YEAR BEING REPORTED: 2024

The following information is compiled pursuant to the requirements of Part B, Item 1 of Water Licence No. 3AM-GRA1631 issued to the Government of Nunavut – Department of Transportation and Infrastructure Nunavut.

Table 1 provides a monthly and annual tabular summary of the measured and estimated quantities in cubic metres of water used from Lower Landing Lake and Nipissar Lake, and wastewater discharged, and sludge removed for landfilling.

The monthly and annual quantities of freshwater and estimated sewage waste discharged were obtained by daily logs taken by the facility operational staff.

Pumping of water from Lower Landing Lake to Nipissar Lake took place over 88 days from July 22, 2024 to October 18, 2024. A total of 439,479 cubic metres of water was pumped during this period, which amounts to a daily average of 4994.08 cubic metres – well below the licenced limit of 10,000 cubic meters per day.

The sewage volumes are assumed equal to the water withdrawal volumes as all consumed water is returned to the sewage disposal facility. The WWTP consists of a splitter tank which diverts flow of wastewater collected to either one of two screening channels where the screening system is used to remove large solids. Solids collected from the screening system are transported to the Rankin Inlet Landfill and effluent is discharged through a diffuser into Prairie Bay.

Table 2 provides the elevation measurements in metres for Nipissar Lake and Lower Landing Lake taken from the datum to the shoreline.

Lab results from sampling the water at GRA-1 and GRA-7, and the wastewater effluent at GRA-3, as part of the Monitoring Program, are provided as **Appendix A**.

Table 1: Summary of water use and waste discharged.

Month Reported	GRA-6: Water Obtained from Lower Landing Lake Pumped to Nipissar Lake (m³)	GRA-1: Water Obtained from Nipissar Lake for Treatment (m³)	GRA-3: Effluent Discharged from the Sewage Treatment Facility (m ³)	GRA-4: Solids Removed from the Sewage Treatment Facility (m³)
January	0	51716	51716	1.136
February	0	48377	48377	1.136
March	0	52731	52731	1.136
April	0	64075	64075	1.136
May	0	38933	38933	1.136
June	0	47887	47887	1.136
July	41029	49958	49958	1.136
August	156231	51448	51448	1.136
September	152751	44569	44569	1.136
October	89468	49842	49842	1.136
November	0	45959	45959	1.136
December	0	51819	51819	1.136
ANNUAL TOTAL	439479	597314	13.632	

Table 2: Elevation measurements for Nipissar Lake and Lower Landing Lake in meters

Date	GRA-5: Nipissar Lake Elevation (m)	GRA-5: Lower Landing Lake Elevation (m)
July	2.66	1.29
August	2.65	1.40

Note: Water Elevation is a measurement taken from the datum to the shoreline. Therefore, a decrease in elevation measurement represents an increase in lake water level.

I. A summary of modifications and/or major maintenance work carried out and/or planned on the Water Supply and Waste Disposal Facilities, including all associated structures and facilities:

2024 Summary

The work carried out in 2024 was replacement of water and sewer pipes and vaults in Areas 1&3 of Phase 2B of the Utilidor Replacement project. The pipes were replaced due to the age of the infrastructure that led to severe tuberculation of the water pipes. Also, the pipe sizes need to be upgraded due to the increase in population of the community. Service connections to the homes in these areas were shifted to the front of the homes. The older pipes in the backyards of the homes were left in place. Please see **Appendix B** for the drawings of the utilidor work for Areas 1&3.

2025 Summary

The work planned for 2025 Phase 2B of the Utilidor Replacement project is exactly the same as for 2024 but covers Area 2 instead. Please see **Appendix B** for the drawings of the planned work for Area 2.

No modifications or major maintenance work carried out on the water supply facilities and sewage disposal facilities in 2024 or are planned for 2025.

II. A summary of any studies requested by the Board that relate to waste disposal, water use or reclamation, and a brief description of any future studies planned:

The design of the new water treatment plant and pumphouse is ongoing with expected completion of Fall 2025. The proposed modifications as part of the design will be submitted to the Board. Construction of the newly designed water supply facilities is expected to begin Spring 2025.

To comply with the Fisheries Act, as determined during the Modification application for the water supply facilities, a fish habitat assessment will be conducted during the open water season of 2025 on Nipissar Lake.

III. A list of unauthorized discharges and summary of follow-up action taken:

No spills to report in 2024. See Appendix C.

IV. A summary of any abandonment and restoration work completed during the year and an outline of any work anticipated for the next year:

There was no abandonment and restoration work completed during 2024. There is no abandonment and restoration work anticipated for 2025.

V. Any other details on water use or waste disposal requested by the Board by November 1st of the year being reported; and

No other details on water use or waste disposal requested by the Board by November 1st 2024.

VI. Updates or revisions to the approved Operation and Maintenance Plans:

No updates to the approved Plans were made in 2024. The Plans for the facilities have been implemented and are being carried out. Updated O&M Plans for the new water supply facilities will be provided in the 2026 Annual Report for the Board's review.

VII. FOLLOW-UP REGARDING INSPECTION/COMPLIANCE CONCERNS:

A CIRNAC Inspection took place on September 18, 2024. The report is submitted as **Appendix D.** The 2023 Annual Report was submitted to the Board as actioned by the Inspector to meet all of the Inspector's concerns.

VIII. ADDITIONAL INFORMATION THAT THE LICENSEE DEEMS USEFUL:

None.

APPENDICES

Appendix A: Lab Results for GRA-3, GRA-1, and GRA-7

Appendix B: Drawings of Utilidor Upgrades

Appendix C: Hazardous Materials Spills Database for Rankin Inlet in 2024

Appendix D: CIRNAC Annual Inspection Report 2024

Appendix A: Lab Results for GRA-3, GRA-1, and GRA-7

CERTIFICATE OF ANALYSIS

Work Order : WP2426999

Client : Hamlet of Rankin Inlet Laboratory : ALS Environmental - Winnipeg

Contact : Steve Fitzpatrick Account Manager : Craig Riddell Address : PO Box 310 Address : 1329 Niakwa

PO Box 310 Address : 1329 Niakwa Road East, Unit 12 Rankin Inlet Nunavut Canada X0C 0G0 Winnipeg MB Canada R2J 3T4

: +1 204 255 9720

Telephone : ---- Telephone

 Project
 : -- Date Samples Received
 : 05-Dec-2024 12:01

 PO
 : -- Date Analysis Commenced
 : 05-Dec-2024

 C-O-C number
 : 05-Dec-2024
 12-Dec-2024 16:17

Sampler : ----Site : ----

Quote number : 2024 Analytical Testing

No. of samples received : 1
No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Brennan Dugas Analyst Microbiology, Winnipeg, Manitoba Gerry Vera Analyst Organics, Winnipeg, Manitoba	
Gerry Vera Analyst Organics, Winnipeg, Manitoba	
Gianna Wiebe Organics, Winnipeg, Manitoba	
Jeremy Gingras Supervisor - Semi-Volatile Instrumentation Organics, Waterloo, Ontario	
Kevin Baxter Metals, Winnipeg, Manitoba	
Kevin Baxter Inorganics, Winnipeg, Manitoba	
Lee McTavish Inorganics, Winnipeg, Manitoba	
Leila Conyard Lab Assistant Metals, Winnipeg, Manitoba	
Michelle Michalchuk Analyst Organics, Winnipeg, Manitoba	
Ping Yeung Team Leader - Inorganics Inorganics, Edmonton, Alberta	
Ryan Velasco Organics, Winnipeg, Manitoba	

Page: 1 of 8 alsglobal.com

Work Order : WP2426999

Client : Hamlet of Rankin Inlet

Project : ---

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

LOR: Limit of Reporting (detection limit).

Unit	Description
-	no units
mg/L	milligrams per litre
MPN/100mL	most probable number per hundred millilitres
pH units	pH units
μg/L	micrograms per litre
μS/cm	microsiemens per centimetre

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects (e.g.
	chemical interference, colour, turbidity).
	The APHA 30 hour holding time was exceeded for
MBHT	microbiological testing. Samples processed within 48 hours from
IVIDIT I	time of sampling may be valid in some cases (refer to Health
	Canada guidance).

>: greater than.

Project

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Client	sample ID	Rankin Inlet WWTP - Effluent	 	
			Client sampling	ı date / time	04-Dec-2024 09:30	 	
Analyte	CAS Number	Method/Lab	LOR	Unit	WP2426999-001	 	
					Result	 	
Physical Tests							
Alkalinity, bicarbonate (as HCO3)	71-52-3	E290/WP	1.0	mg/L	225	 	
Alkalinity, carbonate (as CO3)	3812-32-6	E290/WP	1.0	mg/L	<1.0	 	
Alkalinity, hydroxide (as OH)	14280-30-9	E290/WP	1.0	mg/L	<1.0	 	
Conductivity		E100/WP	2.0	μS/cm	717	 	
Hardness (as CaCO3), from total Ca/Mg		EC100A/WP	0.50	mg/L	66.4	 	
рН		E108/WP	0.10	pH units	7.47	 	
Solids, total suspended [TSS]		E160/WP	3.0	mg/L	195	 	
Anions and Nutrients							
Ammonia, total (as N)	7664-41-7	E298/WP	0.0050	mg/L	18.1	 	
Chloride	16887-00-6	E235.CI/WP	0.50	mg/L	71.9	 	
Fluoride	16984-48-8	E235.F/WP	0.020	mg/L	0.283	 	
Nitrate (as N)	14797-55-8	E235.NO3/WP	0.020	mg/L	<0.020	 	
Nitrate + Nitrite (as N)		EC235.N+N/W	0.0050	mg/L	<0.0224	 	
Nitrite (as N)	14797-65-0	E235.NO2/WP	0.010	mg/L	<0.010	 	
Phosphorus, total	7723-14-0	E372/WP	0.020	mg/L	6.43	 	
Sulfate (as SO4)	14808-79-8	E235.SO4/WP	0.30	mg/L	35.6	 	
Organic / Inorganic Carbon							
Carbon, total organic [TOC]		E355-L/WP	0.50	mg/L	142	 	
Microbiological Tests							
Coliforms, Escherichia coli [E. coli]		E010-H/WP	10	MPN/100 mL	>24200 MBHT	 	
Coliforms, thermotolerant [fecal]		E010.FC- H/WP	10	MPN/100 mL	>24200 ^{MBHT}	 	

alsglobal.com Page: 3 of 8

Project

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Client	sample ID	Rankin Inlet WWTP - Effluent	 	
			Client sampling	date / time	04-Dec-2024 09:30	 	
Analyte	CAS Number	Method/Lab	LOR	Unit	WP2426999-001	 	
					Result	 	
Microbiological Tests							
Coliforms, total		E010-H/WP	10	MPN/100 mL	>24200 MBHT	 	
Total Metals							
Aluminum, total	7429-90-5	E420/WP	0.0030	mg/L	0.190	 	
Antimony, total	7440-36-0	E420/WP	0.00010	mg/L	0.00020	 	
Arsenic, total	7440-38-2	E420/WP	0.00010	mg/L	0.00088	 	
Barium, total	7440-39-3	E420/WP	0.00010	mg/L	0.0275	 	
Beryllium, total	7440-41-7	E420/WP	0.000020	mg/L	0.0000022	 	
Bismuth, total	7440-69-9	E420/WP	0.000050	mg/L	0.00373	 	
Boron, total	7440-42-8	E420/WP	0.010	mg/L	0.030	 	
Cadmium, total	7440-43-9	E420/WP	0.0000050	mg/L	0.0000586	 	
Calcium, total	7440-70-2	E420/WP	0.050	mg/L	18.9	 	
Cesium, total	7440-46-2	E420/WP	0.000010	mg/L	0.000181	 	
Chromium, total	7440-47-3	E420/WP	0.00050	mg/L	0.00722	 	
Cobalt, total	7440-48-4	E420/WP	0.00010	mg/L	0.00054	 	
Copper, total	7440-50-8	E420/WP	0.00050	mg/L	0.195	 	
Iron, total	7439-89-6	E420/WP	0.010	mg/L	2.00	 	
Lead, total	7439-92-1	E420/WP	0.000050	mg/L	0.00239	 	
Lithium, total	7439-93-2	E420/WP	0.0010	mg/L	0.0013	 	
Magnesium, total	7439-95-4	E420/WP	0.0050	mg/L	4.66	 	
Manganese, total	7439-96-5	E420/WP	0.00010	mg/L	0.0391	 	
Molybdenum, total	7439-98-7	E420/WP	0.000050	mg/L	0.00134	 	

alsglobal.com Page: 4 of 8

Project

Analytical Results

Sub-Matrix: Water			Client	sample ID	Rankin Inlet	 	
(Matrix: Water)				•	WWTP - Effluent		
Analyte	CAS Number	Method/Lab	Client sampling LOR	date / time Unit	04-Dec-2024 09:30	 	
Arranyte	CAS Number	Welliod/Lab	LON	Onn	WP2426999-001 Result	 	
Total Metals							
Nickel, total	7440-02-0	E420/WP	0.00050	mg/L	0.00699	 	
Phosphorus, total	7723-14-0	E420/WP	0.050	mg/L	4.26	 	
Potassium, total	7440-09-7	E420/WP	0.050	mg/L	7.85	 	
Rubidium, total	7440-17-7	E420/WP	0.00020	mg/L	0.00849	 	
Selenium, total	7782-49-2	E420/WP	0.000050	mg/L	0.000248	 	
Silicon, total	7440-21-3	E420/WP	0.10	mg/L	0.30	 	
Silver, total	7440-22-4	E420/WP	0.000010	mg/L	0.000158	 	
Sodium, total	7440-23-5	E420/WP	0.050	mg/L	24.4	 	
Strontium, total	7440-24-6	E420/WP	0.00020	mg/L	0.0926	 	
Sulfur, total	7704-34-9	E420/WP	0.50	mg/L	8.33	 	
Tellurium, total	13494-80-9	E420/WP	0.00020	mg/L	0.000020	 	
Thallium, total	7440-28-0	E420/WP	0.000010	mg/L	0.0000084	 	
Thorium, total	7440-29-1	E420/WP	0.00010	mg/L	Not Detected	 	
Tin, total	7440-31-5	E420/WP	0.00010	mg/L	0.00121	 	
Titanium, total	7440-32-6	E420/WP	0.00030	mg/L	0.0277	 	
Tungsten, total	7440-33-7	E420/WP	0.00010	mg/L	0.000079	 	
Uranium, total	7440-61-1	E420/WP	0.000010	mg/L	0.000252	 	
Vanadium, total	7440-62-2	E420/WP	0.00050	mg/L	0.00066	 	
Zinc, total	7440-66-6	E420/WP	0.0030	mg/L	0.199	 	
Zirconium, total	7440-67-7	E420/WP	0.00020	mg/L	0.00052	 	

alsglobal.com Page: 5 of 8

Project

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Client	sample ID	Rankin Inlet WWTP - Effluent				
			Client sampling	date / time	04-Dec-2024 09:30				
Analyte	CAS Number	Method/Lab	LOR	Unit	WP2426999-001				
					Result				
Dissolved Metals									
Mercury, dissolved	7439-97-6	E509/WP	0.0000050	mg/L	0.000124				
Dissolved mercury filtration location		EP509/WP	-	-	Field				
Aggregate Organics									
Biochemical oxygen demand [BOD]		E550/WP	2.0	mg/L	188				
Carbonaceous biochemical oxygen demand [CBOD]		E555/WP	2.0	mg/L	152				
Oil & grease (gravimetric)		E567/WP	5.0	mg/L	41.7				
Phenols, total (4AAP)		E562/EO	0.0010	mg/L	0.0261				
Volatile Organic Compounds									
Benzene	71-43-2	E611A/WP	0.00050	mg/L	<0.00050				
Ethylbenzene	100-41-4	E611A/WP	0.00050	mg/L	<0.00050				
Toluene	108-88-3	E611A/WP	0.00050	mg/L	0.0327				
Xylene, m+p-	179601-23-1	E611A/WP	0.00040	mg/L	<0.00040				
Xylene, o-	95-47-6	E611A/WP	0.00030	mg/L	<0.00030				
Xylenes, total	1330-20-7	E611A/WP	0.00050	mg/L	<0.00050				
BTEX, total		E611A/WP	0.0010	mg/L	0.0327				
Hydrocarbons									
F1 (C6-C10)		E581.F1/WP	0.10	mg/L	0.11				
F1-BTEX		EC580/WP	0.100	mg/L	<0.100				
F2 (C10-C16)		E601/WP	0.10	mg/L	0.78				
F3 (C16-C34)		E601/WP	0.25	mg/L	17.4				
F4 (C34-C50)		E601/WP	0.25	mg/L	5.60				

alsglobal.com Page: 6 of 8

Project

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Client	sample ID	Rankin Inlet WWTP - Effluent	 	
			Client sampling	date / time	04-Dec-2024 09:30	 	
Analyte	CAS Number	Method/Lab	LOR	Unit	WP2426999-001	 	
					Result	 	
Hydrocarbons							
TEH (C10-C50)	n/a	E601/WP	0.40	mg/L	23.8	 	
TEH (C16-C50)		E601/WP	0.40	mg/L	23.0	 	
Hydrocarbons Surrogates							
Bromobenzotrifluoride, 2- (F2-F4 surrogate)	392-83-6	E601/WP	1.0	%	126	 	
Dichlorotoluene, 3,4-	95-75-0	E581.F1/WP	1.0	%	71.4	 	
Volatile Organic Compounds Surrogates							
Bromofluorobenzene, 4-	460-00-4	E611A/WP	1.0	%	90.8	 	
Difluorobenzene, 1,4-	540-36-3	E611A/WP	1.0	%	103	 	
Polycyclic Aromatic Hydrocarbons							
Acenaphthene	83-32-9	E641A/WT	0.010	μg/L	<0.010	 	
Acenaphthylene	208-96-8	E641A/WT	0.010	μg/L	<0.010	 	
Acridine	260-94-6	E641A/WT	0.010	μg/L	<0.040 DLM	 	
Anthracene	120-12-7	E641A/WT	0.010	μg/L	<0.020 DLM	 	
Benz(a)anthracene	56-55-3	E641A/WT	0.010	μg/L	<0.010	 	
Benzo(a)pyrene	50-32-8	E641A/WT	0.0050	μg/L	<0.0421 DLM	 	
Benzo(b+j)fluoranthene	n/a	E641A/WT	0.010	μg/L	<0.010	 	
Benzo(b+j+k)fluoranthene	n/a	E641A/WT	0.015	μg/L	<0.015	 	
Benzo(g,h,i)perylene	191-24-2	E641A/WT	0.010	μg/L	<0.042 DLM	 	
Benzo(k)fluoranthene	207-08-9	E641A/WT	0.010	μg/L	<0.010	 	
Chrysene	218-01-9	E641A/WT	0.010	μg/L	<0.010	 	
Dibenz(a,h)anthracene	53-70-3	E641A/WT	0.0050	μg/L	0.0595	 	

alsglobal.com Page: 7 of 8

Project

Analytical Results

Analytical Results							
Sub-Matrix: Water (Matrix: Water)			Client	sample ID	Rankin Inlet WWTP - Effluent	 	
			Client sampling	date / time	04-Dec-2024 09:30	 	
Analyte	CAS Number	Method/Lab	LOR	Unit	WP2426999-001	 	
					Result	 	
Polycyclic Aromatic Hydrocarbons							
Fluoranthene	206-44-0	E641A/WT	0.010	μg/L	<0.042 DLM	 	
Fluorene	86-73-7	E641A/WT	0.010	μg/L	<0.080 DLM	 	
Indeno(1,2,3-c,d)pyrene	193-39-5	E641A/WT	0.010	μg/L	0.425	 	
Methylnaphthalene, 1-	90-12-0	E641A/WT	0.010	μg/L	0.033	 	
Methylnaphthalene, 1+2-		E641A/WT	0.015	μg/L	0.071	 	
Methylnaphthalene, 2-	91-57-6	E641A/WT	0.010	μg/L	0.038	 	
Naphthalene	91-20-3	E641A/WT	0.050	μg/L	<0.050	 	
Phenanthrene	85-01-8	E641A/WT	0.020	μg/L	<0.040 DLM	 	
Pyrene	129-00-0	E641A/WT	0.010	μg/L	<0.042 DLM	 	
Quinoline	91-22-5	E641A/WT	0.050	μg/L	0.106	 	
B(a)P total potency equivalents [B(a)P TPE]		E641A/WT	0.010	μg/L	0.125	 	
PAHs, high molecular weight (BC AWQ)	n/a	E641A/WT	0.030	μg/L	0.484	 	
PAHs, low molecular weight (BC AWQ)	n/a	E641A/WT	0.060	μg/L	<0.105	 	
PAHs, total (CCME sewer 18)	n/a	E641A/WT	0.070	μg/L	0.556	 	
PAHs, total (EPA 16)	n/a	E641A/WT	0.065	μg/L	0.484	 	
Polycyclic Aromatic Hydrocarbons Surrogate							
Chrysene-d12	1719-03-5	E641A/WT	0.1	%	111	 	
Naphthalene-d8	1146-65-2	E641A/WT	0.1	%	107	 	
Phenanthrene-d10	1517-22-2	E641A/WT	0.1	%	107	 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

alsglobal.com Page: 8 of 8

www aleniohal com

Chain of Custody (COC) / Analytical Request Form

Affix ALS barcode label here (lab use only)

COC Number: 15 -

Canada Toll Free: 1 800 668 9878

Report To	Contact and company name below will appear on the final report	T	Report Format	/ Diotalbuston												
Company:	Nunavut - CGS - Rankin Inlet W8133	Calant Bonard E				Select		vel Below - F								
Contact:	Steve Fitzpatrick	Select Report F		☑ EXCEL ☐ EI		 -	~	jular [R]		andard "	TAT If N					surcharges apply
Phone:	867-645-8172	-{ `	(QC) Report with R	. –	1	NORITY Iness Day	l .	lay [P4]			NC.	1	Busine	ess day	[E1]	
· none.		1 ' '					ľ	iay [P3]			ERGI				kend or	
Street	Company address below will appear on the final report	Select Distributi			FAX.	Ē		lay [P2]			ធ៌	ь	statuto	ory holi	day [E0]	
Street:	Box 490	· · · · · · · · · · · · · · · · · · ·	kivalliqwatersamp				Date and Time Regulred for all EBP TATS:#15-4-1 dd-mmm-yy hitumen									htomm
City/Province:	Rankin Inlet, NU	Email 2	sfitzpatrick1@gov			For tes	ts that car	hat can not be performed according to the service level selected, you will be contacted.								
Postal Code:	X0C 0G0	Email 3	jstrickland@gov	.nu.ca		1	Analysis Request									
Invoice To	Same as Report To YES NO		Invoice Di			١	Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below									
	Copy of Invoice with Report	Select Invoice D	Distribution: 🗹 🗈	MAIL 🗌 MAIL 🗀] FAX		1. 4.	P . P		P	P					
Company:	Nunavut CGS W8133	Email 1 or Fax	smerkosak@gov.r	nu.ca]						\Box			:
Contact:		Email 2			,]						- 7				yo
	Project Information	Oi	l and Gas Require	d Fields (client u	ise)]					1			-		je ⊒.
ALS Account #	# / Quote #: W8133	AFE/Cost Center:		PO#									.			Containe
Job #:		Major/Minor Code:		Routing Code:				و							-	ပ္ခဲ့
PO / AFE:		Requisitioner:						Ž	.,	-	1.5					20
LSD:		Location:						8								皇
ALC LANGE	ork Order # ((ab use only) = WPQ426999					F4-WP	≩	-ww-GRP1-wP	Š			1				Z Z
ALS LAD VVO	rk Order # (lab use only) WP2426999	ALS Contact:	Craig Riddell	Sampler:			İ	Ä ě	Т97			ľ l			1 1.	
ALS Sample #	Sample Identification and/or Coordinates		Date	Time		Ĕ	AH-PANH-WE	NUNAVDE	3						1 1	
(lab use only)	(This description will appear on the report)		(dd-mmm-yy)	(bh:mm)	Sample Type	BTEX	Ā	를 무	ين ا							
	Rankin Intel WWTP - Effluent	• • • •	4/12/24	9:30	Waste											- 15
						1			17					a Ba	.:-!	
		<u> </u>				+	Environmental Di				ai Div	rision	1011			
							1	Winnipeg Work Order Reference								
ļ			2		1	<u> </u>					W	ork C	raer i	Hetere	റ്ററ	
									11		V	۷۲	24	/ 20	999	
				90 ST 188					-1.1							
			in the part		i				11		Ü	ANK S I	ير ي	ΛШ		
14.1				2.5		 	\vdash		+-				יוויב		(-
		 				-		 	11			ШН	60 L V	A WY		-
								<u> </u>				AHI IQ			9 1111	
				1: 1:	1						1		-	TABLE :		
											1 elept	none :	+ 1 204	255 972	D	
									1 -					*		
	Water (DW) Samples (client use) Special Instructions / S	nocify Criteria to a	dd on renort by click	king on the drap of	lown list holaw	. O.O.	و در فرهما در	SAI	PLEC	CNOT	TON A	V DE	CEIVE	D (lab.)	an only)	t and the second
	Trace (Dee) Camples (Cheneuse)		tronic COC only)	und out tite at obje	IOWII Hat Delow	Froze		9		41401 1			ations			lo 🔲
Are samples take	en from a Regulated DW System? Federal Guidelines for C	anadian Drinking	Water Quality (MA	R, 2015)		Ice Pa			Cubes	- [7]				t Yes	· Land	
. ⊡ γ	☑ YES ☐ NO							ted 🖂			Justi	ay se	as mical	. 163	_ _	ř 🗀
Are samples for I	human drinking water use? MB-CH-PWS-WP. THI	Ms (treated water	only) HAAs (trea	ated water only)		Tage of		L COOLER	TEMPER	ATURES	*C	· in all	学ので見事	NAL CO	LER TEMP	ERATURES °C
☑ Y	ES NO				1					-	U					
	SHIPMENT RELEASE (client use)	INITIAL SHIPMENT RECEPTION (lab use only)			L	5. 1, 184 a	a nave nav	. grans Ell	1	7	ENTE	ECEN.	TIÙÁI /II.	b use ont	Market Comment	
Released by:	Date: Time:	Received by:	_	Date: A		Time:	-H	Received		***** O	110 IAII		Date:	FICIA (IS	U USO UIII	Time:
	15:11 KOSS 9/12/24 9:50	l	AV	I DEC	5 1 ·	Time	01 T					İ				
KEFER TO BACK	PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION		WHI	TE - LABORATORY	CORV VEI		LIENT	CDV				_				OCTOBER 2015 FRONT

	Company of the Control of the Contro	San	pie intak	e			
Client: Nung Vu	7-06	5-1	Pank	ľh	COC rece	ipt info complete	
Express TAT?	no	same day	1 day		Yes: 2 day	3 days	4 day
Short hold time?	100	<24 hrs	1 day		Yes: 2 days	3 days	4 days
Matrix	Water	Soil/solid	Air		Biota	Food/micro	Other
Total number of bottles/fractions:			ı				
Green/white	3×50	5	Orange/bla	ck			
Purple/white	2×100		Dark blue/v	white		4×100	<u> 2×40</u>
Red/white	Mon		Black/white	2 .			
Dark green/white			Brown/whi	te			
Grey/white			Pink/white				
Yellow/black	22250	1x40	Beige/white	e			
Light blue/white			Other (spec	cify)			
Comments:	ice	pac	6				The second secon

	1131	N/A	Bottles	√/X	N/A	
Receipt Window	√/X	N/A	<u></u>	4//		
of fractions, matrix and submatrix			All received bottles have IDs			
lient, office, contact, quote, project			Type, volume, and locations			
Receipt time/date, PO, project, site			Labels and internal COCs printed			
Temp, cooling method, sampler			Client Contacts	√/X	N/A	
Sample Info	√/×	N/A	Report/invoice/EDD recipients			
Sample date/time			Report types/formats			
Sample ID/description			Post-committing	√/X	N/A	
Sales items			Runs built and field data entered			
Guidelines/thresholds			Billing information entered			
Additional sample/WO information	P-T		Action Required?	Yes	No	
Due Dates	√/X	N/A	Update default receipt data			
COC/GEL/client due dates match			Update default report data			
Express TAT surcharges			Add sales/billing items to quote			
Clock running for all samples			SIF initiated (elaborate in comments)			

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS (GUIDELINE EVALUATION)

Work Order : WP2415923 Page : 1 of 8

Client Laboratory : ALS Environmental - Winnipeg : Government of Nunavut

Contact : CGS - Rankin Inlet Megan Muckpah-Gavin **Account Manager** : Craig Riddell

> : P.O. Box 490 Address : 1329 Niakwa Road East, Unit 12 Rankin Inlet NU Canada X0C 0G0

Winnipeg, Manitoba Canada R2J 3T4

Telephone Telephone : +1 204 255 9720 : ----Project **Date Samples Received** : 25-Jun-2024 13:00 **Date Analysis Commenced** : 25-Jun-2024 PO : 08-Jul-2024 16:27 C-O-C number Issue Date

Sampler Site : ----

Quote number : 2024 Analytical Testing

No. of samples received : 2 No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Guideline Comparison

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

Address

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Ana Srzic		Organics, Winnipeg, Manitoba
Brennan Dugas	Analyst	Microbiology, Winnipeg, Manitoba
Gerry Vera	Analyst	Organics, Winnipeg, Manitoba
Jeremy Gingras	Supervisor - Semi-Volatile Instrumentation	Organics, Waterloo, Ontario
Lee McTavish		Inorganics, Winnipeg, Manitoba
Michelle Michalchuk	Analyst	Organics, Winnipeg, Manitoba
Nik Perkio	Senior Analyst	Inorganics, Waterloo, Ontario
Oleksandr Busel		Inorganics, Winnipeg, Manitoba
Oleksandr Busel		Metals, Winnipeg, Manitoba
Ryan Velasco		Organics, Winnipeg, Manitoba

Page : 2 of 8 Work Order : WP2415923

Client : Government of Nunavut

Project : --

No Breaches Found

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guidelines are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Key: LOR: Limit of Reporting (detection limit).

Unit	Description
μg/L	micrograms per litre
μS/cm	microsiemens per centimetre
mg/L	milligrams per litre
MPN/100mL	most probable number per hundred millilitres
pH units	pH units

>: greater than.

<: less than.

Red shading is applied where the result or the LOR is greater than the Guideline Upper Limit (or lower than the Guideline Lower Limit, if applicable).

For drinking water samples, Red shading is applied where the result for E.coli, fecal or total coliforms is greater than or equal to the Guideline Upper Limit.

 Page
 :
 3 of 8

 Work Order
 :
 WP2415923

Client : Government of Nunavut

Project : --

Qualifiers

Qualifier	Description
MBHT	The APHA 30 hour holding time was exceeded for microbiological testing. Samples
	processed within 48 hours from time of sampling may be valid in some cases (refer to
	Health Canada guidance).

Page : 4 of 8 Work Order : WP2415923

Client : Government of Nunavut

Project : --

		Client	sample ID	GRA-1	GRA-7	 	 	
Matrix: Wastewater								
		Sampling	date/time	24-Jun-2024 11:00	24-Jun-2024 10:40	 	 	
			Sub-Matrix	Wastewater	Wastewater	 	 	
Analyte	CAS Number	Method/Lab	Unit	WP2415923-001	WP2415923-002	 	 	
Physical Tests								
Alkalinity, bicarbonate (as CaCO3)		E290/WP	mg/L	36.5	24.9	 	 	
Alkalinity, carbonate (as CaCO3)		E290/WP	mg/L	<1.0	<1.0	 	 	
Alkalinity, hydroxide (as CaCO3)		E290/WP	mg/L	<1.0	<1.0	 	 	
Alkalinity, phenolphthalein (as CaCO3)		E290/WP	mg/L	<1.0	<1.0	 	 	
Alkalinity, total (as CaCO3)		E290/WP	mg/L	36.5	24.9	 	 	
Conductivity		E100/WP	μS/cm	205	151	 	 	
Hardness (as CaCO3), from total Ca/Mg		EC100A/WP	mg/L	51.8	37.0	 	 	
рН		E108/WP	pH units	7.63	7.48	 	 	
Solids, total suspended [TSS]		E160/WP	mg/L	<3.0	<3.0	 	 	
Anions and Nutrients								
Ammonia, total (as N)	7664-41-7	E298/WP	mg/L	0.0387	<0.0050	 	 	
Chloride	16887-00-6	E235.CI/WP	mg/L	26.9	23.5	 	 	
Nitrate (as N)	14797-55-8	E235.NO3/WP	mg/L	<0.020	<0.020	 	 	
Nitrate + Nitrite (as N)		EC235.N+N/WP	mg/L	<0.0224	<0.0224	 	 	
Nitrite (as N)	14797-65-0	E235.NO2/WP	mg/L	<0.010	<0.010	 	 	
Phosphorus, total	7723-14-0	E372/WP	mg/L	<0.020	<0.020	 	 	
Sulfate (as SO4)	14808-79-8	E235.SO4/WP	mg/L	13.3	6.18	 	 	
Cyanides								
Cyanide, strong acid dissociable (Total)		E333/WT	mg/L	<0.0050	<0.0050	 	 	
Organic / Inorganic Carbon								
Carbon, total organic [TOC]		E355-L/WP	mg/L	3.99	5.47	 	 	
Microbiological Tests								
Coliforms, Escherichia coli [E. coli]		E010-H/WP	MPN/100 mL	<10 MBHT	<10 MBHT	 	 	
Coliforms, thermotolerant [fecal]		E010.FC-H/WP	MPN/10	<10 MBHT	<10 MBHT	 	 	
Coliforms, total		E010-H/WP	0mL MPN/100 mL	10 MBHT	230 мвнт	 	 	

Page : 5 of 8 Work Order : WP2415923

Client : Government of Nunavut

Project : --

Matrice Wasternates		Client	sample ID	GRA-1	GRA-7	 	 	
Matrix: Wastewater		Sampling	date/time	24-Jun-2024 11:00	24-Jun-2024 10:40	 	 	
		S	Sub-Matrix	Wastewater	Wastewater	 	 	
Analyte	CAS Number	Method/Lab	Unit	WP2415923-001	WP2415923-002	 	 	
Total Metals								
Aluminum, total	7429-90-5 E	E420/WP	mg/L	0.0250	0.0180	 	 	
Antimony, total	7440-36-0 E	E420/WP	mg/L	<0.00010	<0.00010	 	 	
Arsenic, total	7440-38-2	E420/WP	mg/L	0.00078	0.00066	 	 	
Barium, total	7440-39-3 E	E420/WP	mg/L	0.0159	0.0169	 	 	
Beryllium, total	7440-41-7 E		mg/L	Not Detected	Not Detected	 	 	
Bismuth, total	7440-69-9	E420/WP	mg/L	<0.000050	Not Detected	 	 	
Boron, total	7440-42-8	E420/WP	mg/L	0.026	0.013	 	 	
Cadmium, total	7440-43-9 E	E420/WP	mg/L	<0.0000050	<0.0000050	 	 	
Calcium, total	7440-70-2 E	E420/WP	mg/L	14.6	10.5	 	 	
Cesium, total	7440-46-2 E	E420/WP	mg/L	0.000018	0.000015	 	 	
Chromium, total	7440-47-3 E	E420/WP	mg/L	<0.00050	<0.00050	 	 	
Cobalt, total	7440-48-4 E	E420/WP	mg/L	<0.00010	<0.00010	 	 	
Copper, total	7440-50-8 E	E420/WP	mg/L	0.00075	0.00078	 	 	
Iron, total	7439-89-6 E	E420/WP	mg/L	0.056	0.136	 	 	
Lead, total	7439-92-1 E	E420/WP	mg/L	<0.000050	0.000078	 	 	
Lithium, total	7439-93-2 E	E420/WP	mg/L	<0.0010	<0.0010	 	 	
Magnesium, total	7439-95-4 E	E420/WP	mg/L	3.72	2.63	 	 	
Manganese, total	7439-96-5 E	E420/WP	mg/L	0.0146	0.0133	 	 	
Mercury, total	7439-97-6	E508/WP	mg/L	<0.0000050	<0.0000050	 	 	
Molybdenum, total	7439-98-7 E	E420/WP	mg/L	0.000447	0.000269	 	 	
Nickel, total	7440-02-0 E	E420/WP	mg/L	0.00074	0.00060	 	 	
Phosphorus, total	7723-14-0 E	E420/WP	mg/L	<0.050	<0.050	 	 	
Potassium, total	7440-09-7 E	E420/WP	mg/L	1.94	1.55	 	 	
Rubidium, total	7440-17-7 E	E420/WP	mg/L	0.00170	0.00192	 	 	
Selenium, total	7782-49-2 E		mg/L	0.000060	0.000058	 	 	
Silicon, total	7440-21-3 E		mg/L	0.12	0.29	 	 	
Silver, total	7440-22-4 E		mg/L	Not Detected	Not Detected	 	 	
Sodium, total	7440-23-5 E		mg/L	15.5	12.4	 	 	
Strontium, total	7440-24-6		mg/L	0.0769	0.0623	 	 	

