## Geotechnical Investigation Lake Geraldine Water Reservoir City of Iqaluit, Nunavut

#### Prepared for:

Mr. Brad Sokach, P.Eng. City of Iqaluit P.O. Box 460 Iqaluit, Nunavut K0A 0H0

Trow Associates Inc.

154 Colonnade Road South Ottawa, Ontario K2E 7J5 Telephone: (613) 225-9940 Facsimile: (613) 225-7337

E-mail: ottawa@trow.com Web Site: www.trow.com Project No. OTGE00017616B March 22, 2005

## **Notes On Sample Descriptions**

1. All sample descriptions included in this report follow the Canadian Foundations Engineering Manual soil classification system. This system follows the standard proposed by the International Society for Soil Mechanics and Foundation Engineering. Laboratory grain size analyses provided by Trow Associates Inc. also follow the same system. Different classification systems may be used by others; one such system is the Unified Soil Classification. Please note that, with the exception of those samples where a grain size analysis has been made, all samples are classified visually. Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification systems.

| CLAY |            | SILT   |        |          | SAND    |             |           | GRAVE    | L          | COBBLES | BOULDERS |
|------|------------|--------|--------|----------|---------|-------------|-----------|----------|------------|---------|----------|
|      | FINE       | MEDIUM | COARSE | FINE     | MEDIU   | M COARS     | E FINE    | MEDIU    | M COARSE   |         |          |
|      |            |        |        |          |         |             |           |          |            |         |          |
|      | 0.002      | 0.006  | 0.02   | 0.06     | 0.2     | 0.6         | 2.0       | 6.0      | 20         | 60 2    | 200      |
|      | -          |        | -      | OLUB/ALI | ENT CDA | IN DIAMETE  | D IN MILI | IMETRES  |            | •       |          |
|      |            |        | E      | QUIVALI  | ENT GRA | IN DIAMETE  | R IN WILL | LINETRES |            |         |          |
|      | LASTIC) TO | -      |        | FINE     |         | MEDIUM      | I CRS.    | FINE     | COARSE     |         |          |
|      |            | 3      |        | LINE     |         | MILL DY DIE | Ono.      | 1 11.45  | O'GO'H COL |         |          |

UNIFIED SOIL CLASSIFICATION

- 2. Fill: Where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc., none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the gas. These readings are to advise of the presence of gas only, and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites; unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional geotechnical site investigation.
- 3. Till: The term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone; caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.

| A 15 m<br>borehol | efore use t<br>m diamete<br>le upon co | r piezometer was installed into the                                                                  | Elapse<br>Time<br>On Comp | ed e                      | 1               | Water<br>evel (m)<br>0.1 |          | Hole Ope<br>To (m) |       | Run<br>No. | Dep<br>(m | th                     | % Re                  |                         | RO          |
|-------------------|----------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|-----------------|--------------------------|----------|--------------------|-------|------------|-----------|------------------------|-----------------------|-------------------------|-------------|
| OTES:             | la data er                             | Continued Next Page                                                                                  |                           | WATER                     | 10 <sup>L</sup> | VEL RE                   | CORD     | s                  |       |            | co        | RE DRI                 | ILLING R              | ECORD                   | -           |
|                   |                                        |                                                                                                      |                           |                           |                 | 3013                     |          | 2122               |       |            | 2012      |                        |                       | 2010                    | II          |
|                   |                                        |                                                                                                      |                           |                           |                 | 3013                     |          | 2132               | 3213  | 1001       | 2002      | 130                    | 10100                 | 3010                    |             |
|                   | -                                      |                                                                                                      | -                         |                           | 9               | 3313                     |          | 3133               | 3313  | 1000       | 3113      | 355                    | 10100                 | 3013                    |             |
|                   | -                                      |                                                                                                      | -                         |                           |                 |                          |          |                    |       |            |           |                        |                       |                         | II          |
|                   | -                                      |                                                                                                      | -                         |                           | 8               | 3013                     |          | 3133               |       |            | 3111      |                        |                       | 3010                    | П           |
|                   |                                        |                                                                                                      |                           |                           |                 |                          |          |                    |       |            | 2112      |                        |                       |                         |             |
|                   | Grey                                   | medium grained mica rich gn<br>inclined joints below 7.0 m de                                        | eiss with epth.           |                           |                 | 2012                     |          | 2112               |       | 11121      | 2012      | 1200                   | 11111                 | 2010                    | H           |
|                   |                                        |                                                                                                      |                           |                           | 7               | 32.13                    |          | 10100              |       |            | 01110     | 10000                  | 10100                 | 0000                    |             |
|                   | -                                      |                                                                                                      | _                         |                           |                 |                          |          | 2100               | 3013  | 10000      | 0000      | 300                    |                       | 0010                    | $\ $        |
|                   | -                                      |                                                                                                      | -                         |                           | 6               | 3010                     |          | 0100               | 1000  | 10000      | 0000      | -300                   | 10100                 | 2010                    | $\ $        |
|                   | -                                      |                                                                                                      | -                         |                           |                 | 3010                     | 1221     | 0100               | 3313  | 1000       | 0000      | -300                   | 10100                 | 0000                    | H           |
|                   |                                        |                                                                                                      |                           |                           | 5               |                          |          |                    |       |            |           | -1-0-1-1               | 1000                  | 2010                    | 11          |
|                   |                                        |                                                                                                      |                           |                           |                 |                          |          | 1000               |       |            |           |                        |                       | 2010                    | $\ $        |
|                   |                                        |                                                                                                      |                           |                           |                 |                          |          |                    |       |            | 3000      | 133                    |                       | 3313                    | $\ $        |
| 1                 | -                                      |                                                                                                      |                           |                           | 4               | 3213                     |          |                    |       | 11121      |           | 15.50                  |                       | 27.12                   | Ш           |
|                   | -                                      |                                                                                                      | -                         |                           |                 |                          |          |                    |       |            |           |                        |                       |                         | $\ $        |
|                   | 1                                      |                                                                                                      | -                         |                           | 3               | 2012                     | 1000     | 10100              | 12010 | 15:12:     | 2011      | 1200                   | 10100                 | 2000                    | 11          |
|                   |                                        |                                                                                                      |                           |                           |                 | 2010                     |          | 0100               |       | 11331      | 0110      | 13.00                  |                       | 2010                    | $\parallel$ |
|                   |                                        |                                                                                                      |                           |                           | -               |                          |          | 3100               |       |            | 3513      | 13.50                  |                       | 0.000                   |             |
|                   |                                        | , ,,                                                                                                 |                           |                           | 2               | 3813                     |          | 0133               |       | -000       | 3513      |                        |                       | 22:3                    | $\ $        |
|                   | varie                                  | s from very close to moderate<br>to excellent quality).                                              | e, (very                  |                           |                 | 3 5 1 3                  |          | 21.33              |       | 1000       |           | 1101                   |                       | 2000                    | H           |
|                   | _rough                                 | near vertical joints, cross joint<br>or planar to rough undulating,<br>nonly with oxidized surfaces, | _                         |                           | 1               |                          |          |                    |       | 1000       | 13113     | 1333                   |                       | 3833                    | $\ $        |
|                   | grain                                  | ISS BEDROC (Grey, fine to o<br>ed, massive to foliated, some                                         | inclined                  |                           |                 | 2012                     | -1331    | 2136               | 1000  | 1000       | 0 1-1-0   | 1100                   | 0100                  | 0010                    | H           |
|                   | *                                      | Sand and gravel, grey.                                                                               |                           | 110.40<br>110.30<br>110.1 | 0               |                          | 0 1      | 100 1              | 50 :  | 200        | idais     | 10                     | 20                    | 30                      | 2           |
| W M BO            |                                        | SOIL DESCRIPTION                                                                                     |                           | Assumed<br>Elevation<br>m | DWPHH           | Shear S                  | strength | 10.00              |       | 80<br>kPa  | Na        | bural Moi              | sture Control         | r50<br>ent %<br>Weight) | SAMO JES    |
| · c               |                                        |                                                                                                      |                           |                           |                 | Vane Te                  | st       | netration 1        | S     |            |           | ometer T               | est<br>pour Read      | ing (ppm)               | S           |
| Datun             |                                        | Depth below grade                                                                                    |                           |                           |                 | Shelby T<br>Shear St     |          | y                  | +     |            | Shear S   | n at Faili<br>Strength | by                    |                         |             |
| Date i<br>Drill T |                                        | October 21st, 2004 Portable                                                                          |                           |                           |                 | SPT (N)<br>Dynamic       |          | est                |       |            | Undrain   | rg Limits<br>ned Triax | rial at               | F                       |             |
| Data I            | را الما                                | 0.414044.0004                                                                                        |                           |                           |                 | Split Spo<br>Auger Sc    |          | ple                |       |            |           |                        | pour Rea<br>e Content |                         |             |
| Locati            | ion:                                   | Iqaluit, Nunavuit                                                                                    |                           |                           | _               |                          |          |                    |       | -          | Oncor     |                        |                       | _                       |             |
| Projec            | A.                                     | Geotechnical Investigation -                                                                         | rioposedi                 | Danis o                   | -               | 0.00111                  |          |                    |       | -          | Sheet     | No                     | 1 of                  | 2                       | Ti          |

# Trow Borehole Log 1

Project No. OTGE00017616B

Project: Geotechnical Investigation - Proposed Dams of Water Resovoir Figure No. 3

Sheet No. 2 of 2



| G           | SYM                        | COIL DESCRIPTION                                                    | Assume          | - 1 E | Sta               |          |                    | Test N Va | lue<br>80  | 2           | 50 5       | 500 7                    | ng (ppm)<br>50 | M  | Nat<br>U |
|-------------|----------------------------|---------------------------------------------------------------------|-----------------|-------|-------------------|----------|--------------------|-----------|------------|-------------|------------|--------------------------|----------------|----|----------|
| G<br>W<br>L | SYMBOL                     | SOIL DESCRIPTION                                                    | Elevation       | PIH   | Shear S           | Strength |                    |           | kPa        | Attert      | berg Limit | ture Conte<br>s (% Dry V | Veight)        | L  | We       |
| H           |                            |                                                                     | 100.40          | 10    |                   | 0 1      | 00 1               | 50 2      | 100        | 03:30       | 10         | 20 :                     | 0 0 0 0 0      | S  |          |
|             | M                          |                                                                     | 99.9            |       | 3013              | 1331     | 13133              | 333       |            | 3553        |            | 18138                    | 33131          | ı  |          |
| 1           | 111                        | Borehole terminated at 10.52 m dep                                  |                 | 1     | 1                 |          |                    |           |            |             |            |                          |                | 1  |          |
|             |                            |                                                                     |                 |       |                   |          |                    |           |            |             |            | 18888                    |                |    |          |
|             |                            |                                                                     |                 |       |                   |          | 11111              |           | 1          | 1           | 11111      | 1                        |                |    |          |
|             |                            |                                                                     |                 |       | 11111             |          |                    | 11111     | 11111      |             | 1          | 1                        |                |    |          |
| 1           |                            |                                                                     |                 |       | 13333             |          | 11111              | 11111     | 1          | 1           | 1          | 18888                    | 188881         | 1  |          |
|             |                            |                                                                     |                 |       | 1000              | 1111     | 11111              | 11111     | 1::::      | 11111       | 1::::      | 10000                    | 10000          |    |          |
|             |                            | For Core Drilling Record please refe                                | er to           |       | 1000              | 1111     | 11111              | 11111     | 1::::      | 11111       | 1::::      | 1555                     | 18888          |    |          |
| 1           |                            | next page                                                           |                 |       | 11111             | 1111     | 1::::              | 1::::     | 1          | 1           | 1::::      | 1000                     | 1000           | 1  |          |
|             |                            |                                                                     |                 |       | 10000             |          |                    | 1         |            | 1           | 1          | 1                        | 10000          |    |          |
|             |                            |                                                                     |                 |       | 10000             | 1        | 1                  | 1         | 1          |             | 11111      | 1                        | 188881         |    |          |
|             |                            |                                                                     |                 |       | 11111             |          | 1                  | 1::::     | 11111      | 1           | 1::::      | 1888                     |                |    |          |
|             |                            |                                                                     |                 |       | 1                 |          |                    | 1         |            |             | 1::::      | 1                        |                |    |          |
|             |                            |                                                                     |                 |       | 1::::             |          |                    |           | 1          | 1           | 1          | 1                        | 11111          | -  |          |
|             |                            |                                                                     |                 |       | 1                 |          |                    |           |            |             | 11111      | 11111                    |                |    |          |
|             |                            |                                                                     |                 |       | 1                 |          | 1888               | 13111     | 11111      |             | 1          | 1                        | 1              |    |          |
| 1           |                            |                                                                     |                 |       |                   |          | 1333               | 1         | 1          | 1           | 1          | 1                        |                | 1  |          |
| 1           |                            |                                                                     |                 |       | 1                 | 1000     |                    | 1         | 11111      | 11111       | 1          | 1                        |                | 1  |          |
| 1           |                            |                                                                     |                 |       | 11111             |          | 11111              | 1         | 1          |             | 1          | 11111                    |                | 1  |          |
| 1           |                            |                                                                     |                 |       | 1                 |          |                    | 1         | 11111      |             | 11111      | 1                        |                | 1  |          |
|             |                            |                                                                     |                 |       | 1                 |          |                    | 1         | 1111       |             |            | 1                        |                |    |          |
| 1           |                            |                                                                     |                 |       |                   |          |                    |           | 11111      | 1000        | 13333      | 1                        |                |    |          |
| 1           |                            |                                                                     |                 |       |                   |          |                    | 11111     | 11111      |             |            | 11111                    |                |    |          |
| 1           |                            |                                                                     |                 |       | 11111             | 11111    | 1                  | 1         | 11111      | 1           | 1          | 1                        | 11111          |    |          |
| 1           |                            |                                                                     |                 |       | 1                 |          |                    |           |            | 1           |            |                          |                | -  |          |
|             |                            |                                                                     |                 |       |                   |          |                    |           |            |             |            |                          |                |    |          |
|             |                            |                                                                     |                 |       | 1                 |          |                    |           |            |             | 1          | 1                        |                | -  |          |
|             |                            |                                                                     |                 |       | 11111             |          | 1                  | 1         |            | 1           | 1          | 1                        | 1              |    |          |
|             |                            |                                                                     |                 |       |                   |          | 1                  | 11111     |            |             | 1          | 1111                     |                | 1  |          |
| -           |                            |                                                                     |                 |       |                   |          |                    |           |            |             |            | 11111                    |                | -  |          |
| -           |                            |                                                                     |                 |       |                   |          | 1111               |           |            |             |            | 1                        |                | 1  |          |
| 1           |                            |                                                                     |                 | 1     |                   |          |                    |           |            |             | 1          |                          |                |    |          |
| 1           |                            |                                                                     |                 |       |                   |          |                    |           |            |             |            |                          |                | 1  |          |
|             |                            |                                                                     |                 |       |                   |          |                    |           |            |             |            |                          |                | -  |          |
| 1           |                            |                                                                     |                 |       |                   |          |                    |           |            |             |            | 1                        |                | 1  |          |
|             |                            |                                                                     |                 |       |                   |          |                    |           |            |             |            | :::::                    |                | 1  |          |
| 1           |                            |                                                                     |                 |       |                   |          |                    |           |            |             | 1          | 1111                     |                |    |          |
| 1           |                            |                                                                     |                 |       |                   |          |                    |           |            |             |            | 1                        |                | -  |          |
| 1           |                            |                                                                     |                 |       |                   |          |                    |           |            |             |            |                          |                | 1  |          |
| 1           |                            |                                                                     |                 |       |                   |          |                    |           |            |             |            |                          |                |    |          |
| 1           |                            |                                                                     |                 |       |                   |          |                    |           |            |             |            |                          |                |    |          |
| 1           |                            |                                                                     |                 |       |                   |          |                    |           |            |             |            |                          |                | 1  |          |
| 1           |                            |                                                                     |                 |       |                   |          |                    |           | 11111      |             | 1          | 11111                    | 11111          | -  |          |
| 1           |                            |                                                                     |                 |       |                   |          |                    |           |            |             |            | 1                        |                | 1  |          |
| 1           |                            |                                                                     |                 | 1     |                   |          |                    |           |            |             |            |                          |                |    |          |
| 1           |                            |                                                                     |                 |       |                   |          |                    |           |            |             |            |                          |                | _  |          |
| Bo          | TES:<br>prehole<br>now bed | data requires interpretation assistance from one use by others      |                 |       | EVEL RE           |          |                    |           |            | 0.000       |            | LING R                   |                |    |          |
|             |                            | diameter piezometer was installed into the                          | Elapsed<br>Time |       | Water<br>evel (m) | 1        | Hole Ope<br>To (m) | en        | Run<br>No. | Dept<br>(m) | th         | % Rec                    | 2              | RQ | D        |
| bo          | orehole                    | upon competion                                                      | On Completion   |       | 0.1               |          |                    |           |            | (114)       |            |                          |                |    |          |
| F           | eid wor                    | k supervised by a Trow representative                               |                 |       |                   |          |                    |           |            |             |            |                          |                |    |          |
|             |                            | s on Sample Descriptions                                            |                 |       |                   |          |                    |           |            |             |            |                          |                |    |          |
|             |                            | wing to be read with Trow Consulting<br>s Ltd. report OTGE00017616B |                 |       |                   |          |                    |           |            |             |            |                          |                |    |          |
|             | ngineer                    | s Ltd. report OTGE00017616B                                         |                 |       |                   |          |                    |           |            |             |            |                          |                |    |          |

