garbage
Population growth rate is 3.2%

Hydrology Calculations Hamlet of Arviat

Annual Rainfall (m/year)	0.2972
Evapotranspiration (m/year)	0.200

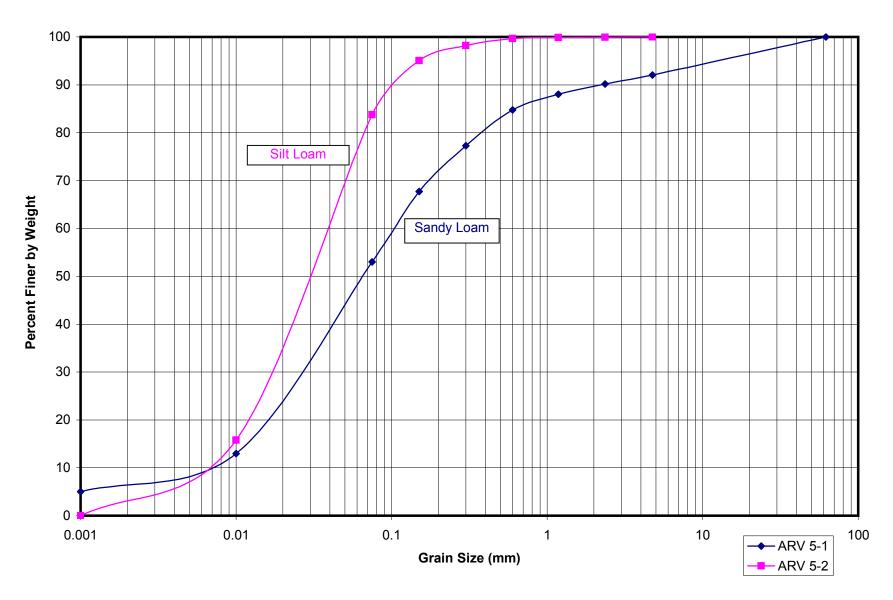
Surface Area of Landfill (m ²)	33825
Rain (m³/year)	10,053
Evapotranspiration (m ³ /year)	6,765
Net Precipitation Input to Landfill (m³/year)	3,288

Canadian Climate Normals 1971-2000, Environment Canada, Rankin Inlet Airport Weather Station Specific values for Arviat were not available, estimated using several references, see below.

Evapotranspiration Rates

Location	alue (mm)	Reference
Arviat, Nunavut	203	FSC Architects & Engineers, 2003
Mackenzie Basin, Yukon	241	Serrereze et al, 2003
Lena Basin, Russai	182	Serrereze et al, 2003
Knob Lake, Quebec	280	Church, 1974
Boot Creek, Inuvik, NWT	75	Church, 1974
Mackenzie River Basin, Yukon	216	_ Yi Yip, 2008
Average	200	_

References


FSC Architects & Engineers, 2003. Design Concept for Arviat Sewage Lagoon prepared for Department of Community Government and Transportation, Government of Nunavut.

Church, M. 1974. Hydrology and Permafrost with Reference to Northern North America. In Proceedings: Workshop Seminar on Permafrost Hydrology, 7-20. Ottawa: Canadian National Committee, International Hydrological Decade (IHD).

Yi Yip, Q.M. 2008. Climate Impacts on Hydrometric Variables in Mackenzie River Basin. University of Waterloo, Waterloo, 2008.

Serreze, M.C., D.H. Bromwich, M.P. Clark, A.J. Etringer, T. Zhang and R. Lammers, 2003. Large-scale hydro-climatology of the terrestrial Arctic drainage system. Journal Geophysical Research, 108(D2). Doi:10. 1029/2002JD000919

Grain Size Distribution Plot - Soil Samples from Bulky Waste Storage Area

Appendix D Sampling Results

Table D-1 Summary of Water uality Analysis - Landfill

Parameter	nit	Detection	CCME Guidelines	AR -2	AR -2	AR -2
Farameter	iiit	Limits	COME Guidennes	7 23 2010	9 1 2010	9 10 2010
Colour	TCU	5		102	-	-
Electrical Conductivity	S/cm	2		2010	2520	2630
рН	N/A	-		8.07	8.11	8.21
Turbidity	NTU	0.5		8.1	-	-
Total Suspended Solids	mg/L	10		14	<5.0	8
Alkalinity (as CaCO3)	mg/L	5		440	-	-
Bicarbonate (as CaCO3)	mg/L	5		440	-	-
Total Hardness (as CaCO3)	mg/L	10		783	-	-
Ammonia as N	mg/L	0.02		11	12.9	13.3
Nitrate as N	mg/L	0.05		<0.05	<0.25	<0.25
Nitrite as N	mg/L	0.05		<0.05	<0.25	<0.25
Calcium	mg/L	0.05		248	244	230
Chloride	mg/L	0.1		244	-	-
Fluoride	mg/L	0.05		<0.05	-	_
Magnesium	mg/L	0.05		39.7	43	49
Orthophosphate as P	mg/L	0.1		0.33	-	-
Potassium	mg/L	0.05		44.7	43.9	44
Reactive Silica	mg/L	0.05		9.17	-	-
Sodium	mg/L	0.05		178	228	243
Sulphate	mg/L	0.1		539	461	475
Total Dissolved Solids	mg/L	20		1570	-	-
Total Organic Carbon	mg/L	0.5		52	_	_
Total Phosphorus	mg/L	0.05		0.64	0.62	0.56
BOD (5)	mg/L	1		13	6.4	<6.0
Fecal Coliform	MPN/100ml	3			430	38
Escherichia coli	MPN/100ml	3		-	-	-
Aluminum	mg/L	0.004	0.1	0.02	0.0219	0.0095
Arsenic	mg/L	0.003	0.005	0.005	0.00468	0.00482
Barium	mg/L	0.002	0.000	0.05	0.0471	0.0458
Boron	mg/L	0.002		1.22	1.49	1.34
Cadmium	mg/L	0.002	0.00054-0.00004 ¹	<0.002	<0.00001	<0.00010
Chromium Total	mg/L	0.002	0.00034-0.00004	0.002	<0.0001	<0.0010
Chromium VI	-	0.005	0.001	<0.005		
	mg/L	-	0.001	-	0.00051	0.00051
Copper	mg/L	0.003	0.002-0.004 ¹	0.007	0.00031	0.00031
Copper	mg/L	0.003		0.936		0.00149
Iron	mg/L		0.30 0.001-0.007 ¹		0.516 0.000153	
Lead	mg/L	0.002	0.001-0.007	0.028		0.000145
Manganese	mg/L	0.002	0.000000	0.983	0.663	0.599
Mercury	mg/L	0.0001	0.000026	<0.0001	<0.00005	<0.000050
Molybdenum	mg/L	0.002	0.073	<0.002	0.00039	0.00036
Nickel	mg/L	0.003	0.025-0.151	0.004	0.0024	<0.0020
Selenium	mg/L	0.004	0.001	<0.004	<0.001	<0.0010
Silver	mg/L	0.002	0.0001	<0.002	<0.0001	<0.00010
Strontium	mg/L	0.005	0.0000	1.68	1.53	1.66
Thallium	mg/L	0.006	0.0008	<0.006	<0.0001	<0.00010
Titanium	mg/L	0.002		0.01	0.00166	0.00299
Uranium	mg/L	0.002		<0.002	0.00064	0.00063
Vanadium	mg/L	0.002		<0.002	0.00071	0.00061
Zinc	mg/L	0.005	0.03	0.077	0.0203	0.016
Phenols	mg/L	0.001	0.004	0.005	<0.001	0.002
Total Oil and Grease	mg/L	0.5		5.2	2.4	<1.0

BOLD - indicates exceedence of CCME standards

TNTC - indicates Too Numerous To Count

CCME - Canadian Council of Ministers of the Environment, Canadian Water Quality Guidelines for the Protection of Aquatic Life, Updated 2007

Value depends on water hardness, see CCME Guidelines

Table D-1 Summary of Water uality Analysis - Landfill

Parameter	nit	Detection	CCME Guidelines	LF-1	LF-2	LF-3	AR -2
		Limits		9 9 2010	9 9 2010	9 9 2010	11 1 2010
Colour	TCU	5		30	55	49	-
Electrical Conductivity	S/cm	2		1750	2040	2070	-
рН	N/A	-		7.9	8.03	8.27	-
Turbidity	NTU	0.5		0.9	3.3	1.6	-
Total Suspended Solids	mg/L	10		288	21	<10	-
Alkalinity (as CaCO3)	mg/L	5		252	322	263	-
Bicarbonate (as CaCO3)	mg/L	5		252	322	263	-
Total Hardness (as CaCO3)	mg/L	10		808	735	599	-
Ammonia as N	mg/L	0.02		<0.02	1.23	0.26	-
Nitrate as N	mg/L	0.05		<0.05	0.81	<0.05	-
Nitrite as N	mg/L	0.05		-	-	-	-
Calcium	mg/L	0.05		283	225	169	-
Chloride	mg/L	0.1		114	267	334	-
Fluoride	mg/L	0.05		<0.05	<0.05	<0.05	-
Magnesium	mg/L	0.05		24.5	42.1	43.1	-
Orthophosphate as P	mg/L	0.1		<0.1	<0.1	<0.1	-
Potassium	mg/L	0.05		20.8	30.6	37.5	-
Reactive Silica	mg/L	0.05		15.9	8.84	9.34	-
Sodium	mg/L	0.05		82.5	171	204	-
Sulphate	mg/L	0.1		650	518	469	-
Total Dissolved Solids	mg/L	20		1440	1520	1450	-
Total Organic Carbon	mg/L	0.5		36.5	25.8	26.5	-
Total Phosphorus	mg/L	0.05		1.57	0.34	0.2	-
BOD (5)	mg/L	1		27.4	6.0	2.6	34
Fecal Coliform	MPN/100ml	3		23	9	4	TNTC
Escherichia coli	MPN/100ml	3		-	-	-	TNTC
Aluminum	mg/L	0.004	0.1	<0.004	0.006	0.004	-
Arsenic	mg/L	0.003	0.005	<0.003	0.003	0.003	-
Barium	mg/L	0.002		0.045	0.041	0.035	1
Boron	mg/L	0.01		0.736	0.805	0.773	-
Cadmium	mg/L	0.002	0.00054-0.00004 ¹	<0.002	<0.002	<0.002	-
Chromium Total	mg/L	0.003		<0.003	0.006	0.006	-
Chromium VI	mg/L	0.005	0.001	<0.005	<0.005	<0.005	-
Cobalt	mg/L	1		-	-	-	1
Copper	mg/L	0.003	0.002-0.004 ¹	<0.003	<0.003	<0.003	-
Iron	mg/L	0.01	0.30	<0.01	0.074	0.02	-
Lead	mg/L	0.002	0.001-0.007 ¹	<0.002	<0.002	<0.002	-
Manganese	mg/L	0.002		0.045	0.216	0.226	-
Mercury	mg/L	0.0001	0.000026	<0.0001	<0.0001	<0.0001	-
Molybdenum	mg/L	0.002	0.073	<0.002	<0.002	<0.002	-
Nickel	mg/L	0.003	0.025-0.15 ¹	<0.003	0.003	<0.003	-
Selenium	mg/L	0.004	0.001	<0.004	<0.004	<0.004	-
Silver	mg/L	0.002	0.0001	<0.002	<0.002	<0.002	-
Strontium	mg/L	0.005		2.54	1.71	1.31	-
Thallium	mg/L	0.006	0.0008	<0.006	<0.006	<0.006	-
Titanium	mg/L	0.002		0.008	0.007	0.006	-
Uranium	mg/L	0.002		<0.002	<0.002	<0.002	-
Vanadium	mg/L	0.002		<0.002	<0.002	<0.002	-
Zinc	mg/L	0.005	0.03	0.007	0.013	0.009	1
Phenols	mg/L	0.001	0.004	-	0.002	0.001	-
Total Oil and Grease	mg/L	0.5		-	-	-	-

BOLD - indicates exceedence of CCME standards

CCME - Canadian Council of Ministers of the Environment, Canadian Water Quality Guidelines for th

Value depends on water hardness, see CCME Guidelines

TNTC - indicates Too Numerous To Count

Table D-1 Summary of Water uality Analysis - Landfill

Parameter	nit	Reported Detection	CCME Guidelines -	AR -2
		Limits	Fresh Water	9 10 2010
Petroleum Hydrocarbon F1 - F4 in Water (W				
C6 - C10 (F1) C6 - C10 (F1 minus BTEX)	g/L	25 25		<25 <25
C>10 - C16 (F1 IIIIIIUS BTEX)	g/L g/L	100		<100
C>10 - C16 (F2) C>10 - C16 (F2 minus Naphthalene)	g/L	100		<100
C6 - C16 (F1 F2)	g/L	100		<100
C>16 - C34 (F3)	g/L	100		<100
C>16 - C34 (F3 minus PAHs)	g/L	100		<100
C>34 - C50 (F4)	g/L	100		<100
C>16 - C50 (F3 F4)	g/L	100		<100
Gravimetric Heavy Hydrocarbons	g/L	500		NA
BALL 1 W.				
PAHs in Water Naphthalene	m/l	0.12		<0.12
Acenaphthylene	g/L g/L	0.12		<0.12
Acenaphthene	g/L	0.10	5.8	<0.10
Fluorene	g/L	0.09	3	<0.09
Phenanthrene	g/L	0.10	0.4	<0.10
Anthracene	g/L	0.07		< 0.07
Fluoranthene	g/L	0.12	0.04	<0.12
Pyrene	g/L	0.12	0.025	<0.12
Benzo(a)anthracene	g/L	0.08	0.018	<0.08
Chrysene	g/L	0.05		<0.05
Benzo(b)fluoranthene	g/L	0.05		<0.05
Benzo(k)fluoranthene	g/L	0.06	0.015	<0.06
Benzo(a)pyrene	g/L	0.01	0.015	<0.01
Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	g/L	0.03		<0.03 <0.09
Benzo(g,h,i)perylene	g/L g/L	0.09		<0.09
2-and 1-methyl Napthalene	g/L g/L	0.06	1.1	<0.06
Chrysene-d12	9/L %	0.20	1.1	98
Only Joine 412	,,,			- 00
olatile Organic Compounds in Water (OC	cs)			
Dichlorodifluoromethane	g/L	0.80		<0.80
Chloromethane	g/L	1.60		<1.60
Vinyl Chloride	g/L	0.68		<0.68
Bromomethane	g/L	0.80		<0.80
Chloroethane	g/L	0.80		<0.80
Trichlorofluoromethane	g/L	1.60		<1.60
Acetone 1,1 Dichloroethylene	g/L	4.0 1.20		<4.0 <1.20
Methylene Chloride	g/L g/L	1.20		<1.20
trans- 1,2-dichloroethylene	g/L	0.80		<0.80
Methyl tert-butyl ether	g/L	0.80		<0.80
1,1-Dichloroethane	g/L	1.20		<1.20
Methyl Ethyl Ketone	g/L	4.0		<4.0
cis- 1,2-Dichloroethylene	g/L	0.80		<0.80
Chloroform	g/L	0.80	1.8	<0.80
1,2 - Dichloroethane	g/L	0.80	100	<0.80
1,1,1-Trichloroethane	g/L	1.20		<1.20
Carbon Tetrachloride	g/L	0.80		<0.80
Benzene 4.2 Diablaranana	g/L	0.80		<0.80
1,2-Dichloropropane	g/L	0.80		<0.80
Trichloroethylene Bromodichloromethane	g/L	0.80		<0.80 <0.80
cis-1,3-Dichloropropene	g/L ug/L	0.80		<0.80
Methyl Isobutyl Ketone	g/L	4.0		<4.0
trans-1,3-Dichloropropene	g/L	1.20		<1.20
1,1,2-Trichloroethane	g/L	0.80		<0.80
Toluene	g/L	0.80		<0.80
2-Hexanone	g/L	1.20		<1.20
Dibromochloromethane	g/L	0.40		<0.40
Ethylene Dibromide	g/L	0.80		<0.80
Tetrachloroethylene	g/L	0.80		<0.80
1,1,1,2-Tetrachloroethane	g/L	0.40		<0.40
Chlorobenzene	g/L	0.40		<0.40
Ethylbenzene	g/L	0.40		<0.40
m & p-Xylene Bromoform	g/L	0.80		<0.80 <0.40
Styrene	g/L g/L	0.40 0.40		<0.40
1,1,2,2-Tetrachloroethane	g/L g/L	0.40		<0.40
o-Xylene	g/L g/L	0.40		<0.40
1,3-Dichlorobenzene	g/L	0.40	150	<0.40
1,4-Dichlorobenzene	g/L	0.40	26	<0.40
1,2-Dichlorobenzene	g/L	0.40	0.7	<0.40
1,2,4-Trichlorobenzene	g/L	1.20	24	<1.20
1,3-Dichloropropene (Cis Trans)	g/L	1.20		<1.20
Xylene Mixture (Total)	g/L	0.80		<0.80
n-Hexane	g/L	0.80		<0.80
Toluene-d8	% Recovery			99
4-Bromofluorobenzene	% Recovery			92

CCME - Canadian Council of Ministers of the Environment, Canadian Water Quality Guidelines for the Protection of Aquatic Life, Updated 2007

Table D-2 Summary of Water uality Analysis Bulky Metals Area

		Reported	Reported	ССМЕ	BW-1	AR -5	AR -5-2
Parameter	nit	Detection Limits (Sept)	Detection Limits (Nov)	Guidelines	9 9 2010	11 2 2010	11 2 2010
Petroleum Hydrocarbon F1 - F4 in Water (With PAHs)		25	05		<25	<25	<25
C6 - C10 (F1) C6 - C10 (F1 minus BTEX)	g/L g/L	25 25	25 25		<25 <25	<25	<25 <25
C>10 - C16 (F2)	g/L	100	100		<100	<100	<100
C>10 - C16 (F2 minus Naphthalene)	g/L	100	100		<100	<100	<100
C6 - C16 (F1 F2)	g/L	100	100		<100	<100	<100
C>16 - C34 (F3)	g/L	100	100		<100	<100	<100
C>16 - C34 (F3 minus PAHs)	g/L	100	100		<100	<100	<100
C>34 - C50 (F4)	g/L	100	100		<100	<100	<100
C>16 - C50 (F3 F4) Gravimetric Heavy Hydrocarbons	g/L	100 500	100 500		<100 NA	<100 NA	<100 NA
• •	g/L	500	500		INA	INA	INA
PAHs in Water							
Naphthalene	g/L	0.12	0.12		<0.12	-	-
Acenaphthylene Acenaphthene	g/L	0.11 0.10	0.11 0.10	5.8	<0.11 <0.10	-	-
Fluorene	g/L g/L	0.10	0.10	3	<0.10	-	-
Phenanthrene	g/L	0.10	0.10	0.4	<0.10	-	_
Anthracene	g/L	0.07	0.07	0	<0.07	-	-
Fluoranthene	g/L	0.12	0.12	0.04	<0.12	-	-
Pyrene	g/L	0.12	0.12	0.025	<0.12	-	-
Benzo(a)anthracene	g/L	0.08	0.08	0.018	<0.08	-	-
Chrysene	g/L	0.05	0.05		<0.05	-	-
Benzo(b)fluoranthene	g/L	0.05	0.05		<0.05	-	-
Benzo(k)fluoranthene	g/L	0.06 0.01	0.06 0.01	0.015	<0.06 <0.01	-	-
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	g/L g/L	0.01	0.01	0.015	<0.01	-	-
Dibenzo(a,h)anthracene	g/L	0.09	0.09		<0.09	-	
Benzo(g,h,i)perylene	g/L	0.06	0.06		<0.06	-	-
2-and 1-methyl Napthalene	g/L	0.20	0.20	1.1	<0.20	-	-
Chrysene-d12	%				97	-	-
olatile Organic Compounds in Water (OC s)							
1,1 Dichloroethylene	g/L	0.30	0.60		<0.30	<0.60	<3.00
1,1,1,2-Tetrachloroethane	g/L	0.10	0.20		<0.10	<0.20	<1.00
1,1,1-Trichloroethane	g/L	0.30	0.60		<0.30	<0.60	<3.00
1,1,2,2-Tetrachloroethane	g/L	0.10 0.20	0.20		<0.10	<0.20 <0.40	<1.00
1,1,2-Trichloroethane 1,1-Dichloroethane	g/L	0.20	0.40		<0.20 <0.30	<0.40	<2.00 <3.00
1,2 - Dichloroethane	g/L g/L	0.20	0.40	100	<0.20	<0.40	<2.00
1,2,4-Trichlorobenzene	g/L	0.30	0.60	24	<0.30	<0.60	<3.00
1,2-Dichlorobenzene	g/L	0.10	0.20	0.7	<0.10	<0.20	<1.00
1,2-Dichloropropane	g/L	0.20	0.40		<0.20	<0.40	<2.00
1,3-Dichlorobenzene	g/L	0.10	0.20	150	<0.10	<0.20	<1.00
1,3-Dichloropropene (Cis Trans)	g/L	0.30	0.60		<0.30	<0.60	<3.00
1,4-Dichlorobenzene 2-Hexanone	g/L	0.10	0.20	26	<0.10	<0.20	<1.00
4-Bromofluorobenzene	g/L % Recovery	0.30	0.60		<0.30 92	<0.60 89	<3.00 85
Acetone	g/L	1.0	10.0		<1.0	<2.0	<10.0
Benzene	g/L	0.20	0.40	370	<0.20	<0.40	<2.00
Bromodichloromethane	g/L	0.20	0.40		<0.20	< 0.40	<2.00
Bromoform	g/L	0.10	0.20		<0.10	<0.20	<1.00
Bromomethane	g/L	0.20	0.40		<0.20	<0.40	<2.00
Carbon Tetrachloride	g/L	0.20	0.40		<0.20	<0.40	<2.00
Chlorobenzene Chloroethane	g/L	0.10 0.20	0.20 0.40		<0.10 <0.20	<0.20 <0.40	<1.00 <2.00
Chloroform	g/L g/L	0.20	0.40	1.8	<0.20	<0.40	<2.00
Chloromethane	g/L	0.40	0.80	1.0	<0.40	<0.80	<4.00
cis- 1,2-Dichloroethylene	g/L	0.20	0.40		<0.20	<0.40	<2.00
cis-1,3-Dichloropropene	ug/L	0.20	0.40		<0.20	<0.40	<2.00
Dibromochloromethane	g/L	0.10	0.20		<0.10	<0.20	<1.00
Dichlorodifluoromethane	g/L	0.20	0.40		20	<0.40	<2.00
Ethylbenzene	g/L	0.10	0.20		<0.10	<0.20	<1.00
Ethylene Dibromide	g/L	0.20	0.40		<0.20	<0.40	<2.00
m & p-Xylene Methyl Ethyl Ketone	g/L g/L	0.20 1.0	0.40 10.0		<0.20 <1.0	<0.40 <2.0	<2.00 <10.0
Methyl Isobutyl Ketone	g/L	1.0	10.0		<1.0	<2.0	<10.0
Methyl tert-butyl ether	g/L	0.20	0.40		<0.20	<0.40	<2.00
Methylene Chloride	g/L	0.30	0.60		<0.30	<0.60	<3.00
n-Hexane	g/L	0.20	0.40	•	<0.20	<0.40	<2.00
o-Xylene	g/L	0.10	0.20		<0.10	<0.20	<1.00
Styrene	g/L	0.10	0.20		<0.10	<0.20	<1.00
Tetrachloroethylene Toluene	g/L	0.20 0.20	0.40 0.40		<0.20 <0.20	<0.40 <0.40	<2.00 <2.00
Toluene-d8	g/L % Recovery	0.20	0.40		<0.20 100	<0.40 76	<2.00 74
trans- 1,2-dichloroethylene	g/L	0.20	0.40		<0.20	<0.40	<2.00
trans-1,3-Dichloropropene	g/L	0.30	0.60		<0.30	<0.60	<3.00
Trichloroethylene	g/L	0.20	0.40		<0.20	<0.40	<2.00
Trichlorofluoromethane Vinyl Chloride	g/L	0.40 0.17	0.80 0.34		17 <0.17	<0.80 <0.34	<4.00 <1.70
Vinyl Chloride Xylene Mixture (Total)	g/L g/L	0.17	0.34		<0.17	<0.34	<1.70
Ayiene winture (Total)	g/L	0.20	0.40		~∪.∠∪	~U.4U	~∠.00