Page : 6 of 8 Work Order : WP2415923

Client : Government of Nunavut

Project : --

ALS

Sampling date/time 24-Jun-2024 11:00 10:40	
Analyte CAS Number Method/Lab Unit WP2415923-001 WP2415923-002	
Total Metals Sulfur, total 7704-34-9 E420/WP mg/L 4.93 2.41 Tellurium, total 13494-80-9 E420/WP mg/L <0.00020 Not Detected Thallium, total 7440-28-0 E420/WP mg/L <0.000010 <0.000010 Thorium, total 7440-29-1 E420/WP mg/L Not Detected Not Detected Tin, total 7440-31-5 E420/WP mg/L Not Detected Not Detected Titanium, total 7440-32-6 E420/WP mg/L 0.00150 0.00078 Tungsten, total 7440-33-7 E420/WP mg/L Not Detected Not Detected Tungsten, total 7440-33-7 E420/WP mg/L Not Detected Not Detected Tungsten, total 7440-33-7 E420/WP mg/L Not Detected Not Detected Tungsten, total 7440-33-7 E420/WP mg/L Not Detected Not Detected Tungsten, total 7440-33-7 E420/WP mg/L Not Detected Not Detected Tungsten, total 7440-33-7 E420/WP mg/L Not Detected Not Detected Tungsten, total 7440-33-7 E420/WP mg/L Not Detected Not Detected	
Sulfur, total 7704-34-9 E420/WP mg/L 4.93 2.41 Tellurium, total 13494-80-9 E420/WP mg/L <0.00020	
Tellurium, total 13494-80-9 E420/WP mg/L <0.00020	
Thallium, total 7440-28-0 E420/WP mg/L <0.000010	
Thorium, total 7440-29-1 E420/WP mg/L Not Detected Not Detected Tin, total 7440-31-5 E420/WP mg/L Not Detected Not Detected Titanium, total 7440-32-6 E420/WP mg/L 0.00150 0.00078 Tungsten, total 7440-33-7 E420/WP mg/L Not Detected Not Detected	
Tin, total 7440-31-5 E420/WP mg/L Not Detected Not Detected Titanium, total 7440-32-6 E420/WP mg/L 0.00150 0.00078 Tungsten, total 7440-33-7 E420/WP mg/L Not Detected Not Detected	
Titanium, total 7440-32-6 E420/WP mg/L 0.00150 0.00078 Tungsten, total 7440-33-7 E420/WP mg/L Not Detected Not Detected	
Tungsten, total 7440-33-7 E420/WP Mg/L Not Detected Not Detected	
Uranium, total T440-61-1 E420/WP mg/L 0.000130 0.000048	
Vanadium, total 7440-62-2 E420/WP mg/L < 0.00050	
Zinc, total 7440-66-6 E420/WP mg/L <0.0030 <0.0030	
Zirconium, total 7440-67-7 E420/WP mg/L Not Detected <0.00020	
Aggregate Organics	
Biochemical oxygen demand [BOD] E550/WP mg/L <2.0 <2.0	
Carbonaceous biochemical oxygen demand E555/WP mg/L <2.0 3.5	
Oil & grease (gravimetric) E567/WP mg/L 8.4 <5.0	
Phenols, total (4AAP) E562/WT mg/L <0.0010 <0.0010	
Volatile Organic Compounds	
Benzene 71-43-2 E611AWP mg/L < 0.00050	
Ethylbenzene 100-41-4 E611AWP mg/L <0.00050 <0.00050	
Toluene 108-88-3 E611AWP mg/L <0.00050 <0.00050	
Xylene, m+p- 179601-23-1 E611AWP mg/L <0.00040 <0.00040	
Xylene, o- 95-47-6 E611AWP mg/L <0.00030 <0.00030	
Xylenes, total 1330-20-7 E611AWP mg/L <0.00050 <0.00050	
BTEX, total E611AWP mg/L <0.0010	
Hydrocarbons	
F1 (C6-C10) E581.F1/WP mg/L <0.10 <0.10	
F1-BTEX EC580/WP mg/L <0.100 <0.100	

 Page
 :
 7 of 8

 Work Order
 :
 WP2415923

Client : Government of Nunavut

Project : --

ALS)

Matrix Westerna		Client	sample ID	GRA-1	GRA-7	 	 	
Matrix: Wastewater		Sampling	date/time	24-Jun-2024 11:00	24-Jun-2024 10:40	 	 	
		S	Sub-Matrix	Wastewater	Wastewater	 	 	
Analyte	CAS Number		Unit	WP2415923-001	WP2415923-002	 	 	
Hydrocarbons								
F2 (C10-C16)		E601/WP	mg/L	<0.10	<0.10	 	 	
F3 (C16-C34)		E601/WP	mg/L	<0.25	<0.25	 	 	
F4 (C34-C50)		E601/WP	mg/L	<0.25	<0.25	 	 	
TEH (C10-C50)	n/a	E601/WP	mg/L	<0.40	<0.40	 	 	
TEH (C16-C50)		E601/WP	mg/L	<0.40	<0.40	 	 	
Hydrocarbons Surrogates								
Bromobenzotrifluoride, 2- (F2-F4 surrogate	e) 392-83-6	E601/WP	%	101	102	 	 	
Dichlorotoluene, 3,4-	95-75-0	E581.F1/WP	%	81.8	81.6	 	 	
Volatile Organic Compounds Surrogates								
Bromofluorobenzene, 4-	460-00-4	E611A/WP	%	81.5	82.4	 	 	
Difluorobenzene, 1,4-	540-36-3	E611A/WP	%	96.6	94.1	 	 	
Polycyclic Aromatic Hydrocarbons								
Acenaphthene	83-32-9	E641A/WT	μg/L	<0.010	<0.010	 	 	
Acenaphthylene	208-96-8	E641A/WT	μg/L	<0.010	<0.010	 	 	
Acridine	260-94-6	E641A/WT	μg/L	<0.010	<0.010	 	 	
Anthracene	120-12-7	E641A/WT	μg/L	<0.010	<0.010	 	 	
Benz(a)anthracene	56-55-3	E641A/WT	μg/L	<0.010	<0.010	 	 	
Benzo(a)pyrene	50-32-8	E641A/WT	μg/L	<0.0050	<0.0050	 	 	
Benzo(b+j)fluoranthene	n/a	E641A/WT	μg/L	<0.010	<0.010	 	 	
Benzo(b+j+k)fluoranthene	n/a	E641A/WT	μg/L	<0.015	<0.015	 	 	
Benzo(g,h,i)perylene	191-24-2	E641A/WT	μg/L	<0.010	<0.010	 	 	
Benzo(k)fluoranthene	207-08-9	E641A/WT	μg/L	<0.010	<0.010	 	 	
Chrysene	218-01-9	E641A/WT	μg/L	<0.010	<0.010	 	 	
Dibenz(a,h)anthracene	53-70-3	E641A/WT	μg/L	<0.0050	<0.0050	 	 	
Fluoranthene	206-44-0	E641A/WT	μg/L	<0.010	<0.010	 	 	
Fluorene	86-73-7	E641A/WT	μg/L	<0.010	<0.010	 	 	
Indeno(1,2,3-c,d)pyrene	193-39-5	E641A/WT	μg/L	<0.010	<0.010	 	 	
Methylnaphthalene, 1-	90-12-0	E641A/WT	μg/L	<0.010	<0.010	 	 	

Page : 8 of 8 Work Order : WP2415923

Client : Government of Nunavut

Project : --

Analytical Results Evaluation

		Client	sample ID	GRA-1	GRA-7	 	 	
Matrix: Wastewater								
		Sampling	date/time	24-Jun-2024 11:00	24-Jun-2024 10:40	 	 	
		S	ub-Matrix	Wastewater	Wastewater	 	 	
Analyte	CAS Number	Method/Lab	Unit	WP2415923-001	WP2415923-002	 	 	
Polycyclic Aromatic Hydrocarbons								
Methylnaphthalene, 1+2-		E641A/WT	μg/L	<0.015	<0.015	 	 	
Methylnaphthalene, 2-	91-57-6	E641A/WT	μg/L	<0.010	<0.010	 	 	
Naphthalene	91-20-3	E641A/WT	μg/L	<0.050	<0.050	 	 	
Phenanthrene	85-01-8	E641A/WT	μg/L	<0.020	<0.020	 	 	
Pyrene	129-00-0	E641A/WT	μg/L	<0.010	<0.010	 	 	
Quinoline	91-22-5	E641A/WT	μg/L	<0.050	<0.050	 	 	
B(a)P total potency equivalents [B(a)P TPE]	E641A/WT	μg/L	<0.010	<0.010	 	 	
PAHs, high molecular weight (BC AWQ)	n/a	E641A/WT	μg/L	<0.030	<0.030	 	 	
PAHs, low molecular weight (BC AWQ)	n/a	E641A/WT	μg/L	<0.060	<0.060	 	 	
PAHs, total (CCME sewer 18)	n/a	E641A/WT	μg/L	<0.070	<0.070	 	 	
PAHs, total (EPA 16)	n/a	E641A/WT	μg/L	<0.065	<0.065	 	 	
Polycyclic Aromatic Hydrocarbons Surrog								
Chrysene-d12	1719-03-5	E641A/WT	%	112	116	 	 	
Naphthalene-d8	1146-65-2	E641A/WT	%	93.9	97.1	 	 	
Phenanthrene-d10	1517-22-2	E641A/WT	%	114	117	 	 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Key:

ALS Canada Ltd.

Address

CERTIFICATE OF ANALYSIS

Work Order : **WP2415923** Page : 1 of 7

Client : Government of Nunavut : ALS Environmental - Winnipeg

Contact : CGS - Rankin Inlet Megan Muckpah-Gavin Account Manager : Craig Riddell

: P.O. Box 490 Address : 1329 Niakwa Road East, Unit 12
Rankin Inlet NU Canada X0C 0G0 Winnipeg MB Canada R2J 3T4

Winnipeg MB Canada R2J 3T4
Telephone +1 204 255 9720

 Telephone
 : -- Telephone
 : +1 204 255 9720

 Project
 : -- Date Samples Received
 : 25-Jun-2024 13:00

 PO
 : -- Date Analysis Commenced
 : 25-Jun-2024

PO : --- Date Analysis Commenced : 25-Jun-2024

C-O-C number : --- Issue Date : 08-Jul-2024 16:33

Sampler : ---Site ----

Quote number : 2024 Analytical Testing

No. of samples received : 2
No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Ana Srzic		Organics, Winnipeg, Manitoba
Brennan Dugas	Analyst	Microbiology, Winnipeg, Manitoba
Gerry Vera	Analyst	Organics, Winnipeg, Manitoba
Jeremy Gingras	Supervisor - Semi-Volatile Instrumentation	Organics, Waterloo, Ontario
Lee McTavish		Inorganics, Winnipeg, Manitoba
Michelle Michalchuk	Analyst	Organics, Winnipeg, Manitoba
Nik Perkio	Senior Analyst	Inorganics, Waterloo, Ontario
Oleksandr Busel		Inorganics, Winnipeg, Manitoba
Oleksandr Busel		Metals, Winnipeg, Manitoba
Ryan Velasco		Organics, Winnipeg, Manitoba

Page : 2 of 7

Work Order : WP2415923

Client : Government of Nunavut

Project : ---

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
μg/L	micrograms per litre
μS/cm	microsiemens per centimetre
mg/L	milligrams per litre
MPN/100mL	most probable number per hundred millilitres
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
MBHT	The APHA 30 hour holding time was exceeded for microbiological testing. Samples
	processed within 48 hours from time of sampling may be valid in some cases (refer to
	Health Canada guidance).

>: greater than.

Page : 3 of 7

Work Order : WP2415923

Client : Government of Nunavut

Project : ---

Sub-Matrix: Wastewater			C	lient sample ID	GRA-1	GRA-7	 	
(Matrix: Water)								
			Client samp	oling date / time	24-Jun-2024 11:00	24-Jun-2024 10:40	 	
Analyte	CAS Number	Method/Lab	LOR	Unit	WP2415923-001	WP2415923-002	 	
					Result	Result	 	
Physical Tests								
Alkalinity, bicarbonate (as CaCO3)		E290/WP	1.0	mg/L	36.5	24.9	 	
Alkalinity, carbonate (as CaCO3)		E290/WP	1.0	mg/L	<1.0	<1.0	 	
Alkalinity, hydroxide (as CaCO3)		E290/WP	1.0	mg/L	<1.0	<1.0	 	
Alkalinity, phenolphthalein (as CaCO3)		E290/WP	1.0	mg/L	<1.0	<1.0	 	
Alkalinity, total (as CaCO3)		E290/WP	1.0	mg/L	36.5	24.9	 	
Conductivity		E100/WP	2.0	μS/cm	205	151	 	
Hardness (as CaCO3), from total Ca/Mg		EC100A/WP	0.50	mg/L	51.8	37.0	 	
pH		E108/WP	0.10	pH units	7.63	7.48	 	
Solids, total suspended [TSS]		E160/WP	3.0	mg/L	<3.0	<3.0	 	
Anions and Nutrients								
Ammonia, total (as N)	7664-41-7	E298/WP	0.0050	mg/L	0.0387	<0.0050	 	
Chloride	16887-00-6	E235.CI/WP	0.50	mg/L	26.9	23.5	 	
Nitrate (as N)	14797-55-8	E235.NO3/WP	0.020	mg/L	<0.020	<0.020	 	
Nitrate + Nitrite (as N)		EC235.N+N/W	0.0050	mg/L	<0.0224	<0.0224	 	
Niériés (og NI)	4.4707.05.0	P =225 NO2/MB	0.010	ma/l	<0.010	<0.010	 	
Nitrite (as N)		E235.NO2/WP	0.010	mg/L				
Phosphorus, total	7723-14-0		0.020	mg/L	<0.020	<0.020	 	
Sulfate (as SO4)	14808-79-8	E235.SO4/WP	0.30	mg/L	13.3	6.18	 	
Cyanides		EGGG NAUT	0.0050		0.0050	0.0050		
Cyanide, strong acid dissociable (Total)		E333/WT	0.0050	mg/L	<0.0050	<0.0050	 	
Organic / Inorganic Carbon								
Carbon, total organic [TOC]		E355-L/WP	0.50	mg/L	3.99	5.47	 	
Microbiological Tests					MOUT	MOUT		
Coliforms, Escherichia coli [E. coli]		E010-H/WP	10	MPN/100mL	<10 MBHT	<10 MBHT	 	
Coliforms, thermotolerant [fecal]		E010.FC-H/W	10	MPN/100mL	<10 MBHT	<10 ^{MBHT}	 	
Coliforms, total		P E010-H/WP	10	MPN/100mL	10 ^{MBHT}	230 мвнт	 	
Total Metals								
Aluminum, total	7429-90-5		0.0030	mg/L	0.0250	0.0180	 	
Antimony, total	7440-36-0	E420/WP	0.00010	mg/L	<0.00010	<0.00010	 	

Page : 4 of 7

Work Order : WP2415923

Client : Government of Nunavut

Project : ---

ALS

Sub-Matrix: Wastewater		Cl	ient sample ID	GRA-1	GRA-7	 	
(Matrix: Water)							
			ling date / time	24-Jun-2024 11:00	24-Jun-2024 10:40	 	
Analyte	CAS Number Method/Lab	LOR	Unit	WP2415923-001	WP2415923-002	 	
				Result	Result	 	
Total Metals	E400/M/D	0.00040	0	0.00070	0.00000		
Arsenic, total	7440-38-2 E420/WP	0.00010	mg/L	0.00078	0.00066	 	
Barium, total	7440-39-3 E420/WP	0.00010	mg/L	0.0159	0.0169	 	
Beryllium, total	7440-41-7 E420/WP	0.000020	mg/L	Not Detected	Not Detected	 	
Bismuth, total	7440-69-9 E420/WP	0.000050	mg/L	<0.000050	Not Detected	 	
Boron, total	7440-42-8 E420/WP	0.010	mg/L	0.026	0.013	 	
Cadmium, total	7440-43-9 E420/WP	0.0000050	mg/L	<0.0000050	<0.0000050	 	
Calcium, total	7440-70-2 E420/WP	0.050	mg/L	14.6	10.5	 	
Cesium, total	7440-46-2 E420/WP	0.000010	mg/L	0.000018	0.000015	 	
Chromium, total	7440-47-3 E420/WP	0.00050	mg/L	<0.00050	<0.00050	 	
Cobalt, total	7440-48-4 E420/WP	0.00010	mg/L	<0.00010	<0.00010	 	
Copper, total	7440-50-8 E420/WP	0.00050	mg/L	0.00075	0.00078	 	
Iron, total	7439-89-6 E420/WP	0.010	mg/L	0.056	0.136	 	
Lead, total	7439-92-1 E420/WP	0.000050	mg/L	<0.000050	0.000078	 	
Lithium, total	7439-93-2 E420/WP	0.0010	mg/L	<0.0010	<0.0010	 	
Magnesium, total	7439-95-4 E420/WP	0.0050	mg/L	3.72	2.63	 	
Manganese, total	7439-96-5 E420/WP	0.00010	mg/L	0.0146	0.0133	 	
Mercury, total	7439-97-6 E508/WP	0.0000050	mg/L	<0.0000050	<0.0000050	 	
Molybdenum, total	7439-98-7 E420/WP	0.000050	mg/L	0.000447	0.000269	 	
Nickel, total	7440-02-0 E420/WP	0.00050	mg/L	0.00074	0.00060	 	
Phosphorus, total	7723-14-0 E420/WP	0.050	mg/L	<0.050	<0.050	 	
Potassium, total	7440-09-7 E420/WP	0.050	mg/L	1.94	1.55	 	
Rubidium, total	7440-17-7 E420/WP	0.00020	mg/L	0.00170	0.00192	 	
Selenium, total	7782-49-2 E420/WP	0.000050	mg/L	0.000060	0.000058	 	
Silicon, total	7440-21-3 E420/WP	0.10	mg/L	0.12	0.29	 	
Silver, total	7440-22-4 E420/WP	0.000010	mg/L	Not Detected	Not Detected	 	
Sodium, total	7440-23-5 E420/WP	0.050	mg/L	15.5	12.4	 	
Strontium, total	7440-24-6 E420/WP	0.00020	mg/L	0.0769	0.0623	 	
Sulfur, total	7704-34-9 E420/WP	0.50	mg/L	4.93	2.41	 	
Tellurium, total	13494-80-9 E420/WP	0.00020	mg/L	<0.00020	Not Detected	 	
Thallium, total	7440-28-0 E420/WP	0.000010	mg/L	<0.000010	<0.000010	 	
	7440-20-0 - 1-25/11/	0.0000.0	g/ =	0.0000.0	1		

Page : 5 of 7

Work Order : WP2415923

Client : Government of Nunavut

Project : ---

Sub-Matrix: Wastewater		Cl	ient sample ID	GRA-1	GRA-7	 	
(Matrix: Water)							
		Client samp	ling date / time	24-Jun-2024 11:00	24-Jun-2024 10:40	 	
Analyte	CAS Number Method/Lab	LOR	Unit	WP2415923-001	WP2415923-002	 	
				Result	Result	 	
Total Metals							
Thorium, total	7440-29-1 E420/WP	0.00010	mg/L	Not Detected	Not Detected	 	
Tin, total	7440-31-5 E420/WP	0.00010	mg/L	Not Detected	Not Detected	 	
Titanium, total	7440-32-6 E420/WP	0.00030	mg/L	0.00150	0.00078	 	
Tungsten, total	7440-33-7 E420/WP	0.00010	mg/L	Not Detected	Not Detected	 	
Uranium, total	7440-61-1 E420/WP	0.000010	mg/L	0.000130	0.000048	 	
Vanadium, total	7440-62-2 E420/WP	0.00050	mg/L	<0.00050	<0.00050	 	
Zinc, total	7440-66-6 E420/WP	0.0030	mg/L	<0.0030	<0.0030	 	
Zirconium, total	7440-67-7 E420/WP	0.00020	mg/L	Not Detected	<0.00020	 	
Aggregate Organics							
Biochemical oxygen demand [BOD]	E550/WP	2.0	mg/L	<2.0	<2.0	 	
Carbonaceous biochemical oxygen demand	E555/WP	2.0	mg/L	<2.0	3.5	 	
[CBOD]							
Oil & grease (gravimetric)	E567/WP	5.0	mg/L	8.4	<5.0	 	
Phenols, total (4AAP)	E562/WT	0.0010	mg/L	<0.0010	<0.0010	 	
Volatile Organic Compounds							
Benzene	71-43-2 E611A/WP	0.00050	mg/L	<0.00050	<0.00050	 	
Ethylbenzene	100-41-4 E611A/WP	0.00050	mg/L	<0.00050	<0.00050	 	
Toluene	108-88-3 E611A/WP	0.00050	mg/L	<0.00050	<0.00050	 	
Xylene, m+p-	179601-23-1 E611A/WP	0.00040	mg/L	<0.00040	<0.00040	 	
Xylene, o-	95-47-6 E611A/WP	0.00030	mg/L	<0.00030	<0.00030	 	
Xylenes, total	1330-20-7 E611A/WP	0.00050	mg/L	<0.00050	<0.00050	 	
BTEX, total	E611A/WP	0.0010	mg/L	<0.0010	<0.0010	 	
Hydrocarbons							
F1 (C6-C10)	E581.F1/WP	0.10	mg/L	<0.10	<0.10	 	
F1-BTEX	EC580/WP	0.100	mg/L	<0.100	<0.100	 	
F2 (C10-C16)	E601/WP	0.10	mg/L	<0.10	<0.10	 	
F3 (C16-C34)	E601/WP	0.25	mg/L	<0.25	<0.25	 	
F4 (C34-C50)	E601/WP	0.25	mg/L	<0.25	<0.25	 	
TEH (C10-C50)	n/a E601/WP	0.40	mg/L	<0.40	<0.40	 	
TEH (C16-C50)	E601/WP	0.40	mg/L	<0.40	<0.40	 	
1 ' '	I	1	J		l	l	

Page : 6 of 7

Work Order : WP2415923

Client : Government of Nunavut

Project : ---

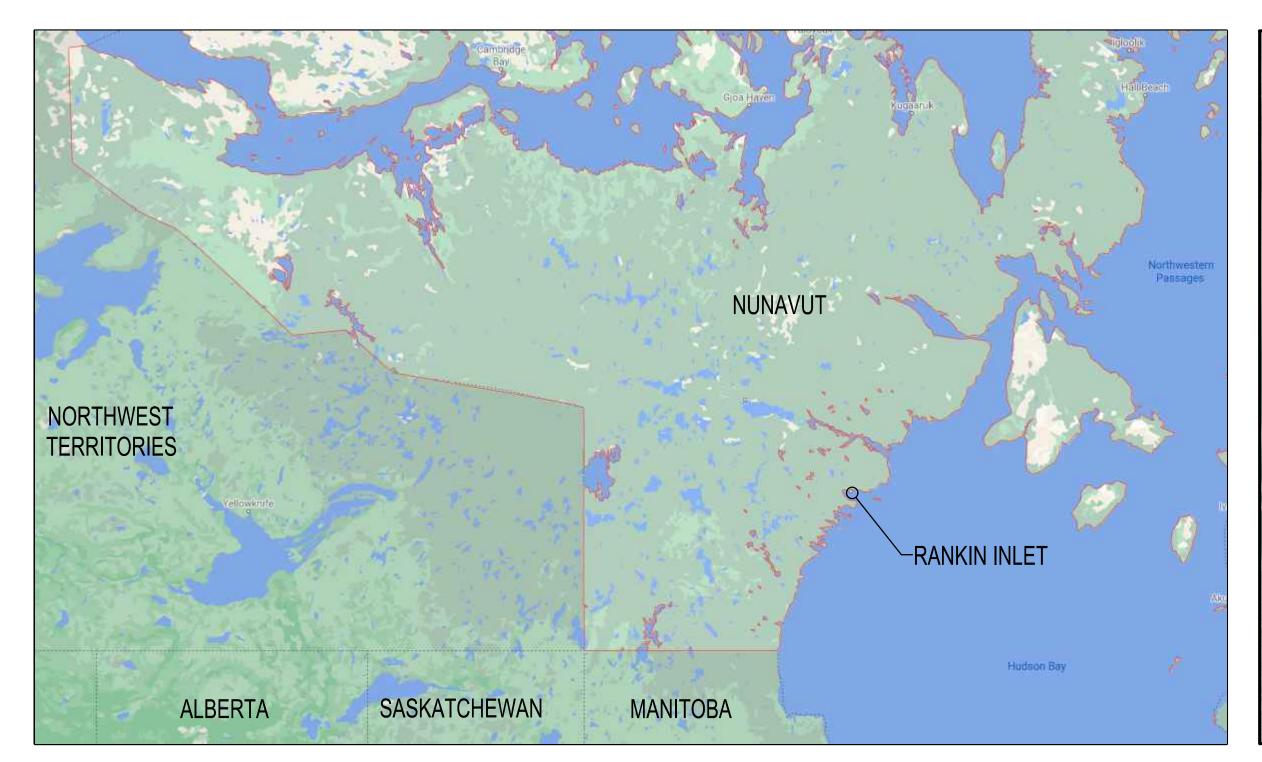
Sub-Matrix: Wastewater		CI	ient sample ID	GRA-1	GRA-7	 	
(Matrix: Water)							
			ling date / time	24-Jun-2024 11:00	24-Jun-2024 10:40	 	
Analyte	CAS Number Method/Lab	LOR	Unit	WP2415923-001	WP2415923-002	 	
				Result	Result	 	
Hydrocarbons Surrogates							
Bromobenzotrifluoride, 2- (F2-F4 surrogate)	392-83-6 E601/WP	1.0	%	101	102	 	
Dichlorotoluene, 3,4-	95-75-0 E581.F1/WP	1.0	%	81.8	81.6	 	
Volatile Organic Compounds Surrogates							
Bromofluorobenzene, 4-	460-00-4 E611A/WP	1.0	%	81.5	82.4	 	
Difluorobenzene, 1,4-	540-36-3 E611A/WP	1.0	%	96.6	94.1	 	
Polycyclic Aromatic Hydrocarbons							
Acenaphthene	83-32-9 E641A/WT	0.010	μg/L	<0.010	<0.010	 	
Acenaphthylene	208-96-8 E641A/WT	0.010	μg/L	<0.010	<0.010	 	
Acridine	260-94-6 E641A/WT	0.010	μg/L	<0.010	<0.010	 	
Anthracene	120-12-7 E641A/WT	0.010	μg/L	<0.010	<0.010	 	
Benz(a)anthracene	56-55-3 E641A/WT	0.010	μg/L	<0.010	<0.010	 	
Benzo(a)pyrene	50-32-8 E641A/WT	0.0050	μg/L	<0.0050	<0.0050	 	
Benzo(b+j)fluoranthene	n/a E641A/WT	0.010	μg/L	<0.010	<0.010	 	
Benzo(b+j+k)fluoranthene	n/a E641A/WT	0.015	μg/L	<0.015	<0.015	 	
Benzo(g,h,i)perylene	191-24-2 E641A/WT	0.010	μg/L	<0.010	<0.010	 	
Benzo(k)fluoranthene	207-08-9 E641A/WT	0.010	μg/L	<0.010	<0.010	 	
Chrysene	218-01-9 E641A/WT	0.010	μg/L	<0.010	<0.010	 	
Dibenz(a,h)anthracene	53-70-3 E641A/WT	0.0050	μg/L	<0.0050	<0.0050	 	
Fluoranthene	206-44-0 E641A/WT	0.010	μg/L	<0.010	<0.010	 	
Fluorene	86-73-7 E641A/WT	0.010	μg/L	<0.010	<0.010	 	
Indeno(1,2,3-c,d)pyrene	193-39-5 E641A/WT	0.010	μg/L	<0.010	<0.010	 	
Methylnaphthalene, 1-	90-12-0 E641A/WT	0.010	μg/L	<0.010	<0.010	 	
Methylnaphthalene, 1+2-	E641A/WT	0.015	μg/L	<0.015	<0.015	 	
Methylnaphthalene, 2-	91-57-6 <mark>E641A/W</mark> T	0.010	μg/L	<0.010	<0.010	 	
Naphthalene	91-20-3 <mark>E641A/W</mark> T	0.050	μg/L	<0.050	<0.050	 	
Phenanthrene	85-01-8 E641A/WT	0.020	μg/L	<0.020	<0.020	 	
Pyrene	129-00-0 E641A/WT	0.010	μg/L	<0.010	<0.010	 	
Quinoline	91-22-5 E641A/WT	0.050	μg/L	<0.050	<0.050	 	
B(a)P total potency equivalents [B(a)P TPE]	E641A/WT	0.010	μg/L	<0.010	<0.010	 	
PAHs, high molecular weight (BC AWQ)	n/a E641A/WT	0.030	μg/L	<0.030	<0.030	 	
<u> </u>	· 1	1			l l		l

Page : 7 of 7

Work Order : WP2415923

Client : Government of Nunavut

Project : ----


Analytical Results

Sub-Matrix: Wastewater			Cli	ient sample ID	GRA-1	GRA-7		
(Matrix: Water)								
			Client samp	ling date / time	24-Jun-2024 11:00	24-Jun-2024 10:40		
Analyte	CAS Number	Method/Lab	LOR	Unit	WP2415923-001	WP2415923-002		
					Result	Result		
Polycyclic Aromatic Hydrocarbons								
PAHs, low molecular weight (BC AWQ)	n/a	E641A/WT	0.060	μg/L	<0.060	<0.060		
PAHs, total (CCME sewer 18)	n/a	E641A/WT	0.070	μg/L	<0.070	<0.070		
PAHs, total (EPA 16)	n/a	E641A/WT	0.065	μg/L	<0.065	<0.065		
Polycyclic Aromatic Hydrocarbons Surrogates								
Chrysene-d12	1719-03-5	E641A/WT	0.1	%	112	116		
Naphthalene-d8	1146-65-2	E641A/WT	0.1	%	93.9	97.1		
Phenanthrene-d10	1517-22-2	E641A/WT	0.1	%	114	117		

Please refer to the General Comments section for an explanation of any result qualifiers detected.

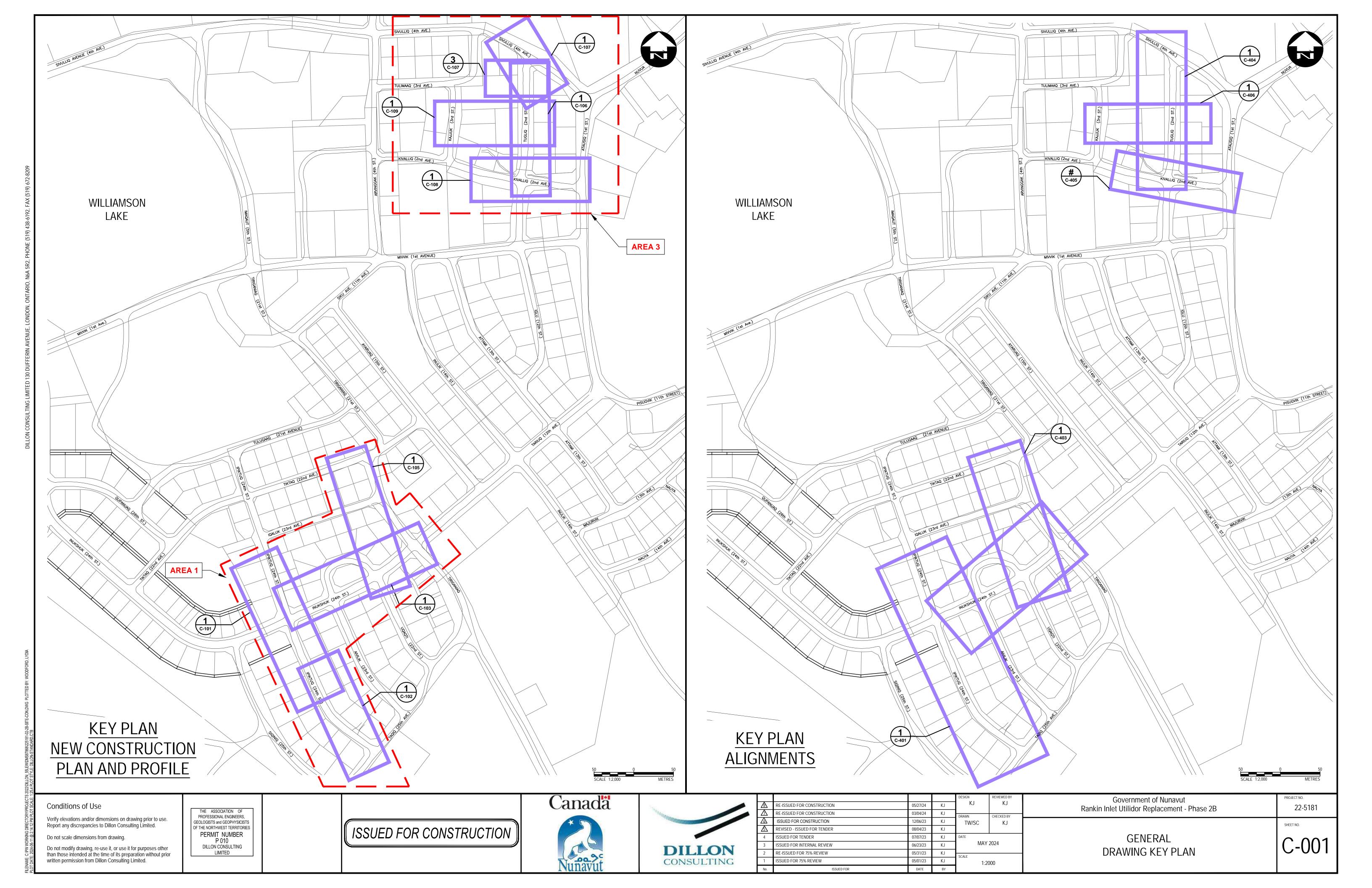
Please refer to the Accreditation section for an explanation of analyte accreditations.

Appendix B: Drawings of Utilidor Upgrades

KEY PLAN

RANKIN INLET UTILIDOR REPLACEMENT PHASE 2, PACKAGE B

Government of Nunavut


RANKIN INLET, NUNAVUT, CANADA

CLIENT PROJECT NO. 16320-00370

OLICET NO	DRAWING INDEX
SHEET NO.	DRAWING TITLE
GENERAL	
C-001	DRAWING KEY PLAN
C-002	LEGENDS AND GENERAL NOTES
C-003	EXISTING SITE PLAN AND CONDITIONS
C-004	REMOVALS SITE PLAN
C-005	REMOVED FROM CONTRACT (REV 9 - 06/10/24)
WATER SYSTEM	1 SCHEMATICS
C-006	IPIKTUQ STREET TO INUKSHUK AVENUE
C-007	TUGLIQ STREET
NEW CONSTRU	CTION PLAN & PROFILE
C-101	IPIQTUK STREET STA. 1+000 TO 1+190
C-102	IPIQTUK STREET STA. 1+140 TO 1+263
C-103	INUKSHUK AVENUE STA. 2+000 TO 2+190
C-105	TIRIGANIAQ ALLEY STA. 3+000 TO 3+106
C-106	TUGLIQ STREET STA. 5+000 TO 5+160
C-107	TUGLIQ STREET AND TULIMAAQ ALLEY
C-108	KIVALLIQ AVENUE STA. 5+500 TO 5+604
C-109	KAJJUK TO TUGLIQ STREET STA. 5+700 5+793
SANITARY SEWI	ER - ACCESS VAULTS
C-201	S24-01, S24-05 AND S24-07
C-202	S24-11, S24-13, S24-15 AND S24-17
C-203	S24-19, S24-29, AND S24-33
C-204	S24-35 AND S24-37
WATERMAIN AN	D SANITARY SEWER - ACCESS VAULTS
C-205	AV24-03 AND AV24-31
	ACCESS VAULTS
C-206	W24-02 W24-04, W24-06 AND W24-08
C-207	W24-10, W24-12, W24-14 AND W24-16
C-208	W24-18, W24-32, AND W24-34
	-,
ALIGNMENT PLA	I AN
C-401	IPIKTUQ STREET SANITARY AND WATER
C-401	INUKSHUK - TARIUQ AVENUE SANITARY AND WATE
C-402	TIRIGANIAQ ALLEY SANITARY AND WATER
<u></u>	THROUND ALLET OMNITANT AND WATEN

TYPICAL DETAILS						
THORE DETAILS						
C-501	WATER AND SANITARY VAULT PENETRATION DETAILS					
C-502	ACCESS VAULT DETAILS (1 OF 4)					
C-503	ACCESS VAULT DETAILS (2 OF 4)					
C-504	ACCESS VAULT DETAILS (3 OF 4)					
C-505	ACCESS VAULT DETAILS (4 OF 4)					
C-506	WATER SERVICE DETAILS					
C-507	SANITARY SERVICE DETAILS					
C-508	TEMPORARY WATER SUPPLY PIPING DETAILS					

RE-ISSUED FOR CONSTRUCTION

GENERAL NOTES:

- CONTRACTOR TO VERIFY ALL DIMENSIONS PRIOR TO PROCEEDING WITH THE WORK.
- SURVEY
- COMPLETED BY SUB-ARCTIC GEOMATICS

- ELEVATIONS SHOWN ON DRAWINGS ARE BASED ON GEODETIC DATA. FOR THE PURPOSE OF THIS CONTRACT 0.00 GEODETIC IS ASSUMED EQUAL TO MEAN SEA LEVEL.

