

ATTACHMENT 14

LTWP Preliminary Design Report – Appendix E – Pump Calculations

City of Iqaluit - Raw Water Pumping Station
1.0 Design Criteria

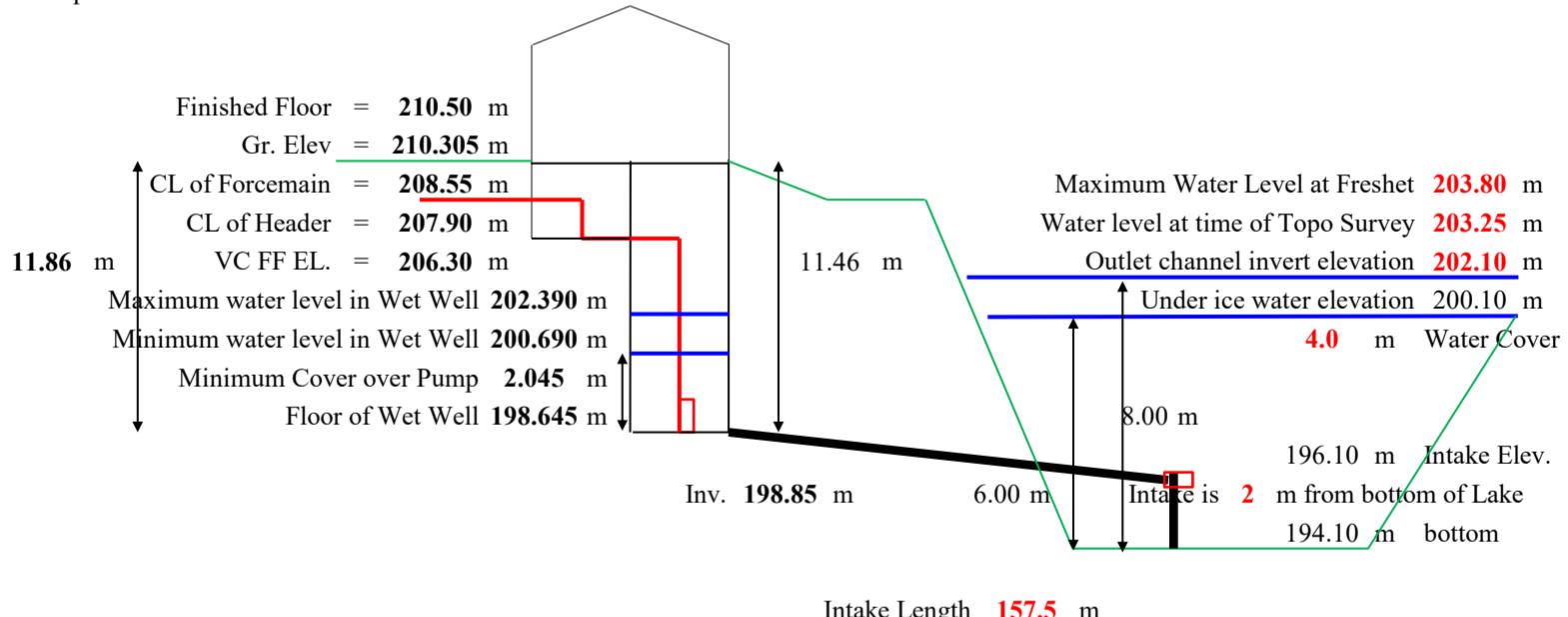
To meet the projected population growth to year 2050 it is anticipated that an additional **1,824,500 m³** of raw water is required. (RFP, page 8 of 66)

Water is expected to be continuously pumped during the unnamed Lake Open-Water season.

To satisfy the raw water pipeline hydraulic requirements set the pumping capacity = **556.0 L/s** = 8813.00 GPM

If pumps run for 30 days in June the volume of water taking = 30 days x 86,400 seconds/day = 2,592,000 seconds

At a pump rate of 556 L/s the volume of water that can be pumped in 30 days = 1,441,152 m³


The remaining volume of water required = 1,824,500 m³ - 1,441,152 m³ = 383,348 m³

Using one pump at **278.00 L/s** the remaining volume will be provided in 16.0 days

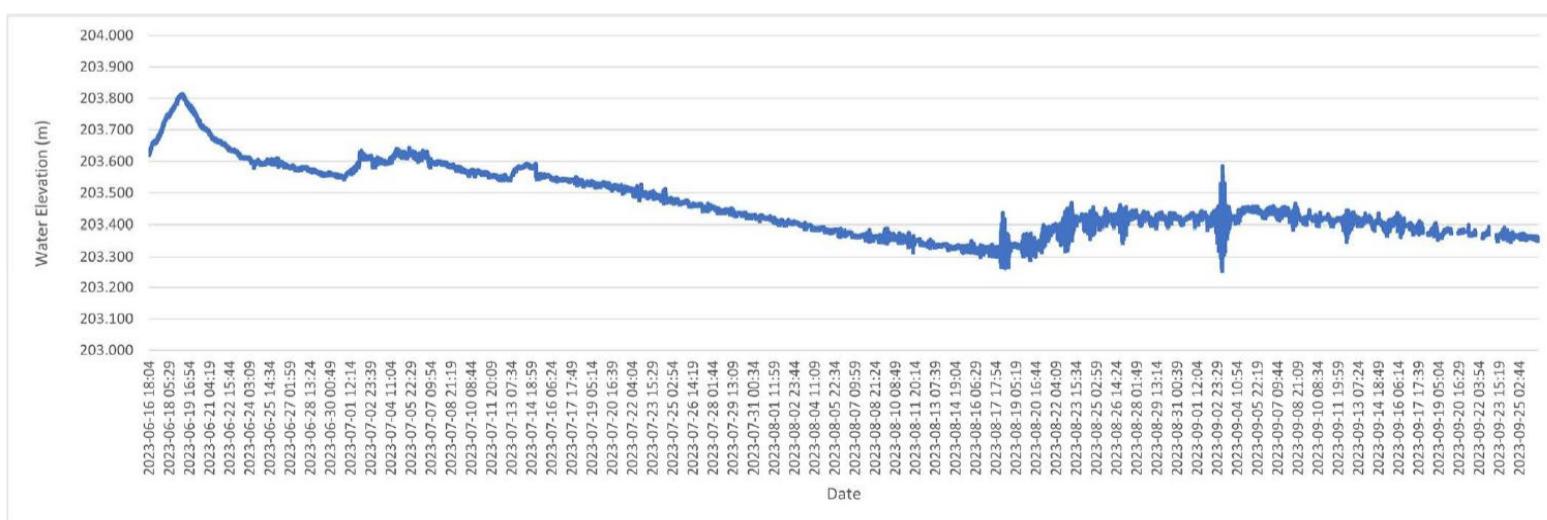
Using two pumps at 556.00 L/s the remaining volume will be provided in 8.0 days

With 2 Duty Pumps & 1 Standby Pump each rated at 278.0 L/s **@ 16.70 m TDH**
@ 23.75 psi TDH
@ 163.7 kPa TDH

Maximum Ice depth in Lake Geraldine is = **2.00 m**

**Comparative Evaluation of Sylvia
Grinnell River and Unnamed Lake
as Long-Term Water Supply for
City of Iqaluit**

Final


December 6, 2022

The UNL water balance study (Golder 2021) assumed that UNL's outlet channel invert elevation is at 202.1 m. Stage-storage curves for each of UNL's three sub-basins were provided in that study and suggest that there is a total volume of 5,534,000 m³ in UNL during open water, and at the point where no outflow occurs

**Unnamed Lake Water Balance for Withdrawals
Interim Report**

DECEMBER 11, 2023
ISSUED FOR REVIEW
FILE: 704-ENG.WTRI03087-01

Figure 5-10: OTTLK Water Elevations (Unnamed Lake Water Levels)

2.0 Intake

Excerpt from "Long Term Water - Water Balance Assessment for Unnamed Lake – Modelling Report (Golder 2021)"

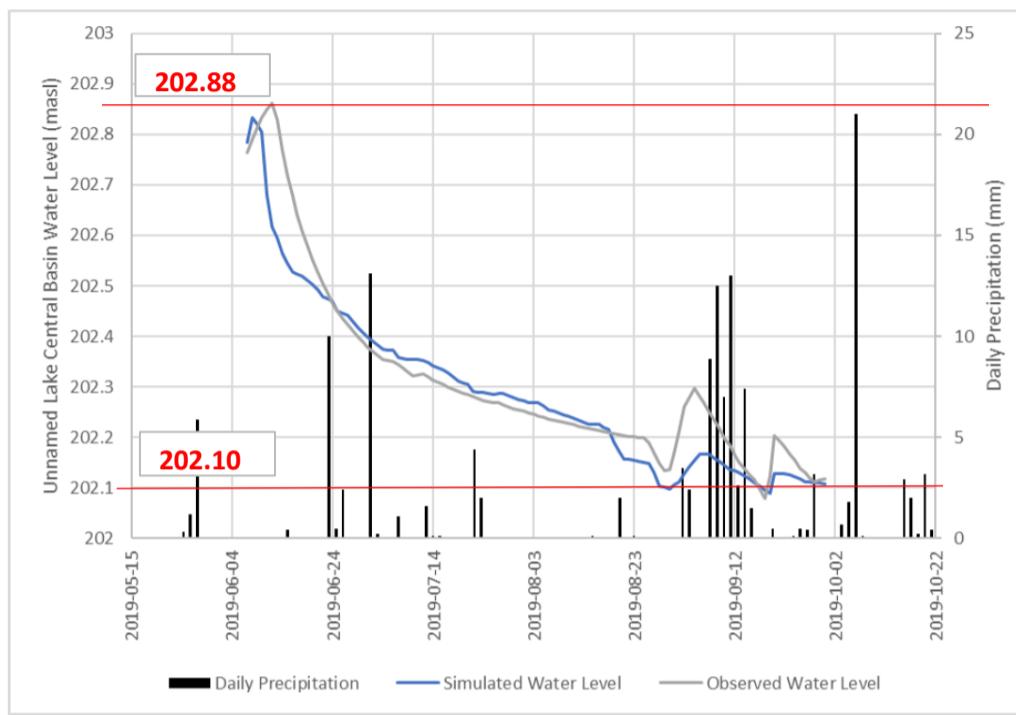
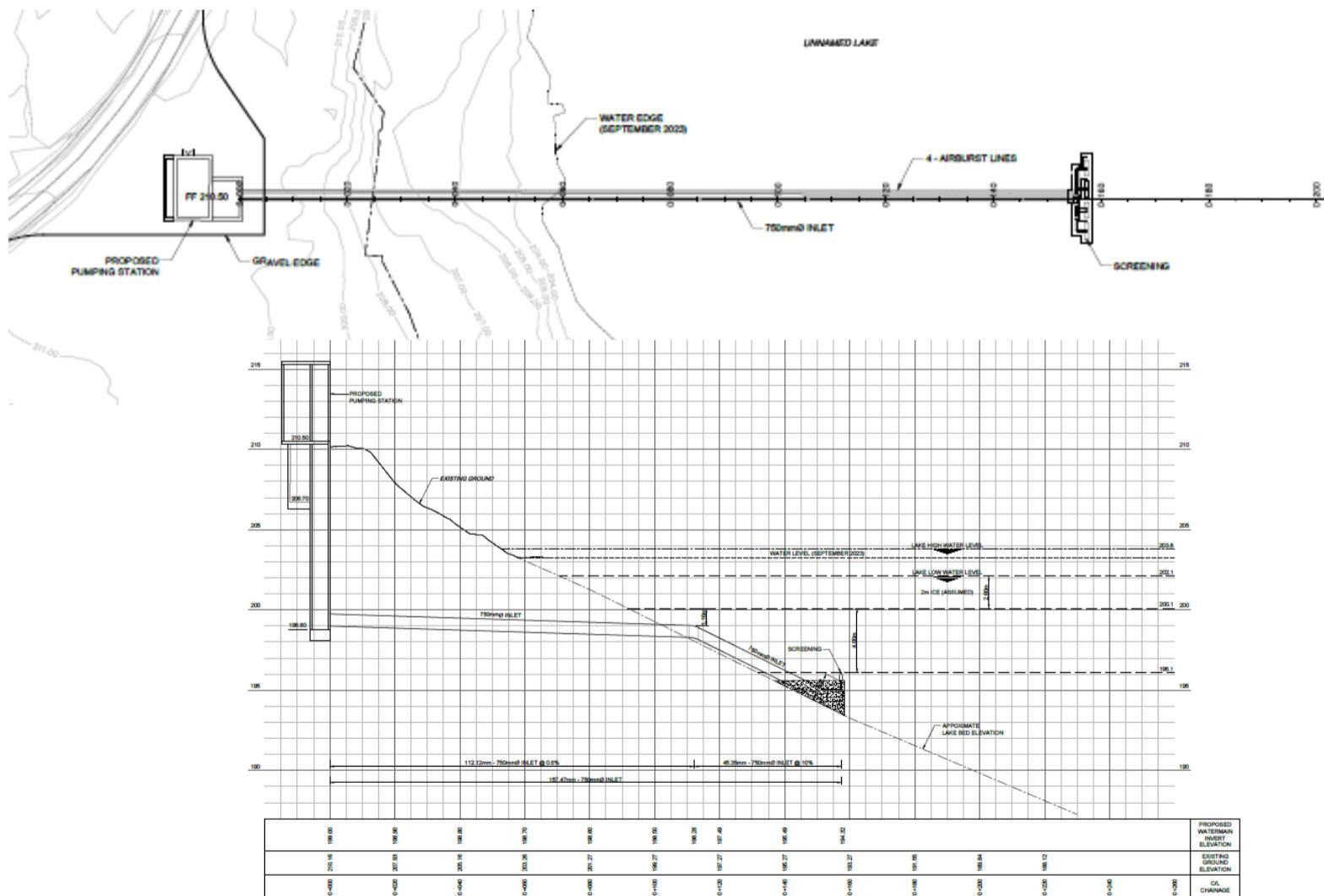



Figure 8: Comparison of Simulated Water Levels Versus Measured Following 2019 Spring Freshet

Intake Sizing
Ultimate Design $Q = 556.0 \text{ L/s}$
Estimate Required Diameter of the Intake Piping.

