

Hamlet of Chesterfield Inlet ATTN: DOUGLAS AGGARK

PO Box 10

Chesterfield Inlet NU X0C 0B0

Date Received: 25-JUL-14

Report Date: 12-AUG-14 15:55 (MT)

Version: FINAL

Client Phone: 867-898-9926

# **Certificate of Analysis**

Lab Work Order #: L1492613

Project P.O. #: NOT SUBMITTED

Job Reference: CHESTERFIELD INLET MONITORING PROGRAM

C of C Numbers: Legal Site Desc:

Craig Riddell Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company



L1492613 CONTD.... PAGE 2 of 6 Version: FINAL

# ALS ENVIRONMENTAL ANALYTICAL REPORT

| Sample Details/Parameters                           | Result         | Qualifier* | D.L.            | Units        | Extracted              | Analyzed               | Batch                |
|-----------------------------------------------------|----------------|------------|-----------------|--------------|------------------------|------------------------|----------------------|
| L1492613-1 CHE3                                     |                |            |                 |              |                        |                        |                      |
| Sampled By: RUSSELL MULLINS on 24-JUL-14 @ 14       | :40            |            |                 |              |                        |                        |                      |
| Matrix: WW                                          |                |            |                 |              |                        |                        |                      |
| Miscellaneous Parameters                            |                |            |                 |              |                        |                        |                      |
| Biochemical Oxygen Demand                           | 287            |            | 6.0             | mg/L         |                        | 26-JUL-14              | R2903699             |
| Total Organic Carbon                                | 133            |            | 1.0             | mg/L         | 31-JUL-14              | 31-JUL-14              | R2905936             |
| Nunavut WW Group 1                                  |                |            |                 |              |                        |                        |                      |
| Alkalinity Alkalinity, Total (as CaCO3)             | 375            |            | 20              | mg/L         |                        | 29-JUL-14              | R2905630             |
| Bicarbonate (HCO3)                                  | 457            |            | 24              | mg/L         |                        | 29-JUL-14<br>29-JUL-14 | R2905630             |
| Carbonate (CO3)                                     | <12            |            | 12              | mg/L         |                        | 29-JUL-14              | R2905630             |
| Hydroxide (OH)                                      | <6.8           |            | 6.8             | mg/L         |                        | 29-JUL-14              | R2905630             |
| Ammonia by colour                                   |                |            |                 |              |                        |                        |                      |
| Ammonia, Total (as N)                               | 88.0           | DLA        | 2.0             | mg/L         |                        | 30-JUL-14              | R2903553             |
| Carbonaceous BOD                                    | 000            |            |                 | /1           |                        | 00 1111 44             | B0000000             |
| BOD Carbonaceous                                    | 269            |            | 6.0             | mg/L         |                        | 26-JUL-14              | R2903699             |
| Chloride by Ion Chromatography Chloride             | 72.4           |            | 0.50            | mg/L         |                        | 26-JUL-14              | R2900368             |
| Conductivity                                        |                |            | 0.00            |              |                        |                        |                      |
| Conductivity                                        | 1130           |            | 20              | umhos/cm     |                        | 29-JUL-14              | R2905630             |
| Fecal Coliform                                      |                |            |                 |              |                        |                        |                      |
| Fecal Coliforms                                     | >110000        |            | 3               | MPN/100mL    |                        | 29-JUL-14              | R2902669             |
| Hardness Calculated                                 | 46.0           |            | 0.20            | ma/l         |                        | 07-AUG-14              |                      |
| Hardness (as CaCO3)  Mercury Total                  | 46.0           |            | 0.30            | mg/L         |                        | 07-AUG-14              |                      |
| Mercury (Hg)-Total                                  | <0.00020       | DLM        | 0.00020         | mg/L         | 28-JUL-14              | 28-JUL-14              | R2901935             |