BENCH MARK: MON. CCM2

- N 6964936.736, E 546463.640, EL. 27.008
- 3. ALL SURVEY MONUMENTS DISTURBED BY CONSTRUCTION SHALL BE REINSTATED.
- 4. CONTRACTOR SHALL PROVIDE ALL TEMPORARY SIGNAGE FOR PEDESTRIAN AND TRAFFIC REROUTING AS REQUIRED.
- 5. ACCESS TO EXISTING PROPERTIES AND BUSINESSES SHALL BE MAINTAINED AT ALL TIMES.
- 6. LOCATION OF EXISTING SERVICES, UNDERGROUND INFRASTRUCTURE, STRUCTURES, AND BUILDINGS ARE APPROXIMATE ONLY AND ARE TO BE CONFIRMED IN THE FIELD BY THE CONTRACTOR PRIOR TO COMMENCING CONSTRUCTION. NOTIFY ENGINEER OF DISCREPANCIES BETWEEN EXISTING CONDITIONS AND DRAWINGS.
- 7. CONTRACTOR TO CONTACT UTILITY COMPANIES REGARDING ANY UNDERGROUND AND OVERHEAD UTILITIES IN THE AREA OF WORKS. CONTRACTOR SHALL USE CAUTION TO LOCATE EXISTING UNDERGROUND POWER AND TELECOMMUNICATIONS LINES. LINES SHALL BE KEPT IN SERVICE WHERE TRENCHING CROSSES UNDERGROUND LINES. CONTRACTOR SHALL SUBMIT SUPPORT AND BRACING DETAILS TO ENGINEER FOR APPROVAL PRIOR TO UNDERMINING POWER AND TELECOMMUNICATION LINES.
- 8. ALL DEMOLISHED CONCRETE, PIPE, CONTAMINATED SOILS, AND OTHER UNSUITABLE MATERIALS MUST BE REMOVED FROM THE SITE AND LEGALLY DISPOSED OF BY THE CONTRACTOR AT A DISPOSAL SITE APPROVED BY THE GOVERNMENT OF NUNAVUT.
- 9. ROCK REMOVAL, IF REQUIRED, SHALL BE CARRIED OUT BY MECHANICAL MEANS ONLY. THE USE OF EXPLOSIVES IS NOT PERMITTED ON SITE.
- 10. ALL EXISTING AREAS AND INFRASTRUCTURE DISTURBED BY CONTRACTOR'S OPERATIONS WHICH ARE NOT DESIGNATED TO BE RELOCATED OR RECONSTRUCTED SHALL BE REINSTATED TO PRE-CONSTRUCTION CONDITION OR BETTER. THERE SHALL BE NO ADDITIONAL PAYMENT FOR REINSTATEMENT OF SUCH.
- 11. WATER MAIN SHALL BE INSTALLED WITH A CONSISTENT GRADE AND SHALL NOT HAVE A HIGH POINT OR LOW POINT UNLESS SHOWN.
- 12. THE CONTRACTOR SHALL SUBMIT A COMPREHENSIVE CONSTRUCTION AND COMMISSIONING PLAN. AT A MINIMUM, THE PLAN SHALL INCLUDE:
- CONSTRUCTION PHASING PLANS
- COMMISSIONING PHASING PLANS
- TRAFFIC ACCOMMODATION PLAN
- TEMPORARY SERVICING PLAN
- DISINFECTION METHOD
- SCHEMATIC APPROACH FOR FILLING AND FLUSHING
- SUPPORTING CALCULATIONS
- 13. THE CONTRACTOR SHALL SEAL ALL ABANDONED EXISTING WATER AND SEWER PIPES WITH A WATER TIGHT PLUG. EXACT LOCATIONS TO BE SURVEYED AND PROVIDED TO OWNER PRIOR TO BACKFILLING.
- 14. THE CONTRACTOR SHALL DISPOSE OF ALL EXISTING EXCAVATED MATERIALS.
- 15. PUMPED BYPASS OF SANITARY FLOW REQUIRED AROUND AREA OF CONSTRUCTION.
- 16. CONTRACTOR SHALL PROVIDE TO ENGINEER AS-BUILT SURVEY INFORMATION AT TOP OF WATER MAIN AND SANITARY SEWER AND WATER AND SEWER SERVICES EVERY 10 METRES AND AT EVERY FITTING AND CONNECTION PRIOR FOR ACCEPTANCE PRIOR TO BACKFILLING THE TRENCH. IF THE ALIGNMENT IS FOUND TO BE UNACCEPTABLE AND THE TRENCH IS BACKFILLED, THE CONTRACTOR SHALL EXCAVATE THE TRENCH AND FIX THE WORK AT THEIR OWN EXPENSE.
- 17. THE CONTRACTOR TO PROVIDE TEMPORARY UTILITIES TO MAINTAIN FLOW TO HYDRANTS AND EXISTING DWELLINGS AFFECTED BY THE WORK. CONTRACTOR TO SUBMIT A PLAN TO ENGINEER FOR APPROVAL PRIOR TO PROCEEDING WITH THE WORK.
- 18. SERVICE SIZES, ELEVATIONS AND LOCATIONS APPROXIMATE BASED ON BACKGROUND DOCUMENTS, TO BE CONFIRMED ON-SITE. CONTRACTOR TO VERIFY EXISTING PIPE ELEVATIONS AT TIE-INS AND CROSSINGS PRIOR TO COMMENCING WORK. CONTRACTOR RESPONSIBLE FOR REPLACING SERVICE CONNECTION INTO BUILDING. CONTRACTOR RESPONSIBLE FOR CONNECTION UP TO EXISTING WATER METER. CONTRACTOR TO INSTALL REDUCED PRESSURE BACKFLOW PREVENTER INSIDE BUILDINGS. ALL SERVICES ARE HDPE DR 11 PIPE c/w 75mm POLYURETHANE INSULATION AND FRP JACKET. CONTRACTOR TO SLOPE WATER MAIN SUCH THAT THERE IS 300mm MIN. SPACING BETWEEN TOP OF SANITARY FRP JACKET AND BOTTOM OF WATER MAIN FRP JACKET TO FACILITATE SANITARY SERVICE CONNECTION. MIN. SANITARY SERVICE SLOPE IS 1.00%.
- 19. REINSTATE SOIL TO PROVIDE POSITIVE DRAINAGE AT 3H:1V SLOPE, 300mm-500mm BELOW RIM AT ACCESS VAULT EDGE. (TYP. FOR ALL ACCESS VAULTS).
- 20. REMOVE AND DISPOSE OF ALL PIPES AND VAULTS AS REQUIRED FOR NEW MAINS AND VAULTS.
- 21. CULVERTS SHALL INCLUDE RIP-RAP.
- 22. DO NOT EXCEED PIPE MANUFACTURER'S MIN. RADIUS FOR PIPE CURVATURE.

Conditions of Use

Verify elevations and/or dimensions on drawing prior to use. Report any discrepancies to Dillon Consulting Limited.

Do not scale dimensions from drawing.

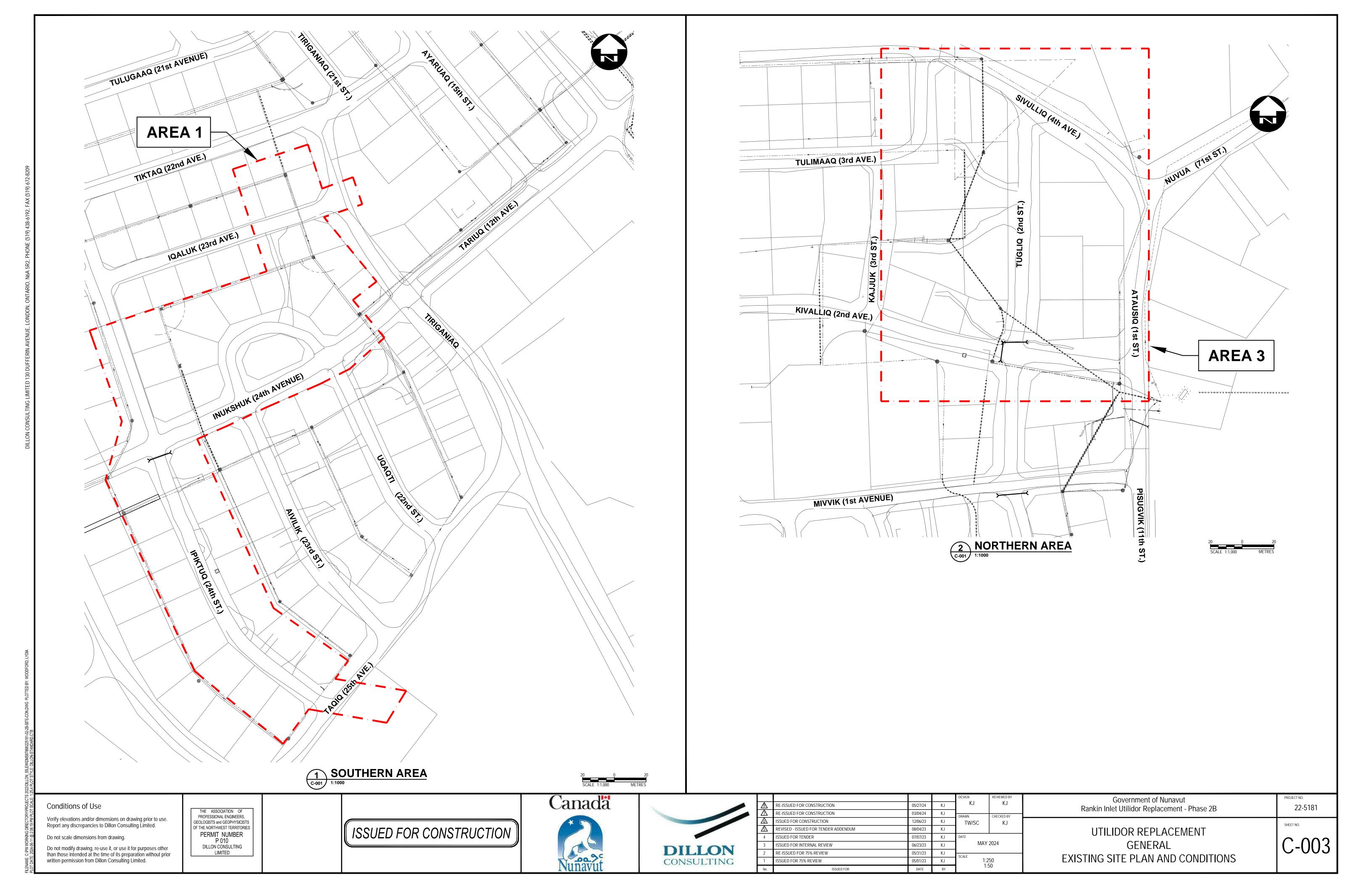
Do not modify drawing, re-use it, or use it for purposes other than those intended at the time of its preparation without prior written permission from Dillon Consulting Limited.

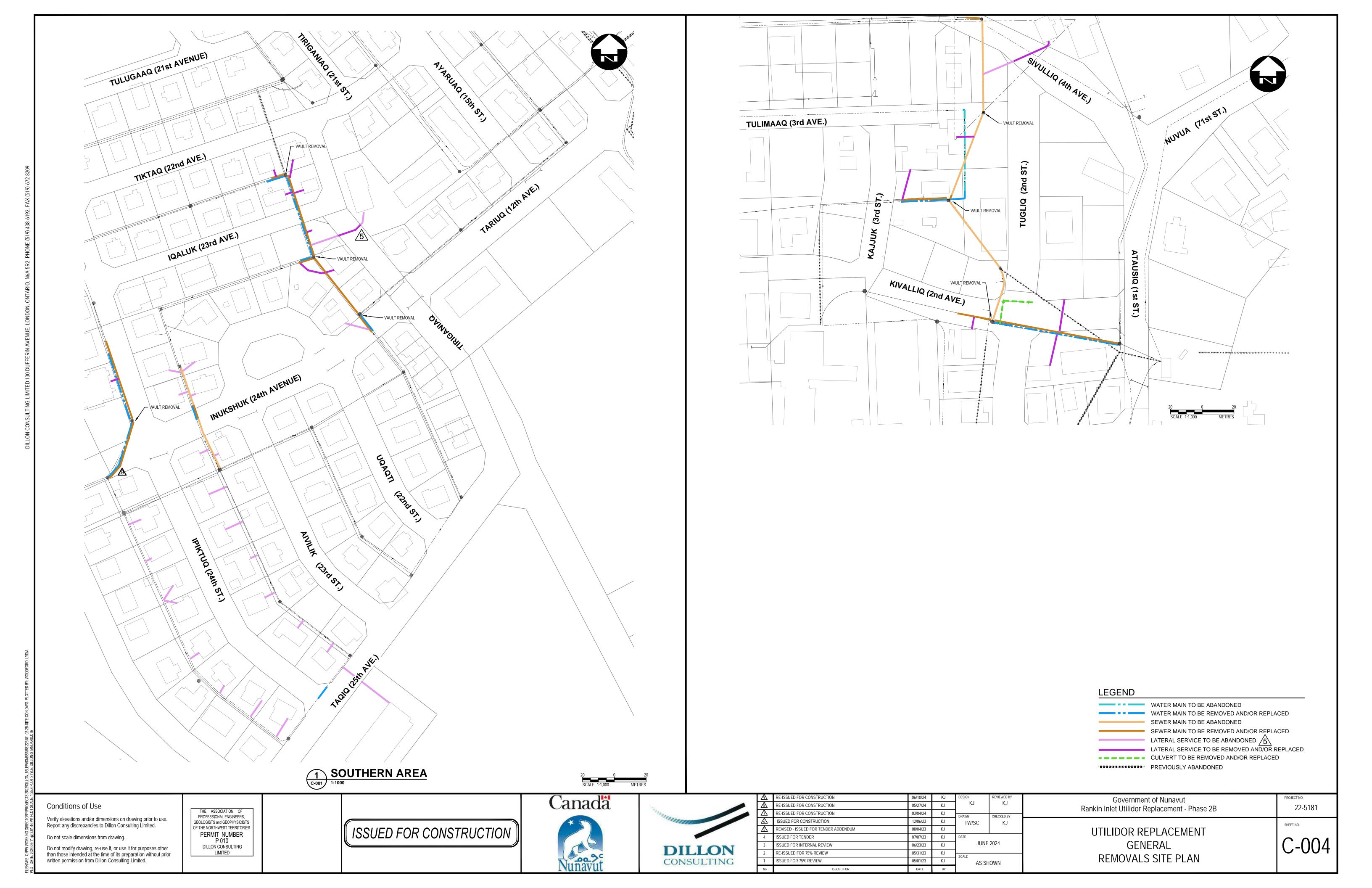
THE ASSOCIATION OF PROFESSIONAL ENGINEERS, GEOLOGISTS and GEOPHYSICISTS OF THE NORTHWEST TERRITORIES PERMIT NUMBER DILLON CONSULTING LIMITED

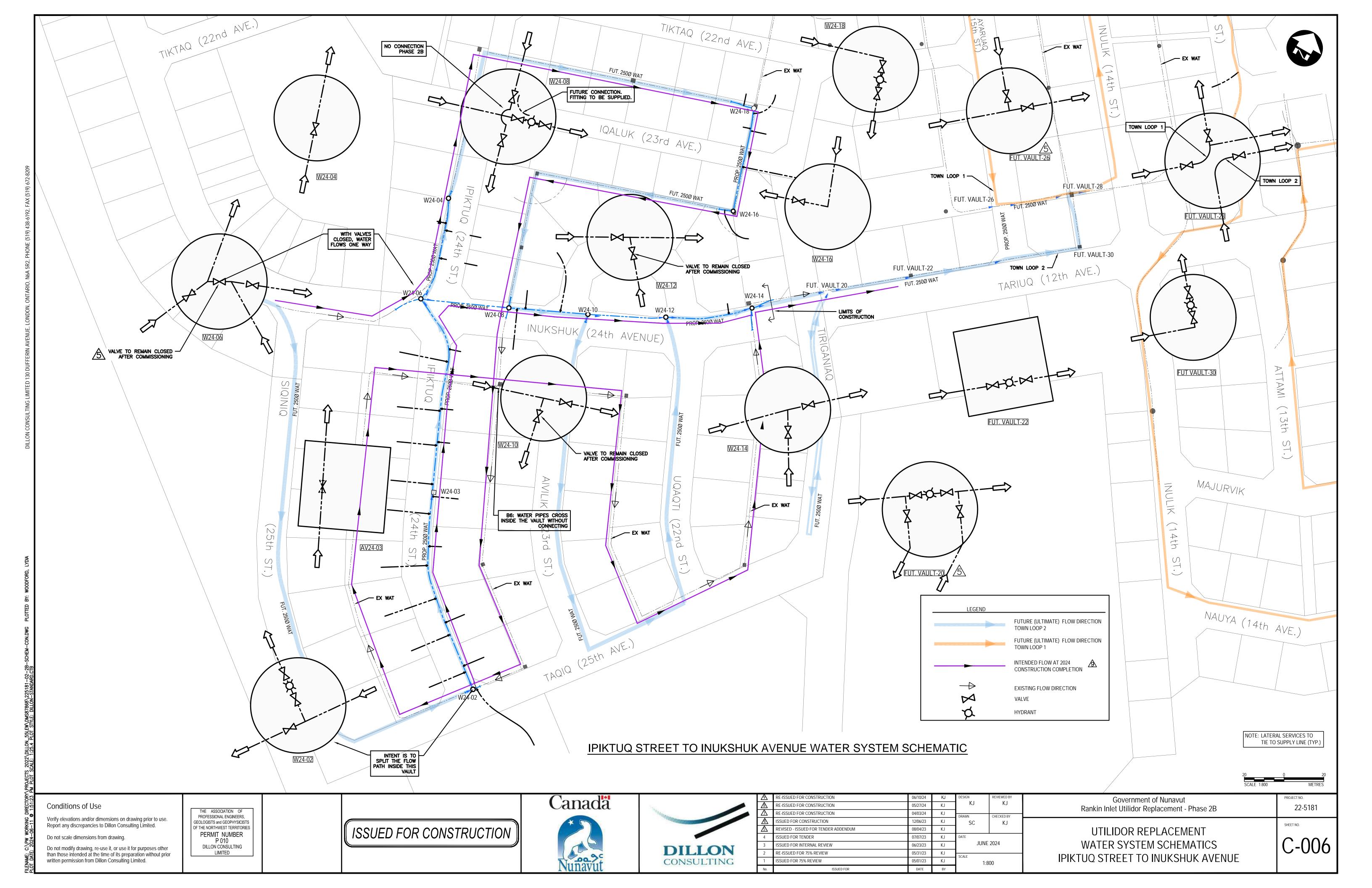
ISSUED FOR CONSTRUCTION

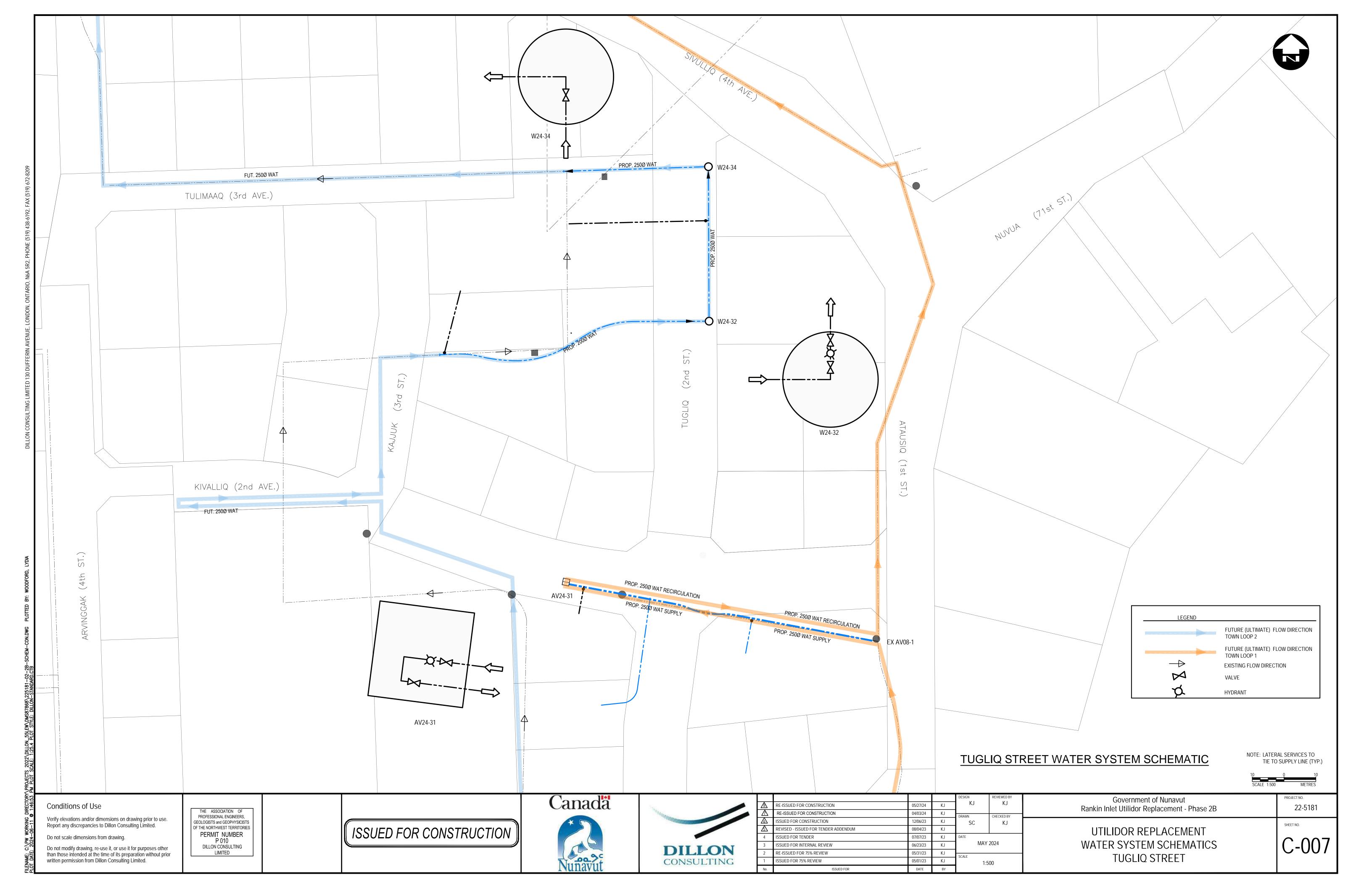
				DESIGN	REVIEWED BY	
◬	RE-ISSUED FOR CONSTRUCTION	05/27/24	KJ	KJ	KJ	
Δ	RE-ISSUED FOR CONSTRUCTION	03/04/24	KJ	DRAWN	CHECKED BY	
<u> </u>	ISSUED FOR CONSTRUCTION	12/06/23	KJ	TW/SC	KJ	
∱	REVISED - ISSUED FOR TENDER ADDENDUM	08/04/23	KJ			
4	ISSUED FOR TENDER	07/07/23	KJ	DATE		
3	ISSUED FOR INTERNAL REVIEW	06/23/23	KJ	MAY 2024		
2	RE-ISSUED FOR 75% REVIEW	05/31/23	KJ	SCALE		
1	ISSUED FOR 75% REVIEW	05/01/23	KJ	1:2		
No.	ISSUED FOR	DATE	BY	1:5	DU .	

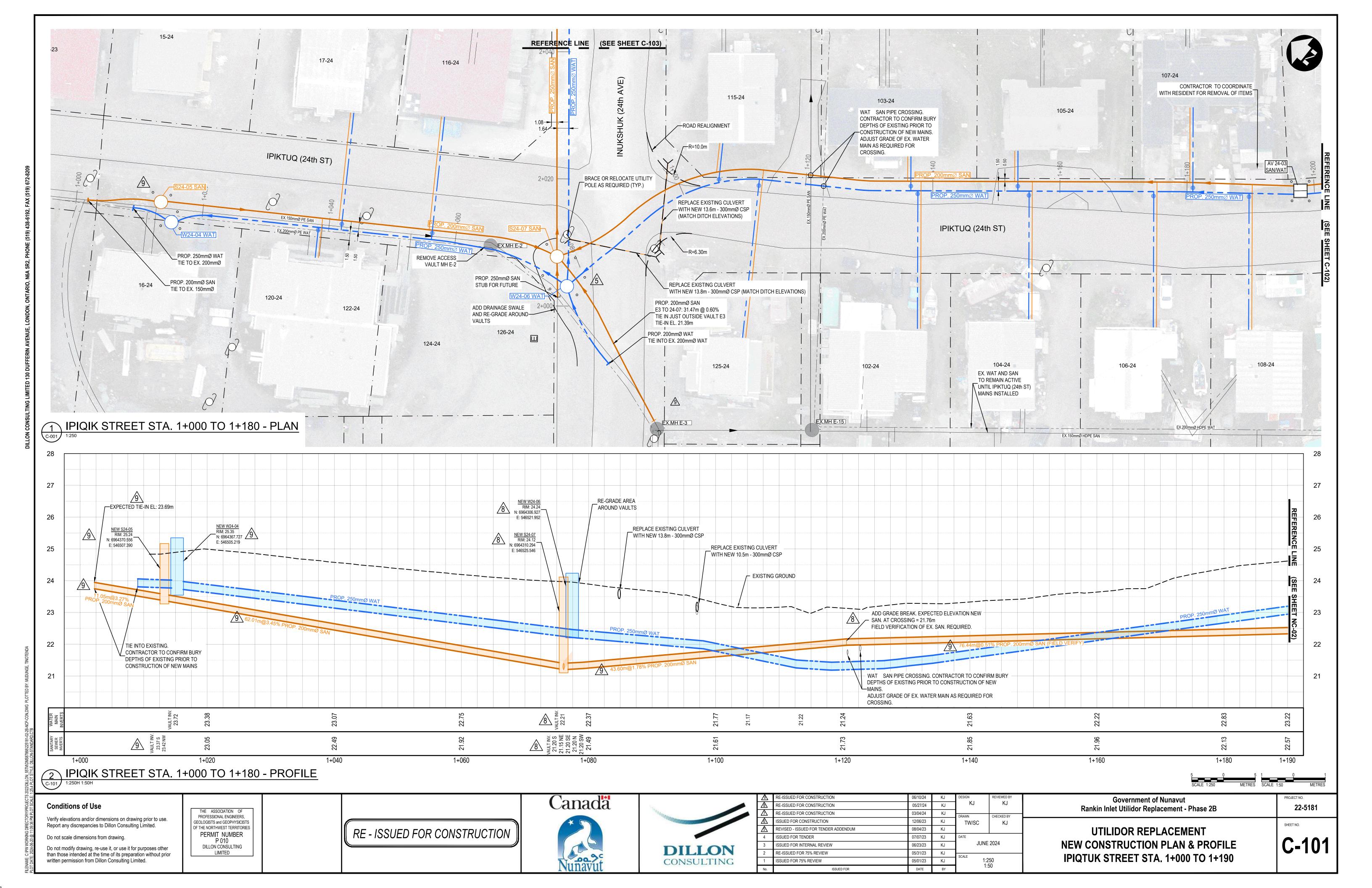
Government of Nunavut Rankin Inlet Utilidor Replacement - Phase 2B	PROJECT NO. 22-5181
	SHEET NO.
GENERAL LEGEND AND GENERAL NOTES	C-002

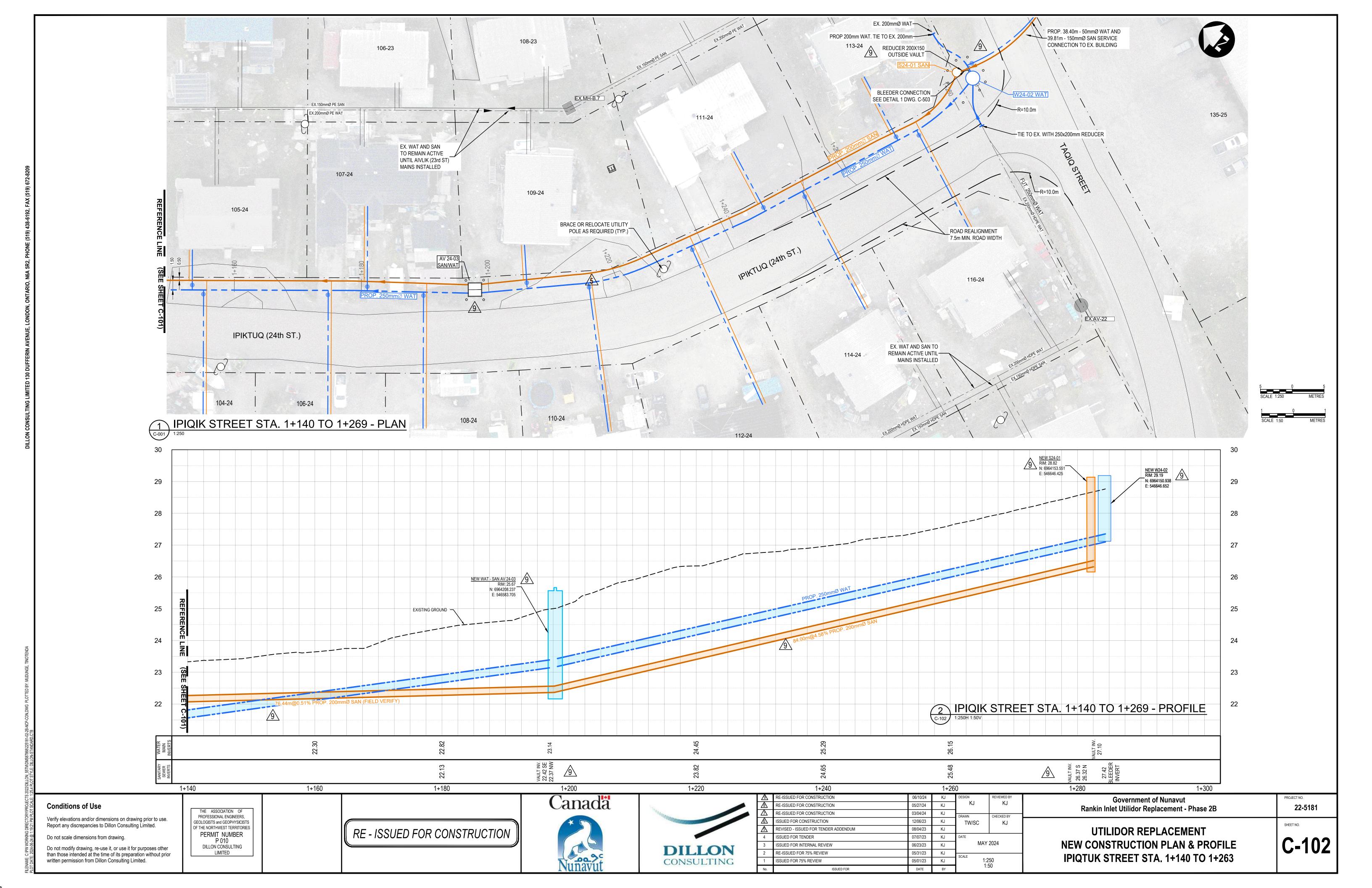

EXISTING PROPOSED PROPERTY LINE EDGE OF ROADWAY CULVERT **>----**___ **ROAD SIGN** FENCE BOLLARD DITCH ____ DRIVEWAY MINOR COUNTOUR MAJOR CONTOUR EXISTING CONTOUR ELEVATION 10.0 ELECTRICAL CABINET b UTILITY POLE SANITARY SEWER AND VAULT EX 200ømm SAN (GRAVITY) SANITARY SEWER (FORCEMAIN) WATERMAIN AND VAULT PARTITION WALL VAULT (SHARED WATER / SAN) END CAP / STUB FOR FUTURE TIE TO EXISTING MAIN _---OBJECT TO BE ABANDONED XXXXXX

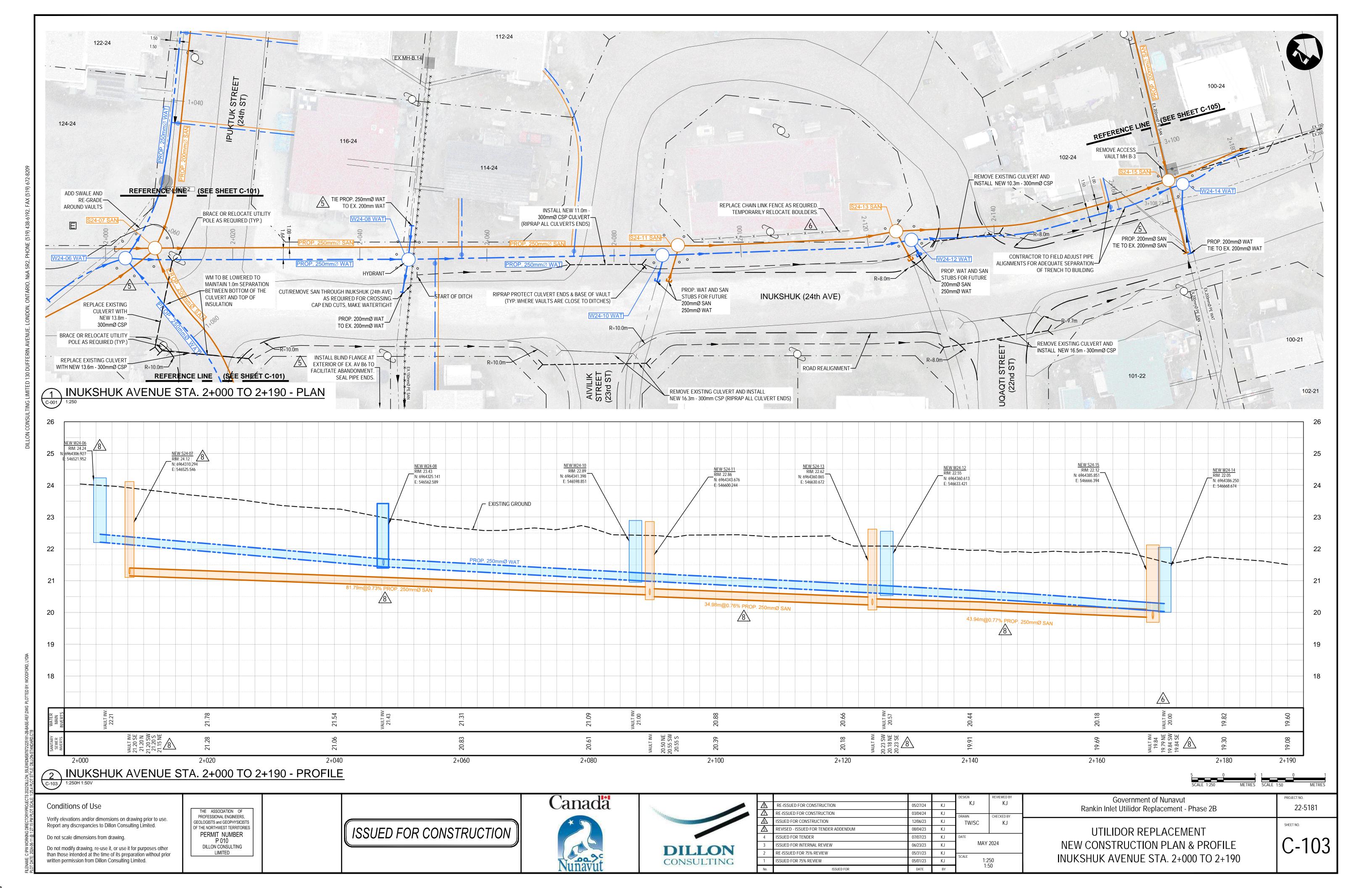

LEGEND:

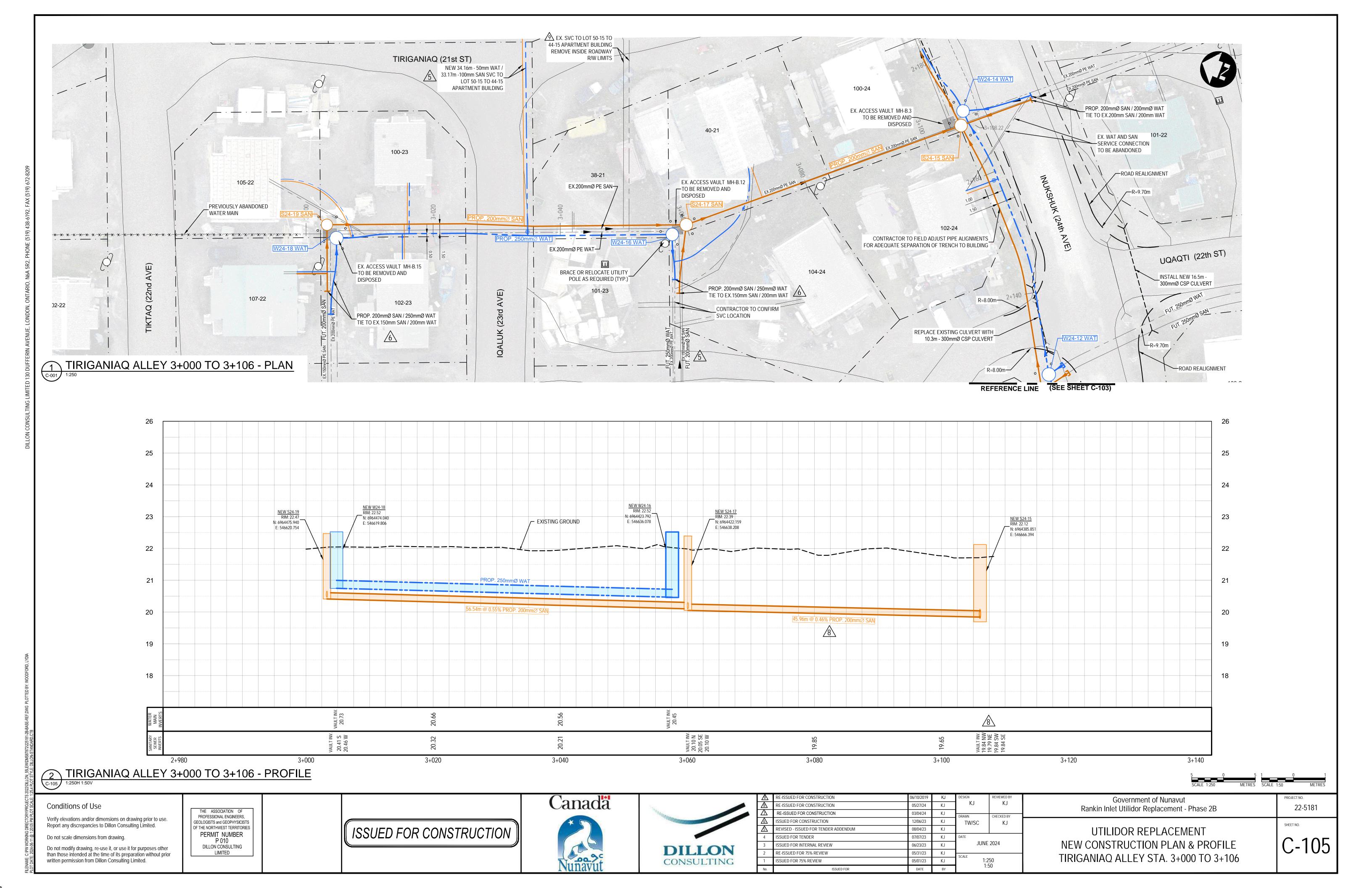

PREVIOUSLY ABANDONED

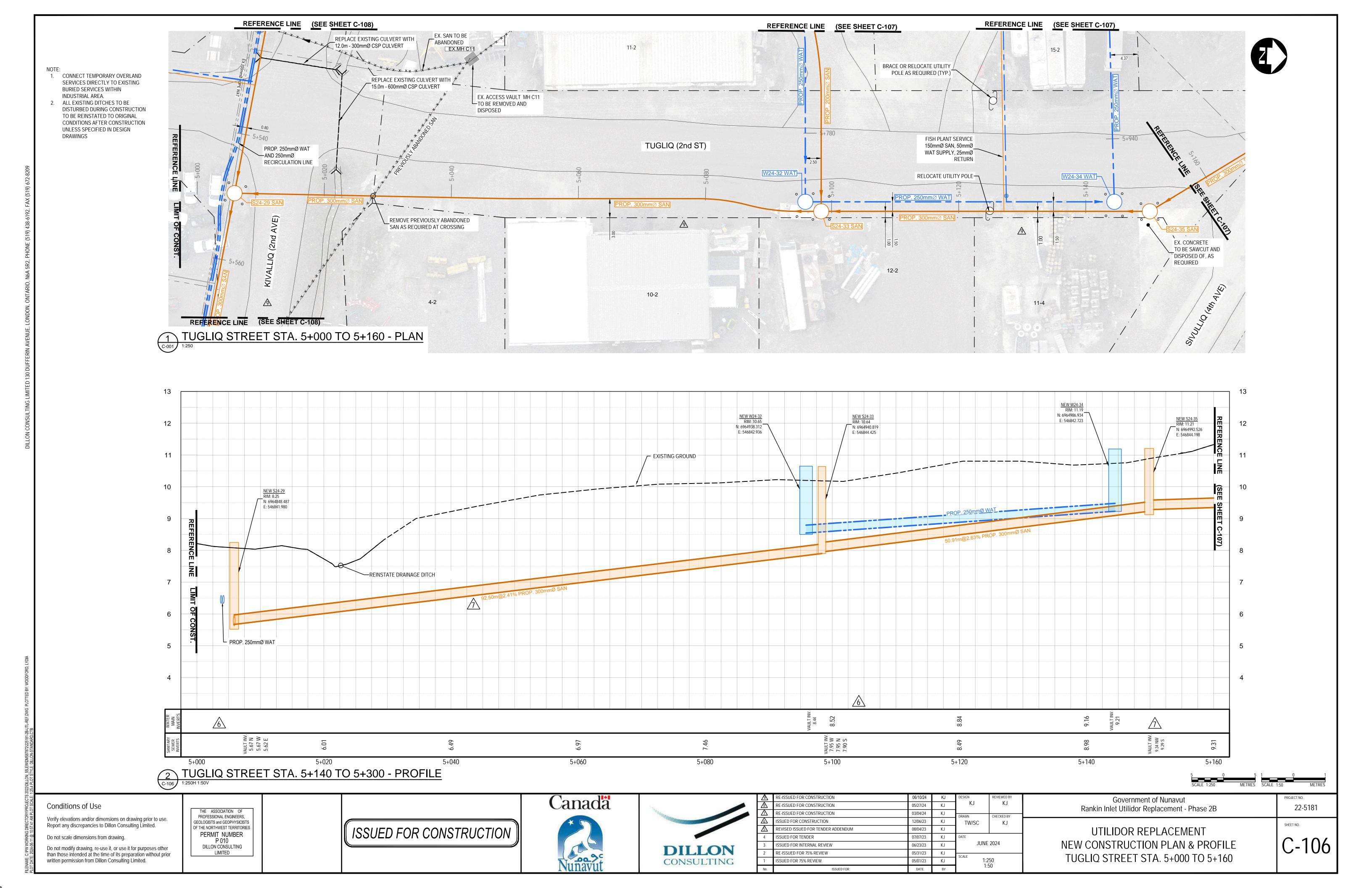

CURB STOP

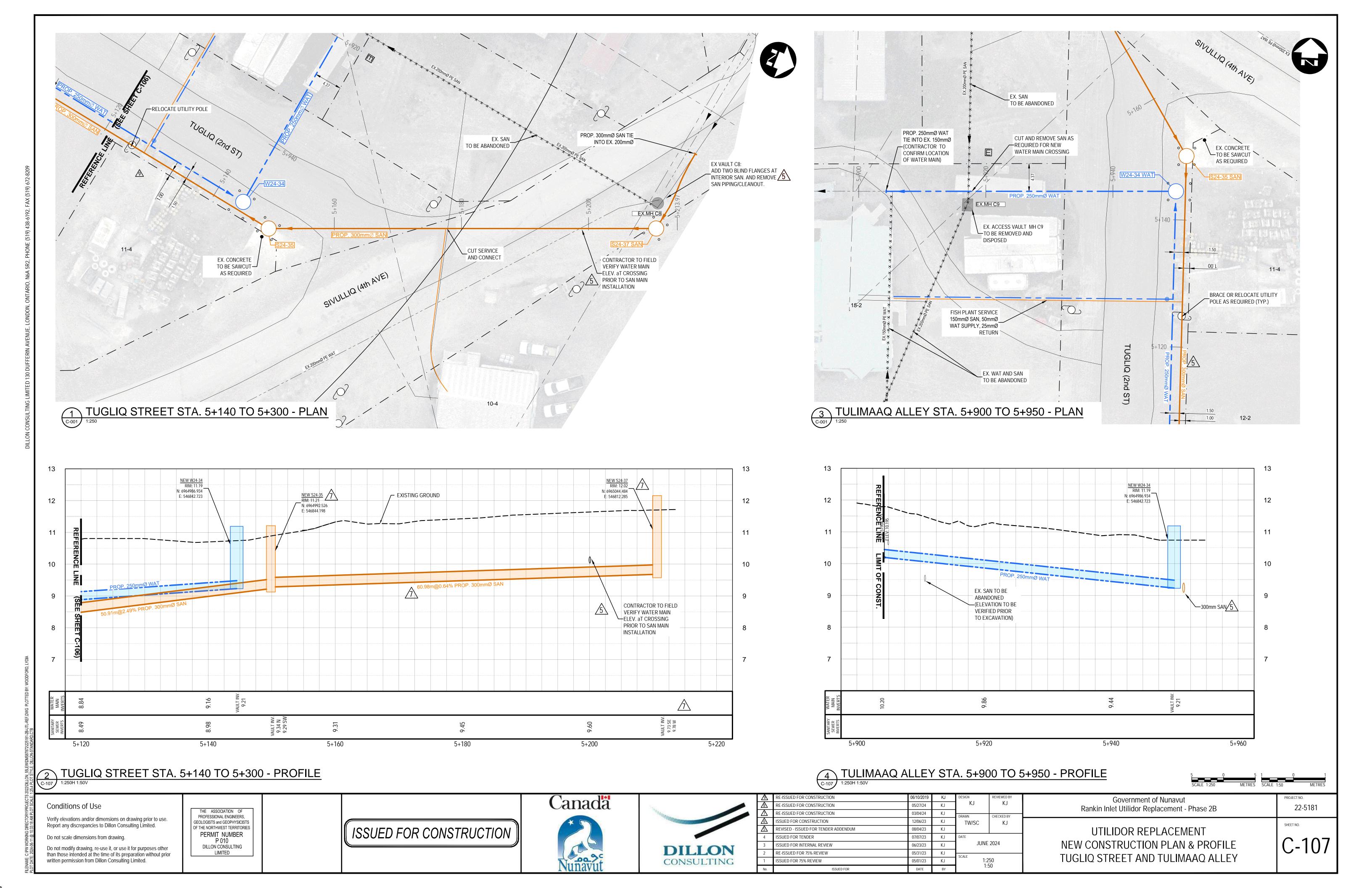

X X X X X X

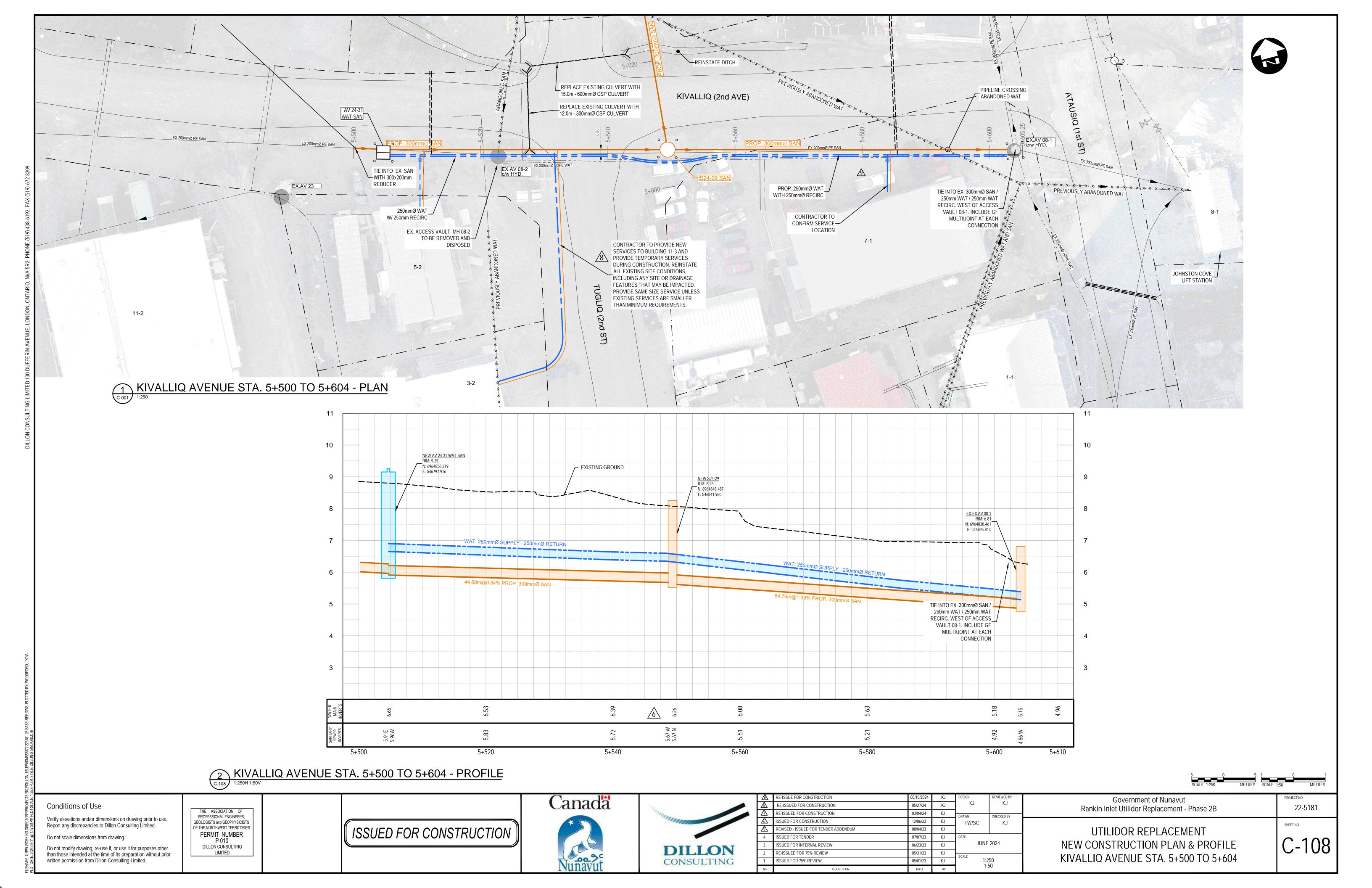












DILLON

CONSULTING

RE-ISSUED FOR 75% REVIEW

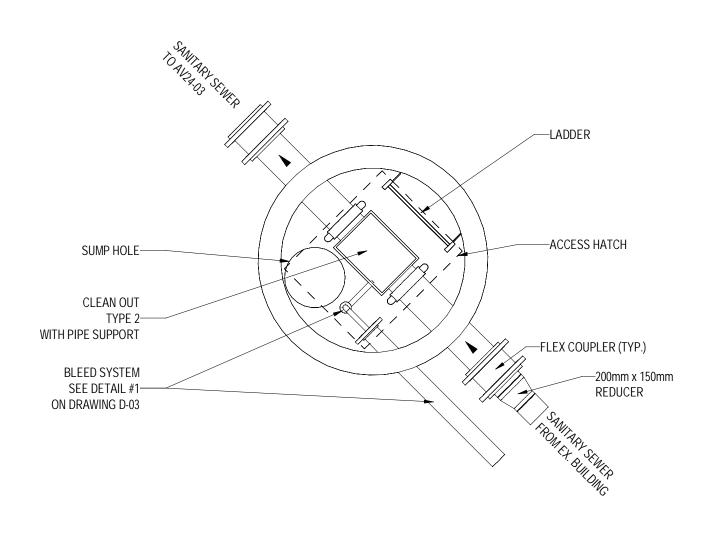
ISSUED FOR 75% REVIEW

KAJJUK TO TUGLIQ STREET STA. 5+700 5+793

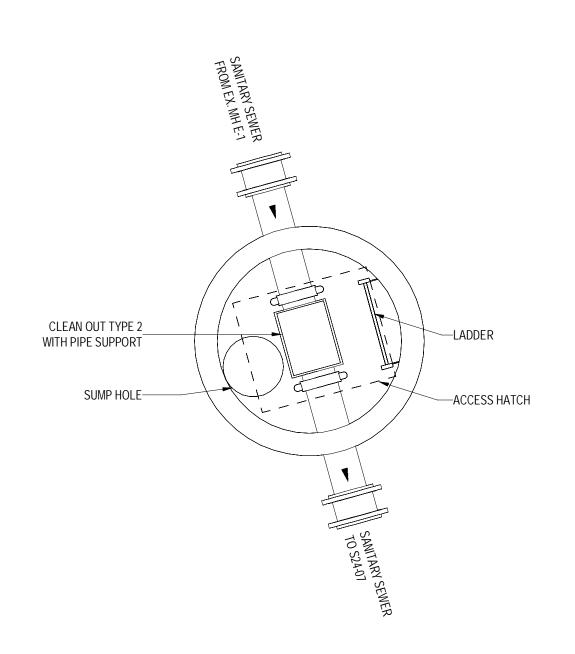
1:250 1:50

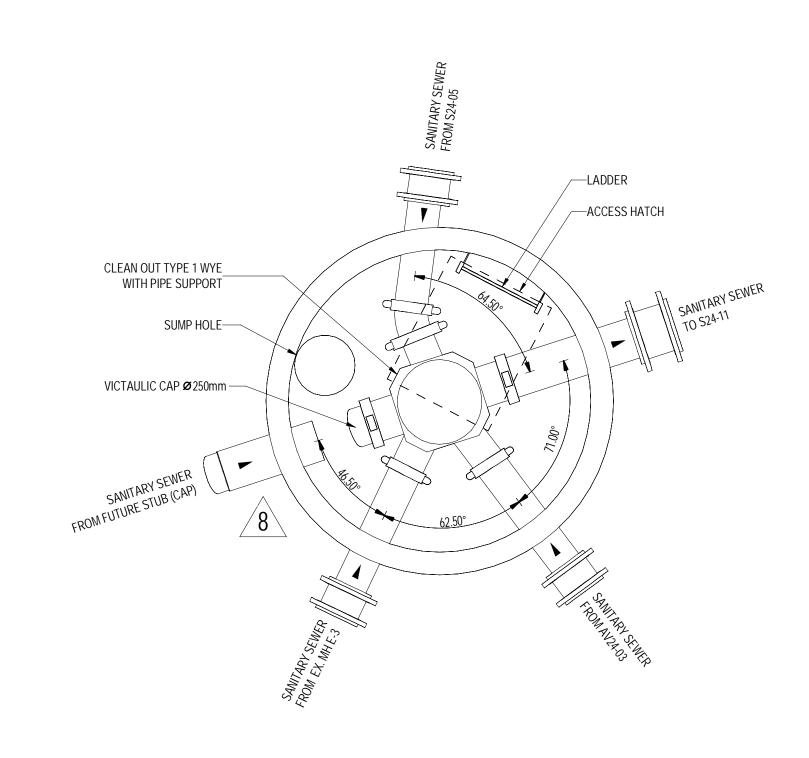
05/01/23 KJ

Do not modify drawing, re-use it, or use it for purposes other


than those intended at the time of its preparation without prior written permission from Dillon Consulting Limited.

LIMITED





	S24 - 01 (SANITARY)								
AC	ACCESS VAULT SANITARY SEWER DIAMETERS (mm) / INVERTS (m)								
TOP (m)	FLOOR (m)	DIAMETER (mm)	EX. BUILDING S.E. INLET	AV24 - 03 N. OUTLET	BLEEDER S.W. INVERT AT PENETRATION				
28.82	25.72	1220	200 / 26.17	200 / 26.12	27.42				

S24-05 (SANITARY) PLAN VIEW BELOW GRADE
SCALE: 1:25

	S24 - 05 (SANITARY)								
ACCESS VAULT			SANITARY SEWER DIAMETERS (mm) / INVERTS (m)						
TOP (m)	FLOOR (m)	DIAMETER (mm)	EX. MH E-1 N.W. INLET	S24 - 07 S. OUTLET					
25.24	22.97	1220	200 / 23.42	200 / 23.37					

SCALE: NOT TO SCALE 6

S24 - 07 (SANITARY)							
ACCESS VAULT			SANITARY SEWER DIAMETERS (mm) / INVERTS (m)				
TOP FLOOR DIAMETER (m) (m) (mm)		FUTURE STUB S.W. INLET	S24 - 05 N. INLET	S24 - 03 S.E. INLET	EX. MH E-3 S.W. INLET	S24 - 11 N.E. OUTLET	
24.39	21.02	1830	250 / 21.47	200 / 21.47	200 / 21.47	200 / 21.47	250 / 21.42

1. SEE SPECIFICATION 33 05 14.03 TELETHERMICS PRE-FABRICATED STEEL MAINTENANCE HOLES

FOR ACCESS VAULT INTERNAL PIPING SPECIFICATIONS.

2. CONTRACTOR TO CONFIRM LENGTHS, FITTINGS, AND INVERTS PRIOR TO CONSTRUCTION. 3. PIPE SUPPORTS REQUIRED AT ALL CLEANOUTS, BENDS, TEES, WYES, AND HYDRANTS.

Conditions of Use

Verify elevations and/or dimensions on drawing prior to use. Report any discrepancies to Dillon Consulting Limited.

Do not scale dimensions from drawing. Do not modify drawing, re-use it, or use it for purposes other than those intended at the time of its preparation without prior written

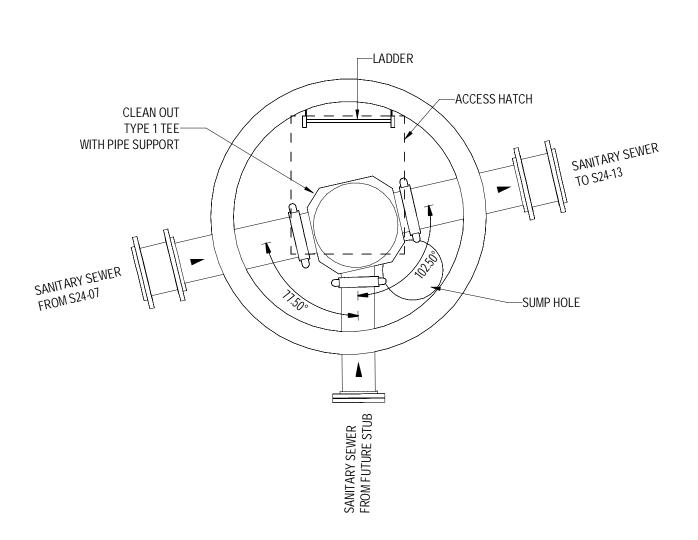
permission from Dillon Consulting Limited.

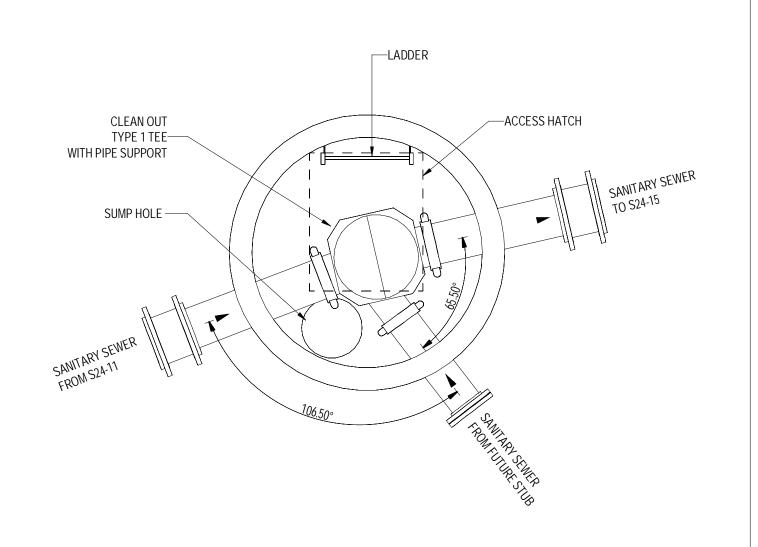
THE ASSOCIATION OF PROFESSIONAL ENGINEERS, GEOLOGISTS and GEOPHYSICISTS
OF THE NORTHWEST TERRITORIES PERMIT NUMBER P 010
DILLON CONSULTING LIMITED

RE-ISSUED FOR CONSTRUCTION

				DESIGN	REVIEWED BY	
				KJ	KJ	
<u>/8\</u>	RE-ISSUED FOR CONSTRUCTION	03/04/2024	KJ	DRAWN	CHECKED BY	
1	REVISED VAULTS ELEVATIONS	01/22/2024	KJ	SCC KJ		
6	ISSUED FOR CONSTRUCTION	12/06/2023	KJ			
5	REVISED - ISSUED FOR TENDER ADDENDUM	08/04/2023	KJ	DATE		
4	ISSUED FOR TENDER	07/07/2023	KJ	MARC	CH 2024	
3	ISSUED FOR INTERNAL REVIEW	06/23/2023	KJ			
2	RE-ISSUED FOR 75% REVIEW	05/31/2023	KJ	SCALE		
1	ISSUED FOR 75% REVIEW	05/01/2023	KJ	A	Parts I	
No.	ISSUED FOR	DATE	BY	As in	dicated	

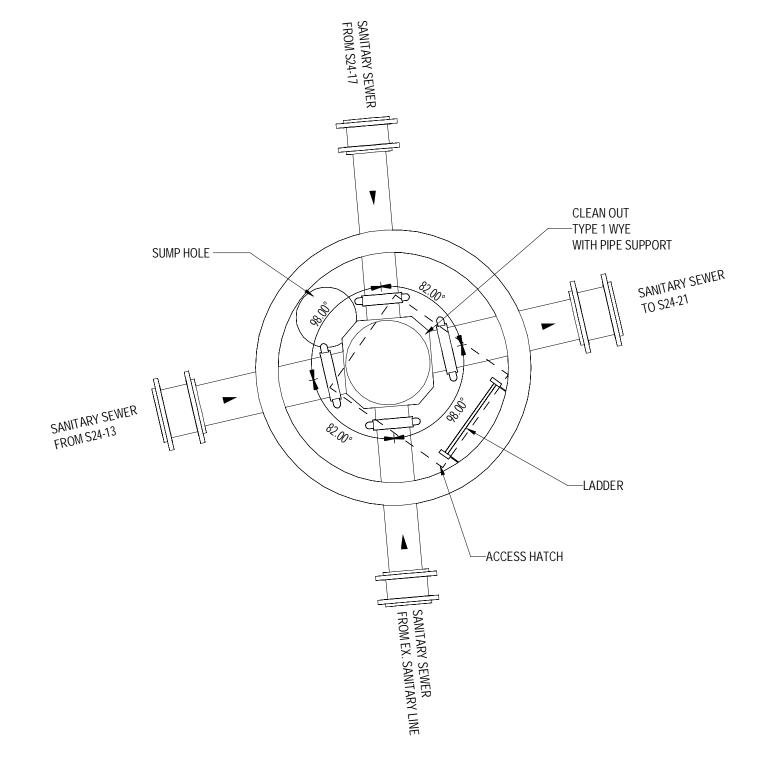
Government of Nunavut	PROJECT NO.
Rankin Inlet Utilidor Replacement - Phase 2B	22-5181
UTILIDOR REPLACEMENT SANITARY SEWER - ACCESS VAULTS S24-01, S24-05 AND S24-07	C-201


PROJECT NO.



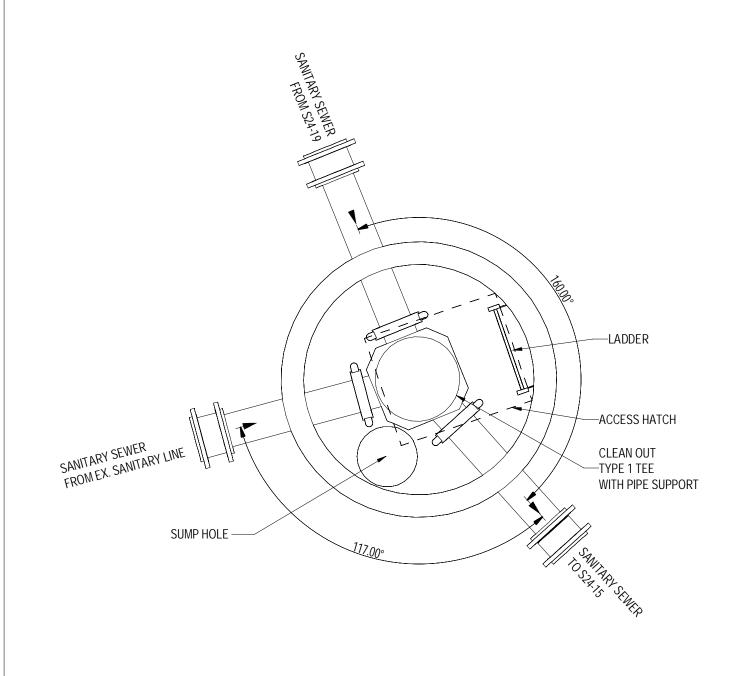
			S24 - 11 (SANIT	ARY)	
ACCESS VAULT SANITARY S			SANITARY SEV	VER DIAMETERS (mm) / I	NVERTS (m)
TOP (m)	FLOOR (m)	DIAMETER (mm)	S24 - 07 S.W. INLET	FUTURE STUB S. INLET	S24 - 13 N.E. OUTLET

250 / 20.55


200 / 20.55

250 / 20.50

SCALE: 1:25


	S24 - 13 (SANITARY)								
ACCESS VAULT				SANITARY SEWER DIAMETERS (mm) / INVERTS (m)					
	TOP (m)	FLOOR (m)	DIAMETER (mm)	S24 - 11 S.W. INLET	FUTURE STUB S.E. INLET	S24 - 15 N.E. OUTLET			
	22.62	19.78	1524	250 / 20.23	200 / 20.23	250 / 20.18			

S24-15 (SANITARY) PLAN VIEW BELOW GRADE

SCALE: 1:25

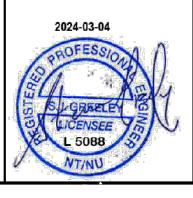
	S24 - 15 (SANITARY)						
ACCESS VAULT			SANITARY SEWER DIAMETERS (mm) / INVERTS (m)				
	TOP (m)	FLOOR (m)	DIAMETER (mm)	S24 - 13 S.W. INLET	S24 - 17 N.W. INLET	EX. SAN. LINE S.E. INLET	N.E. OUTLET
<u>/</u> 9\	22.12	19.39	1524	250 / 19.84	200 / 19.84	200 / 19.84	250 / 19.79

SCALE: 1:25

	S24 - 17 (SANITARY)									
AC	CESS VAULT		SANITARY SEWER DIAMETERS (mm) / INVERTS (m)							
TOP (m)	FLOOR (m)	DIAMETER (mm)	S24 - 19 N. INLET	ex. san. line W. inlet	S24 - 15 S.W. OUTLET					
22.39	19.65	1524	200 / 20.10	200 / 20.10	200 / 20.05					

1. SEE SPECIFICATION 33 05 14.03 TELETHERMICS PRE-FABRICATED STEEL MAINTENANCE HOLES

FOR ACCESS VAULT INTERNAL PIPING SPECIFICATIONS.


22.86 20.10 1524

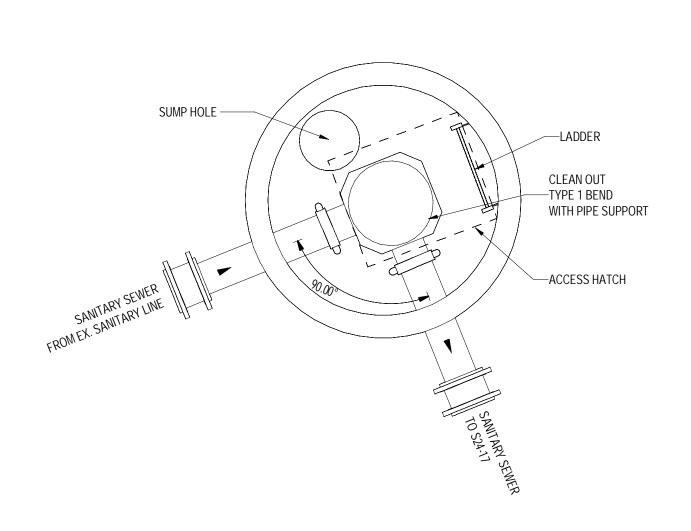
2. CONTRACTOR TO CONFIRM LENGTHS, FITTINGS, AND INVERTS PRIOR TO CONSTRUCTION. 3. PIPE SUPPORTS REQUIRED AT ALL CLEANOUTS, BENDS, TEES, WYES, AND HYDRANTS.

Conditions of Use

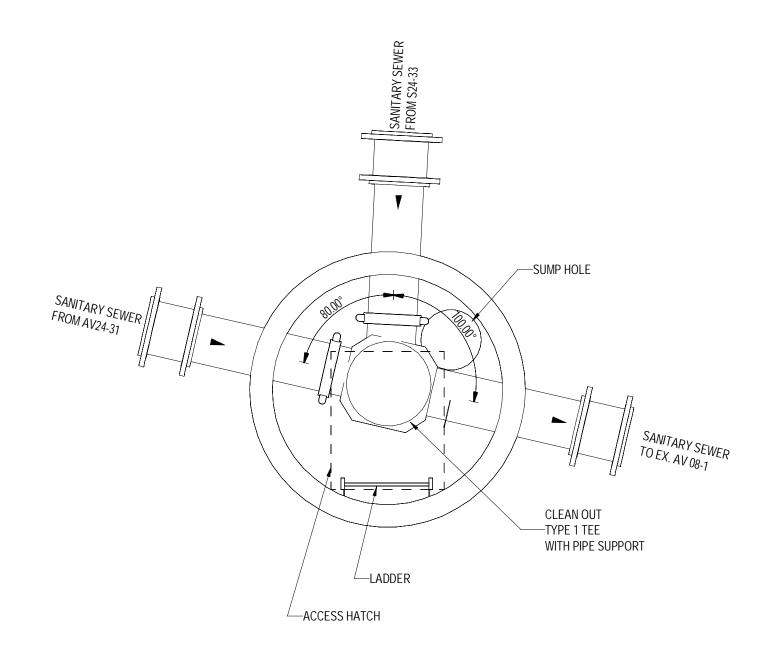
Verify elevations and/or dimensions on drawing prior to use. Report any discrepancies to Dillon Consulting Limited.

THE ASSOCIATION OF PROFESSIONAL ENGINEERS, GEOLOGISTS and GEOPHYSICISTS
OF THE NORTHWEST TERRITORIES PERMIT NUMBER Do not scale dimensions from drawing. P 010
DILLON CONSULTING Do not modify drawing, re-use it, or use it for purposes other than those intended at the time of its preparation without prior written LIMITED permission from Dillon Consulting Limited.

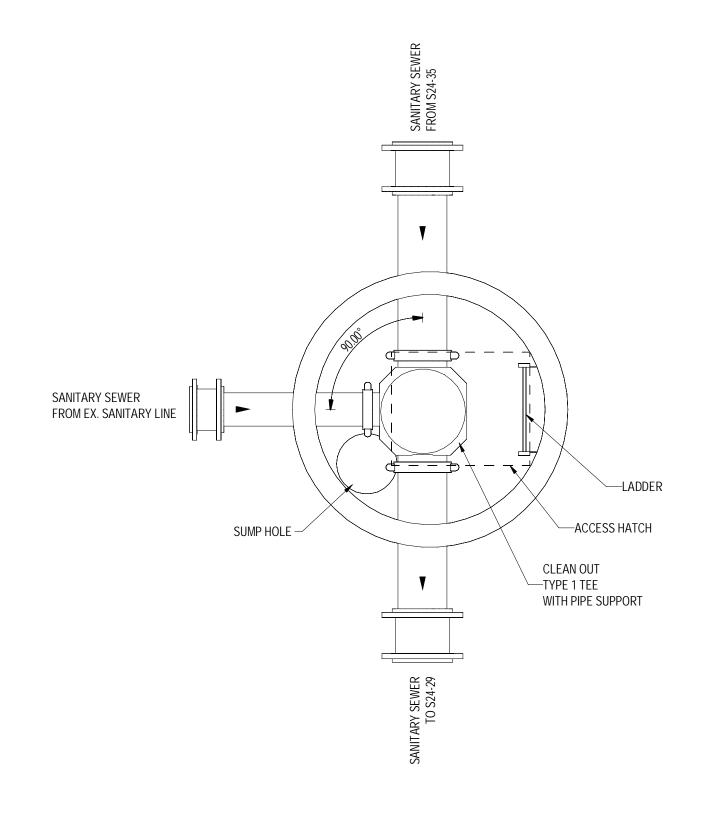
RE-ISSUED FOR CONSTRUCTION


				DESIGN	REVIEWED BY	
				KJ	KJ	
9	RE-ISSUED FOR CONSTRUCTION	06/10/2024	KJ			
18	RE-ISSUED FOR CONSTRUCTION	03/04/2024	KJ	DRAWN	CHECKED BY	\vdash
\triangle	REVISED VAULTS ELEVATIONS	01/22/2024	KJ	SCC	KJ	
<u>6</u>	ISSUED FOR CONSTRUCTION	12/06/2023	KJ			1
5	REVISED - ISSUED FOR TENDER ADDENDUM	08/04/2023	KJ	DATE		
4	ISSUED FOR TENDER	07/07/2023	KJ	MARC	CH 2024	
3	ISSUED FOR INTERNAL REVIEW	06/23/2023	KJ	1		
2	RE-ISSUED FOR 75% REVIEW	05/31/2023	KJ	SCALE		1
1	ISSUED FOR 75% REVIEW	05/01/2023	KJ	1		
No.	ISSUED FOR	DATE	ВУ	As inc	dicated	

Government of Nunavut	PROJECT NO.
Rankin Inlet Utilidor Replacement - Phase 2B	22-5181
UTILIDOR REPLACEMENT	SHEET NO.
SANITARY SEWER - ACCESS VAULTS S24-11, S24-13, S24-15 AND S24-17	C-202



S24-19 (SANITARY) PLAN VIEW BELOW GRADE SCALE: 1:25


S24 - 19 (SANITARY)							
ACCESS VAULT			SANITARY SEWER DIAMETERS (mm) / INVERTS (m)				
TOP (m)	FLOOR (m)	DIAMETER (mm)	EX. SAN. LINE W. INLET	S24 - 17 S. OUTLET			
22 47	20.01	1524	200 / 20 46	200 / 20 41			

LIMITED

S24-29 (SANITARY) PLAN VIEW BELOW GRADE SCALE: 1:25

S24 - 29 (SANITARY)							
AC	CESS VAULT		SANITARY SEWER DIAMETERS (mm) / INVERTS (m)				
TOP (m)	FLOOR (m)	DIAMETER (mm)	AV24-31 W. INLET	S24 - 33 N. INLET	EX. MH E. OUTLET		
8.25	5.22	1524	300 / 5.67	300 / 5.67	300 / 5.62		

SCALE: 1:25

S24 - 33 (SANITARY)							
ACCESS VAULT			SANITARY SEWER DIAMETERS (mm) / INVERTS (m)				
TOP (m)	FLOOR (m)	DIAMETER (mm)	S24 - 35 N. INLET	W. INLET	S24 - 29 S. OUTLET		
10.64	7.50	1830	300 / 7.95	200 / 7.95	300 / 7.90		

1. SEE SPECIFICATION 33 05 14.03 TELETHERMICS PRE-FABRICATED STEEL MAINTENANCE HOLES

FOR ACCESS VAULT INTERNAL PIPING SPECIFICATIONS.

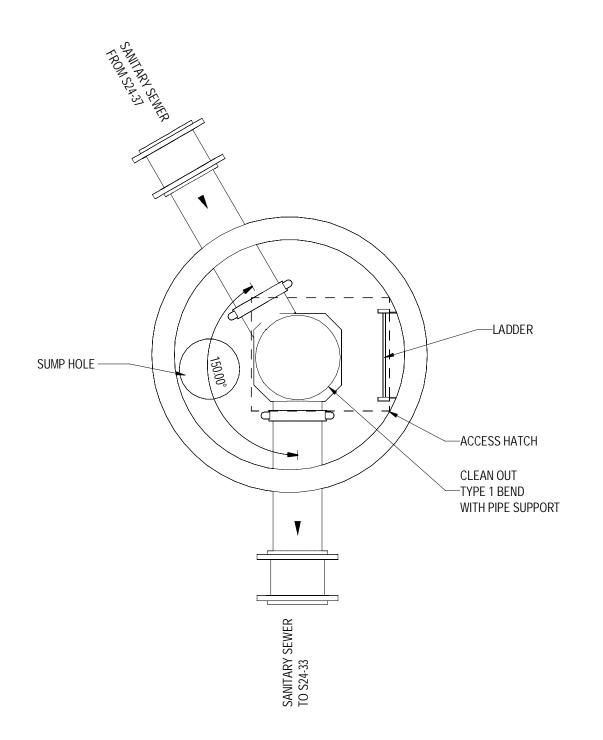
2. CONTRACTOR TO CONFIRM LENGTHS, FITTINGS, AND INVERTS PRIOR TO CONSTRUCTION. 3. PIPE SUPPORTS REQUIRED AT ALL CLEANOUTS, BENDS, TEES, WYES, AND HYDRANTS.

Conditions of Use

Verify elevations and/or dimensions on drawing prior to use. Report any discrepancies to Dillon Consulting Limited.

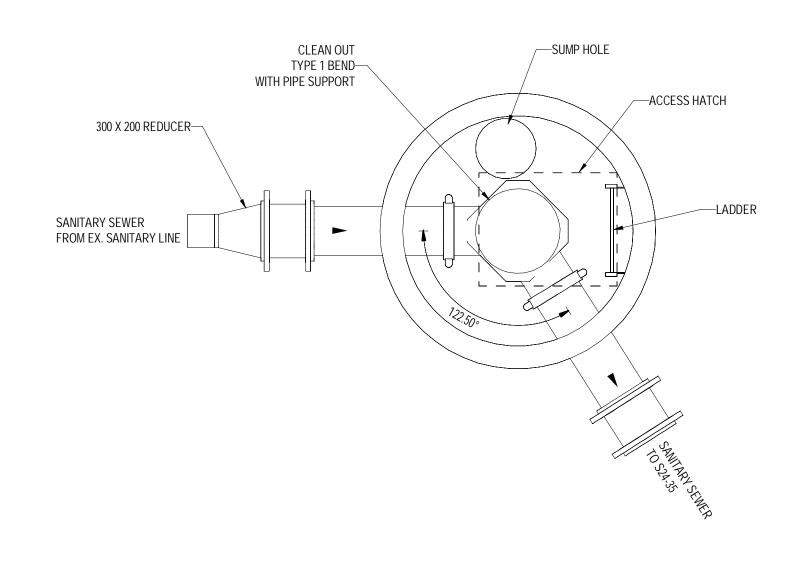
THE ASSOCIATION OF PROFESSIONAL ENGINEERS, GEOLOGISTS and GEOPHYSICISTS
OF THE NORTHWEST TERRITORIES PERMIT NUMBER Do not scale dimensions from drawing. P 010
DILLON CONSULTING Do not modify drawing, re-use it, or use it for purposes other than those intended at the time of its preparation without prior written permission from Dillon Consulting Limited.