Set outlet piping velocities between **0.80** and **2.50** m/s

Set velocity at **1.00** m/s $A = Q/V$ $A = 0.5560 \text{ m}^2$ $A = \frac{\pi D^2}{4.00}$ $D = 0.84 \text{ m}$

Use - 750 mm (30 in.) diameter HDPE DR 11

Pipe ID = **24.218** in. **615.1** mm

Actual Velocity = $Q/A = 1.90 \text{ m/s} = 6.23 \text{ ft/s}$ **OK**

Minimum flow (scouring velocity) = **1.00** m/s = **3.28** ft/s

Minimum scouring flow for each pipe $Q_p = V \times A = 1.00 \text{ m/s} \times 0.2972 \text{ m}^2 = 0.2972 \text{ m}^3/\text{s} = 297.2 \text{ L/s}$
2.01 Losses in Intake Line from the Unnamed Lake
Losses in the Intake Structure

Pressure Drop Thru Assembly: <12" of water (from Hendrick Screen Company quote dated November 13, 2023)

Assume pressure drop of **12** in. = **310.00** mm = **0.310** m

Losses from Intake to Wet Well

Inside Dia. of pipe = **0.6151** m

Minor losses in piping :

$h_m = k * (v^2 / 2g)$

$k = 1.30$

$v = 1.87 \text{ m/s}$

$g = 9.81 \text{ m}^2/\text{s}$

$h_m = 0.240 \text{ m}$

$h_t = \text{Minor losses} + \text{Friction losses}$

$h_t = 1.100 \text{ m} = 1.564 \text{ psi} = 3.609 \text{ feet}$

$\text{Total Intake Losses} = 1.410 \text{ m}$

$\begin{aligned} \text{Minimum water level in the Wet Well} &= \text{Low Lake Level} - \text{Losses in the Intake and Pipe} \\ &= 202.10 \text{ m} - 1.41 \text{ m} \\ &= 200.69 \text{ m} \end{aligned}$

$\begin{aligned} \text{Maximum water level in the Wet Well} &= \text{High Lake Level} - \text{Losses in the Intake and Pipe} \\ &= 203.80 \text{ m} - 1.41 \text{ m} \\ &= 202.39 \text{ m} \end{aligned}$

Flow in pipe = **0.5560** m³/s

Friction losses in piping:

$hf = (0.54rt(Q/(0.278*C*D^{2.63}))*L)$

$L = 157.5 \text{ m}$

$D = 0.6151 \text{ m}$

$Q = 0.556 \text{ m}^3/\text{s}$

$C = 120$

$h_f = 0.860 \text{ m}$

Minor Losses - 'k' values			
	k	#	T
Swing Check	2.50	0	0.00
Gate Valve	0.19	0	0.00
Plug Valve	0.77	0	0.00
11.25 deg. Bend	0.15	0	0.00
22.5 deg. Bend	0.15	0	0.00
45 deg. Bend	0.20	0	0.00
90 deg. Bend	0.30	1	0.30
Wye	1.00	0	0.00
90 deg - Tee	1.80	0	0.00
180 deg - Tee	0.60	0	0.00
Reducer / Increase	0.25	0	0.00
Bell Mouth Inlet	0.04	0	0.00
Exit	1.00	1	1.00
Total			1.30

2.02 Intake Screen

Artic Char have a subcarangiform swimming mode. (Reference DFO "Freshwater intake End-of-Pipe Fish Screen Guideline, 1995)

Screen approach velocity of approximately **0.11** m/s = 0.361 fps is required for the subcarangiform fish

$$\begin{aligned} \text{Open Screen Area} &= \text{Flow} / \text{Approach Velocity} \\ &= 0.5560 \text{ m}^3/\text{s} / 0.11 \text{ m/s} \\ &= 5.050 \text{ m}^2 \end{aligned}$$

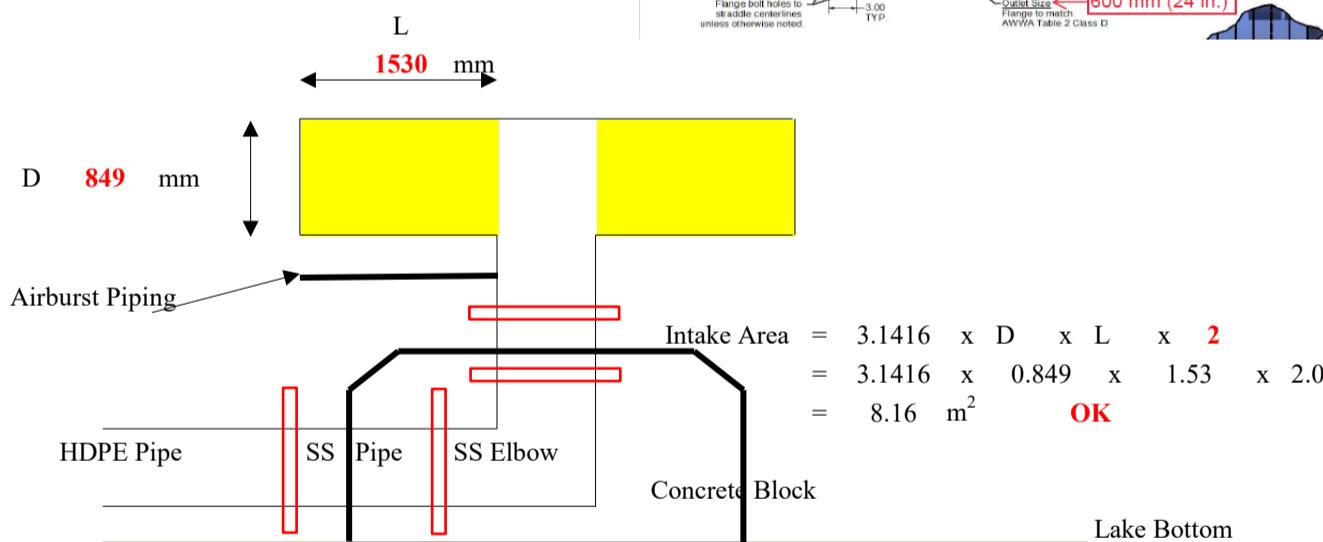
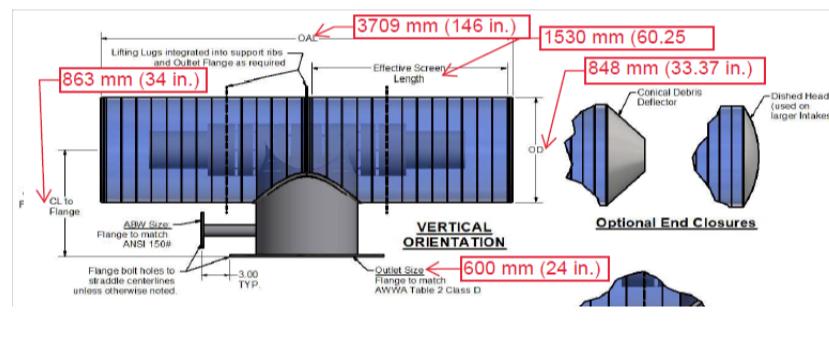


Freshwater Intake End-of-Pipe Fish Screen Guideline

Table 3 Examples of Screen Material

Material	Wire Thickness	Opening Width	% Open Area
8 x 8 Stainless Steel Alloy Mesh	0.711 mm (0.028")	2.44 mm (0.096")	60
#7 Mesh Wire Cloth	1.025 mm (0.041")	2.54 mm (0.100")	51
#8 Mesh Wire Cloth	0.875 mm (0.035")	2.25 mm (0.089")	52
#8 Mesh Wire Cloth	0.700 mm (0.028")	2.54 mm (0.100")	62
#60 Wedge Wire Screen	1.50 mm (0.059")	2.54 mm (0.100")	63
#45 Wedge Wire Screen	1.10 mm (0.080")	2.54 mm (0.100")	69

$$\begin{aligned} \text{Effective Screen Area} &= \frac{\text{Open Screen Area}}{\% \text{ Open Area}/100} \\ &= \frac{5.05 \text{ m}^2}{0.63} = 8.02 \text{ m}^2 \end{aligned}$$

The % Open Area of a #60 Wedge Wire Screen = 63%

3.0 Pumping Station Design

3.01 Pump Discharge Piping

Ultimate Design $Q = 278.0 \text{ L/s}$

Estimate Required Diameter of the Discharge Piping.

Set outlet piping velocities between **0.80** and **2.50** m/s
Set velocity at **1.65** m/s $A = Q/V$ $A = 0.17 \text{ m}^2$ $A = \frac{\pi D^2}{4.00}$ $D = 0.46 \text{ m}$

Use - **450** mm (18 in.) diameter **304L Stainless STD**

Pipe ID = **17.250** in. **438.2** mm

Actual Velocity = $Q/A = 1.84 \text{ m/s}$ **OK**

Minimum flow (scouring velocity) = **0.80** m/s = **2.62** ft/s

Minimum scouring flow for each pipe $Q_p = V \times A = 0.80 \text{ m/s} \times 0.15 \text{ m}^2 = 0.12 \text{ m}^3/\text{s} = 120.65 \text{ L/s}$

3.02 Pump Header Piping 1 Pump Running

Ultimate Design $Q = 278.0 \text{ L/s}$

Estimate Required Diameter of the Discharge Piping.

Set outlet piping velocities between **0.80** and **4.00** m/s
Set velocity at **2.40** m/s $A = Q/V$ $A = 0.12 \text{ m}^2$ $A = \frac{\pi D^2}{4.00}$ $D = 0.38 \text{ m}$

Use - **450** mm (18 in.) diameter **304L Stainless STD**

Pipe ID = **17.250** in. **438.2** mm

Actual Velocity = $Q/A = 1.84 \text{ m/s}$ **OK**

Minimum flow (scouring velocity) = **0.80** m/s = **2.62** ft/s

Minimum scouring flow for each pipe $Q_p = V \times A = 0.80 \text{ m/s} \times 0.15 \text{ m}^2 = 0.12 \text{ m}^3/\text{s} = 120.65 \text{ L/s}$

3.03 Pump Header Piping 1 Pumps Running

Ultimate Design $Q = 278.0 \text{ L/s}$

Estimate Required Diameter of the Discharge Piping.

Set outlet piping velocities between **0.80** and **4.00** m/s
Set velocity at **2.40** m/s $A = Q/V$ $A = 0.12 \text{ m}^2$ $A = \frac{\pi D^2}{4.00}$ $D = 0.38 \text{ m}$

Use - **600** mm (24 in.) diameter **304L Stainless STD**

Pipe ID = **23.250** in. **590.6** mm

Actual Velocity = $Q/A = 1.01 \text{ m/s}$ **OK**

Minimum flow (scouring velocity) = **0.80** m/s = **2.62** ft/s

Minimum scouring flow for each pipe $Q_p = V \times A = 0.80 \text{ m/s} \times 0.27 \text{ m}^2 = 0.22 \text{ m}^3/\text{s} = 219.16 \text{ L/s}$

3.04 Pump Header Piping 2 Pumps Running

Ultimate Design $Q = 556.0 \text{ L/s}$

Estimate Required Diameter of the Discharge Piping.