| Nitrate as N by Ion Chromatography                  |                |            |                 |              |                        |                        |                      |
| Nitrate-N                                           | <0.050         |            | 0.050           | mg/L         |                        | 26-JUL-14              | R2900368             |
| Nitrate+Nitrite                                     |                |            |                 |              |                        |                        |                      |
| Nitrate and Nitrite as N                            | <0.071         |            | 0.071           | mg/L         |                        | 29-JUL-14              |                      |
| Nitrite as N by Ion Chromatography Nitrite-N        | <0.050         |            | 0.050           | mg/L         |                        | 26-JUL-14              | R2900368             |
| Oil and Grease, Total                               | <0.030         |            | 0.030           | IIIg/L       |                        | 20 302 14              | 112900300            |
| Oil and Grease, Total                               | 50.3           |            | 2.0             | mg/L         | 30-JUL-14              | 30-JUL-14              | R2905734             |
| Phenol (4AAP)                                       |                |            |                 |              |                        |                        |                      |
| Phenols (4AAP)                                      | 0.124          |            | 0.0010          | mg/L         | 30-JUL-14              | 30-JUL-14              | R2903714             |
| Phosphorus, Total                                   | 40.0           | DIA        | 0.40            | /1           |                        | 24 1111 44             | D0004550             |
| Phosphorus (P)-Total  Sulfate by Ion Chromatography | 13.2           | DLA        | 0.10            | mg/L         |                        | 31-JUL-14              | R2904550             |
| Sulfate by ion Chromatography Sulfate               | 21.2           |            | 0.50            | mg/L         |                        | 26-JUL-14              | R2900368             |
| Total Metals by ICP-MS                              |                |            |                 |              |                        |                        |                      |
| Aluminum (AI)-Total                                 | 0.547          |            | 0.0050          | mg/L         | 06-AUG-14              | 06-AUG-14              | R2909941             |
| Arsenic (As)-Total                                  | 0.00100        |            | 0.00020         | mg/L         | 06-AUG-14              | 06-AUG-14              | R2909941             |
| Cadmium (Cd)-Total                                  | 0.000256       |            | 0.000010        | mg/L         | 06-AUG-14              | 06-AUG-14              | R2909941             |
| Calcium (Ca)-Total Chromium (Cr)-Total              | 10.7<br>0.0018 |            | 0.10<br>0.0010  | mg/L<br>mg/l | 06-AUG-14<br>06-AUG-14 | 06-AUG-14<br>06-AUG-14 | R2909941<br>R2909941 |
| Cobalt (Co)-Total                                   | 0.0018         |            | 0.0010          | mg/L<br>mg/L | 06-AUG-14<br>06-AUG-14 | 06-AUG-14<br>06-AUG-14 | R2909941<br>R2909941 |
| Copper (Cu)-Total                                   | 0.138          |            | 0.00020         | mg/L         | 06-AUG-14              | 06-AUG-14              | R2909941             |
| Iron (Fe)-Total                                     | 0.94           |            | 0.10            | mg/L         | 06-AUG-14              | 06-AUG-14              | R2909941             |
| Lead (Pb)-Total                                     | 0.00387        |            | 0.000090        | mg/L         | 06-AUG-14              | 06-AUG-14              | R2909941             |
| Magnesium (Mg)-Total                                | 4.66           |            | 0.010           | mg/L         | 06-AUG-14              | 06-AUG-14              | R2909941             |
| Manganese (Mn)-Total                                | 0.0473         |            | 0.00030         | mg/L         | 06-AUG-14              | 06-AUG-14              | R2909941             |
| Nickel (Ni)-Total                                   | 0.0046         |            | 0.0020          | mg/L         | 06-AUG-14              | 06-AUG-14              | R2909941             |
| Potassium (K)-Total                                 | 30.6           |            | 0.020           | mg/L         | 06-AUG-14<br>06-AUG-14 | 06-AUG-14<br>06-AUG-14 | R2909941             |
| Sodium (Na)-Total Zinc (Zn)-Total                   | 54.6<br>0.230  |            | 0.030<br>0.0020 | mg/L<br>mg/L | 06-AUG-14<br>06-AUG-14 | 06-AUG-14<br>06-AUG-14 | R2909941<br>R2909941 |
| Zino (Zii)-10tai                                    | 0.230          |            | 0.0020          | mg/L         | 00-A0G-14              | 00-A0G-14              | 142909941            |

