Environmental Study of a Military Installation and Six Waste Disposal Sites at Iqaluit, NWT

Volume One: Site Analysis

Prepared by the Environmental Sciences Group

Royal Roads Military College Victoria, British Columbia

© Department of Indian and Northern Affairs Canada & Environment Canada, March 1995

ACKNOWLEDGMENTS

SHIPP T

The project was supported by the Action on Waste component of the Arctic Environmental Strategy and Environment Canada's National Contaminated Sites Remediation Program. We would particularly like to acknowledge the confidence and support of several individuals in Indian and Northern Affairs Canada: Mr. Floyd Adlem, Director of Operations, Yellowknife; Mr. Scott Mitchell, Regional Manager, and Ms. Marie Adams, Project Manager, Action on Waste Office, Yellowknife; and Mr. J.M.A Theriault, Nunavut District Manager, Iqaluit. Thanks are also due to individuals from Environment Canada, Environmental Protection, Yellowknife: Ms. Laura Johnston, District Manager, and Mr. Ed Collins, Chief, Environmental Engineering Division.

This report, as with previous reports, is a product of the collective effort of the entire Environmental Sciences Group headed by Dr. Ken Reimer. Dawn Pier was the coordinating author and received extensive support from Dr. Ken Reimer and Marjorie Cahill (Overview), Dr. Wayne Ingham (Site Descriptions), Dr. Bill Dushenko (QA/QC), Dr. Matthew Dodd (Methods) and Dave Pier (history). The authors would particularly like to thank Jennifer Rogers for her editorial assistance and support. Thanks are due Dr. Doug Bright for discussions regarding the marine data and criteria and to Dr. Stephen Grundy for help with interpretation of the dioxin data. Deborah Reimer oversaw financial administration of this and the many other ESG projects. Doug Noonan and Wesa Gleave did an amazing job of purchasing and shipping equipment to the North. Pat Fortin and Sandra Englander efficiently tracked and entered into spread-sheets all the many thousand analytical results that were generated within the group. Dave Pier and Olivia Whitwell are greatly appreciated for their tireless work on the maps. Ian Bullen tackled the statistical analyses and Kathryn Johnston produced all the figures. Brad Deep assisted with getting material printed. Helena Poll formatted the final draft.

Dr. John Poland of the Analytical Services Unit at Queen's University in Kingston, Ontario conducted the sampling program and analyses necessary for the delineation of soils at the Upper Base contaminated with high levels of PCBs and created a cleanup plan for the many barrels located in the North 40 dump.

The field work was conducted by: Dawn and Dave Pier, Wayne Ingham, Sandra Englander, Stephen Grundy, and Wesa Gleave of the Environmental Sciences Group. Sampling in 1995 was conducted by Dawn Pier with the assistance of Paul Smith, DIAND, Iqaluit. Delineation of CEPA areas and barrel sampling was done by Dr. John

Poland, Chris Jofriet, Mary Andrews, Katherine Rossel, Andrew Gaskin, Sony Singh and Elizabeth Payette.

The analytical work was carried out by Axys Analytical Services and by the Analytical Services Unit of Queen's University. As in the past, the high standards of these organizations made the preparation of this report much easier.

EXECUTIVE SUMMARY

In the community of Iqaluit, waste disposal both from military activities and the community itself have resulted in the creation of several dump sites. As well, some of the former military facilities have been abandoned. The aesthetic impact of these sites is apparent, but despite several studies, no definitive picture of the environmental status of the area has emerged. This report, comprising two volumes, presents a comprehensive study of the current environmental status of each site and proposes realistic and practical plans for their cleanup.

Scientific investigations at six solid waste disposal sites and a former military installation in Iqaluit were carried out by the Environmental Sciences Group, in conjunction with the Analytical Services Unit at Queen's University, during the period from August 9 to 20, 1994. The environmental assessment of the sites addressed visible debris, landfills, and contaminated soil. The extent of chemical contamination has been measured and the results compared with those of previous studies. An emphasis has been placed on the evaluation of the potential for chemical contaminants to enter the Arctic food chain.

A concurrent study of historical ocean disposal, headed by Environment Canada with participation by the Environmental Sciences Group, provided useful information regarding chemical inputs by the sites to the adjacent marine environment.