RE-ISSUED FOR CONSTRUCTION



				DESIGN	REVIEWED BY	
				KJ	KJ	
8	RE-ISSUED FOR CONSTRUCTION	03/04/2024	KJ	DRAWN	CHECKED BY	
\triangle	REVISED VAULTS ELEVATIONS	01/22/2024	KJ	SCC	KJ	
6	ISSUED FOR CONSTRUCTION	12/06/2023	KJ			
5	REVISED - ISSUED FOR TENDER ADDENDUM	08/04/2023	KJ	DATE		
4	ISSUED FOR TENDER	07/07/2023	KJ	MARC	CH 2024	
3	ISSUED FOR INTERNAL REVIEW	06/23/2023	KJ			
2	RE-ISSUED FOR 75% REVIEW	05/31/2023	KJ	SCALE		
1	ISSUED FOR 75% REVIEW	05/01/2023	KJ	A	P i . i	
No.	ISSUED FOR	DATE	BY	As indicated		

Government of Nunavut	PROJECT NO.
Rankin Inlet Utilidor Replacement - Phase 2B	22-5181
UTILIDOR REPLACEMENT SANITARY SEWER - ACCESS VAULTS S24-19, S24-29, AND S24-33	C-203



	S24 - 35 (SANITARY)							
AC	CESS VAULT		SANITARY SEWER DIAMETERS (mm) / INVERTS (m)					
TOP (m)	FLOOR (m)	DIAMETER (mm)	S24 - 37 N.W. INLET	S24 - 33 S. OUTLET				
11.21	8.89	1524	300 / 9.34	300 / 9.29				

S24-37 (SANITARY) PLAN VIEW BELOW GRADE 7

S24 - 37 (SANITARY)								
ACCESS VAULT			SANITARY SEWER DIAMETERS (mm) / INVERTS (m)					
TOP (m)	FLOOR (m)	DIAMETER (mm)	ex. san. line W. inlet	S24 - 35 S.E. OUTLET				
12.02	9.33	1524	300 / 9.78	300 / 9.73				

NOTES:

1. SEE SPECIFICATION 33 05 14.03 TELETHERMICS PRE-FABRICATED STEEL MAINTENANCE HOLES

FOR ACCESS VAULT INTERNAL PIPING SPECIFICATIONS.

2. CONTRACTOR TO CONFIRM LENGTHS, FITTINGS, AND INVERTS PRIOR TO CONSTRUCTION.

3. PIPE SUPPORTS REQUIRED AT ALL CLEANOUTS, BENDS, TEES, WYES, AND HYDRANTS.

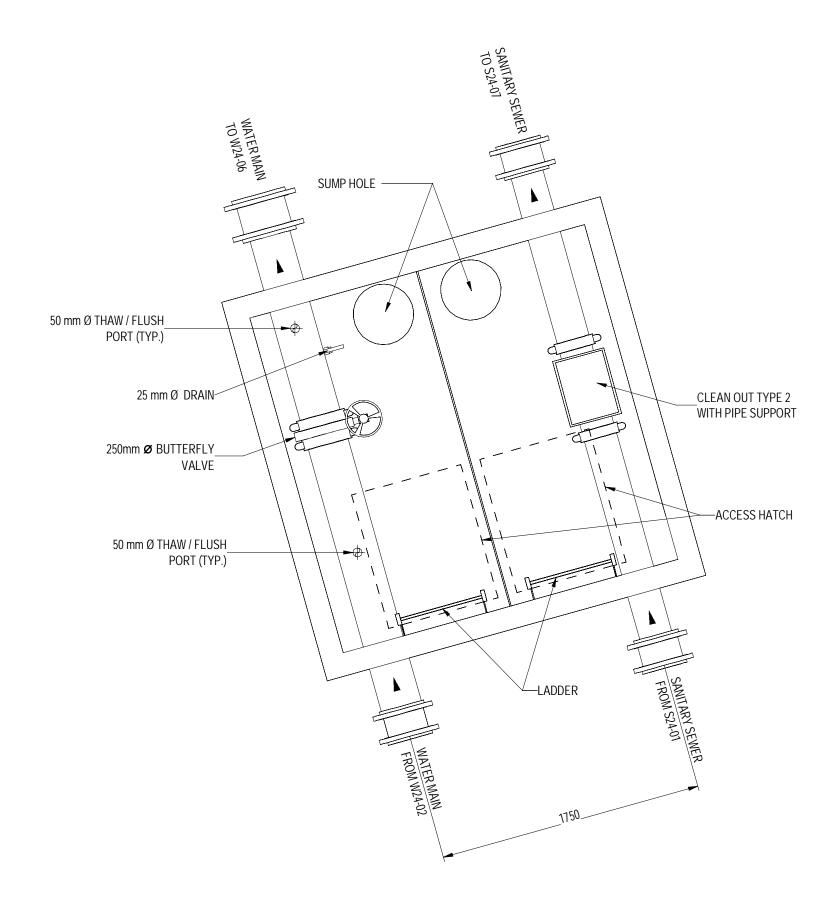
Conditions of Use

Verify elevations and/or dimensions on drawing prior to use. Report any discrepancies to Dillon Consulting Limited.

Do not scale dimensions from drawing. Do not modify drawing, re-use it, or use it for purposes other than those intended at the time of its preparation without prior written permission from Dillon Consulting Limited.

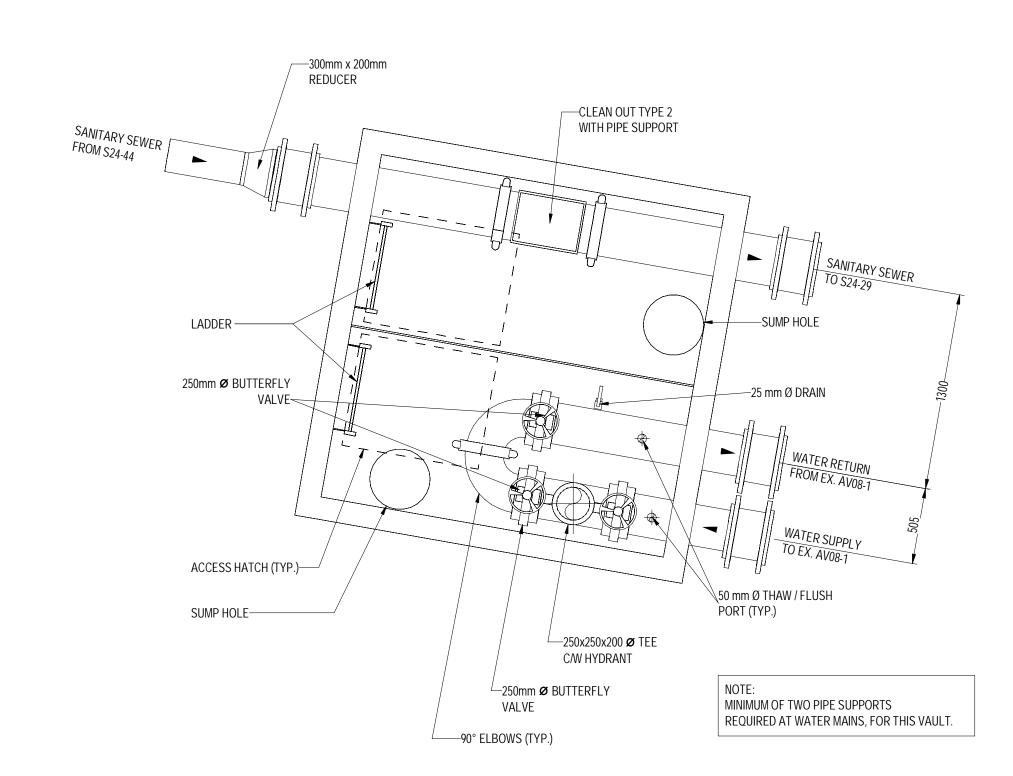
THE ASSOCIATION OF PROFESSIONAL ENGINEERS, GEOLOGISTS and GEOPHYSICISTS
OF THE NORTHWEST TERRITORIES PERMIT NUMBER
P 010
DILLON CONSULTING
LIMITED

RE-ISSUED FOR CONSTRUCTION


				DESIGN	REVIEWED BY	
				KJ	KJ	
<u>/8\</u>	RE-ISSUED FOR CONSTRUCTION	03/04/2024	KJ	DRAWN	CHECKED BY	
<u> </u>	REVISED VAULTS ELEVATIONS	01/22/2024	KJ	SCC	KJ	
6	ISSUED FOR CONSTRUCTION	12/06/2023	KJ			
5	REVISED - ISSUED FOR TENDER ADDENDUM	08/04/2023	KJ	DATE		
4	ISSUED FOR TENDER	07/07/2023	KJ	MARC	CH 2024	
3	ISSUED FOR INTERNAL REVIEW	06/23/2023	KJ			
2	RE-ISSUED FOR 75% REVIEW	05/31/2023	KJ	SCALE		
1	ISSUED FOR 75% REVIEW	05/01/2023	KJ			
No.	ISSUED FOR	DATE	BY	As indicated		

Rankin Inlet Utilidor Replacement - Phase 2B 22-5181 UTILIDOR REPLACEMENT SANITARY SEWER - ACCESS VAULTS S24-35 AND S24-37 C-204

Government of Nunavut



AV24-03 (WATER / SANITARY) PLAN VIEW BELOW GRADE

SCALE: 1:25

	AV24 - 03 (WATER / SANITARY)							
	ACCESS VAULT				IAMETERS (mm) / RTS (m)	SANITARY SEWER DIAMETERS (mm) / INVERTS (m)		
	TOP (m)	FLOOR (m)	DIMENSION (mm)	W24 - 06 INLET	EX. BUILDING OUTLET	EX. BUILDING S.E. INLET	S24 - 07 N.W. OUTLET	
9	24.82	21.75	2300 x 2300	250 / 22.76	250 / 22.76	200 / 22.20	200 / 22.15	

AV24-31 (WATER / SANITARY) PLAN VIEW BELOW GRADE

SCALE: 1:25

AV24 - 31 (WATER / SANITARY)						
ACC	1 E × × V/VIII I		IAMETERS (mm) / RTS (m)	SANITARY SEWER DIAMETERS (mm) INVERTS (m)		
TOP (m)	FLOOR (m)	DIMENSION (mm)	EX. MH (RECIRC) INLET	EX. MH (SUPPLY) W. OUTLET	EX. SAN. LINE N.W. INLET	S24 - 29 E. OUTLET
9.25	5.51	2300 x 2300	250 / 6.65	250 / 6.65	300 / 5.96	300 / 5.91

NOTES:

1. SEE SPECIFICATION 33 05 14.03 TELETHERMICS PRE-FABRICATED STEEL MAINTENANCE HOLES

FOR ACCESS VAULT INTERNAL PIPING SPECIFICATIONS.

2. CONTRACTOR TO CONFIRM LENGTHS, FITTINGS, AND INVERTS PRIOR TO CONSTRUCTION.
3. PIPE SUPPORTS REQUIRED AT ALL CLEANOUTS, BENDS, TEES, WYES, AND HYDRANTS.

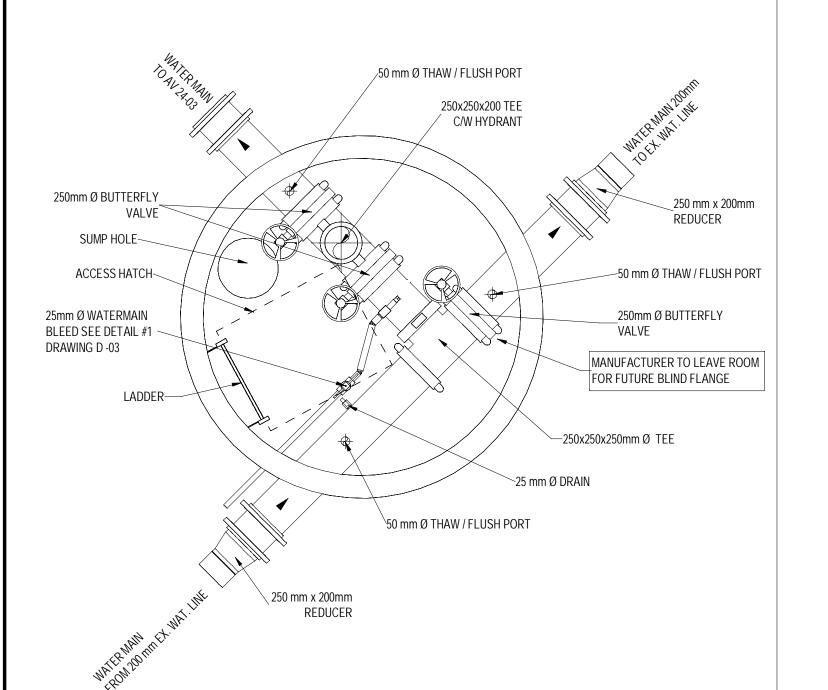
Conditions of Use

Verify elevations and/or dimensions on drawing prior to use. Report any discrepancies to Dillon Consulting Limited.

Do not scale dimensions from drawing. Do not modify drawing, re-use it, or use it for purposes other than

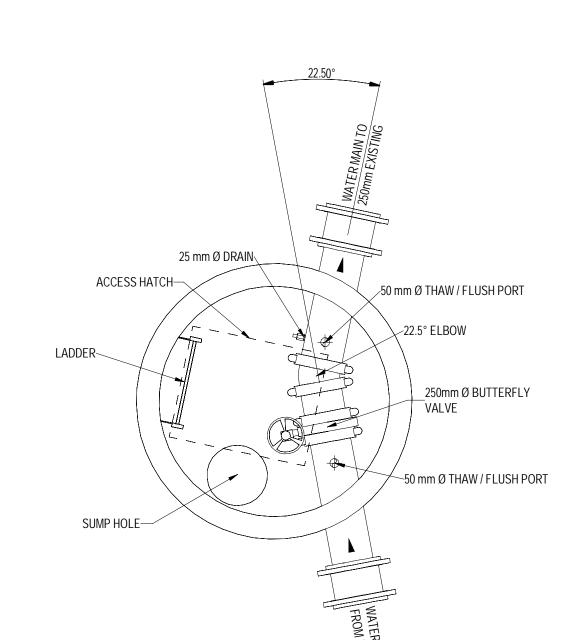
THE ASSOCIATION OF PROFESSIONAL ENGINEERS, GEOLOGISTS and GEOPHYSICISTS
OF THE NORTHWEST TERRITORIES PERMIT NUMBER P 010
DILLON CONSULTING those intended at the time of its preparation without prior written LIMITED permission from Dillon Consulting Limited.

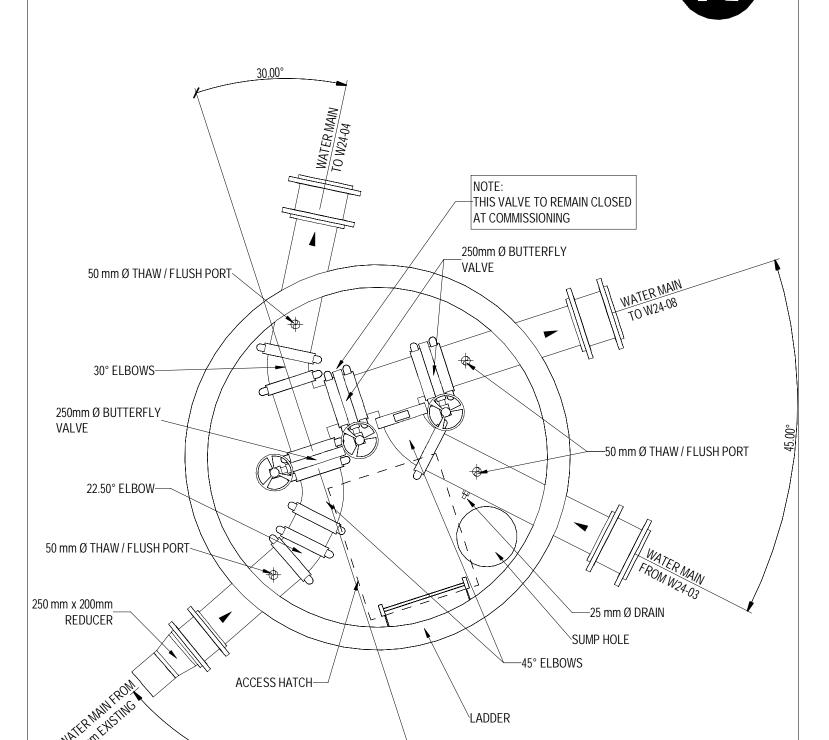
RE-ISSUED FOR CONSTRUCTION



DILLON	

T		1		DECICN	DEVIEWED DV	
				DESIGN	REVIEWED BY	
				KJ	KJ	
<u>/</u> 9\	RE-ISSUED FOR CONSTRUCTION	06/10/2024	KJ			
8	RE-ISSUED FOR CONSTRUCTION	03/04/2024	KJ	DRAWN	CHECKED BY	
1	REVISED VAULTS ELEVATIONS	01/22/2024	KJ	SCC	KJ	
<u>6</u>	ISSUED FOR CONSTRUCTION	12/06/2023	KJ			
5	REVISED - ISSUED FOR TENDER ADDENDUM	08/04/2023	KJ	DATE		
4	ISSUED FOR TENDER	07/07/2023	KJ	MARCH 2024		
3	ISSUED FOR INTERNAL REVIEW	06/23/2023	KJ			
2	RE-ISSUED FOR 75% REVIEW	05/31/2023	KJ	SCALE		
1	ISSUED FOR 75% REVIEW	05/01/2023	KJ	A	P I. J	
No.	ISSUED FOR	DATE	BY	As indicated		


Government of Nunavut	PROJECT NO.
Rankin Inlet Utilidor Replacement - Phase 2B	22-5181
UTILIDOR REPLACEMENT SANITARY SEWER - ACCESS VAULTS AV24-03 AND AV24-31	C-205



	W24 - 02 (WATER)									
AC	CESS VAULT		WATER MAIN	N DIAMETERS (mm) / INV	ERTS (m)					
TOP (m)			AV24 - 03 N.W. OUTLET	EX. WAT. LINE N.E. OUTLET	EX. 250 WAT. LINE S.W. INLET	BLEEDER INVERT AT VAULT PENETRATION				
29.11	26.70	2250	250 / 27.10	250 / 27.10	250 / 27.10	27.42				



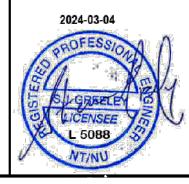
W24 - 04 (WATER)									
ACCESS VAULT			WATER MAIN DIAMETER	S (mm) / INVERTS (m)					
TOP (m)	FLOOR (m)	DIAMETER (mm)	EXISTING STUB INLET	W24 - 06 OUTLET					
25.34	23.10	1524	250 / 23.50	250 / 23.50					

W24-06 (WATER) PLAN VIEW BELOW GRADE
SCALE: 1:25

W24 - 06 (WATER)							
AC	CESS VAULT		WATER MAIN DIAMETERS (mm) / INVERTS (m)				
TOP (m)	FLOOR (m)	DIAMETER (mm)	EX. WAT. LINE INLET	AV24 - 03 INLET	W24 - 04 OUTLET	W24 - 08 OUTLET	
24.44	22.01	2250	200 / 22.41	250 / 22.41	250 / 22.41	250 / 22.41	

W24-08 (WATER) PLAN VIEW BELOW GRADE
SCALE: 1:25

W24 - 08 (WATER) WATER MAIN DIAMETERS (mm) / INVERTS (m) ACCESS VAULT TOP FLOOR DIAMETER E. 24 - 10 N. INLET S. OUTLET INLET OUTLET (m) (m) (mm) 23.43 21.03 2250 250 / 21.41 250 / 21.43 250 / 21.43 200 / 21.43


1. SEE SPECIFICATION 33 05 14.03 TELETHERMICS PRE-FABRICATED STEEL MAINTENANCE HOLES FOR ACCESS VAULT INTERNAL PIPING SPECIFICATIONS.

2. CONTRACTOR TO CONFIRM LENGTHS, FITTINGS, AND INVERTS PRIOR TO CONSTRUCTION.

Conditions of Use

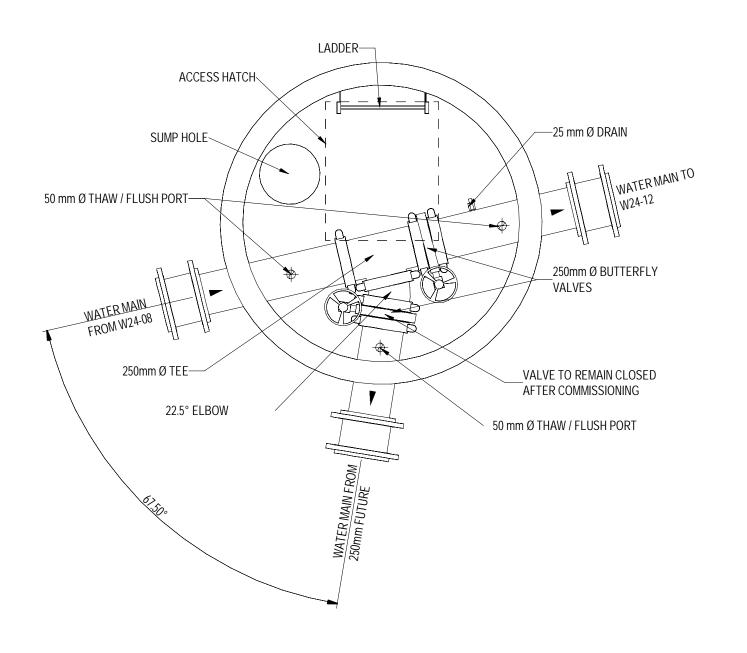
Verify elevations and/or dimensions on drawing prior to use. Report any discrepancies to Dillon Consulting Limited.

THE ASSOCIATION OF PROFESSIONAL ENGINEERS, GEOLOGISTS and GEOPHYSICISTS OF THE NORTHWEST TERRITORIES PERMIT NUMBER P 010 DILLON CONSULTING Do not scale dimensions from drawing. Do not modify drawing, re-use it, or use it for purposes other than those intended at the time of its preparation without prior written LIMITED permission from Dillon Consulting Limited.

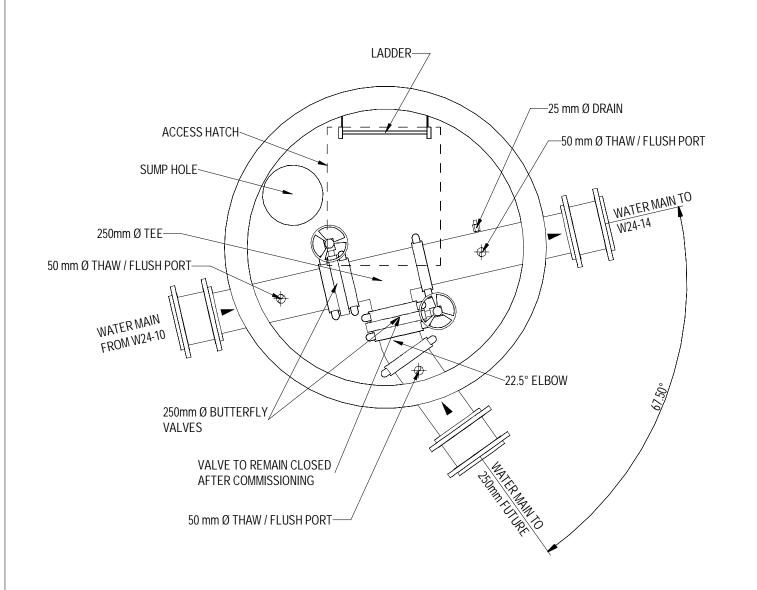
RE-IUSSED FOR CONSTRUCTION

	\triangle					
				DESIGN	REVIEWED BY	
				KJ	KJ	
8	RE-ISSUED FOR CONSTRUCTION	06/10/2024	KJ	DRAWN	CHECKED BY	
\triangle	RE-ISSUED FOR CONSTRUCTION	03/04/2024	KJ	SCC/JCP	KJ	
6	ISSUED FOR CONSTRUCTION	12/06/2023	KJ			
5	REVISED - ISSUED FOR TENDER ADDENDUM	08/04/2023	KJ	DATE		
4	ISSUED FOR TENDER	07/07/2023	KJ	MARG	CH 2024	
3	ISSUED FOR INTERNAL REVIEW	06/23/2023	KJ			
2	RE-ISSUED FOR 75% REVIEW	05/31/2023	KJ	SCALE		
1	ISSUED FOR 75% REVIEW	05/01/2023	KJ			
No.	ISSUED FOR	DATE	BY	As in	dicated	

Rankin Inlet Utilidor Replacement - Phase 2B	
UTILIDOR REPLACEMENT	
WATER MAIN - ACCESS VAULTS	
W24-02 W24-04, W24-06 AND W24-08	


Government of Nunavut

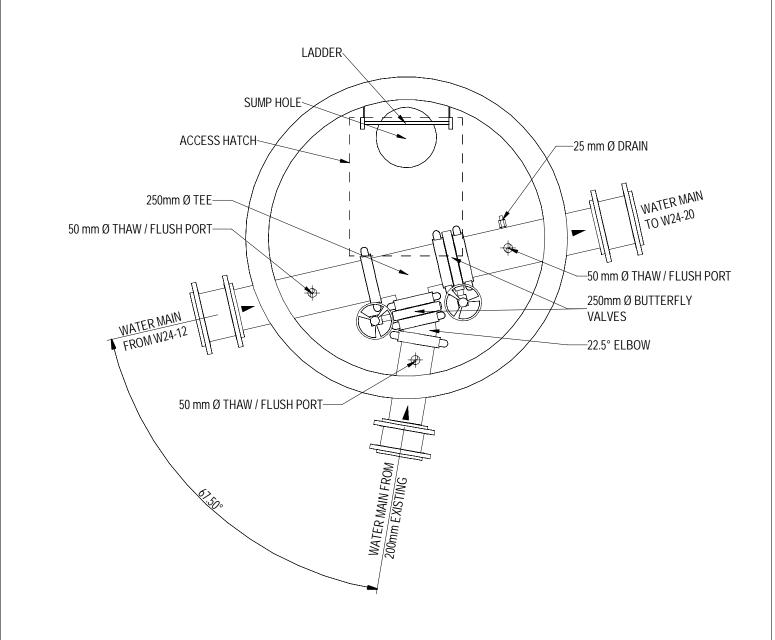
			W24 - 10 (WAT	ER)	
AC	CESS VAULT		WATER MAIN	N DIAMETERS (mm) / INV	/ERTS (m)
TOP (m)	FLOOR (m)	DIAMETER (mm)	W24 - 08 INLET	W24 - 12 OUTLET	FUTURE STUB INLET
22.89	20.60	1830	250 / 21.00	250 / 21.00	250 / 21.00


THE ASSOCIATION OF PROFESSIONAL ENGINEERS,

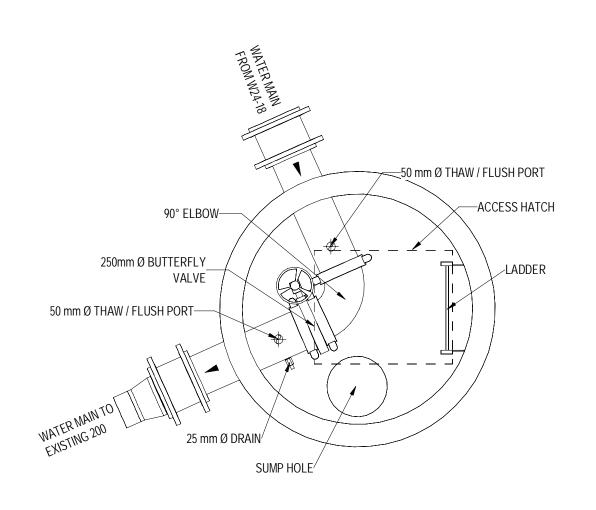
GEOLOGISTS and GEOPHYSICISTS

OF THE NORTHWEST TERRITORIES

PERMIT NUMBER P 010 DILLON CONSULTING


LIMITED

W24-12 (WATER) PLAN VIEW BELOW GRADE


SCALE: 1:25

г											
	W24 - 12 (WATER)										
	ACCESS VAULT			WATER MAIN	N DIAMETERS (mm) / INV	/ERTS (m)					
	TOP (m)	FLOOR (m)	DIAMETER (mm)	W24 - 10 INLET	W24 - 14 OUTLET	FUTURE STUB INLET					
	22.55	20.17	1830	250 / 20.57	250 / 20.57	250 / 20.57					

W24-14 (WATER) PLAN VIEW BELOW GRADE
SCALE: 1:25

	W24 - 14 (WATER)								
	AC	CESS VAULT		WATER MAIN DIAMETERS (mm) / INVERTS (m)					
	TOP (m)	FLOOR (m)	DIAMETER (mm)	EX. WAT. LINE INLET	W24 - 12 INLET	W24-20 OUTLET			
8	22.05	19.60	1830	200 / 20.027	250 / 20.00	250 / 20.00			

	W24 - 16 (WATER)										
AC	CESS VAULT		WATER MAIN DIAMETER	S (mm) / INVERTS (m)							
TOP (m)	FLOOR (m)	DIAMETER (mm)	W24 - 18 INLET	EX. WAT. LINE OUTLET							
22.52	20.05	1524	250 / 20.45	250 / 20.45							

NOTES:

1. SEE SPECIFICATION 33 05 14.03 TELETHERMICS PRE-FABRICATED STEEL MAINTENANCE HOLES

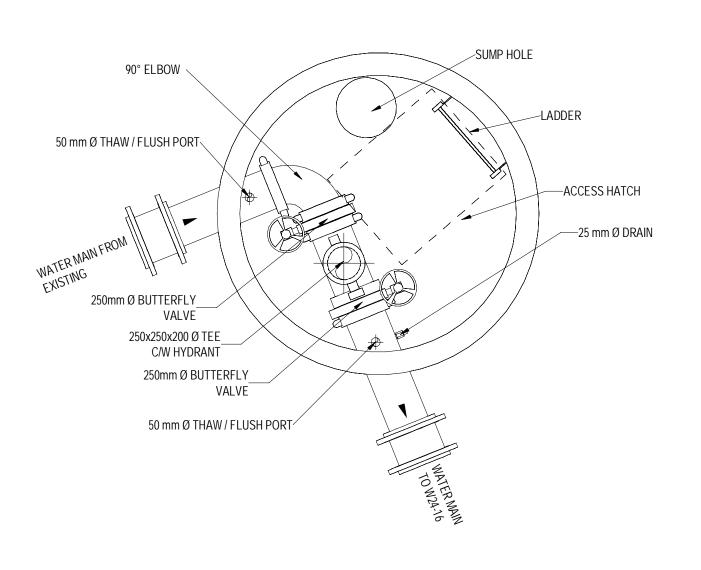
FOR ACCESS VAULT INTERNAL PIPING SPECIFICATIONS. 2. CONTRACTOR TO CONFIRM LENGTHS, FITTINGS, AND INVERTS PRIOR TO CONSTRUCTION.

Conditions of Use

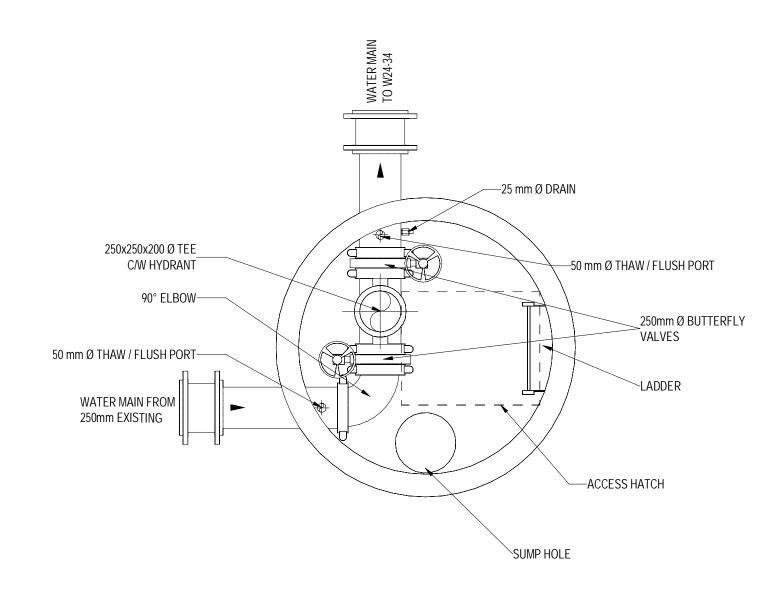
Verify elevations and/or dimensions on drawing prior to use. Report any discrepancies to Dillon Consulting Limited.

Do not scale dimensions from drawing. Do not modify drawing, re-use it, or use it for purposes other than those intended at the time of its preparation without prior written permission from Dillon Consulting Limited.

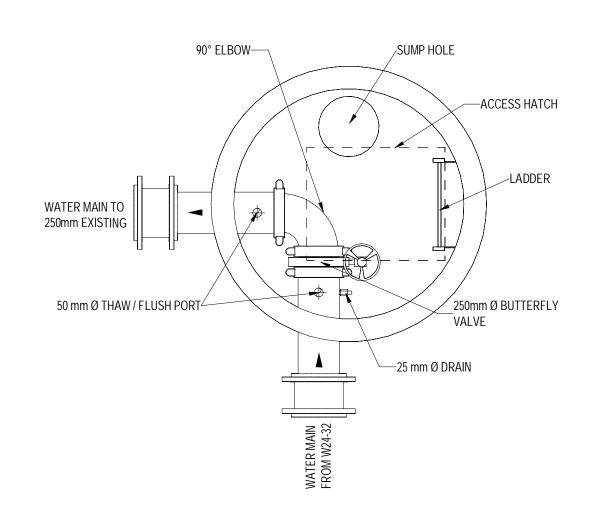
RE-IUSSED FOR CONSTRUCTION


				DESIGN	REVIEWED BY	'
				KJ	KJ	
8	RE-ISSUED FOR CONSTRUCTION	06/10/2024	KJ	DRAWN	CHECKED BY	ŀ
\triangle	RE-ISSUED FOR CONSTRUCTION	03/04/2024	KJ	SCC KJ		
6	ISSUED FOR CONSTRUCTION	12/06/2023	KJ			
5	REVISED - ISSUED FOR TENDER ADDENDUM	08/04/2023	KJ	DATE		
4	ISSUED FOR TENDER	07/07/2023	KJ	MARC	CH 2024	
3	ISSUED FOR INTERNAL REVIEW	06/23/2023	KJ			
2	RE-ISSUED FOR 75% REVIEW	05/31/2023	KJ	SCALE		
1	ISSUED FOR 75% REVIEW	05/01/2023	KJ	A	P. J. J	
No.	ISSUED FOR	DATE	BY	As in	dicated	

Government of Nunavut Rankin Inlet Utilidor Replacement - Phase 2B 22-5181 UTILIDOR REPLACEMENT WATER MAIN - ACCESS VAULTS W24-10, W24-12, W24-14 AND W24-16



W24-18 (WATER) PLAN VIEW BELOW GRADE
SCALE: 1:25


			W24 - 18 (W/	ATER)
ACCESS VAULT			WATER MAIN DIAME	ETERS (mm) / INVERTS (m)
TOP (m)	FLOOR (m)	DIAMETER (mm)	EX. WAT. LINE (WEST) INLET	W24 - 16 OUTLET
22.52	20.33	1830	250 / 20.73	250 / 20.73

W24-32 (WATER) PLAN VIEW BELOW GRADE

SCALE: 1:25

W24 - 32 (WATER)								
AC	CESS VAULT		WATER MAIN DIAMETERS (mm) / INVERTS (m)					
TOP FLOOR DIAMETER (m) (m) (mm)			EX. WAT. LINE INLET	W24 - 34 OUTLET				
10.65	8.04	1830	250 / 8.44	250 / 8.44				

W24-34 (WATER) PLAN VIEW BELOW GRADE

SCALE: 1:25

			W24 - 34 (WATER)	
AC	CESS VAULT		WATER MAIN DIAMETER	S (mm) / INVERTS (m)
TOP (m)	FLOOR (m)	DIAMETER (mm)	W24 - 32 INLET	EX. WAT. LINE OUTLET
11.19	8.80	1524	250 / 9.21	250 / 9.21

NOTES:

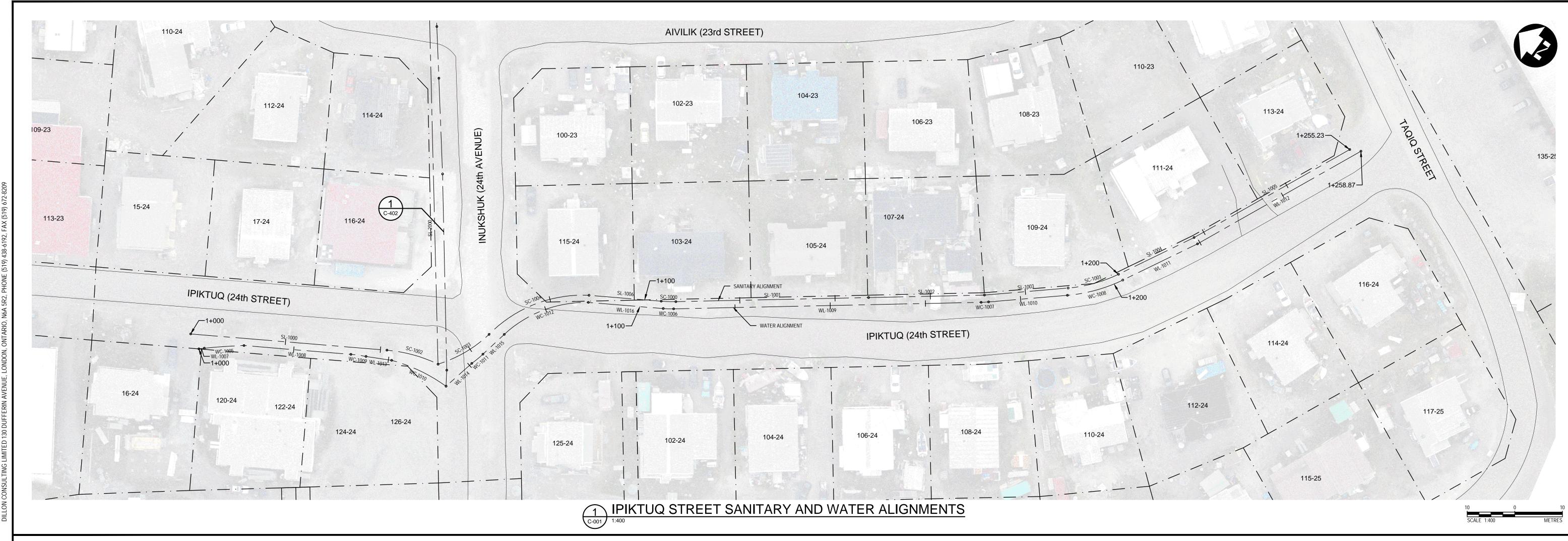
1. SEE SPECIFICATION 33 05 14.03 TELETHERMICS PRE-FABRICATED STEEL MAINTENANCE HOLES FOR ACCESS VAULT INTERNAL PIPING SPECIFICATIONS.