Set outlet piping velocities between **0.80** and **4.00** m/s
Set velocity at **2.40** m/s $A = Q/V$ $A = 0.23 \text{ m}^2$ $A = \frac{\pi D^2}{4.00}$ $D = 0.54 \text{ m}$

Use - **600** mm (24 in.) diameter **304L Stainless STD**

Pipe ID = **23.250** in. **590.6** mm

Actual Velocity = $Q/A = 2.03 \text{ m/s}$ **OK**

Minimum flow (scouring velocity) = **0.80** m/s = **2.62** ft/s

Minimum scouring flow for each pipe $Q_p = V \times A = 0.80 \text{ m/s} \times 0.27 \text{ m}^2 = 0.22 \text{ m}^3/\text{s} = 219.16 \text{ L/s}$

3.05 Forcemain Sizing

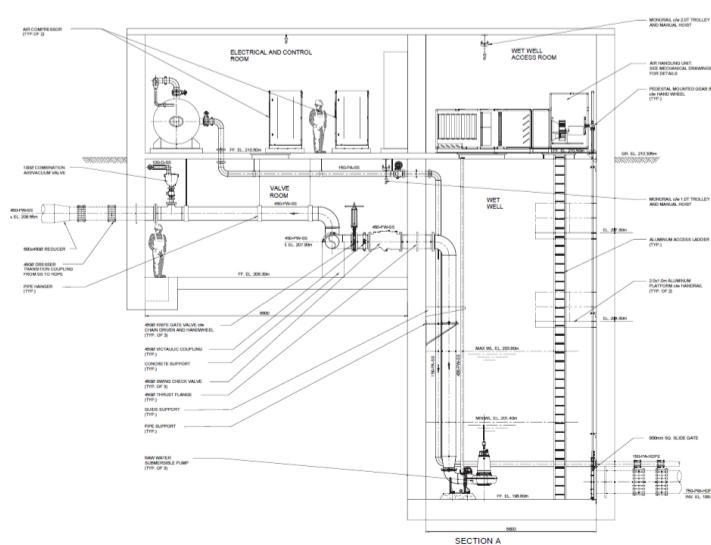
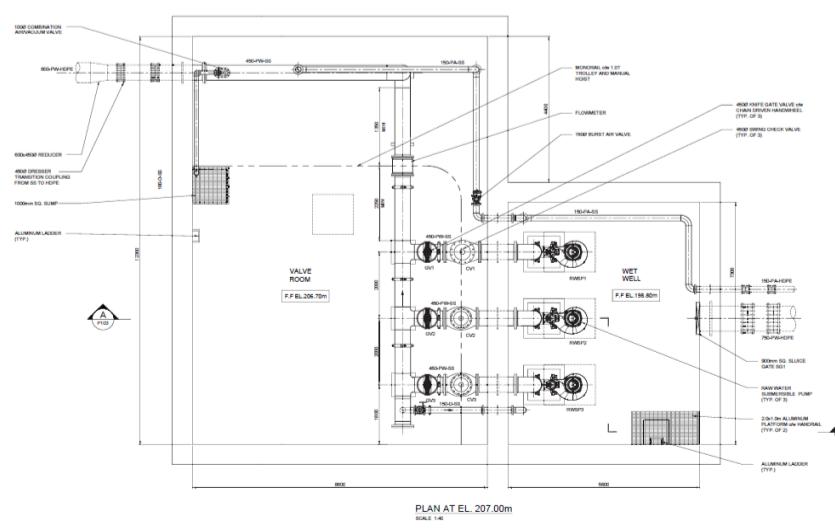
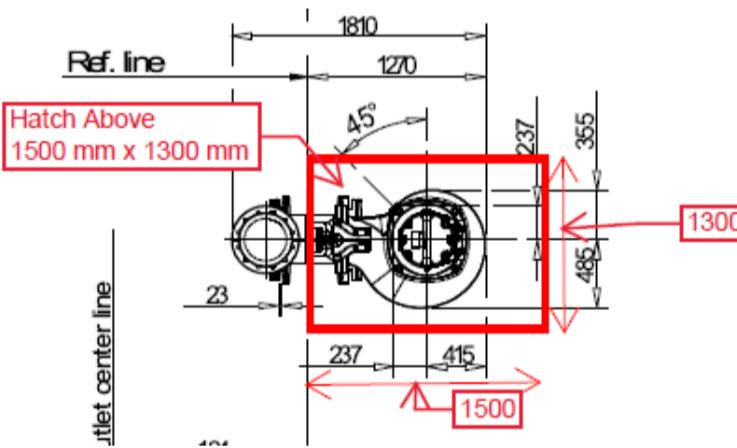
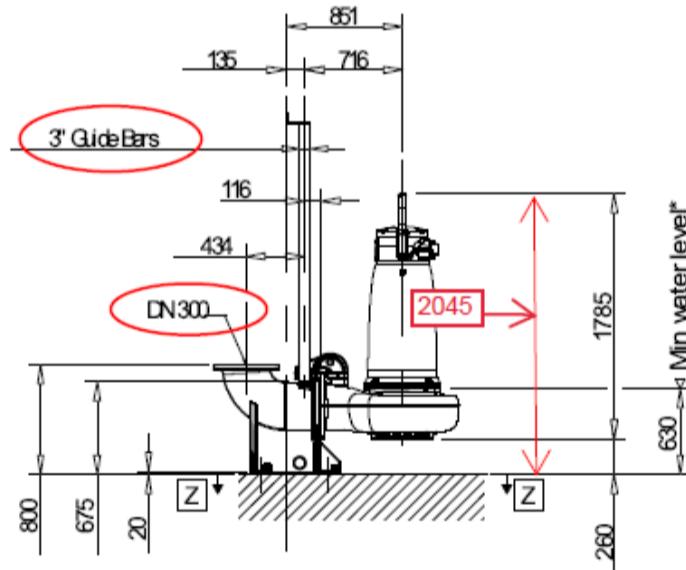
$$\textbf{\textit{Ultimate Design}} \quad \quad \quad \mathbf{Q} = \mathbf{556.0 \text{ L/s}}$$

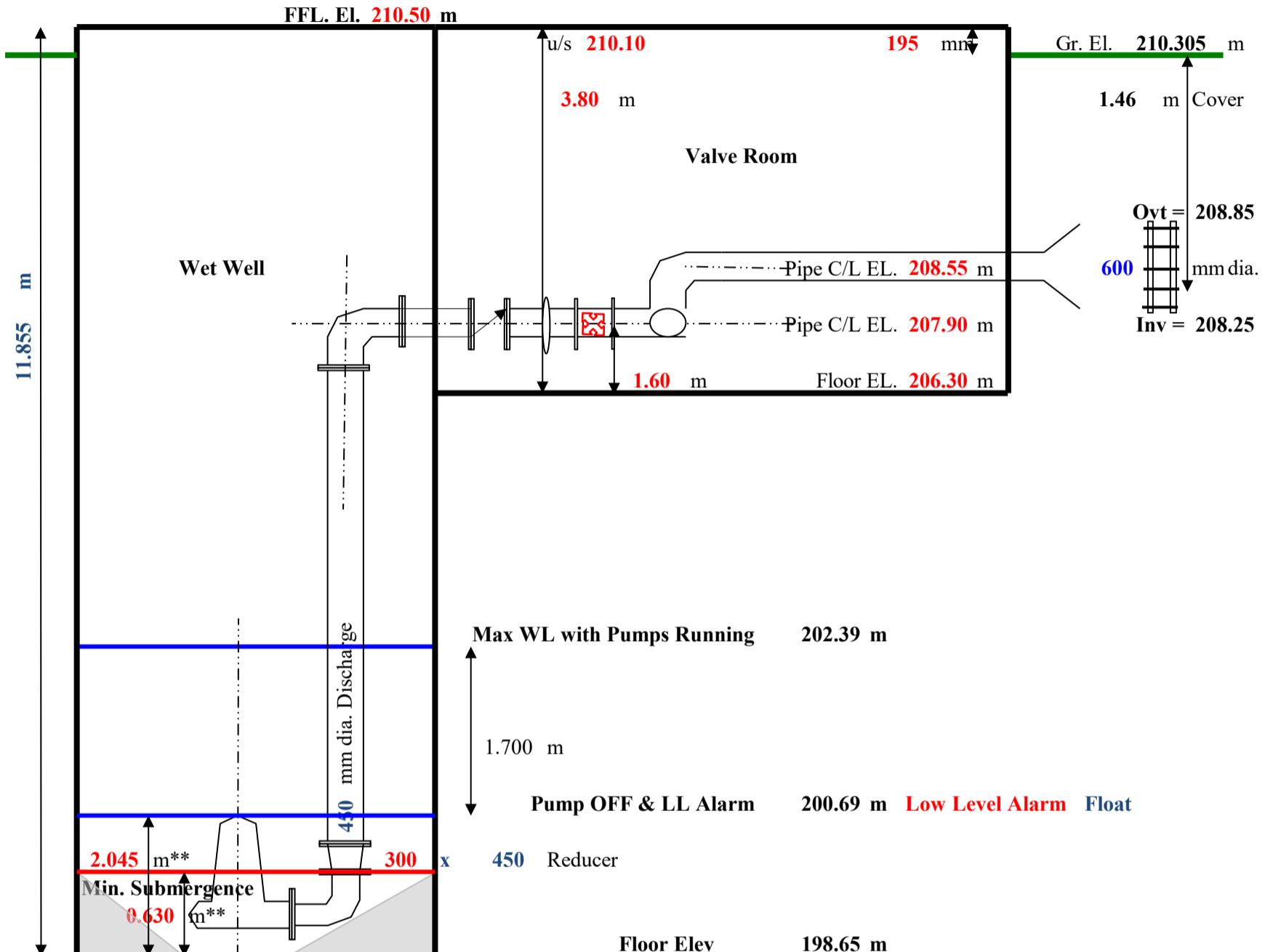
Estimate Required Diameter of the Force main Piping.

Set outlet piping velocities between **0.80** and **3.00** m/s

Set velocity at **1.90** m/s A = Q/V

$$A = Q/V \quad A = 0.2926 \text{ m}^2$$





$$A = \frac{\pi * D^2}{4.00}$$


Use	-	600	mm	(24 in.)	diameter	HDPE DR 11
Presure Rating	=	160.0	psi	1103.2	kPa	112.5 m
Pipe OD	=	24.00	in.	609.6	mm	
Pipe Thickness	=	1.778	in.	45.20	mm	
Pipe ID	=	19.375	in.	492.10	mm	
Operating pressure + surge pressure rating	=	320.00	psi			225.0 m

$$\begin{aligned}
 \text{Actual Velocity} &= Q/A = 2.92 \text{ m/s} & \text{OK} \\
 \text{Minimum flow (scouring velocity)} &= 1.00 \text{ m/s} = 3.28 \text{ ft/s} \\
 \text{Minimum scouring flow for each pipe } Q_p &= V \times A = 1.00 \text{ m/s} \times 0.1902 \text{ m}^2 = 0.1902 \text{ m}^3/\text{s} = 190.2 \text{ L/s}
 \end{aligned}$$

4.0 Pump Sizing

NP 3315 LT 3~ 627

4.01 TDH on Pumps

Losses in Pump Discharge Elbow

Inside Dia. of pipe = **0.300** m

Flow in pipe = **0.2780** m³/s

Minor losses in piping :

Friction losses in piping:

$$h_m = k * (v^2 / 2g)$$

$$h_f = (0.54 \cdot r \cdot (Q / (0.278 * C * D^{2.63})) * L)$$

$$k = 0.55$$

$$L = 0.0 \text{ m}$$

$$v = 3.93 \text{ m/s}$$

$$D = 0.300 \text{ m}$$

$$g = 9.81 \text{ m}^2/\text{s}$$

$$Q = 0.2780 \text{ m}^3/\text{s}$$

$$h_m = 0.440 \text{ m}$$

$$C = 150$$

$$h_f = 0.000 \text{ m}$$

Static difference = Elev. @ Header Centerline - Elev. @ Header Centerline

$$h_s = 198.65 - 198.65 = 0.00 \text{ m}$$

$h_t = \text{Minor losses} + \text{Friction losses} + \text{Static Difference}$

$$h_t = 0.440 \text{ m} = 0.626 \text{ psi} = 1.444 \text{ feet}$$

Minor Losses - 'k' values			
	k	#	T
Swing Check	2.50	0	0.00
Gate Valve	0.19	0	0.00
Plug Valve	0.77	0	0.00
11.25 deg. Bend	0.15	0	0.00
22.5 deg. Bend	0.15	0	0.00
45 deg. Bend	0.20	0	0.00
90 deg. Bend	0.30	1	0.30
Wye	1.00	0	0.00
90 deg - Tee	1.80	0	0.00
180 deg - Tee	0.60	0	0.00
Reducer / Increase	0.25	1	0.25
Bell Mouth Inlet	0.04	0	0.00
Exit	1.00	0	0.00
Total			0.55