<sup>\*</sup> Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1492613 CONTD.... PAGE 3 of 6 Version: FINAL

# ALS ENVIRONMENTAL ANALYTICAL REPORT

| Sample Details/Parameters                      | Result          | Qualifier* | D.L.            | Units        | Extracted              | Analyzed               | Batch                |
|------------------------------------------------|-----------------|------------|-----------------|--------------|------------------------|------------------------|----------------------|
| L1492613-1 CHE3                                |                 |            |                 |              |                        |                        |                      |
| Sampled By: RUSSELL MULLINS on 24-JUL-14 @ 14: | 40              |            |                 |              |                        |                        |                      |
| Matrix: WW                                     |                 |            |                 |              |                        |                        |                      |
| Total Suspended Solids                         |                 |            |                 |              |                        |                        |                      |
| Total Suspended Solids                         | 90.0            |            | 5.0             | mg/L         |                        | 29-JUL-14              | R2903094             |
| pH                                             |                 |            |                 |              |                        |                        |                      |
| pH                                             | 7.81            |            | 0.10            | pH units     |                        | 29-JUL-14              | R2905630             |
| L1492613-2 CHE4                                |                 |            |                 |              |                        |                        |                      |
| Sampled By: RUSSELL MULLINS on 24-JUL-14 @ 14: | 30              |            |                 |              |                        |                        |                      |
| Matrix: WW                                     |                 |            |                 |              |                        |                        |                      |
| Miscellaneous Parameters                       |                 |            |                 |              |                        |                        |                      |
| Biochemical Oxygen Demand                      | <6.0            |            | 6.0             | mg/L         |                        | 26-JUL-14              | R2903699             |
| Total Organic Carbon                           | 13.5            |            | 1.0             | mg/L         | 31-JUL-14              | 31-JUL-14              | R2905936             |
| Nunavut WW Group 1                             |                 |            |                 |              |                        |                        |                      |
| Alkalinity Alkalinity, Total (as CaCO3)        | 50              |            | 20              | mg/L         |                        | 29-JUL-14              | R2905630             |
| Bicarbonate (HCO3)                             | 61              |            | 24              | mg/L         |                        | 29-JUL-14              | R2905630             |
| Carbonate (CO3)                                | <12             |            | 12              | mg/L         |                        | 29-JUL-14              | R2905630             |
| Hydroxide (OH)                                 | <6.8            |            | 6.8             | mg/L         |                        | 29-JUL-14              | R2905630             |
| Ammonia by colour                              |                 |            |                 |              |                        |                        |                      |
| Ammonia, Total (as N)                          | 0.026           |            | 0.010           | mg/L         |                        | 29-JUL-14              | R2902301             |
| Carbonaceous BOD BOD Carbonaceous              | -6.0            |            | 6.0             | ma/l         |                        | 26-JUL-14              | R2903699             |
| Chloride by Ion Chromatography                 | <6.0            |            | 6.0             | mg/L         |                        | 26-JUL-14              | K2903099             |
| Chloride by for Chromatography Chloride        | 45.2            |            | 0.50            | mg/L         |                        | 26-JUL-14              | R2900368             |
| Conductivity                                   |                 |            |                 |              |                        |                        |                      |