2. CONTRACTOR TO CONFIRM LENGTHS, FITTINGS, AND INVERTS PRIOR TO CONSTRUCTION.

Conditions of Use

Verify elevations and/or dimensions on drawing prior to use. Report any discrepancies to Dillon Consulting Limited.

THE ASSOCIATION OF PROFESSIONAL ENGINEERS, GEOLOGISTS and GEOPHYSICISTS OF THE NORTHWEST TERRITORIES PERMIT NUMBER
P 010
DILLON CONSULTING
LIMITED Do not scale dimensions from drawing. Do not modify drawing, re-use it, or use it for purposes other than those intended at the time of its preparation without prior written permission from Dillon Consulting Limited.


RE-IUSSED FOR CONSTRUCTION

				DESIGN	REVIEWED BY	
				KJ	l KJ	l
				NJ	l NJ	l
				DRAWN	CHECKED BY	⊢
1	RE-ISSUED FOR CONSTRUCTION	03/04/2024	KJ	SCC	KJ	
6	ISSUED FOR CONSTRUCTION	12/06/2023	KJ			
5	REVISED - ISSUED FOR TENDER ADDENDUM	08/04/2023	KJ	DATE		
4	ISSUED FOR TENDER	07/07/2023	KJ	MARC	CH 2024	
3	ISSUED FOR INTERNAL REVIEW	06/23/2023	KJ			
2	RE-ISSUED FOR 75% REVIEW	05/31/2023	KJ	SCALE		1
1	ISSUED FOR 75% REVIEW	05/01/2023	KJ]	P 1 1	
No.	ISSUED FOR	DATE	BY	As in	dicated	

Government of Nunavut	PROJECT NO.
Rankin Inlet Utilidor Replacement - Phase 2B	22-5181
UTILIDOR REPLACEMENT WATER MAIN - ACCESS VAULT W24-18, W24-32, AND W24-34	C-208

	1 IPIKTUQ STREET - SANITARY										
No.	LENGTH (m)	RADIUS (m)	DIRECTION (DD MM SS")	START POINT	START STATION	END POINT	END STATION				
SL-1000	41.353		S18 29 04"E	N6964360.539 E546510.902	1+000.000	N6964321.319 E546524.013	1+041.353				
SC-1002	11.195	30.344	S07 54 56"E	N6964321.319 E546524.013	1+041.353	N6964310.294 E546525.546	1+052.547				
SC-1003	12.499	27.232	S53 2938"E	N6964310.294 E546525.546	1+052.547	N6964302.924 E546535.505	1+065.046				
SC-1004	23.223	27.628	S44 34 12"E	N6964302.924 E546535.505	1+065.046	N6964286.862 E546551.327	1+088.270				
SL-1006	15.218		S18 32 13"E	N6964286.862 E546551.327	1+088.270	N6964272.434 E546556.165	1+103.487				
SC-1000	3.086	30.000	S21 29 02"E	N6964272.434 E546556.165	1+103.487	N6964269.564 E546557.295	1+106.573				
SL-1001	40.464		S24 25 52"E	N6964269.564 E546557.295	1+106.573	N6964232.723 E546574.030	1+147.037				
SL-1002	24.335		S24 25 52"E	N6964232.723 E546574.030	1+147.037	N6964210.567 E546584.095	1+171.372				
SL-1003	17.642		S28 01 01"E	N6964210.567 E546584.095	1+171.372	N6964194.993 E546592.382	1+189.014				
SC-1001	11.029	30.000	S38 32 58"E	N6964194.993 E546592.382	1+189.014	N6964186.415 E546599.217	1+200.043				
SL-1004	17.643		S49 04 54"E	N6964186.415 E546599.217	1+200.043	N6964174.860 E546612.548	1+217.686				
SL-1005	37.544		S52 41 57"E	N6964174.860 E546612.548	1+217.686	N6964152.108 E546642.413	1+255.230				

			1 IPIKT	UQ STREET -	WATER		
No.	LENGTH (m)	RADIUS (m)	DIRECTION (DD MM SS")	START POINT	START STATION	END POINT	END STATION
WL-1007	1.141		S29 33 52"E	N6964357.727 E546508.703	1+000.000	N6964356.734 E546509.266	1+001.141
WC-1005	8.357	118.656	S27 0849"E	N6964356.734 E546509.266	1+001.141	N6964349.300 E546513.078	1+009.498
WL-1008	22.537		S18 29 04"E	N6964349.300 E546513.078	1+009.498	N6964327.925 E546520.223	1+032.035
WC-1009	3.187	30.000	S15 2628"E	N6964327.925 E546520.223	1+032.035	N6964324.855 E546521.071	1+035.222
WL-1013	5.457		S14 40 12"E	N6964324.855 E546521.071	1+035.222	N6964319.576 E546522.453	1+040.679
WC-1010	12.726	35.568	S02 14 45"W	N6964319.576 E546522.453	1+040.679	N6964306.927 E546521.957	1+053.405
WL-1014	7.220		S64 47 22"E	N6964306.927 E546521.957	1+053.405	N6964303.852 E546528.490	1+060.625
WC-1011	3.033	25.000	S62 38 02"E	N6964303.852 E546528.490	1+060.625	N6964302.458 E546531.182	1+063.659
WL-1015	6.107		S66 0636"E	N6964302.458 E546531.182	1+063.659	N6964299.985 E546536.766	1+069.765
WC-1012	19.364	25.139	S44 0237"E	N6964299.985 E546536.766	1+069.765	N6964286.408 E546549.897	1+089.129
WL-1016	15.774		S18 3213"E	N6964286.408 E546549.897	1+089.129	N6964271.452 E546554.912	1+104.903
WC-1006	2.194	21.151	S21 30 29"E	N6964271.452 E546554.912	1+104.903	N6964269.412 E546555.716	1+107.097
WL-1009	64.578		S24 25 52"E	N6964269.412 E546555.716	1+107.097	N6964210.616 E546582.425	1+171.675
WC-1007	1.565	25.000	S26 1327"E	N6964210.616 E546582.425	1+171.675	N6964209.213 E546583.117	1+173.240
WL-1010	16.627		S28 01 01"E	N6964209.213 E546583.117	1+173.240	N6964194.534 E546590.927	1+189.867
WC-1008	12.132	33.000	S38 3258"E	N6964194.534 E546590.927	1+189.867	N6964185.099 E546598.445	1+201.999
WL-1011	17.411		S49 04 54"E	N6964185.099 E546598.445	1+201.999	N6964173.695 E546611.602	1+219.410
WL-1012	39.458		S52 45 22"E	N6964173.695 E546611.602	1+219.410	N6964149.815 E546643.013	1+258.868

Conditions of Use

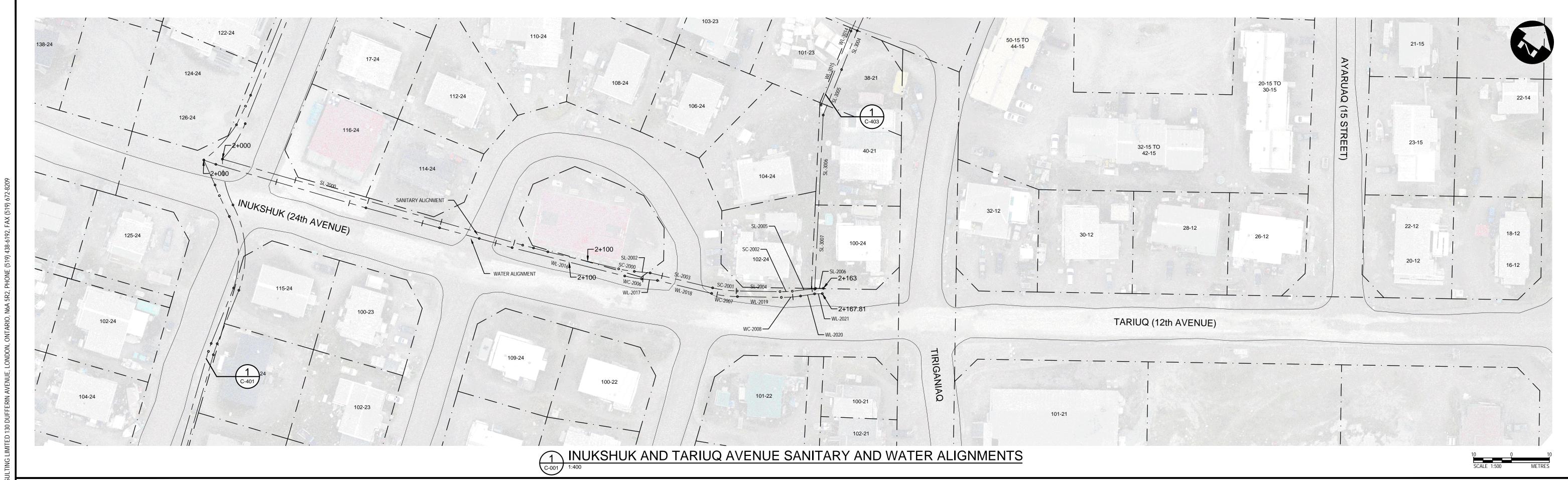
Verify elevations and/or dimensions on drawing prior to use. Report any discrepancies to Dillon Consulting Limited.

Do not scale dimensions from drawing.

Do not modify drawing, re-use it, or use it for purposes other than those intended at the time of its preparation without prior written permission from Dillon Consulting Limited.

THE ASSOCIATION OF PROFESSIONAL ENGINEERS, GEOLOGISTS and GEOPHYSICISTS OF THE NORTHWEST TERRITORIES PERMIT NUMBER P 010
DILLON CONSULTING LIMITED

ISSUED FOR CONSTRUCTION



				KJ	KJ	
Δ	RE-ISSUED FOR CONSTRUCTION	03/04/24	KJ	DRAWN	CHECKED BY	
<u> </u>	ISSUED FOR CONSTRUCTION	12/06/23	KJ	TW		
⋬	REVISED - ISSUED FOR ADDENDUM	08/04/23	KJ			
4	ISSUED FOR TENDER	07/07/23	KJ	DATE		
3	ISSUED FOR INTERNAL REVIEW	06/23/23	KJ	MARCH 2024		
2	RE-ISSUED FOR 75% REVIEW	05/31/23	KJ	SCALE		
1	ISSUED FOR 75% REVIEW	05/01/23	KJ	1:400		
No.	ISSUED FOR	DATE	BY			

Government of Nunavut	
Rankin Inlet Utilidor Replacement - Phase 2B	

UTILIDOR REPLACEMENT
ALIGNMENT PLAN
IPIKTUQ STREET SANITARY AND WATER

C-40

2 INUKSHUK TARIUQ AVENUE - SANITARY												
No.	LENGTH (m)	RADIUS (m)	DIRECTION (DD MM SS")	START POINT	START STATION	END POINT	END STATION					
SL-2000	82.343		N65 23 07"E	N6964310.294 E546525.546	2+000.000	N6964344.591 E546600.406	2+082.343					
SC-2000	4.192	30.000	N58 53 18"E	N6964356.291 E546623.658	2+108.373	N6964358.455 E546627.244	2+112.566					
SL-2002	4.190		N54 53 06"E	N6964358.455 E546627.244	2+112.566	N6964360.865 E546630.672	2+116.756					
SL-2003	16.934		N62 49 33"E	N6964360.865 E546630.672	2+116.756	N6964368.599 E546645.736	2+133.690					
SC-2001	6.527	30.000	N56 35 36"E	N6964368.599 E546645.736	2+133.690	N6964372.185 E546651.174	2+140.217					
SL-2004	11.300		N50 2138"E	N6964372.185 E546651.174	2+140.217	N6964379.394 E546659.876	2+151.516					
SC-2002	3.237	30.000	N47 1610"E	N6964379.394 E546659.876	2+151.516	N6964381.589 E546662.252	2+154.753					
SL-2005	6.174		N42 34 06"E	N6964381.589 E546662.252	2+154.753	N6964386.136 E546666.429	2+160.927					
SL-2006	2.068		N48 59 20"E	N6964386.136 E546666.429	2+160.927	N6964387.493 E546667.989	2+162.995					

	2 INUKSHUK TARIUQ AVENUE - WATER												
No.	LENGTH RADIUS DIRECTION (M) (DD MM SS") START POINT START STATION END PO			END POINT	END STATION								
WL-2016	30.586		N63 3239"E	N6964342.262 E546598.723	2+084.519	N6964355.888 E546626.106	2+115.105						
WC-2006	4.534	30.000	N59 1253"E	N6964355.888 E546626.106	2+115.105	N6964358.206 E546629.998	2+119.639						
WL-2017	4.185		N54 53 06"E	N6964358.206 E546629.998	2+119.639	N6964360.613 E546633.421	2+123.824						
WL-2018	14.696		N62 49 33"E	N6964360.613 E546633.421	2+123.824	N6964367.325 E546646.494	2+138.519						
WC-2007	6.853	31.500	N56 35 36"E	N6964367.325 E546646.494	2+138.519	N6964371.090 E546652.204	2+145.372						
WL-2019	11.565		N50 21 38"E	N6964371.090 E546652.204	2+145.372	N6964378.468 E546661.110	2+156.937						
WC-2008	5.097	30.000	N45 2934"E	N6964378.468 E546661.110	2+156.937	N6964382.037 E546664.741	2+162.035						
WL-2020	3.720		N40 37 30"E	N6964382.037 E546664.741	2+162.035	N6964384.861 E546667.163	2+165.755						
WL-2021	2.053		N47 24 04"E	N6964384.861 E546667.163	2+165.755	N6964386.250 E546668.674	2+167.807						

Conditions of Use

Verify elevations and/or dimensions on drawing prior to use. Report any discrepancies to Dillon Consulting Limited.

Do not scale dimensions from drawing.

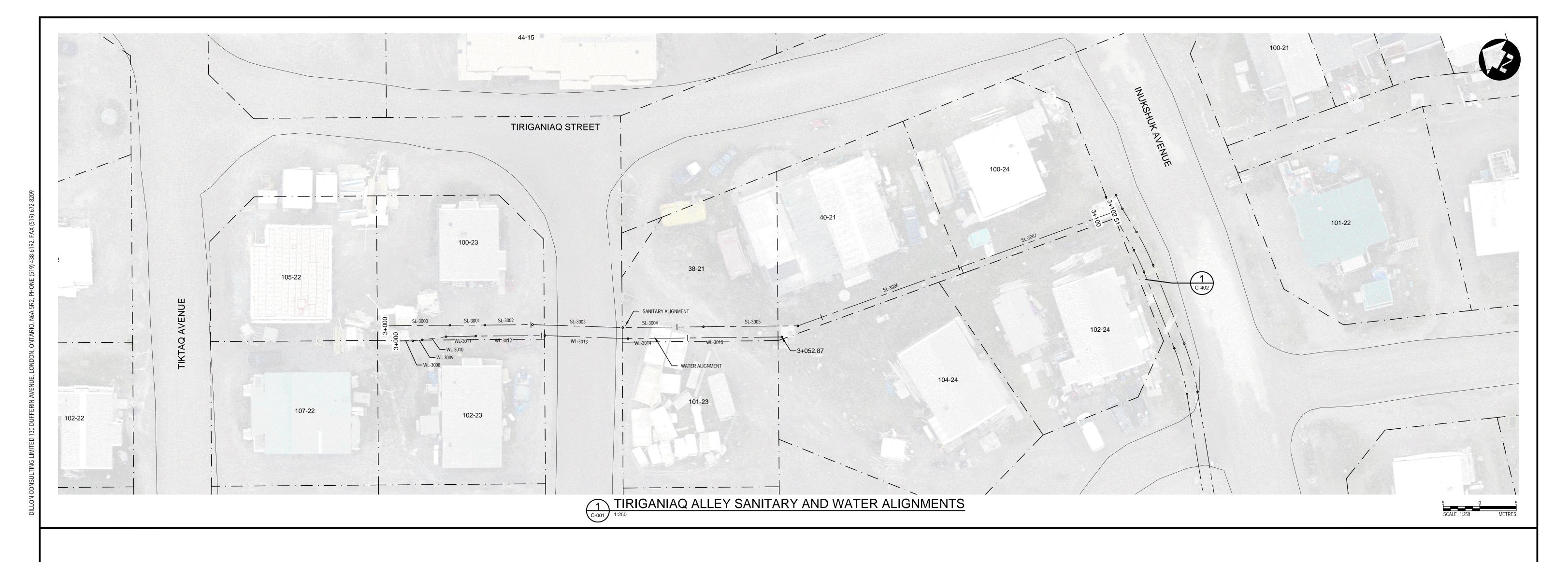
Do not modify drawing, re-use it, or use it for purposes other than those intended at the time of its preparation without prior written permission from Dillon Consulting Limited.

THE ASSOCIATION OF PROFESSIONAL ENGINEERS, GEOLOGISTS and GEOPHYSICISTS OF THE NORTHWEST TERRITORIES

PERMIT NUMBER
P 010

DILLON CONSULTING
LIMITED

SSUED FOR CONSTRUCTION



				KJ	KJ	
Δ	RE - ISSUED FOR CONSTRUCTION	03/04/24	KJ	DRAWN	CHECKED BY	
<u> </u>	ISSUED FOR CONSTRUCTION	12/06/23	KJ	TW	KJ	
⋬	REVISED - ISSUED FOR ADDENDUM	08/04/23	KJ			
4	ISSUED FOR TENDER	07/07/23	KJ	DATE		1
3	ISSUED FOR INTERNAL REVIEW	06/23/23	KJ	MARCH 2024		
2	RE-ISSUED FOR 75% REVIEW	05/31/23	KJ	SCALE		Ι.
1	ISSUED FOR 75% REVIEW	05/01/23	KJ	1:2		
No.	ISSUED FOR	DATE	BY	1:5	DU .	

Government of Nunavut Rankin Inlet Utilidor Replacement - Phase 2B	PROJECT NO.
UTILIDOR REPLACEMENT	SHEET NO.

ALIGNMENT PLAN
INUKSHUK - TARIUQ AVENUE SANITARY AND WATER

C-402

3 TIRIGANIAQ ALLEY - SANITARY												
No.	LENGTH (m)	RADIUS (m)	DIRECTION (DD MM SS")	START POINT	START STATION	END POINT	END STATION					
SL-3000	8.899		S18 25 03"E	N6964475.940 E546620.754	3+000.000	N6964467.497 E546623.566	3+008.899					
SL-3001	4.778		S18 25 42"E	N6964467.497 E546623.566	3+008.899	N6964462.965 E546625.076	3+013.676					
SL-3002	6.546		S18 2534"E	N6964462.965 E546625.076	3+013.676	N6964456.755 E546627.145	3+020.222					
SL-3003	12.349		S16 06 46"E	N6964456.755 E546627.145	3+020.222	N6964444.891 E546630.572	3+032.571					
SL-3004	11.044		S18 34 16"E	N6964444.891 E546630.572	3+032.571	N6964434.422 E546634.090	3+043.615					
SL-3005	12.936		S18 33 54"E	N6964434.422 E546634.090	3+043.615	N6964422.159 E546638.208	3+056.551					
SL-3006	45.964		S37 49 18"E	N6964422.159 E546638.208	3+056.551	N6964385.851 E546666.394	3+102.515					
SL-3007	45.964		S37 4918"E	N6964422.159 E546638.208	3+056.551	N6964385.851 E546666.394	3+102.515					

3 TIRIGANIAQ ALLEY - WATER								
No.	LENGTH (m)	RADIUS (m)	DIRECTION (DD MM SS")	START POINT	START STATION	END POINT	END STATION	
WL-3008	2.313		S18 43 35"E	N6964473.862 E546619.223	3+000.000	N6964471.672 E546619.966	3+002.313	
WL-3009	1.290		S24 05 15"E	N6964471.672 E546619.966	3+002.313	N6964470.494 E546620.492	3+003.603	
WL-3010	3.306		S25 34 01"E	N6964470.494 E546620.492	3+003.603	N6964467.512 E546621.919	3+006.909	
WL-3011	4.062		S19 1630"E	N6964467.512 E546621.919	3+006.909	N6964463.677 E546623.260	3+010.971	
WL-3012	9.463		S18 21 50"E	N6964463.677 E546623.260	3+010.971	N6964454.696 E546626.241	3+020.434	
WL-3013	11.379		S15 5239"E	N6964454.696 E546626.241	3+020.434	N6964443.751 E546629.355	3+031.813	
WL-3014	21.061		S18 36 56"E	N6964443.751 E546629.355	3+031.813	N6964423.792 E546636.078	3+052.874	
WL-3015	21.061		S18 36 56"E	N6964443.751 E546629.355	3+031.813	N6964423.792 E546636.078	3+052.874	

Conditions of Use

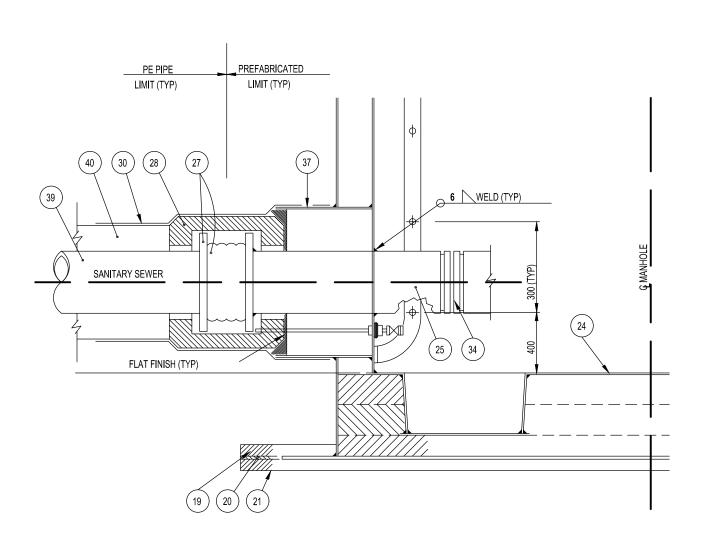
Verify elevations and/or dimensions on drawing prior to use. Report any discrepancies to Dillon Consulting Limited.

Do not scale dimensions from drawing.

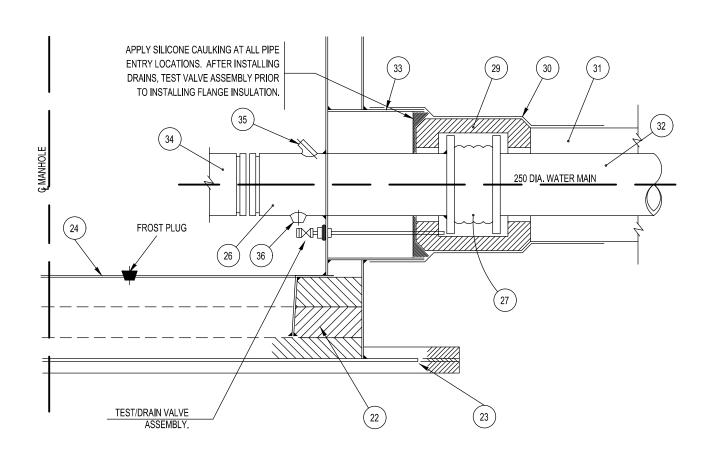
Do not modify drawing, re-use it, or use it for purposes other than those intended at the time of its preparation without prior written permission from Dillon Consulting Limited.

THE ASSOCIATION OF PROFESSIONAL ENGINEERS, GEOLOGISTS and GEOPHYSICISTS OF THE NORTHWEST TERRITORIES PERMIT NUMBER P 010
DILLON CONSULTING LIMITED

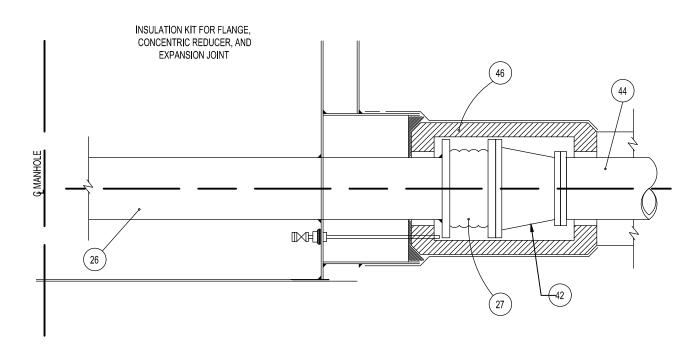
SSUED FOR CONSTRUCTION

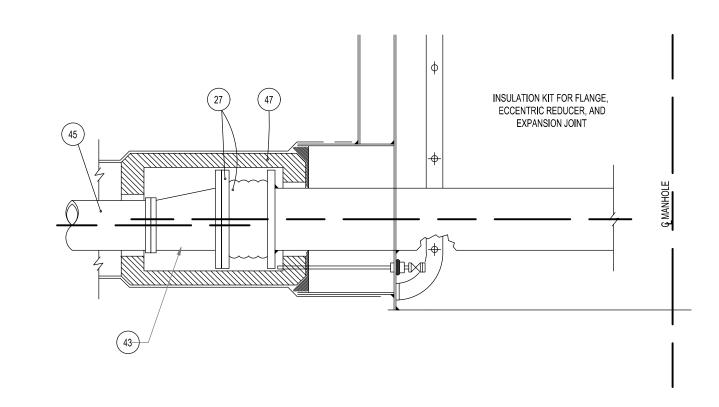

				DESIGN	REVIEWED BY	
				KJ	KJ	
Δ	RE - ISSUED FOR CONSTRUCTION	03/04/24	KJ	DRAWN	CHECKED BY	
▲	ISSUED FOR CONSTRUCTION	12/06/23	KJ	TW/SC	KJ	
⋬	REVISED - ISSUED FOR TENDER ADDENDUM	08/04/23	KJ			
4	ISSUED FOR TENDER	07/07/23	KJ	DATE		
3	ISSUED FOR INTERNAL REVIEW	06/23/23	KJ	MARCH 2024		
2	RE-ISSUED FOR 75% REVIEW	05/31/23	KJ	SCALE		
1	ISSUED FOR 75% REVIEW	05/01/23	KJ	1:2		
No.	ISSUED FOR	DATE	BY	1:5	50	

Government of Nunavut
Rankin Inlet Utilidor Replacement - Phase 2B


UTILIDOR REPLACEMENT
ALIGNMENT PLAN
TIRIGANIAQ ALLEY SANITARY AND WATER

C-403


TYPICAL HYDRANT ACCESS VAULT PENETRATION N.T.S.


3 TYPICAL SANITARY ACCESS VAULT PENETRATION
N.T.S.

TYPICAL WATERMAIN ACCESS VAULT PENETRATION N.T.S.

4 TYPICAL WATERMAIN ACCESS VAULT PENETRATION WITH INCREASER/REDUCER

GENERAL NOTES:

- 1. CONSTRUCT ACCESS VAULTS FROM 6mm STEEL PLATE WITH CONTINUOUS (FULLY) WELDED CONSTRUCTION. FABRICATE
- COMPLETELY PRIOR TO EPOXY COATING. WELDING & FABRICATION TO CSA W59-1977 & W47-1-1973.
- 2. ALL STEEL TO BE CASA G40-21 /TYPE 260W, OR ASTM A36-62T. 3. ALL PIPING INSIDE THE ACCESS VAULTS IS TO BE PREFABRICATED TO THE LIMITS SHOWN ON THE TYPICAL SECTION AND AS SHOWN ON

THE PLANS. PROVIDE PIPE ENTRY SPOOL PIECES, LADDER MOUNTING STUDS & ALL OTHER ACCESS VAULT HARDWARE, ETC., AS

- REQUIRED, PRE-WELDED IN PLACE PRIOR TO SANDBLASTING AND EPOXY COATING.
- 4. ALL PREFABRICATED STEEL PARTS OF ACCESS VAULT (EXCEPT TOP PLATE, HATCH AND LADDER) INCLUDING PIPE ENTRY SPOOL PIECES, SHALL BE SANDBLASTED AND EPOXY COATED INSIDE AND OUTSIDE.
- 5. TOP PLATE, HATCH, HINGES & LADDER, SHALL BE HOT DIPPED GALVANIZED TO CSA G164 MINIMUM 610 G/M2.
- 6. ALL NUTS, BOLTS, WASHERS, SCREW ETC., HOT DIPPED OR CADMIUM PLATED.
- 7. FLANGE INSULATION KITS AND STYROFOAM ACCESS VAULT BASE INSULATION SUPPLIED AS PART OF ACCESS VAULTS.
- 8. ALL DIMENSIONS ARE IN MILLIMETRES (mm) UNLESS OTHERWISE NOTED.

KEY TO NUMBERED PARTS:

- 1. GASKET 50 mm X 3 mm, COMPRESSIBLE NEOPRENE RUBBER.
- 2. 12 mm Ø GALVANI ED STEEL BOLTS, NUTS AND WASHERS @ 210 mm EQUAL SPACING.
- HASP ASSEMBLY.
- 4. 50 mm X 60 mm X 12 mm STEEL HINGE BASE PLATE WELDED TO ACCESS VAULT TOP. 5. 19 mm X 38 mm 35 DUROMETER SOFT NATURAL RUBBER STRIP (REVERSIBLE) GASKET TO ACHIEVE AIRTIGHT & WATERPROOF SEAL ALL AROUND.
- 6. 50 mm X 4 mm STEEL BAR WELDED TO LID.
- LIFTING EYE 12 mm Ø STEEL DIA. STEEL X 40 mm INSIDE LOOP.
- 8. 6 mm GALVANIZED STEEL NUT, COUNTERSUNK BOLT & WASHER @ 100 mm CENTERS.
- 9. 6 mm X 19 mm GALVANIZED STEEL COUNTERSUNK SHEET METAL SCREWS @ 100 mm CENTRES.
- 10. POLYURETHANE SHEET INSULATION, 240 KPA CUT TO SIZE.
- 11. 20 mm THICK HIGH DENSITY POLYETHYLENE.
- 12. HINGES SPACED AT 400 mm APART.
- 13. LINK-SEAL MODEL LS-525-C (200X350) OR APPROVED EQUAL TO FIT ITEMS 14 & 40.
- 14. 200 mm CRANE MCAVITY M-67 "IN-LINE" FIRE HYDRANT.
- 15. LIFTING LUGS TWO PER ACCESS VAULT. 150 mm X 75 mm X 12 mm THK. WITH 38 mm Ø LIFTING EYE, C/W 200 X 200 X 12 STEEL REINFORCING PLATE CURVED TO RADIUS, CONTINUOUSLY WELDED. CAPACITY OF LIFTING LUGS TO BE CONFIRMED BY MANUFACTURER.
- 16. 65 mm Ø THREADED STEEL HALF NIPPLE CONDUIT SLEEVE (FOR EXTENSION CORD OR SUMP PUMP DISCHARGE) IN APPROPRIATE LOCATION, C/W THREADED GALV. STEEL CAPS.
- 17. SPRAYED POLYURETHANE INSULATION, 240 KPA. 18. LADDER. LENGTH AS REQUIRED. 450 mm WIDE MADE FROM 65 mm X 12 mm FLAT BAR VERTICALS & SUPPORTS WITH 20 mm DIA. RUNGS. WELDED
- CONSTRUCTION THROUGHOUT. ALL EDGES TO BE GROUND SMOOTH. GALVANIZE AFTER FABRICATION. FASTEN WITH STUDS WELDED TO INNER WALL. FALL ARREST TIE OFF POINT TO BE SUPPLIED. CAPACITY AND DESIGN TO BE COMPLETED BY MANUFACTURER.
- 19. 38 mm THICK STYROFOAM, 4 PCS, OUTER EDGE TO MATCH ITEM 21 DOW CHEMICAL HI 60, 410 KPA COMPRESSIVE STRENGTH.
- 20. FILLER PIECE. 10 mm THICK STYROFOAM INSULATION DOW CHEMICAL HI 60.
- 21. 38 mm THICK X 2438 X 2438 STYROFOAM INSULATION DOW CHEMICAL HI 60.
- 22. POLYURETHANE SHEET INSULATION CUT TO SIZE, 240 KPA.
- 23. 10 mm THICK X 2438 X 2438 SQUARE STEEL BASE PLATE.
- 24. 6 mm THICK STEEL PLATE ACCESS VAULT CONSTRUCTION.
- 25. SANITARY SEWER ENTRY. SCHEDULE 40 STEEL PIPE SPOOL PIECE.
- 26. WATER MAIN ENTRY. SCHEDULE 40 STEEL PIPE SPOOL PIECE. 27. GF MULTI/JOINT 3007 RESTRAINT COUPLING OR APPROVED EQUAL. REFER TO SPECIFICATIONS.
- COMES WITH STAINLESS STEEL PIPE STIFFENER INSERTS.
- 28. INSULATION KIT FOR 200mmØ / 300Ø FLANGE + EXPANSION JOINT, (MASTIC COAT INNER SURFACES) AND FRP COATING. 29. INSULATION KIT FOR 250mmØ FLANGE + EXPANSION JOINT, (MASTIC COAT INNER SURFACAES) AND FRP COATING.
- 30. RAYCHEM THERMACLAD HEAT SHRINK TAPE, 2 LAYER, MIN. 50% OVERLAP EACH WRAP.
- 31. 75 mm THICK POLYURETHANE INSULATION HALVES OR PE PIPE PRE-INSULATION TO SUIT PIPE SIZES.
- 32. 250 mm (IP SIZE) DR 11 HDPE WATER MAIN. 33. STEEL RING SECTION WELDED TO ACCESS VAULT OUTER WALL
- 34. 304 SCHEDULE 40 STAINLESS STEEL PIPING.
- 35. 50 mm Ø LATROLET. 36. 25 mm Ø THREADOLET.
- 37. STEEL RING SECTION WELDED TO ACCESS VAULT OUTER WALL
- 38. 350 mm Ø SCHEDULE 10 (346 mm ID) STEEL PIPE X 100 M LONG WELDED TO ACCESS VAULT TOP PLATE.
- 39. 300 mm Ø (IP SI E) DR 11 HDPE SEWER MAIN. 40. 75 mm THICK POLYURETHANE INSULATION HALVES OR PE PIPE PRE-INSULATION TO SUIT PIPE SIZES.
- 41. POLYETHYLENE LINER TUBE, PACK WITH STYROFOAM INSULATION.
- 42. CONCENTRIC INCREASER/REDUCER TO MATCH EXTERIOR PIPE SIZE
- 43. ECCENTRIC INCREASER/REDUCER TO MATCH EXTERIOR PIPE SIZE.
- 44. HDPE WATER MAIN. 45. HDPE SANITARY SEWER.
- 46. INSULATION KIT FOR FLANGE, CONCENTRIC REDUCER AND EXPANSION JOINT, (MASTIC COAT INNER SURFACES) AND FRP COATING.
- 47. INSULATION KIT FOR FLANGE, ECCENTRIC REDUCER AND EXPANSION JOINT, (MASTIC COAT INNER SURFACES) AND FRP COATING.

TYPICAL SANITARY SEWER ACCESS VAULT PENETRATION WITH ECCENTRIC INCREASER/REDUCER N.T.S.

Conditions of Use

Verify elevations and/or dimensions on drawing prior to use. Report any discrepancies to Dillon Consulting Limited.

Do not scale dimensions from drawing. Do not modify drawing, re-use it, or use it for purposes other than those intended at the time of its preparation without prior written permission from Dillon Consulting Limited.