Losses from Pump (P3) to Discharge Header in the Valve Chamber

Inside Dia. of pipe = **0.438** m

Flow in pipe = **0.2780** m³/s

Minor losses in piping :

$$h_m = k * (v^2 / 2g)$$

$$k = 4.79$$

$$v = 1.84 \text{ m/s}$$

$$g = 9.81 \text{ m}^2/\text{s}$$

$$h_m = 0.830 \text{ m}$$

Friction losses in piping:

$$h_f = (0.54 * r * (Q / (0.278 * C * D^{2.63})) * L)$$

$$L = 10.3 \text{ m}$$

$$D = 0.438 \text{ m}$$

$$Q = 0.2780 \text{ m}^3/\text{s}$$

$$C = 150$$

$$h_f = 0.060 \text{ m}$$

Static difference = Elev. @ Header Centerline - Maximum Water Level in Wet Well

$$h_s = 207.900 - 202.390 = 5.510 \text{ m}$$

$$h_t = \text{Minor losses} + \text{Friction losses} + \text{Static Difference}$$

$$h_t = 6.400 \text{ m} = 9.101 \text{ psi} = 20.997 \text{ feet}$$

Minor Losses - 'k' values			
	k	#	T
Swing Check	2.50	1	2.50
Gate Valve	0.19	1	0.19
Plug Valve	0.77	0	0.00
11.25 deg. Bend	0.15	0	0.00
22.5 deg. Bend	0.15	0	0.00
45 deg. Bend	0.20	0	0.00
90 deg. Bend	0.30	1	0.30
Wye	1.00	0	0.00
90 deg - Tee	1.80	1	1.80
180 deg - Tee	0.60	0	0.00
Reducer / Increase	0.25	0	0.00
Bell Mouth Inlet	0.04	0	0.00
Exit	1.00	0	0.00
Total	4.79		

Losses from TEE (P3) to TEE (P2) on Discharge Header

Inside Dia. of pipe = **0.438** m 304L Stainless Flow in pipe = **0.2780** m³/s

Minor losses in piping :

$$h_m = k * (v^2 / 2g)$$

$$k = 0.85$$

$$v = 1.84 \text{ m/s}$$

$$g = 9.81 \text{ m}^2/\text{s}$$

$$h_m = 0.150 \text{ m}$$

Friction losses in piping:

$$h_f = (0.54 * r * (Q / (0.278 * C * D^{2.63})) * L)$$

$$L = 2.00 \text{ m}$$

$$D = 0.438 \text{ m}$$

$$Q = 0.2780 \text{ m}^3/\text{s}$$

$$C = 150$$

$$h_f = 0.020 \text{ m}$$

Static difference = Elev. @ Header Centerline - Elev. @ Header Centerline

$$h_s = 207.90 - 207.90 = 0.000 \text{ m}$$

$$h_t = \text{Minor losses} + \text{Friction losses} + \text{Static Difference}$$

$$h_t = 0.170 \text{ m} = 0.242 \text{ psi} = 0.558 \text{ feet}$$

Minor Losses - 'k' values			
	k	#	T
Swing Check	2.50	0	0.00
Gate Valve	0.19	0	0.00
Plug Valve	0.77	0	0.00
11.25 deg. Bend	0.15	0	0.00
22.5 deg. Bend	0.15	0	0.00
45 deg. Bend	0.20	0	0.00
90 deg. Bend	0.30	0	0.00
Wye	1.00	0	0.00
90 deg - Tee	1.80	0	0.00
180 deg - Tee	0.60	1	0.60
Reducer / Increase	0.25	1	0.25
Bell Mouth Inlet	0.04	0	0.00
Exit	1.00	0	0.00
Total	0.85		

Losses from TEE (P2) on Discharge Header to Reducer Outside of Valve Room

Inside Dia. of pipe = **0.591** m 304L Stainless Flow in pipe = **0.5560** m³/s

Minor losses in piping :

$$h_m = k * (v^2 / 2g)$$

$$k = 1.45$$

$$v = 2.03 \text{ m/s}$$

$$g = 9.81 \text{ m}^2/\text{s}$$

$$h_m = 0.310 \text{ m}$$

Friction losses in piping:

$$h_f = (0.54 * r * (Q / (0.278 * C * D^{2.63})) * L)$$

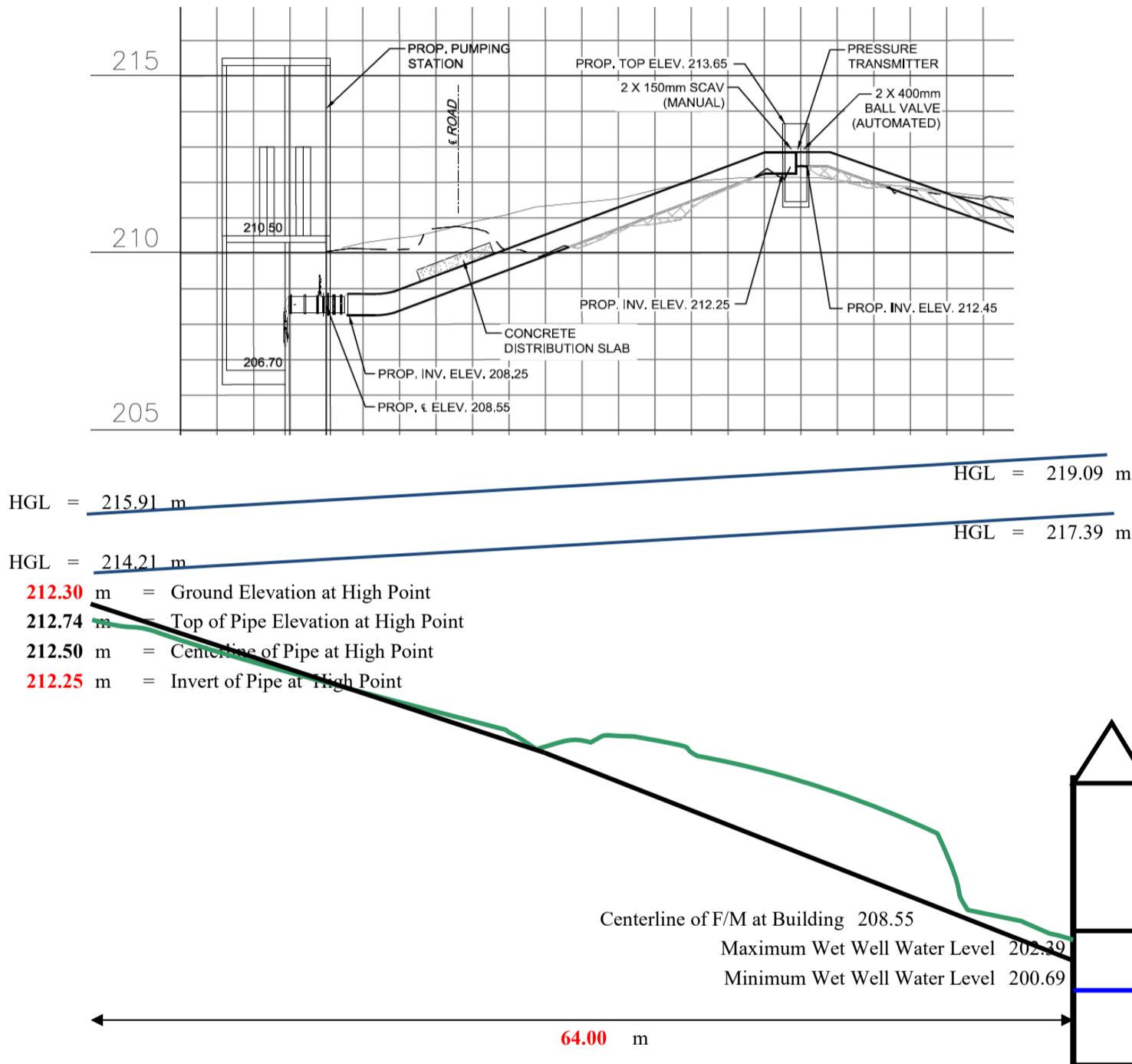
$$L = 14.85 \text{ m}$$

$$D = 0.591 \text{ m}$$

$$Q = 0.5560 \text{ m}^3/\text{s}$$

$$C = 150$$

$$h_f = 0.070 \text{ m}$$


Static difference = Elev. @ Force main Discharge Centerline - Elev. @ Pump Header Centerline

$$h_s = 208.55 - 207.90 = 0.650 \text{ m}$$

$$h_t = \text{Minor losses} + \text{Friction losses} + \text{Static Difference}$$

$$h_t = 1.030 \text{ m} = 1.465 \text{ psi} = 3.379 \text{ feet}$$

Minor Losses - 'k' values			
	k	#	T
Swing Check	2.50	0	0.00
Gate Valve	0.19	0	0.00
Plug Valve	0.77	0	0.00
11.25 deg. Bend	0.15	0	0.00
22.5 deg. Bend	0.15	0	0.00
45 deg. Bend	0.20	0	0.00
90 deg. Bend	0.30	2	0.60
Wye	1.00	0	0.00
90 deg - Tee	1.80	0	0.00
180 deg - Tee	0.60	1	0.60
Reducer / Increase	0.25	1	0.25
Bell Mouth Inlet	0.04	0	0.00
Exit	1.00	0	0.00
Total	1.45		

Losses in Force main from P/Stn to High Point

Inside Dia. of pipe = **0.4921** m

Flow in pipe = **0.5560** m³/s

Minor losses in piping :

$$h_m = k * (v^2 / 2g)$$

$$k = 1.40$$

$$v = 2.92 \text{ m/s}$$

$$g = 9.81 \text{ m}^2/\text{s}$$

$$h_m = **0.610** m$$

Friction losses in piping:

$$hf = (0.54 \cdot r * (Q / (0.278 * C * D^{2.63})) * L)$$

$$L = **64.0** m$$

$$D = 0.4921 \text{ m}$$

$$Q = 0.556 \text{ m}^3/\text{s}$$

$$C = 150$$

$$h_f = **0.690** m$$

Static difference = Centerline at High Point - Elev. @ Force main Leaving the Building

$$h_s = **212.496** - **208.550** = **3.946** m$$

h_t = Minor losses + Friction losses + Static Difference

$$h_t = **5.246** m = **7.460** psi = **17.211** feet$$

Minor Losses - 'k' values			
	k	#	T
Swing Check	2.50	0	0.00
Gate Valve	0.19	0	0.00
Plug Valve	0.77	0	0.00
11.25 deg. Bend	0.15	0	0.00
22.5 deg. Bend	0.15	0	0.00
45 deg. Bend	0.20	2	0.40
90 deg. Bend	0.30	0	0.00
Wye	1.00	0	0.00
90 deg - Tee	1.80	0	0.00
180 deg - Tee	0.60	0	0.00
Reducer / Increase	0.25	0	0.00
Bell Mouth Inlet	0.04	0	0.00
Exit	1.00	1	1.00
Total	1.40		

4.02 Conveyance Pipe Sizing
Ultimate Design $Q = 278.0 \text{ L/s}$
Estimate Required Diameter of the Conveyance Piping.

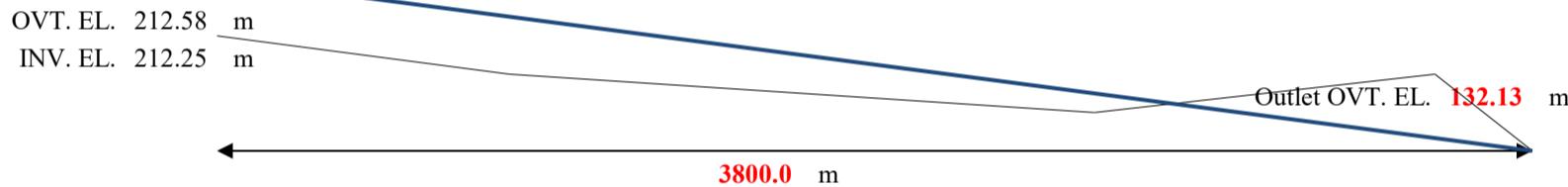
Set outlet piping velocities between **0.80** and **3.00** m/s