| Elapsed<br>Time | Water<br>Level (m) | Hole Open<br>To (m) |
|-----------------|--------------------|---------------------|
| On Completion   | 0.1                |                     |
|                 |                    |                     |
|                 |                    |                     |
|                 |                    |                     |

| Run<br>No. | Depth<br>(m) | % Rec. | RQD % |
|------------|--------------|--------|-------|
|            |              |        |       |
|            |              |        |       |
|            |              |        |       |
|            |              |        |       |

# +Trow Field Coring Log

BH 1

Date: October 21, 2004

| Jale: October 21, 2004                         | Rock Characteristics       | sand and gravel fill (ran casing) | milky brown igneous bedrock, green-grey | milky brown ligneous bedrock, green-grey | milky brown igneous bedrock, some qtz veins, green-grey, | milky brown Igneous bedrock, some qtz veins, some pyrite, green-grey. | milky brown igneous bedrock, grey | milky brown igneous bedrock, grey |  |  |  |  |
|------------------------------------------------|----------------------------|-----------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------|-----------------------------------|--|--|--|--|
| ams, lqs                                       | H <sub>2</sub> 0<br>Colour |                                   | milky brown                              | milky brown                                              | milky brown                                                           | milky brown                       | milky brown                       |  |  |  |  |
| sovoir D                                       | Water<br>Return<br>%       |                                   | 100                                     | 100                                     | 100                                     | 100                                     | 100                                      | 100                                                      | 100                                                                   | 100                               | 100                               |  |  |  |  |
| e: Water Re                                    | RQD                        |                                   | 100                                     | 45                                      | 97                                      | 88                                      | 91                                       | 66                                                       | 92                                                                    | 77                                | 96                                |  |  |  |  |
| Project Name: Water Resovoir Dams, Iqaluit, NU | TCR                        |                                   | 100                                     | 92                                      | . 100                                   | 100                                     | 97                                       | 99                                                       | 100                                                                   | 100                               | 95                                |  |  |  |  |
|                                                | Measured<br>Depth          |                                   | 0.53                                    | 1.39                                    | 2.69                                    | 4.06                                    | 5.44                                     | 7.14                                                     | 7.92                                                                  | 9.17                              | 10.52                             |  |  |  |  |
| 0001761                                        | End<br>Depth               | 0.3                               | 0.53                                    | 1.32                                    | 2.77                                    | 4.11                                    | 5.61                                     | 7.26                                                     | 8.28                                                                  | 9.22                              | 10.52                             |  |  |  |  |
| Project No.:OTGE00017616B                      | Start<br>Depth             | 0                                 | 0.3                                     | 0.53                                    | 1.39                                    | 2.69                                    | 4.06                                     | 5.44                                                     | 7.14                                                                  | 7.92                              | 9.17                              |  |  |  |  |
| Project N                                      | Run#                       |                                   | 1                                       | 2                                       | 3                                       | 4                                       | 5                                        | 9                                                        | 7                                                                     | 8                                 | 6                                 |  |  |  |  |

| Project:                           | Geotechnical Investigation - P                                                  | roposed Dar     | ms of   | Water R            | esovoi          | г                |          |            | Figure N    |                      | 4                                        |              | Tro             |
|------------------------------------|---------------------------------------------------------------------------------|-----------------|---------|--------------------|-----------------|------------------|----------|------------|-------------|----------------------|------------------------------------------|--------------|-----------------|
| Location                           |                                                                                 |                 |         |                    |                 |                  |          |            | Sheet I     | No                   | 1_ of _                                  | 2_           |                 |
| _00000                             |                                                                                 |                 |         | 0-00               | oon Sarr        | role             | ×        | 1          | Combine     | tible Ve             | pour Readin                              | 10           |                 |
| Data Dr                            | illed: October 15th and 16th, 2004                                              |                 |         | Auger S            |                 | pie              | OI.      |            |             |                      | Content                                  | 9            | ×               |
|                                    |                                                                                 |                 |         | SPT (N)<br>Dynamic | Value<br>Cone T | est              |          | -          |             | g Limits<br>ed Triax |                                          | -            | -0              |
| Drill Typ                          |                                                                                 |                 |         | Shelby 1           |                 |                  |          | 1          | % Strain    | at Failu<br>trength  | re                                       |              | 0               |
| Datum:                             | Depth below grade                                                               |                 |         | Shear S<br>Vane Te |                 | у                | +<br>s   |            |             | meter To             |                                          |              | •               |
| s                                  |                                                                                 | 44              | naumed  | D St               | andard P        | enetration       | Test N V | alue       |             |                      | our Reading                              | (ppm)        | S Nat           |
| G M<br>W B                         | SOIL DESCRIPTION                                                                |                 | evation |                    | 20<br>Strength  | 40               | 60       | 80<br>kPa  | Nat         | tural Mois           | 500 750<br>sture Content<br>is (% Dry We | (%<br>sight) | L We            |
| i i                                | BOULDERS AND COBBLES                                                            | 102             | 2.20    | 0                  | 50              | 100 1            | 150      | 200        |             | 10                   | 20 30                                    |              | § kN            |
|                                    | BOOLDERO AND GODDELO                                                            |                 | 101.80  | 2000               |                 | 3133             | 1301     |            | 3638        | 1300                 |                                          |              | 11              |
| .01                                |                                                                                 | 100             | 1.3     | 3275               | 100             |                  |          |            |             |                      | 10100                                    |              | П               |
| 3                                  | GNEISS BEDROCKGrey to light gre                                                 | ev              | 13      | 1                  |                 | 0100             | 1000     |            |             | 10000                | 10000                                    | 5515         | Ru              |
|                                    | fine to coarse grained with some join<br>cross joints are rough planar to rough | nting,<br>ph    |         | 0.010              | 1000            | 2100             | 3 0 1 1  |            |             |                      | 10000                                    | 0010         | Ru              |
|                                    | undulating commonly with oxidized<br>surfaces, spacing varies from close        | 7               |         | 0.010              | 1100            | 3133             | 13333    |            | 2112        | 1000                 |                                          |              | Н               |
|                                    | moderate, massive to foliated, some                                             | e mica          |         | 2                  | 1100            | 12333            | 1000     |            |             |                      |                                          |              | Ru              |
|                                    | rich lenses, (very good to excellent                                            | quanty).        |         | 2010               |                 |                  |          |            | 3113        |                      |                                          |              | П               |
|                                    |                                                                                 | -               |         | 3010               | 1132            | 10100            | 1331     |            |             |                      |                                          | 1212         | Rı              |
|                                    |                                                                                 | _               |         | 3                  |                 | 12:33            | 1300     |            |             |                      |                                          |              | Ш               |
|                                    |                                                                                 |                 |         | 2000               |                 | 2 1 2 2          |          |            | 2012        | 10000                |                                          |              | Ru              |
|                                    |                                                                                 | -               |         | 3313               | 1000            | 13133            |          |            | 2111        |                      | 18188                                    | 30101        | H               |
|                                    | More joints between 3.8 m and 5.3                                               | m _             |         | 4                  | 100             |                  | 13333    |            | 2112        | 1333                 | 10100                                    | 28131        | R               |
|                                    | depths.                                                                         |                 |         | 2000               |                 |                  |          |            | 3143        | 1335                 |                                          |              | H <sub>Ru</sub> |
|                                    |                                                                                 | -               |         |                    |                 |                  | 1        |            | 2111        |                      |                                          |              | Ru              |
|                                    |                                                                                 |                 |         | 53333              | 1111            | 3:50             |          |            |             |                      | 10100                                    | 3333         | н               |
|                                    |                                                                                 |                 |         | 2010               | Hill            |                  |          |            |             |                      |                                          |              | Ru              |
|                                    | Dark grey to black, medium grained<br>rich gneiss from 5.3 m to 6.9 m dep       | mica<br>th.     |         | 0.000              | 11000           | -0100            | 1331     |            | 10000       |                      | -0100                                    | 00101        | Ru              |
|                                    |                                                                                 |                 |         | 2233               |                 | 25.00            | 13.5     |            | 3630        | 133                  |                                          |              | - Ru<br>Ru      |
|                                    |                                                                                 |                 |         | 3000               | 100             | 0000             | 10000    | 1000       | 33.33       |                      | 10100                                    | 3013         | H               |
|                                    |                                                                                 | -               |         | 0.010              | -100            | 0.000            | 1904     | 11.6       | 0000        | -1000                |                                          | 0010         |                 |
|                                    | District on the second                                                          |                 |         | 2233               |                 | 3133             | 351      |            |             | 110000               |                                          |              | Ru              |
|                                    | Pink and grey, fine to medium grain<br>gneiss, some mica rich lenses, relat     |                 |         | 2210               | ies             | 01110            | liei:    |            | 3000        |                      |                                          | 2010         | H               |
|                                    | less joints.                                                                    | -               |         | 2000               |                 |                  |          |            | 2 2 2 2 2   |                      |                                          |              | Ru              |
|                                    |                                                                                 |                 |         | 2013               | 100             | 10133            | 13000    |            |             |                      | 10100                                    | 0010         | 1               |
|                                    |                                                                                 | 1               |         | 8                  |                 | 2111             | 333      | Hija       | 3113        | 1000                 | 10158                                    | 0010         | Ru              |
|                                    |                                                                                 | -               |         | 2012               |                 | 121113           | 1333     | 1113       | 13113       | 1000                 | 10100                                    |              | Ru              |
|                                    | Mara ininte halaur 9 9 m donth                                                  |                 |         | 0010               |                 | leise<br>Esta    |          |            |             |                      |                                          | 00-10-       | Ru              |
|                                    | More joints below 8.8 m depth.                                                  | -               |         | 9 33333            | 133             | 2133             |          |            |             |                      |                                          |              | Ru              |
|                                    |                                                                                 |                 |         | 3010               |                 | 1000             | 30.10    | 103        | 0100        | 115 (1)              | 6100                                     |              |                 |
|                                    |                                                                                 |                 |         | 3213               |                 |                  |          | 1113       | 2000        |                      | 1000                                     |              | Ru<br>Ru        |
| 18774                              | Continued Next Page                                                             |                 |         | 10                 | 10000           | 40000            | Tage:    | +11111     | S   0 4-1-0 | heatt                | 10000                                    |              | Nu              |
| NOTES:<br>1. Borehole<br>Trow befo | data requires interpretation assistance from<br>we use by others                |                 | WATER   | LEVEL R            | ECORE           | Stranger Land    |          |            |             |                      | LLING RE                                 |              | 000             |
| 2.A 15 mm                          | diameter piezometer was installed into the                                      | Elapsed<br>Time |         | Water<br>Level (m  |                 | Hole Op<br>To (m |          | Run<br>No. | Dep<br>(m   |                      | % Rec.                                   |              | RQD 9           |
| borehole                           | upon competion                                                                  | 3 Days          |         | 0.4                |                 |                  |          |            |             |                      |                                          |              |                 |
| 3. Field worl                      | supervised by a Trow representative                                             |                 |         |                    |                 |                  |          |            |             |                      |                                          |              |                 |
|                                    | s on Sample Descriptions                                                        |                 |         |                    |                 |                  |          |            |             |                      |                                          |              |                 |
| 5. This Draw                       | ring to be read with Trow Consulting<br>Ltd. report OTGE00017616B               |                 |         |                    |                 |                  |          |            |             |                      |                                          |              |                 |

# Trow Borehole Log 2

Project No. OTGE00017616B

Project: Geotechnical Investigation - Proposed Dams of Water Resovoir Figure No.