THE ASSOCIATION OF PROFESSIONAL ENGINEERS, GEOLOGISTS and GEOPHYSICISTS F THE NORTHWEST TERRITORIES PERMIT NUMBER P 010 DILLON CONSULTING LIMITED

ISSUED FOR CONSTRUCTION

				1/ 1	1/ 1	
				KJ	KJ	
\triangle	RE-ISSUED FOR CONSTRUCTION	03/04/24	KJ	DRAWN	CHECKED BY	
<u>6</u>	ISSUED FOR CONSTRUCTION	12/06/23	KJ	TW/SC	KJ	
<u></u>	REVISED - ISSUED FOR TENDER ADDENDUM	08/06/23	KJ			
4	ISSUED FOR TENDER	07/07/23	KJ	DATE		
3	ISSUED FOR INTERNAL REVIEW	06/23/23	KJ	MARCH 2024 SCALE AS SHOWN		
2	RE-ISSUED FOR 75% REVIEW	05/31/23	KJ			١,
1	ISSUED FOR 75% REVIEW	05/01/23	KJ			
No.	ISSUED FOR	DATE	BY		-	

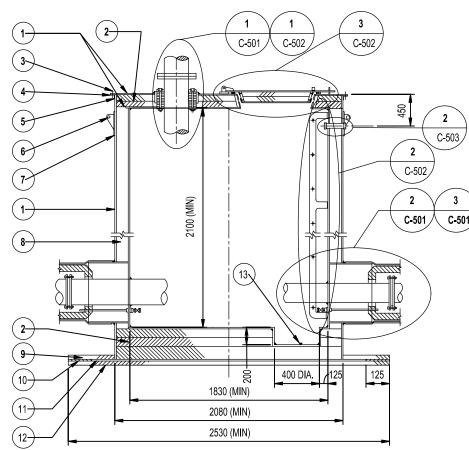
UTILIDOR REPLACEMENT TYPICAL DETAILS WATER AND SANITARY VAULT PENETRATION DETAILS

Government of Nunavut

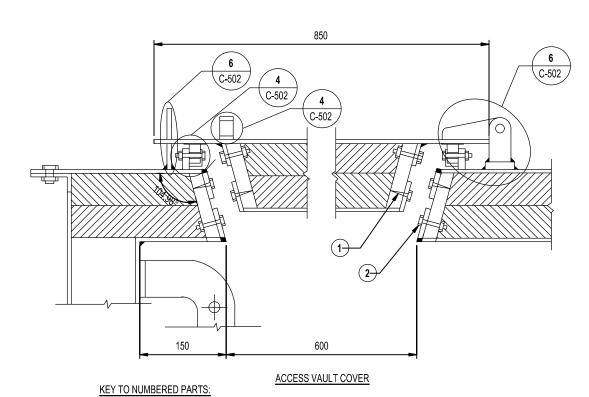
Rankin Inlet Utilidor Replacement - Phase 2B

KEY TO NUMBERED PARTS:

- 1.6 mm THICK STEEL PLATE ACCESS VAULT CONSTRUCTION
- 2. URETHANE SHEET INSULATION CUT TO SIZE 3, 12 mm CAD, PLATED STEEL BOLT, NUT, WASHER 32 mm MIN AT EQUAL SPACING
- 4.3 mm x 5 mm COMPRESSIBLE NEOPRENE RUBBER GASKET 5.10 mm THICK 50 mm x 50 mm MIN. ANGLE WELDED FULL LENGTH 6. LIFTING LUGS - TWO PER ACCESS VAULT, 150 mm x 75 mm x 12 mm THICK WITH 38
- DIA. LIFTING EYE. CAPACITY OF LIFTING LUGS TO BE CONFIRMED BY MANUFACTURER. 7. REINFORCING PLATE 200 mm x 200 mm x 12 mm CURVED TO EXTERIOR WALL RADIUS 8. FORMED IN PLACE INSULATION (URETHANE)
- 9.38 mm THICK STYROFOAM CUT TO MATCH EXTERIOR WALL RADIUS
- 10. FILLER PIECE 10 mm THICK INSULATION
- 11. 10 mm THICK STEEL BASE PLATE

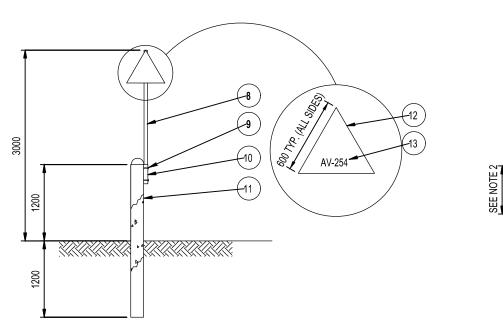

13. FROST PLUG ACCESS VAULT - GENERAL NOTES:

12. 38 mm THICK INSULATION


- 1. CONSTRUCT ACCESS VAULTS FROM 6mm STEEL PLATE WITH CONTINUOUS (FULLY) WELDED CONSTRUCTION. FABRICATE COMPLETELY PRIOR TO EPOXY COATING. WELDING AND FABRICATION TO CSA W59-1977 % W47-1-1973.
- 2. ALL STEEL TO BE CSA G40.21 TYPE 260W OR ASTM A36-62T. 3. ALL PIPING INSIDE THE ACCESS VAULT TO BE PREFABRICATED TO THE LIMITS SHOWN ON THE TYPICAL SECTION AND SHOWN ON THE LAYOUT PLANS. 4. PROVIDE PIPE ENTRY SPOOL PIECES, LADDER MOUNTING STUDS & ALL OTHER ACCESS

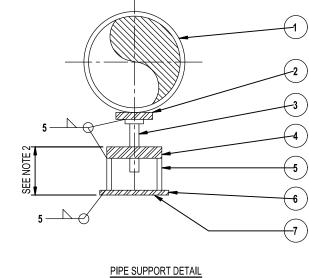
VAULT PARTS, ETC. AS REQUIRED, PRE-WELDED IN PLACE PRIOR TO SANDBLASTING

- AND EPOXY COATING. 5. ALL PREFABRICATED STEEL PARTS OF THE ACCESS VAULT (EXCEPT TOP PLATE HATCH AND LADDER) SHALL BE SANDBLASTED AND EPOXY COATED INSIDE AND OUTSIDE AS
- PER SPECIFICATIONS. 6. TOP PLATE, HATCH, HINGE, & LADDER SHALL BE HOT DIPPED GALVANIZED TO CSA G164
- MINIMUM 610g/m2. 7. ALL NUTS, BOLTS, WASHERS, SCREWS ETC. SHALL BE ZINC PLATED OR CAMIUM
- 8. FLANGE INSULATION KITS AND STYROFOAM ACCESS VAULT BASE INSULATION
- SUPPLIED AS PART OF THE ACCESS VAULT. 9. HYDRANT, AND LINK SEAL JOINT TO BE SHIPPED SEPARATELY (INSIDE ACCESS VAULT). 10. PRIOR TO SHIPPING, ALL FACES OF FLANGES PROJECTING OUTSIDE THE ACCESS VAULT SHALL PROTECTED BY 5/8" THICK PLYWOOD COVER BY 4 BOLTS.
- 11. PROVIDED WITH EACH ACCESS VAULT SHALL BE FOUR 200mm DIA. STEEL BUMPER POST, ONE TO INCLUDE SIGN. 12. PAINT SPECIFICATIONS:
- A, SANDBLAST SSPC SP10 B. 2 COATS OF INTEGARD EX HB FROM INTERNATIONAL, 16 MILS DRY THICKNESS C. COLOURS: OUTSIDE - GREY , INSIDE - BEIGE



1 ACCESS VAULT DETAIL

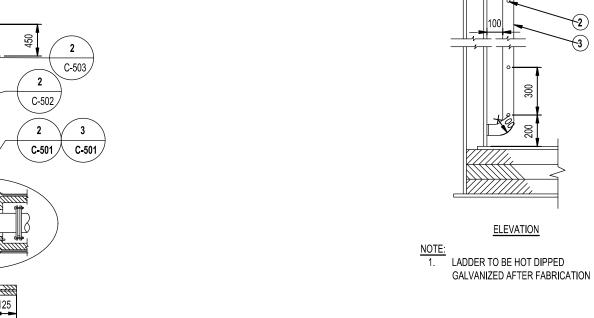
1. #12-30 PAN HEAD SHEET METAL SCREWS AT 100 SPACING 2. 6 mm GALVANIZED BOLTS, NUT, & WASHER AT 100 mm SPACING


(3) ACCESS VAULT COVER DETAIL

1. SEE DETAIL 1 ON THIS SHEET FOR GENERAL ACCESS VAULT NOTES. 2. HEIGHT TO BE 100 mm FOR SANITARY OR WATER IN SEPARATE AV, 500mm FOR

BUMPER POST DETAIL

WATER IN COMMON AV. 3. POST, SLEEVE AND MAST TO BE PAINTED RED AFTER FABRICATION. 4.4 BOLLARDS REQUIRED PER ACCESS VAULT. ONE BOLLARD PER ACCESS VAULT TO INCLUDE MAST AND SIGN. 5. BACKFILL WITH MODIFIED GRANULAR 'B'



KEY TO NUMBERED PARTS:

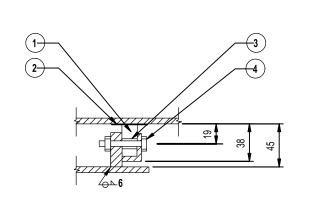
1. WATER MAIN - HOT DIPPED GALV. STEEL PIPING 2.75 mm DIA. x 12 THICK PLATE 3, 20 mm x 15 '0' BOLT 4.20 THICK PLATE DRILLED AND TAPPED 5.100 mm DIA. SCHEDULE 40 STEEL PIPE 6.150 mm x 150 mm x 12 mm THICK PLATE 7. 2 - 15mm DIA, HOLES 8. 50mm DIA. GALV. STEEL PIPE MAST - 4 - 11mm DIA. BOLT HOLES 9. 2 - 9mm DIA. x 89 mm LONG GALV. BOLTS THROUGH SLEEVE AND MAST.

11. 200 mm DIA. STEEL PIPE POST EPOXY COATED AND FILLED WITH CONCRETE 12. 3 mm THICK STEEL PLATE SIGN PAINTED RED c/w 2 - 11mm DIA. DRILLED BOLT HOLES. SIGN SECURED TO MAST WITH 2 - 9mm DIA x 76 LG. GALV. BOLTS 13. WHITE LETTERING, 100mm HIGH. LETTERING TO MATCH ACTUAL ACCESS

10. 65 mm DIA. STEEL SLEEVE WELDED TO POST, c/w 2 - 11 mm DIA. DRILLED

KEY TO NUMBERED PARTS:

12 mm DIA. STUD WELDED TO INNER WALL C/W FASTENING NUTS
 20 mm DIA. RUNGS INSERTED HALFWAY THROUGH HOLES IN

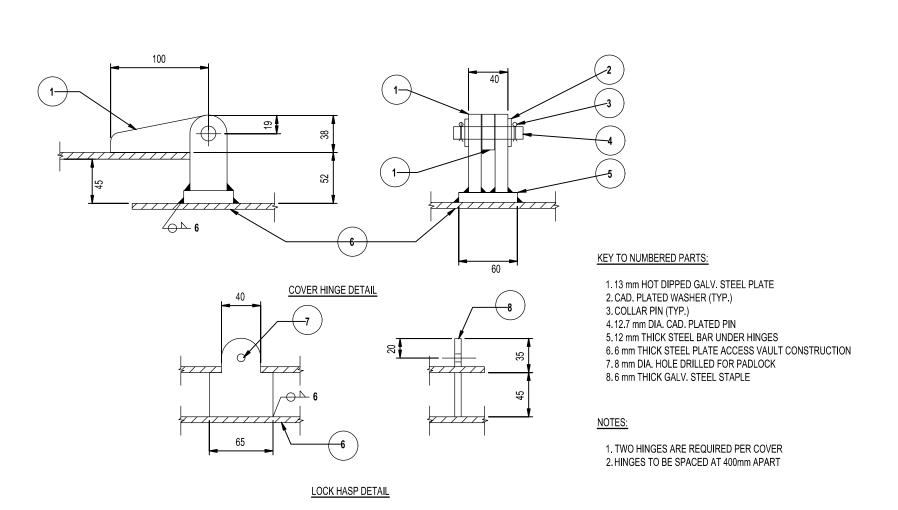

STRINGER, FILLET WELD REMAINDER OF HOLE AND GRIND

3. 63.5 mm x 9.5 mm FLAT BAR STRINGER, BENT TO MAKE SUPPORTS

SMOOTH - SEE DETAIL PLAN VIEW

AND DRILLED THROUGH FOR RUNGS

GRIND SMOOTH


COVER HANDLE DETAIL

4.6mm X 31mm CAD. PLATED STEEL BOLT 150mm SPACING

KEY TO NUMBERED PARTS:

1. 37mm DIA. METKA IND. TG-155 GASKET 2. 25mm WIDE TEFLON TAPE APPLIED TO DOOR 3. 6.5mm X 17 mm SPACER

ACCESS VAULT MISCELLANEOUS DETAILS 1

7 ACCESS VAULT COVER MISCELLANEOUS DETAILS

Conditions of Use

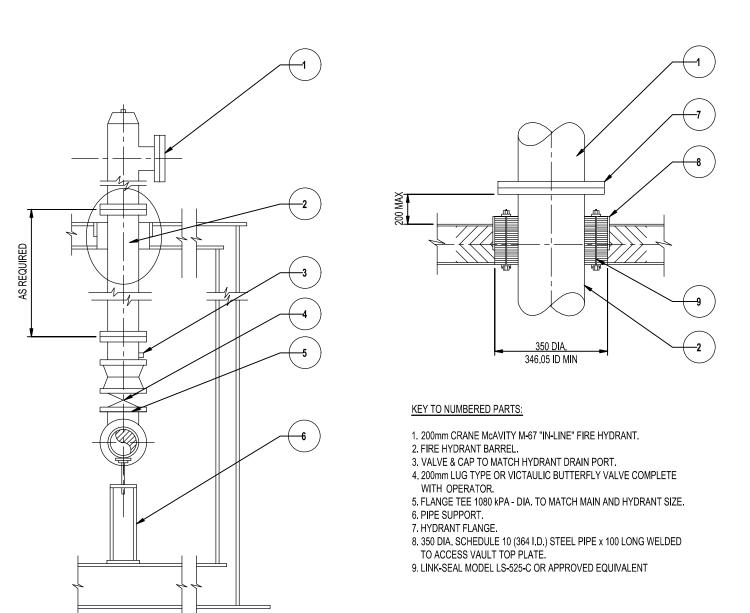
Verify elevations and/or dimensions on drawing prior to use. Report any discrepancies to Dillon Consulting Limited.

Do not scale dimensions from drawing. Do not modify drawing, re-use it, or use it for purposes other than those intended at the time of its preparation without prior written permission from Dillon Consulting Limited.

THE ASSOCIATION OF PROFESSIONAL ENGINEERS, GEOLOGISTS and GEOPHYSICISTS OF THE NORTHWEST TERRITORIES PERMIT NUMBER P 010 DILLON CONSULTING LIMITED

6 ACCESS VAULT MISCELLANEOUS DETAILS 2

ISSUED FOR CONSTRUCTION



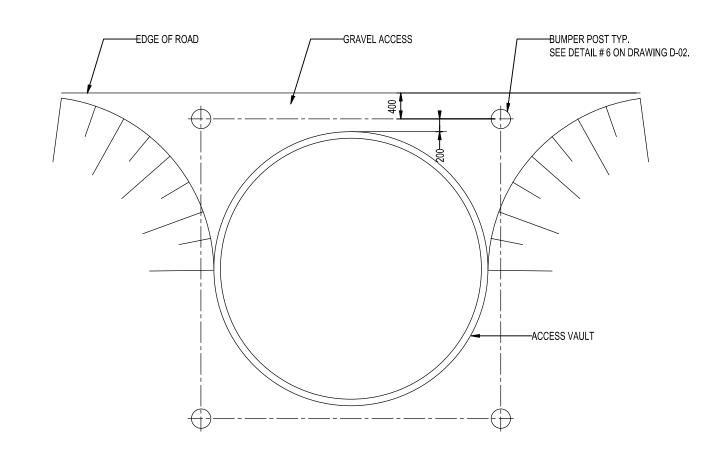
				DESIGN	REVIEWED BY	
				KJ	KJ	
7	RE-ISSUED FOR CONSTRUCTION	03/04/24	KJ	DRAWN	CHECKED BY	
7	ISSUED FOR CONSTRUCTION	12/02/24	KJ	TW/SC	KJ	
7	REVISED - ISSUED FOR TENDER ADDENDUM	08/06/23	KJ			
	ISSUED FOR TENDER	07/07/23	KJ	DATE		
	ISSUED FOR INTERNAL REVIEW	06/23/23	KJ	MARCH 2024		
	RE-ISSUED FOR 75% REVIEW	05/31/23	KJ	SCALE		
	ISSUED FOR 75% REVIEW	05/01/23	KJ	AS SHOWN		
	ISSUED FOR	DATE	BY			

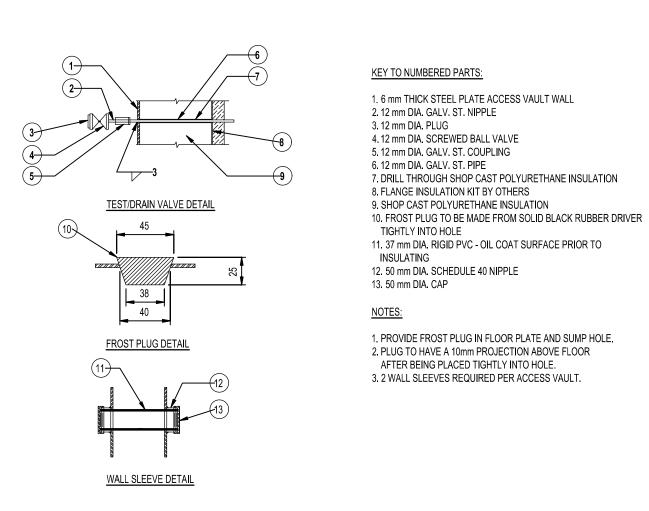
UTILIDOR REPLACEMENT TYPICAL DETAILS ACCESS VAULT DETAILS (1 OF 4)

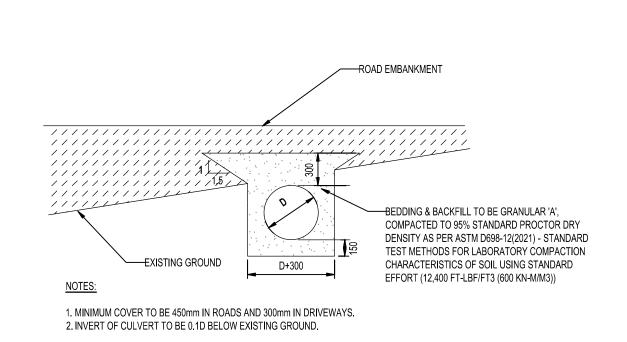
25mmØ GALVANIZED -12mmØ STUD WELDED TO INNER WALL ----10mm THICK STEEL PLATE, 50mm X 225mm 25mmØ GALVANIZED STEEL BAR —25mmØ GALVANIZED STEEL BAR 10mm THICK STEEL -PLATE, 50mm X 225mm NOTE: APPLY MASTIC ON UNDERSIDE —12mmØ STUD WELDED TO INNER WALL OF BOLT PLATES PRIOR TO INSTALLATION -10mm THICK STEEL PLATE, 50mm X 225mm

5 LADDER EXTENSION DETAIL

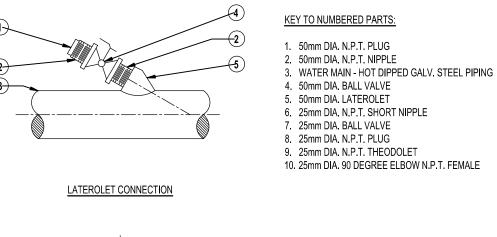
8 FIRE HYDRANT DETAILS
N.T.S.

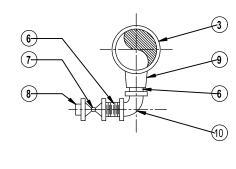

Government of Nunavut Rankin Inlet Utilidor Replacement - Phase 2B



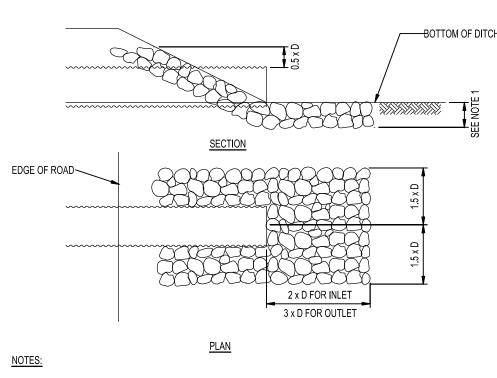


ACCESS VAULT BOLLARD POST DETAIL


N.T.S.



5 PIPE CULVERT IN A TRENCH
N.T.S.



WATER MAIN DRAIN

3 LATEROLET AND DRAIN DETAILS

N.T.S.

1. RIP-RAP THICKNESS TO BE 300mm FOR DIA. LESS THAN 1400mm, AND 600mm FOR DIA. GREATER THAN 1400mm.
2. RIP-RAP TO BE HAND PLACED.
3. MINIMUM CULVERT DIA. TO BE 400mm.
4. NOMINAL SIZE OR RIP-RAP TO BE 0.5 THICKNESS
5. FILTER CLOTH TO BE INSTALL UNDER ENTIRE RIP-RAP APRON.

6 CULVERT APRON DETAIL N.T.S.

Conditions	of	Use

Verify elevations and/or dimensions on drawing prior to use. Report any discrepancies to Dillon Consulting Limited.

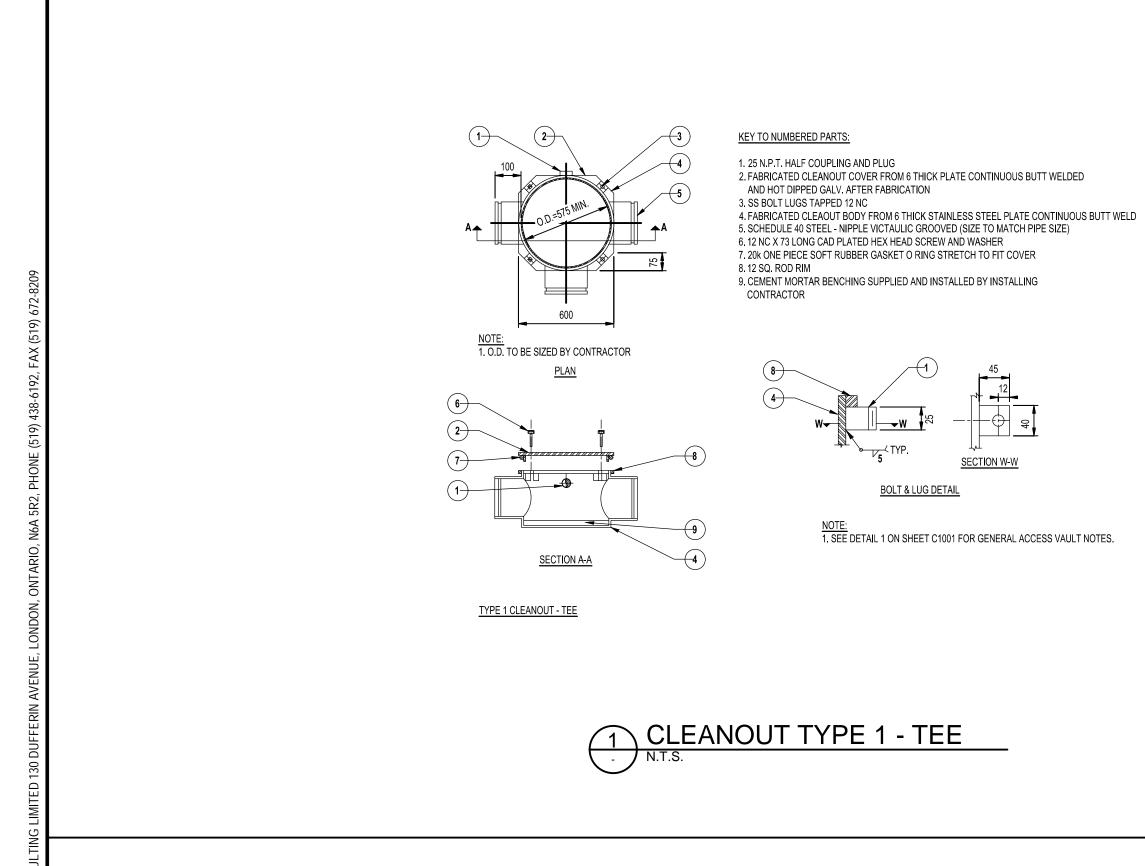
Do not scale dimensions from drawing.

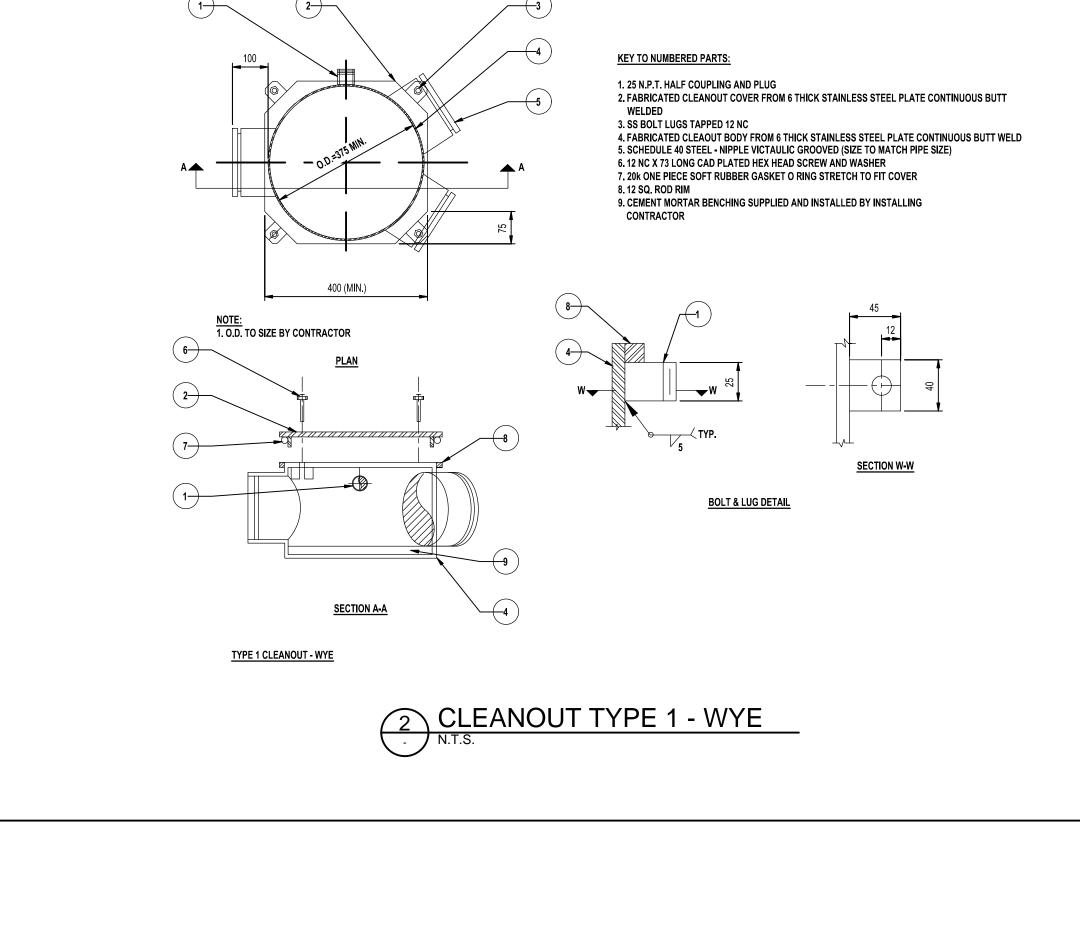
Do not modify drawing, re-use it, or use it for purposes other than those intended at the time of its preparation without prior written permission from Dillon Consulting Limited.

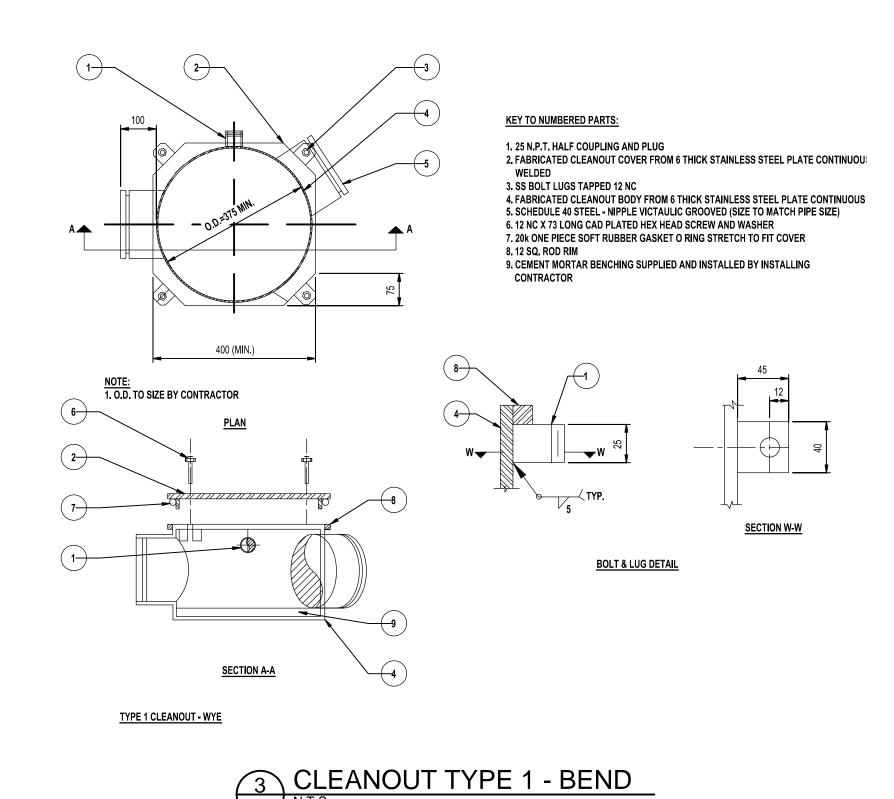
THE ASSOCIATION OF PROFESSIONAL ENGINEERS, GEOLOGISTS and GEOPHYSICISTS OF THE NORTHWEST TERRITORIES PERMIT NUMBER P 010

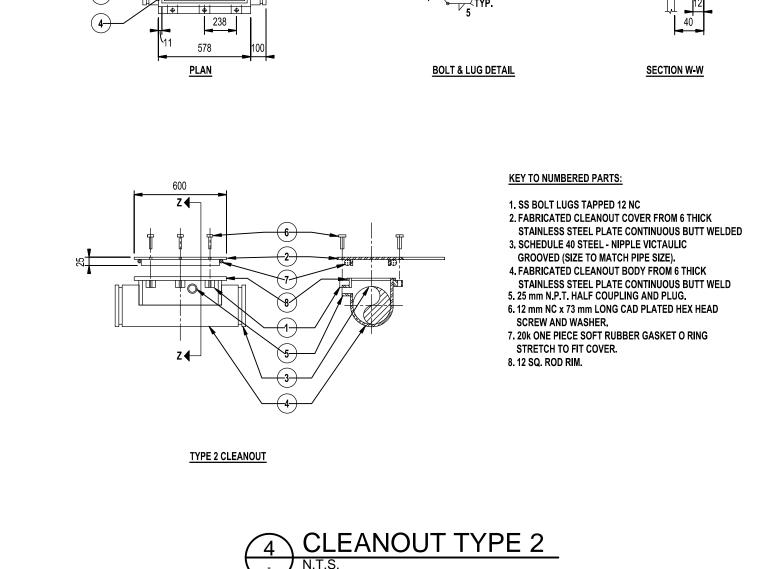
DILLON CONSULTING LIMITED

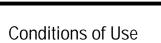
ISSUED FOR CONSTRUCTION


				DESIGN KJ	REVIEWED BY KJ	
\triangle	RE-ISSUED FOR CONSTRUCTION	03/04/24	KJ	1.0	1.5	
6	ISSUED FOR CONSTRUCTION	12/02/24	KJ	DRAWN TW/SC	CHECKED BY	_
5	REVISED - ISSUED FOR TENDER ADDENDUM	08/04/23	KJ	100/30		
4	ISSUED FOR TENDER	07/07/23	KJ	MARCH 2024		
3	ISSUED FOR INTERNAL REVIEW	06/23/23	KJ			
2	RE-ISSUED FOR 75% REVIEW	05/31/23	KJ			
1	ISSUED FOR 75% REVIEW	05/01/23	KJ	AS SHOWN		
No.	ISSUED FOR	DATE	BY			


UTILIDOR REPLACEMENT
TYPICAL DETAILS
CCESS VAULT DETAILS (2 OF 4)


Government of Nunavut


Rankin Inlet Utilidor Replacement - Phase 2B


C-503

Verify elevations and/or dimensions on drawing prior to use. Report any discrepancies to Dillon Consulting Limited.

Do not scale dimensions from drawing.

Do not modify drawing, re-use it, or use it for purposes other than those intended at the time of its preparation without prior written permission from Dillon Consulting Limited.

THE ASSOCIATION OF PROFESSIONAL ENGINEERS, GEOLOGISTS and GEOPHYSICISTS OF THE NORTHWEST TERRITORIES

PERMIT NUMBER
P 010
DILLON CONSULTING
LIMITED

ISSUED FOR CONSTRUCTION

				DESIGN	REVIEWED BY	
				KJ	KJ	
<u> </u>	RE-ISSUED FOR COSTRUCTION	03/04/24	KJ	DRAWN	CHECKED BY	
6	ISSUED FOR CONSTRUCTION	12/02/24	KJ	TW/SC	KJ	
5	REVISED - ISSUED FOR TENDER ADDENDUM	08/04/23	KJ			
4	ISSUED FOR TENDER	07/07/23	KJ	MARCH 2024 SCALE		
3	ISSUED FOR INTERNAL REVIEW	06/23/23	KJ			
2	RE-ISSUED FOR 75% REVIEW	05/31/23	KJ			
1	ISSUED FOR 75% REVIEW	05/01/23	KJ	AS SHOWN		
No.	ISSUED FOR	DATE	BY	7.5 5110 WW		

UTILIDOR REPLACEMENT
TYPICAL DETAILS
ACCESS VAULT DETAILS (3 OF 4)

Government of Nunavut

Rankin Inlet Utilidor Replacement - Phase 2B

C-504

KEY TO NUMBERED PARTS: 1. DETECTABLE METALLIC UNDERGROUND MARKER TAPE TO BE INSTALLED ABOVE ALL MAINS. 2. SELECT NATIVE BACKFILL MATERIAL, OR ENGINEERED BACKFILL WHERE DIRECTED BY ENGINEER. 3. SAND BACKFILL, COMPACTED TO 95% STANDARD PROCTOR DRY DENSITY AS PER ASTM D698, MINIMUM 300 mm COVER OVER PIPES. 4. WATER MAIN - DR11 HDPE PIPE c/w 75mm SHOP APPLIED POLYURETHANE INSULATION FRP JACKET. 5. SANITARY MAIN - DR11 HDPE PIPE c/w 75mm SHOP APPLIED POLYURETHANE INSULATION FRP JACKET. 6. SAND BEDDING COMPACTED TO 95% STANDARD PROCTOR DRY DENSITY AS PER ASTM D698, 150 mm (230 mm IN ROCK).

1. PIPES TO BE SPACED 230 mm, OR GREATER, FROM

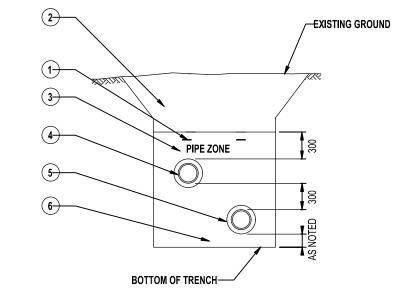
2. TEST PITS TO BE DUG EVERY 15m TO A DEPTH OF 500mm

BELOW PIPE INVERT TO CHECK FOR PRESENCE OF SILT.

SUBEXCAVATE AS REQUIRED, TO A DEPTH OF 450 mm

BELOW PIPE INVERT AND BACKFILLED WITH GRANULAR B

→3. SANITARY SEWERS AND WATER MAINS TO HAVE A MINIMUM 1.2m

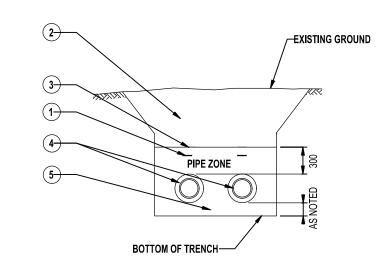

COMPACTED TO 95% STANDARD PROCTOR DRY DENSITY

TRENCH WALL AND OTHER PIPES TO ALLOW

COMPACTION.

AS PER ASTM D698.

COVER.



KEY TO NUMBERED PARTS:

1. DETECTABLE METALLIC UNDERGROUND MARKER TAPE TO BE INSTALLED ABOVE ALL MAINS. 2. SELECT NATIVE BACKFILL MATERIAL, OR ENGINEERED

BACKFILL WHERE DIRECTED BY ENGINEER. 3. SAND BACKFILL, COMPACTED TO 95% STANDARD PROCTOR DRY DENSITY AS PER ASTM D698, MINIMUM 300 mm COVER OVER PIPES.

4. WATER MAIN - DR11 HDPE PIPE c/w 75mm SHOP APPLIED POLYURETHANE INSULATION FRP JACKET. 5. SAND BEDDING COMPACTED TO 95% STANDARD PROCTOR DRY DENSITY AS PER ASTM D698, 150 mm (230 mm IN ROCK).

1. PIPES TO BE SPACED 230 mm, OR GREATER, FROM TRENCH WALL AND OTHER PIPES TO ALLOW COMPACTION. 2. TEST PITS TO BE DUG EVERY 15m TO A DEPTH OF 500mm

AS PER ASTM D698.

BELOW PIPE INVERT TO CHECK FOR PRESENCE OF SILT. SUBEXCAVATE AS REQUIRED, TO A DEPTH OF 450 mm BELOW PIPE INVERT AND BACKFILLED WITH GRANULAR B **COMPACTED TO 95% STANDARD PROCTOR DRY DENSITY** AS PER AS IN DOSO.

3. WATER MAINS TO HAVE MIN. 1.20m COVER

TYPICAL TRENCH DETAIL 1

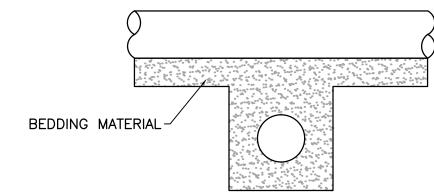
N.T.S.

PIPE ZONE

BOTTOM OF TRENCH-

/-EXISTING GROUND

TYPICAL TRENCH DETAIL WATERMAIN, AND SANITARY SEWER


3 TYPICAL TRENCH DETAIL WATER SUPPLY AND RETURN MAINS

WHERE COLD MIX IS REQUIRED (INUKSHUK & TARIUQ EXCAVATIONS), ADD 75mm THICKNESS TO STRUCTURE SHOWN BELOW. COLD MIX SHALL BE SUPPLIED AND INSTALLED PER MANUFACTURER SPECIFICATION.

^L 100mm GRANULAR A 300mm GRANULAR B COMPACTED SUBGRADE (98% SPD) ENSURE POSITIVE DITCH GRADE SHAPED TO MATCH CROWN WITHOUT PONDING WATER.

ROADWAY AND DITCH RESTORATION DETAIL

N.T.S.

WATER SHALL CROSS OVER SANITARY UNLESS PIPE COVER IS LIMITED. MIN. 300mm OF COMPACTED BEDDING MATERIAL REQUIRED BETWEEN LOW PIPE CROWN AND HIGH PIPE INVERT AT ALL CROSSINGS. WATER MAINS SHALL BE INSTALLED WITHOUT PEAKS AT CROSSINGS. LOWER THE LOW PIPE TO PREVENT WATER MAIN PEAKS. CONSULT WITH ENGINEER IF GRADE CHANGE REQUIRED.

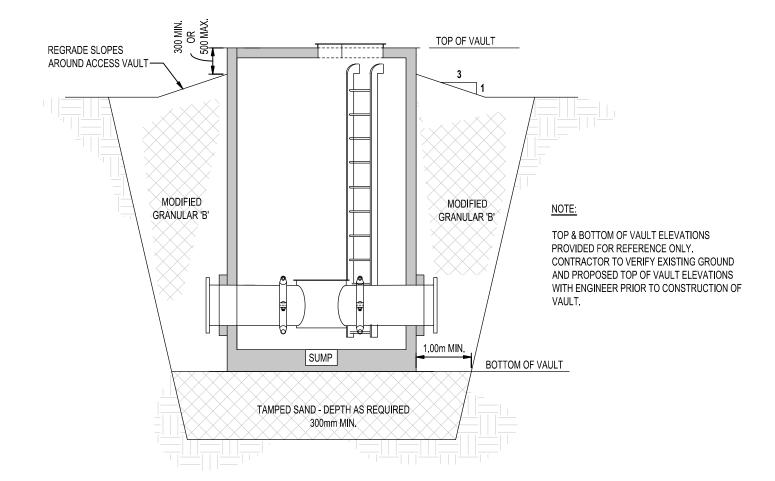
HIGH PIPE SHALL BE FULLY BEDDED (150mm) ALONG PIPE. CROSSING PIPES SHALL NOT CONTACT. PIPE JOINTS SHALL NOT BE PRESENT WITHIN 2m OF CROSSING.