Set velocity at **1.90** m/s $A = Q/V$ $A = 0.1463 \text{ m}^2$ $A = \frac{\pi D^2}{4.00}$ $D = 0.43 \text{ m}$

Use 2 - 400 mm (16 in.) diameter HDPE DR 11

Pressure Rating = **160.0** psi **1103.2** kPa **112.5** m

Pipe OD = **16.00** in. **406.4** mm


Pipe Thickness = **1.455** in. **37.00** mm

Pipe ID = **12.916** in. **328.1** mm

Actual Velocity = $Q/A = 3.29 \text{ m/s}$

Minimum flow (scouring velocity) = **1.00** m/s = **3.28** ft/s

Minimum scouring flow for each pipe $Q_p = V \times A = 1.00 \text{ m/s} \times 0.0845 \text{ m}^2 = 0.0845 \text{ m}^3/\text{s} = 84.5 \text{ L/s}$
LOSSES IN CONVEYANCE PIPE to OUTFALL

HGL = **215.91** m **3.33** m **4.74** psi

Inside Dia. of pipe = **0.328** m

Minor losses in piping :

$h_m = k^*(v^2/2g)$

$k = 5.45$

$v = 3.29 \text{ m/s}$

$g = 9.81 \text{ m}^2/\text{s}$

$h_m = 3.010 \text{ m}$

Flow in pipe = **0.278** m^3/s

Friction losses in piping:

$h_f = (0.54 \text{ rt}(Q/(0.278 \times C \times D^{2.63})) \times L)$

$L = 3800.0 \text{ m}$

$D = 0.328 \text{ m}$

$Q = 0.2780 \text{ m}^3/\text{s}$

$C = 150$

$h_f = 80.770 \text{ m}$

Static difference = Elev. @ Forcemain Discharge Centerline - Elev. @ Pump Header Centerline

$h_s = 132.13 - 212.58 = -80.450 \text{ m}$

 $h_t = \text{Minor losses} + \text{Friction losses} + \text{Static Difference}$

$h_t = 3.330 \text{ m} = 4.735 \text{ psi} = 10.925 \text{ feet}$

Minor Losses - 'k' values			
	k	#	T
Swing Check	2.50	0	0.00
Gate Valve	0.19	0	0.00
Plug Valve	0.77	0	0.00
11.25 deg. Bend	0.15	0	0.00
22.5 deg. Bend	0.15	3	0.45
45 deg. Bend	0.20	17	3.40
90 deg. Bend	0.30	2	0.60
Wye	1.00	0	0.00
90 deg - Tee	1.80	0	0.00
180 deg - Tee	0.60	0	0.00
Reducer / Increase	0.25	0	0.00
Bell Mouth Inlet	0.04	0	0.00
Exit	1.00	1	1.00
Total	5.45		

TDH on Pumps = **16.7** m = **23.747** psi = **54.790** feet

Static Lift at near zero flow = **-68.56** m = **-97.495** psi = **-224.941** feet

3 Three pumps, each with a capacity of 278.0 L/s @ 16.70 m TDH

Three pumps each with a capacity of **4404** USGPM @ **54.8** ft TDH (**23.75** psi)

4.02 Hydraulic Horsepower = $\frac{Q \text{ (L/s)} \times \text{TDH (m)}}{102}$ = **45.5** kW = **61.0** hp

4.03 Brake Horsepower = $\frac{\text{Hydraulic Horsepower}}{\text{pump efficiency (\%)}}$ Eff = **75%** at runout say **82.1** kW = **60.7** kW = **81.4** hp **110.0** hp **OK** **82.1** kW

DESIGN SUBJECT	UNIT	C = 130	C = 140	C = 150
PUMP DESIGN FLOW	L/s	556.0	556.0	556.0
FORCEMAIN DIAMETER	mm	600	600	600
VELOCITY	m/s	2.92	2.92	2.92
FORCEMAIN LENGTH	m	64.0	64.0	64.0
FORCEMAIN HEAD LOSS	m	1.55	1.43	1.30
SUCTION LINE HEAD LOSS	m	N/A	N/A	N/A
DISCHARGE LINE HEAD LOSS	m	1.76	1.74	1.88
TOTAL HEAD LOSS	m	3.31	3.17	3.18
LOW WATER LEVEL WET WELL	m	200.69	200.69	200.69
HIGH WATER LEVEL WET WELL	m	202.39	202.39	202.39
FORCEMAIN END C/L ELEVATION	m	212.50	212.50	212.50
STATIC HEAD	MAX.	m	11.81	11.81
	MIN.	m	10.11	10.11
TOTAL DYNAMIC HEAD	MAX.	m	15.12	14.98
	MIN.	m	13.42	13.28

4.04 Surge Pressure on Forcemain

The following calculations are performed to determine the transient pressures likely with instantaneous pump stoppage.

$$\text{Maximum Water Hammer Pressure (m)} = P = \frac{a * V}{g}$$

where:

$$a = \text{Wave velocity} = \sqrt{\frac{K}{\rho (1 + \frac{K}{E} x \psi)}} \quad \text{m/s}$$

V = velocity of water stopped = 2.92 m/s

ρ = Density of fluid being conveyed = 998 kg/m³

K = Bulk modulus of elasticity of fluid = 2.15E+09 N/m²

E = Young's modulus of elasticity of pipe material; approx. = 1.00E+09 Pa (HDPE)

μ = Poisson's ratio for the pipe material = 0.40 dimensionless

R_0 = pipe external radius = 0.305 m

R_i = pipe internal radius = 0.246 m

d = inside diameter of pipe = 0.492 m

e = thickness of pipe wall = 0.0452 m

g = acceleration caused by gravity = 9.806 m/s²

Q = maximum flow in the conduit = 0.5560 m³/s

C = $1 - \mu^2$ = 0.84

h) Alternate Method

$$a = \text{Wave velocity} = \sqrt{\frac{K}{\rho (1 + C \frac{K}{E} x \frac{d}{e})}} \quad \text{m/s}$$

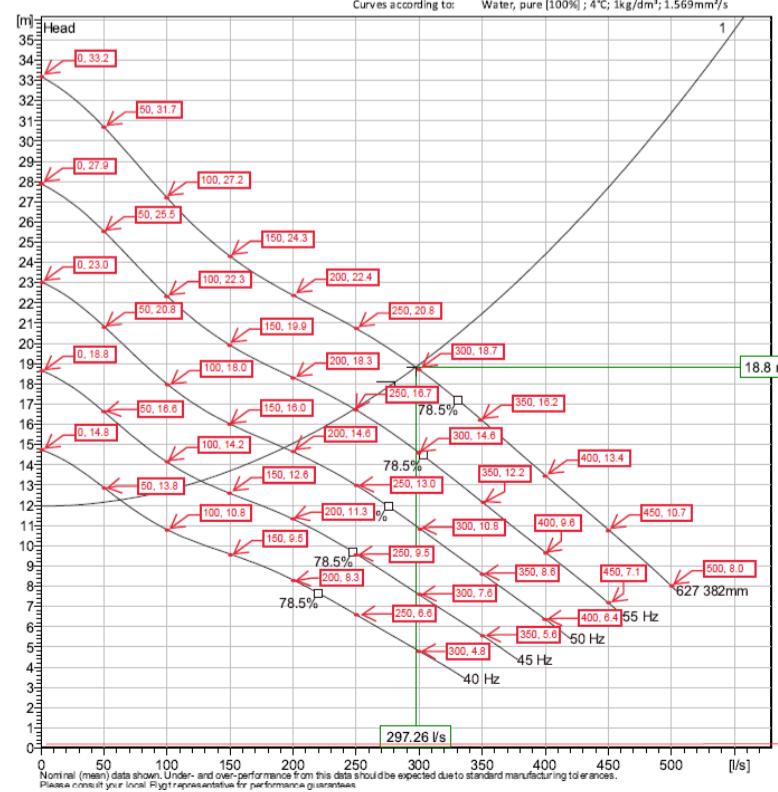
$$\mathbf{a = 323 \quad P = 96.15 \quad m = 136.73 \quad psi}$$

Therefore, pipe must handle a total pressure (working + surge) of: 16.70 m + 96.15 m = 112.85 m = 160.47 psi

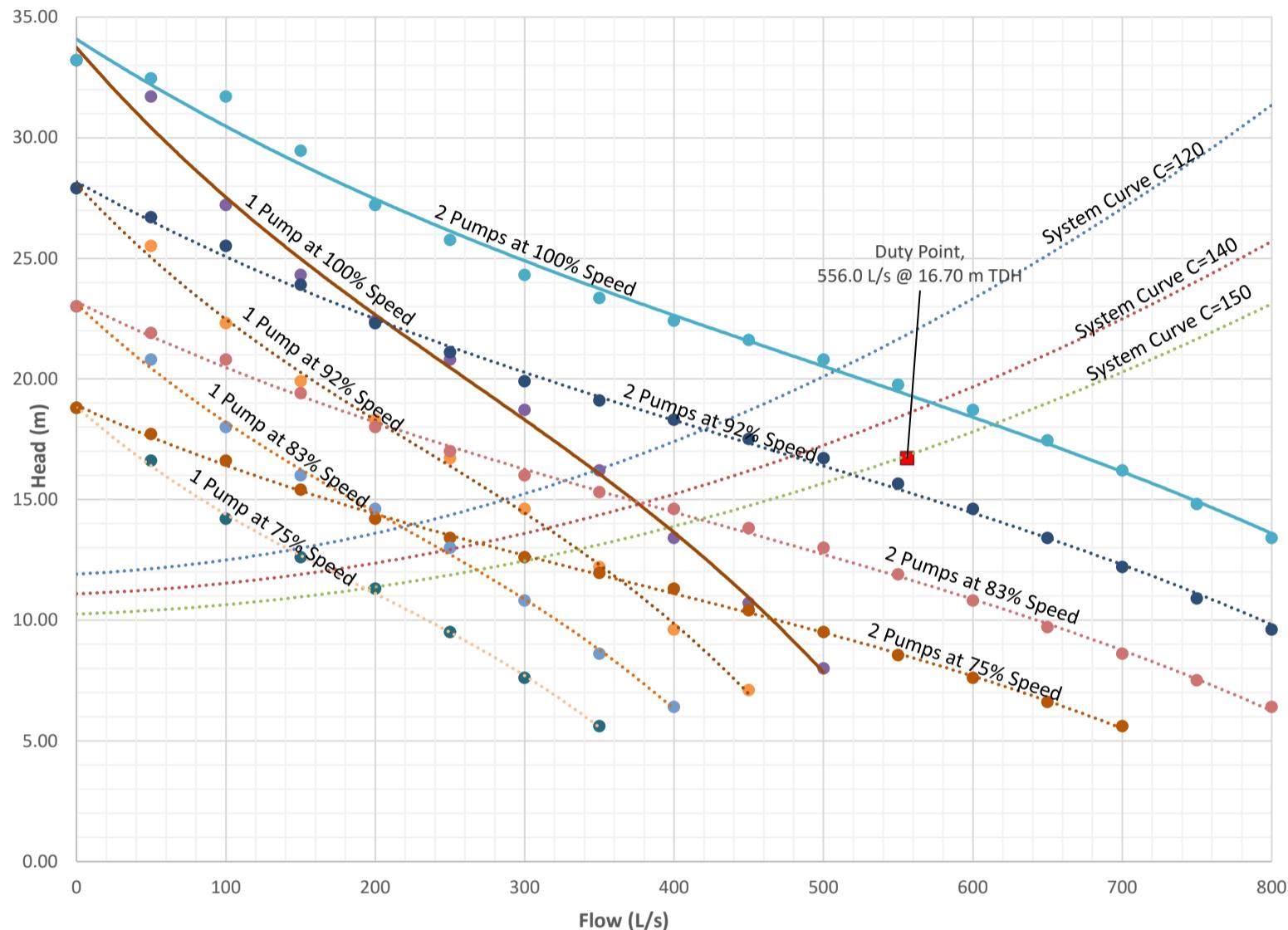
total pressure rating = 320 psi **OK** 2206.4 kPa **No Surge Protection Needed**