| Conductivity                                   | 278             |            | 20              | umhos/cm     |                        | 29-JUL-14              | R2905630             |
| Fecal Coliform                                 |                 |            |                 |              |                        |                        |                      |
| Fecal Coliforms                                | 7               |            | 3               | MPN/100mL    |                        | 29-JUL-14              | R2902669             |
| Hardness Calculated Hardness (as CaCO3)        | 46.8            |            | 0.30            | mg/L         |                        | 07-AUG-14              |                      |
| Mercury Total                                  | 40.0            |            | 0.30            | IIIg/L       |                        | 07-A0G-14              |                      |
| Mercury (Hg)-Total                             | <0.000020       |            | 0.000020        | mg/L         | 28-JUL-14              | 28-JUL-14              | R2901935             |
| Nitrate as N by Ion Chromatography             |                 |            |                 |              |                        |                        |                      |
| Nitrate-N                                      | < 0.050         |            | 0.050           | mg/L         |                        | 26-JUL-14              | R2900368             |
| Nitrate+Nitrite                                | _               |            |                 |              |                        |                        |                      |
| Nitrate and Nitrite as N                       | <0.071          |            | 0.071           | mg/L         |                        | 29-JUL-14              |                      |
| Nitrite as N by Ion Chromatography Nitrite-N   | <0.050          |            | 0.050           | mg/L         |                        | 26-JUL-14              | R2900368             |
| Oil and Grease, Total                          | <b>\0.000</b>   |            | 0.000           | iiig/L       |                        | 20-00L-14              | 112300300            |
| Oil and Grease, Total                          | <2.0            |            | 2.0             | mg/L         | 30-JUL-14              | 30-JUL-14              | R2905734             |
| Phenol (4AAP)                                  |                 |            |                 |              |                        |                        |                      |
| Phenols (4AAP)                                 | <0.0010         |            | 0.0010          | mg/L         | 30-JUL-14              | 30-JUL-14              | R2903714             |
| Phosphorus, Total                              | 0.005           |            | 0.21-           |              |                        | 04 !!!! **             | Dog 2 15==           |
| Phosphorus (P)-Total                           | 0.026           |            | 0.010           | mg/L         |                        | 31-JUL-14              | R2904550             |
| Sulfate by Ion Chromatography Sulfate          | 13.3            |            | 0.50            | mg/L         |                        | 26-JUL-14              | R2900368             |
| Total Metals by ICP-MS                         | 10.0            |            | 5.50            | 9, 2         |                        | 20 001-14              | 11200000             |
| Aluminum (Al)-Total                            | 0.0329          |            | 0.0050          | mg/L         | 06-AUG-14              | 06-AUG-14              | R2909941             |
| Arsenic (As)-Total                             | 0.00042         |            | 0.00020         | mg/L         | 06-AUG-14              | 06-AUG-14              | R2909941             |
| Cadmium (Cd)-Total                             | <0.000010       |            | 0.000010        | mg/L         | 06-AUG-14              | 06-AUG-14              | R2909941             |
| Calcium (Ca)-Total                             | 12.2            |            | 0.10            | mg/L         | 06-AUG-14              | 06-AUG-14              | R2909941             |
| Chromium (Cr)-Total                            | <0.0010         |            | 0.0010          | mg/L         | 06-AUG-14              | 06-AUG-14              | R2909941             |
| Cobalt (Co)-Total Copper (Cu)-Total            | <0.00020        |            | 0.00020         | mg/L         | 06-AUG-14<br>06-AUG-14 | 06-AUG-14              | R2909941             |
| Iron (Fe)-Total                                | 0.00722<br>0.12 |            | 0.00020<br>0.10 | mg/L<br>mg/L | 06-AUG-14<br>06-AUG-14 | 06-AUG-14<br>06-AUG-14 | R2909941<br>R2909941 |