In assessing the environmental status and recommending appropriate cleanup measures at the Iqaluit sites, an environmental basis for comparison was required. The most comprehensive model for the cleanup of an Arctic environment is that provided by the DEW Line Cleanup Project. Iqaluit, in addition to being similar environmentally to the DEW Line, also shares many aspects of its past. For these reasons, the assessments and the cleanup recommendations proposed for Iqaluit are based on objectives outlined in the protocol developed for the DEW Line - the DEW Line Cleanup Protocol.

Results of the current investigation indicate that the Upper Base was the most heavily contaminated of the sites assessed. PCBs were detected in soil at concentrations in excess of the level regulated under the Storage of PCB Material Regulations arising from the Canadian Environmental Protection Act. The total volume of soil affected approximates 60 m³ and was restricted to one area of the base. The Apex dump site was found to be leaching several contaminants, among which pesticides were detected at

concentrations exceeding the applicable criteria. All seven sites under investigation exhibited some contamination by inorganic elements requiring remediation under the DEW Line Cleanup Protocol.

Recommendations for the cleanup of the seven sites were made on a site-specific basis and were influenced by levels of contamination detected, whether contaminant migration was evidenced and the physical location of each site. The cleanup of PCB-contaminated soils at the Upper Base requires the most immediate action. Other contaminants, including pesticides present within the watershed of the town's water supply lake, should be addressed in a timely fashion. Measures to stop the chronic leaching of contaminants from the Apex Dump into the marine environment need to be instituted and stabilization of all the dump sites is required. The complete proposed cleanup plan, contained in this report, will restore the sites to an environmentally safe condition - one in which contaminants in soil, sediment and water do not pose a threat to living organisms (including humans) in the future.

Funding for this study was provided by the Arctic Environmental Strategy - Action on Waste and the National Contaminated Sites Remediation Program administered by Indian and Northern Affairs Canada and Environment Canada, respectively.

TABLE OF CONTENTS - VOLUME I: SITE ANALYSIS

	Acknowledgements	
	Executive Summary	ii
	Table of Contents	
	List of Maps	۰
	List of Figures	. xii
	List of Tables	xiv
	List of Photographs	. XV
	Glossary	viii
I.	Introduction	I-1
	A. Background.	
	B. Related Environmental Studies	
	C. Current Investigation	
	D. Structure of the Report	
п	Overview	1 1
ш.	A. Sampling Program	
	1. Sample Types/Locations	
	2. Sample Designations	
	3. Number of Samples Collected	
	4. Global Position Satellite SurveyingII	
	B. Analytical Program	
	C. Environmental Criteria.	
	D. Results	
	1. Upper BaseII	
	2. North 40 Dump	
	3. Dump Site #1 - Sylvia Grinnell Park Dump	
	4. Dump Site # 2 - Summer Camp Dump	
	5. Dump Site #3 - The New Landfill	
	6. Dump Site #4 - Municipal Dump	
	7. Dump Site #5 - ApexDumpII-2	
	8. Summary	
	0. Summur y	42

	E. Implementation	II-23
	1. Overview	II-23
	2. Specific Recommendations	II-23
I	II. BACKGROUND	III-1
	A. General	III-1
	1. Location	III-1
	2. History	III-1
	B. Previous Studies	III-8
	1. Municipal monitoring programs	III-8
	2. Waste Disposal Management Studies	III-9
	3. Environmental Studies	III-11
	4. Literature Reviews	III-14
П	V. CLEANUP PROTOCOL	IV-1
	A. Introduction	
	1. Defining Environmental Objectives for the Arctic	IV-1
	2. How is Environmental Impact Assessed?	
	B. Development of the DEW Line Cleanup Protocol	
	1. The DEW Line	
	2. Environmental Studies	
	3. Updates to the Protocol	IV-6
	4. General Protocol	IV-7
	C. Overview of the DEW Line Cleanup Protocol	IV-7
	1. Visible Debris	IV-8
	2. Landfills	IV-12
	3. Chemical Contamination	IV-13
	D. Other Criteria	IV-17
	1. Background Criteria	IV-17
	2. Canadian Council of Ministers of the Environment Criteria	IV-18
	3. Provincial and Territorial Criteria	IV-18
	4. Foreign Criteria	IV-19
	5. Environmental Regulations	
	Annex A: DEW Line Clean Up (DLCU) Protocol	
	Annex B: DEW Line Clean Up (DLCU) Barrel Protocol	