2 of 2 Sheet No.

Combustible Vapour Reading (ppm) 250 500 750 SYMBO. Unit Weight kN/m³ Natural Moisture Content % Atterberg Limits (% Dry Weight) SOIL DESCRIPTION Elevation 92.2 Borehole terminated at 10.05 m depth. For Core Drilling Record please refer to next page. NOTES:

1. Borehole data requires interpretation assistance from Trow before use by others

2. A 15 mm diameter piezometer was installed into the borehole upon competion

3. Field work supervised by a Trow representative

4. See Notes on Sample Descriptions

5. This Drawing to be read with Trow Consulting Engineers Ltd. report OTGE00017616B

| WAT             | TER LEVEL RECO     | ORDS                |
|-----------------|--------------------|---------------------|
| Elapsed<br>Time | Water<br>Level (m) | Hole Open<br>To (m) |
| 3 Days          | 0.4                |                     |
|                 |                    |                     |

|            | CORE DE      | RILLING RECOR | RD O  |
|------------|--------------|---------------|-------|
| Run<br>No. | Depth<br>(m) | % Rec.        | RQD % |
|            |              |               |       |
|            |              |               |       |
|            |              | 1 5 7 2       |       |
|            |              |               |       |



BH 2

page 1 of 2

Date: October 15 and 16, 2004

| Project | No.:OTGI       | E000176      | 16B               | Project Nam | e: Water Re | esovoir D            | ams, Iqa        | lluit, NU                                                                       |
|---------|----------------|--------------|-------------------|-------------|-------------|----------------------|-----------------|---------------------------------------------------------------------------------|
| Run#    | Start<br>Depth | End<br>Depth | Measured<br>Depth | TCR         | RQD         | Water<br>Return<br>% | H₂0<br>Colour   | Rock Characteristics                                                            |
| CBS1    | 0              | 0.51         | -                 | -           | -           | 100                  | milky with sand | 0-9" boulder, 9"-1'8" sand, no recov.,                                          |
| CBS2    | 0.51           | 0.86         | -                 | -           | -           | 100                  | milky with sand | stone pieces                                                                    |
| CBS3    | 0.86           | 0.89         |                   | -           | -           | 100                  | milky with sand | stone pieces                                                                    |
| 4       | 0.89           | 1.45         | 1.22              | 100         | 31          | 100                  | clear           | poss. Igneous bedrock, green-grey and red                                       |
| 5       | 1.22           | 1.68         | 1.68              | 100         | 100         | 100                  | clear           | Igneous bedrock, green-grey and red                                             |
| 6       | 1.68           | 2.21         | 2.13              | 82          | 61          | 100                  | clear           | Igneous bedrock, green-grey and red, v.hard                                     |
| 7       | 2.13           | 3.18         | 3.09              | 97          | 97          | 100-25               | milky to clear  | Igneous bedrock, pink/grey, loss of h2O at 10'                                  |
| 8       | 3.09           | 3.68         | 3.66              | 100         | 91          | 100                  | brown           | Igneous bedrock, pink                                                           |
| 9       | 3.66           | 4.34         | 4.29              | 37          | 0           | 100                  | brown           | Igneous bedrock, pink                                                           |
| 10      | 4.29           | 4.59         | 4.52              | 67          | 0           | 100                  | brown           | Igneous bedrock, pink                                                           |
| 11      | 4.52           | 4.90         | 4.88              | 47          | 0           | 100                  | brown           | Igneous bedrock, pink, loss of all h2O at 16.5', all natural fractures are rust |
| 12      | 4.88           | 5.31         | 5.31              | 65          | 0           | 0-25                 | brown           | Igneous bedrock, grey-white, some h2O return                                    |
| 13      | 5.31           | 5.48         | 5.48              | 100         | 0           | 0-10                 | brown to clear  | Igneous bedrock, grey-white, lost h2O at 18'8"                                  |
| 14      | 5.48           | 5.79         | 5.74              | 83          | 0           | 0-20                 | brown to clear  | Igneous bedrock, grey-white, all natural fractures are rusty                    |
| 15      | 5.74           | 6.48         | 6.25              | 88          | . 0         | 0-20-0               | brown to clear  | Igneous bedrock, grey-white, all natural fractures are rusty                    |
| 16      | 6.25           | 7.64         | 7.16              | 99          | 83          | 0-20-0               | brown to clear  | Igneous bedrock, grey-white, all natural fractures are rusty                    |
| 17      | 7.16           | 8.08         | 8.03              | 99          | 99          | 0-20-0               | brown to clear  | Igneous bedrock, grey-white, all natural fractures are rusty                    |
| 18      | 8.03           | 8.38         | 8.36              | 88          | 0           | 0-10                 | brown to clear  | Igneous bedrock, grey-white, all natural fractures are rusty                    |



BH 2

page 2 of 2

| roject | No.:OTG        | E000176      | 16B               | Project Name | e: Water Re | sovoir Dan           | ns, Iqalu                  | it, NU                      |
|--------|----------------|--------------|-------------------|--------------|-------------|----------------------|----------------------------|-----------------------------|
| Run#   | Start<br>Depth | End<br>Depth | Measured<br>Depth | TCR          | RQD         | Water<br>Return<br>% | H <sub>2</sub> 0<br>Colour | Rock Characteristics        |
| 19     | 8.36           | 8.71         | 8.67              | 100          | 77          | 0                    |                            | igneous bedrock, grey-white |
| 20     | 8.67           | 8.99         | 8.99              | 92           | 83          | 0                    | -                          | igneous bedrock, grey-white |
| 21     | 8.99           | 9.45         | 9.42              | 92           | 36          | 0-5                  | milky                      | igneous bedrock, grey-pink  |
| 22     | 9.42           | 9.70         | 9.70              | 50           | 0           | 0-5                  | milky                      | igneous bedrock, grey-pink  |
| 23     | 9.70           | 10.06        | 10.05             | 89           | 41          | 0-5                  | milky                      | igneous bedrock, grey-grey  |
|        |                |              |                   |              |             |                      |                            |                             |
|        |                |              |                   |              |             |                      |                            |                             |
|        |                |              |                   |              |             |                      |                            |                             |
|        |                |              |                   |              |             |                      |                            |                             |
|        |                |              |                   |              |             |                      |                            |                             |

| Pro                     | oject                                   | Geotechnical Investigation - Propo                                                                        | osed I   | Dams of                   | W     | ater Re               | sovoi        | г                  |       |            | Figure    | _                      | 5                                                | -            | Tre             |
|-------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------|----------|---------------------------|-------|-----------------------|--------------|--------------------|-------|------------|-----------|------------------------|--------------------------------------------------|--------------|-----------------|
| Lo                      | catio                                   | n: Iqaluit, Nunavuit                                                                                      | 10000    |                           |       |                       |              |                    |       |            | Sheet     | No                     | 1_ of                                            | 2            |                 |
| Da                      | te D                                    | rilled: October 19th, 2004                                                                                |          |                           | -     | Split Spo<br>Auger Sc | mple         | ple                | 0     | )          | Natural   | Moisture               | pour Rea<br>e Content                            |              | >               |
|                         | ІІ Ту                                   |                                                                                                           |          |                           |       | SPT (N)<br>Dynamic    |              | est                |       |            |           | rg Limits<br>ned Triax |                                                  | ,            |                 |
|                         | tum:                                    |                                                                                                           |          |                           | -     | Shelby T<br>Shear St  |              | v                  |       |            | Shear S   | n at Failt<br>Strength | by                                               |              | -               |
|                         |                                         |                                                                                                           |          |                           |       | Vane Te               |              |                    | + 0   |            | Penetro   | ometer T               | est                                              |              |                 |
| GWL                     | SY-MISO-                                | SOIL DESCRIPTION                                                                                          |          | Assumed<br>Elevation<br>m | DWOLT | Shear S               | 0<br>Brength |                    | 60    | 80<br>kPa  | Na<br>Na  | tural Moi              | pour Read<br>500 3<br>sture Cont<br>its (% Dry ) | 750<br>ent % | SAMP-Jus        |
| H                       |                                         | GNEISS BEDROCKGrey, fine to                                                                               | into     | 104.30                    | 0     | 3013                  | 0 1          | 00                 | 150   | 200        | 13833     |                        | 1                                                | Ĭ.           | Ů               |
|                         |                                         | medium grained gneiss, some angled jo<br>_(fair to very good quality).                                    | oirius — |                           |       | 3313                  |              | 10.00              |       |            | 10.111    |                        |                                                  | 1000         | 11.             |
|                         | <b>%</b>                                |                                                                                                           |          |                           |       | 2013                  |              | 3100               |       |            |           |                        |                                                  | 1331         | 11              |
|                         | M                                       |                                                                                                           |          |                           | 1     |                       |              |                    |       |            | 0.030     |                        |                                                  | 0000         | H               |
|                         |                                         | <ul> <li>Massive coarse grained porphyritic gnei<br/>significant jointing between 1.4 m to 2.0</li> </ul> |          | 102.70                    |       | 33.33                 |              | 31.55              |       |            | 0.000     | 1000                   | 1333                                             | 0010         | 11              |
|                         |                                         | depths.  Dark grey to black, fine to medium grain                                                         |          |                           | 2     | -55.65                | -1-0-1       | - 21:32<br>- 21:33 | 1021  | 2.1.1.1    |           | -1-2-1-                | 2.55                                             |              | #               |
|                         |                                         | mica rich gneiss, some vertical jointing,<br>lightly jointed around 2.6 m depth.                          |          |                           |       | 2013                  |              | 3103               | 121   | 1000       | 31111     | 100                    | 10100                                            | 3313         | Ш               |
|                         |                                         | Coarse grained prophyritic gneiss below                                                                   | v        |                           |       | 2010                  |              | 2100               | 1001  | 1.501      | 01110     | 1000                   | 10000                                            | 2011         | 11              |
|                         | X                                       | -2.7 m depth.                                                                                             | -        |                           | 3     |                       |              | 0111               |       | 1.512.015  | 2 1112    | ilei:                  |                                                  | 233          | H               |
|                         |                                         |                                                                                                           | -        |                           |       |                       |              |                    |       |            |           | -1                     | 1000                                             | 1 3 3 3 3    | 11,             |
|                         |                                         |                                                                                                           |          |                           | 4     |                       |              | 13133              | 1000  |            |           |                        |                                                  |              |                 |
|                         |                                         | Massive mica rich gneiss to 5.9 m depth<br>some quartz mineralization, some vertice                       |          |                           |       |                       |              |                    |       | 1000       | 300       | 1000                   | 10100                                            | 1000         | H               |
|                         | *************************************** | -joints.                                                                                                  | 1        |                           |       |                       |              |                    |       |            |           |                        | 2123                                             | 2 8 1 8      | ∐R              |
|                         | <b>%</b>                                |                                                                                                           | +        |                           | 5     | 5515                  | -1001        | 0100               | 12.00 | 11101      | 4111      | 11.5                   | 1000                                             |              | HR              |
|                         | M                                       |                                                                                                           | 4        |                           |       | 3013                  | -1001        | 0100               | 0.010 |            | 01110     | 1000                   |                                                  | 3015         | R               |
|                         |                                         |                                                                                                           |          |                           |       | 3013                  |              | 3133               |       |            | 0.000     | 1000                   | 10100                                            | 3010         | R               |
|                         |                                         |                                                                                                           | 1        |                           | 6     | 33131                 | -1-1-1-1     | 3133               | 3011  | 10101      | 31113     | 1000                   | 10000                                            | 3511         | R               |
|                         | ***                                     |                                                                                                           | -        |                           |       | 20101                 | 1000         | 2100               | 9010  | 111111     | 0100      | 120                    | 0100                                             | 2010         | 1               |
| Η·Κ                     | M                                       | Fine to medium grained gneiss below 6.<br>m depth, frequently fractured.                                  | 7        |                           | 7     | 3213                  |              | 0100               | 9010  |            | 0000      | 1000                   |                                                  | 0000         | R               |
|                         |                                         |                                                                                                           |          |                           |       |                       |              |                    |       |            |           |                        | 1000                                             |              | HR              |
| 1                       |                                         |                                                                                                           |          |                           |       | 38131                 |              |                    | 3333  |            |           |                        |                                                  |              | HR              |
|                         |                                         |                                                                                                           | -        |                           | 8     | 38131                 |              |                    | 1330  | 1:::3:     | 300       |                        |                                                  | 3517         | ∐R              |
|                         | X                                       |                                                                                                           | -        |                           |       | 33131                 | 1331         | 3133               | 1335  | 11131      | 3000      |                        | 10100                                            | 3313         | II <sub>R</sub> |
|                         | X                                       | Fine to medium amined miss sisk assista                                                                   |          |                           |       | 3513                  |              | 0100               | 0000  |            | 0140      | -101                   |                                                  | 3513         | H               |
| 82111841118411184118411 |                                         | <ul> <li>Fine to medium grained mica rich gneiss<br/>below 8.9 m depth.</li> </ul>                        | • 1      |                           | 9     | 2012                  |              | 101111             |       |            |           |                        |                                                  | 2010         | R               |
| R                       |                                         |                                                                                                           | +        |                           |       | *****                 |              | 0100               | 1011  | 10000      | 01110     | 1000                   | 10100                                            | 0000         | H.              |
| 4                       | 22                                      | Continued Next Page                                                                                       |          | 94.4                      | H     |                       |              |                    |       | 1          |           |                        | 1                                                |              | LIR.            |
| .Bo                     | rehole                                  | data requires interpretation assistance from one use by others                                            |          |                           |       | EVEL RE               |              |                    |       |            |           |                        | LLING R                                          |              |                 |
| 2.A 1                   | 15 mm                                   | diameter piezometer was installed into the                                                                | Time     |                           |       | Water<br>evel (m)     |              | Hole Op<br>To (m   |       | Run<br>No. | Dep<br>(m |                        | % Re                                             | C            | RQD             |
| DO                      | renole                                  | upon competion                                                                                            | 2 Day    | S                         |       | 1.6                   |              |                    |       |            |           |                        |                                                  |              |                 |
|                         |                                         | k supervised by a Trow representative<br>s on Sample Descriptions                                         |          |                           |       |                       |              |                    |       |            |           |                        |                                                  |              |                 |
|                         |                                         | s on Sample Descriptions wing to be read with Trow Consulting                                             |          |                           |       |                       |              |                    |       |            |           | 1                      |                                                  |              |                 |