<sup>\*</sup> Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1492613 CONTD.... PAGE 4 of 6 Version: FINAL

# ALS ENVIRONMENTAL ANALYTICAL REPORT

| Sample Details/Parameters                      | Result         | Qualifier* | D.L.            | Units    | Extracted              | Analyzed               | Batch    |
|------------------------------------------------|----------------|------------|-----------------|----------|------------------------|------------------------|----------|
| L1492613-2 CHE4                                |                |            |                 |          |                        |                        |          |
| Sampled By: RUSSELL MULLINS on 24-JUL-14 @ 14  | :30            |            |                 |          |                        |                        |          |
| Matrix: WW                                     |                |            |                 |          |                        |                        |          |
| Total Metals by ICP-MS                         |                |            |                 |          |                        |                        |          |
| Lead (Pb)-Total                                | <0.000090      |            | 0.000090        | mg/L     | 06-AUG-14              | 06-AUG-14              | R2909941 |
| Magnesium (Mg)-Total                           | 3.95           |            | 0.010           | mg/L     | 06-AUG-14              | 06-AUG-14              | R2909941 |
| Manganese (Mn)-Total                           | 0.00284        |            | 0.00030         | mg/L     | 06-AUG-14              | 06-AUG-14              | R2909941 |
| Nickel (Ni)-Total                              | 0.0030         |            | 0.0020          | mg/L     | 06-AUG-14              | 06-AUG-14              | R2909941 |
| Potassium (K)-Total                            | 3.04           |            | 0.020           | mg/L     | 06-AUG-14              | 06-AUG-14              | R2909941 |
| Sodium (Na)-Total Zinc (Zn)-Total              | 32.3<br>0.0023 |            | 0.030<br>0.0020 | mg/L     | 06-AUG-14<br>06-AUG-14 | 06-AUG-14<br>06-AUG-14 | R2909941 |
| Total Suspended Solids                         | 0.0023         |            | 0.0020          | mg/L     | 00-A0G-14              | 00-A0G-14              | R2909941 |
| Total Suspended Solids  Total Suspended Solids | <5.0           |            | 5.0             | mg/L     |                        | 29-JUL-14              | R2903094 |
| pH                                             |                |            |                 |          |                        |                        |          |
| pH                                             | 7.73           |            | 0.10            | pH units |                        | 29-JUL-14              | R2905630 |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |
|                                                |                |            |                 |          |                        |                        |          |

<sup>\*</sup> Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1492613 CONTD....

PAGE 5 of 6 Version: FINAL

## Reference Information

Sample Parameter Qualifier Key:

| Qualifier | Description                                                                                        |
|-----------|----------------------------------------------------------------------------------------------------|
| DLA       | Detection Limit adjusted for required dilution                                                     |
| DLM       | Detection Limit Adjusted due to sample matrix effects.                                             |
| MS-B      | Matrix Spike recovery could not be accurately calculated due to high analyte background in sample. |

#### **Test Method References:**

| ALS Test Code | Matrix | Test Description | Method Reference** |
|---------------|--------|------------------|--------------------|
|               |        |                  |                    |
| ALK-TOT-WP    | Water  | Alkalinity       | APHA 2320B         |

Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. It is determined by titration with a standard solution of strong mineral acid to the successive HCO3- and H2CO3 endpoints indicated electrometrically.

BOD-CBOD-WP Water Carbonaceous BOD APHA 5210 B-5 day Incub.-O2 electrode

A sample of water is incubated for 5 days at 20 degrees Celcius. Comparison of dissolved oxygen content at beginning and end of incubation provides a measure of Biochemical oxygen demand. If carbonaceous BOD is requested, TCMP is added to the sample to chemically inhibit nitrogenous oxygen demand. If soluble BOD is requested, the sample is filtered prior to analysis.

BOD-WP Water Biochemical Oxygen Demand (BOD) APHA 5210 B

The sample is incubated for 5 days at 20 degrees Celcius. Comparison of dissolved oxygen content at the beginning and end of incubation provides a measure of biochemical oxygen demand. If carbonaceous BOD is requested, TCMP is added to the sample to chemically inhibit nitrogenous oxygen demand. If soluble BOD is requested, the sample is filtered prior to analysis. Surface waters have a DL of 1 mg/L. Effluents are diluted according to their history and will have a sample DL of 6 mg/L or greater, depending on the dilutions used.

CL-IC-WP Water Chloride by Ion Chromatography EPA 300.1 (Modified)

Anions in aqueous matrices are analyzed using ion chromatography with conductivity and/or UV absorbance detectors.

EC-WP Water Conductivity APHA 2510B

Conductivity of an aqueous solution refers to its ability to carry an electric current. Conductance of a solution is measured between two spatially fixed and chemically inert electrodes.

ETL-HARDNESS-TOT-WP Water Hardness Calculated HARDNESS CALCULATED

FC-MPN-WP Water Fecal Coliform APHA 9221E

The Most Probable Number (MPN) method is based on the Multiple Tube Fermentation technique. The results of examination of replicate tubes and dilutions of a sample are reported after confirmations specific to total coliform, fecal coliform and E. coli are performed. Results are reported in MPN/100 mL for water and MPN/gram for food and solid samples.