Annex C: Canadian Council of Ministers of the Environment (CCME) Assessment and
Remediation Criteria for Soil and Water
Annex D: Canadian Sediment Quality Guidelines (Including Draft Interim Marine
Sediment Quality Guidelines and Draft Interim Freshwater Sediment Quality
Guidelines)
Annex E: Effluent Quality Criteria
V. RESULTS AND RECOMMENDATIONS
A. Background Contaminant Concentrations in Soils and Plants
1. GeneralV-3
2. Sampling Program
3. Analytical Results V-4
i. Inorganic Elements
ii. Polychlorinated Biphenyls (PCBs)
B. Upper Base
1. General
2. Results of Previous Studies
3. Current Sampling Program
4. Analytical Results
i. Pole Vault Building 222
ii. Communications Building S-28
iii. Main Site
iv. Upper Base Landfill
v. Upper Base Outfall
vi. Lake Geraldine Watershed
5. Cleanup RecommendationsV-75
C. North 40 Dump
1. GeneralV-78
2. Results of Previous Studies
3. Current Sampling ProgramV-86
4. Analytical Results
i. Inorganic Elements
ii. Polychlorinated Biphenyls (PCBs)
iii. Other Organic Contaminants
in Demale V 02

	5. Cleanup Recommendations	V-93
D	. Dump Site #1: Sylvia Grinnell Park Dump	V-96
	1. General	V-96
	2. Results of Previous Studies	V-101
	3. Current Sampling Program	V-104
	4. Analytical Results	V-107
	i. Inorganic Elements	V-107
	ii. Polychlorinated Biphenyls (PCBs)	V-110
	iii. Other Organic Contaminants	V-110
	5. Cleanup Recommendations	V-111
E.	Dump Site #2: Summer Camp Dump	V-116
	1. General	V-116
	2. Results of Previous Studies	V-119
	3. Current Sampling Program	V-122
	4. Analytical Results	V-124
	i. Inorganic Elements	V-124
	ii. Polychlorinated Biphenyls (PCBs)	V-125
	iii. Other Organic Contaminants	V-125
	5. Cleanup Recommendations	V-126
F.	Dump Site #3: Site of the New Municipal Landfill	V-128
	1. General	V-128
	2. Results of Previous Studies	V-133
	3. Current Sampling Program	V-136
	4. Analytical Results	V-138
	i. Inorganic Elements	V-138
	ii. Polychlorinated Biphenyls (PCBs)	V-141
	iii. Other Organic Contaminants	V-141
	5. Cleanup Recommendations	V-143
G.	Dump Site #4: Municipal Dump	V-148
	1. General	V-148
	2. Results of Previous Studies	V-149
	3. Current Sampling Program	V-153
	4. Analytical Results	V-153
	i. Inorganic Elements	V-153
	ii. Polychlorinated Biphenyls (PCBs)	V-157
	iii Other Organic Contaminants	V-157

5. Cleanup Recommendations	V-158
H. Dump Site #5: Apex Dump	V-161
1. General	V-161
2. Results of Previous Studies	V-167
3. Current Sampling Program	V-168
4. Analytical Results	V-170
i. Inorganic Elements	V-170
ii. Polychlorinated Biphenyls (PCBs)	V-173
iii. Other Organic Contaminants	V-174
5. Cleanup Recommendations	V-175
Annex A: UMA Engineering Plans for the Municipal Landfill Construct	ted in Dump
Site #3	V-179
VI. REFERENCES	VI-1