# Trow Borehole Log 3

Project No. OTGE00017616B

Project: Geotechnical Investigation - Proposed Dams of Water Resovoir Figure No.

Sheet No. 2 of 2



| GW L     | SYMBOL  | SOIL DESCRIPTION                                                                                                                | Assum<br>Elevat<br>m<br>94.30 | ion | Shear S           | o Strength |                    | 0 | 80 kPa     | Nat<br>Attert | 50 5<br>ural Moist<br>perg Limits | ture Conte<br>3 (% Dry V | 50   | SAMPLES | Nati<br>Ur<br>Wei<br>kN/ |
|----------|---------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----|-------------------|------------|--------------------|---|------------|---------------|-----------------------------------|--------------------------|------|---------|--------------------------|
|          |         | For Core Drilling Record please refer next page.                                                                                |                               |     |                   |            |                    |   |            |               |                                   |                          |      |         |                          |
|          |         |                                                                                                                                 |                               |     |                   |            |                    |   |            |               |                                   |                          |      |         |                          |
|          |         |                                                                                                                                 |                               |     |                   |            |                    |   |            |               |                                   |                          |      |         |                          |
|          |         |                                                                                                                                 |                               |     |                   |            |                    |   |            |               |                                   |                          |      |         |                          |
|          |         |                                                                                                                                 |                               |     |                   |            |                    |   |            |               |                                   |                          |      |         |                          |
| IOTE Bor |         |                                                                                                                                 |                               |     |                   |            |                    |   |            |               |                                   |                          |      |         |                          |
| OTI      | ES:     | data requires intermediation essicians from                                                                                     | WAT                           | ERI | EVEL RE           | CORDS      |                    |   |            | COS           | E DPII                            | LING RE                  | COPD | _       |                          |
|          | - Inmat | data requires interpretation assistance from one use by others diameter piezometer was installed into the upon competion        | Elapsed<br>Time<br>2 Days     |     | Water<br>evel (m) |            | iole Ope<br>To (m) | n | Run<br>No. | Dept<br>(m)   | h                                 | % Rec                    |      | RÓ      | D 9                      |
| .Fiel    | id wor  | k supervised by a Trow representative s on Sample Descriptions wing to be read with Trow Consulting s Ltd. report OTGE00017816B | - 55,5                        |     |                   |            |                    |   |            |               |                                   |                          |      |         |                          |

| Elapsed<br>Time | Water<br>Level (m) | Hole Open<br>To (m) |  |  |  |  |
|-----------------|--------------------|---------------------|--|--|--|--|
| 2 Days          | 1.6                |                     |  |  |  |  |
|                 |                    |                     |  |  |  |  |

| Run<br>No. | Depth<br>(m) | % Rec. | RQD % |
|------------|--------------|--------|-------|
|            |              |        |       |
|            |              |        |       |
|            |              |        |       |

+Trow Field Coring Log

BH 3

page 1 of 2 Date: October 19, 2004

| П                                              |                            |                                                 | 1.5m                                                                     |                                              |                | 2.4m                                                                       |                |                             | grey                                                    |                                          |                                                      |                                           | rock)                                                                    | pink                                                       |                                           |                                           |                                           |                                           |                             |
|------------------------------------------------|----------------------------|-------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------|----------------|----------------------------------------------------------------------------|----------------|-----------------------------|---------------------------------------------------------|------------------------------------------|------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------|
| uit, NU                                        | Rock Characteristics       | milky-grey Igneous bedrock, green-grey and pink | milky-grey Igneous bedrock, rusty, green-grey and pink, lost h2O at 1.5m | rock fragments, some h2O comes back at 2.0 m | rock fragments | milky-grey Igneous bedrock, rusty, green-grey and plnk, h2O return at 2.4m | rock fragments | Igneous bedrock, green-grey | Igneous bedrock, some quartz, gamet, pyrite, green-grey | Igneous bedrock, some garnet, green-grey | milky-grey Igneous bedrock, trace pyrite, green-grey | Igneous bedrock, trace pyrite, green-grey | Igneous bedrock, trace pyrite, green-grey, (drilled thru some soft rock) | Igneous bedrock, some partings, some garnet, grey and plnk | Igneous bedrock, trace pyrite, green-grey | Igneous bedrock, trace garnet, green-grey | Igneous bedrock, trace garnet, green-grey | Igneous bedrock, trace garnet, green-grey | Igneous bedrock, green-grey |
| ams, Iqa                                       | H <sub>2</sub> 0<br>Colour | milky-grey                                      | milky-grey                                                               | ,                                            | ,              | milky-grey                                                                 |                |                             |                                                         |                                          | milky-grey                                           | 1                                         | black                                                                    | grey                                                       | grey                                      | grey                                      | 1                                         |                                           |                             |
| sovoir Da                                      | Water<br>Return<br>%       | 100                                             | 100-5                                                                    | 0                                            | 0              | 0-20                                                                       | 0              | 0                           | 0                                                       | 0                                        | 0-5                                                  | 0                                         | 10                                                                       | 09                                                         | 09                                        | 09                                        | 0                                         | 0                                         | 0                           |
| : Water Re                                     | RQD (%)                    | 80                                              | 41                                                                       | 0                                            | 0              | 54                                                                         | 0              | 41                          | 51                                                      | 69                                       | 64                                                   | 0                                         | 0                                                                        | 60                                                         | 0                                         | 46                                        | 0                                         | 40                                        | 44                          |
| Project Name: Water Resovoir Dams, Iqaluit, NU | TCR (%)                    | 96                                              | 61                                                                       | 100                                          | 50             | 96                                                                         | 100            | 86                          | 91                                                      | 100                                      | 100                                                  | 06                                        | 52                                                                       | 100                                                        | 58                                        | 80                                        | 100                                       | 80                                        | 81                          |
|                                                | Measured<br>Depth (m)      | 1.3                                             | 1.85                                                                     | 1.9                                          | 2              | 2.03                                                                       | 2.46           | 3.18                        | 4.06                                                    | 4.27                                     | 4.8                                                  | 4.95                                      | 5.49                                                                     | 6.04                                                       | 6.35                                      | 7.37                                      | 7.37                                      | 7.67                                      | 8.23                        |
| 0001761                                        | End<br>Depth<br>(m)        | 1.3                                             | 1.98                                                                     | 2                                            | 2.08           | 2.92                                                                       | 3.09           | 3,46                        | 4.06                                                    | 4.27                                     | 4.83                                                 | 5.05                                      | 5.54                                                                     | 6.22                                                       | 6.53                                      | 7.37                                      | 7.49                                      | 7.75                                      | 8.28                        |
| Project No.:OTGE00017616B                      | Start<br>Depth<br>(m)      | 0                                               | 1.3                                                                      | 1.85                                         | 1.9            | 2                                                                          | 2.03           | 2.46                        | 3.18                                                    | 4.06                                     | 4.27                                                 | 4.8                                       | 4.95                                                                     | 5.49                                                       | 6.04                                      | 6.35                                      | 7.37                                      | 7.37                                      | 7.67                        |
| Project N                                      | Run#                       | 1                                               | 7                                                                        | 3                                            | 4              | 2                                                                          | 9              | 7                           | 8                                                       | 0                                        | 10                                                   | 11                                        | 12                                                                       | 13                                                         | 14                                        | 15                                        | 16                                        | 17                                        | 18                          |

Froject No.:OTGE00017616B | Project No.

ВН 3

page 2 of 2 Date: October 15 and 16, 2004

| _                                              |                            | _                                        | _                                       | _                                       | _ | _ |  | _ | _ |    | _ | _ | _ | _ | _ |  |
|------------------------------------------------|----------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|---|---|--|---|---|----|---|---|---|---|---|--|
| t, NU                                          | Rock Characteristics       | igneous bedrock, some garnet, green-grey | igneous bedrock, some gamet, green-grey | igneous bedrock, some gamet, green-grey |   |   |  |   |   |    |   |   |   |   |   |  |
| ns, Igalui                                     | H <sub>2</sub> 0<br>Colour |                                          | ,                                       |                                         |   |   |  |   |   |    |   |   |   |   |   |  |
| voir Dan                                       | Water<br>Return<br>%       | 0                                        | 0                                       | 0                                       |   |   |  |   |   |    |   |   |   |   |   |  |
| Water Resc                                     | RQD (%) Return Colour      | 74                                       | 79                                      | 85                                      |   |   |  |   |   |    |   |   |   |   |   |  |
| Project Name: Water Resovoir Dams, Igaluit, NU | TCR (%)                    | 68                                       | 68                                      | 100                                     |   |   |  |   |   |    |   |   |   |   |   |  |
|                                                | Measured<br>Depth (m)      | 8.86                                     | 9.63                                    | 9.88                                    |   |   |  |   |   |    |   |   |   |   |   |  |
| 50001761                                       | End<br>Depth<br>(m)        | 8.86                                     | 9.63                                    | 98.6                                    |   |   |  |   |   |    |   |   |   |   |   |  |
| roject No.:OTGE00017616B                       | Start<br>Depth<br>(m)      | 8.23                                     | 8.86                                    | 9.63                                    |   |   |  |   |   |    |   |   |   |   |   |  |
| roject h                                       | Run#                       | 19                                       | 20                                      | 21                                      |   |   |  |   |   | -8 |   |   |   |   |   |  |

# Trow Borehole Log 4

|               | 110                                | W Dordinoid Log                                        |                                              | _        |
|---------------|------------------------------------|--------------------------------------------------------|----------------------------------------------|----------|
| Project No.   | OTGE00017616B                      |                                                        | Figure No. 6                                 | 7        |
| Project:      | Geotechnical Investigation - Propo | osed Dams of Water Resovoir                            |                                              | Tro      |
| Location:     | Iqaluit, Nunavuit                  |                                                        | Sheet No. 1 of 1                             |          |
|               |                                    | Split Spoon Sample 🗵                                   | Combustible Vapour Reading                   |          |
| Date Drilled: | October 13th, 2004                 | Auger Sample (II) SPT (N) Value O                      | Natural Moisture Content<br>Atterberg Limits | ×<br>→   |
| Drill Type:   | Portable                           | Dynamic Cone Test ———————————————————————————————————— | Undrained Triaxial at<br>% Strain at Failure | 0        |
| Datum:        | Depth below grade                  | Shear Strength by + Vane Test S                        | Shear Strength by<br>Penetrometer Test       | <b>A</b> |
|               |                                    | 1010 103                                               |                                              |          |