CCME - Canadian Council of Ministers of the Environment, Canadian Water Quality Guidelines for the Protection of Aquatic Life, Updated 2007 BOLD - indicates exceedence of CCME standards

Table D-2 Summary of Water uality Analysis Bulky Metals Area

Parameter	nit	Reported Detection	CCME Guidelines	AR -5	AR -5-2	
rarameter	1111	Limits	CCME Guidennes	11 2 2010	11 2 2010	
Colour	TCU	5		113	1050	
Electrical Conductivity	S/cm	2		1200	9230	
pH	N/A	-		6.61	6.31	
Turbidity	NTU	0.5		369	239	
Alkalinity (as CaCO3)	mg/L	5		47	118	
Bicarbonate (as CaCO3)	mg/L	5		47	118	
Total Hardness (as CaCO3)	mg/L	10		248	1460	
Ammonia as N	mg/L	0.02		<0.02	20.8	
Nitrate as N	mg/L	0.05		< 0.05	< 0.05	
Nitrite as N	mg/L	0.05		<0.05	< 0.05	
Calcium	mg/L	0.05		45.5	106	
Chloride	mg/L	0.1		340	3110	
Fluoride	mg/L	0.05		< 0.05	< 0.05	
Magnesium	mg/L	0.05		32.7	290	
Orthophosphate as P	mg/L	0.1		<0.1	<1.00	
Potassium	mg/L	0.05		7.66	57.1	
Reactive Silica	mg/L	0.05		13.8	31.8	
Sodium	mg/L	0.05		160	1640	
Sulphate	mg/L	0.1		55.9	636	
Total Dissolved Solids	mg/L	20		816	5930	
Total Organic Carbon	mg/L	0.5		53.6	240	
Total Phosphorus	mg/L	0.05		0.87	2.42	
Aluminum	mg/L	0.004	0.1	3.92	6.13	
Arsenic	mg/L	0.003	0.005	0.008	0.012	
Barium	mg/L	0.002		0.073	0.074	
Boron	mg/L	0.01		0.045	0.769	
Cadmium	mg/L	0.002	0.00054-0.00004 ¹	<0.002	0.003	
Chromium Total	mg/L	0.003		0.01	0.111	
Copper	mg/L	0.003	0.002-0.004 ¹	0.01	0.039	
Iron	mg/L	0.01	0.3	5.85	131.0	
Lead	mg/L	0.002	0.001-0.007 ¹	0.008	0.01	
Manganese	mg/L	0.002		0.49	0.831	
Mercury	mg/L	0.0001	0.000026	<0.0001	<0.0001	
Molybdenum	mg/L	0.002	0.073	<0.002	0.003	
Nickel	mg/L	0.003	0.025-0.15 ¹	0.012	0.049	
Selenium	mg/L	0.003	0.023-0.13	<0.004	<0.004	
Silver	mg/L	0.002	0.001	<0.004	<0.004	
Strontium	mg/L	0.002	0.0001	0.408	1.5	
Thallium	mg/L	0.006	0.0008	<0.006	<0.006	
Titanium	mg/L	0.000	0.0000	0.114	0.132	
Uranium	mg/L	0.002		<0.002	0.004	
Vanadium	mg/L	0.002		0.002	0.056	
Zinc	mg/L	0.002	0.03	0.068	0.079	

CCME - Canadian Council of Ministers of the Environment, Canadian Water Quality Guidelines for the Protection of Aquatic Life, Updated 2007 BOLD - indicates exceedence of CCME standards

Table D-3 Summary of Analysis -Soil Samples at Bulky Waste Area

_ ,		Reported	ССМЕ	BW-P1-A	BW-P1-B	BW-P2-A	BW-P2-B
Parameter	nit	Detection Limit	Guidelines	9 9 2010	9 9 2010	9 9 2010	9 9 2010
Metals							
Antimony	g/g	0.8		<0.8	<0.8	<0.8	<0.8
Arsenic	g/g	1	12	3	1	2	1
Barium	g/g	2	2000	26	35	31	31
Beryllium	g/g	0.5		<0.5	<0.5	<0.5	<0.5
Boron	g/g	5	00	<5	<5	<5	<5
Cadmium Chromium	g/g	0.5 2	22 87	<0.5 11	<0.5 15	<0.5 13	<0.5 12
Cobalt	g/g	0.5	87	2.7	3.9	3.2	3.2
Copper	g/g g/g	1	91	11	10	18	9
Lead	g/g	1	600	4	4	9	5
Molybdenum	g/g	0.5	000	0.7	<0.5	0.6	<0.5
Nickel	g/g	1	50	6	9	8	7
Selenium	g/g	0.4	2.9	<0.4	<0.4	<0.4	<0.4
Silver	g/g	0.2	2.0	<0.2	<0.2	<0.2	<0.2
Thallium	g/g	0.4	1	<0.4	<0.4	<0.4	<0.4
Uranium	ug/g	0.5	300	1.2	1.4	1	1.3
Vanadium	g/g	1	130	14	18	14	16
Zinc	g/g	5	360	25	34	54	20
Petroleum Hydrocarbons and BTE							
Benzene	g/g	0.002	0.03	<0.002	<0.002	<0.002	<0.002
Toluene	g/g	0.002	0.37	<0.002	<0.002	<0.002	<0.002
Ethylbenzene	g/g	0.002	0.082	<0.002	<0.002	<0.002	<0.002
m & p-Xylene	g/g	0.002		<0.002	<0.002	<0.002	<0.002
o-Xylene	g/g	0.002		<0.002	<0.002	<0.002	<0.002
Xylene Mixture (Total)	g/g	0.002	11	<0.002	<0.002	<0.002	<0.002
Toluene-d8	% Recovery			113	106	112	94
4-Bromofluorobenzene	% Recovery	-	320	115 <5	103 11	109 <5	122
C6 - C10 (F1) C6 - C10 (F1 minus BTEX)	g/g g/g	5 5	320	<5 <5	11	<5 <5	<5 <5
C>10 - C16 (F2)	g/g	10	260	1200	3400	240	130
C>10 - C16 (F2 minus Naphthalene)	g/g	10	200	1200	3400	240	130
C>16 - C34 (F3)	g/g	50	1700	430	1800	9100	130
C>16 - C34 (F3 minus PAHs)	g/g	50	1700	430	1800	9100	130
C>34 - C50 (F4)	g/g	50	3300	<50	<50	730	79
Moisture Content	%	0.1		7.2	8.4	4.2	3
PAHs							
Naphthalene	g/g	0.03	22	<0.03	0.04	0.04	<0.03
Acenaphthylene	g/g	0.02		<0.02	0.04	<0.02	<0.02
Acenaphthene	g/g	0.03		<0.03	0.03	<0.03	<0.03
Fluorene	g/g	0.02		0.02	0.15	<0.02	<0.02
Phenanthrene	g/g	0.02		<0.02	0.03	<0.02	<0.02
Anthracene	g/g	0.02		<0.02	<0.02	<0.02	<0.02
Fluoranthene	g/g	0.02		<0.02	0.03 0.06	<0.02 0.03	<0.02
Pyrene Benzo(a)anthracene	g/g	0.02		0.02 <0.02	<0.06	<0.03	<0.02 <0.02
Chrysene	g/g g/g	0.02		<0.02	<0.02	<0.02	<0.02
Benzo(b)fluoranthene	g/g	0.02		<0.02	<0.02	<0.02	<0.02
Benzo(k)fluoranthene	g/g	0.02		<0.02	<0.02	<0.02	<0.02
Benzo(a)pyrene	g/g	0.02	0.7	<0.02	<0.02	<0.02	<0.02
Indeno(1,2,3-cd)pyrene	g/g	0.02		<0.02	<0.02	<0.02	<0.02
Dibenz(a,h)anthracene	g/g	0.02		<0.02	<0.02	<0.02	<0.02
Benzo(g,h,i)perylene	g/g	0.02		<0.02	<0.02	<0.02	<0.02
2-and 1-methyl Naphthalene	g/g	0.05		<0.05	<0.05	<0.05	<0.05
Chrysene-d12	%			79	89	100	93
Other Parameters							
Phenols, Total	mg/kg	1	3.8	<1	<1	<1	<1
PCBs	g/g	0.1	33	<0.1	<0.1	<0.1	<0.1
Decachlorobiphenyl	%			97	120	80	90

Guidelines sed

Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health - Industrial Land Use, Coarse Grained Canada-Wide Standard for Petroleum Hydrocarbonds in Soil, CCME 2008-2009

Table D-4 Summary of Soil Analysis -**Hazardous Waste Storage Area**

				HW-1	HW-2	HW-3
Parameter	nit	Reported Detection Limit	CCME Guidelines	9 10 2010	9 10 2010	9 10 2010
Metals						
Antimony	g/g	0.8		<0.8	<0.8	<0.8
Arsenic	g/g	1	12	2	4	2
Barium	g/g	2	2000	22	23	21
Beryllium	g/g	0.5		<0.5 <5	<0.5	<0.5 <5
Boron Cadmium	g/g	5 0.5	22	<0.5	<5 <0.5	<0.5
Chromium	g/g g/g	2	87	8	15	9
Cobalt	g/g	0.5	07	2.4	2.7	2.4
Copper	g/g	1	91	7	6	9
Lead	g/g	1	600	4	3	3
Molybdenum	g/g	0.5		<0.5	1	0.5
Nickel	g/g	1	50	5	7	5
Selenium	g/g	0.4	2.9	<0.4	<0.4	<0.4
Silver	g/g	0.2		<0.2	<0.2	<0.2
Thallium	g/g	0.4	1	<0.4	<0.4	<0.4
Uranium	ug/g	0.5	300	0.9	0.9	1.2
Vanadium	g/g	1	130	12	13	14
Zinc	g/g	5	360	159	125	31
Petroleum Hydrocarbons and BTE						
Benzene	g/g	0.002	0.03	<0.002	<0.002	<0.002
Toluene	g/g	0.002	0.37	<0.002	<0.002	<0.002
Ethylbenzene	g/g	0.002	0.082	<0.002	<0.002	<0.002
m & p-Xylene	g/g	0.002		<0.002	<0.002	< 0.002
o-Xylene	g/g	0.002		<0.002	<0.002	<0.002
Xylene Mixture (Total)	g/g	0.002	11	<0.002	<0.002	<0.002
Toluene-d8	% Recovery			100	113	99
4-Bromofluorobenzene	% Recovery			120	104	113
C6 - C10 (F1)	g/g	5	320	<5	<5	<5
C6 - C10 (F1 minus BTEX)	g/g	5		<5	<5	<5
C>10 - C16 (F2)	g/g	10	260	<10	<10	<10
C>10 - C16 (F2 minus Naphthalene)	g/g	10	1700	<10	<10	<10 24000
C>16 - C34 (F3) C>16 - C34 (F3 minus PAHs)	g/g	50 50	1700	26000 26000	32000 32000	24000
C>34 - C50 (F4)	g/g g/g	50	3300	4800	6000	4400
Moisture Content	9/9 %	0.1	3300	7.5	2.2	6.3
Worstare Content	70	0.1		7.0	2.2	0.0
PAHs						
Naphthalene	g/g	0.03	22	0.03	<0.03	0.05
Acenaphthylene	g/g	0.02		<0.02	<0.02	<0.02
Acenaphthene Fluorene	g/g	0.03 0.02		<0.03 <0.02	<0.03 <0.02	<0.03 <0.02
Phenanthrene	g/g	0.02	-	<0.02	<0.02 <0.02	<0.02 <0.02
Anthracene	g/g g/g	0.02		<0.02	<0.02	<0.02
Fluoranthene	g/g	0.02		0.02	<0.02	<0.02
Pyrene	g/g	0.02		0.04	0.02	0.03
Benzo(a)anthracene	g/g	0.02		0.21	0.11	0.14
Chrysene	g/g	0.02		0.11	0.07	0.1
Benzo(b)fluoranthene	g/g	0.02		0.07	0.05	0.04
Benzo(k)fluoranthene	g/g	0.02		0.02	<0.02	0.02
Benzo(a)pyrene	g/g	0.02	0.7	0.13	0.09	0.07
Indeno(1,2,3-cd)pyrene	g/g	0.02		0.05	0.03	0.03
Dibenz(a,h)anthracene	g/g	0.02		<0.02	<0.02	<0.02
Benzo(g,h,i)perylene	g/g	0.02		0.08	0.05	0.04
2-and 1-methyl Naphthalene	g/g	0.05		0.05	<0.05	<0.05
Chrysene-d12	%			89	95	89
Other Parameters					1	
Phenols, Total	mg/kg	1	3.8	<1	<1	<1
PCBs	g/g	0.1	33	<0.1	<0.1	<0.1
Decachlorobiphenyl	%			63	82	89

Guidelines sed
Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health - Industrial Land Use, Coarse Grained

AGAT WORK ORDER: 10T421969

PROJECT NO: Arviat

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: R.J. BURNSIDE & ASSOCIATES LTD.					ATTENTION TO: Jim Walls				
Microbiological Analysis (water)									
DATE SAMPLED: Jul 23, 20	10		DATE RE	CEIVED: Jul 24, 2010	DATE REPORTED: Aug 04, 2010	SAMPLE TYPE: Water			
				ARV-4					
Parameter	Unit	G/S	RDL	1889491					
Escherichia coli	CFU/1mL	1	1	17700					
Total Coliforms	CFU/1mL	1	1	TNTC					
Fecal Coliform	CFU/1mL	1	1	13100					
Heterotrophic Plate Count	CFU/mL		10	TNTC					

Comments: RDL - Reported Detection Limit G / S - Guideline / Standard: Refers to SDWA -Schedule 23

1889491 The bacteria counts refer to a 1 mL sample aliquot diluted to 100 mL prior to filtration and incubation. A larger aliquot resulted in an overgrown plates.

Certified By:

Elizabeth Rolakowska

AGAT WORK ORDER: 10T421969

PROJECT NO: Arviat

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: R.J. BURNSIDE & ASSOCIATES LTD.						ATTENTION TO: Jim Walls				
				Oi	I and Grease	water				
DATE SAMPLED: Jul 23, 2010			DATE RE	CEIVED: Jul 24	4, 2010	DATE REPORTED: Aug 04, 2010	SAMPLE TYPE: Water			
				ARV-2	ARV-4					
Parameter	Unit	G/S	RDL	1889489	1889491					
Oil and Grease (animal/vegetable)	mg/L		0.5	5.2	19					
Oil and Grease (mineral) in water	mg/L		0.5	<0.5	1.5					
Oil and Grease (Total) in water	mg/L		0.5	5.2	21					

Comments: RDL - Reported Detection Limit G / S - Guideline / Standard

Certified By:

CLIENT NAME: R.J. BURNSIDE & ASSOCIATES LTD.

Certificate of Analysis

AGAT WORK ORDER: 10T421969

PROJECT NO: Arviat

ATTENTION TO: Jim Walls

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

GEIEIT WANIE. R.O. BORNOIDE						7.TTEIVTION TO: UIII Walls	-
		BURNS	SIDE - W	ater Qualit	y Assessment	BOD, TSS, Phenols & Cr VI	
DATE SAMPLED: Jul 23, 2010			DATE RE	CEIVED: Jul 24	4, 2010	DATE REPORTED: Aug 04, 2010	SAMPLE TYPE: Water
Parameter	Unit	G/S	RDL	ARV-2 1889489	ARV-4 1889491		
Aluminum	mg/L	G/3	0.004	0.020	1.90		
Arsenic	mg/L		0.004	0.020	0.020		
Barium	mg/L		0.002	0.050	0.723		
Boron	mg/L		0.010	1.22	0.223		
Cadmium	mg/L		0.002	<0.002	<0.002		
Calcium	mg/L		0.002	248	8.57		
Chromium	mg/L		0.003	0.013	0.015		
Copper	mg/L		0.003	0.007	0.246		
Iron	mg/L		0.010	0.936	56.4		
Potassium	mg/L		0.05	44.7	19.7		
Magnesium	mg/L		0.05	39.7	4.83		
Mercury	mg/L		0.0001	<0.0001	<0.0001		
Manganese	mg/L		0.002	0.983	1.65		
Molybdenum	mg/L		0.002	<0.002	<0.002		
Sodium	mg/L		0.05	178	61.3		
Nickel	mg/L		0.003	0.004	0.018		
Total Phosphorus	mg/L		0.05	0.64	6.63		
Lead	mg/L		0.002	0.028	0.057		
Selenium	mg/L		0.004	<0.004	<0.004		
Silver	mg/L		0.002	<0.002	<0.002		
Strontium	mg/L		0.005	1.68	0.561		
Thallium	mg/L		0.006	< 0.006	<0.006		
Titanium	mg/L		0.002	0.010	0.016		
Uranium	mg/L		0.002	<0.002	<0.002		
Vanadium	mg/L		0.002	<0.002	0.020		
Zinc	mg/L		0.005	0.077	0.226		
Fluoride	mg/L		0.05	<0.05	<0.05		
Chloride	mg/L		0.10	244	71.2		
Nitrite as N	mg/L		0.05	<0.05	<0.05		
Ortho phosphate as P	mg/L		0.10	0.33	6.89		
Bromide	mg/L		0.05	1.87	<0.05		
Nitrate as N	mg/L		0.05	< 0.05	<0.05		
Sulphate	mg/L		0.10	539	0.98		

Certified By:

CLIENT NAME: R.J. BURNSIDE & ASSOCIATES LTD.

Certificate of Analysis

AGAT WORK ORDER: 10T421969

PROJECT NO: Arviat

ATTENTION TO: Jim Walls

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

C.L. (1) (M.L. (1.0) BO (1/10) BE 0/10000 M (120 E1B)					7111EITTIOIT 10: 0IIII TTAII0		
		BURNSIDE - Water Quality Assessment				BOD, TSS, Phenols & Cr VI	
DATE SAMPLED: Jul 23, 2010	ATE SAMPLED: Jul 23, 2010 DATE RECEIVED: Jul 24, 2010		4, 2010	DATE REPORTED: Aug 04, 2010	SAMPLE TYPE: Water		
Parameter	Unit	G/S	RDL	ARV-2 1889489	ARV-4 1889491		
pH	pH Units		NA	8.07	7.68		
Ammonia as N	mg/L		0.02	11.0	72.1		
Total Organic Carbon	mg/L		0.5	52.0	157		
Electrical Conductivity	uS/cm		2	2010	827		
Total Dissolved Solids	mg/L		20	1570	322		
Saturation pH				6.36	7.76		
% Difference/ Ion Balance			0.1	3.0	5.9		
Total Hardness (as CaCO3)	mg/L		10	783	41		
Langlier Index				1.71	-0.08		
Carbonate (as CaCO3)	mg/L		5	<5	<5		
Bicarbonate (as CaCO3)	mg/L		5	440	305		
Turbidity	NTU		0.5	8.1	38		
Alkalinity (as CaCO3)	mg/L		5	440	305		
Hydroxide (as CaCO3)	mg/L		5	<5	<5		
Reactive Silica	mg/L		0.05	9.17	11.2		
Colour	TCU		5	102	266		
BOD (5)	mg/L		5	13	98		
Total Suspended Solids	mg/L		10	14	104		
Phenols	mg/L		0.001	0.005	0.187		
Chromium VI	mg/L		0.005	<0.005	<0.005		

Comments: RDL - Reported Detection Limit G / S - Guideline / Standard

Certified By:

Mile Munemen

Guideline Violation

AGAT WORK ORDER: 10T421969

PROJECT NO: Arviat

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: R.J. BURNSIDE & ASSOCIATES LTD.