LIST OF MAPS

Map I-1: Abandoned Military Installation and Six Solid Waste Disposal Sites near
Iqaluit
Map III-1:Location of Iqaluit, NWT
Map III-2: Locations of the Military Installation and Waste Disposal Sites Near
IqaluitIII-7
Map IV-1: Location of the 21 Sites under DND Administration
Map V-1: Locations of the Military Installation and Waste Disposal Sites Near Iqaluit .V-2
Map V-2: Upper Base
Map V-3: Detail of the Main Site, Upper Base
Map V-4: Delineation Sample Locations at Pole Vault Building 222, Upper Base V-22
Map V-5: Delineation Sample Locations at Building S-28, Main Site, Upper Base V-23
Map V-6: Assessment Sample Locations at Pole Vault 222 Building, Upper Base V-26
Map V-7: Assessment Sample Locations at the Main Site, Upper BaseV-30
Map V-8: Outlying Assessment Sample Locations at the Upper Base
Map V-9: Locations of Additional Samples Collected Near Iqaluit
Map V-10: Samples Exceeding the Cleanup Criteria, Pole Vault 222 Building, Upper
Base
Map V-11: PCB Concentrations in Delineation Samples and Three Assessment Samples,
Pole Vault Building 222, Upper BaseV-42
Map V-12: PCB Concentrations in Delineation Samples, Building S-28, Upper Base .V-53
Map V-13: Samples Exceeding the Cleanup Criteria, Main Site, Upper BaseV-58
Map V-14: Sample Locations at the North 40 Dump Site
Map V-15: Samples Exceeding the Cleanup Criteria, North 40 DumpV-90
Map V-16: Sample Locations at Dump Site #1, the Sylvia Grinnell Park DumpV-106
Map V-17: Samples Exceeding the Cleanup Criteria, Dump Site #1V-109
Map V-18: Sample Locations at Dump Site #2, West 40 Summer Camp AreaV-123
Map V-19: Dump Site #3 in August 1994 Prior to Construction of the New Municipal
Landfill. V-130
Map V-20: Dump Site #3 including the New Municipal Landfill and the Historical USAF
DumpV-132
Map V-21: Sample Locations at Dump Site #3, Site of the New Municipal LandfillV-137
Map V-22: Samples Exceeding the Cleanup Criteria, Dump Site #3
Map V-23: Sample Locations at Dump Site #4, the Igaluit Municipal DumpV-155

Map V	7-24:	Sample Exceeding the Cleanup Criteria, Dump Site #4V	-156
Map V	7-25:	Sample Locations at Dump Site #5, the Apex DumpV	-169
Map V	7-26: 5	Samples Exceeding the Cleanup Criteria, Dump Site #5V	-172

LIST OF FIGURES

Figure II-1: PCB Mean and Maximum in Soil for Areas at the Upper BaseII-37
Figure II-2: Copper Mean and Maximum in Soil for Areas at the Upper BaseII-37
Figure II-3: Cadmium Mean and Maximum in Soil for Areas at the Upper BaseII-38
Figure II-4: Lead Mean and Maximum in Soil for Areas at the Upper BaseII-38
Figure II-5: Zinc Mean and Maximum in Soil for Areas at the Upper BaseII-39
Figure II-6: Arsenic Mean and Maximum in Soil for Areas at the Upper BaseII-39
Figure II-7: Copper Mean and Maximum in Soil collected at the Dump SitesII-40
Figure II-8: Cadmium Mean and Maximum in Soil collected at the Dump SitesII-40
Figure II-9: Lead Mean and Maximum in Soil collected at the Dump Sites II-41
Figure II-10: Zinc Mean and Maximum in Soil collected at the Dump Sites II-41
Figure V-1: Mean and Maximum Concentrations of Inorganic Elements and PCBs in
Background SoilV-4
Figure V-2: Mean and Maximum Concentrations of Inorganic Elements and PCBs in
Background VegetationV-6
Figure V-3: Mean and Maximum Concentrations of Inorganic Elements and PCBs in
Building PV222 SoilV-36
Figure V-4: Mean and Maximum Concentrations of Inorganic Elements and PCBs in
Building PV222 VegetationV-39
Figure V-5: Mean and Maximum Concentrations of Inorganic Elements and PCBs in
Communications Building S-28 Soils
Figure V-6: Mean and Maximum Concentrations of Inorganic Elements and PCBs in Soils
Collected at the Main SiteV-56
Figure V-7: Mean and Maximum Concentrations of Inorganic Elements and PCBs in
Vegetation Collected at the Main Site
Figure V-8: Mean and Maximum Concentrations of Inorganic Elements and PCBs in Soils
Collected at the Upper Base LandfillV-66
Figure V-9: Mean and Maximum Concentrations of Inorganic Elements and PCBs in Soils
Collected in the Upper Base Outfall
Figure V-10: Mean and Maximum Inorganic Element and PCB Concentrations in Soils
Collected at the North 40 DumpV-88
Figure V-11: Mean and Maximum Inorganic Element and PCB Concentrations in Soils
Collected at Dump Site #1V-107