| e        |                                                                           | _         | T    | Sta   | ndard Pe | netration 1 | Test N Va  | lue       | Combus            | stible Vao               | our Readi                | ng (ppm) | S       | Natu       |
|----------|---------------------------------------------------------------------------|-----------|------|-------|----------|-------------|------------|-----------|-------------------|--------------------------|--------------------------|----------|---------|------------|
| SY-Maio  | CON DESCRIPTION                                                           | Assumed   | DEPT |       |          |             |            | 80        | 2                 | 50 5                     | 00 7                     | 50       | Sem-ses | Vati       |
| 80       | SOIL DESCRIPTION                                                          | Elevation | H    |       | Strength | 40 (        |            | kPa       | Attert            | urai Moisi<br>serg Limit | ture Conte<br>s (% Dry V | veight)  | L       | Wei<br>kN/ |
| L        | SII TV SAND Same For annual beauti                                        | 110.00    | 0    |       | 50 1     | 100 1       | 50 2       | 00        | 1                 | 10 :                     | 20 3                     | 30       | S       | N.N.       |
|          | SILTY SAND Some fine gravel, brown,<br>wet, (compact).                    |           |      | 0     |          | 13113       | 33.0       | 1000      | 300               | 1300                     | 10100                    | 2010     | M       | 1          |
|          | - (compact).                                                              | 109.60    | 11   | ×     |          | 15135       | 12011      | 11441     | 0.5.50            | 11001                    | 10100                    | 0000     | IV      |            |
|          |                                                                           |           | П    | 37.15 | 1551     | 13135       | 3365       | 10000     | \$115             | 1000                     | 11121                    | 2513     | M       | 1          |
|          |                                                                           | -         | 1,   | 0     | -1-2-1   | 2100        | -5-5-5-5   | - 1-1-1-1 | 0000              | -1001                    | - ::::::                 | 2010     | X       |            |
|          |                                                                           |           | П    | 33:53 | -1-5-1   | Refusa      |            | 10000     | 2000              | 1000                     | 0100                     | 3013     | ()      | 1          |
|          |                                                                           | _         | П    | 0010  | -1001    | : Q :       | -201-2     | -1-1-0-1- | 01:10             | 1000                     | - 0.000                  | 0010     | Ă       |            |
|          |                                                                           | 108.1     |      |       |          | 2133        | 3313       |           | 2000              | 1333                     |                          | 3513     | Ш       |            |
|          | SAND AND GRAVELFine grained, some                                         | 7         | 2    | 0.010 | 1001     | 01110       | 2012       | 1111111   | 04-1-0            |                          |                          | 0000     | H       |            |
| 80       | silt, grey, wet.                                                          | 107.6     |      | 3513  |          | 2111        | 3313       |           | 3113              |                          |                          | 3000     | Ш       |            |
|          | SAND AND GRAVEL TILLSome silt,                                            | 7         | H    |       | 1000     | 2120        | 12 2 1 1 1 | 10000     | 2000              | 15000                    | 0300                     | 0.000    | П       |            |
|          | grey, moist.                                                              |           |      |       |          |             | 3313       |           | 3813              | 1000                     | 3133                     | 3313     | Ш       |            |
| 333      |                                                                           | -         | 3    | 2010  | 11000    | 2000        | 10000      |           | 22.12             | 1.000                    | 20000                    | 2010     | П       |            |
|          |                                                                           |           | П    | 3213  | 1000     | 1000        |            | 1         | 0000              |                          |                          | 3813     | П       |            |
| <b>%</b> |                                                                           | -         | H    |       |          |             |            |           | Contract Contract |                          |                          | 2000     | Н       |            |
| 244      | CUEICO DEDDOCKO:                                                          | 106.2     |      |       |          | 21.50       | 3313       | tiiiiii   | 2                 |                          | 12.50                    | 3213     | Ħ       |            |
| <b>X</b> | GNEISS BEDROCKPink and grey, fine to medium grained, massive to foliated, | -         | 4    |       |          | 2           |            |           | 4.1.1.5           |                          |                          |          | П       |            |
|          | some near vertical to inclined joints, (very                              |           |      | 22.13 |          | 13133       |            |           | 200               |                          | 12:22                    | 200      | H       |            |
| M        | good quality).                                                            | 1         | H    |       |          | 11111       |            | 11111     | 11111             |                          | 11111                    | 1111     | П       |            |
|          |                                                                           |           | П    |       |          | 2132        |            |           | 3                 |                          |                          | 33.3     | H       |            |
| W        |                                                                           | 1         | 5    |       |          | 11111       |            | 111111    | 2111              |                          |                          | 4414     | П       |            |
| K/A      |                                                                           | 104.5     |      | 0010  | 13301    | 2133        | 3011       | 111111    | 31113             |                          | 11121                    | 2000     | Ш       |            |
| 1111     | Borehole terminated at 9.88 m depth.                                      | 1104.5    | H    | 1111  | 1111     | 1111        | 11111      | 11111     |                   | 11111                    | 11111                    | 11111    | 1       |            |
|          |                                                                           |           |      |       |          |             |            | 11111     |                   |                          | 11111                    |          | П       |            |
|          |                                                                           |           | П    |       |          |             |            |           |                   |                          |                          |          |         |            |
|          |                                                                           |           |      |       |          |             |            |           |                   |                          |                          |          | П       |            |
|          |                                                                           |           |      |       |          |             |            |           |                   |                          | 1111                     |          | П       |            |
|          |                                                                           |           |      |       |          | 11111       | 1111       |           |                   |                          |                          | 1111     |         |            |
|          |                                                                           |           |      |       | 1111     |             |            |           |                   |                          |                          |          |         |            |
|          |                                                                           |           |      |       | 11111    |             |            |           |                   | 1111                     |                          | 3333     | П       |            |
|          |                                                                           |           |      |       |          | 1           |            |           |                   |                          |                          |          |         |            |
|          |                                                                           |           |      |       |          |             |            | 11111     |                   | 1111                     | 1111                     |          |         |            |
|          |                                                                           |           |      |       |          |             |            |           |                   |                          |                          |          |         |            |
|          |                                                                           |           |      |       |          |             |            |           |                   |                          | 1                        |          |         |            |
|          |                                                                           |           |      |       |          |             |            |           |                   |                          |                          |          |         |            |
|          |                                                                           |           |      |       |          |             |            |           |                   |                          |                          |          |         |            |
|          |                                                                           |           |      |       |          |             |            |           |                   |                          |                          |          |         |            |
|          |                                                                           |           |      | ::::  | ::::     | 1111        | 1111       | 11111     | 3333              | 1111                     | 3333                     | 3333     |         |            |
|          |                                                                           |           |      |       |          |             |            |           |                   |                          |                          |          |         |            |

NOTES:
U. Borehole data requires interpretation assistance from Trow before use by others

2. A 15 mm dismeter piezometer was installed into the

2. A 15 mm diameter piezometer was installed into the borehole upon competion

3. Field work supervised by a Trow representative

4. See Notes on Sample Descriptions

5. This Drawing to be read with Trow Consulting Engineers Ltd. report OTGE00017616B

| WAT             | TER LEVEL RECO     | ORDS                |
|-----------------|--------------------|---------------------|
| Elapsed<br>Time | Water<br>Level (m) | Hole Open<br>To (m) |
| 6 days          | 0.4                |                     |

| Run<br>No. | Depth<br>(m) | % Rec. | RQD % |
|------------|--------------|--------|-------|
| 1          | 3.84 - 5.54  | 93     | 79    |

# Trow Borehole Log 5

|               | 110                                | W Dorchold Log o                 |                                              | -        |
|---------------|------------------------------------|----------------------------------|----------------------------------------------|----------|
| Project No.   | OTGE00017616B                      |                                  | Figure No. 7                                 |          |
| Project:      | Geotechnical Investigation - Propo | osed Dams of Water Resovoir      |                                              | Tro      |
| Location:     | Igaluit, Nunavuit                  |                                  | Sheet No1_ of _1_                            | -        |
|               |                                    | Split Spoon Sample 🛛             | Combustible Vapour Reading                   |          |
| Date Drilled: | October 17th, 2004                 | Auger Sample III SPT (N) Value O | Natural Moisture Content<br>Atterberg Limits | ×<br>⊢—0 |
| Drill Type:   | Portable                           | Dynamic Cone Test Shelby Tube    | Undrained Triaxial at<br>% Strain at Failure | 0        |
| Datum:        | Depth below grade                  | Shear Strength by + Vane Test S  | Shear Strength by<br>Penetrometer Test       |          |
|               |                                    |                                  |                                              |          |

|                                         |      |                                                                             |                 | 1     | Ste               | ndard Pe | netration T        | est N Va | due         | Combus     | stible Vao              | our Readi                | ng (ppm) | \$          |
|-----------------------------------------|------|-----------------------------------------------------------------------------|-----------------|-------|-------------------|----------|--------------------|----------|-------------|------------|-------------------------|--------------------------|----------|-------------|
| 3 3                                     |      |                                                                             | Assumed         | 100   |                   |          |                    |          |             | 2          | 50 5                    | 00 7                     | 50       | A Nati      |
| G N N N N N N N N N N N N N N N N N N N | 3    | SOIL DESCRIPTION                                                            | Elevation       | CWC-1 | Shear S           |          | 40 E               | 0        | 80<br>kPa   | Attert     | ural Moisi<br>erg Limit | ture Conte<br>s (% Dry V | Veight)  | M Ur<br>Wei |
| 1                                       |      | SILTY SAND Some gravel, trace cobble                                        | 110.00          | 10    |                   | 0        | 100 1              | 50 2     | 200         | 1          | 0                       | 20 3                     | 30       | S           |
|                                         |      | brown, wet, (loose).                                                        | 110.00          |       | 0                 | -1001    | 0.000              | 3333     | 10131       | 2112       |                         | 18188                    | 8010     | XI          |
|                                         | 1    |                                                                             | -               |       | 2010              |          | Refusal            |          | 111111      | 2112       |                         | 10000                    |          | ()          |
|                                         |      |                                                                             |                 | 1.    | 3813              |          | 0                  | 3533     | 1000        | 3838       | 1333                    | 18188                    | 3813     | X           |
|                                         | П    |                                                                             |                 | 1     | 2010              | 1331     | 1000               |          | 11111       | 01110      | 1100                    | 2121                     | 0010     | П           |
|                                         |      |                                                                             | - 108.4         |       | 2010              | -1-1-1-1 | 0140               | 0.040    | V 1 1 0 0 0 | 0000       | 1000                    |                          | 0010     | Ш           |
|                                         | 4    | GNEISS BEDROCKGrey and pink, fine<br>to medium grained massive to foliated, |                 |       | 0.010             |          | 12888              | 10000    | Hist        | 200        |                         | 18188                    | 33131    | Ru          |
|                                         | 1    | inclined joints, (very poor to good quality                                 | y)              | 2     | 9019              | -1-2-0-1 | 0000               | 2011     | 10000       | 0110       | -1-2-1-1                | 10000                    | 2010     | Ru<br>Ru    |
|                                         | A    |                                                                             |                 |       | 2010              |          | 2000               |          |             | 21:12      |                         | 0100                     | 2010     | Ru          |
|                                         | 4    |                                                                             |                 |       | 2010              | 122      | 0 1000             | 2012     | 11121       | 2012       | 1011                    | 18888                    | 3813     | Ru<br>Ru    |
|                                         | 2    |                                                                             | 4000            | 2     | 1 1 1 1 1         |          | 1                  |          | 1           | 2000       |                         | 2000                     | 2010     | Ru          |
| HVX                                     | 4    | Borehole terminated at 3.20 m depth.                                        | 106.8           | 1     | 11111             | 3 3 3 3  | 1::::              | ::::     | 1::::       | ::::       | 1111                    | 1                        |          | 1           |
|                                         |      |                                                                             |                 | 1     |                   |          | 1                  |          | 1::::       |            |                         |                          |          |             |
|                                         |      |                                                                             |                 |       | 1                 |          |                    |          | 1           |            |                         |                          |          |             |
|                                         |      | For Core Drilling Record please refer to<br>next page.                      |                 |       |                   |          |                    |          |             |            |                         |                          |          |             |
|                                         |      | next page.                                                                  |                 |       | 1                 |          |                    |          |             |            |                         |                          |          |             |
|                                         |      |                                                                             |                 |       |                   |          | 1                  |          | 1           |            |                         |                          |          |             |
|                                         |      |                                                                             |                 |       | 1                 |          |                    |          | 1           |            |                         |                          |          |             |
|                                         |      |                                                                             |                 |       |                   |          |                    |          | 1           |            |                         | 11111                    |          |             |
|                                         |      |                                                                             |                 |       |                   |          |                    |          |             |            |                         | 1                        |          |             |
|                                         | 1    |                                                                             |                 |       |                   |          |                    |          | 1           |            |                         | 1                        |          |             |
|                                         |      |                                                                             |                 |       |                   |          |                    |          | 1::::       |            |                         |                          |          |             |
|                                         |      |                                                                             |                 |       |                   |          |                    |          |             |            |                         |                          |          |             |
|                                         |      |                                                                             |                 |       |                   |          |                    |          |             |            |                         | 1111                     |          |             |
|                                         |      |                                                                             |                 |       |                   |          |                    |          |             |            |                         |                          |          |             |
|                                         |      |                                                                             |                 |       |                   |          |                    |          |             |            |                         |                          |          |             |
|                                         |      |                                                                             |                 |       |                   |          |                    |          | 11111       |            |                         |                          |          |             |
|                                         |      |                                                                             |                 |       |                   |          | 1                  |          |             |            |                         |                          |          |             |
|                                         |      |                                                                             |                 |       |                   |          | 1                  |          | 1           |            |                         |                          |          |             |
|                                         |      |                                                                             |                 |       |                   |          |                    |          |             |            |                         |                          |          |             |
|                                         | 1    |                                                                             |                 | -     |                   |          |                    |          |             |            |                         |                          |          |             |
|                                         |      |                                                                             |                 |       |                   |          |                    |          |             |            |                         |                          |          |             |
|                                         |      |                                                                             |                 |       |                   |          |                    |          | 1           |            |                         |                          |          |             |
|                                         | _    |                                                                             |                 | J     |                   | 1111     | 11111              | 1111     | 11111       | 11111      | 3111                    | :::::                    | 1111     |             |
| NOTE:                                   | hole | data requires interpretation assistance from                                | WATE            | RL    | EVEL RE           | CORD     | s                  |          |             | CO         | RE DRIL                 | LING R                   | ECORD    | -           |
| Trow                                    | bef  | ore use by others                                                           | Elapsed<br>Time | ,     | Water<br>evel (m) |          | Hole Ope<br>To (m) |          | Run<br>No.  | Dep<br>(m) |                         | % Re                     | C.       | RQD %       |
|                                         |      | diameter plezometer was installed into the<br>upon competion                |                 |       | ound surf         | ace      | 10(111)            |          | 110.        | (11)       |                         |                          |          |             |
| Finds                                   | -    | rk supervised by a Trow representative                                      |                 |       |                   |          |                    |          |             |            |                         |                          |          |             |
|                                         |      | s on Sample Descriptions                                                    |                 |       |                   |          |                    |          |             |            |                         |                          |          |             |
|                                         |      | wing to be read with Trow Consulting<br>is Ltd. report OTGE00017616B        |                 |       |                   |          |                    |          |             |            |                         |                          |          |             |
| Engir                                   | neer | 's Ltd. report OTGE00017616B                                                |                 |       |                   |          |                    |          |             |            |                         |                          |          |             |

| W)              | WATER LEVEL RECORDS |                     |  |  |  |  |  |  |  |  |  |
|-----------------|---------------------|---------------------|--|--|--|--|--|--|--|--|--|
| Elapsed<br>Time | Water<br>Level (m)  | Hole Open<br>To (m) |  |  |  |  |  |  |  |  |  |
| 2 days          | At ground surface   |                     |  |  |  |  |  |  |  |  |  |