ATTENTION TO: Jim Walls

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	GUIDEVALUE	RESULT
1889491	ARV-4	SDWA -Schedule 23	Microbiological Analysis (water)	Escherichia coli	1	17700
1889491	ARV-4	SDWA -Schedule 23	Microbiological Analysis (water)	Fecal Coliform	1	13100

Environmental Division

Certificate of Analysis

R.J. BURNSIDE Report Date: 14-SEP-10 13:45 (MT)

ATTN: STEPHANIE CHARITY / JIM WALLS Version: FINAL

292 SPEEDVALE AVE., WEST

UNIT #7

GUELPH ON N1H 1C4

Lab Work Order #: L927467 Date Received: 02-SEP-10

Project P.O. #: NOT SUBMITTED

Job Reference: N-015746

Legal Site Desc: CofC Numbers:

Other Information:

Comments:

Paul Necolas

Paul Nicolas Account Manager

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

A Campbell Brothers Limited Company

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L927467-1 ARV-2 Sampled By: CLIENT on 01-SEP-10 @ 15:45							
Matrix: WATER							
Physical Tests							
Conductivity	2520		0.40	umhos/cm		03-SEP-10	R1459503
pH	8.11		0.10	pH units		03-SEP-10	R1459503
Total Suspended Solids	<5.0		5.0	mg/L		08-SEP-10	R1461947
Anions and Nutrients							
Ammonia as N	12.9		0.050	mg/L		14-SEP-10	R1465344
Nitrate and Nitrite as N	<0.35		0.35	mg/L		07-SEP-10	
Nitrate-N	<0.25		0.25	mg/L		03-SEP-10	R1459992
Nitrite-N	<0.25		0.25	mg/L		03-SEP-10	R1459992
Sulfate	461		2.5	mg/L		03-SEP-10	R1459992
Bacteriological Tests				MDN//AGG I		00 055 40	
Fecal Coliforms Total Metals	430		3	MPN/100mL		06-SEP-10	R1459728
Aluminum (Al)-Total	0.0219		0.0050	mg/L	07-SEP-10	07-SEP-10	R1460846
Antimony (Sb)-Total	0.00405		0.0030	mg/L	07-SEP-10	07-SEP-10	R1460846
Arsenic (As)-Total	0.00403		0.00020	mg/L	07-SEP-10	07-SEP-10	R1460846
Barium (Ba)-Total	0.0471		0.00020	mg/L	07-SEP-10	07-SEP-10	R1460846
Beryllium (Be)-Total	<0.00020		0.00020	mg/L	07-SEP-10	07-SEP-10	R1460846
Bismuth (Bi)-Total	<0.00020		0.00020	mg/L	07-SEP-10	07-SEP-10	R1460846
Boron (B)-Total	1.49		0.00020	mg/L	07-SEP-10	07-SEP-10	R1460846
Cadmium (Cd)-Total	<0.00010		0.000010	mg/L	07-SEP-10		R1460846
Calcium (Ca)-Total	244		0.10	mg/L	07-SEP-10	07-SEP-10	R1460846
Cesium (Cs)-Total	<0.00010		0.00010	mg/L	07-SEP-10	07-SEP-10	R1460846
Chromium (Cr)-Total	<0.0010		0.0010	mg/L	07-SEP-10		R1460846
Cobalt (Co)-Total	0.00051		0.00020	mg/L	07-SEP-10	07-SEP-10	R1460846
Copper (Cu)-Total	0.00129		0.00020	mg/L	07-SEP-10	07-SEP-10	R1460846
Iron (Fe)-Total	0.516		0.020	mg/L	07-SEP-10		R1460846
Lead (Pb)-Total	0.000153		0.000090	mg/L	07-SEP-10	07-SEP-10	R1460846
Lithium (Li)-Total	0.0363		0.0020	mg/L	07-SEP-10	07-SEP-10	R1460846
Magnesium (Mg)-Total	43.0		0.010	mg/L	07-SEP-10		R1460846
Manganese (Mn)-Total	0.663		0.00030	mg/L	07-SEP-10	07-SEP-10	R1460846
Mercury (Hg)-Total	<0.00050		0.000050	mg/L	03-SEP-10	03-SEP-10	R1459886
Molybdenum (Mo)-Total	0.00039		0.00020	mg/L	07-SEP-10		R1460846
Nickel (Ni)-Total	0.0024		0.0020	mg/L	07-SEP-10	07-SEP-10	R1460846
Phosphorus (P)-Total	0.62		0.20	mg/L	07-SEP-10	07-SEP-10	R1460846
Potassium (K)-Total	43.9		0.020	mg/L	07-SEP-10		R1460846
Rubidium (Rb)-Total	0.0411		0.00020	mg/L	07-SEP-10	07-SEP-10	R1460846
Selenium (Se)-Total	<0.0010		0.0010	mg/L	07-SEP-10	07-SEP-10	R1460846
Silicon (Si)-Total	5.34		0.050	mg/L	07-SEP-10		R1460846
Silver (Ag)-Total	<0.00010		0.00010	mg/L	07-SEP-10	07-SEP-10	R1460846
Sodium (Na)-Total	228		0.030	mg/L	07-SEP-10	07-SEP-10	R1460846
Strontium (Sr)-Total	1.53		0.00010	mg/L	07-SEP-10		R1460846
Tellurium (Te)-Total	<0.00020		0.00020	mg/L	07-SEP-10		R1460846
I				J		,	

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L927467-1 ARV-2 Sampled By: CLIENT on 01-SEP-10 @ 15:45 Matrix: WATER							
Total Metals							
Thallium (TI)-Total	<0.00010		0.00010	mg/L	07-SEP-10	07-SEP-10	R1460846
Thorium (Th)-Total	<0.00010		0.00010	mg/L	07-SEP-10	07-SEP-10	R1460846
Tin (Sn)-Total	<0.00020		0.00020	mg/L	07-SEP-10	07-SEP-10	R1460846
Titanium (Ti)-Total	0.00166		0.00020	mg/L	07-SEP-10	07-SEP-10	R1460846
Tungsten (W)-Total	<0.0010		0.0010	mg/L	07-SEP-10	07-SEP-10	R1460846
Uranium (U)-Total	0.00064		0.00010	mg/L	07-SEP-10	07-SEP-10	R1460846
Vanadium (V)-Total	0.00071		0.00020	mg/L	07-SEP-10	07-SEP-10	R1460846
Zinc (Zn)-Total	0.0203		0.0050	mg/L	07-SEP-10	07-SEP-10	R1460846
Zirconium (Zr)-Total	0.00047		0.00040	mg/L	07-SEP-10	07-SEP-10	R1460846
Aggregate Organics							
Biochemical Oxygen Demand	6.4		1.0	mg/L	03-SEP-10	08-SEP-10	R1460687
Total Oil and Grease	2.4	DLM	2.0	mg/L	10-SEP-10	10-SEP-10	R1459975
PhenoIs (4AAP)	<0.0010		0.0010	mg/L	08-SEP-10	08-SEP-10	R1461126
L927467-2 ARV-4 Sampled By: CLIENT on 01-SEP-10 @ 15:45 Matrix: WATER							
Physical Tests							
Conductivity	1130		0.40	umhos/cm		03-SEP-10	R1459503
рН	7.43		0.10	pH units		03-SEP-10	R1459503
Total Suspended Solids	91.1		5.0	mg/L		08-SEP-10	R1461947
Anions and Nutrients							
Ammonia as N	47.9		0.050	mg/L		14-SEP-10	R1465344
Nitrate and Nitrite as N	<0.35		0.35	mg/L		07-SEP-10	
Nitrate-N	<0.25		0.25	mg/L		03-SEP-10	R1459992
Nitrite-N	<0.25		0.25	mg/L		03-SEP-10	R1459992
Sulfate	9.3		2.5	mg/L		03-SEP-10	R1459992
Bacteriological Tests							
Fecal Coliforms	110000		3	MPN/100mL		06-SEP-10	R1459728
Total Metals				_			
Aluminum (Al)-Total	0.366		0.0050	mg/L	07-SEP-10	07-SEP-10	R1460846
Antimony (Sb)-Total	0.00038		0.00020	mg/L	07-SEP-10	07-SEP-10	R1460846
Arsenic (As)-Total	0.0128		0.00020	mg/L	07-SEP-10	07-SEP-10	R1460846
Barium (Ba)-Total	0.0424		0.00020	mg/L	07-SEP-10	07-SEP-10	R1460846
Beryllium (Be)-Total	<0.00020		0.00020	mg/L	07-SEP-10	07-SEP-10	R1460846
Bismuth (Bi)-Total	0.00020		0.00020	mg/L	07-SEP-10	07-SEP-10	R1460846
Boron (B)-Total	0.220		0.010	mg/L	07-SEP-10	07-SEP-10	R1460846
Cadmium (Cd)-Total	0.000138		0.000010	mg/L	07-SEP-10	07-SEP-10	R1460846
Calcium (Ca)-Total	14.3		0.10	mg/L	07-SEP-10	07-SEP-10	R1460846
Cesium (Cs)-Total	<0.00010		0.00010	mg/L	07-SEP-10	07-SEP-10	R1460846
Chromium (Cr)-Total	0.0012		0.0010	mg/L	07-SEP-10	07-SEP-10	R1460846
Cobalt (Co)-Total	0.00250		0.00020	mg/L	07-SEP-10	07-SEP-10	R1460846
Copper (Cu)-Total	0.0547		0.00020	mg/L	07-SEP-10	07-SEP-10	R1460846

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L927467-2 ARV-4 Sampled By: CLIENT on 01-SEP-10 @ 15:45 Matrix: WATER							
Total Metals							
Iron (Fe)-Total	8.09		0.020	mg/L	07-SEP-10	07-SEP-10	R1460846
Lead (Pb)-Total	0.00202		0.000090	mg/L	07-SEP-10	07-SEP-10	R1460846
Lithium (Li)-Total	0.0108		0.0020	mg/L	07-SEP-10	07-SEP-10	R1460846
Magnesium (Mg)-Total	9.17		0.010	mg/L	07-SEP-10	07-SEP-10	R1460846
Manganese (Mn)-Total	0.428		0.00030	mg/L	07-SEP-10	07-SEP-10	R1460846
Mercury (Hg)-Total	<0.00050		0.000050	mg/L	03-SEP-10	03-SEP-10	R1459886
Molybdenum (Mo)-Total	0.00210		0.00020	mg/L	07-SEP-10	07-SEP-10	R1460846
Nickel (Ni)-Total	0.0078		0.0020	mg/L	07-SEP-10	07-SEP-10	R1460846
Phosphorus (P)-Total	6.53		0.20	mg/L	07-SEP-10	07-SEP-10	R1460846
Potassium (K)-Total	23.3		0.020	mg/L	07-SEP-10	07-SEP-10	R1460846
Rubidium (Rb)-Total	0.0255		0.00020	mg/L	07-SEP-10	07-SEP-10	R1460846
Selenium (Se)-Total	<0.0010		0.0010	mg/L	07-SEP-10	07-SEP-10	R1460846
Silicon (Si)-Total	6.52		0.050	mg/L	07-SEP-10	07-SEP-10	R1460846
Silver (Ag)-Total	0.00035		0.00010	mg/L	07-SEP-10	07-SEP-10	R1460846
Sodium (Na)-Total	98.4		0.030	mg/L	07-SEP-10	07-SEP-10	R1460846
Strontium (Sr)-Total	0.128		0.00010	mg/L	07-SEP-10	07-SEP-10	R1460846
Tellurium (Te)-Total	<0.00020		0.00020	mg/L	07-SEP-10	07-SEP-10	R1460846
Thallium (TI)-Total	<0.00010		0.00010	mg/L	07-SEP-10	07-SEP-10	R1460846
Thorium (Th)-Total	0.00024		0.00010	mg/L	07-SEP-10	07-SEP-10	R1460846
Tin (Sn)-Total	0.00083		0.00020	mg/L	07-SEP-10	07-SEP-10	R1460846
Titanium (Ti)-Total	0.0205		0.00020	mg/L	07-SEP-10	07-SEP-10	R1460846
Tungsten (W)-Total	<0.0010		0.0010	mg/L	07-SEP-10	07-SEP-10	R1460846
Uranium (U)-Total	0.00041		0.00010	mg/L	07-SEP-10	07-SEP-10	R1460846
Vanadium (V)-Total	0.00707		0.00020	mg/L	07-SEP-10	07-SEP-10	R1460846
Zinc (Zn)-Total	0.0462		0.0050	mg/L	07-SEP-10	07-SEP-10	R1460846
Zirconium (Zr)-Total	0.00122		0.00040	mg/L	07-SEP-10	07-SEP-10	R1460846
Aggregate Organics				-			
Biochemical Oxygen Demand	40.0		6.0	mg/L	03-SEP-10	08-SEP-10	R1460687
Total Oil and Grease	6.7	DLM	2.0	mg/L	10-SEP-10	10-SEP-10	R1459975
Phenols (4AAP)	0.0750		0.0010	mg/L	08-SEP-10	08-SEP-10	R1461126
* Refer to Referenced Information for Qualifiers (if any) and							

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

N-015746 L927467 CONTD....

PAGE 5 of 6

Reference Information

Sample Parameter Qualifier key listed:

Qualifier Description

DLM Detection Limit Adjusted For Sample Matrix Effects

Test Method References:

ALS Test Code Method Reference** Matrix **Test Description**

ANIONS5-IC-WP Water Anions scan (IC) FPA 300.1 IC

This analysis is carried out using procedures adapted from EPA Method 300.1 "Determination of Inorganic Anions in Drinking Water by Ion

Chromatography".

EC-WP

Biochemical Oxygen Demand APHA 5210 B Water

The sample is incubated for 5 days at 2000 less Celcius. Comparison of dissolved oxygen content at the beginning and end of incubation provides a measure of biochemical oxygen demand. If carbonaceous BOD is requested, TCMP is added to the sample to chemically inhibit nitrogenous oxygen demand. If soluble BOD is requested, the sample is filtered prior to analysis. Surface waters have a DL of 1 mg/L. Effluents are diluted according to

their history and will have a sample DL of 6 mg/L or greater, depending on the dilutions used. Conductivity

Conductivity of an aqueous solution refers to its ability to carry an electric current. Conductance of a solution is measured between two spatially fixed

APHA 2510B

and chemically inert electrodes.

FC-MPN-WP Water Fecal Coliform APHA 9221A-C

The Most Probable Number (MPN) method is based on the Multiple Tube Fermentation technique. The results of examination of replicate tubes and dilutions of a sample are reported after confirmations specific to total coliform, fecal coliform and E. coli are performed. Results are reported in

MPN/100 mL for water and MPN/gram for food and solid samples.

Water

HG-T-CVAF-WP Mercury Total EPA245.7 V2.0 Water

Mercury in filtered and unfiltered waters is oxidized with Bromine monochloride and analyzed by cold-vapour atomic fluorescence spectrometry.

MET-T-L-MS-WP Water Total Metals by ICP-MS U.S. EPA 200.8-TL

Total Metals by ICP-MS: This analysis is carried out using sample preparation procedures adapted from Standard Methods for the examination of Water and Wastewater Method 3030E and analytical procedures adapted from U.S EPA Method 200.8 for analysis of metals by inductively coupled-mass

spectrometery.

NH3-COL-WP APHA 4500 NH3 F Water Ammonia by colour

Ammonia - Colourimeric using Salicylate-nitroprusside and hypochlorite, in an alkaline phosphate buffer.

NO2+NO3-CALC-WP Water Nitrate+Nitrite CALCULATION

Total Oil and Grease OGG-IR-WP Water APHA METHOD 5520C

PH-WP Water APHA 4500H

pH of a sample is the determination of the activity of the hydrogen ions by potentiometric measurement using a standard hydrogen electrode and a

reference electrode.

PHENOLS-4AAP-WT Phenols (4AAP) **EPA 9066**

An automated method is used to distill the sample. The distillate is then buffered to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a

red complex which is measured colorimetrically.

SOLIDS-TOTSUS-WP Water **Total Suspended Solids APHA 2540**

The residue retained by a prepared 1.5 um Whatman 934-AH glass microfibre filter dried at 105 degrees C.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WP	ALS LABORATORY GROUP - WINNIPEG, MANITOBA, CANADA
WT	ALS LABORATORY GROUP - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

N-015746 L927467 CONTD....
PAGE 6 of 6

Reference Information

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid weight of sample

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

CLIENT NAME: R.J. BURNSIDE & ASSOCIATES LTD

Certificate of Analysis

AGAT WORK ORDER: 10T434899

PROJECT NO: N-015746

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

ATTENTION TO: Stephanie Charity

OLILITI III IIIIL. I II.O. DOI II IOIDI	_	J., O	_		711 Entriest 16. Stephanie Granty				
		O. Re	eg 153 F	Petroleum Hydrocarb	oon F1 - F4 in Water (With PAHs)				
DATE SAMPLED: Sep 09, 2010			DATE RE	CEIVED: Sep 13, 2010	DATE REPORTED: Sep 22, 2010	SAMPLE TYPE: Water			
Parameter	Unit	G/S	RDL	BW-1 1988754					
C6 - C10 (F1)	g/L		25	<25					
C6 - C10 (F1 minus BTEX)	g/L		25	<25					
C>10 - C16 (F2)	g/L		100	<100					
C>10 - C16 (F2 minus Naphthalene)	g/L		100	<100					
C6 - C16 (F1 F2)	g/L		100	<100					
C>16 - C34 (F3)	g/L		100	<100					
C>16 - C34 (F3 minus PAHs)	g/L		100	<100					
C>34 - C50 (F4)	g/L		100	<100					
C>16 - C50 (F3 F4)	g/L		100	<100					
Gravimetric Heavy Hydrocarbons	g/L		500	NA					

Comments: RDL - Reported Detection Limit G / S - Guideline / Standard

1988754

The C6-C10 fraction is calculated using Toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons > C50 are present. Total C6-C50 results are corrected for BTEX and PAH contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor. nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Certified By:

Joshy Takweli

AGAT WORK ORDER: 10T434899

PROJECT NO: N-015746

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Stephanie Charity

CLIENT NAME: R.J. BURNSIDE & ASSOCIATES LTD		ATTENTION TO: Stephanie
	O Dog 153 DA He in Water	

DATE SAMPLED: Sep 09, 2010		DATE REC	CEIVED: Sep 13, 2010	DATE REPORTED: Sep 22, 2010	SAMPLE TYPE: Water
Parameter	Unit	G/S RDL	BW-1 1988754		
Naphthalene	g/L	0.12	<0.12		
Acenaphthylene	g/L	0.11	<0.11		
Acenaphthene	g/L	0.10	<0.10		
Fluorene	g/L	0.09	<0.09		
Phenanthrene	g/L	0.10	<0.10		
Anthracene	g/L	0.07	<0.07		
Fluoranthene	g/L	0.12	<0.12		
Pyrene	g/L	0.12	<0.12		
Benzo(a)anthracene	g/L	0.08	<0.08		
Chrysene	g/L	0.05	<0.05		
Benzo(b)fluoranthene	g/L	0.05	<0.05		
Benzo(k)fluoranthene	g/L	0.06	<0.06		
Benzo(a)pyrene	g/L	0.01	<0.01		
ndeno(1,2,3-cd)pyrene	g/L	0.03	<0.03		
Dibenzo(a,h)anthracene	g/L	0.09	<0.09		
Benzo(g,h,i)perylene	g/L	0.06	<0.06		
2-and 1-methyl Napthalene	g/L	0.20	<0.20		
Surrogate	Unit	Acceptable Limits			
Chrysene-d12	%	60-130	97		

RDL - Reported Detection Limit G / S - Guideline / Standard Comments:

Certified By:

CLIENT NAME: R.J. BURNSIDE & ASSOCIATES LTD

Certificate of Analysis

AGAT WORK ORDER: 10T434899

PROJECT NO: N-015746

ATTENTION TO: Stephanie Charity

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

		O. Re	gulation 15	3 - Volatile Org	ganic Compounds in Wa	ater	
DATE SAMPLED: Sep 09, 2010		DAT	E RECEIVED: S	ep 13, 2010	DATE REPORTED: Se	ep 22, 2010	SAMPLE TYPE: Water
Parameter	Unit	G/S RI	BW-1 DL 198875	1			
Dichlorodifluoromethane	g/L	0.2		•			
Chloromethane	g/L	0.4					
Vinyl Chloride	g/L	0.1					
Bromomethane	g/L	0.2					
Chloroethane	g/L	0.2					
Trichlorofluoromethane	g/L	0.4					
Acetone	g/L	1.	0 <1.0				
1,1 Dichloroethylene	g/L	0.3	30 <0.30				
Methylene Chloride	g/L	0.3	30 <0.30				
trans- 1,2-dichloroethylene	g/L	0.2					
Methyl tert-butyl ether	g/L	0.2	20 <0.20				
1,1-Dichloroethane	g/L	0.3	30 <0.30				
Methyl Ethyl Ketone	g/L	1.	0 <1.0				
cis- 1,2-Dichloroethylene	g/L	0.2	20 <0.20				
Chloroform	g/L	0.2	20 <0.20				
1,2 - Dichloroethane	g/L	0.2	20 <0.20				
1,1,1-Trichloroethane	g/L	0.3	30 <0.30				
Carbon Tetrachloride	g/L	0.2	20 <0.20				
Benzene	g/L	0.2	20 <0.20				
1,2-Dichloropropane	g/L	0.2	20 <0.20				
Trichloroethylene	g/L	0.2	20 <0.20				
Bromodichloromethane	g/L	0.2	20 <0.20				
cis-1,3-Dichloropropene	ug/L	0.2	20 <0.20				
Methyl Isobutyl Ketone	g/L	1.	0 <1.0				
trans-1,3-Dichloropropene	g/L	0.3	30 <0.30				
1,1,2-Trichloroethane	g/L	0.2	20 <0.20				
Toluene	g/L	0.2	20 <0.20				
2-Hexanone	g/L	0.3	<0.30				
Dibromochloromethane	g/L	0.1	10 <0.10				
Ethylene Dibromide	g/L	0.2	20 <0.20				
Tetrachloroethylene	g/L	0.2	20 <0.20				
1,1,1,2-Tetrachloroethane	g/L	0.1	10 <0.10				
Chlorobenzene	g/L	0.1	10 <0.10				

Certified By:

Joshy Tokwehi

AGAT WORK ORDER: 10T434899

PROJECT NO: N-015746

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

DE & ASSOC	IATES LTD		ATTENTION TO: Stephanie Charity				
	O. Regula	ation 153 - Volatile Or	ganic Compounds in Water				
	DATE REC	CEIVED: Sep 13, 2010	DATE REPORTED: Sep 22, 2010	SAMPLE TYPE: Water			
		BW-1					
Unit	G/S RDL	1988754					
g/L	0.10	<0.10					
g/L	0.20	<0.20					
g/L	0.10	<0.10					
g/L	0.10	<0.10					
g/L	0.10	<0.10					
g/L	0.10	<0.10					
g/L	0.10	<0.10					
g/L	0.10	<0.10					
g/L	0.10	<0.10					
g/L	0.30	<0.30					
g/L	0.30	<0.30					
g/L	0.20	<0.20					
g/L	0.20	<0.20					
Unit	Acceptable Limits						
% Recovery	60-130	100					
% Recovery	70-130	92					
	Unit g/L g/L g/L g/L g/L g/L g/L g/	Unit G / S RDL g/L 0.10 g/L 0.20 g/L 0.20 g/L 0.20 g/L 0.20 Unit Acceptable Limits	O. Regulation 153 - Volatile Or DATE RECEIVED: Sep 13, 2010 BW-1 Unit G / S RDL 1988754 g/L 0.10 <0.10	O. Regulation 153 - Volatile Organic Compounds in Water DATE RECEIVED: Sep 13, 2010 DATE REPORTED: Sep 22, 2010 BW-1 Unit G / S RDL 1988754 g/L 0.10 <0.10			

Comments: RDL - Reported Detection Limit G / S - Guideline / Standard

Certified By:

CLIENT NAME: R.J. BURNSIDE & ASSOCIATES LTD

Certificate of Analysis

AGAT WORK ORDER: 10T434899

PROJECT NO: N-015746

ATTENTION TO: Stephanie Charity

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

BURNSIDE - Water Quality Assessment DATE SAMPLED: Sep 09, 2010 DATE RECEIVED: Sep 13, 2010 DATE REPORTED: Sep 22, 2010 SAMPLE TYPE: Water LF-1 LF-2 LF-3 SL-Wet1 SL-Wet3 SL-Wet4 SL-Wet2 G/S **RDL** 1988705 1988707 1988716 1988725 1988736 1988742 1988748 Unit Parameter Aluminum mg/L 0.004 < 0.004 0.006 0.004 0.059 0.033 0.054 0.143 0.003 < 0.003 0.003 0.003 0.007 0.005 0.006 0.011 Arsenic mg/L Barium mg/L 0.002 0.045 0.041 0.035 0.006 0.007 0.009 0.015 Boron mg/L 0.010 0.736 0.805 0.773 0.179 0.176 0.162 0.230 Cadmium 0.002 <0.002 < 0.002 <0.002 < 0.002 < 0.002 < 0.002 < 0.002 mg/L Calcium mg/L 0.05 283 225 169 15.9 20.9 24.4 12.0 Chromium ma/L 0.003 < 0.003 0.006 0.006 0.008 0.006 0.005 0.007 0.003 < 0.003 < 0.003 < 0.003 0.012 0.006 0.011 0.027 Copper mg/L <0.010 0.074 0.020 0.503 1.28 2.55 Iron mg/L 0.010 1.41 Potassium 20.8 30.6 37.5 14.8 21.7 mg/L 0.05 15.6 14.7 Magnesium mg/L 0.05 24.5 42.1 43.1 8.66 15.9 17.7 9.76 Mercury 0.0001 < 0.0001 < 0.0001 <0.0001 < 0.0001 <0.0001 <0.0001 <0.0001 mg/L Manganese 0.002 0.045 0.216 0.226 0.226 0.412 0.461 0.274 mg/L Molybdenum mg/L 0.002 <0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 Sodium mg/L 0.05 82.5 171 204 75.5 111 110 94.2 Nickel 0.003 < 0.003 0.003 < 0.003 0.004 0.003 0.005 0.006 mg/L Total Phosphorus mg/L 0.20 0.05 1.57 0.34 0.98 1.56 1.45 4.54 < 0.002 < 0.002 < 0.002 0.002 < 0.002 < 0.002 < 0.002 < 0.002 Lead mg/L Selenium 0.004 <0.004 < 0.004 < 0.004 < 0.004 < 0.004 <0.004 < 0.004 mg/L Silver mg/L 0.002 <0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 0.142 Strontium mg/L 0.005 2.54 1.71 1.31 0.237 0.214 0.111 Thallium mg/L 0.006 <0.006 < 0.006 < 0.006 < 0.006 < 0.006 <0.006 < 0.006 0.008 0.007 0.006 0.003 0.003 0.005 Titanium mg/L 0.002 0.002 0.002 <0.002 < 0.002 < 0.002 < 0.002 < 0.002 <0.002 < 0.002 Uranium mg/L Vanadium mg/L 0.002 <0.002 < 0.002 < 0.002 0.004 0.003 0.003 0.006 Zinc 0.005 0.007 0.013 0.009 0.007 < 0.005 < 0.005 0.022 mg/L Fluoride mg/L 0.05 < 0.05 < 0.05 <0.05 < 0.05 < 0.05 < 0.05 0.50 Chloride 334 0.10 114 267 120 204 186 140 mg/L Nitrite as N mg/L 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 Ortho phosphate as P mg/L 0.10 < 0.10 < 0.10 <0.10 1.53 1.71 0.55 2.33 Bromide mg/L 0.05 1.42 2.63 2.58 < 0.05 1.16 < 0.05 < 0.05 Nitrate as N 0.05 < 0.05 0.81 <0.05 1.00 0.30 0.39 0.40 mg/L 0.10 650 518 469 18.4 37.3 26.6 11.5 Sulphate mg/L

Certified By:

Make Muneman

CLIENT NAME: R.J. BURNSIDE & ASSOCIATES LTD

Certificate of Analysis

AGAT WORK ORDER: 10T434899

PROJECT NO: N-015746

ATTENTION TO: Stephanie Charity

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

BURNSIDE - Water Quality Assessment DATE SAMPLED: Sep 09, 2010 DATE RECEIVED: Sep 13, 2010 DATE REPORTED: Sep 22, 2010 SAMPLE TYPE: Water LF-1 LF-3 LF-2 SL-Wet1 SL-Wet2 SL-Wet3 SL-Wet4 Unit G/S **RDL** 1988705 1988707 1988716 1988725 1988736 1988742 1988748 Parameter На pH Units 8.27 NA 7.90 8.03 7.89 7.82 7.84 8.18 Ammonia as N mg/L 0.02 < 0.02 1.23 0.26 36.5 25.7 18.3 71.9 0.5 25.8 26.5 22.7 61.4 Total Organic Carbon mg/L 36.5 28.3 21.0 uS/cm 2 2040 2070 793 1030 Electrical Conductivity 1750 1020 957 Total Dissolved Solids mg/L 20 1440 1520 1450 368 496 484 436 Saturation pH 6.59 6.53 6.70 7.70 7.52 7.43 7.53 % Difference/ Ion Balance 3.8 0.1 3.6 3.8 5.6 0.6 4.5 3.6 Total Hardness (as CaCO3) mg/L 10 808 735 599 75 118 134 70 1.57 0.65 1.31 1.50 0.19 0.30 0.41 Langlier Index <5 <5 <5 <5 Carbonate (as CaCO3) mg/L 5 <5 <5 <5 5 Bicarbonate (as CaCO3) mg/L 252 322 263 193 186 200 306 3.3 20.0 Turbidity NTU 0.5 0.9 1.6 3.1 4.1 5.2 Alkalinity (as CaCO3) 252 322 263 193 186 200 306 mq/L Hydroxide (as CaCO3) mg/L 5 <5 <5 <5 <5 <5 <5 <5 Reactive Silica 0.05 15.9 8.84 9.34 12.3 11.4 8.67 14.2 mg/L Colour TCU 5 30 55 49 107 100 131 209

Comments: RDL - Reported Detection Limit G / S - Guideline / Standard

Certified By:

Mile Munemon

AGAT WORK ORDER: 10T434899

PROJECT NO: N-015746

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: R.J. BURNSIDE & ASSOCIATES LTD

ATTENTION TO: Stephanie Charity

Chromium VI & TSS (Water)						
DATE SAMPLED: Sep 09, 2010	ED: Sep 09, 2010 DATE RECEIVED: Sep 13, 2010 DATE REPORTED: Sep 22, 2010 SAMPLE TYPE: Water				SAMPLE TYPE: Water	
				LF-1		
Parameter	Unit	G/S	RDL	1988705		
Chromium VI	mg/L		0.005	<0.005		
Total Suspended Solids	mg/L		10	288		

Comments: RDL - Reported Detection Limit G / S - Guideline / Standard

Certified By:

Mile Munemon

AGAT WORK ORDER: 10T434899

PROJECT NO: N-015746

T F http://v

TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

CLIENT NAME: R.J. BURNSIDE & ASSOCIATES LTD

ATTENTION TO: Stephanie Charity

		_					,
				Chromiur	n VI, Phenols	& TSS (Water)	
DATE SAMPLED: Sep 09, 2010			DATE RE	CEIVED: Sep 1	3, 2010	DATE REPORTED: Sep 22, 2010	SAMPLE TYPE: Water
				LF-2	LF-3		
Parameter	Unit	G/S	RDL	1988707	1988716		
Chromium VI	mg/L		0.005	<0.005	<0.005		
Phenols	mg/L		0.001	0.002	0.001		
Total Suspended Solids	mg/L		10	21	<10		

Comments: RDL - Reported Detection Limit G / S - Guideline / Standard

Certified By:

Mich Muneum

AGAT WORK ORDER: 10T434899

PROJECT NO: N-015746

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: R.J. BURNSI	CIATES LT	D		ATTENTION TO: Stephanie Charity				
					TSS (Wa	ater)		
DATE SAMPLED: Sep 09, 2010			DATE RE	CEIVED: Sep 1	13, 2010	DATE	REPORTED: Sep 22, 2010	SAMPLE TYPE: Water
				SL-Wet1	SL-Wet2	SL-Wet3	SL-Wet4	
Parameter	Unit	G/S	RDL	1988725	1988736	1988742	1988748	
Total Suspended Solids	mg/L		10	44	<10	<10	78	

Comments: RDL - Reported Detection Limit G / S - Guideline / Standard

Certified By:

R.J. BURNSIDE ATTN: Stephanie Charity 292 SPEEDVALE AVE., WEST

UNIT #7

GUELPH ON N1H 1C4

Phone: 519-823-4995

Date Received: 14-SEP-10

Report Date: 21-SEP-10 09:07 (MT)

Version: FINAL

Certificate of Analysis

Lab Work Order #: L930982

Project P.O. #: NOT SUBMITTED Job Reference: N-0157460

Legal Site Desc: C of C Numbers:

Paul Necolos

Paul Nicolas Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L930982-1 LF-1 Sampled By: SC on 09-SEP-10 @ 11:50 Matrix: WATER							
Bacteriological Tests							
Fecal Coliforms	23		3	MPN/100mL		17-SEP-10	R1470963
Aggregate Organics							
Biochemical Oxygen Demand	27.4		1.0	mg/L	15-SEP-10	20-SEP-10	R1471932
L930982-2 LF-2 Sampled By: SC on 09-SEP-10 @ 12:05 Matrix: WATER							
Bacteriological Tests							
Fecal Coliforms	9		3	MPN/100mL		17-SEP-10	R1470963
Aggregate Organics							
Biochemical Oxygen Demand	6.0		1.0	mg/L	15-SEP-10	20-SEP-10	R1471932
L930982-3 LF-3 Sampled By: SC on 09-SEP-10 @ 13:43 Matrix: WATER							
Bacteriological Tests							
Fecal Coliforms	4		3	MPN/100mL		17-SEP-10	R1470963
Aggregate Organics							
Biochemical Oxygen Demand	2.6		1.0	mg/L	15-SEP-10	20-SEP-10	R1471932
L930982-4 SL-WET-1 Sampled By: SC on 09-SEP-10 @ 14:45 Matrix: WATER							
Bacteriological Tests							
Escherichia Coli	15		3	MPN/100mL		17-SEP-10	R1470963
Fecal Coliforms	15		3	MPN/100mL		17-SEP-10	R1470963
Aggregate Organics							
Biochemical Oxygen Demand	9.0		1.0	mg/L	15-SEP-10	20-SEP-10	R1471932
L930982-5 SL-WET-2 Sampled By: SC on 09-SEP-10 @ 14:25 Matrix: WATER							
Bacteriological Tests							
Escherichia Coli	4		3	MPN/100mL		17-SEP-10	R1470963
Fecal Coliforms	4		3	MPN/100mL		17-SEP-10	R1470963
Aggregate Organics							
Biochemical Oxygen Demand	21.2		6.0	mg/L	15-SEP-10	20-SEP-10	R1471932
L930982-6 SL-WET-3 Sampled By: SC on 09-SEP-10 @ 15:10 Matrix: WATER							
Bacteriological Tests							
Escherichia Coli	9		3	MPN/100mL		17-SEP-10	R1470963
Fecal Coliforms	9		3	MPN/100mL		17-SEP-10	R1470963
Aggregate Organics							
Biochemical Oxygen Demand	5.6		1.0	mg/L	15-SEP-10	20-SEP-10	R1471932
L930982-7 SL-WET-4 Sampled By: SC on 09-SEP-10 @ 15:45 Matrix: WATER							
Bacteriological Tests							

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L930982-7 SL-WET-4							
Sampled By: SC on 09-SEP-10 @ 15:45							
Matrix: WATER							
Bacteriological Tests	4000		0	MDN/400ml		47 CED 40	D4 470000
Escherichia Coli Fecal Coliforms	4300		3	MPN/100mL		17-SEP-10	
Aggregate Organics	9300		3	MPN/100mL		17-SEP-10	R1470963
Biochemical Oxygen Demand	20.0		1.0	mg/L	15-SEP-10	20-SEP-10	R1471032
Biochemical Oxygen Demand	20.0		1.0	IIIg/L	13-321-10	20-3L1 -10	K147 1932

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

N-0157460 L930982 CONTD....

Reference Information

PAGE 4 of 4

Qualifiers for Sample Submission Listed:

Qualifier Description

EHR Exceeded Recommended Holding Time On Receipt: Proceed With Analysis As Requested

Test Method References:

ALS Test Code Matrix Test Description Method Reference**

BOD-WP Water Biochemical Oxygen Demand APHA 5210 B

The sample is incubated for 5 days at 2000 less Celcius. Comparison of dissolved oxygen content at the beginning and end of incubation provides a measure of biochemical oxygen demand. If carbonaceous BOD is requested, TCMP is added to the sample to chemically inhibit nitrogenous oxygen demand. If soluble BOD is requested, the sample is filtered prior to analysis. Surface waters have a DL of 1 mg/L. Effluents are diluted according to their history and will have a sample DL of 6 mg/L or greater, depending on the dilutions used.

EC-MPN-WP Water Escherichia Coli APHA 9221A-C

The Most Probable Number (MPN) method is based on the Multiple Tube Fermentation technique. The results of examination of replicate tubes and dilutions of a sample are reported after confirmations specific to total coliform, fecal coliform and E. coli are performed. Results are reported in MPN/100 mL for water

and MPN/gram for food and solid samples.

FC-MPN-WP Water Fecal Coliform APHA 9221A-C

The Most Probable Number (MPN) method is based on the Multiple Tube Fermentation technique. The results of examination of replicate tubes and dilutions of a sample are reported after confirmations specific to total coliform, fecal coliform and E. coli are performed. Results are reported in MPN/100 mL for water and MPN/gram for food and solid samples.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

 Laboratory Definition Code
 Laboratory Location

 WP
 ALS LABORATORY GROUP - WINNIPEG, MANITOBA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid weight of sample

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

And third results in unpiring detect reports with the DRACET watermark are appeared.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Quality Control Report

Workorder: L930982 Report Date: 21-SEP-10 Page 1 of 3

Client: R.J. BURNSIDE

292 SPEEDVALE AVE., WEST UNIT #7

GUELPH ON N1H 1C4

Contact: Stephanie Charity

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
BOD-WP	Water								
Batch R1	471932								
WG1166992-3 Biochemical Ox	DUP ygen Demand	L930797-1 9.2	9.2	J	mg/L	0.0	24	20-SEP-10	
WG1166992-4 Biochemical Ox	DUP ygen Demand	L931066-10 1.7	1.5	J	mg/L	0.2	4	20-SEP-10	
WG1166992-5 Biochemical Ox	DUP ygen Demand	L931186-1 28.4	24.8	J	mg/L	3.6	24	20-SEP-10	
WG1166992-6 Biochemical Ox	DUP ygen Demand	L931320-4 11.4	12.6		mg/L	10	20	20-SEP-10	
WG1166992-2 Biochemical Ox	IRM ygen Demand	61-GG	86		%		85-115	20-SEP-10	
WG1166992-1 Biochemical Ox	MB ygen Demand		<1.0		mg/L		1	20-SEP-10	

Quality Control Report

Workorder: L930982 Report Date: 21-SEP-10 Page 2 of 3

Legend:

Limit	99% Confidence Interval (Laboratory Control Limits)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.