5.0 Pump Curves

Pumping Station Piping Losses


Headloss in forcemain (not including Static Losses)	=	6.510 m
Equivalent length of HDPE pipe (L)		
Friction losses in piping: $h_f = (0.54rt(Q/(0.278*C*D^{2.63}))*L)$	Where: $h_f = 6.510 \text{ m}$	
	$D = 0.4921 \text{ m}$	
	$Q = 0.5560 \text{ m}^3/\text{s}$	
	$C = 150$	
Length of Forcemain	=	611.09 m
Forcemain Discharge Elevation	=	212.74 m
	HLL =	202.39 m
	MLL =	201.54 m
	LLL =	200.69 m
		Pipe Area = 0.190 m ²

Flow (L/s)	System Curve at PUMP [TDH (m)]														
	0	50	100	150	200	250	300	350	400	450	500	550	600	650	700
120	12.05	12.17	12.46	12.92	13.53	14.29	15.19	16.23	17.40	18.70	20.14	21.70	23.38	25.19	27.13
140	11.20	11.29	11.51	11.86	12.32	12.89	13.56	14.34	15.22	16.20	17.28	18.45	19.72	21.08	22.53
150	10.35	10.43	10.62	10.93	11.33	11.83	12.43	13.11	13.89	14.75	15.70	16.73	17.85	19.05	20.32


Flygt Model NP 3315 LT 3~627															
1 @ 100%	33.2	31.7	27.2	24.3	22.4	20.8	18.7	16.2	13.4	10.7	8.0				
2 @ 100%	33.2	32.5	31.7	29.5	27.2	25.8	24.3	23.4	22.4	21.6	20.8	19.8	18.7	17.5	16.2
3 @ 100%	33.2	32.7	32.2	31.7	30.2	28.7	27.2	26.2	25.3	24.3	23.7	23.0	22.4	21.9	21.3
1 @ 92%	27.9	25.5	22.3	19.9	18.3	16.7	14.6	12.2	9.6	7.1					
2 @ 92%	27.9	26.7	25.5	23.9	22.3	21.1	19.9	19.1	18.3	17.5	16.7	15.7	14.6	13.4	12.2
1 @ 83%	23.0	20.8	18.0	16.0	14.6	13.0	10.8	8.6	6.4						
2 @ 83%	23.0	21.9	20.8	19.4	18.0	17.0	16.0	15.3	14.6	13.8	13.0	11.9	10.8	9.7	8.6
1 @ 75%	18.8	16.6	14.2	12.6	11.3	9.5	7.6	5.6							
2 @ 75%	18.8	17.7	16.6	15.4	14.2	13.4	12.6	12.0	11.3	10.4	9.5	8.6	7.6	6.6	5.6
1 @ 67%	14.8	13.8	10.8	9.5	8.3	6.6	4.8								
2 @ 67%	14.8	14.3	13.8	12.3	10.8	10.2	9.5	8.9	8.3	7.5	6.6	5.7	4.8		

NP 3315 LT 3~ 627

Duty Analysis

a xylem brand
Curves according to: Water, pure [100%]; 4°C; 1kg/dm³; 1.569mm²/s

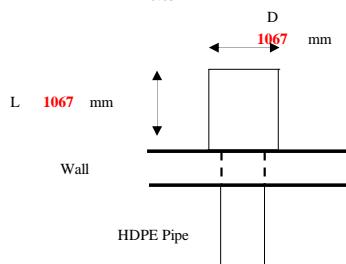
Flygt Model NP 3315 LT 3~627 - Pump Curve vs. System Curve

Total Intake Losses = 1.020 m

Minimum water level in the Wet Well = Low River Elevation - Losses in the Intake and Pipe
 = 95.11 m - 1.02 m
 = 94.09 m

90 deg - Tee	1.80	0	0.00
180 deg - Tee	0.60	0	0.00
Reducer / Increaser	0.25	0	0.00
Bell Mouth Inlet	0.04	0	0.00
Exit	1.00	2	2.00
Total	2.19		

Maximum water level in the Wet Well = High River Elevation - Losses in the Intake and Pipe
 = 96.52 m - 1.02 m
 = 95.50 m


2.02 Intake Screen

Artic Char have a subcarangiform swimming mode. (Reference DFO "Freshwater intake End-of-Pipe Fish Screen Guideline, 1995)

Screen approach velocity of approximately 0.11 m/s = 0.361 fps is required for the subcarangiform fish

$$\begin{aligned} \text{Open Screen Area} &= \text{Flow} / \text{Approach Velocity} \\ &= 0.4000 \text{ m}^3/\text{s} / 0.11 \text{ m/s} \\ &= 3.640 \text{ m}^2 \end{aligned}$$

$$\begin{aligned} \text{Effective Screen Area} &= \frac{\text{Open Screen Area}}{\% \text{ Open Area}/100} & \text{The \% Open Area of a #60 Wedge Wire Screen} &= 63\% \\ &= \frac{3.64 \text{ m}^2}{0.63} & = 5.78 \text{ m}^2 \end{aligned}$$

$$\begin{aligned} \text{Intake Area} &= 3.1416 \times D/2 \times L \times 2 \\ &= 3.1416 \times 0.534 \times 1.07 \times 2.0 \\ &= 3.58 \text{ m}^2 \\ \text{Two Intake Screens} &= 7.15 \text{ m}^2 \quad \text{OK} \end{aligned}$$

3.0 Pump Station Design**3.01 Pump Discharge Piping - 1 pump***Ultimate Design* $Q = 200.0 \text{ L/s}$ *Estimate Required Diameter of the Discharge Piping.*

Set outlet piping velocities between **0.80** and **2.50** m/s
 Set velocity at **1.65** m/s $A = Q/V$ $A = 0.12 \text{ m}^2$ $A = \frac{\pi D^2}{4.00}$ $D = 0.39 \text{ m}$

Use **350 mm** (14 in.) diameter **304L Stainless STD**Pipe ID = **13.624** in. **346.0** mmActual Velocity = $Q/A = 2.13 \text{ m/s}$ **OK**Minimum flow (scouring velocity) = **0.80** m/s = **2.62** ft/sMinimum scouring flow for each pipe $Q_p = V \times A = 0.80 \text{ m/s} \times 0.09 \text{ m}^2 = 0.08 \text{ m}^3/\text{s} = 75.22 \text{ L/s}$ **3.02 Pump Discharge 1 Pump Running***Ultimate Design* $Q = 200.0 \text{ L/s}$ *Estimate Required Diameter of the Discharge Piping.*

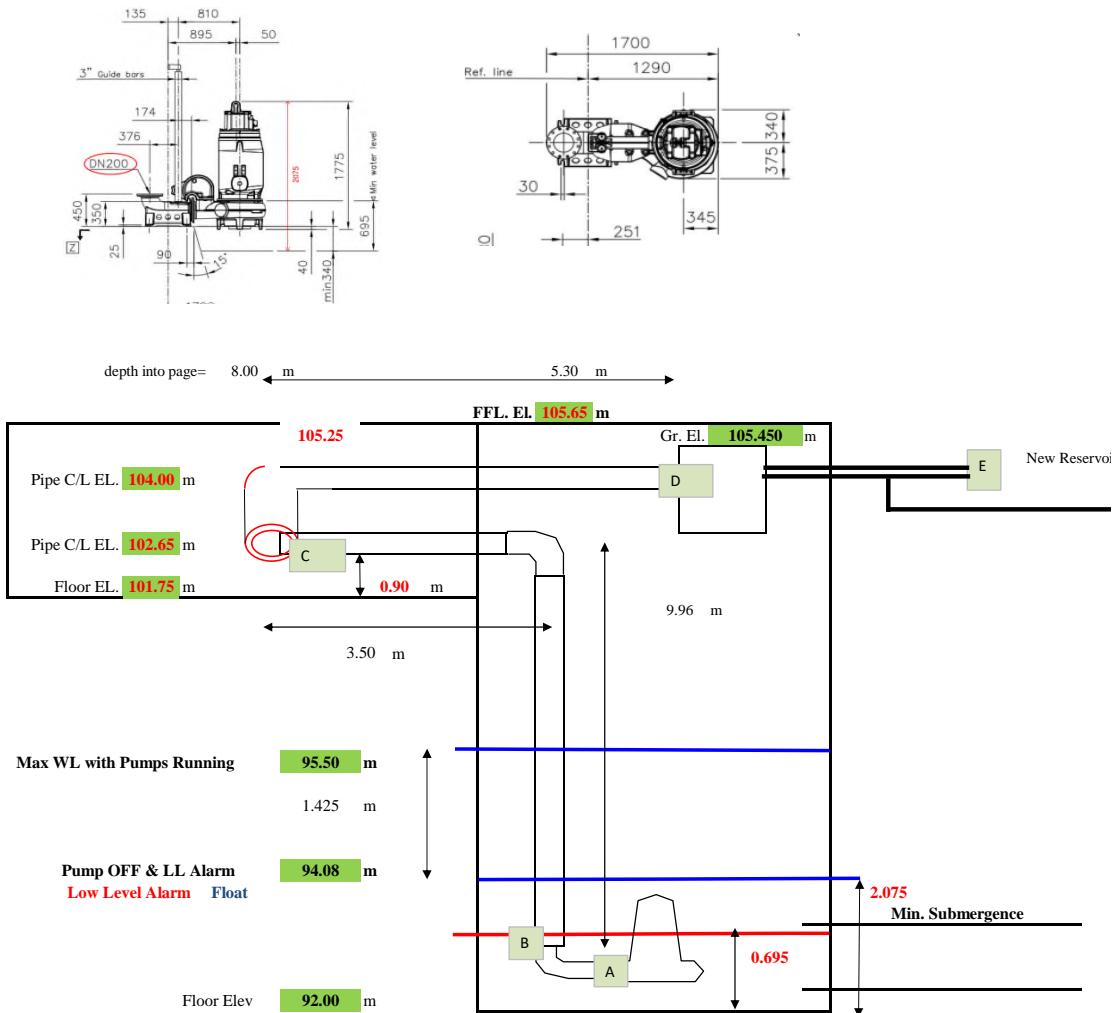
Set outlet piping velocities between **0.80** and **4.00** m/s
 Set velocity at **2.40** m/s $A = Q/V$ $A = 0.08 \text{ m}^2$ $A = \frac{\pi D^2}{4.00}$ $D = 0.33 \text{ m}$

Use **350 mm** (14 in.) diameter **304L Stainless STD**Pipe ID = **13.624** in. **346.0** mmActual Velocity = $Q/A = 2.13 \text{ m/s}$ **OK**Minimum flow (scouring velocity) = **0.80** m/s = **2.62** ft/sMinimum scouring flow for each pipe $Q_p = V \times A = 0.80 \text{ m/s} \times 0.09 \text{ m}^2 = 0.08 \text{ m}^3/\text{s} = 75.22 \text{ L/s}$ **3.03 Pump Header Piping 1 Pump Running***Ultimate Design* $Q = 200.0 \text{ L/s}$ *Estimate Required Diameter of the Discharge Piping.*

Set outlet piping velocities between **0.80** and **4.00** m/s
 Set velocity at **2.40** m/s $A = Q/V$ $A = 0.08 \text{ m}^2$ $A = \frac{\pi D^2}{4.00}$ $D = 0.33 \text{ m}$

Use **450 mm** (18 in.) diameterPipe ID = **17.624** in. **447.6** mmActual Velocity = $Q/A = 1.27 \text{ m/s}$ **OK**Minimum flow (scouring velocity) = **0.80** m/s = **2.62** ft/sMinimum scouring flow for each pipe $Q_p = V \times A = 0.80 \text{ m/s} \times 0.16 \text{ m}^2 = 0.13 \text{ m}^3/\text{s} = 125.88 \text{ L/s}$ **3.04 Pump Header Piping 2 Pumps Running***Ultimate Design* $Q = 400.0 \text{ L/s}$ *Estimate Required Diameter of the Discharge Piping.*

Set outlet piping velocities between **0.80** and **4.00** m/s
 Set velocity at **2.40** m/s $A = Q/V$ $A = 0.17 \text{ m}^2$ $A = \frac{\pi D^2}{4.00}$ $D = 0.46 \text{ m}$


Use **450 mm** (18 in.) diameterPipe ID = **17.624** in. **447.6** mmActual Velocity = $Q/A = 2.54 \text{ m/s}$ **OK**Minimum flow (scouring velocity) = **0.80** m/s = **2.62** ft/sMinimum scouring flow for each pipe $Q_p = V \times A = 0.80 \text{ m/s} \times 0.16 \text{ m}^2 = 0.13 \text{ m}^3/\text{s} = 125.88 \text{ L/s}$ **3.05 Twin Force main Sizing***Ultimate Design* $Q = 200.0 \text{ L/s}$ *Estimate Required Diameter of the Force main Piping.*

Set outlet piping velocities between **0.80** and **3.00** m/s
 Set velocity at **1.90** m/s $A = Q/V$ $A = 0.1053 \text{ m}^2$ $A = \frac{\pi D^2}{4.00}$ $D = 0.37 \text{ m}$

Use **400 mm** (16 in.) diameter **HDPE DR 11**Pressure Rating = **200.0** psi **1379.0** kPa **140.6** mPipe OD = **17.21** in. **437.1** mmPipe Thickness = **1.582** in. **40.20** mmPipe ID = **14.046** in. **356.80** mmOperating pressure + surge pressure rating = **400.00** psi **281.2** mActual Velocity = $Q/A = 2.00 \text{ m/s}$ **OK**Minimum flow (scouring velocity) = **1.00** m/s = **3.28** ft/sMinimum scouring flow for each pipe $Q_p = V \times A = 1.00 \text{ m/s} \times 0.1000 \text{ m}^2 = 0.1000 \text{ m}^3/\text{s} = 100.0 \text{ L/s}$ **SIZING SUMMARY**

3.01	350.00 mm	14.00 in.
3.02	350.00 mm	14.00 in.
3.03	450.00 mm	18.00 in.
3.04	450.00 mm	18.00 in.
3.05	400.00 mm	16.00 in.