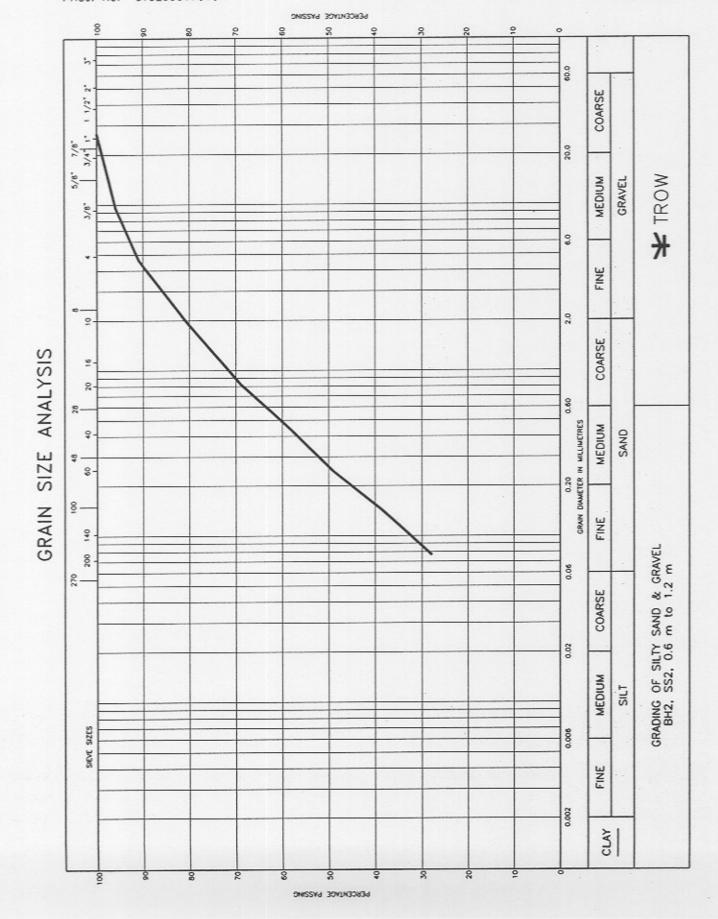
| un<br>lo. | Depth<br>(m) | % Rec. | RQD % |  |  |
|-----------|--------------|--------|-------|--|--|
| T         |              |        |       |  |  |
|           |              |        |       |  |  |
|           |              |        |       |  |  |
|           |              |        |       |  |  |

+Trow Field Coring Log

BH 5

Date: October 17, 2004

|                                                |                            |                                                |                                                |                                                |                                                |                                                |                                                | _                                              |  |  | _ | <br> | <br> |  |  |
|------------------------------------------------|----------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|--|--|---|------|------|--|--|
| aluit, NU                                      | Rock Characteristics       | clear to milky Igneous bedcok, grey, some pink | clear to milky Igneous bedcok, grey, some pink | clear to milky Igneous bedcok, grey, some pink | olear to milky Igneous bedcok, grey, some pink | clear to milky Igneous bedcok, grey, some pink | clear to milky Igneous bedcok, grey, some pink | clear to milky Igneous bedcok, grey, some pink |  |  |   |      |      |  |  |
| ams, lqa                                       | H <sub>2</sub> 0<br>Colour | clear to milky                                 | clear to milky                                 | clear to milky                                 | clear to milloy                                | clear to milky                                 | clear to milky                                 | clear to milky                                 |  |  |   |      |      |  |  |
| sovoir D                                       | Water<br>Return<br>%       | 100                                            | 100                                            | 100                                            | 100                                            | 100                                            | 100                                            | 100                                            |  |  |   |      |      |  |  |
| e: Water Re                                    | RQD                        | 0                                              | 100                                            | 67                                             | 59                                             | 0                                              | 43                                             | 44                                             |  |  |   |      |      |  |  |
| Project Name: Water Resovoir Dams, Iqaluit, NU | TCR                        | 78                                             | 100                                            | 87                                             | 98                                             | 100                                            | 86                                             | 94                                             |  |  |   |      |      |  |  |
|                                                | Measured<br>Depth          | 1.80                                           | 1.93                                           | 2.29                                           | 2.57                                           | 2.69                                           | 2.97                                           | 3.20                                           |  |  |   |      |      |  |  |
| 000176                                         | End<br>Depth               | 1.83                                           | 2.06                                           | 2.31                                           | 2.57                                           | 2.74                                           | 2.97                                           | 3.20                                           |  |  |   |      |      |  |  |
| Project No.:OTGE00017616B                      | Start<br>Depth             | 1.57                                           | 1.80                                           | 1.93                                           | 2.29                                           | 2.57                                           | 2.69                                           | 2.97                                           |  |  |   |      |      |  |  |
| Project N                                      | Run#                       | 7                                              | 2                                              | က                                              | 4                                              | 2                                              | 9                                              | 7                                              |  |  |   |      |      |  |  |


| Borehol<br>Trow be<br>A 15 mr<br>borehol | e data requires interpretation assistance from fore use by others  in diameter piczometer was installed into the eupon competion  ork supervised by a Trow representative | Elapsed<br>Time<br>1 day                   | W:<br>Leve | eter<br>el (m)                                                |                                     | lole Ope<br>To (m) |    | Run<br>No.                      | Dept<br>(m)                                                     | h                                                                        | LING RI                   |              | RQD        |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------|---------------------------------------------------------------|-------------------------------------|--------------------|----|---------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------|--------------|------------|
| OTES:                                    | Borehole terminated at 4.47 m depth.  For Core Drilling Record please refer to next page.                                                                                 |                                            |            |                                                               |                                     |                    |    |                                 |                                                                 |                                                                          |                           |              |            |
| 3                                        | GNEISS BEDROCKSome quartz veins grey and pink, fine to medium grained massive to foliated, highly jointed, (very poor to poor quality).                                   |                                            | 3          |                                                               |                                     |                    |    |                                 |                                                                 |                                                                          |                           | 0010         | F          |
| SYMBOL MININGS                           | SOIL DESCRIPTION  SILTY SAND Some gravel, trace cobbl brown, wet.  GRAVEL Grey.                                                                                           | Assumed Elevation m 110.00 1109.50 - 108.4 | MP-TH 0    | Shear S                                                       | 0<br>Strength                       | 100                | 50 | 80 kPa<br>200                   | Na<br>Atter                                                     | tural Mois<br>berg Limit                                                 | ture Controls (% Dry )    | 750<br>ent % | MANAGE NO. |
| Date I<br>Drill T<br>Datun               |                                                                                                                                                                           |                                            | - S D S    | uger Si<br>PT (N)<br>lynamic<br>helby T<br>hear St<br>lane Te | Value<br>Cone To<br>ube<br>rength b | est<br>y           | \$ | 0<br>-<br>-<br>-<br>-<br>-<br>- | Natural<br>Atterbe<br>Undrain<br>% Strain<br>Shear S<br>Penetro | Moisture<br>rg Limits<br>ned Triaxi<br>n at Failu<br>Strength tometer Te | ial at<br>re<br>by<br>est | ŀ            | (          |
| Locat                                    | ion: Iqaluit, Nunavuit                                                                                                                                                    |                                            |            |                                                               |                                     |                    |    | _                               | Sheet                                                           | No                                                                       | 1_ of                     | 1            | Tr         |

TTOW Field Coring Log

BH 6

Date: October 18, 2004

| aluit, NU                                      | Rock Characteristics       | Igneous bedrock, green-grey | Igneous bedrock, green-grey | Igneous bedrock, some quartz veins, green-grey and pink | Igneous bedrock, some quartz veins, green-grey and pink | Igneous bedrock, some quartz veins, green-grey and pink |  |  |  |  |  |  |  |
|------------------------------------------------|----------------------------|-----------------------------|-----------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--|--|--|--|--|--|--|
| ams, lq                                        | H <sub>2</sub> 0<br>Colour | milky                       | milky                       | milky                                                   | milky                                                   | milky                                                   |  |  |  |  |  |  |  |
| Sovoir D                                       | Water<br>Return<br>%       | 100                         | 100                         | 100                                                     | 100                                                     | 100                                                     |  |  |  |  |  |  |  |
| e: Water Re                                    | Rab                        | 0                           | 0                           | 0                                                       | 0                                                       | 38                                                      |  |  |  |  |  |  |  |
| Project Name: Water Resovoir Dams, Iqaluit, NU | TCR                        | 99                          | 09                          | 94                                                      | 100                                                     | 100                                                     |  |  |  |  |  |  |  |
|                                                | Measured<br>Depth          | 3.05                        | 3.18                        | 3.61                                                    | 3.73                                                    | 4.47                                                    |  |  |  |  |  |  |  |
| 0001761                                        | End                        | 3.09                        | 3.20                        | 3.61                                                    | 3.76                                                    | 4.47                                                    |  |  |  |  |  |  |  |
| Project No.:OTGE00017616B                      | Start                      | 2.84                        | 3.05                        | 3.18                                                    | 3.61                                                    | 3.73                                                    |  |  |  |  |  |  |  |
| Project                                        | Run#                       | 7                           | 2                           | 3                                                       | 4                                                       | 2                                                       |  |  |  |  |  |  |  |



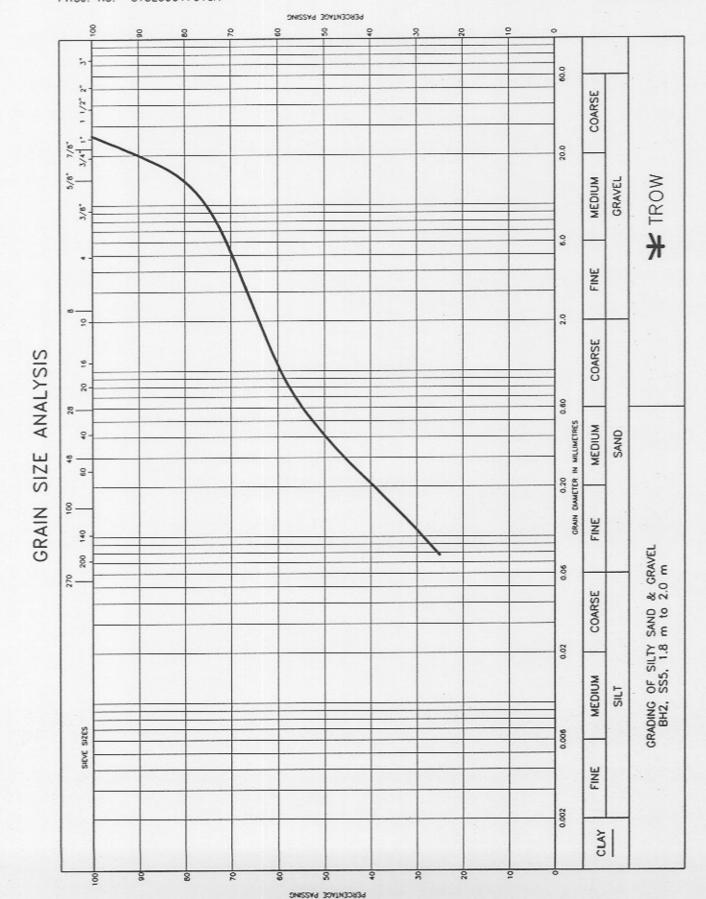
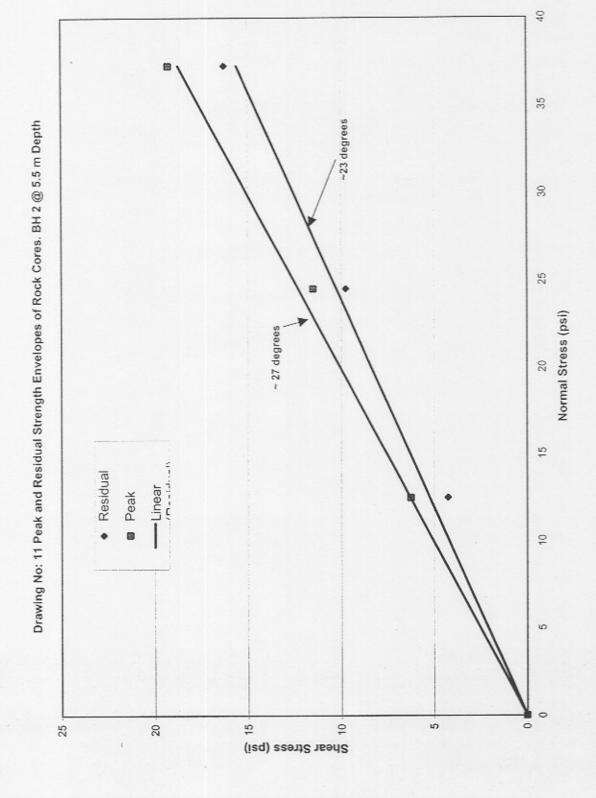
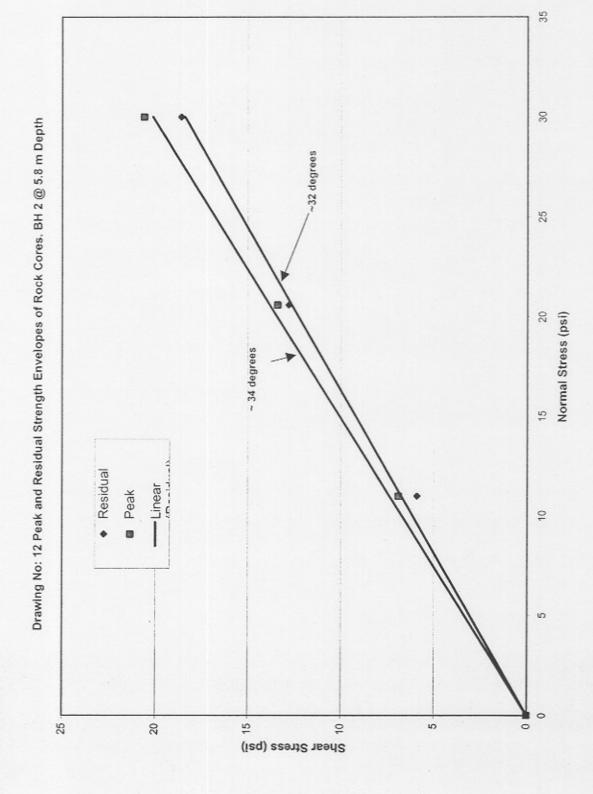