Quality Control Report

Workorder: L930982 Report Date: 21-SEP-10 Page 3 of 3

Hold Time Exceedances:

ALS Product Description	Sample ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Bacteriological Tests							
Escherichia Coli							
	4	09-SEP-10 14:45	14-SEP-10 12:13	48	117	hours	EHTR
	5	09-SEP-10 14:25	14-SEP-10 12:13	48	118	hours	EHTR
	6	09-SEP-10 15:10	14-SEP-10 12:13	48	117	hours	EHTR
	7	09-SEP-10 15:45	14-SEP-10 12:13	48	116	hours	EHTR
Fecal Coliform							
	1	09-SEP-10 11:50	14-SEP-10 12:13	48	120	hours	EHTR
	2	09-SEP-10 12:05	14-SEP-10 12:13	48	120	hours	EHTR
	3	09-SEP-10 13:43	14-SEP-10 12:13	48	119	hours	EHTR
	4	09-SEP-10 14:45	14-SEP-10 12:13	48	117	hours	EHTR
	5	09-SEP-10 14:25	14-SEP-10 12:13	48	118	hours	EHTR
	6	09-SEP-10 15:10	14-SEP-10 12:13	48	117	hours	EHTR
	7	09-SEP-10 15:45	14-SEP-10 12:13	48	116	hours	EHTR
Aggregate Organics							
Biochemical Oxygen Dema	ind (BOD)						
	1	09-SEP-10 11:50	15-SEP-10 08:07	48	140	hours	EHTR
	2	09-SEP-10 12:05	15-SEP-10 08:07	48	140	hours	EHTR
	3	09-SEP-10 13:43	15-SEP-10 08:07	48	138	hours	EHTR
	4	09-SEP-10 14:45	15-SEP-10 08:07	48	137	hours	EHTR
	5	09-SEP-10 14:25	15-SEP-10 08:07	48	138	hours	EHTR
	6	09-SEP-10 15:10	15-SEP-10 08:07	48	137	hours	EHTR
	7	09-SEP-10 15:45	15-SEP-10 08:07	48	136	hours	EHTR

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L930982 were received on 14-SEP-10 08:35.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

R.J. BURNSIDE & ASSOCIATES LTD ATTN: STEPHANIE CHARITY / JIM WALLS 292 SPEEDVALE AVE., WEST UNIT #7

Phone: 519-823-4995

GUELPH ON N1H 1C4

Date Received: 13-SEP-10

Report Date: 22-SEP-10 15:38 (MT)

Version: FINAL

Certificate of Analysis

Lab Work Order #: L930600

Project P.O. #: NOT SUBMITTED Job Reference: N-015746

Legal Site Desc: C of C Numbers:

Paul Necolas

Paul Nicolas Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L930600-1 ARV-2	11.25						
Sampled By: STEPHANIE CHARITY on 10-SEP-10 @	11.33						
Matrix: WASTE WATER Nitrate + Nitrite							
Anions scan (IC)							
Nitrite-N	<0.25		0.25	mg/L		14-SEP-10	R1467253
Nitrate-N	<0.25		0.25	mg/L		14-SEP-10	R1467253
Sulfate	475		2.5	mg/L		14-SEP-10	R1467253
Nitrate+Nitrite							
Nitrate and Nitrite as N	<0.35		0.35	mg/L		15-SEP-10	
Miscellaneous Parameters							
Ammonia as N	13.3		0.050	mg/L		21-SEP-10	R1473786
Biochemical Oxygen Demand	<6.0		6.0	mg/L	13-SEP-10	18-SEP-10	R1470801
Conductivity	2630		0.40	umhos/cm		13-SEP-10	R1465201
Fecal Coliforms	38		3	MPN/100mL		16-SEP-10	R1470203
Mercury (Hg)-Total	<0.000050		0.000050	mg/L	17-SEP-10	17-SEP-10	R1473006
Phenols (4AAP)	0.0020		0.0010	mg/L	15-SEP-10	15-SEP-10	R1467205
Total Oil and Grease	<1.0		1.0	mg/L	16-SEP-10	17-SEP-10	R1470248
Total Suspended Solids	8.0		5.0	mg/L		16-SEP-10	R1469793
pH	8.21		0.10	pH units		13-SEP-10	R1465201
Total Metals by ICP-MS							
Aluminum (Al)-Total	0.0095		0.0050	mg/L	14-SEP-10	14-SEP-10	R1466569
Antimony (Sb)-Total	0.00410		0.00020	mg/L	14-SEP-10	14-SEP-10	R1466569
Arsenic (As)-Total	0.00482		0.00020	mg/L	14-SEP-10	14-SEP-10	R1466569
Barium (Ba)-Total	0.0458		0.00020	mg/L	14-SEP-10	14-SEP-10	R1466569
Beryllium (Be)-Total	<0.00020		0.00020	mg/L	14-SEP-10	14-SEP-10	R1466569
Bismuth (Bi)-Total	<0.00020		0.00020	mg/L	14-SEP-10	14-SEP-10	R1466569
Boron (B)-Total	1.34		0.010	mg/L	14-SEP-10	14-SEP-10	R1466569
Cadmium (Cd)-Total	<0.000010		0.000010	mg/L	14-SEP-10	14-SEP-10	R1466569
Calcium (Ca)-Total	230		0.10	mg/L	14-SEP-10	14-SEP-10	R1466569
Cesium (Cs)-Total Chromium (Cr)-Total	<0.00010 <0.0010		0.00010 0.0010	mg/L	14-SEP-10 14-SEP-10	14-SEP-10 14-SEP-10	R1466569 R1466569
Cobalt (Co)-Total	0.00010		0.0010	mg/L mg/L	14-SEP-10 14-SEP-10	14-SEP-10 14-SEP-10	R1466569
Copper (Cu)-Total	0.00031		0.00020	mg/L	14-SEP-10	14-SEP-10	R1466569
Iron (Fe)-Total	0.529		0.00020	mg/L	14-SEP-10	14-SEP-10	R1466569
Lead (Pb)-Total	0.000145		0.000090	mg/L	14-SEP-10	14-SEP-10	R1466569
Lithium (Li)-Total	0.0318		0.0020	mg/L	14-SEP-10	14-SEP-10	R1466569
Magnesium (Mg)-Total	49.0		0.010	mg/L	14-SEP-10	14-SEP-10	R1466569
Manganese (Mn)-Total	0.599		0.00030	mg/L	14-SEP-10	14-SEP-10	R1466569
Molybdenum (Mo)-Total	0.00036		0.00020	mg/L	14-SEP-10	14-SEP-10	R1466569
Nickel (Ni)-Total	<0.0020		0.0020	mg/L	14-SEP-10	14-SEP-10	R1466569
Phosphorus (P)-Total	0.56		0.20	mg/L	14-SEP-10	14-SEP-10	R1466569
Potassium (K)-Total	44.0		0.020	mg/L	14-SEP-10	14-SEP-10	R1466569
Rubidium (Rb)-Total	0.0375		0.00020	mg/L	14-SEP-10	14-SEP-10	R1466569
Selenium (Se)-Total	<0.0010		0.0010	mg/L	14-SEP-10	14-SEP-10	R1466569
Silicon (Si)-Total	4.79		0.050	mg/L	14-SEP-10	14-SEP-10	R1466569
Silver (Ag)-Total	<0.00010		0.00010	mg/L	14-SEP-10	14-SEP-10	R1466569
Sodium (Na)-Total	243		0.030	mg/L	14-SEP-10	14-SEP-10	R1466569
Strontium (Sr)-Total	1.66		0.00010	mg/L	14-SEP-10	14-SEP-10	R1466569
Tellurium (Te)-Total	<0.00020		0.00020	mg/L	14-SEP-10	14-SEP-10	R1466569
Thallium (TI)-Total Thorium (Th)-Total	<0.00010		0.00010	mg/L	14-SEP-10 14-SEP-10	14-SEP-10 14-SEP-10	R1466569
Tin (Sn)-Total Tin (Sn)-Total	<0.00010 0.00022		0.00010 0.00020	mg/L mg/L	14-SEP-10 14-SEP-10	14-SEP-10 14-SEP-10	R1466569 R1466569
Titanium (Ti)-Total	0.00022		0.00020	mg/L	14-SEP-10 14-SEP-10	14-SEP-10 14-SEP-10	R1466569
Tungsten (W)-Total	<0.00299		0.00020	mg/L	14-SEP-10 14-SEP-10	14-SEP-10 14-SEP-10	R1466569
1 41193(611 (VV)-10(a)	<0.0010		0.0010	mg/L	14-0LF-10	14-0EF-10	1/1400009

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L930600-1 ARV-2							
Sampled By: STEPHANIE CHARITY on 10-SEP-10 @	11:35						
' '	11.55						
Total Metals by ICP-MS Uranium (U)-Total	0.00063		0.00010	mg/L	14-SEP-10	14-SEP-10	R1466569
Vanadium (V)-Total	0.00061		0.00010	mg/L	14-SEP-10	14-SEP-10	R1466569
Zinc (Zn)-Total	0.0160		0.0050	mg/L	14-SEP-10	14-SEP-10	R1466569
Zirconium (Zr)-Total	0.00043		0.00040	mg/L	14-SEP-10	14-SEP-10	R1466569
L930600-2 ARV-4							
Sampled By: STEPHANIE CHARITY on 10-SEP-10 @	11.15						
Matrix: WASTE WATER	11110						
Nitrate + Nitrite							
Anions scan (IC)							
Nitrite-N	0.284		0.050	mg/L		14-SEP-10	R1467253
Nitrate-N	1.23		0.050	mg/L		14-SEP-10	R1467253
Sulfate	6.99		0.50	mg/L		14-SEP-10	R1467253
Nitrate+Nitrite							
Nitrate and Nitrite as N	1.51		0.071	mg/L		15-SEP-10	
Miscellaneous Parameters							
Ammonia as N	28.2		0.050	mg/L		21-SEP-10	R1473786
Biochemical Oxygen Demand	65.0		6.0	mg/L	13-SEP-10	18-SEP-10	R1470801
Conductivity	1020		0.40	umhos/cm		13-SEP-10	R1465201
Fecal Coliforms	2100		3	MPN/100mL		16-SEP-10	R1470203
Mercury (Hg)-Total	<0.000050		0.000050	mg/L	17-SEP-10	17-SEP-10	R1473006
Phenols (4AAP)	<0.01	DLM	0.010	mg/L	15-SEP-10	15-SEP-10	R1467205
Total Oil and Grease	1.3		1.0	mg/L	16-SEP-10	17-SEP-10	R1470248
Total Suspended Solids	169		5.0	mg/L		16-SEP-10	R1469793
pН	8.12		0.10	pH units		13-SEP-10	R1465201
Total Metals by ICP-MS							
Aluminum (AI)-Total	0.325		0.0050	mg/L	14-SEP-10	14-SEP-10	R1466569
Antimony (Sb)-Total	0.00033		0.00020	mg/L	14-SEP-10	14-SEP-10	R1466569
Arsenic (As)-Total	0.0107		0.00020	mg/L	14-SEP-10	14-SEP-10	R1466569
Barium (Ba)-Total	0.0349		0.00020	mg/L	14-SEP-10	14-SEP-10	R1466569
Beryllium (Be)-Total	<0.00020		0.00020	mg/L	14-SEP-10	14-SEP-10	R1466569
Bismuth (Bi)-Total	<0.00020		0.00020	mg/L	14-SEP-10 14-SEP-10	14-SEP-10 14-SEP-10	R1466569
Boron (B)-Total Cadmium (Cd)-Total	0.254 0.000092		0.010 0.000010	mg/L	14-SEP-10 14-SEP-10	14-SEP-10 14-SEP-10	R1466569 R1466569
Calcium (Ca)-Total	22.7		0.000010	mg/L mg/L	14-SEP-10	14-SEP-10	R1466569
Cesium (Cs)-Total	<0.00010		0.00010	mg/L	14-SEP-10	14-SEP-10	R1466569
Chromium (Cr)-Total	0.0018		0.00010	mg/L	14-SEP-10	14-SEP-10	R1466569
Cobalt (Co)-Total	0.00229		0.00020	mg/L	14-SEP-10	14-SEP-10	R1466569
Copper (Cu)-Total	0.0394		0.00020	mg/L	14-SEP-10	14-SEP-10	R1466569
Iron (Fe)-Total	5.90		0.020	mg/L	14-SEP-10	14-SEP-10	R1466569
Lead (Pb)-Total	0.00152		0.000090	mg/L	14-SEP-10	14-SEP-10	R1466569
Lithium (Li)-Total	0.0067		0.0020	mg/L	14-SEP-10	14-SEP-10	R1466569
Magnesium (Mg)-Total	14.4		0.010	mg/L	14-SEP-10	14-SEP-10	R1466569
Manganese (Mn)-Total	0.349		0.00030	mg/L	14-SEP-10	14-SEP-10	R1466569
Molybdenum (Mo)-Total	0.00080		0.00020	mg/L	14-SEP-10	14-SEP-10	R1466569
Nickel (Ni)-Total	0.0088		0.0020	mg/L	14-SEP-10	14-SEP-10	R1466569
Phosphorus (P)-Total	5.81		0.20	mg/L	14-SEP-10	14-SEP-10	R1466569
Potassium (K)-Total	24.7		0.020	mg/L	14-SEP-10	14-SEP-10	R1466569
Rubidium (Rb)-Total Selenium (Se)-Total	0.0279		0.00020	mg/L	14-SEP-10	14-SEP-10	R1466569
Silicon (Si)-Total	<0.0010 6.32		0.0010 0.050	mg/L mg/L	14-SEP-10 14-SEP-10	14-SEP-10 14-SEP-10	R1466569 R1466569
	0.02		0.000	illy/L	1- JL1 -10	14 061 -10	111700003

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L930600-2 ARV-4							
Sampled By: STEPHANIE CHARITY on 10-SEP-10 @	11:15						
Matrix: WASTE WATER	11.15						
Total Metals by ICP-MS Silver (Ag)-Total	0.00025		0.00010	mg/L	14-SEP-10	14-SEP-10	R1466569
Sodium (Na)-Total	116		0.030	mg/L	14-SEP-10	14-SEP-10	R1466569
Strontium (Sr)-Total	0.323		0.00010	mg/L	14-SEP-10	14-SEP-10	R1466569
Tellurium (Te)-Total	<0.00020		0.00020	mg/L	14-SEP-10	14-SEP-10	R1466569
Thallium (TI)-Total	<0.00010		0.00010	mg/L	14-SEP-10	14-SEP-10	R1466569
Thorium (Th)-Total	0.00032		0.00010	mg/L	14-SEP-10	14-SEP-10	R1466569
Tin (Sn)-Total	0.00082		0.00020	mg/L	14-SEP-10	14-SEP-10	R1466569
Titanium (Ti)-Total	0.0196		0.00020	mg/L	14-SEP-10	14-SEP-10	R1466569
Tungsten (W)-Total	<0.0010		0.0010	mg/L	14-SEP-10	14-SEP-10	R1466569
Uranium (U)-Total	0.00044		0.00010	mg/L	14-SEP-10	14-SEP-10	R1466569
Vanadium (V)-Total	0.00470		0.00020	mg/L	14-SEP-10	14-SEP-10	R1466569
Zinc (Zn)-Total	0.0241		0.0050	mg/L	14-SEP-10	14-SEP-10	R1466569
Zirconium (Zr)-Total	0.00199		0.00040	mg/L	14-SEP-10	14-SEP-10	R1466569
L930600-3 OLD LAGOON 1							
Sampled By: STEPHANIE CHARITY on 10-SEP-10 @	14:45						
Matrix: WASTE WATER							
Miscellaneous Parameters							
Biochemical Oxygen Demand	7.2		6.0	mg/L	13-SEP-10	18-SEP-10	R1470801
Fecal Coliforms	1500		3	MPN/100mL		16-SEP-10	R1470183
L930600-4 OLD LAGOON 2							
Sampled By: STEPHANIE CHARITY on 10-SEP-10 @	14:30						
Matrix: WASTE WATER							
Miscellaneous Parameters							
Biochemical Oxygen Demand	<6.0		6.0	mg/L	13-SEP-10	18-SEP-10	R1470801
Fecal Coliforms	<3		3	MPN/100mL		16-SEP-10	R1470183
L930600-5 SL-1							
Sampled By: STEPHANIE CHARITY on 10-SEP-10 @	15:00						
Matrix: WASTE WATER							
Miscellaneous Parameters							
Biochemical Oxygen Demand	420		6.0	mg/L	13-SEP-10	18-SEP-10	R1470801
Fecal Coliforms	15000		3	MPN/100mL		16-SEP-10	R1470183

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

N-015746

L930600 CONTD.... PAGE 5 of 6

Reference Information

Qualifiers for Individual Samples Listed:

Sample Numbe	Client ID	Qualifier	Description
L930600-1	ARV-2	EHR	Exceeded Recommended Holding Time On Receipt: Proceed With Analysis As Requested

Sample Parameter Qualifier Key:

Qualifier Description

DLM Detection Limit Adjusted For Sample Matrix Effects

Test Method References:

ALS Test Code Matrix **Test Description** Method Reference** ANIONS5-IC-WP EPA 300.1 IC Water Anions scan (IC)

This analysis is carried out using procedures adapted from EPA Method 300.1 "Determination of Inorganic Anions in Drinking Water by Ion

Chromatography".

BOD-WP Biochemical Oxygen Demand APHA 5210 B (BOD)

The sample is incubated for 5 days at 20 degrees Celcius. Comparison of dissolved oxygen content at the beginning and end of incubation provides a measure of biochemical oxygen demand. If carbonaceous BOD is requested, TCMP is added to the sample to chemically inhibit nitrogenous oxygen demand. If soluble BOD is requested, the sample is filtered prior to analysis. Surface waters have a DL of 1 mg/L. Effluents are diluted according to their history and will have a sample DL of 6 mg/L or greater, depending on the dilutions used.

EC-WP Water Conductivity **APHA 2510B**

Conductivity of an aqueous solution refers to its ability to carry an electric current. Conductance of a solution is measured between two spatially fixed

and chemically inert electrodes.

FC-MPN-WP Water Fecal Coliform APHA 9221A-C

The Most Probable Number (MPN) method is based on the Multiple Tube Fermentation technique. The results of examination of replicate tubes and dilutions of a sample are reported after confirmations specific to total coliform, fecal coliform and E. coli are performed. Results are reported in and MPN/gram for food and solid samples.

MPN/100 mL for water

HG-T-CVAF-WP Water Mercury Total EPA245.7 V2.0

Mercury in filtered and unfiltered waters is oxidized with Bromine monochloride and analyzed by cold-vapour atomic fluorescence spectrometry.

MET-T-L-MS-WP Water Total Metals by ICP-MS U.S. EPA 200.8-TL

Total Metals by ICP-MS: This analysis is carried out using sample preparation procedures adapted from Standard Methods for the examination of Water and Wastewater Method 3030E and analytical procedures adapted from U.S EPA Method 200.8 for analysi of metals by inductively coupled-mass spectrometery.

Ammonia by colour NH3-COL-WP Water APHA 4500 NH3 F

Ammonia - Colourimeric using Salicylate-nitroprusside and hypochlorite, in an alkaline phosphate buffer.

NO2+NO3-CALC-WP Water Nitrate+Nitrite CALCULATION

OGG-IR-WP Total Oil and Grease APHA METHOD 5520C Water

PH-WP Water **APHA 4500H**

pH of a sample is the determination of the activity of the hydrogen ions by potentiometric measurement using a standard hydrogen electrode and a reference electrode.

PHENOLS-4AAP-WT Water Phenols (4AAP) EPA 9066

An automated method is used to distill the sample. The distillate is then buffered to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a red complex which is measured colorimetrically.

SOLIDS-TOTSUS-WP Water **Total Suspended Solids APHA 2540**

The residue retained by a prepared 1.5 um Whatman 934-AH glass microfibre filter dried at 105 degrees C.

^{**} ALS test methods may incorporate modifications from specified reference methods to improve performance.

N-015746 L930600

L930600 CONTD.... PAGE 6 of 6

Reference Information

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
The last two letters of the	e above test c	ode(s) indicate the labor	atory that performed analytical analysis for that test. Refer to the list below:
The last two letters of the	o above tool o	odo(b) maiodio ino labori	and performed unarytical analysis for that test. Note: to the list below.
Laboratory Definition C	ode Lab	oratory Location	

WT ALS LABORATORY GROUP - WATERLOO, ONTARIO, CANADA

GLOSSARY OF REPORT TERMS

Chain of Custody Numbers:

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

ALS LABORATORY GROUP - WINNIPEG, MANITOBA, CANADA

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

WP

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

AGAT WORK ORDER: 10T434896

PROJECT NO: N-015746

ATTENTION TO: Stephanie Charity

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: R.J. BURNS	SIDE & ASSOC	IATES LT	D		ATTENTION TO: Stephanie Charity				
			0. R	eg. 153 Me	tals & Inor	ganics in Soil	- Table 1		
DATE SAMPLED: Sep 09, 2010)		DATE RE	CEIVED: Sep 1	13, 2010	DATE REPORTED: Sep 24, 2010 SAMPLE TYPE: So			
Parameter	Unit	G/S	RDL	Old Lagoon 1-Soil 1988833	Old Lagoon 2-Soil 1988834	Active Lagoon 1988835			
Antimony	g/g	1.0	0.8	1.4	2.8	2.1			
Arsenic	g/g	17	1	3	3	1			
Barium	g/g	210	2	140	89	56			
Beryllium	g/g	1.2	0.5	<0.5	<0.5	<0.5			
Boron	g/g		5	10	12	<5			
Boron (Hot Water Extractable)	g/g		0.10	2.62	3.96	0.88			
Cadmium	g/g	1.0	0.5	1.6	1.1	<0.5			
Chromium	g/g	71	2	19	17	14			
Cobalt	g/g	21	0.5	3.9	4.4	2.6			
Copper	g/g	85	1	273	251	171			
Lead	g/g	120	1	45	20	9			
Molybdenum	g/g	2.5	0.5	2.8	3.3	1.2			
Nickel	g/g	43	1	13	13	9			
Selenium	g/g	1.9	0.4	2.5	1.8	3.0			
Silver	g/g	0.42	0.2	5.8	4.8	2.7			
Thallium	g/g	2.5	0.4	<0.4	<0.4	<0.4			
Uranium	ug/g		0.5	1.1	1.6	0.9			
Vanadium	g/g	91	1	13	18	13			
Zinc	g/g	160	5	533	369	242			
Chromium, Hexavalent	g/g	2.5	0.2	<0.2	<0.2	<0.2			
Cyanide, Free	g/g	0.12	0.05	<0.05	< 0.05	<0.05			
Mercury	g/g	0.23	0.01	1.00	0.41	0.31			
Electrical Conductivity (2:1)	mS/cm	0.57	0.002	0.703	1.56	0.792			
Sodium Adsorption Ratio (2:1)	N/A	2.4	N/A	1.63	1.70	2.38			
pH, 2:1 CaCl2 Extraction	pH Units			6.36	6.09	5.51			
Chloride (2:1)	g/g	330	2	83	161	94			
Nitrate Nitrite	g/g	61	1	<1	<1	<1			

Comments: RDL - Reported Detection Limit G / S - Guideline / Standard: Refers to T1(All)

1988833-1988835 EC, SAR, Chloride & Nitrate/Nitrite were determined on the extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the extract obtained from the 2:1 leaching procedure (2 parts 0.01M CaCl2:1 part soil).