Figure V-12: Mean and Maximum Inorganic Element and PCB Concentrations in S	soils
Collected at Dump Site #2.	V-124
Figure V-13: Mean and Maximum Inorganic Element and PCB Concentrations in S	oils
Collected at Dump Site #3.	V-138
Figure V-14: Mean and Maximum Inorganic Element and PCB Concentrations in S	oils
Collected at Dump Site #4.	V-154
Figure V-15: Mean and Maximum Inorganic Element and PCB Concentrations in S	oils
Collected at Dump Site #5.	V-171

LIST OF TABLES

Table II-1: Site Designations	II-27
Table II-2: Codes Used for Sample Designation	II-28
Table II-3: Sampling Program by Sample Type	II-29
Table II-4: Analytical Program by Sample Type	II-30
Table II-5: Analytical Program by Site	II-31
Table II-6: Vegetation Collected for Analysis	II-32
Table II-7: Samples Exceeding Inorganic Element Cleanup Criteria	II-33
Table II-8: Samples Exceeding Aroclor PCB Cleanup Criteria	II-34
Table II-9: Samples Exceeding Pesticide Cleanup Criteria	II-35
Table II-10: Samples Exceeding Dibenzodioxin and Dibenzofuran Cleanup Cri	teriaII-36
Table IV-1: The DEW Line Cleanup Criteria (DCC)a	IV-16
Table IV-2: CCME Interim Criteria for Acid/Base/Neutral (ABNs) Priority Po	llutants for
Soils	IV-20
Table IV-3: List of Criteria for Pesticides in Soils	IV-22
Table IV-4: List of Criteria for Total Hydrocarbons in Soils	IV-23
Table V-1: Impact Criteria for Inorganic Elements in Plants Collected near Iqa	luitV-6

LIST OF PHOTOGRAPHS

Photograph V-1: Aerial view of Pole Vault Building 222 located to the southeast of the
Main Site at the Upper BaseV-1
Photograph V-2: Communications Building S-28 situated on the southeast edge of the
Main Site, Upper BaseV-1
Photograph V-3: View from the east of the Upper Base including Pole Vault Building
222, Communications Building S-28 and the Main Site
Photograph V-4: Aerial view of the Main Site at the Upper Base. Long-range radar were
housed in goedesic domes formerly situated atop the rectangular towersV-13
Photograph V-5: This residence is an example of the items scavenged from the Upper
Base
Photograph V-6: The easternmost room of Pole Vault Building 222 where electrical
equipment containing capacitors was observed
Photograph V-7: View of the westernmost room of Pole Vault Building 222, where
transformers and capacitors were found
Photograph V-8: The floor of the westernmost room in Pole Vault Building 222, littered
with debris and covered with an oily coatingV-28
Photograph V-9: The burnt interior of Communications Building S-28 where the remains
of electrical equipment were foundV-28
Photograph V-10: Building remains scattered around the Main SiteV-29
Photograph V-11: The interiors of a typical building at the Main Site, littered with debris
and equipment. V-29
Photograph V-12: View of the northwest toe of the Upper Base LandfillV-32
Photograph V-13: The lushly vegetated lower area of the Upper Base OutfallV-32
Photograph V-14: Sample G5913 contained elevated concentrations of copper, lead and
zincV-49
Photograph V-15: The soil in the large black stain immediately south of Pole Vault
Building 222 contains PCBs at concentrations in excess of 50 ppmV-49
Photograph V-16: Soils and vegetation collected from drainage off the northeast corner of
Pole Vault Building 222 contained PCBs in excess of the criteriaV-50
Photograph V-17: Soil sample G5925 was collected in this stained seasonal drainage
catchment, and contained elevated concentrations of PAHsV-50
Photograph V-18: Soil on the east side of Building S-28 contains elevated concentrations
of dioxinsV-55