Chart1











# **Executive Summary**

Trow Associates Inc. was retained by the City of Iqaluit to undertake a geotechnical investigation at the Lake Geraldine Water Reservoir located in the northwest part of the City. The water in the reservoir is retained by a cast-in-place concrete gravity dam incorporating a spillway section, and a cast-in-place concrete cut-off wall and embankment located on the north side of the dam. It is proposed to increase the height of the dam by 2 m. This would necessitate increasing the height of the concrete gravity dam and its extension to the south to abut the bedrock in the valley, increasing the height of the concrete cut-off wall and the berm located north of the dam and its extension northerly to abut the bedrock in the valley, and construction of a new concrete cut-off wall and berm in a valley along Lake Geraldine located southeast of the dam.

The geotechnical investigation consisted of drilling six boreholes to a depth of 3.2 m to 10.5 m. The boreholes were initially advanced in the overburden by performing standard penetration tests and retrieving soil samples by split barrel sampler. Once refusal to sampling was met, the boreholes were advanced by core drilling techniques. In the bedrock also the boreholes were advanced by core drilling techniques. Standpipes were installed in all the boreholes to monitor the groundwater table.

The investigation has revealed that in the vicinity of the dam, a shallow deposit of fill is underlain by bedrock. The bedrock is fine to coarse-grained gneiss. It is massive to foliated. It contains some near vertical and inclined joints. It is porphyritic to mica rich. A Total Core Recovery (TCR) of 37 to 100 percent and a Rock Quality Designation (RQD) of 0 to 100 percent was obtained when core drilling the bedrock. On this basis, the bedrock quality may be defined as very poor to excellent.

Water level observations made in the boreholes indicate that the groundwater table at the site is at a depth of 0 m to 1.6 m below the existing ground surface i.e. Elevation 101.8 m to 110.3 m.

The existing dam is founded on bedrock, which has adequate allowable bearing pressure to support the proposed increase in height of the dam. It is noted that the dam has a potential to fail either by sliding at the interface of the concrete and bedrock or along joints in the bedrock. The coefficient of friction between the concrete dam and the bedrock may be taken as 0.67 whereas the angle of friction due to sliding along the bedrock planes may be taken as 23 degrees for design purposes. It is anticipated that additional rock anchors would be required for the dam to overcome overturning moments due to the increased height. The rock anchors may be designed according to the criteria presented in the report. It is noted that the bedrock contains weathered zones. Therefore, grouting of the bedrock may be required prior to installation of the rock anchors.

The proposed dam extension to the south may be founded on gneiss bedrock and should be socketed into the bedrock at least 0.5 m at the base and at the southerly limit where it abuts the bedrock in the valley. The bedrock has an allowable bearing pressure of at least 480 kPa. It is

considered that this allowable bearing pressure would not be exceeded with the proposed increase in height of the dam.

The central berm located immediately north of the dam has an upstream slope of 1 to 1.5H to 1V and a downstream slope, which is steeper than the upstream slope. These slopes are currently unstable. It is recommended that rock fill should be used to stabilize the existing slope, raise the upstream height of the existing berm and construction of the new berm and that the finished slope should be at an inclination of 2H:1V. The advantage of using rock fill is that it would be stable at a steeper inclination compared to sand and gravel fill and its use would minimize siltation of the lake. The downstream slope of the berm may also be designed on an inclination of 2H:1V provided granular materials are used in the construction and the slope is covered with a 600 mm thick layer of 300 mm riprap as erosion protection.

The north and the south berms may also be constructed with slopes and materials similar to those recommended for the central berm. It is reported that a portion of the north concrete cut-off wall is founded in the overburden and not in the bedrock. The potential of seepage taking place beneath the concrete cut-off wall exists in this area with the increased height of the dam and the resultant increase in the hydrostatic pressure. It is recommended that the portion of the north cut-off wall, which is not founded in the bedrock, should be grouted to provide a positive cut-off between the underside of the concrete wall and the bedrock. The concrete cut-off wall for the south berm should be socketed at least 0.5 m into the bedrock at the base and at the two ends where it abuts the rock face in the valley.

The site was visually examined by a geotechnical engineer in an attempt to locate potential aggregate sources for construction of the berms. The visit revealed that the majority of the area comprises of bedrock outcrops and that potential aggregate borrow sources were not present in the vicinity of the dam. As such, it is likely that majority of the aggregate required for construction of the berms would have to be imported from the local gravel pit.

The above and other related considerations are discussed in greater detail in the body of the report.



# Table of Contents

| Exe | cutive Summary                  | - 1 |
|-----|---------------------------------|-----|
| 1.0 | Introduction                    | 1   |
| 2.0 | History and Background          | 2   |
|     | 2.1. Reservoir                  | 2   |
|     | 2.2. History                    | 2   |
|     | 2.3. Description of Structure   | 2   |
| 3.0 | Procedure                       | 4   |
|     | 3.1. Drilling and Soil Sampling | 4   |
| 4.0 | Site and Soil Description       | 5   |
| 5.0 | Proposed Dam Extension          | 7   |
|     | 5.1. Central Berm               | 8   |
|     | 5.2. North Berm                 | 9   |
|     | 5.3. South Berm                 | 9   |
| 6.0 | Granular Materials Search       | 10  |
| 7.0 | General Comments                | 11  |

#### Drawings

Drawing No. 1: Dam Components

Drawing No. 2: Site Plan

Drawing Nos. 3 to 8: Borehole Logs

Drawing Nos. 9 and 10: Grain Size Analysis

Drawing Nos. 11 and 12: Direct Shear Tests on Rock Joints

## 1.0 Introduction

Trow Associates Inc. was retained by the City of Iqaluit to undertake a geotechnical investigation at Lake Geraldine Water Reservoir located in the northwest part of the City of Iqaluit, Nunavut. This work was authorized by the City via letter dated September 29, 2004.

The City of Iqaluit derives its water supply from Lake Geraldine, which is retained by a cast-inplace concrete gravity dam incorporating a spillway section and a cast-in-place concrete cut-off wall and embankment. It is proposed to increase the height of water storage in Lake Geraldine by 2 m. This would necessitate increasing the height of the existing dam and its extension to the south, increasing the height of the existing concrete cut-off wall and berm located on the north side of the dam and their extension to the north, and construction of a new berm and concrete cut-off wall in one of the valleys located southeast of the existing dam.

The geotechnical investigation was undertaken to:

- (1) Establish the geotechnical conditions below the existing dam, north and south of the existing dam for proposed dam extension and construction of concrete cut-off walls and at three valleys along the shores of Lake Geraldine where new concrete cut-off walls and berms may be constructed.
- (2) Provide geotechnical parameters for the design of the dam including those required to undertake stability analysis.
- (3) Make recommendations regarding extension of the dam to the south.
- (4) Make recommendations regarding increasing the height of the concrete cut-off wall and berm located on the north side of the dam (i.e. central and north berms) including recommended slope inclinations.
- (5) Provide comments on the availability of aggregate sources in the area of the dam.
- (6) Recommend geotechnical parameters for the construction of a new concrete cut-off wall and earth berm in a valley located southeast of the existing dam.

The comments and recommendations given in this report are based on the assumption that the above-described design concept will proceed into construction. If changes are made either in the design phase or during construction, this office must be retained to review these modifications. The result of this review may be a modification of our recommendations or it may require additional field or laboratory work to check whether the changes are acceptable from a geotechnical viewpoint.



# 2.0 History and Background

#### 2.1. Reservoir

The City of Iqaluit derives its water supply from Lake Geraldine, which is retained by a structure consisting of a cast-in-place concrete gravity dam incorporating a spillway section and a cast-in-place concrete cut-off wall and embankment. All concrete structures are believed to be founded on rock, and engage rock at their abutments. The exception to this is a portion of the cut-off wall in the north berm where the rock is deep and this portion of the wall was founded in the overburden.

Lake Geraldine is a natural body of water in an irregularly shaped basin. It is fed by rainfall and snow/ice melt from a watershed with an area of approximately 385 hectares.

#### 2.2. History

The dam was originally designed and built by the Department of National Defence. According to the literature, the original construction took place circa 1958. Since that time, as the City has grown and water demands have risen, the dam has been raised three times to increase the storage capacity.

The first height increase of 0.3 m reportedly took place in 1979. This involved a concrete extension, which was dowelled into the existing structure.

The second construction took place in 1985, and increased the height of the spillway structure by approximately 1.15 m. The embankment portion was widened and heightened as well to accommodate the increased storage capacity. Again, the extension was constructed of concrete dowelled into the existing structure, and incorporated a steel formwork frame over the spillway section, which remains to this day.

The third extension was done in 1995, and increased the height of the gravity dam structure by a further 1.5 m of concrete, with a corresponding increase in berm geometry. Based on analysis done prior to the extension, it was determined that the gravity dam would not have an adequate factor of safety against overturning if the extension was simply "dowelled-in" as before. The 1995 alteration therefore included an extensive rock-anchoring program for the gravity dam portion to provide the required stability to the structure.

#### 2.3. Description of Structure

A plan showing the various features of the dam has been included as Drawing No. 1. The concrete gravity dam comprises of a concrete spillway and concrete sections on either side of the spillway (i.e. north dam and south dam). The concrete sections on either side of the spillway have an elevation of 110.28 m, with the crest of the 15.7 m wide spillway section being at elevation of approximately 109.33 m, which represents the normal operating level of the lake. At this level, the dam has approximately 0.95 m of freeboard. The south dam extends

approximately 32.7 m to the south rock abutment. The north dam extends 13.3 m north of the spillway section, where it joins an extended, narrow (~200 mm wide) concrete cut-off wall, which is supported on both sides by a sand, gravel and rock fill embankment (central berm and north berm). The embankment cut-off wall extends approximately 80 m to the north rock abutment. The concrete dam and the concrete cut-off wall are reportedly founded on bedrock except for a portion of the cut-off wall as noted previously, which is founded in the overburden. The top of the concrete cut-off wall is reportedly at Elevation 110.30 m with the top of the embankment being at Elevation 110.50 m. It is therefore our understanding that the elevation of the top of the concrete cut-off wall in the embankment portion of the dam is at least equal to the elevation of the top of the concrete gravity dam portion of the dam.



## 3.0 Procedure

#### 3.1. Drilling and Soil Sampling

The fieldwork for the geotechnical investigation was undertaken between October 13 and 21, 2004 with Hilti drill rig, winch and hammer. The fieldwork was supervised by a representative of Trow Associates Inc. (Trow) on a full time basis.

The fieldwork consisted of drilling 6 boreholes to depths varying between 3.2 m and 10.5 m. The locations of the boreholes are shown on Site Plan, Drawing 2.

Boreholes 1 to 3 inclusive advanced by casing and core drilling techniques. Boreholes 4 to 6 inclusive were initially advanced by performing continuous standard penetration tests and retrieving soil samples. However, the boreholes could only be advanced by this method in unfrozen soil to a depth of 1.0 m to 1.6 m below which frost was encountered. The boreholes were then cased and advanced by core drilling techniques with the Hilti drill rig using a Bx size core barrel. Water was used as the flushing medium.

Water level observations were made in the boreholes during the course of the fieldwork. Standpipes were installed in all the boreholes to establish the groundwater table at the site. All the soil samples were visually examined in the field for textural classification, preserved in plastic bags and identified. The bedrock core was also logged, placed in core boxes and identified. The boreholes were logged. On completion of drilling, all the soil samples and rock core were transported to the Trow laboratory in the City of Ottawa.

The locations and elevations of the boreholes were established by Trow Associates Inc. The elevations of the borehole refer to the Geodetic datum.

All the soil samples were visually examined in the laboratory by a geotechnical engineer and borehole logs prepared. The engineer also assigned the laboratory testing. The laboratory testing consisted of performing grain size analysis on selected soil samples. In addition, direct shear tests were performed on selected rock core samples to establish the peak angle of friction and residual angle of friction due to sliding along bedrock joints. Unconfined compressive strength tests were also performed on bedrock core from selected depths.



# 4.0 Site and Soil Description

Lake Geraldine is located in the northwest portion of Iqaluit, Nunavut. The ground surface elevation on the north and south side of the valley in which the dam is located is at Elevation 117.8 m to 117.9 m approximately. The bottom of the valley is at Elevation 102 m approximately. The sides of the valley comprise of bedrock. Bedrock is also present at a shallow depth in the bottom of the valley.