Certified By:

AGAT WORK ORDER: 10T434896

PROJECT NO: N-015746

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: R.J. BURNSIDE)			ATTENTION TO: Stephanie Charity						
				O. F	Reg. 153 Me	tals in Soil				
DATE SAMPLED: Sep 09, 2010	DATE RE			CEIVED: Sep 1	CEIVED: Sep 13, 2010		DATE REPORTED: Sep 24, 2010			IPLE TYPE: Soil
Parameter	Unit	G/S	RDL	BW-P1-A 1988818	BW-P1-B 1988823	BW-P2-A 1988827	BW-P2-B 1988830	HW-1 1988837	HW-2 1988842	HW-3 1988845
Antimony	g/g	1.0	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	g/g	17	1	3	1	2	1	2	4	2
Barium	g/g	210	2	26	35	31	31	22	23	21
Beryllium	g/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Boron	g/g		5	<5	<5	<5	<5	<5	<5	<5
Cadmium	g/g	1.0	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	g/g	71	2	11	15	13	12	8	15	9
Cobalt	g/g	21	0.5	2.7	3.9	3.2	3.2	2.4	2.7	2.4
Copper	g/g	85	1	11	10	18	9	7	6	9
Lead	g/g	120	1	4	4	9	5	4	3	3
Molybdenum	g/g	2.5	0.5	0.7	<0.5	0.6	<0.5	<0.5	1.0	0.5
Nickel	g/g	43	1	6	9	8	7	5	7	5
Selenium	g/g	1.9	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Silver	g/g	0.42	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	g/g	2.5	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Uranium	ug/g		0.5	1.2	1.4	1.0	1.3	0.9	0.9	1.2
Vanadium	g/g	91	1	14	18	14	16	12	13	14
Zinc	g/g	160	5	25	34	54	20	159	125	31

RDL - Reported Detection Limit G / S - Guideline / Standard: Refers to T1(All) Comments:

Certified By:

AGAT WORK ORDER: 10T434896

PROJECT NO: N-015746

ATTENTION TO: Stephanie Charity

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: R.J. BURNSID	E & ASSOC	IATES LTI	D		ATTENTION TO: Stephanie Charity						
					Phenols i	n Soil					
DATE SAMPLED: Sep 09, 2010			DATE RE	CEIVED: Sep 1	3, 2010	DATE REPORTED: Sep 24, 2010			SAMPLE TYPE: Soil		
				BW-P1-A	BW-P1-B	BW-P2-A	BW-P2-B	HW-1	HW-2	HW-3	
Parameter	Unit	G/S	RDL	1988818	1988823	1988827	1988830	1988837	1988842	1988845	
Phenols, Total	mg/kg		1	<1	<1	<1	<1	<1	<1	<1	

Comments: RDL - Reported Detection Limit G / S - Guideline / Standard

Certified By:

Mich Muneman

Certificate of Analysis

112

109

AGAT WORK ORDER: 10T434896

PROJECT NO: N-015746

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

99

113

ATTENTION TO: Stephanie Charity

100

120

113

104

94

122

	(P & T) BTEX - Soil (GC/MS)										
DATE SAMPLED: Sep 09, 2010			DATE RE	CEIVED: Sep 1	3, 2010	DATE REPORTED: Sep 24, 2010			SAMPLE TYPE: Soil		
				BW-P1-A	BW-P1-B	BW-P2-A	BW-P2-B	HW-1	HW-2	HW-3	
Parameter	Unit	G/S	RDL	1988818	1988823	1988827	1988830	1988837	1988842	1988845	
Benzene	g/g	0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
Toluene	g/g	0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
Ethylbenzene	g/g	0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
m & p-Xylene	g/g		0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
o-Xylene	g/g		0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
Xylene Mixture (Total)	g/g	0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	

106

103

Comments: RDL - Reported Detection Limit G / S - Guideline / Standard: Refers to T1(All)

Unit

% Recovery

% Recovery

Acceptable Limits

60-130

70-130

113

115

1988818-1988845 Results are based on the dry weight of the soil.

Surrogate

Toluene-d8

4-Bromofluorobenzene

Certified By:

Jordy Takwehi

Certificate of Analysis

AGAT WORK ORDER: 10T434896

PROJECT NO: N-015746

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

ATTENTION TO: Stephanie Charity

CLIENT NAME. K.J. BUKNSIDE	_ & A3300	JAILSLII	<i>-</i>		ATTENTION TO: Stephanie Charity				
		O. Re	eg 153 F	Petroleum Hydroca	rbon F1 - F4 in Water (With PAHs)				
DATE SAMPLED: Sep 10, 2010			DATE RE	CEIVED: Sep 13, 2010	DATE REPORTED: Sep 24, 2010	SAMPLE TYPE: Water			
Parameter	Unit	G/S	RDL	ARV-2 1988848					
C6 - C10 (F1)	g/L		25	<25					
C6 - C10 (F1 minus BTEX)	g/L		25	<25					
C>10 - C16 (F2)	g/L		100	<100					
C>10 - C16 (F2 minus Naphthalene)	g/L		100	<100					
C6 - C16 (F1 F2)	g/L		100	<100					
C>16 - C34 (F3)	g/L		100	<100					
C>16 - C34 (F3 minus PAHs)	g/L		100	<100					
C>34 - C50 (F4)	g/L		100	<100					
C>16 - C50 (F3 F4)	g/L		100	<100					
Gravimetric Heavy Hydrocarbons	g/L		500	NA					

Comments:

RDL - Reported Detection Limit G / S - Guideline / Standard

1988848

The C6-C10 fraction is calculated using Toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons > C50 are present. Total C6-C50 results are corrected for BTEX and PAH contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor. nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Certified By:

Joshy Takwehe

Certificate of Analysis

AGAT WORK ORDER: 10T434896

PROJECT NO: N-015746

ATTENTION TO: Stephanie Charity

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153 - Petroleum Hydrocarbons F1 - F4 (C6 - C50) i	n Soil (PAHs Incl.)

DATE SAMPLED: Sep 09, 2010			DATE RE	CEIVED: Sep 1	3. 2010	DATE	DEDODTED, O	04 0040	0.4.14	DI E TI (DE 0 11	
				DATE RECEIVED: Sep 13, 2010				ep 24, 2010	SAMPLE TYPE: Soil		
Parameter	Unit	G/S	RDL	BW-P1-A 1988818	BW-P1-B 1988823	BW-P2-A 1988827	BW-P2-B 1988830	HW-1 1988837	HW-2 1988842	HW-3 1988845	
C6 - C10 (F1)	g/g		5	<5	11	<5	<5	<5	<5	<5	
C6 - C10 (F1 minus BTEX)	g/g		5	<5	11	<5	<5	<5	<5	<5	
C>10 - C16 (F2)	g/g		10	1200	3400	240	130	<10	<10	<10	
C>10 - C16 (F2 minus Naphthalene)	g/g		10	1200	3400	240	130	<10	<10	<10	
C>16 - C34 (F3)	g/g		50	430	1800	9100	130	26000	32000	24000	
C>16 - C34 (F3 minus PAHs)	g/g		50	430	1800	9100	130	26000	32000	24000	
C>34 - C50 (F4)	g/g		50	<50	<50	730	79	4800	6000	4400	
Gravimetric Heavy Hydrocarbons	g/g		50	NA	NA	NA	NA	NA	NA	NA	
Moisture Content	%		0.1	7.2	8.4	4.2	3.0	7.5	2.2	6.3	

Comments: RDL - Reported Detection Limit G / S - Guideline / Standard

1988818-1988845 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present. Total C6 - C50 results are corrected for BTEX and PAH contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Certified By:

Joshy Takewshi

Certificate of Analysis

AGAT WORK ORDER: 10T434896

PROJECT NO: N-015746

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Stephanie Charity

			O. 1	Neg. 155 FF	1113 111 3011					
DATE SAMPLED: Sep 09, 2010)	DATE REG	CEIVED: Sep 1	3, 2010	DATE	REPORTED: S	ep 24, 2010	SAM	PLE TYPE: Soil	
Parameter	Unit	G/S RDL	BW-P1-A 1988818	BW-P1-B 1988823	BW-P2-A 1988827	BW-P2-B 1988830	HW-1 1988837	HW-2 1988842	HW-3 1988845	
Naphthalene	g/g	0.03	<0.03	0.04	0.04	<0.03	0.03	<0.03	0.05	
Acenaphthylene	g/g	0.02	<0.02	0.04	<0.02	<0.02	<0.02	<0.02	<0.02	
Acenaphthene	g/g	0.03	< 0.03	0.03	<0.03	< 0.03	<0.03	<0.03	<0.03	
Fluorene	g/g	0.02	0.02	0.15	<0.02	<0.02	<0.02	<0.02	<0.02	
Phenanthrene	g/g	0.02	<0.02	0.03	<0.02	<0.02	<0.02	<0.02	<0.02	
Anthracene	g/g	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Fluoranthene	g/g	0.02	<0.02	0.03	<0.02	<0.02	0.02	<0.02	<0.02	
Pyrene	g/g	0.02	0.02	0.06	0.03	<0.02	0.04	0.02	0.03	
Benzo(a)anthracene	g/g	0.02	<0.02	<0.02	<0.02	<0.02	0.21	0.11	0.14	
Chrysene	g/g	0.02	<0.02	<0.02	<0.02	<0.02	0.11	0.07	0.10	
Benzo(b)fluoranthene	g/g	0.02	<0.02	<0.02	<0.02	<0.02	0.07	0.05	0.04	
Benzo(k)fluoranthene	g/g	0.02	<0.02	<0.02	<0.02	<0.02	0.02	<0.02	0.02	
Benzo(a)pyrene	g/g	0.02	<0.02	<0.02	<0.02	<0.02	0.13	0.09	0.07	
ndeno(1,2,3-cd)pyrene	g/g	0.02	<0.02	<0.02	<0.02	<0.02	0.05	0.03	0.03	
Dibenz(a,h)anthracene	g/g	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Benzo(g,h,i)perylene	g/g	0.02	<0.02	<0.02	<0.02	<0.02	80.0	0.05	0.04	
2-and 1-methyl Naphthalene	g/g	0.05	<0.05	<0.05	<0.05	<0.05	0.05	<0.05	<0.05	
Surrogate	Unit	Acceptable Limits								
Chrysene-d12	%	60-130	79	89	100	93	89	95	89	

Comments: RDL - Reported Detection Limit G / S - Guideline / Standard

1988818-1988845 Results are based on the dry weight of the soil.

Certified By:

Joshy Tokurchi

AGAT WORK ORDER: 10T434896

PROJECT NO: N-015746

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: R.J. BURNS	SIDE & ASSO	CIATES LTD		ATTENTION TO: Stephanie Charity							
			O. Reg. 153 PAHs in Water								
DATE SAMPLED: Sep 10, 2010	0	DATE RE	ECEIVED: Sep 13, 2010	DATE REPORTED: Sep 24, 2010	SAMPLE TYPE: Water						
Parameter	Unit	G/S RDL	ARV-2 1988848								
Naphthalene	g/L	0.12	<0.12								
Acenaphthylene	g/L	0.11	<0.11								
Acenaphthene	g/L	0.10	<0.10								
Fluorene	g/L	0.09	<0.09								
Phenanthrene	g/L	0.10	<0.10								
Anthracene	g/L	0.07	<0.07								
Fluoranthene	g/L	0.12	<0.12								
Pyrene	g/L	0.12	<0.12								
Benzo(a)anthracene	g/L	0.08	<0.08								
Chrysene	g/L	0.05	<0.05								
Benzo(b)fluoranthene	g/L	0.05	<0.05								
Benzo(k)fluoranthene	g/L	0.06	<0.06								
Benzo(a)pyrene	g/L	0.01	<0.01								
Indeno(1,2,3-cd)pyrene	g/L	0.03	<0.03								
Dibenzo(a,h)anthracene	g/L	0.09	<0.09								
Benzo(g,h,i)perylene	g/L	0.06	<0.06								
2-and 1-methyl Napthalene	g/L	0.20	<0.20								
Surrogate	Unit	Acceptable Limits									

RDL - Reported Detection Limit G / S - Guideline / Standard Comments:

%

60-130

98

Certified By:

Chrysene-d12

Certificate of Analysis

AGAT WORK ORDER: 10T434896

PROJECT NO: N-015746

ATTENTION TO: Stephanie Charity

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

		O. Re	gulation	153 - Volatile Or	ganic Compounds in Wat	ter	
DATE SAMPLED: Sep 10, 2010		DAT	E RECEIVED	: Sep 13, 2010	DATE REPORTED: Sep	24, 2010	SAMPLE TYPE: Water
Parameter	Unit	G/S R	AR DL 1988				
Dichlorodifluoromethane	g/L	G/5 RI					
Chloromethane		1.					
Vinyl Chloride	g/L	0.					
Bromomethane	g/L	0.					
Chloroethane	g/L	0.					
Trichlorofluoromethane	g/L	0. 1.					
	g/L						
Acetone	g/L	4					
1,1 Dichloroethylene	g/L	1.					
Methylene Chloride	g/L	1.					
trans- 1,2-dichloroethylene	g/L	0.					
Methyl tert-butyl ether	g/L	0.					
1,1-Dichloroethane	g/L	1.					
Methyl Ethyl Ketone	g/L	4					
cis- 1,2-Dichloroethylene	g/L	0.					
Chloroform	g/L	0.					
1,2 - Dichloroethane	g/L	0.					
1,1,1-Trichloroethane	g/L	1.					
Carbon Tetrachloride	g/L	0.					
Benzene	g/L	0.	30 <0	80			
1,2-Dichloropropane	g/L	0.	30 <0	80			
Trichloroethylene	g/L	0.	30 <0	80			
Bromodichloromethane	g/L	0.	30 <0	80			
cis-1,3-Dichloropropene	ug/L	0.	30 <0	80			
Methyl Isobutyl Ketone	g/L	4	0 <4	.0			
trans-1,3-Dichloropropene	g/L	1.	20 <1	20			
1,1,2-Trichloroethane	g/L	0.	30 <0	80			
Toluene	g/L	0.	30 <0	80			
2-Hexanone	g/L	1.	20 <1	20			
Dibromochloromethane	g/L	0.	10 <0	40			
Ethylene Dibromide	g/L	0.	30 <0	80			
Tetrachloroethylene	g/L	0.					
1,1,1,2-Tetrachloroethane	g/L	0.					
Chlorobenzene	g/L	0.					

Certified By:

Joshy Tokurchi

Certificate of Analysis

AGAT WORK ORDER: 10T434896

PROJECT NO: N-015746

ATTENTION TO: Stephanie Charity

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

OLILITI III IIIILI I II.O. BOTATO		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		711 Elithert 18. Stephanie Sharty					
		O. Regula	ation 153 - Volatile Org	- Volatile Organic Compounds in Water					
DATE SAMPLED: Sep 10, 2010)	DATE REC	DEIVED: Sep 13, 2010	DATE REPORTED: Sep 24, 2010	SAMPLE TYPE: Water				
Parameter	Unit	G/S RDL	ARV-2 1988848						
Ethylbenzene	g/L	0.40	<0.40						
m & p-Xylene	g/L	0.80	<0.80						
Bromoform	g/L	0.40	<0.40						
Styrene	g/L	0.40	<0.40						
1,1,2,2-Tetrachloroethane	g/L	0.40	<0.40						
o-Xylene	g/L	0.40	<0.40						
1,3-Dichlorobenzene	g/L	0.40	<0.40						
1,4-Dichlorobenzene	g/L	0.40	<0.40						
1,2-Dichlorobenzene	g/L	0.40	<0.40						
1,2,4-Trichlorobenzene	g/L	1.20	<1.20						
1,3-Dichloropropene (Cis Trans)	g/L	1.20	<1.20						
Xylene Mixture (Total)	g/L	0.80	<0.80						
n-Hexane	g/L	0.80	<0.80						
Surrogate	Unit	Acceptable Limits							
Toluene-d8	% Recovery	60-130	99						
4-Bromofluorobenzene	% Recovery	70-130	92						

Comments: RDL - Reported Detection Limit G / S - Guideline / Standard

1988848 Dilution factor=4

The sample was diluted because the sample was foamy. The reporting detection limit has been corrected for the dilution factor used.

Certified By:

Joshy Takewshi

AGAT WORK ORDER: 10T434896

PROJECT NO: N-015746

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: R.J. BURNSIDE	E & ASSO	CIATES LTD		ATTENTION TO: Stephanie Charity							
				PCBs (soil)						
DATE SAMPLED: Sep 09, 2010		DATE	RECEIVED: Sep	13, 2010	DAT	E REPORTED: S	Sep 24, 2010	SAN	IPLE TYPE: Soil		
December	11-14	0.40	BW-P1-A	BW-P1-B	BW-P2-A	BW-P2-B	HW-1	HW-2	HW-3		
Parameter	Unit	G/S RD	L 1988818	1988823	1988827	1988830	1988837	1988842	1988845		
PCBs	g/g	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
Surrogate	Unit	Acceptable Limi	ts								
Decachlorobiphenyl	achlorobiphenyl % 60-130 97					90	63	82	89		

RDL - Reported Detection Limit G / S - Guideline / Standard Comments:

1988818-1988845 Results are based on the dry weight of soil extracted.

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 10T434896

PROJECT NO: N-015746

ATTENTION TO: Stephanie Charity

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

BURNSIDE - Water Quality Assessment DATE SAMPLED: Sep 10, 2010 DATE RECEIVED: Sep 13, 2010 DATE REPORTED: Sep 24, 2010 SAMPLE TYPE: Water Old Lagoon Old Lagoon 1-Water 2-Water SL-1 G/S RDL 1988850 1989165 1989172 Parameter Unit 0.256 Aluminum mg/L 0.004 0.142 0.234 Arsenic 0.003 0.004 < 0.003 < 0.003 mg/L Barium mg/L 0.002 0.011 0.007 0.006 Boron mg/L 0.010 0.108 0.082 0.162 Cadmium 0.002 < 0.002 < 0.002 < 0.002 mg/L Calcium 0.05 19.3 12.5 7.10 mg/L Chromium mg/L 0.003 < 0.003 < 0.003 < 0.003 Copper mg/L 0.003 0.009 0.009 0.067 Iron mg/L 0.010 2.15 1.31 0.455 Potassium 0.05 12.1 8.48 17.9 mg/L Magnesium mg/L 0.05 7.91 4.99 2.96 Mercury mg/L 0.0001 < 0.0001 < 0.0001 < 0.0001 Manganese 0.002 0.266 0.052 0.047 mg/L Molybdenum mg/L 0.002 < 0.002 < 0.002 < 0.002 Sodium 0.05 47.3 29.9 54.3 mg/L Nickel 0.003 0.004 < 0.003 < 0.003 mg/L Total Phosphorus mg/L 0.05 1.96 1.93 7.23 0.002 <0.002 < 0.002 < 0.002 Lead mg/L Selenium mg/L 0.004 < 0.004 < 0.004 < 0.004 Silver 0.002 <0.002 <0.002 <0.002 mg/L Strontium 0.005 0.057 0.022 mg/L 0.107 Thallium mg/L 0.006 <0.006 < 0.006 < 0.006 Titanium mg/L 0.002 0.003 0.004 0.005 Uranium 0.002 < 0.002 mg/L <0.002 < 0.002 Vanadium mg/L 0.002 < 0.002 < 0.002 < 0.002 0.060 Zinc mg/L 0.005 0.006 0.013 Fluoride mg/L 0.05 0.21 0.15 0.42 Chloride mg/L 0.10 60.9 38.6 55.8 Nitrite as N 0.05 < 0.05 0.12 <0.05 mg/L Ortho phosphate as P 0.10 < 0.10 < 0.10 <0.10 mg/L Bromide mg/L 0.05 0.19 0.15 < 0.05 Nitrate as N 0.05 < 0.05 0.67 <0.05 mg/L

Certified By:

Mile Muneman

Certificate of Analysis

AGAT WORK ORDER: 10T434896

PROJECT NO: N-015746

CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

ATTENTION TO: Stephanie Charity

				BURNSIDE	- Water Qu	ality Asses	ssment	
DATE SAMPLED: Sep 10, 201		DATE RE	ECEIVED: Sep 1	3, 2010	DATE	E REPORTED: Sep 24, 2010	SAMPLE TYPE: Water	
Parameter	Unit	G/S	RDL	Old Lagoon 1-Water 1988850	Old Lagoon 2-Water 1989165	SL-1 1989172		
Sulphate	mg/L		0.10	11.2	10.3	11.1		
pH	pH Units		NA	7.95	7.73	7.90		
Ammonia as N	mg/L		0.02	20.9	7.64	49.7		
Total Organic Carbon	mg/L		0.5	28.7	23.9	113		
Electrical Conductivity	uS/cm		2	523	324	737		
Total Dissolved Solids	mg/L		20	294	200	298		
Saturation pH				7.72	8.20	7.95		
% Difference/ Ion Balance			0.1	2.7	1.1	0.6		
Total Hardness (as CaCO3)	mg/L		10	81	52	30		
Langlier Index				0.23	-0.47	-0.05		
Carbonate (as CaCO3)	mg/L		5	<5	<5	<5		
Bicarbonate (as CaCO3)	mg/L		5	161	83	253		
Turbidity	NTU		0.5	6.7	4.7	23.0		
Alkalinity (as CaCO3)	mg/L		5	161	83	253		
Hydroxide (as CaCO3)	mg/L		5	<5	<5	<5		
Reactive Silica	mg/L		0.05	9.25	7.02	14.7		
Colour	TCU		5	110	86	208		

Comments: RDL - Reported Detection Limit G / S - Guideline / Standard

Certified By:

Mile Munemon

AGAT WORK ORDER: 10T434896

PROJECT NO: N-015746

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: R.J. BURNSIDE & ASSOCIATES LTD

ATTENTION TO: Stephanie Charity

					TSS (Wa	iter)						
DATE SAMPLED: Sep 10, 2010			DATE R	ECEIVED: Sep 1	13, 2010	DATE F	REPORTED: Sep 24, 2010	SAMPLE TYPE: Water				
				Old Lagoon 1-Water	Old Lagoon 2-Water	SL-1						
Parameter	Unit	G/S	RDL	1988850	1989165	1989172						
Total Suspended Solids	mg/L		10	<10	<10	156						

Comments: RDL - Reported Detection Limit G / S - Guideline / Standard

Certified By:

Make Munemon

Guideline Violation

AGAT WORK ORDER: 10T434896

PROJECT NO: N-015746

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: R.J. BURNSIDE & ASSOCIATES LTD