HG-T-CVAF-WP Water Mercury Total EPA245.7 V2.0

Mercury in filtered and unfiltered waters is oxidized with Bromine monochloride and analyzed by cold-vapour atomic fluorescence spectrometry.

MET-T-L-MS-WP Water Total Metals by ICP-MS APHA 3030E/EPA 6020A-TL

This analysis involves preliminary sample treatment by hotblock acid digestion (APHA 3030E). Instrumental analysis is by inductively coupled plasma mass spectrometry (EPA Method 6020A).

NH3-COL-WP Water Ammonia by colour APHA 4500 NH3 F

Ammonia in water samples forms indophenol when reacted with hypochlorite and phenol. The intensity is amplified by the addition of sodium nitroprusside and measured colourmetrically.

NO2+NO3-CALC-WP Water Nitrate+Nitrite CALCULATION

NO2-IC-WP Water Nitrite as N by Ion Chromatography EPA 300.1 (Modified)

NO3-IC-WP Water Nitrate as N by Ion Chromatography EPA 300.1 (Modified)

Anions in aqueous matrices are analyzed using ion chromatography with conductivity and/or UV absorbance detectors.

Anions in aqueous matrices are analyzed using ion chromatography with conductivity and/or UV absorbance detectors.

OGG-TOT-WT Water Oil and Grease, Total APHA 5520 B

Sample is extracted with hexane, extract is then evaporated and the residue is weighed to determine total oil and grease.

P-T-COL-WP Water Phosphorus, Total APHA 4500 P PHOSPHORUS

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is determined colourimetrically after

L1492613 CONTD....

PAGE 6 of 6 Version: FINAL

## **Reference Information**

**Test Method References:** 

ALS Test Code Matrix Test Description Method Reference\*\*

persulphate digestion of the sample.

PH-WP Water pH APHA 4500H

The pH of a sample is the determination of the activity of the hydrogen ions by potentiometric measurement using a standard hydrogen electrode and a

reference electrode.

PHENOLS-4AAP-WT Water Phenol (4AAP) EPA 9066

An automated method is used to distill the sample. The distillate is then buffered to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a

red complex which is measured colorimetrically.

SO4-IC-WP Water Sulfate by Ion Chromatography EPA 300.1 (Modified)

Anions in aqueous matrices are analyzed using ion chromatography with conductivity and/or UV absorbance detectors.

SOLIDS-TOTSUS-WP Water Total Suspended Solids APHA 2540 D (modified)

Total suspended solids in aquesous matrices is determined gravimetrically after drying the residue at 103 105°C.

TOC-WT Water Total Organic Carbon APHA 5310E

Sample is injected into a heated reaction chamber which is packed with an oxidative catalyst. The water is vaporized and the organic cabon is oxidized to carbon dioxide. The carbon dioxide is transported in a carrier gas and is measured by a non-dispersive infrared detector.

\*\* ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

| <b>Laboratory Definition Code</b> | Laboratory Location                            |
|-----------------------------------|------------------------------------------------|
| WP                                | ALS ENVIRONMENTAL - WINNIPEG, MANITOBA, CANADA |
| WT                                | ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA  |

#### **Chain of Custody Numbers:**

### **GLOSSARY OF REPORT TERMS**

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

 $\emph{mg/L}\$  - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.



Environment

Same as Report ? (circle Copy of Invoice with Rep

Lab Work Order # (lab use only)

Report To Company: Contact: Address:

Invoice To

Company: Contact: Address: Phone:

Sample #

Released by:

Karrellhi

| ulronmental                                                         |                                 | L149               | 2613-COFC         |                        |                                                            |                                                     |                                                   |           |          |           |          |          | Pag                    | je _                  | of            | f <u> </u> | <u> </u>             |  |  |  |  |
|---------------------------------------------------------------------|---------------------------------|--------------------|-------------------|------------------------|------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|-----------|----------|-----------|----------|----------|------------------------|-----------------------|---------------|------------|----------------------|--|--|--|--|
|                                                                     | Report                          |                    | ·                 |                        | Servic                                                     | e Requ                                              | est.(Ru                                           | sh subje  | ect to a | vailabili | y - Çor  | itact AL | S to confi             | îrm TAT               | )             |            |                      |  |  |  |  |
| let of Chesterfield Injet                                           | Standard: Other (specify):      |                    |                   |                        |                                                            | Regular (Standard Turnaround Times - Business Days) |                                                   |           |          |           |          |          |                        |                       |               |            |                      |  |  |  |  |
| as Aggark                                                           | Select: PDF V Excel Digital Fax |                    |                   |                        |                                                            | Priority(                                           | (2-4 Bus                                          | iness Da  | ays)-50° | % surch   | arge - C | ontact A | LS to con              | ıfimı TA <sup>1</sup> | ſ             |            |                      |  |  |  |  |
| 10                                                                  |                                 | AD - Humis         | ela ginia         | -0001                  |                                                            | Emerge                                              | ncy (1-2                                          | Busine    | ss Days  | )-100%    | Surcha   | rge - Co | ntact ALS              | i to confi            | rm TAT        |            |                      |  |  |  |  |
|                                                                     | Email 2: 🕝                      | nlustyægov         | ภบ.ังฉ            |                        | Same Day or Weekend Emergency - Contact ALS to confirm TAT |                                                     |                                                   |           |          |           |          |          |                        |                       |               |            |                      |  |  |  |  |
| 398 9951 Fax 867 898 9488                                           |                                 |                    |                   |                        | Analysis Request  ( Indicate Filtered or Preserved, F/P )  |                                                     |                                                   |           |          |           |          |          |                        |                       |               |            |                      |  |  |  |  |
| me as Report ? (circle) Yes or No (if No, provide details)          |                                 | oject Information  |                   | <del></del>            | <u> </u>                                                   |                                                     | <del>, , , , , , , , , , , , , , , , , , , </del> | Indica    | te Filt  | ered o    | or Pre   | served   | I, F/P                 | ·                     |               |            |                      |  |  |  |  |
| by of Invoice with Report? (circle) (Yes or No                      | Job #:                          | nesterfield:       | Inlet Mon         | Program                | <u> </u>                                                   |                                                     |                                                   |           |          |           |          |          |                        | 4                     | 4             | 4          |                      |  |  |  |  |
|                                                                     | PO / AFE:                       | <del> </del>       |                   | program                | 4                                                          |                                                     |                                                   |           |          | :         |          |          |                        |                       |               |            |                      |  |  |  |  |
|                                                                     | - 150.                          | <del></del>        |                   |                        | -                                                          |                                                     |                                                   |           |          |           | م        |          | . !                    |                       |               |            | s,                   |  |  |  |  |
|                                                                     | Ouete #                         |                    |                   |                        | -                                                          | ]                                                   |                                                   | ارد ا     |          |           | 3        |          | . 1                    |                       |               |            | iner                 |  |  |  |  |
| Fax:                                                                | Quote #:                        |                    |                   | ·····                  | -                                                          | 2                                                   | <u></u>                                           | <u> [</u> | رط       | ্ব        | ٤        |          |                        |                       |               |            | nta                  |  |  |  |  |
| # (lab use only)                                                    | ALS (<br>Contact:               | Craig<br>Riddel    | Sampler: USS      | ellHallins             | Bod                                                        | Routine                                             | Metals                                            | Nutrients | Phenob   | Bocterio  | + Grass  |          |                        |                       |               |            | Number of Containers |  |  |  |  |
| Sample Identification  (This description will appear on the report) |                                 | Date               | Time<br>(hh:mm)   | Sample Type            | $ \nabla$                                                  | 8                                                   | ž                                                 | ·기        | 4        | Bo        | 10       |          |                        |                       |               |            | dm<br>T              |  |  |  |  |
| (This description will appear on the report)                        |                                 | (dd-mmm-yy)        | <del> </del>      |                        | 17                                                         |                                                     | P                                                 | 7         | ρ        | P         | ₽        |          |                        | <del></del>           | $\dashv$      | $\dashv$   | 8                    |  |  |  |  |
| HEZ                                                                 |                                 | 24-07-14           | 2:40 pm           | wastenster             | <del> </del>                                               | <b> </b>                                            | P                                                 | P         | -        | •         | <u>.</u> | -        | $\overline{}$          | $\dashv$              | +             |            |                      |  |  |  |  |