Photograph V-19: High concentrations of copper, lead, zinc and arsenic were found in
rust and debris collected from the floor of the Power Plant tank (G5955) V-63
Photograph V-20: G5954A/B collected below the Heating Plant exhaust hoods contained
zinc at concentrations exceeding the criteriaV-63
Photograph V-21: Soil sample G5939, collected on the west side of the POL tank pad,
contained elevated concentrations of lead
Photograph V-22: Elevated levels of lead and PCBs were detected outside Tower #3.V-64
Photograph V-23: Elevated concentrations of pesticides were found in soil collected in
this low wet area at the north end of the Upper Base (G5972)V-65
Photograph V-24: Sample O5903, collected at the base of the outfall contained elevated
concentrations of pesticidesV-72
Photograph V-25: Barrels containing leftover runway asphalt at the southwest end of the
North 40 Dump. V-81
Photograph V-26: Old rusted and partially crushed barrels make up a large proportion of
the wastes in the North 40 Dump
Photograph V-27: Darkly stained soils are common in the region where barrels with
contents are located. Note free product pooling on the surface of the soilV-82
Photograph V-28: Pooling of water amongst the waste deposited in the North 40 is a
considerable problem
Photograph V-29: Soil sample L6004 contained elevated levels of copperV-95
Photograph V-30: Soil sample L6030, collected in a stain amongst the barrels in Area B,
contained elevated levels of leadV-95
Photograph V-31: Dump Site #1 as viewed from the south bank of the Sylvia Grinnell
River. Note the bedrock outcrop running parallel to the dump face
Photograph V-32: View of the toe of Dump Site #1, showing the accumulated debris at
the base of the slopeV-99
Photograph V-33: View to the west from within Dump Site #1. Note the steep angle of
the slope and the piles of barrels stacked along the toe of the dumpV-100
Photograph V-34: Sample L6055 was collected from the drainage channel running
through the vehicle pile and contained elevated levels of lead and PCBsV-114
Photograph V-35: Sample L6057 was collected from the small stained area and contained
elevated levels of lead and zincV-114
Photograph V-36: Sample L6058, collected from the black stain, contained elevated levels
of zincV-115
Photograph V-37: The area littered with debris in Dump Site #2. Note that water in the
vicinity has an oily sheen on its surfaceV-118

Photograph V-38: View to the north of the large drainage ditch on the east side of Dum Site #2	
Photograph V-39: The New Municipal Landfill as seen from the west	
Photograph V-40: L6046 and WF6001 containing elevated levels of zinc, phenol and	
PAHs and zinc, respectively, were collected in this drainage catchment V-1	146
Photograph V-41: Ground water sample GW6000 was collected from UMA borehole p	
#13, pictured here, and contained elevated concentrations of copperV-1	
Photograph V-42: Water sample WF6002, collected from the drainage catchment pictur	
here, contained elevated levels of PCBsV-1	
Photograph V-43: Dump Site #4 overlooking the foreshore flats of Koojesse Inlet as see	
from the town of IqaluitV-1	
Photograph V-44: Soil Sample L6041 collected in drainage off the east side of Dump Si	
#4 contained elevated levels of copperV-1	160
Photograph V-45: Soil Sample L6040 collected in a well-defined drainage path in the	
eastern half of Dump Site #4 contained pesticides and elevated levels of PCBsV-1	160
Photograph V-46: View of the face of Dump Site #5, showing a large accumulation of	
bulk wastes at the toe of the dumpV-1	64
Photograph V-47: Extensive erosion of the toe of Dump Site #5 by tidal action and ice	
scouringV-1	65
Photograph V-48: Metallic wastes, including a vehicle body, within the limit of high	
tideV-1	65
Photograph V-49: Electrical equipment previously buried within the slope, deposited on	
the beach at the east end of the dumpV-1	66
Photograph V-50: The intertidal zone south of the dump, littered with a great deal of	
debrisV-1	66
Photograph V-51: Soil Sample L6054 collected at the eastern end of Dump Site #5	
contained elevated concentrations of lead and zinc	77
Photograph V-52: Sample L6052 contained elevated concentrations of pesticides V-1	78
Photograph V-53: Close-up of sample L6052 showing evidence of subsurface	
drainageV-1	78