ATTENTION TO: Stephanie Charity

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	GUIDEVALUE	RESULT
1988833	Old Lagoon 1-Soil	T1(All)	O. Reg. 153 Metals & Inorganics in Soil - Table 1	Antimony	1.0	1.4
1988833	Old Lagoon 1-Soil	T1(All)	O. Reg. 153 Metals & Inorganics in Soil - Table 1	Cadmium	1.0	1.6
1988833	Old Lagoon 1-Soil	T1(All)	O. Reg. 153 Metals & Inorganics in Soil - Table 1	Copper	85	273
1988833	Old Lagoon 1-Soil	T1(All)	O. Reg. 153 Metals & Inorganics in Soil - Table 1	Electrical Conductivity (2:1)	0.57	0.703
1988833	Old Lagoon 1-Soil	T1(All)	O. Reg. 153 Metals & Inorganics in Soil - Table 1	Mercury	0.23	1.00
1988833	Old Lagoon 1-Soil	T1(All)	O. Reg. 153 Metals & Inorganics in Soil - Table 1	Molybdenum	2.5	2.8
1988833	Old Lagoon 1-Soil	T1(All)	O. Reg. 153 Metals & Inorganics in Soil - Table 1	Selenium	1.9	2.5
1988833	Old Lagoon 1-Soil	T1(All)	O. Reg. 153 Metals & Inorganics in Soil - Table 1	Silver	0.42	5.8
1988833	Old Lagoon 1-Soil	T1(All)	O. Reg. 153 Metals & Inorganics in Soil - Table 1	Zinc	160	533
1988834	Old Lagoon 2-Soil	T1(All)	O. Reg. 153 Metals & Inorganics in Soil - Table 1	Antimony	1.0	2.8
1988834	Old Lagoon 2-Soil	T1(All)	O. Reg. 153 Metals & Inorganics in Soil - Table 1	Cadmium	1.0	1.1
1988834	Old Lagoon 2-Soil	T1(All)	O. Reg. 153 Metals & Inorganics in Soil - Table 1	Copper	85	251
1988834	Old Lagoon 2-Soil	T1(All)	O. Reg. 153 Metals & Inorganics in Soil - Table 1	Electrical Conductivity (2:1)	0.57	1.56
1988834	Old Lagoon 2-Soil	T1(All)	O. Reg. 153 Metals & Inorganics in Soil - Table 1	Mercury	0.23	0.41
1988834	Old Lagoon 2-Soil	T1(All)	O. Reg. 153 Metals & Inorganics in Soil - Table 1	Molybdenum	2.5	3.3
1988834	Old Lagoon 2-Soil	T1(All)	O. Reg. 153 Metals & Inorganics in Soil - Table 1	Silver	0.42	4.8
1988834	Old Lagoon 2-Soil	T1(All)	O. Reg. 153 Metals & Inorganics in Soil - Table 1	Zinc	160	369
1988835	Active Lagoon	T1(All)	O. Reg. 153 Metals & Inorganics in Soil - Table 1	Antimony	1.0	2.1
1988835	Active Lagoon	T1(All)	O. Reg. 153 Metals & Inorganics in Soil - Table 1	Copper	85	171
1988835	Active Lagoon	T1(All)	O. Reg. 153 Metals & Inorganics in Soil - Table 1	Electrical Conductivity (2:1)	0.57	0.792
1988835	Active Lagoon	T1(All)	O. Reg. 153 Metals & Inorganics in Soil - Table 1	Mercury	0.23	0.31
1988835	Active Lagoon	T1(All)	O. Reg. 153 Metals & Inorganics in Soil - Table 1	Selenium	1.9	3.0
1988835	Active Lagoon	T1(All)	O. Reg. 153 Metals & Inorganics in Soil - Table 1	Silver	0.42	2.7
1988835	Active Lagoon	T1(All)	O. Reg. 153 Metals & Inorganics in Soil - Table 1	Zinc	160	242

AGAT WORK ORDER: 10T449096 PROJECT NO: NAO157460.0002 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: R.J. BURNSIDE & ASSOCIATES LTD.

ATTENTION TO: Stephanie Charity

	Microbiological Analysis (water)										
DATE SAMPLED: Nov 02, 2010 DATE RECEIVED: Nov 03, 2010 DATE REPORTED: Nov 23, 2010 SAMPLE TYPE: Water											
				ARV-2							
Parameter	Unit	G/S	RDL	2104291							
Fecal Coliform	CFU/100mL	1	1	TNTC							

Comments: RDL - Reported Detection Limit G / S - Guideline / Standard: Refers to SDWA - Schedule 23

2104291 TNTC – Too numerous to count, refers to overgrown colonies.

Certified By:

Elizabeth Rolakowska

AGAT WORK ORDER: 10T449096 PROJECT NO: NAO157460.0002 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: R.J. BURNSIDE & ASSOCIATES LTD.

ATTENTION TO: Stephanie Charity

	Microbiological Analysis (water)											
DATE SAMPLED: Nov 02, 2010 DATE RECEIVED: Nov 03, 2010 DATE REPORTED: Nov 23, 2010 SAMPLE TYPE: Water												
				ARV-4								
Parameter	Unit	G/S	RDL	2104288								
Escherichia coli	CFU/100mL	1	1	14								
Total Coliforms	CFU/1mL	1	1	4400								
Fecal Coliform	CFU/100mL	1	1	5								

Comments: RDL - Reported Detection Limit G / S - Guideline / Standard: Refers to SDWA - Schedule 23

2104288 TC counts refer to a 1 ml sample aliquot diluted prior to filtration a larger aliquot resulted in overgrown colonies. The RDL has been adjusted.

Certified By:

Elizabeth Rolakowska

AGAT WORK ORDER: 10T449096 PROJECT NO: NAO157460.0002

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: R.J. BURNSIDE & ASSOCIATES LTD.

Particle Size Analysis

ATTENTION TO: Stephanie Charity

				•	ai tioio 0120	7 11141 9 010		
DATE SAMPLED: Nov 01, 2010		DATE RECEIVED: Nov 03, 2010				DATE RE	PORTED: Nov 23, 2010	SAMPLE TYPE: Soil
				ARV-5-1	ARV-5-2	ARV-4-1		
Parameter	Unit	G/S	RDL	2104259	2104261	2104263		
Sieve Analysis - 4.75 mm	%		N/A	7.98	0.00	10.42		
Sieve Analysis - 2.36 mm	%		N/A	1.85	0.05	3.75		
Sieve Analysis - 1.18 mm	%		N/A	2.15	0.10	8.09		
Sieve Analysis - 600 microns	%		N/A	3.29	0.19	25.98		
Sieve Analysis - 300 microns	%		N/A	7.47	1.47	45.95		
Sieve Analysis - 150 microns	%		N/A	9.57	3.16	5.03		
Sieve Analysis - 75 microns	%		N/A	14.71	11.28	0.34		
Sieve Analysis - Retaining Pan	%		N/A	52.98	83.75	0.44		

Comments: RDL - Reported Detection Limit G / S - Guideline / Standard

Certified By:

StoryThach

AGAT WORK ORDER: 10T449096 PROJECT NO: NAO157460.0002 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: R.J. BURNSIDE & ASSOCIATES LTD.

ATTENTION TO: Stephanie Charity

						·	<u> </u>				
Soil Analysis - Texture											
DATE SAMPLED: Nov 01, 2010 DATE RECEIVED: Nov 03, 2010 DATE REPORTED: Nov 23, 2010 SAMPLE TYPE: Soil											
				ARV-5-1	ARV-5-2						
Parameter	Unit	G/S	RDL	2104259	2104261						
Particle Size Distribution (Sand)	%		1	52	16						
Particle Size Distribution (Silt)	%		1	40	68						
Particle Size Distribution (Clay)	%		1	8	16						
Soil Texture				Sandy Loam	Silt Loam						

Comments: RDL - Reported Detection Limit G / S - Guideline / Standard

Certified By:

Storythach

AGAT WORK ORDER: 10T449096 PROJECT NO: NAO157460.0002

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: R.J. BURNSIDE & ASSOCIATES LTD.

ATTENTION TO: Stephanie Charity

O. Reg 153 Petroleum Hydrocarbon F1 - F4 in Water (-BTEX)											
DATE SAMPLED: Nov 01, 2010			DATE RE	CEIVED: Nov 0	3, 2010	DA	E REPORTED: Nov 23, 2010	SAMPLE TYPE: Water			
				ARV-5		ARV-5-2					
Parameter	Unit	G/S	RDL	2104265	RDL	2104274					
C6 - C10 (F1)	g/L		25	<25	50	<50					
C6 - C10 (F1 minus BTEX)	g/L		25	<25	50	<50					
C>10 - C16 (F2)	g/L		100	<100	100	<100					
C6 - C16 (F1 F2)	g/L		100	<100	100	<100					
C>16 - C34 (F3)	g/L		100	<100	100	<100					
C>34 - C50 (F4)	g/L		100	<100	100	<100					
C>16 - C50 (F3 F4)	g/L		100	<100	100	<100					
Gravimetric Heavy Hydrocarbons	g/L		500	NA	500	NA					

Comments: RDL - Reported Detection Limit G / S - Guideline / Standard

2104265-2104274 The C6-C10 fraction is calculated using Toluene response factor.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons > C50 are present. Total C6-C50 results are corrected for BTEX and PAH contributions.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Certified By:

AGAT WORK ORDER: 10T449096 PROJECT NO: NAO157460.0002 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: R.J. BURNSIDE & ASSOCIATES LTD.

ATTENTION TO: Stephanie Charity

		0.	Regul	ation 153 - \	Volatile Or	ganic Compounds	in Water	
DATE SAMPLED: Nov 01, 2010		ſ	DATE RE	CEIVED: Nov 0	3, 2010	DATE REPOR	TED: Nov 23, 2010	SAMPLE TYPE: Water
				ARV-5		ARV-5-2		
Parameter	Unit	G/S	RDL	2104265	RDL	2104274		
Dichlorodifluoromethane	g/L		0.40	<0.40	2.00	<2.00		
Chloromethane	g/L		0.80	<0.80	4.00	<4.00		
Vinyl Chloride	g/L		0.34	<0.34	1.70	<1.70		
Bromomethane	g/L		0.40	<0.40	2.00	<2.00		
Chloroethane	g/L		0.40	<0.40	2.00	<2.00		
Trichlorofluoromethane	g/L		0.80	<0.80	4.00	<4.00		
Acetone	g/L		2.0	<2.0	10.0	<10.0		
1,1 Dichloroethylene	g/L		0.60	<0.60	3.00	<3.00		
Methylene Chloride	g/L		0.60	<0.60	3.00	<3.00		
trans- 1,2-dichloroethylene	g/L		0.40	<0.40	2.00	<2.00		
Methyl tert-butyl ether	g/L		0.40	<0.40	2.00	<2.00		
1,1-Dichloroethane	g/L		0.60	<0.60	3.00	<3.00		
Methyl Ethyl Ketone	g/L		2.0	<2.0	10.0	<10.0		
cis- 1,2-Dichloroethylene	g/L		0.40	<0.40	2.00	<2.00		
Chloroform	g/L		0.40	<0.40	2.00	<2.00		
1,2 - Dichloroethane	g/L		0.40	<0.40	2.00	<2.00		
1,1,1-Trichloroethane	g/L		0.60	<0.60	3.00	<3.00		
Carbon Tetrachloride	g/L		0.40	<0.40	2.00	<2.00		
Benzene	g/L		0.40	<0.40	2.00	<2.00		
1,2-Dichloropropane	g/L		0.40	<0.40	2.00	<2.00		
Trichloroethylene	g/L		0.40	<0.40	2.00	<2.00		
Bromodichloromethane	g/L		0.40	<0.40	2.00	<2.00		
cis-1,3-Dichloropropene	ug/L		0.40	<0.40	2.00	<2.00		
Methyl Isobutyl Ketone	g/L		2.0	<2.0	10.0	<10.0		
trans-1,3-Dichloropropene	g/L		0.60	<0.60	3.00	<3.00		
1,1,2-Trichloroethane	g/L		0.40	<0.40	2.00	<2.00		
Toluene	g/L		0.40	<0.40	2.00	<2.00		
2-Hexanone	g/L		0.60	<0.60	3.00	<3.00		
Dibromochloromethane	g/L		0.20	<0.20	1.00	<1.00		
Ethylene Dibromide	g/L		0.40	<0.40	2.00	<2.00		
Tetrachloroethylene	g/L		0.40	<0.40	2.00	<2.00		
1,1,1,2-Tetrachloroethane	g/L		0.20	<0.20	1.00	<1.00		
Chlorobenzene	g/L		0.20	<0.20	1.00	<1.00		

Certified By:

Joshy Takwehr

AGAT WORK ORDER: 10T449096 PROJECT NO: NAO157460.0002 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: R.J. BURNSIDE & ASSOCIATES LTD.

ATTENTION TO: Stephanie Charity

		O. Regula	ation 153 - \	Volatile Or	ganic Compou	nds in Water	
DATE SAMPLED: Nov 01, 20)10	DATE REC	CEIVED: Nov 0	3, 2010	DATE RE	PORTED: Nov 23, 2010	SAMPLE TYPE: Water
			ARV-5		ARV-5-2		
Parameter	Unit	G/S RDL	2104265	RDL	2104274		
Ethylbenzene	g/L	0.20	<0.20	1.00	<1.00		
m & p-Xylene	g/L	0.40	<0.40	2.00	<2.00		
Bromoform	g/L	0.20	<0.20	1.00	<1.00		
Styrene	g/L	0.20	<0.20	1.00	<1.00		
1,1,2,2-Tetrachloroethane	g/L	0.20	<0.20	1.00	<1.00		
o-Xylene	g/L	0.20	<0.20	1.00	<1.00		
1,3-Dichlorobenzene	g/L	0.20	<0.20	1.00	<1.00		
1,4-Dichlorobenzene	g/L	0.20	<0.20	1.00	<1.00		
1,2-Dichlorobenzene	g/L	0.20	<0.20	1.00	<1.00		
1,2,4-Trichlorobenzene	g/L	0.60	<0.60	3.00	<3.00		
1,3-Dichloropropene (Cis Trans	g/L	0.60	<0.60	3.00	<3.00		
Xylene Mixture (Total)	g/L	0.40	<0.40	2.00	<2.00		
n-Hexane	g/L	0.40	<0.40	2.00	<2.00		
Surrogate	Unit	Acceptable Limits					
Toluene-d8	% Recovery	60-130	76		74		
4-Bromofluorobenzene	% Recovery	70-130	89		85		

Comments: RDL - Reported Detection Limit G / S - Guideline / Standard

2104265 Dilution factor=2

The sample was diluted becauce it was foamy. The reporting detection limit has been corrected for the dilution factor used.

2104274 Dilution factor=10

The sample was diluted becauce it was foamy. The reporting detection limit has been corrected for the dilution factor used.

Certified By:

Joshy Tokurchi

AGAT WORK ORDER: 10T449096 PROJECT NO: NAO157460.0002 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: R.J. BURNSIDE & ASSOCIATES LTD.

ATTENTION TO: Stephanie Charity

	BOD (Water)										
DATE SAMPLED: Nov 02, 2010			DATE RE	CEIVED: Nov 03, 2010	DATE REPORTED: Nov 23, 2010	SAMPLE TYPE: Water					
				ARV-2							
Parameter	Unit	G/S	RDL	2104291							
BOD (5)	mg/L		5	34							

Comments: RDL - Reported Detection Limit G / S - Guideline / Standard

Certified By:

Mile Munemon

AGAT WORK ORDER: 10T449096 PROJECT NO: NAO157460.0002 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: R.J. BURNSIDE & ASSOCIATES LTD.

ATTENTION TO: Stephanie Charity

						<u> </u>							
	BOD, EC, pH & TSS (Water)												
DATE SAMPLED: Nov 02, 2010			DATE RE	CEIVED: Nov 03, 2010	DATE REPORTED: Nov 23, 2010	SAMPLE TYPE: Water							
				ARV-4									
		0 / 0	551										
Parameter	Unit	G/S	RDL	2104288									
BOD (5)	mg/L		5	30									
Electrical Conductivity	uS/cm		2	2510									
pH	pH Units		NA	7.92									
Total Suspended Solids	mg/L		10	368									
	ū												

Comments: RDL - Reported Detection Limit G / S - Guideline / Standard

Certified By:

Mich Muneum

AGAT WORK ORDER: 10T449096 PROJECT NO: NAO157460.0002 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: R.J. BURNSIDE & ASSOCIATES LTD.

ATTENTION TO: Stephanie Charity

				Wate	er Quality /	Assessment	
DATE SAMPLED: Nov 01, 2010			DATE RE	CEIVED: Nov 0	3, 2010	DATE REPORTED: Nov 23, 2010	SAMPLE TYPE: Water
Parameter	Unit	G/S	RDL	ARV-5 2104265	RDL	ARV-5-2 2104274	
Aluminum	mg/L		0.004	3.92	0.040	6.13	
Arsenic	mg/L		0.003	0.008	0.003	0.012	
Barium	mg/L		0.002	0.073	0.002	0.074	
Boron	mg/L		0.010	0.045	0.010	0.769	
Cadmium	mg/L		0.002	<0.002	0.002	0.003	
Calcium	mg/L		0.05	45.5	0.05	106	
Chromium	mg/L		0.003	0.010	0.003	0.111	
Copper	mg/L		0.003	0.010	0.003	0.039	
Iron	mg/L		0.010	5.85	0.100	131	
Potassium	mg/L		0.05	7.66	0.05	57.1	
Magnesium	mg/L		0.05	32.7	0.05	290	
Mercury	mg/L		0.0001	<0.0001	0.0001	<0.0001	
Manganese	mg/L		0.002	0.490	0.002	0.831	
Molybdenum	mg/L		0.002	<0.002	0.002	0.003	
Sodium	mg/L		0.05	160	0.05	1640	
Nickel	mg/L		0.003	0.012	0.003	0.049	
Total Phosphorus	mg/L		0.05	0.87	0.05	2.42	
Lead	mg/L		0.002	800.0	0.002	0.010	
Selenium	mg/L		0.004	<0.004	0.004	<0.004	
Silver	mg/L		0.002	<0.002	0.002	<0.002	
Strontium	mg/L		0.005	0.408	0.005	1.50	
Thallium	mg/L		0.006	<0.006	0.006	<0.006	
Titanium	mg/L		0.002	0.114	0.002	0.132	
Uranium	mg/L		0.002	<0.002	0.002	0.004	
Vanadium	mg/L		0.002	0.022	0.002	0.056	
Zinc	mg/L		0.005	0.068	0.005	0.079	
Fluoride	mg/L		0.05	<0.05	0.50	<0.50	
Chloride	mg/L		0.10	340	1.00	3110	
Nitrite as N	mg/L		0.05	<0.05	0.50	<0.50	
Ortho phosphate as P	mg/L		0.10	<0.10	1.00	<1.00	
Bromide	mg/L		0.05	1.28	0.50	12.3	
Nitrate as N	mg/L		0.05	<0.05	0.50	<0.50	
Sulphate	mg/L		0.10	55.9	1.00	636	

Certified By:

Make Muneman

AGAT WORK ORDER: 10T449096 PROJECT NO: NAO157460.0002 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: R.J. BURNSIDE & ASSOCIATES LTD.

ATTENTION TO: Stephanie Charity

Water Quality Assessment												
DATE SAMPLED: Nov 01, 201	10	DATE	RECEIVED: Nov	03, 2010	DATE	REPORTED: Nov 23, 2010	SAMPLE TYPE: Water					
			ARV-5		ARV-5-2							
Parameter	Unit	G/S RDL	2104265	RDL	2104274							
рН	pH Units	NA	6.61	NA	6.31							
Ammonia as N	mg/L	0.02	<0.02	0.02	20.8							
Total Organic Carbon	mg/L	0.5	53.6	0.5	240							
Electrical Conductivity	uS/cm	2	1200	2	9230							
Total Dissolved Solids	mg/L	20	816	20	5930							
Saturation pH			7.83		6.66							
% Difference/ Ion Balance		0.1	1.7	0.1	<0.1							
Total Hardness (as CaCO3)	mg/L	10	248	10	1460							
Langlier Index			-1.22		-0.35							
Carbonate (as CaCO3)	mg/L	5	<5	5	<5							
Bicarbonate (as CaCO3)	mg/L	5	47	5	118							
Turbidity	NTU	0.5	369	0.5	239							
Alkalinity (as CaCO3)	mg/L	5	47	5	118							
Hydroxide (as CaCO3)	mg/L	5	<5	5	<5							
Reactive Silica	mg/L	0.05	13.8	0.05	31.8							
Colour	TCU	5	113	5	1050							

Comments: RDL - Reported Detection Limit G / S - Guideline / Standard

Certified By:

Mile Muneman

Guideline Violation

AGAT WORK ORDER: 10T449096 PROJECT NO: NAO157460.0002 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: R.J. BURNSIDE & ASSOCIATES LTD.