4.0 Pump Sizing

4.01 TDH on Pumps

Losses in Pump Discharge Elbow (P1, P2, P3) - A to B

Inside Dia. of pipe = 0.200 m

Minor losses in piping :

$$h_m = k * (v^2 / 2g)$$

$$k = 0.55$$

$$v = 6.37 \text{ m/s}$$

$$g = 9.81 \text{ m}^2/\text{s}$$

$$h_m = 1.140 \text{ m}$$

Static difference = Elevation @ Header Centerline - Elevation @ Header Centerline

$$h_s = 92.00 - 92.00 = 0.00 \text{ m}$$

$$h_t = \text{Minor losses} + \text{Friction losses} + \text{Static Difference}$$

$$h_t = 1.140 \text{ m} = 1.621 \text{ psi} = 3.740 \text{ feet}$$

Flow in pipe = 0.2000 m³/s

Friction losses in piping:

$$hf = (0.4f(Q/(0.278*C*D^2.63))^2 * L)$$

$$L = 0.0 \text{ m}$$

$$D = 0.200 \text{ m}$$

$$Q = 0.2000 \text{ m}^3/\text{s}$$

$$C = 150$$

$$h_f = 0.000 \text{ m}$$

	k	#	T
Swing Check	2.50	0	0.00
Gate Valve	0.19	0	0.00
Plug Valve	0.77	0	0.00
11.25 deg. Bend	0.15	0	0.00
22.5 deg. Bend	0.15	0	0.00
45 deg. Bend	0.20	0	0.00
90 deg. Bend	0.30	1	0.30
Wye	1.00	0	0.00
90 deg - Tee	1.80	0	0.00
180 deg - Tee	0.60	0	0.00
Reducer / Increase	0.25	1	0.25
Bell Mouth Inlet	0.04	0	0.00
Exit	1.00	0	0.00
Total	0.55		

Maximum Losses from Pumps to Discharge Header in the Valve Chamber B to C (from Pump 3; L of 2m = length of 350 mm section in pump header)

Inside Dia. of pipe = 0.350 m

Minor losses in piping :

$$h_m = k * (v^2 / 2g)$$

$$k = 3.84$$

$$v = 2.08 \text{ m/s}$$

$$g = 9.81 \text{ m}^2/\text{s}$$

$$h_m = 0.850 \text{ m}$$

Flow in pipe = 0.2000 m³/s

Friction losses in piping:

$$h_f = (0.54f(Q/(0.278*C*D^2.63)) * L)$$

$$L = 16.8 \text{ m}$$

$$D = 0.350 \text{ m}$$

$$Q = 0.2000 \text{ m}^3/\text{s}$$

$$C = 150$$

$$h_f = 0.150 \text{ m}$$

Static difference = Elev. @ Header Centerline - Minimum Water Level in Wet Well

$$h_s = 102.650 - 94.075 = 8.575 \text{ m}$$

 $h_t = \text{Minor losses} + \text{Friction losses} + \text{Static Difference}$

$$h_t = 9.575 \text{ m} = 13.616 \text{ psi} = 31.414 \text{ feet}$$

Minor Losses - 'k' values			
	k	#	T
Swing Check	2.50	1	2.50
Gate Valve	0.19	1	0.19
Plug Valve	0.77	0	0.00
11.25 deg. Bend	0.15	0	0.00
22.5 deg. Bend	0.15	0	0.00
45 deg. Bend	0.20	0	0.00
90 deg. Bend	0.30	1	0.30
Wye	1.00	0	0.00
90 deg - Tee	1.80	0	0.00
180 deg - Tee	0.60	1	0.60
Reducer / Increase	0.25	1	0.25
Bell Mouth Inlet	0.04	0	0.00
Exit	1.00	0	0.00
Total	3.84		

Maximum Losses from tee (P2) on Discharge Header to end of SS pipe, C to D (2 pumps running)

Inside Dia. of pipe = 0.450 m

Minor losses in piping :

$$h_m = k * (v^2 / 2g)$$

$$k = 1.80$$

$$v = 2.52 \text{ m/s}$$

$$g = 9.81 \text{ m}^2/\text{s}$$

$$h_m = 0.590 \text{ m}$$

Flow in pipe = 0.4000 m³/s

Friction losses in piping:

$$h_f = (0.54f(Q/(0.278*C*D^2.63)) * L)$$

$$L = 14.65 \text{ m}$$

$$D = 0.450 \text{ m}$$

$$Q = 0.4000 \text{ m}^3/\text{s}$$

$$C = 150$$

$$h_f = 0.140 \text{ m}$$

Static difference = Elev. @ Forcemain Discharge Centerline - Elev. @ Pump Header Centerline

$$h_s = 104.00 - 102.65 = 1.35 \text{ m}$$

 $h_t = \text{Minor losses} + \text{Friction losses} + \text{Static Difference}$

$$h_t = 2.080 \text{ m} = 2.958 \text{ psi} = 6.824 \text{ feet}$$

Minor Losses - 'k' values			
	k	#	T
Swing Check	2.50	0	0.00
Gate Valve	0.19	0	0.00
Plug Valve	0.77	0	0.00
11.25 deg. Bend	0.15	0	0.00
22.5 deg. Bend	0.15	0	0.00
45 deg. Bend	0.20	0	0.00
90 deg. Bend	0.30	2	0.60
Wye	1.00	0	0.00
90 deg - Tee	1.80	0	0.00
180 deg - Tee	0.60	2	1.20
Reducer / Increase	0.25	0	0.00
Bell Mouth Inlet	0.04	0	0.00
Exit	1.00	0	0.00
Total	1.80		

Losses in Forcemain from P/Stn to NR Discharge, D to E, Route 1

Inside Dia. of pipe = 0.3568 m

Minor losses in piping :

$$h_m = k * (v^2 / 2g)$$

$$k = 8.88$$

$$v = 2.00 \text{ m/s}$$

$$g = 9.81 \text{ m}^2/\text{s}$$

$$h_m = 1.820 \text{ m}$$

Flow in pipe = 0.2000 m³/s

Friction losses in piping:

$$h_f = (0.54f(Q/(0.278*C*D^2.63)) * L)$$

$$L = 495.0 \text{ m}$$

$$D = 0.3568 \text{ m}$$

$$Q = 0.200 \text{ m}^3/\text{s}$$

$$C = 150$$

$$h_f = 3.810 \text{ m}$$

Static difference = DISCHARGE TO NEW RESEVOIR - CL OF PIPE LEAVING THE BUILDING AND

$$h_s = 132.00 - 104.00 = 28.000 \text{ m}$$

 $h_t = \text{Minor losses} + \text{Friction losses} + \text{Static Difference}$

$$h_t = 33.630 \text{ m} = 47.822 \text{ psi} = 110.335 \text{ feet}$$

Minor Losses - 'k' values			
	k	#	T
Swing Check	2.50	1	2.50
Gate Valve	0.19	1	0.19
Plug Valve	0.77	0	0.00
Ball Valve	0.04	1	0.04
11.25 deg. Bend	0.15	0	0.00
22.5 deg. Bend	0.15	0	0.00
45 deg. Bend	0.20	14	2.80
90 deg. Bend	0.30	1	0.30
Wye	1.00	0	0.00
90 deg - Tee	1.80	1	1.80
180 deg - Tee	0.60	0	0.00
Reducer / Increase	0.25	1	0.25
Bell Mouth Inlet	0.04	0	0.00
Exit	1.00	1	1.00
Total	8.88		

Losses in Forcemain from P/Stn to NR Discharge, D to E, Route 2, short

Inside Dia. of pipe = 0.3568 m

Minor losses in piping :

$$h_m = k * (v^2 / 2g)$$

$$k = 9.32$$

$$v = 2.00 \text{ m/s}$$

$$g = 9.81 \text{ m}^2/\text{s}$$

$$h_m = 1.910 \text{ m}$$

Flow in pipe = 0.2000 m³/s

Friction losses in piping:

$$h_f = (0.54f(Q/(0.278*C*D^2.63)) * L)$$

$$L = 500.0 \text{ m}$$

$$D = 0.3568 \text{ m}$$

$$Q = 0.200 \text{ m}^3/\text{s}$$

$$C = 150$$

$$h_f = 3.840 \text{ m}$$

Static difference = DISCHARGE TO NEW RESEVOIR - CL OF PIPE LEAVING THE BUILDING AND

$$h_s = 132.00 - 104.00 = 28.000 \text{ m}$$

 $h_t = \text{Minor losses} + \text{Friction losses} + \text{Static Difference}$

$$h_t = 33.75 \text{ m} = 47.993 \text{ psi} = 110.728 \text{ feet}$$

Minor Losses - 'k' values			
	k	#	T
Swing Check	2.50	1	2.50
Gate Valve	0.19	1	0.19
Plug Valve	0.77	0	0.00
Ball Valve	0.04	2	0.08
11.25 deg. Bend	0.15	0	0.00
22.5 deg. Bend	0.15	0	0.00
45 deg. Bend	0.20	13	2.60
90 deg. Bend	0.30	1	0.30
Wye	1.00	0	0.00
90 deg - Tee	1.80	1	1.80
180 deg - Tee	0.60	1	0.60
Reducer / Increase	0.25	1	0.25
Bell Mouth Inlet	0.04	0	0.00
Exit	1.00	1	1.00
Total	9.32		

Losses in Force main from P/Stn to LG Discharge, D to F, Route 2, Long

Inside Dia. of pipe = 0.3568 m

Flow in pipe = 0.2000 m³/s

Minor losses in piping :

$$h_m = k * (v^2 / 2g)$$

$$k = 9.28$$

$$v = 2.00 \text{ m/s}$$

$$g = 9.81 \text{ m}^2/\text{s}$$

$$h_m = 1.900 \text{ m}$$

Friction losses in piping:

$$hf = (0.54f(Q/(0.278*C*D^2.63)) * L)$$

$$L = 1100.0 \text{ m}$$

$$D = 0.3568 \text{ m}$$

$$Q = 0.2000 \text{ m}^3/\text{s}$$

$$C = 150$$

$$h_f = 8.450 \text{ m}$$

Static difference = MAX WATER LEVEL OF LG - CL OF PIPE LEAVING THE BUILDING

$$h_s = 111.30 - 104.00 = 7.300 \text{ m}$$

$$h_t = \text{Minor losses} + \text{Friction losses} + \text{Static Difference}$$

$$h_t = 17.650 \text{ m} = 25.098 \text{ psi} = 57.907 \text{ feet}$$

Minor Losses - 'k' values			
	k	#	T
Swing Check	2.50	1	2.50
Gate Valve	0.19	1	0.19
Plug Valve	0.77	0	0.00
Ball Valve	0.04	1	0.04
11.25 deg. Bend	0.15	0	0.00
22.5 deg. Bend	0.15	0	0.00
45 deg. Bend	0.20	19	3.80
90 deg. Bend	0.30	1	0.30
Wye	1.00	0	0.00
90 deg - Tee	1.80	0	0.00
180 deg - Tee	0.60	2	1.20
Reducer / Increase	0.25	1	0.25
Bell Mouth Inlet	0.04	0	0.00
Exit	1.00	1	1.00
Total	9.28		

Head Loss Summary

	minor	friction	static	total	
A to B	1.140	0.000	0.000	1.140	m
B to C	0.850	0.150	8.575	9.575	m
C to D	0.590	0.140	1.350	2.080	m
D to E	1.820	3.810	28.000	33.630	m
D to E	1.910	3.840	28.000	33.750	m
E to F	1.900	8.450	7.300	17.650	m