GLOSSARY AND LIST OF ABBREVIATIONS

Various abbreviations and terms are used throughout the report. These include;

ABN = Acid/Base/Neutral Extractable (semi-volatile organic priority

pollutants)

AES = Arctic Environmental Strategy

anthropogenic = derived directly or indirectly from human activity

As = Arsenic

ASU = Analytical Services Unit (Queens University, Kingston, Ont)

BCMOE = British Columbia Ministry of Environment

Be = Beryllium

CCME = Canadian Council of Ministers of the Environment

Cd = Cadmium
Co = Cobalt
Cr = Chromium
Cu = Copper

DCC = DEW Line Cleanup Criteria

DDT = Dichlorodiphenyltrichloroethane

DEW = Distant Early Warning

DIAND = Indian and Northern Affairs Canada
DND = Department of National Defence

DNWSO = Directorate (or Director) North Warning System Office

EC = Environment Canada

ECMSQG = Environment Canada Marine Sediment Quality Guidelines

EPA = Environmental Protection Agency (US)

ESG = Environmental Sciences Group

FAL = Freshwater Aquatic Life

flora = vegetation

FOL = Forward Operating Location forb = wildflower or flowering herb

GBM = Geodetic Bench Mark
GC = Gas Chromatography

GC/ECD = Gas Chromatography/Electron Capture Detection

GC/MS = Gas Chromatography/Mass Spectroscopy
GNWT = Government of the Northwest Territories

GLOSSARY AND LIST OF ABBREVIATIONS cont'd

GPS = Global Positioning Satellite

Hazmat = Hazardous Material
HCB = Hexachlorobenzene
HCH = Hexachlorocyclohexane

High res = High resolution (usually in association with mass spectrometry)

Hg = Mercury

HRGC = High Resolution Gas Chromatography
HRMS = High Resolution Mass Spectrometry
HS-1 = NRC Marine Reference Standard

I-site = Intermediate DEW Line site

leachate = substances (usually in solution) migrating from a more concentrated

source.

LRR = Long Range Radar

MENVIO = Ministère de l'Environnement du Québec

Mn = Manganese Mo = Molybdenum

MOU = Memorandum of Understanding

NA = Not analyzed due to a coeluting interference

NCSCS = National Contaminated Sites Classification System

NBS = National Bureau of Standards (US)

NCSRP = National Contaminated Sites Remediation Program

NDR = Not reliably detected

Ni = Nickel

NIST = National Institute of Standards and Technology

NM = Not Measured

NRC = National Research Council NWS = North Warning System

NWSO = North Warning System Office

NWT = Northwest Territories

permafrost = ground remaining frozen through two or more consecutive winters

and intervening summer.

PAH = Polycyclic Aromatic Hydrocarbon

Pb = Lead

PCA = Principal Components Analysis

PCB = Polychlorinated Biphenyl

GLOSSARY AND LIST OF ABBREVIATIONS cont'd

PCDDs Polychlorinated dibenzodioxins

PCDFs Polychlorinated dibenzofurans

POL = Petroleum, Oil, Lubricants

ppb = parts per billion; ng/g that is, nanograms of substance per gram of

soil or sediment sample; µg/L that is, micrograms of substance per

litre of aqueous solution.

ppm = parts per million; μg/g that is, microgram of substance per gram of

soil or sediment sample.

ppt = parts per trillion; ng/L in aqueous solutions.

PV = Pole Vault

PWC = Public Works Canada

RRMC = Royal Roads Military College

Se = Selenium

SRR = Short Range Radar

TEL = Threshold Effect Level

TPH = Total Petroleum Hydrocarbons

TSS = Total Suspended Solids

UMA = UMA Engineering Ltd.

USAAF = United States Army Air Force

USAF = United States Air Force

US EPA = United Stated Environmental Protection Act

Zn = Zinc