| HE4                                                                 |                                 | 24-07-4            | 2:30gn            | wasterster             | 1                                                          | レ                                                   | F                                                 | r         | -        | T         | 4        |          |                        | <del></del>           |               | _          | 8                    |  |  |  |  |
|                                                                     |                                 | ļ                  |                   | <del></del>            | ļ                                                          |                                                     |                                                   |           |          |           |          |          | <del></del>            |                       |               |            |                      |  |  |  |  |
|                                                                     |                                 |                    |                   |                        |                                                            |                                                     |                                                   |           |          |           |          |          |                        | ightharpoonup         | $\perp$       |            |                      |  |  |  |  |
|                                                                     |                                 |                    |                   |                        |                                                            |                                                     |                                                   |           |          |           |          |          |                        |                       |               |            |                      |  |  |  |  |
|                                                                     |                                 |                    |                   |                        |                                                            |                                                     |                                                   |           |          |           |          |          |                        |                       |               |            |                      |  |  |  |  |
| · .                                                                 |                                 |                    |                   |                        |                                                            |                                                     |                                                   |           |          |           |          |          | $\overline{}$          | 十                     | -†            |            | $\neg$               |  |  |  |  |
|                                                                     |                                 |                    |                   |                        | +                                                          | -                                                   |                                                   |           |          |           |          | -        | -+                     | <del></del>           | -+            | -          | $\dashv$             |  |  |  |  |
|                                                                     |                                 | <u> </u>           |                   |                        | +                                                          |                                                     | -                                                 |           | -        |           |          | -        |                        | $\dashv$              | $\dashv$      |            | -                    |  |  |  |  |
|                                                                     |                                 | -                  |                   |                        | -                                                          |                                                     | _                                                 |           |          |           |          |          |                        |                       | $\rightarrow$ | _          |                      |  |  |  |  |
|                                                                     |                                 |                    |                   |                        |                                                            |                                                     |                                                   |           |          |           |          |          |                        |                       |               |            |                      |  |  |  |  |
|                                                                     |                                 |                    |                   |                        |                                                            |                                                     |                                                   |           |          |           |          |          |                        |                       |               |            |                      |  |  |  |  |
|                                                                     |                                 |                    |                   |                        |                                                            |                                                     |                                                   |           | _        |           |          |          |                        |                       |               |            |                      |  |  |  |  |
| Special Instructions / Regulation with water or                     | land use (CCI                   | ME- Freshwater A   | quatic Life/BC C  | SR-Commercial/A        | AB Tier                                                    | 1-Nat                                               | tural/E                                           | TC) /     | Haza     | rdou      | Deta     | ils      |                        |                       |               |            |                      |  |  |  |  |
| -                                                                   |                                 |                    | ·-                |                        |                                                            |                                                     |                                                   |           |          |           |          |          |                        |                       |               |            |                      |  |  |  |  |
| Failure to comple                                                   | e all portions                  | of this form may r | lelav analvsis. F | Please fill in this fo | orm LE                                                     | EGIBI '                                             | Υ.                                                |           | _        | _         |          |          |                        |                       |               |            | $\dashv$             |  |  |  |  |
| By the use of this form the user acknowled                          |                                 | -                  |                   |                        |                                                            |                                                     |                                                   | e whit    | te - re  | port o    | ору.     |          |                        |                       |               |            | ļ                    |  |  |  |  |
| SHIPMENT RELEASE (client use)                                       |                                 | IPMENT RECEPTI     |                   |                        |                                                            |                                                     |                                                   |           |          |           |          | ION (I   | ab use                 | only)                 |               |            |                      |  |  |  |  |
|                                                                     |                                 |                    | Temperature:      |                        | ied by:                                                    | :                                                   |                                                   | Date      | ;        |           | Time     | :        | Observation Yes / No ? |                       |               |            |                      |  |  |  |  |

12