Route 1

Route 2, short

Route 2, long

For 2 Intake(s) :

TDH on Pumps	= In-Station Losses	+ Out of Station Losses
To New Reservoir, Route 1	= 12.795 m	+ 33.63 m
	46.425 m	= 66.016 psi = 152.313 feet
To New Reservoir, Route 2 short	= 12.795 m	+ 33.75 m
	46.545 m	= 66.187 psi = 152.707 feet
To Lake Geraldine, Route 2 Long	= 12.795 m	+ 17.65 m
	30.445 m	= 43.293 psi = 99.885 feet

Static Lift at near zero flow

	= Discharge Elevation	- Low Water Level
To New Reservoir	= 132 m	- 94.075 m
	= 37.925	= 53.929 psi = 124.426 feet
To Lake Geraldine	= 111.30 m	- 94.075 m
	= 17.225	= 24.494 psi = 56.512 feet

3 Three pumps, each with a capacity of 200.0 L/s @ 46.55 m TDH

Three pumps each with a capacity of 3168 USGPM @ 152.7 ft TDH (66.19 psi)

$$4.02 \text{ Hydraulic Horsepower} = \frac{Q \text{ (L/s)}}{102} \times \text{TDH (m)} = 91.3 \text{ kW} = 122.4 \text{ hp}$$

$$4.03 \text{ Brake Horsepower} = \frac{\text{Hydraulic Horsepower}}{\text{pump efficiency (\%)}} = \frac{125.0 \text{ kW}}{73\%} = 167.6 \text{ hp} \text{ say } 138.0 \text{ kW} = 185.0 \text{ hp OK}$$

TO NEW RESERVOIR

DESIGN SUBJECT	UNIT	C = 130	C = 140	C = 150
PUMP DESIGN FLOW	L/s	400.0	400.0	400.0
FORCEMAIN DIAMETER	mm	400	400	400
VELOCITY	m/s	2.00	2.00	2.00
FORCEMAIN LENGTH	m	495.0	495.0	495.0
FORCEMAIN HEAD LOSS	m	1.55	1.43	5.63
SUCTION LINE HEAD LOSS	m	N/A	N/A	N/A
DISCHARGE LINE HEAD LOSS, NR	m	1.76	1.74	2.87
TOTAL HEAD LOSS, NR	m	3.31	3.17	8.50
LOW WATER LEVEL WET WELL	m	94.09	94.09	94.09
HIGH WATER LEVEL WET WELL	m	95.50	95.50	95.50
FORCEMAIN END C/L ELEVATION	m	132.00	132.00	132.00
STATIC HEAD	MAX.	37.91	37.91	37.91
	MIN.	36.50	36.50	36.50
TOTAL DYNAMIC HEAD	MAX.	41.22	41.08	46.41
	MIN.	39.81	39.67	45.00

4.04 Surge Pressure on Force main

The following calculations are performed to determine the transient pressures likely with instantaneous pump stoppage.

$$\text{Maximum Water Hammer Pressure (m)} = P = \frac{a * V}{g}$$

where:

$$a = \text{Wave velocity} = \sqrt{\frac{K}{\rho (1 + \frac{K}{E} x \psi)}} \quad \text{m/s}$$

$\begin{aligned} V &= \text{velocity of water stopped} &= 2.00 & \text{m/s} \\ \rho &= \text{Density of fluid being conveyed} &= 998 & \text{kg/m}^3 \\ K &= \text{Bulk modulus of elasticity of fluid} &= 2.15E+09 & \text{N/m}^2 \\ E &= \text{Young's modulus of elasticity of pipe material; approx.} &= 1.00E+09 & \text{Pa (HDPE)} \\ \mu &= \text{Poisson's ratio for the pipe material} &= 0.40 & \text{dimensionless} \\ R_0 &= \text{pipe external radius} &= 0.219 & \text{m} \\ R_i &= \text{pipe internal radius} &= 0.178 & \text{m} \\ d &= \text{inside diameter of pipe} &= 0.357 & \text{m} \\ e &= \text{thickness of pipe wall} &= 0.0402 & \text{m} \\ g &= \text{acceleration caused by gravity} &= 9.806 & \text{m/s}^2 \\ Q &= \text{maximum flow in the conduit} &= 0.4000 & \text{m}^3/\text{s} \\ C &= 1 - \mu^2 &= 0.84 & \end{aligned}$

a) *Rigid Conduits*

$$\psi = 0.00 \quad a = 1468 \quad P = 299.36 \text{ m} = 425.69 \text{ psi}$$

Not Applicable

b) *Thick Walled Elastic Conduits Anchored Against Longitudinal Movement Throughout its Length*

$$\psi = 2 \times (1 - \mu) \times \frac{R_0^2 + R_i^2}{R_0^2 - R_i^2} - \frac{2\mu R_i^2}{R_0^2 - R_i^2}$$

$$= 4.40 \quad a = 454 \quad P = 92.61 \text{ m} = 131.69 \text{ psi}$$

Not Applicable

c) *Thick Walled Elastic Conduits Anchored Against Longitudinal Movement at the Upper End*

$$\psi = 2.00 \left(\frac{\frac{d}{e} + 1.5 R_i^2}{R_0^2 - R_i^2} \right) + \frac{\mu (R_0^2 + 3R_i^2)}{R_0^2 - R_i^2}$$

$$= 9.59 \quad a = 316 \quad P = 64.39 \text{ m} = 91.56 \text{ psi}$$

Not Applicable

d) *Thick Walled Elastic Conduits with Frequent expansion Joints*

$$\psi = 2.00 \left(\frac{R_0^2 + R_i^2}{R_0^2 - R_i^2} + \mu \right)$$

$$= 10.79 \quad a = 298 \quad P = 60.86 \text{ m} = 86.54 \text{ psi}$$

Not Applicable

e) *Thin Walled Elastic Conduits Anchored Against Longitudinal Movement Throughout its Length*

$$\psi = \frac{d}{e} (1 - \mu^2)$$

$$= 7.46 \quad a = 356 \quad P = 72.54 \text{ m} = 103.16 \text{ psi}$$

Not Applicable

f) *Thin Walled Elastic Conduits Anchored Against Longitudinal Movement at the Upper End*

$$\psi = \frac{d}{e} (1.25 - \mu)$$

$$= 8.89 \quad a = 327 \quad P = 66.76 \text{ m} = 94.93 \text{ psi}$$

Not Applicable

g) *Thin Walled Elastic Conduits with Frequent expansion Joints*

$$\psi = \frac{d}{e}$$

$$= 8.88 \quad a = 328 \quad P = 66.80 \text{ m} = 94.99 \text{ psi}$$

h) *Alternate Method*

$$a = \text{Wave velocity} = \sqrt{\frac{K}{\rho (1 + C \frac{K}{E} x \frac{d}{e})}}$$

$$\mathbf{a = 356} \quad \mathbf{P = 72.54 \text{ m} = 103.16 \text{ psi}}$$

Therefore, pipe must handle a total pressure (working + surge) of:

total pressure rating = 400 psi OK 2758.0 kPa **No Surge Protection Needed**

5.0 Pump Curves

Pumping Station Piping Losses

Headloss in forcemain (not including Static Losses)

8.62 m

Where: $h_f = 8.620$ m

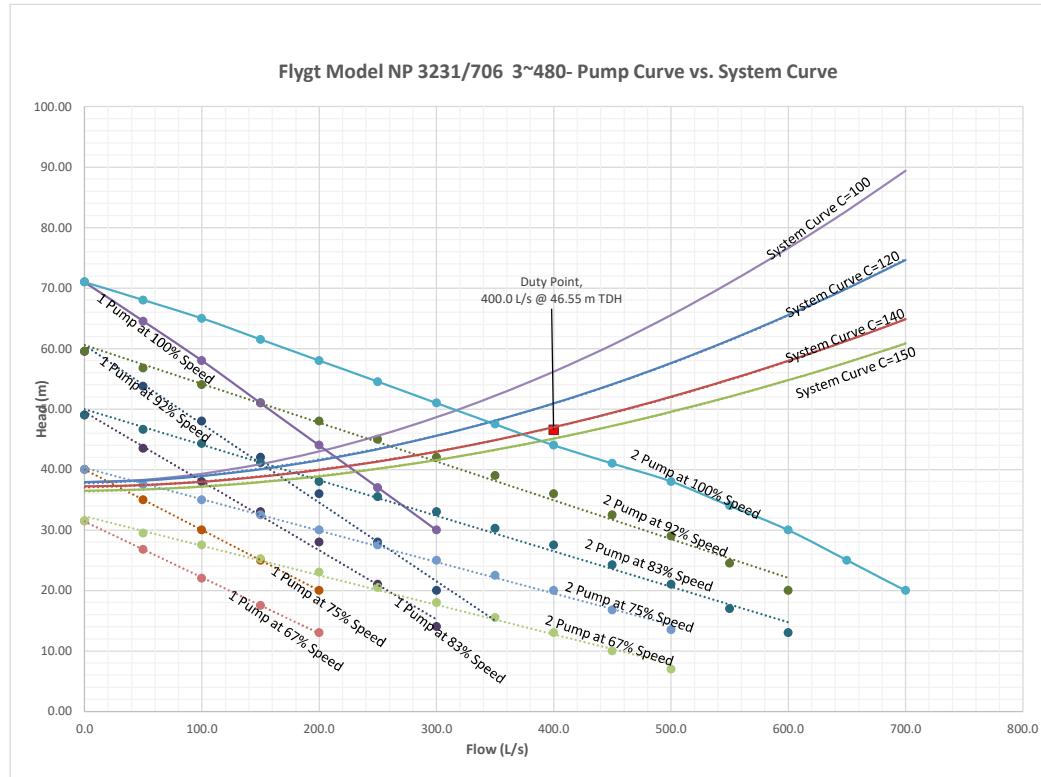
Equivalent length of HDPE pipe (L)

 $D = 0.3568$ m

Friction losses in piping:

 $h_f = (0.54 \pi (Q/(0.278 \cdot C \cdot D^{2.63})) \cdot L)$ $Q = 0.4000$ m³/s

L = 311.05 m


C = 150

Pipe Area = 0.100 m²

Length of Force main = 311.05 m HRL = 95.50 m
 Force main Discharge Elevation = 132.00 m MRL = 94.80 m
 LRL = 94.09 m

System Curve at PUMP [TDH (m)]															
Flow (L/s)	0	50	100	150	200	250	300	350	400	450	500	550	600	650	700
C Factor															
100	37.91	38.30	39.31	40.88	42.97	45.56	48.63	52.17	56.17	60.63	65.52	70.85	76.61	82.79	89.39
120	37.91	38.19	38.91	40.03	41.52	43.37	45.56	48.09	50.94	54.12	57.61	61.41	65.52	69.93	74.64
140	37.21	37.41	37.96	38.80	39.92	41.31	42.95	44.85	47.00	49.39	52.01	54.87	57.96	61.27	64.81
150	36.50	36.68	37.16	37.90	38.89	40.11	41.56	43.23	45.12	47.22	49.53	52.05	54.76	57.68	60.80

Flygt Model NP 3231/706 3~480															
Flow (L/s)	0	50	100	150	200	250	300	350	400	450	500	550	600	650	700
1 @ 100%	71.0	64.5	58.0	51.0	44.0	37.0	30.0								
2 @ 100%	71.0	68.0	65.0	61.5	58.0	54.5	51.0	47.5	44.0	41.0	38.0	34.0	30.0	25.0	20.0
3 @ 100%	71.0	69.0	67.0	65.0	63.0	60.5	58.0	56.0	54.0	51.8	49.5	46.9	44.3	42.1	40.0
1 @ 92%	59.5	53.8	48.0	42.0	36.0	28.0	20.0								
2 @ 92%	59.5	56.8	54.0	51.0	48.0	45.0	42.0	39.0	36.0	32.5	29.0	24.5	20.0		
1 @ 83%	49.0	43.5	38.0	33.0	28.0	21.0	14.0								
2 @ 83%	49.0	46.6	44.3	41.1	38.0	35.5	33.0	30.3	27.5	24.3	21.0	17.0	13.0		
1 @ 75%	40.0	35.0	30.0	25.0	20.0										
2 @ 75%	40.0	37.5	35.0	32.5	30.0	27.5	25.0	22.5	20.0	16.8	13.5				
1 @ 67%	31.5	26.8	22.0	17.5	13.0										
2 @ 67%	31.5	29.5	27.5	25.3	23.0	20.5	18.0	15.5	13.0	10.0	7.0				