ATTENTION TO: Stephanie Charity

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	GUIDEVALUE	RESULT
2104288	ARV-4	SDWA -Schedule 23	Microbiological Analysis (water)	Escherichia coli	1	14
2104288	ARV-4	SDWA -Schedule 23	Microbiological Analysis (water)	Fecal Coliform	1	5
2104288	ARV-4	SDWA -Schedule 23	Microbiological Analysis (water)	Total Coliforms	1	4400

Document ID: DIV-78-1511.004 Date Issued: S	Samples Relinquished By (print name & sign)	Jim Wylls for Wall			1/10 :	MRV - 2 Worlfo 3pp	ARU-4 Mou A/20 Dem	7	-5-2 horallo 3pm	ARV-5 novilco ton a		ARV-4-1 Noutho 20m Spil	ARUS-2 Maralio 304 Soil	ARU-5-1 Noville 24M Soi	dentification Sampled Sampled			16 6/5 :	Address: 15 Bountine	phonie Cha	Bugasi	Invoice To Same as Above? Yes/No (circle)	Please note, if quotation number is not provided, client will be billed full price for analysis.	AGAT Quotation #:	Project: MAO 157460.ca/PO:	2	Address: 18 18th 18th Come	5760/4.80	Client Information	CHAIN OF CUSTODY RECORD	Laboratories	VSSS 80005
Date Issued: September 22, 2009	()	10:02			- Day	ىر	527	-	Set	unter set si		1 13/15	1 Bas	1 184	Sample # of Matrix Containers		Drinking Water	20 Intended for hu		Prov. Wa	io			<u> </u>	Regulation 153	ga Regula	Email:	2. Name:	الجسا	D	- F	, , , , , , , , , , , , , , , , , , ,
	Samples Received By (print name & sign)	Samples Received By Apr			Fat Your RosaMd		7	1 "	1	survive/soepase		61 16 66	2 2	Grata Stee Sample	Comments Site/ Sample Information		Drinking Water Chain of Custody Record)	is this a drinking water sample (potable water intended for human consumption)? No fit "Yes" please use the		Prov. Water Quality Objectives (PWQO) Nutrient Management Act (NMA)	☐ Med/Fine	Agriculture Soil Texture (check one)			n 153 Sewer Use	Regulatory Requirements		STEPHANIE CHARITY	Information -	http://webea		7 7
	print name & sign)	NOV				8			ن د	ンシン						Me	letal	s and I Scan (e	exclud. Hg	a, B, Cr6)		O 111	Sanitary L Other (indica	 2		<u>ents</u>		(4)	s to be	www.agatlabs.com http://webearth.agatlabs.com	5835 Coopers Avenue sauga, Ontario; L4Z 1Y2 .00; Fax: 905-712-5122 Toll free: 800-856-6261	_
		3/10				(%)			<u></u>	Ç	-					PA	OCs AHs CBs						ndicate)		on 558			BUONS K	to:	Notes: _	LABORATORY Arrival Condition: Arrival Temperatu	
The second second	Date/Time	Date/Time														TO		Metal	s/Inor	rganic	S	* / · ***	by fax		Samples per page	☐ Multiple	Sample per page	□single	<u>Report</u> Format		= 7	
	_	Pin	_													-		ary Se											er er		USE ONLY	
	Copy - AGAT White Copy - AGAT	Pink Copy – Client										7	1	Z		G.	1 1-4 5	in s	Siz	e		*TAT is exc		DATE				Rush	Turna Regu			
	GAT - AGAT	Client														BH.	s Se	est alg	u 1 + 1	44, 301	Pan, D	lusive of we		REQUIF	2 □	2	□sh (TAT:	Turnaround T Regular TAT:		AGAT WO #:	
	No:	PAGE				\										O.	144	belg	¥ /	366	2	ekends and st		₹ED (Rusi	1 Working Day	2 Working Days	to 5 Wo	(please pr	Time		#: Com	
	46646	of															LAB SAMPLE ID	in in the bart way	LABORATORY			atutory holidays		DATE REQUIRED (Rush surcharges may apply):	į Day	Days	Rush Surcharges Apply 3 to 5 Working Days	Rush TAT: (please provide prior notification)	Turnaround Time (TAT) Required* Regular TAT:		Poor (complete "notes")	Address of the second of the s

AquaTox Testing & Consulting Inc.

11B Nicholas Beaver Rd. RR 3 Guelph ON N1H 6H9 Tel: (519) 763-4412 Fax: (519) 763-4419 TOXICITY TEST REPORT Daphnia magna Page 1 of 2

17:30

2010-09-08

2010-09-10

2010-09-10

7.0 °C

Work Order: Sample Number: 217681 28312

SAMPLE IDENTIFICATION

Company:

R.J Burnside & Associates Ltd.

Location:

Orangeville ON ARV Sewage Lagoon

Substance: Sampling Method:

Not given

Sampled By:

Test Method:

R.J.

Sample Description:

Substance

Control

100%

Cloudy, green, earthy odour.

Reference Method for Determining Acute Lethality of Effluents to Daphnia magna. Environment

Canada EPS 1/RM/14 (Second Edition, December 2000).

48-h TEST RESULTS **Effect** Value Mean Immobility 0.0 % Mean Mortality 0.0 % Mean Immobility 0.0 %

Time Collected:

Date Collected:

Date Received:

Temp. on arrival:

Date Tested:

The results reported relate only to the sample tested.

Mean Mortality

SODIUM CHLORIDE REFERENCE TOXICANT DATA

Organism Batch:

Dm10-17

Date Tested (yyyy/mm/dd):

LC50 (95% Confidence Limits):

2010-09-13 6.5 g/L (6.1 - 6.9) Historical Mean LC50:

Warning Limits (± 2SD):

6.7 g/L 6.1 - 7.4 g/L

Statistical Method:

Probit

Analyst(s):

LB/SM

0.0%

Daphnia magna CULTURE HEALTH DATA

Time to First Brood: Culture Mortality:

7.6 days

0% (previous 7 days)

Mean Young Per Brood:

30.6

TEST CONDITIONS

Sample Treatment:

pH Adjustment:

None

Number of Replicates:

3

None None Test Organisms / Replicate:

10

Test Aeration:

Total Organisms / Test Level:

30

Organism Batch:

Dm10-17

Organism Loading Rate:

15.0 mL/organism

Date: 2010-09-29

yyyy-mm-dd

TOXICITY TEST REPORT Daphnia magna Page 2 of 2

Work Order: Sample Number: 217681 28312

	Hardness (mg/L as CaCO ₃)	Hardness Adjustment	pН	D.O. (mg/L)	Cond. (µmhos/cm)	Temp.	O ₂ Sat. (%)*	Total Pre-Aeration Time (h) @ 30 mL/min/
Initial Water Chemistry:	120	None	7.7	3.7	931	20.0	42	0:00
			0 hours		*****			
Date & Time	2010-09-10	14:30						
Technician:	LB							
Test Conc. (%)	Mortality	Immobility	pН	D.O.	Cond.	Temp.	O ₂ Sat. (%)*	Hardness
100A	0	0	7.7	3.7	931	20.0	42	120
100B	0	0	7.7	3.7	931	20.0		
100C	0	0	7.7	3.7	931	20.0		
Control A	0	0	8.5	8.6	397	21.0		
Control B	0	0	8.5	8.6	397	21.0		
Control C	0	0	8.5	8.6	397	21.0	99	220
Notes:	Indigenous orga Dark coloured s	nisms, were attem ample.	pted to be ren	noved from	100% effluent _l	orior to test	initiation.	
			24 hours					

			24 hours				
Date & Time	2010-09-11	14:30					
Technician:	DK						
Test Conc. (%)	Mortality	Immobility	pН	D.O.	Cond.	Temp.	
100A	0	1			_	21.0	
100B	0	0			_	21.0	
100C	0	0	nanima.		_	21.0	
Control A	0	0	_		_	21.0	
Control B	0	0	_	_		21.0	
Control C	0	0	_	_	_	21.0	
Notes:							
Notes:							

			48 hours			
Date & Time	2010-09-12	14:30				
Technician:	DK					
Test Conc. (%)	Mortality	Immobility	pН	D.O.	Cond.	Temp.
100A	0	0	8.6	9.6	912	20.0
100B	0	0	8.6	9.6	914	20.0
100C	0	0	8.6	10.0	907	20.0
Control A	0	0	8.5	8.5	395	20.0
Control B	0	0	8.6	8.6	399	20.0
Control C	0	0	8.6	8.5	402	20.0

Notes:

>30 live organisms counted. No dead daphnids or carapaces found within sample.

of control organisms showing stress: 0

Daphnia Batch #:

Dm10-17

Number immobile does not include number of mortalities.

^{- =} not measured

^{*} adjusted for actual temp. & barometric pressure

AquaTox Testing & Consulting Inc.

11B Nicholas Beaver Rd. RR 3 Guelph ON N1H 6H9

Tel: (519) 763-4412 Fax: (519) 763-4419

TOXICITY TEST REPORT Rainbow Trout

17:30

2010-09-08

2010-09-10

2010-09-10

4004 mg/L

3365 - 4766 mg/L

Page 1 of 2

Work Order: 217681 Sample Number: 28312

SAMPLE IDENTIFICATION

Company: R.J Burnside & Associates Ltd.

Location: Orangeville ON
Substance: ARV Sewage Lagoon

Sampling Method: Not given Sampled By: R.J.

Sample Description: Cloudy, green, earthy odour.

Test Method: Reference Method for Determining Acute Lethality of Liquid Effluents to Rainbow Trout.

Environment Canada, EPS 1/RM/13 (2nd Edition, December 2000, with May 2007 amendments).

96-h TEST RESULTS

SubstanceEffectValueControlMean Immobility
Mean Mortality0.0 %
0.0 %
0.0 %
0.0 %
0.0 %
0.0 %
0.0 %
0.0 %
0.0 %
0.0 %Mean Mortality100.0 %
100.0 %

The results reported relate only to the sample tested.

POTASSIUM CHLORIDE REFERENCE TOXICANT DATA

Organism Batch: T10-12

Date Tested (yyyy-mm-dd): 2010-09-01

LC50 (95% Confidence Limits) : 3560 mg/L (3187 - 3961)
Statistical Method : Probit

austical Method: Probit

Warning Limits (± 2SD):

Historical Mean LC50:

Analyst(s): MP/FS/TL

Time Collected:

Date Collected:

Date Received:

Temp. on arrival: 7.0°C

Date Tested:

TEST FISH

Control Fish Sample Size: 10

Mean Fish Weight (\pm 2 SD): 0.91 \pm 0.44 g Range of Weights: 0.59 - 1.27 g

Fish Loading Rate: 0.4 g/L

Cumulative stock tank mortality: 0 % (prev. 7 days) Mean Fish Fork Length (\pm 2 SD): 45.2 ± 7.3 mm

Range of Fork Lengths (mm): 40 - 50 mm

TEST CONDITIONS

Sample Treatment :NoneVolume Tested (L) :21pH Adjustment :NoneNumber of Replicates :1Test Aeration :YesOrganisms Per Replicate :10Pre-aeration/Aeration Rate : 6.5 ± 1 mL/min/LTotal Organisms Per Test Level :10

Organism Batch: T10-12

Date: 2010-09-20

Approved by:

Project Manager

TOXICITY TEST REPORT Rainbow Trout

Page 2 of 2

Work Order:	
Sample Number:	

217681 28312

Total Pre-Aeration Time (h)		pН	D.O. (mg/L)	Cond. (µmhos/cm)	Temp.	O ₂ Sat. (%)*
2:00	Initial Water Chemistry:	7.4	2.6	835	16.0	_
	Chemistry after 30min air:	7.4	4.5	826	16.0	49

		0 hou	ırs				
Date & Time	2010-09-10	16:10					
Technician:	FS						
Test Conc. (%)	Mortality	Immobility	pН	D.O.	Cond.	Temp.	O ₂ Sat. (%)*
100	0	0	7.4	7.3	825	15.5	76
Control	0	0	7.9	9.6	535	15.0	100

Notes:

		24 ho	urs				
Date & Time Technician:	2010-09-11 DK	16:10					
recinician.	DK						
Test Conc. (%)	Mortality	Immobility	pН	D.O.	Cond.	Temp.	
100	9	0	7.8	7.2	811	15.5	
Control	0	0			_	15.5	

Notes:

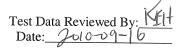
48 hours								
Date & Time	2010-09-12	16:10						
Technician:	DK							
Test Conc. (%)	Mortality	Immobility	pН	D.O.	Cond.	Temp.		
100	10	0	7.9	7.8	821	15.0		
Control	0	0	_	_	_	15.0		
Notes:								

72 hours Date & Time 2010-09-13 16:10

Technician:	FS					
Test Conc. (%)	Mortality	Immobility	pН	D.O.	Cond.	Temp.
100	10	0			_	
Control	0	0	_	_	-	15.0

Notes:

		96 ho	urs			
Date & Time	2010-09-14	16:10				
Technician:	FS					
Test Conc. (%)	Mortality	Immobility	pН	D.O.	Cond.	Temp.
100	10	0	-	_	_	
Control	0	0	8.2	9.4	519	15.0


Notes:

of control organisms showing stress: 0

Trout Batch #:

T10-12

Number immobile does not include number of mortalities.

[&]quot;-" = not measured

adjusted for actual temp. & barometric pressure

AquaTox Testing & Consulting Inc.

11B Nicholas Beaver Rd. RR 3 Guelph ON N1H 6H9

Tel: (519) 763-4412 Fax: (519) 763-4419

TOXICITY TEST REPORT

Daphnia magna Page 1 of 2

Work Order: 217681 Sample Number: 28313

SAMPLE IDENTIFICATION

Company: R.J Burnside & Associates Ltd. Time Collected: 17:45 Location: Orangeville ON Date Collected: 2010-09-08 Substance: ARV Landfill Date Received: 2010-09-10 Sampling Method: Not given Date Tested: 2010-09-10 Sampled By: R.J. Temp. on arrival: 7.0 °C

Sample Description: Cloudy, green, earthy odour.

Test Method: Reference Method for Determining Acute Lethality of Effluents to Daphnia magna. Environment

Canada EPS 1/RM/14 (Second Edition, December 2000).

	48-h TEST RESULTS		
Substance	Effect	Value	
Control	Mean Immobility	0.0 %	
	Mean Mortality	0.0 %	
100%	Mean Immobility	0.0 %	
	Mean Mortality	0.0 %	

The results reported relate only to the sample tested.

SODIUM CHLORIDE REFERENCE TOXICANT DATA

Organism Batch: Dm10-17

Daphnia magna CULTURE HEALTH DATA

Time to First Brood: 7.6 days Mean Young Per Brood: 30.6

Culture Mortality: 0% (previous 7 days)

TEST CONDITIONS

Sample Treatment :NoneNumber of Replicates :3pH Adjustment :NoneTest Organisms / Replicate :10Test Aeration :NoneTotal Organisms / Test Level :30

Organism Batch: Dm10-17 Organism Loading Rate: 15.0 mL/organism

Date: 2010-09-27
yyyy-mm-dd

Approved by:

Project Manager

TOXICITY TEST REPORT Daphnia magna Page 2 of 2

Work Order: Sample Number: 217681 28313

	Hardness (mg/L as CaCO ₃)	Hardness Adjustment	pН	D.O. (mg/L)	Cond. (µmhos/cm)	Temp.	O ₂ Sat. (%)*	Total Pre-Aeration Time (h) @ 30 mL/min/
Initial Water Chemistry:	820	None	7.9	6.2	2471	21.0	72	0:00
			0 hours					
Date & Time	2010-09-10	14:35						
Technician:	LB							
Test Conc. (%)	Mortality	Immobility	рH	D.O.	Cond.	Temp.	O ₂ Sat. (%)*	Hardness
100A	0	0	7.9	6.2	2471	21.0	72	820
100B	0	0	7.9	6.2	2471	21.0		
100C	0	0	7.9	6.2	2471	21.0		
Control A	0	0	8.5	8.6	397	21.0		
Control B	0	0	8.5	8.6	397	21.0		
Control C	0	0	8.5	8.6	397	21.0	99	220
Notes:	Indigenous orga Dark coloured s	inisms, were attem ample.	pted to be rer	moved from	100% effluent	prior to test	initiation.	
			24 hours					
Date & Time Technician:	2010-09-11 DK	14:35						
Test Conc. (%)	Mortality	Immobility	pН	D.O.	Cond.	Temp.		
100A	0	0	_	_		21.0		
100B	0	0	_	_		21.0		
100C	0	0		_	_	21.0		
Control A	0	0	_	_	_	21.0		
Control B	0	0	_	_	_	21.0		
Control C	0	0	-	-	_	21.0		
Notes:								
			48 hours					
Date & Time Гесhnician:	2010-09-12 DK	14:35						
Test Conc. (%)	Mortality	Immobility	pН	D.O.	Cond.	Temp.		
00A	0	0	8.4	9.7	2218	20.0		
00B	0	0	8.4	9.8	2236	20.0		
00C	0	0	8.5	9.8	2257	20.0		
Control A	0	0	8.4	8.7	399	20.0		
Control B	0	0	8.5	8.6	406	20.0		
Control C	0	0	8.5	8.6	395	20.0		
Interior								

Notes:

of control organisms showing stress: 0

Daphnia Batch #:

Dm10-17

Number immobile does not include number of mortalities.

⁻ = not measured

^{*} adjusted for actual temp. & barometric pressure

AquaTox Testing & Consulting Inc.

11B Nicholas Beaver Rd. RR 3 Guelph ON N1H 6H9

Tel: (519) 763-4412 Fax: (519) 763-4419

TOXICITY TEST REPORT **Rainbow Trout**

17:45

2010-09-08

2010-09-10

2010-09-10

Page 1 of 2

Work Order: Sample Number:

217681 28313

SAMPLE IDENTIFICATION

Company: Location:

R.J Burnside & Associates Ltd.

Orangeville ON

Substance: Sampling Method:

ARV Landfill Not given

Sampled By:

Test Method:

R.J.

Sample Description:

Cloudy, green, earthy odour.

Reference Method for Determining Acute Lethality of Liquid Effluents to Rainbow Trout.

Environment Canada, EPS 1/RM/13 (2nd Edition, December 2000, with May 2007 amendments).

96-h TEST RESULTS

Substance	Effect	Value
Control	Mean Immobility	0.0 %
	Mean Mortality	0.0 %
100%	Mean Immobility	0.0 %
	Mean Mortality	100.0 %

The results reported relate only to the sample tested.

POTASSIUM CHLORIDE REFERENCE TOXICANT DATA

Organism Batch:

T10-12

Date Tested (yyyy-mm-dd): LC50 (95% Confidence Limits): 2010-09-01

3560 mg/L (3187 - 3961)

Historical Mean LC50: Warning Limits $(\pm 2SD)$: 4004 mg/L

Statistical Method:

Probit

Analyst(s):

3365 - 4766 mg/L MP/FS/TL

TEST FISH

Control Fish Sample Size:

Mean Fish Weight (± 2 SD): Range of Weights:

 $0.72 \pm 0.20 \text{ g}$ 0.62 - 0.95 g

Cumulative stock tank mortality: Mean Fish Fork Length (± 2 SD): 42.8 ± 5.1 mm

Range of Fork Lengths (mm):

Time Collected:

Date Collected:

Date Received:

Temp. on arrival: 7.0°C

Date Tested:

0 % (prev. 7 days) 40 - 48 mm

Fish Loading Rate:

0.4 g/L

TEST CONDITIONS

Sample Treatment: pH Adjustment:

None None Volume Tested (L): Number of Replicates:

17 1

Test Aeration:

Yes

 $6.5 \pm 1 \text{ mL/min/L}$

Organisms Per Replicate:

10

Pre-aeration/Aeration Rate: Organism Batch:

T10-12

Total Organisms Per Test Level:

Date: 2010-09-20

Approved by:

Accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA)

TOXICITY TEST REPORT **Rainbow Trout**

Page 2 of 2

Work Order:	
Sample Number	

217681

28313 Sample Number:

Total Pre-Aeration Time (h)			pН	D.O. (mg/L)	Cond. (µmhos/cm)	Temp.	O ₂ Sat. (%)*
1:30	Initial V	Water Chemistry:	7.7	5.5	2290	16.0	
		try after 30min air:	7.9	6.4	2165	16.0	68
		0 hou	ırs			***************************************	
Date & Time Technician:	2010-09-10 FS	15:40					
Test Conc. (%)	го Mortality	Immobility	TT	D.O.	<i>C</i> 1	75	o a *
100	0	Immobility 0	pH 7.8	D.O. 7.1	Cond. 2152	Temp.	O_2 Sat. $(\%)^*$
Control	0	0	7.8 7.9	9.6	535	16.0 15.0	74 100
Notes:							
		24 ho	urs				
Date & Time Technician:	2010-09-11 DK	15:40					
Test Conc. (%)	Mortality	Immobility	pН	D.O.	Cond.	Temp.	
100	4	0	_	_	-	15.5	
Control	0	0	_	_	-	15.5	
Notes:							
		48 ho	ırs				
Date & Time Technician:	2010-09-12 DK	15:40					
Test Conc. (%)	Mortality	Immobility	pН	D.O.	Cond.	Temp.	
100	8	0	8.1	8.4	2055	15.0	
Control	0	0	_	_	_	15.0	
Notes:							
		72 hou	ırs				
Date & Time Technician:	2010-09-13 FS	15:40					
Test Conc. (%)	Mortality	Immobility	pН	D.O.	Cond.	Temp.	
100 Control	9 0	1 0	_	_	_	15.0 15.0	
Notes:		t organism in 10	∩% offluor	it is an aida a	hattam of the		
		t organism m 100	o % ciriuei	it is on side a	outom or tes	t chamber.	
D . 0 m'	2010 00 11	96 hou	ırs				
Date & Time Technician:	2010-09-14 FS	15:40					
Test Conc. (%)	Mortality	Immobility	pН	D.O.	Cond.	Temp.	
100	10	0	8.1	8.2	2036	15.0	
Control	0	0	8.3	9.3	544	15.0	
Notes:							

of control organisms showing stress: 0

Trout Batch #:

T10-12

Number immobile does not include number of mortalities.

^{&#}x27;'-'' = not measured

^{*} adjusted for actual temp. & barometric pressure