A detailed description of the geotechnical conditions encountered in the six boreholes drilled at the site is given on Drawings 3 to 8 inclusive. The borehole logs and related information depict subsurface conditions only at the specific locations and times indicated. Subsurface conditions and water levels at other locations may differ from conditions at the locations where sampling was conducted. The passage of time also may result in changes in the conditions interpreted to exist at the locations where sampling was conducted. Boreholes were drilled to provide representation of subsurface conditions as part of a geotechnical exploration program and are not intended to provide evidence of potential environmental conditions.

Boreholes 1 to 3 inclusive were drilled at the dam location and indicate that approximately 0.3 m to 0.9 m of fill is present in Boreholes 1 and 2 respectively (Elevation 101.1 m to 108.9 m).

In the three boreholes (Boreholes 4, 5 and 6) drilled in the valleys where a cut-off wall may be required, the surficial soil is silty sand which extends to a depth of 1.6 m to 1.9 m (Elevation 108.1 to 108.4). A grain size analysis performed on this stratum indicates that it contains 27 percent clay and silt, 55 percent sand and 18 percent gravel (Drawing 9).

The silty sand stratum in Borcholes 4 and 6 is underlain by a silty sand and gravel layer, which extends to 2.4 m to 2.8 m depth (Elevation 107.2 to 107.6 m). A grain size analysis performed on this stratum yielded a soil composition of 22 percent clay and silt, 43 percent sand and 35 percent gravel (Drawing 10).

The silty sand and gravel layer in Borehole 4 is underlain by sand and gravel till which extends to 3.8 m depth (Elevation 106.0 m).

Below the existing ground surface in Borehole 3, the fill in Boreholes 1 and 2, the till in Borehole 4, silty sand in Borehole 5 and silty sand and gravel in Borehole 6, gneiss bedrock was encountered. The boreholes were terminated in the bedrock at a depth of 3.2 m to 10.5 m. The gneiss bedrock is fine to coarse grained massive to foliated and contains some near vertical and inclined fractures. It is porphyritic to mica rich. It is grey to pink in colour. A Total Core Recovery and Rock Quality Designation of 37 to 100 percent and 0 to 100 percent respectively was encountered in these boreholes. On this basis, the bedrock quality may be defined as very poor to excellent. It is noted that weathered rock zones were encountered at various depths in the two boreholes drilled downstream of the dam (Boreholes 2 and 3).

The unconfined compressive strength of the bedrock was established on rock cores obtained from various depths. The test results are given on Table I. A review of Table I indicates that the unconfined compressive strength of the relatively south bedrock varies from 130 to 222 MPa.



One of the tests performed on relatively weathered bedrock yielded a compressive strength value of 78 MPa. An unconfined compressive strength of 26 MPa was established on one rock core sample where failure occurred along joint in the bedrock.

Table I Unconfined Compressive Strength of Bedrock

| Borehole<br># | Depth (m) | h (m) Unconfined Compressive Remarks<br>Strength (MPa) |                                 |  |  |  |  |
|---------------|-----------|--------------------------------------------------------|---------------------------------|--|--|--|--|
| 2             | 2.1       | 222                                                    | Intact relatively sound bedrock |  |  |  |  |
|               | 3.1       | 130                                                    | Intact relatively sound bedrock |  |  |  |  |
|               | 6.2       | 148                                                    | Intact relatively sound bedrock |  |  |  |  |
|               | 7.2       | 151                                                    | Intact relatively sound bedrock |  |  |  |  |
| 3             | 0.5       | 139                                                    | Intact relatively sound bedrock |  |  |  |  |
|               | 2.8       | 141                                                    | Intact relatively sound bedrock |  |  |  |  |
|               | 5.8       | 26                                                     | Failure along a joint           |  |  |  |  |
|               | 8.1       | 78                                                     | Weathered bedrock               |  |  |  |  |

Two direct shear tests were performed on joints in the bedrock cores from Borehole 2 to establish the peak angle of friction and the residual angle of friction of the bedrock due to sliding along the joints. The test results are given on Drawings 11 and 12 inclusive. A review of these drawings indicates that the gneiss bedrock has a peak angle of friction of 27 to 34 degrees and a residual angle of friction of 23 to 32 degrees for sliding along joints in the bedrock.

The peak angle of internal friction of the bedrock was estimated to be 40 degrees based on literature search.

Water level readings were recorded at a depth of 0 m to 1.6 m below the existing ground surface i.e. Elevation 101.6 m to 110.1 m. Close to the shores of Lake Geraldine, the groundwater was recorded at Elevation 109.5 m to Elevation 110.3 m. It was recorded at Elevation 101.8 m and Elevation 102.7 m in the two boreholes drilled downstream of the dam. It is possible that the groundwater table may not have stabilized in some of the boreholes during the relatively short time interval over which the readings were taken.



# 5.0 Proposed Dam Extension

The proposed dam extension would involve increasing the height of the concrete gravity dam and extending the dam to the south to abut the rock slope.

Increasing the height of the dam would result in an increase in the weight of the structure. However, the dam is understood to be founded on bedrock. The bedrock has an allowable bearing pressure in excess of 480 kPa. It is considered that this allowable bearing pressure would not be exceeded with the proposed addition. Extension of the dam structure on the south side would also be founded on bedrock as the bedrock is present at the existing ground surface in this area. The bedrock is considered capable of adequately supporting the proposed structure.

It is recommended that the south end of the dam structure should be keyed a distance of 0.5 m into the bedrock where it abuts the bedrock in the valley to prevent leakage at the interface of the concrete structure and the bedrock.

The peak angle of internal friction of the bedrock was estimated to be 40 degrees. Laboratory testing performed indicated that the bedrock has a peak angle of friction of 27 degrees to 34 and a residual angle of friction ( $\mathcal{O}_r$ ) of 23 degrees to 32 due to sliding along joints or fissures in the bedrock. Based on this information, it is considered that the coefficient of friction between the bedrock and concrete may be taken as 0.80. A residual angle of friction of 23 degrees is recommended when checking the stability of the dam against sliding along joints or fissures in the bedrock.

It is noted that the bedrock at the site is jointed and fissured. Examination of the rock core revealed various joints in the bedrock that are inclined at an angle of 50 to 70 degrees. The dip of the joints could not be established from the cores. A review of the geological maps indicates that the joints in the bedrock in the vicinity of the dam dip towards the east at an inclination of 46 to 48 degrees. The dip and strike of the joints in the bedrock in the vicinity of the dam was established by a local geologist. A complete examination was not possible due to the snow cover. Information obtained from the field tends to confirm that the joints in the bedrock at the site are also inclined at an inclination of 40 to 60 degrees to the cast. On this basis, it would appear that the joints are inclined in a direction, which would not adversely affect the stability of the dam. However, it is recommended that a more detailed geological mapping of the site should be undertaken during spring or early summer of next year after the snow melt to confirm the preliminary information obtained.

It is understood that the weight of the dam was not sufficient to resist overturning moments and as a result rock anchors were used to provide lateral stability to the structure. They were designed for an allowable load of 630 kN. With the proposed increase in height of the structure, it is anticipated that additional rock anchors would be required.

The following criteria is recommended for the design of new rock anchors:

(1) The maximum working load in the rock anchors should be limited to 60 percent of the yield or 60 percent of the ultimate capacity of the anchor. Yield capacity should be used for anchors with steel grade not exceeding the ultimate stress of 825 MPa, and the ultimate capacity should be used for high strength steel anchors with steel grade exceeding the ultimate stress of 825 MPa.

- (2) The embedment of the anchors should be designed using the submerged weight of a cone of rock under the dam. The submerged weight of the cone of rock should not be less than the ultimate capacity of the anchor. The cone of rock should be assumed to have an apex angle of 90 degrees, and the apex of the cone should be assumed at the midpoint of the fixed anchor length (or bonded length) of the anchor. Where the embedment cones of adjacent anchors overlap, the combined embedment cones for a group of anchors should be used.
- (3) The maximum test load should be 80 percent of the ultimate capacity for anchors with steel grade exceeding the ultimate stress of 825 MPa and 90 percent of the yield capacity for anchors of steel grade not exceeding the ultimate stress of 825 MPa.
- (4) The maximum allowable bond stress at the interface of the anchor grout and the rock should be 1.0 MPa.
- (5) Neither the spacing nor stagger between anchors should be less than 0.5 times the fixed anchor length. If the spacing of less than 0.5 times the fixed anchor length is unavoidable, the fixed anchor length should be increased in proportion to the ratio of 0.5 times the fixed anchor length to the spacing or stagger of the anchors.

It is noted that the bedrock contains weathered zones at various depths. It is therefore possible that grouting of the bedrock may be required prior to installation of the rock anchors. It is noted that grouting of the bedrock was undertaken in some of the anchor holes prior to installation of the anchor during the last extension of the dam.

#### 5.1. Central Berm

The central berm is located immediately north of the concrete gravity dam structure and is approximately 60 m long. The design crest width of the berm is 4 m and crest elevation is at Elevation 110.5 m. The berm has been designed with an upstream side slope of 1 to 1.5 Horizontal to 1 Vertical and a downstream slope of 2H:1V. A 200 mm thick reinforced concrete cut-off wall is located in the berm and has been founded on bedrock. The exception to this is a section of the wall, which is reported to have been founded in the overburden. The berm has been built with sand and gravel fill. A 600 mm thick layer of 100 mm to 200 mm riprap has been provided on the upstream face of the berm as erosion protection.

A review of the dam safety report indicates that the upstream slope immediately north of the dam is at an inclination of 1:25H:1V. It is reported that approximately 20 m length of the upstream slope just north of the concrete gravity dam terminus, extending approximately 1 m to 1.5 m into the crest has slumped by approximately 100 mm. This has been attributed to the overly steep slope in this area.



In order to raise the height of the dam, the existing concrete cut-off wall and the berm will be raised. It is recommended that the upstream slope of the berm should be raised with rock fill which should be placed at an inclination of 2H:1V from the toe of the existing slope. The rock fill berm placed at this inclination would result in a stable upstream slope. Rock fill is recommended for construction of the upstream slope as it would be stable at a steeper angle compared to the sand and gravel fill. In addition, the use of rock fill on the upstream side of the berm would result in less silting of the reservoir compared to the use of sand and gravel fill. The downstream slope of the berm may also be designed at an inclination of 2H:1V assuming that it would be built with sand and gravel fill. This slope should be protected from erosion by providing a layer of riprap at least 600 mm thick.

#### 5.2. North Berm

The north berm is to be extended in the northerly direction so as to abut the bedrock surface in the valley. It is recommended that the upstream slope of the north berm should also be constructed with a slope of 2H:1V using rock fill to prevent siltation of the water reservoir. The downstream slope may be constructed with sand and gravel fill placed at an inclination of 2H:1V provided that a layer of riprap at least 0.6 m thick is provided one the surface of the slope to control erosion.

The concrete cut-off wall should be socketed at least 0.5 m into the bedrock at the base as well as where it abuts the wall of the valley.

It is noted that a portion of the concrete cut-off wall is founded in the sand and gravel overburden. Consequently, the potential for scepage to take place beneath the concrete cut-off wall exists in this area. It is reported that periodic examination of the area to date has not revealed any signs of under seepage. However, the proposed increase in the height of water to be retained would result in increased seepage forces. It is therefore recommended that the portion of the concrete cut-off wall that is not founded on the bedrock should be grouted to achieve an effective cut-off. The grouting should extend from the founding level of the concrete cut-off wall to the underlying bedrock to provide a positive cut-off.

#### 5.3. South Berm

Because of the increase in water level in the reservoir it would be necessary to construct a concrete cut-off wall and berm across the valley in the vicinity of Borehole 4. This borehole has revealed that the overburden in this area comprises of silty sand and sand and gravel underlain by silty sand till. The berm may be constructed with upstream slope of 2H:1V if rock fill is used to construct the berm. The downstream slope of the berm may also be constructed at a slope of 2H:1V with sand and gravel fill provided 600 mm thick layer of riprap is provided as protection against erosion.

The concrete cut-off wall should be socketed at least 0.5 m into the bedrock to prevent seepage at the bedrock/concrete interface. The wall should also be socketed at least 0.5 m into the bedrock at the two ends where it abuts the bedrock face in the valley.



## 6.0 Granular Materials Search

As part of the geotechnical investigation, an attempt was made to usually locate any potential sources of granular material present in the vicinity of the site. For this purpose, the site was visited by a geotechnical engineer. Visual examination of the area revealed that the majority of the area comprises of bedrock outcrop with minimal overburden deposit. The areas where limited overburden was encountered is in the existing valleys adjacent to the reservoir. However, removal of the overburden material from the valleys is not recommended since this may result in an increase in seepage of water out of the reservoir.

Information received locally indicates that the granular materials used for the last extension of the dam were imported from the local gravel pit. It is anticipated that the material required for construction of the new berms would also have to be imported from the local gravel pit.



## 7.0 General Comments

The comments given in this report are intended only for the guidance of design engineers. The number of boreholes required to determine the localized underground conditions between boreholes affecting construction costs, techniques, sequencing, equipment, scheduling, etc., would be much greater than has been carried out for the design purposes. Contractors bidding on or undertaking the works should, in this light, decide on their own investigations, as well as their own interpretations of the factual borehole results, so that they may draw their own conclusions as to how the subsurface conditions may affect them.

The information contained in this report is not intended to reflect on environmental aspects of the soils. Should specific information be required, including for example, the presence of pollutants, contaminants or other hazards in the soil, additional testing may be required.

We trust this report is satisfactory for your purposes. If you have any questions regarding our submission, please do not hesitate to contact this office.

Trow Associates Inc

Surinder K. Aggarwal, M.Sc., P.Eng. Principal Geotechnical Engineer

MATINA

Assistant Branch Manager

Ismail M. Taki, M.Eng.

Smill

Manager

Geotechnical & Materials Engineering Services



Drawings