7 CROSSING PIPE DETAIL

KEY TO NUMBERED PARTS: 1. DETECTABLE METALLIC UNDERGROUND MARKER TAPE 2. SELECT NATIVE BACKFILL MATERIAL, OR ENGINEERED BACKFILL WHERE DIRECTED BY ENGINEER. 3. SAND BACKFILL, COMPACTED TO 95% STANDARD PROCTOR DRY DENSITY AS PER ASTM D698.

MINIMUM 300 mm COVER OVER PIPES. 4. WATER MAIN - DR11 HDPE PIPE c/w 75mm SHOP APPLIED POLYURETHANE INSULATION FRP JACKET. 5. RECIRCULATION LINE - DR11 HDPE PIPE c/w 75mm SHOP APPLIED POLYURETHANE INSULATION FRP

6. SANITARY SERVICE - DR11 HDPE PIPE c/w 75mm SHOP APPLIED POLYURETHANE INSULATION FRP JACKET. 7. SAND BEDDING COMPACTED TO 95% STANDARD PROCTOR DRY DENSITY AS PER ASTM D698, 150 mm (230 mm IN ROCK).


1. PIPES TO BE SPACED 230 mm, OR GREATER, FROM TRENCH WALL AND OTHER PIPES TO ALLOW

2. TEST PITS TO BE DUG EVERY 15m TO A DEPTH OF 500mm BELOW PIPE INVERT TO CHECK FOR PRESENCE OF SILT. SUBEXCAVATE AS REQUIRED, TO A DEPTH OF 450 mm BELOW PIPE INVERT AND BACKFILLED WITH GRANULAR B COMPACTED TO 95% STANDARD PROCTOR DRY DENSITY

AS PER ASTM D698. AS PER AS I M D090.

3. SANITARY SEWERS AND WATER MAINS TO HAVE A MINIMUM 1.2m

TYPICAL TRENCH DETAIL WATERMAIN 4 RECIRCULATION AND SANITARY

5 TYPICAL ACCESS VAULT DETAIL

Verify elevations and/or dimensions on drawing prior to use. Report any discrepancies to Dillon Consulting Limited.

Do not scale dimensions from drawing. Do not modify drawing, re-use it, or use it for purposes other

THE ASSOCIATION OF PROFESSIONAL ENGINEERS, GEOLOGISTS and GEOPHYSICISTS OF THE NORTHWEST TERRITORIES PERMIT NUMBER DILLON CONSULTING LIMITED

ISSUED FOR CONSTRUCTION

EXISTING GROUND

				DESIGN	REVIEWED BY	
				K J	KJ	
Δ	RE-ISSUED FOR CONSTRUCTION	03/04/24	KJ	DRAWN	CHECKED BY	
<u>^6</u>	ISSUED FOR CONSTRUCTION	12/06/23	KJ	TW/SC	KJ	
<u>/</u> 5	REVISED - ISSUED FOR TENDER ADDENDUM	08/04/23	KJ			
4	ISSUED FOR TENDER	07/07/23	KJ	DATE MARCH 2024		
3	ISSUED FOR INTERNAL REVIEW	06/23/23	KJ			
2	RE-ISSUED FOR 75% REVIEW	05/31/23	KJ	SCALE		
1	ISSUED FOR 75% REVIEW	05/01/23	KJ	AS SHOWN		
No	ISSUED FOD	DATE	DV		1	

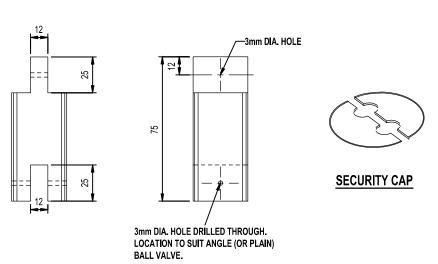
UTILIDOR REPLACEMENT TYPICAL DETAILS ACCESS VAULT DETAILS (4 OF 4)

Government of Nunavut

Rankin Inlet Utilidor Replacement - Phase 2B

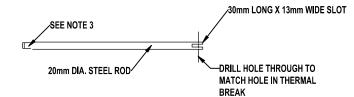
C-505

22-5181

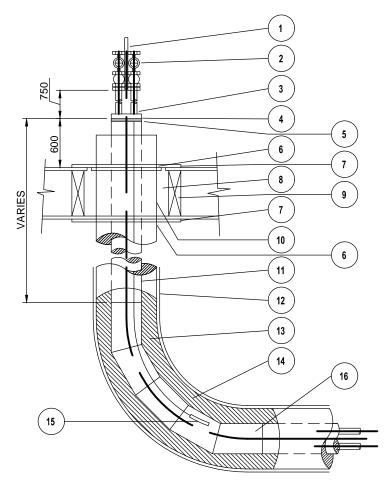

Conditions of Use

than those intended at the time of its preparation without prior written permission from Dillon Consulting Limited.

1. WATER MAIN - DR 11 HDPE PIPE c/w 75mm APPLIED POLYURETHANE INSULATION & FRP JACKET. 2. INSULATION FORM (SEE DETAIL), SIZED TO FIT WATER MAIN O.D. AND SERVICE LATERAL O.D., 25mm LAP REQUIRED ON EACH SIDE. 3. 2x ROBAR 2706 TAPPING SADDLE, DOUBLE STRAP OR EQUAL. 4. FIELD POURED POLYURETHANE INSULATION FOAM (207 kPa COMPRESSIVE STRENGTH).


1. ALL EXPOSED SURFACES OF POLYURETHANE TO BE FIELD COATED WITH MASTIC. 2. METAL SURFACES IN CONTACT WITH FIELD POURED POLYURETHANE INSULATION SHALL BE COATED WITH OIL SEPARATING AGENT.

1 TYPICAL WATER SERVICE AT MAIN (PLAN VIEW)


NOTE
1. MADE FROM 38mm DIA. ROUND HDPE BAR STOCK

HDPE THERMAL BREAK

1. ROD SHALL BE FIELD FABRICATED. ZINC RICH PAINT COATED AFTER FABRICATION. 2. ROD SHALL BE SUFFICIENT LENGTH TO EXTEND FROM THERMAL BREAK TO TOP OF HDPE PIPE (ITEM 18) BUT SHALL NOT EXTEND ABOVE EXISTING GROUND SURFACE. 3. TOP SECTION OF ROD TO BE 32mm LONG X 19mm WIDE X 6mm THICK WITH 5mm LONG TOP BEVEL (SIMILAR TO TOP OF CRANE McAVITY W-6221 ROD).

- 1. ALL EXPOSED SURFACES OF POLYURETHANE TO BE FIELD COATED WITH MASTIC.
- 2. THE INSIDE SURFACES OF METAL TO BE IN CONTACT WITH FIELD POURED POLYURETHANE INSULATION SHALL BE COATED WITH OIL SEPARATING AGENT.
- 3. INSULATION FORMS AND METAL COVER PARTS, TO BE 1.6mm THICK STEEL,

CONTINUOUS WELDED SEAMS, HOT DIPPED GALVANIZED AFTER FABRICATION.

3 TYPICAL WATER SERVICE RISER AT HOUSE

KEY TO NUMBERED PARTS:

- 1. 2,000 mm EXCESS HEATING CABLE TO BE LEFT AT BOTH ENDS. 2. 25 mm BALL VALVES, COMPRESSION WITH SEAMLESS STAINLESS STEEL INSERT (MUELLER H-15219 OR EQUAL).
- 3. FIELD INSTALLED 25 mm OR 38 mm HDPE DR 11 (1,100 KPA) SUPPLY & RETURN WATER SERVICE PIPE CONTINÚOUS LENGTH FROM COIL STOCK. 4. SECURITY CAP.
- 5. STAINLESS STEEL GEAR CLAMP HOLDING SECURITY CLAMP IN PLACE.
- 6. CAULK WITH SILICON ALL AROUND. 7. 20 mm PLYWOOD GLUED AND SCREWED TO JOIST/STUDS AND HEADERS.
- 8. POLYURETHANE INSULATION FROM PORTABLE FOAM PACK TO FILL VOID.
- FLOOR JOIST.
- 10. FIBERGLASS REINFORCED PLASTIC THIMBLE. 11.100 mm OR 150 mm Ø HDPE DR 17 (690 KPA) CARRIER PIPE BUTT FUSED IN FIELD WITH BLIND FLANGE INSTALLED 1 M INSIDE PROPERTY LINE.
- 12. HEAT SHRINK TO SUIT.
- 13. POLYURETHANE HALF SHELL CUT TO LENGTH AND COATED WITH ASPHALT MASTIC.
 14. LONG RADIUS 90° ELBOW REINFORCED PLASTIC JACKET.
- 15. THERMOSTAT BULB. 16. BUTT FUSION JOINT MADE BY A QUALIFIED AND LICENSED JOINING TECHNICIAN.
- 17. HOLES TO FIT 25 mm HDPE LINES.
- 18. 20 mm PLYWOOD TO FIT PIPE O. D. 19. 22 GA. SHEET METAL GALVANIZED.
- 20. HOLE FOR THERMOSTAT BULB AND HOLE FOR HEAT TRACE CABLE.
- 21.75 mm NOMINAL THICKNESS SHOP CAST POLYURETHANE INSULATION AND BLACK JACKET. 22. TWO FULL TURNS OF POLYESTER PACKAGING TAPE APPLIED EVERY 2 M MIN..
- 23.100 mm OR 150 mm Ø HDPE DR 17 (690 KPA) CARRIER PIPE BUTT FUSED IN FIELD WITH BLIND FLANGE INSTALLED 1 M INSIDE PROPERTY LINE.
- 24. 250mm Ø HDPE WATER MAIN WITH 75 mm POLYURETHANE INSULATION. 25. HEAT SHRINK SLEEVE MIN. 100 mm LAP ON BLACK JACKET AFTER SHRINKAGE.
- 26. FIELD COAT ALL EXPOSED POLYURETHANE WITH MASTIC.
- 27. DIA. TO SUIT INSULATED MAIN PIPE O. D. AND REQUIREMENT OF 25 mm LAP ON EACH SIDE. 28. STAINLESS STEEL GEAR CLAMPS.
- 29. HOLES TO BE DRILLED IN FIELD TO SUIT, FOR GALVANIZED SHEET METAL SCREWS.
- 30. DIA. TO SUIT INSULATED MAIN PIPE O. D. AND REQUIREMENT OF 25 mm LAP ON EACH SIDE.
- 31. ROBAR 2706 TAPPING SADDLE, DOUBLE STRAP SUPPLY AND INSTALL. 32. POLYURETHANE FOAM PLUG - SUPPLY AND INSTALL.
- 33. PVC TAPE WRAPPED OVER ALL HEAT TRACE CABLE AND OVER PIPE/FITTINGS, ETC., WITHIN INSULATION FORM. (TO KEEP FIELD POURED URETHANE OUT FROM BETWEEN HEAT TRACING AND PIPING).
- 34. FIELD POURED POLYURETHANE INSULATION FOAM INSULATION 207 KPA COMPRESSIVE STRENGTH -SUPPLY AND INSTALL WATER SERVICE
- 35, 150 mm WIDE PE WARNING TAPE. 36. FIELD CUT HOLES (IF REQ'D FOR FOAM INJECTION) TO BE MASTIC COATED AFTER FOAM INJECTION.
- 37.100mm Ø OR 150 mm Ø FACTORY FABRICATED DR 17 HDPE 45° BEND WITH FACTORY APPLIED POLYURETHANE INSULATION/FRP JACKET
- 38. 25mm OR 38 mm BRONZE BALL CORPORATION STOP 25mm Ø MIPT INLET X 25mm Ø HDPE DR 11 OR 38 Ø MIPT X 38Ø HDPE DR 11 -JOINT OUTLET C/W STAINLESS STL. INSERT STIFFENERS - FORD BALL CORP. FB SERIES 1000 OR EQUAL. (2 REQUIRED PER SERVICE). 39. 100 X 100 WOODEN MARKER STAKE.

WATER NUMBERING PARTS LIST

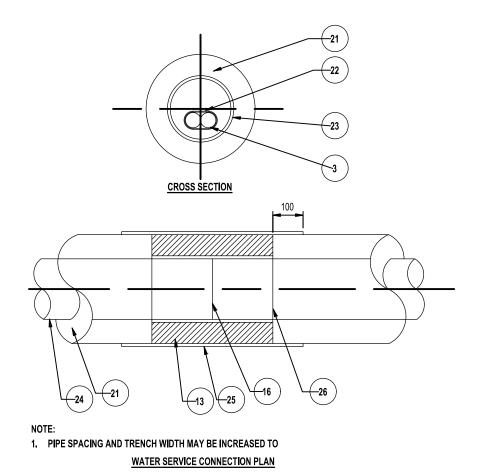
SERVICE SIZING TABLE

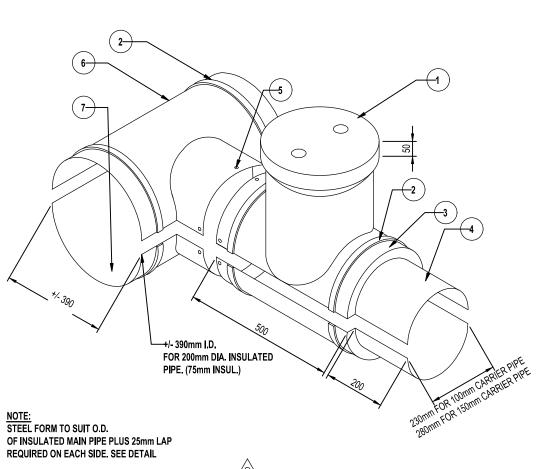
5. HEAT SHRINK SLEEVE, MIN. 100mm LAP ON BLACK JACKET.

Building	Water	Water	Sanitary	Carrier
Туре	Supply	Return	Sewer	Pipe
Single family	25 mm	25 mm	100 mm	100 mm
2-plex	25 mm	25 mm	100 mm	100 mm
3-plex	25 mm	25 mm	100 mm	100 mm
4-plex	38 mm	25 mm	150 mm	150 mm
6-plex	38 mm	25 mm	150 mm	150 mm
8-plex	50 mm	25 mm	150 mm	150 mm
10-plex	50 mm	25 mm	150 mm	150 mm

TYPICAL WATER SERVICE SIZING TABLE ONLY

KEY TO NUMBERED PARTS: 1. SNUG FITTING PLASTIC CAP.


PROTECTIVE COATING.


- 2. STEEL LID MADE FROM 2.7mm THICK SHEET STEEL GALVANIZED AFTER FABRICATION. 3. 12mm DIA. SCREW BOLT WITH WELDED NUT, GALVANIZED (FOUR PER LID)
- 4. 50 DIA. DR 9 HDPE PIPE VALVE EXTENSION FIELD CUT TO LENGTH AND FILLED WITH ESSO EPIC-102 GREASE. 5. VALVE OPERATING ROD CONNECT TO ITEM 45 WITH BRASS COTTER PIN.
- 6. 600mm DIA. 68 X 13 X 1.6mm THICK GALVANIZED STEEL CULVERT. 7. STAINLESS STEEL WORM GEAR HOSE CLAMP TO PREVENT MOVEMENT OF VALVE EXTENSION PIPE. CAULK WITH SILICON ALL AROUND.
- 8. 296mm INSIDE DIA. REMOVABLE GALVANIZED SHEET METAL CAP WITH FIELD CUT HOLES. 9. HDPE THERMAL BREAK CONNECT TO ITEM 2 WITH BRASS COTTER PIN. 10. BALL VALVES SHALL BE FORD B44-444 (25mm LINE) OR B66-777 (50mm LINE) WITH PACK
- JOINT FOR HDPE INCLUDING INSERT STIFFENER AND FOR COPPER PIPE ON END IN 11. HDPE DR 11 WATER MAIN WITH 75mm POLYURETHANE INSULATION.
- 12. POLYURETHAN INSULATION FROM PORTABLE FOAM PACK TO FILL VOID. 13. BOTTOM INSULATION FORM OF GALVANIZED SHEET STEEL. 14. MAIN STOP SHALL BE FORD F1100 OR EQUAL WITH PACK JOINT AND SEAMLESS INSERT STIFFENER FOR HDPE PIPE - 25mm DIA. OR 50mm DIA. AS REQUIRED. 15. HDPE DR11 SUPPLY AND RECIRCULATION PIPE - FIELD INSTALLED CONTINUOUS LENGTH FROM COIL STOCK. 25mm (BOTH) OR 50mm WITH 25mm RETURN.
- 16. No. 8 X 13mm CADMIUM PLATED SHEET METAL SCREWS. 17. HEAT SHRINK TO BE MIN. 100mm LAP ON BLACK JACKET AFTER SHRINKAGE. 18. POLYURETHANE OR FIBRE REINFORCED PLASTIC (FRP) FOAM PLUG. (MINIMUM 50mm

19. SHOP CAST 75mm (SEE SPECS) THICK POLYRETHANE INSULATION WITH BLACK JACKET

STEEL PLATE, 600 X 600 x3, 6mm THICKNESS WRAP VALVES IN PLASTIC TO PROTECT THEM FROM THE SPRAY FOAM.

EXISTING GROUND

KEY TO NUMBERED PARTS:

1. 296mm INSIDE DIA. REMOVABLE GALVANIZED SHEET METAL CAP WITH FIELD CUT HOLES. 2. STAINLESS STEEL BAND-IT CLIPS #M211 3. 294mm OUTSIDE DIA. X 50mm LONG.

4. 200mm LONG, 230mm INSIDE DIA. FOR 100 DIA. CARRIER PIPE, 280mm INSIDE DIA FOR 150mm DIA. CARRIER PIPE. 5. HOLES TO BE DRILLED IN FIELD TO SUIT. 6. 390mm INSIDE DIA. X 560mm LONG FOR 200mm DIA. MAIN. 7. BOTTOM INSULATION FORM OF GALVANIZED SHEET STEEL

TYPICAL WATER SERVICE CONNECTION AT MAIN SIDE (SECTION VIEW)

5 TYPICAL WATER SERVICE JOINT CONNECTION PLAN & CROSS SECTION

6 STEEL WATER SERVICE FORM

Conditions of Use

Verify elevations and/or dimensions on drawing prior to use. Report any discrepancies to Dillon Consulting Limited.

Do not scale dimensions from drawing. Do not modify drawing, re-use it, or use it for purposes other than those intended at the time of its preparation without prior written permission from Dillon Consulting Limited.

THE ASSOCIATION OF PROFESSIONAL ENGINEERS, GEOLOGISTS and GEOPHYSICISTS OF THE NORTHWEST TERRITORIES PERMIT NUMBER P 010 DILLON CONSULTING LIMITED

ISSUED FOR CONSTRUCTION

				DESIGN	REVIEWED BY	
8	RE-ISSUED FOR CONSTRUCTION	06/10/24	KJ	KJ	CHECKED BY KJ	
\triangle	RE-ISSUED FOR CONSTRUCTION	03/04/24	KJ	DRAWN TW/SC		
<u>6</u>	ISSUED FOR CONSTRUCTION	12/02/24	KJ			
<u></u>	REVISED - ISSUED FOR TENDER ADDENDUM	08/04/23	KJ	1		
4	ISSUED FOR TENDER	07/07/23	KJ	JUNE 2024		
3	ISSUED FOR INTERNAL REVIEW	06/23/23	KJ			
2	RE-ISSUED FOR 75% REVIEW	05/31/23	KJ			
1	ISSUED FOR 75% REVIEW	05/01/23	KJ	AS SHOWN		
	100150 500	0.475	B) /	1		

UTILIDOR REPLACEMENT TYPICAL DETAILS WATER SERVICE DETAILS

Government of Nunavut

Rankin Inlet Utilidor Replacement - Phase 2B

Do not scale dimensions from drawing. Do not modify drawing, re-use it, or use it for purposes other than those intended at the time of its preparation without prior written permission from Dillon Consulting Limited.

SEOPHYSICISTS TERRITORIES PERMIT NUMBER DILLON CONSULTING LIMITED

ATION OF ENGINEERS,

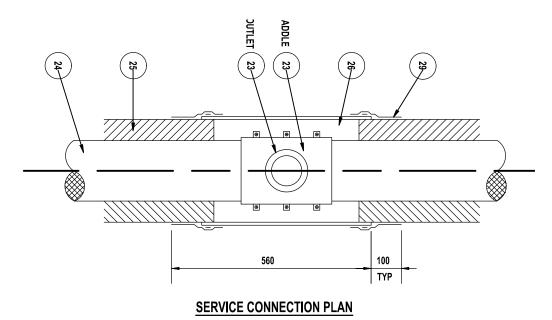
TYPICAL SANITARY SERVICE RISER AT HOUSE
N.T.S.

150mm WIDE P.E.

ALL EXPOSED SURFACES OF POLYURETHANE TO BE FIELD COATED WITH MASTIC.
 THE INSIDE SURFACES OF METAL TO BE IN CONTACT WITH FIELD POURED

POLYURETHANE INSULATION SHALL BE COATED WITH OIL SEPARATING AGENT. 3. INSULATION FORMS AND METAL COVER PARTS. TO BE 1.6mm THICK STEEL. CONTINUOUS WELDED SEAMS, HOT DIPPED GALVANIZED AFTER FABRICATION.

1 TYPICAL SANITARY SERVICE CONNECTION AT MAIN


WARNING TAPE

NOTES:

1. ALL EXPOSED SURFACES OF POLYURETHANE TO BE

2. THE INSIDE SURFACES OF METAL TO BE IN CONTACT WITH FIELD POURED POLYURETHANE INSULATION SHALL BE COATED WITH OIL SEPARATING AGENT. 3. INSULATION FORMS AND METAL COVER PARTS, TO BE 1.6mm THICK STEEL, CONTINUOUS WELDED SEAMS, HOT DIPPED GALVANIZED AFTER FABRICATION.

FIELD COATED WITH MASTIC.

ABLE		

Building	Water	Water	Sanitary	Carrier
Туре	Supply	Return	Sewer	Pipe
Single family	25 mm	25 mm	100 mm	100 mm
2-plex	25 mm	25 mm	100 mm	100 mm
3-plex	25 mm	25 mm	100 mm	100 mm
4-plex	38 mm	25 mm	150 mm	150 mm
6-plex	38 mm	25 mm	150 mm	150 mm
8-plex	50 mm	25 mm	150 mm	150 mm
10-plex	50 mm	25 mm	150 mm	150 mm

2 TYPICAL SANITARY SERVICE CONNECTION AT MAIN AND SIZING TABLE

SANITARY SERVICE NUMBERED PARTS LIST

KEY TO NUMBERED PARTS:

1. 75 mm DIA. PVC OR ABS.

5. FLOOR JOIST.

2. 200 mm CHIMNEY CLEAN OUT PLUG. CUT HOLE TO FIT O. D. OF PIPE. 3. 20 mm PLYWOOD GLUED AND SCREWED TO JOIST/STUDS AND HEADERS.

100mm OR 150mm Ø PVC TEMPORARY PLUG. 12. BACKUP RING FOR FLANGE ASSEMBLY. 13. INSULATION FIT FOR FLANGE ASSEMBLY. 14. STUB END BUTT FUSED TO 100 mm PE PIPE. 15. HEAT SHRINK TO FIT OVER INSULATION KIT ASSEMBLY.

21. STAINLESS STEEL GEAR CLAMPS. 22. GALVANIZED HEX HEAD METAL SCREWS.

28. 150 mm WIDE PE WARNING TAPE.

24. 250mmØ OR 200mmØ HDPE SANITARY SEWER MAIN.

30. HOLE DRILLED IN MAIN FOR SERVICE WITH HOLE SAW.

4. POLYURETHANE INSULATION FROM PORTABLE FOAM PACK TO FILL VOID.

7. 290 mm GALVANIZED THIMBLE 22 GA. TOP AND BOTTOM SCREWED TO PLYWOOD. 9. POLYURETHANE HALF SHELLS CUT TO LENGTH COATED WITH FIELD APPLIED MASTIC.

6. SILICON SEALER APPLIED TO THIS SECTION BEFORE INSERTING INSULATED PIPE INTO OPENING.

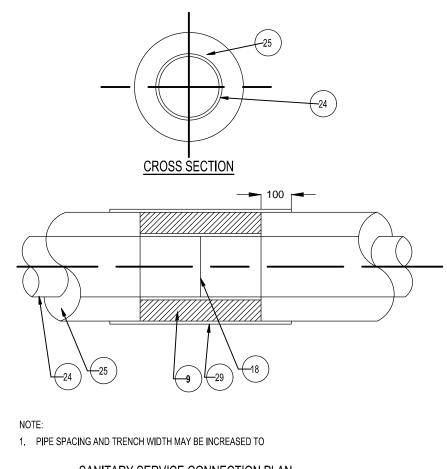
10. 100mm OR 150mm Ø ADAPTER SOCKETS X MPT TO SUIT BUILDING PLUMBING MATERIALS-BY OTHERS. 11. 100 mm OR 150mm Ø COMPANION FLANGE WITH RUBBER GASKET AND BOLTS DRILLED AND TAPPED, WITH

16. SANITARY SERVICE 100mm OR 150mm DIA. WITH 75mm NOMINAL POLYURETHANE AND FACTORY INSTALLED.

17. LONG RADIUS 90° ELBOW WITH FACTORY APPLIED POLYURETHANE INSULATION AND FIBERGLASS REINFORCED

JACKET INSTALLED TO 1m INSIDE PROPERTY LINE AND TERMINATED WITH A BLIND FLANGE.

18. FIELD BUTT FUSION JOINT MADE BY A QUALIFIED AND LICENSED JOINING TECHNICIAN. 19. HOLES TO BE DRILLED IN FIELD TO SUIT.
20. DIA. TO SUIT INSULATED MAIN PIPE O. D. AND REQUIREMENT OF 25 mm LAP ON EACH SIDE.


23. ROBAR NO. 6626 OUTLET SLEEVE SADDLE (SIZE OF MAIN X 2100 mm DIA. OUTLET).

29. MASTIC LINED HEAT SHRINK TAPE 100 mm OVERLAP ON SHELLS AND PIPE JACKET.

31. FIELD CUT HOLES (IF REQ'D FOR FOAM INJECTION) TO BE MASTIC COATED AFTER FOAM INJECTION.


RUBBER GASKET AND FLANGE BOLTS ONE END AND PLAIN OTHER END.

25. 25 mm NOMINAL THICKNESS SHOP CAST POLYURETHANE INSULATION AND BLACK JACKET. 26. FIELD POURED POLYURETHANE INSULATION FOAM INSULATION 207 KPA COMPRESSIVE STRENGTH. 27.100 mm OR 150 mm Ø FACTORY FABRICATED DR 11 HDPE 45° BEND WITH FACTORY APPLIED POLYURETHANE JACKET INSULATION/FRP JACKET COVER, HDPE STUB END, DUCTILE IRON BACKUP RING, FULL FACE REINFORCED

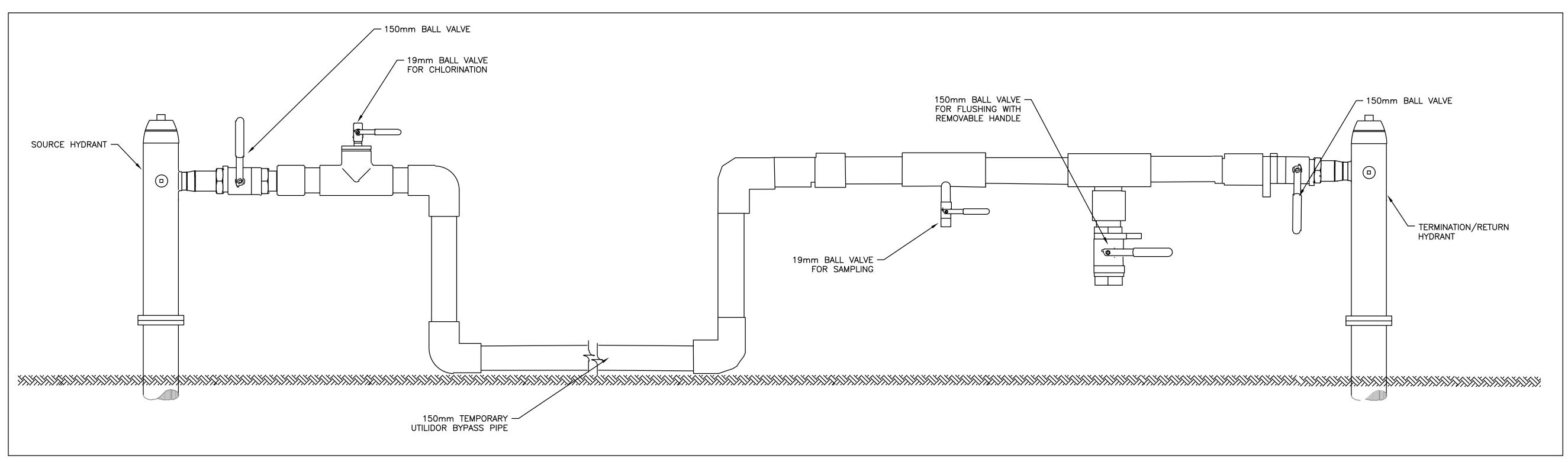
TYPICAL SANITARY SERVICE RISER AT HOUSE

N.T.S.

ditions of Use	
elevations and/or dimensions on drawing prior to use. t any discrepancies to Dillon Consulting Limited.	THE ASSOCIAT PROFESSIONAL EI GEOLOGISTS and GEI OF THE NORTHWEST

ISSUED FOR CONSTRUCTION

				DESIGN	REVIEWED BY	
				KJ	KJ	
Δ	RE-ISSUED FOR CONSTRUCTION	03/04/24	KJ	DRAWN CHECKED BY		
Δ	ISSUED FOR CONSTRUCTION	12/02/24	KJ	TW/SC KJ		
Δ	REVISED - ISSUED FOR TENDER ADDENDUM	08/04/23	KJ			
4	ISSUED FOR TENDER	07/07/23	KJ	DATE		
3	ISSUED FOR INTERNAL REVIEW	06/23/23	KJ	MARCH 2024		
2	RE-ISSUED FOR 75% REVIEW	05/31/23	KJ	SCALE		
1	ISSUED FOR 75% REVIEW	05/01/23	KJ	AS SHOWN		
No.	ISSUED FOR	DATE	BY	7		


UTILIDOR REPLACEMENT
TYPICAL DETAILS
SANITARY SERVICE DETAILS

Government of Nunavut

Rankin Inlet Utilidor Replacement - Phase 2B

C-507

TYPICAL HYDRANT TO TEMPORARY SERVICE PIPING CONNECTION NTS

TYPICAL HYDRANT TO HYDRANT BYPASS PIPING CONNECTION

Conditions of Use

Verify elevations and/or dimensions on drawing prior to use. Report any discrepancies to Dillon Consulting Limited.

Do not scale dimensions from drawing.

Do not modify drawing, re-use it, or use it for purposes other than those intended at the time of its preparation without prior written permission from Dillon Consulting Limited.

THE ASSOCIATION OF PROFESSIONAL ENGINEERS, GEOLOGISTS and GEOPHYSICISTS OF THE NORTHWEST TERRITORIES PERMIT NUMBER P 010
DILLON CONSULTING LIMITED

ISSUED FOR CONSTRUCTION

A STANDARD OF THE STANDARD OF	MINITER	
	LLON SULTING	

					KJ	KJ	
Š	Δ	RE-ISSUED FOR CONSTRUCTION	03/04/24	KJ	DRAWN	CHECKED BY	ł
	Δ	ISSUED FOR CONSTRUCTION	12/02/24	KJ	TW/SC	KJ	
	Δ	REVISED - ISSUED FOR TENDER ADDENDUM	08/04/23	KJ		-	
	4	ISSUED FOR TENDER	07/07/23	KJ	DATE		
	3	ISSUED FOR INTERNAL REVIEW	06/23/23	KJ	MARCH 2024		
	2	RE-ISSUED FOR 75% REVIEW	05/31/23	KJ	SCALE		
	1	ISSUED FOR 75% REVIEW	05/01/23	KJ	AS SHOWN		
	No.	ISSUED FOR	DATE	BY			

Rankin Inlet Utilidor Replacement - Phase 2B

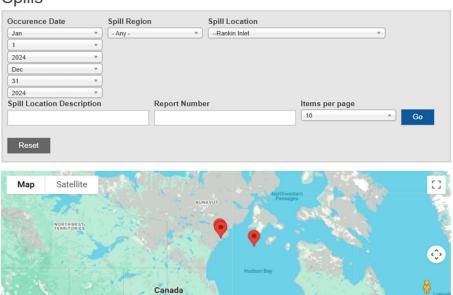
UTILIDOR REPLACEMENT

TYPICAL DETAILS

Government of Nunavut

TEMPORARY WATER SUPPLY PIPING DETAILS

C-508


2024 ANNUAL REPORT FOR 3AM-GRA1631 GOVERNMENT OF NUNAVUT – DEPARTMENT OF TRANSPORTATION AND INFRASTRUCTURE NUNAVUT

Appendix C: Hazardous Materials Spills Database for Rankin Inlet in 2024

None of the spills, as shown below, that occurred in Rankin Inlet in 2024 are associated with 3AM-GRA1631.

2024 ANNUAL REPORT FOR 3AM-GRA1631 GOVERNMENT OF NUNAVUT – DEPARTMENT OF TRANSPORTATION AND INFRASTRUCTURE NUNAVUT

Spills

Spill	Occurance Date	Spill Region	Location	Location Description	Product Spilled	Quantity	Measurement	Spill Cause	Lead Agency
spill- 2024280	July 17, 2024		Rankin Inlet, Community, Nunavut	Rankin Inlet	Petroleum - fuel oil (jet A, diesel, turbo A, heat)	7000.00	Liters	Unknown Cause	GN - Government of Nunavut
spill- 2024250	June 29, 2024		Rankin Inlet	Coats Island Hudson Strait	Other	Unknown Quantity		Other	CCG/TCMSS - Canadian Coast Guard/Transport Canada, Marine Safety and Security
spill- 2024212	June 6, 2024	Kivalliq	Rankin Inlet, Community, Nunavut	Ranking Inlet Housing Unit 411	Petroleum - fuel oil (jet A, diesel, turbo A, heat)	123.00	Liters		GN - Government of Nunavut
spill- 2024202	May 30, 2024		Rankin Inlet	Rankin Inlet	Petroleum - fuel oil (jet A, diesel, turbo A, heat)	2000.00	Liters	Other	GN - Government of Nunavut
spill- 2024200	May 30, 2024	Kivalliq	Rankin Inlet	33 Plex Rankin Inlet	Petroleum - fuel oil (jet A, diesel, turbo A, heat)	50.00	Liters	Overflow Event	GN - Government of Nunavut
spill- 2024126	April 25, 2024	Kivalliq	Rankin Inlet, Community, Nunavut	Rankin Inlet Lake B5 0m	Petroleum - lubricating oil (lube, hydraulic)	10.00	Liters	Other	CIRNAC - Crown- Indigenous Relations and Northern Affairs Canada

2024 ANNUAL REPORT FOR 3AM-GRA1631 GOVERNMENT OF NUNAVUT – DEPARTMENT OF TRANSPORTATION AND INFRASTRUCTURE NUNAVUT

Appendix D: CIRNAC Annual Inspection Report 2024

Water Licence Inspection Report

⊠Original	
□Follow-Up	Report

Organization	Representative				
Government of Nunavut, Community and	Ramesh Ummat				
Government Services					
Authorization No. / Expiry	Representative's Title				
3AM-GRA1631	Regional Director, Infrastructure Kivalliq.				
Inspection Date	Inspector				
September 18 th 2024	RMO Atuat Shouldice				
Other Authorization/s					
Activities Inspected					
☐ Camp, Commercial ☐ Drilling ☐ Mining ☐ Construction ☐ Reclamation ☐ Fuel Storage ☐ Roads/Hauling ☐ Winter Hauling					
☐ Camp, Private ☒ Other Municipal					

Section 1 Comments

On September 18th 2024 an inspection was conducted of Water Licence 3AM-GRA1631 (Licence) Government of Nunavut, Community and Government Services. Resource Management Officer Atuat Shouldice (Inspector) for Crown-Indigenous Relations and Northern Affairs Canada (CIRNAC) was accompanied by Steve Fitzpatrick, Facilities Manager Government of Nunavut, Community and Government Services (CGS).

-Water Supply Facility

Raw water is pumped from Nipissar Lake to the Water Treatment facility with in the community. Water is metered at source and daily pumping logs were available. Spill response equipment was on site as required in the operation and maintenance manual. Photo #1

-Water resupply station

pumping station at Lower Landing Lake for replenishing Nipissar Lake during the open water season was in operation. Facility's Maintainer Bill Ross (CGS) walked Inspector through operation of facility, refueling procedures to minimize chances of spills. Metered water logs were available. Photo #2

-Sewage Treatment Facility (SDF)

All sewage and gray water is directed to the Sewage Treatment Facility. On average one cubic meter of solids are produced per week and disposed of in a designated location in the municipal landfill. Discharged sewage is metered in facility and daily logs were available.

-Administrative

As of October 21st, 2024, The 2023 annual report was not submitted to the Nunavut Water Board.

Section 2 Non-Compliance with Choose an item.

Non-Compliance with the Licence:

• Part B Item 1: Failure to submit annual report

Section 3 Action Required

The Licensee shall:

• Submit annual report by the 27th November 2024 to the Board.

Section 4 Other

Licensee or Representative	Inspector's Name
Ramesh Ummat	Atuat Shouldice
Signature	Signature 0/
	the Sharling
Date	Date
	October 31 st 2024

Office Use Only: Follow-up report to be issued by Inspector $\ \square$ Yes $\ \square$ No

PHOTO LOG			
Date:	Authorization Number:	Camera/Model:	Inspector
Wednesday, September 18,	3AM-GRA1631	Samsung S21	Atuat Shouldice
2024			
Photo No.		Lat/Long (DD.MM.SS.SS, NAD83)	
Photo 1		N62 49' 24.44" W92 6' 51.68	
Description: Meter at Nipssar Lake	AquaMaster 3		
ivieter at Nipssar Lake			

Photo No. Photo 2 | N62 51' 39.66" W92 9' 11.48"

Description:

Resupply Facility, spill response drum adjacent to fuel tank

