

Geotechnical Investigation Sewage Lagoon Hamlet of Arctic Bay, Nunavut

Prepared for:

Government of Nunavut

Department of Community and Government Services

Project Management Division – Baffin Region

Trow Associates Inc.

154 Colonnade Road South Ottawa, Ontario K2E 7J5 Telephone: (613) 225-9940 Facsimile: (613) 225-7337 E-mail: ottawa@trow.com

Web Site: www.trow.com

OTGE00019054B April 24, 2008

Executive Summary

A geotechnical investigation was undertaken at the site of the existing sewage lagoon and the proposed sewage lagoon in the Hamlet of Arctic Bay, Nunavut. This work was requested by the Government of Nunavut on July 18, 2007.

It is proposed to construct a new lagoon approximately 800 m northwest of the existing lagoon and to decommission the existing lagoon.

The investigation has revealed that the berms of the existing lagoon comprise of sand and gravel fill which extends to 1.2 m to 1.7 m. The fill is underlain by silty sand to sandy gravel.

The area of the proposed new lagoon is located in an approximately 70 m to 90 m wide and 7 to 12 m deep valley. A pond is located in part of the area proposed for construction of the lagoon. It is proposed to construct two berms (northwest and southeast) across the valley to create the sewage lagoon. The investigation has revealed that the natural soils are permeable, ice rich layered sand and gravel, silty sand and silty sand till which extend to the bedrock surface. Ice layers, which varied in thickness from 0.5 m to 3.7 m were encountered in the majority of the boreholes drilled at the site. The overburden soils close to the toe of the southwest wall of the valley are underlain by Galbro bedrock at a depth of 1.6 m (elevation 95.8 to 95.9 m). The overburden soils close to the toe of the northeast valley wall are underlain by Quartzate bedrock at a depth of 1.5 m to 2.5 m (Elevation 94.4 m to 94.9 m). Galbro bedrock was encountered at 3.8 m depth (Elevation 93.2 m) in Borehole 8 drilled in the bottom of the valley. However, bedrock was not encountered in any of the other boreholes (Boreholes 5, 7, 9 and 11) drilled in the valley bottom to a depth of 3.7 m to 5.5 m (Elevation 91.3 m and 93.5 m). These observations indicate that the bedrock in the bottom of the valley likely slopes down towards the northwest and southeast from the high point at Elevation 93.2 m in the vicinity of Borehole 8.

The investigation has revealed that the soils on the site are ice rich. Therefore, construction of conventional berms for the lagoons would experience large settlements due to thaw of the underlying soils. Also, the on-site soils are permeable and as such the lagoons would have to be lined. Installation of synthetic liners in lagoons constructed on ice rich soils are likely to rupture because of the anticipated large settlements. The exception to this is if the soils underlying the berms are maintained in a constantly frozen state. This may be achieved by installation of thermosyphons. In this case, the berms would not experienced large settlements due to permafrost degradation. However, the lagoons would have to be lined to prevent excessive seepage out of the lagoons. The lagoons may be lined fully or liner incorporated in the berms and sealed into the permafrost. An alternative would be to construct the berms as 'ice dams' i.e. the soil in the core of the berms and the underlying ice rich soils are maintained in a permanently frozen state. In this case, the frozen soil would act as a liner.

It is recommended that a geothermal analysis should be performed to determine if agradation of the frost into the berms and the underlying natural soils can be achieved naturally or would require installation of thermosyphons.

Stability of slope analyses were performed to determine the steepest slopes of the berms that would be stable under prevailing conditions. The analyses assumed that the berms would either be lined or constructed as 'ice dams' and that in either case, the underlying foundation soils will be maintained in a constantly frozen state. If the berms are lined, seepage through the berms is not expected. The exception to this is if the liner leaks or if any of the joints fail. If the berms are constructed as 'ice dams', the central core of the berms would be maintained in a constantly frozen state. However, the outside and inside slopes of the berms would be subjected to seasonal freezing and thawing. For these reasons, the inside slopes of the berms were analysed for completely submerged case whereas the outside slopes of the berms were analysed for steady stated seepage conditions. Static as well as seismic loading were considered for each case.

The analysis revealed that the inside and outside slopes of the southeast berm would be stable when constructed at a slope of 3H:1V. An upstream and downstream slope of 3H:1V would meet the requisite factor of safety for the northwest berm.

The stability of slope analysis has also revealed that if the berms are to be designed for rapid drawdown condition, inside slope of 3.5 H:1V would be required for the southeast berm and 4H:1V for the northwest berm.

The above and other related considerations have been discussed in greater detail in the report.

Table of Contents

Exe	ecutive Summary			
1.0	Introduction	1		
2.0	Procedure	2		
	2.1. Drilling and Soil Sampling	2		
3.0	Site and Soil Description	3		
	3.1. Existing Lagoon	3		
	3.2. Proposed Lagoon	4		
4.0	Discussion	7		
5.0	Slope Stability Analysis	8		
6.0	Rapid Drawdown Condition	11		
7.0	Erosion Protection	12		
8.0	General Comments	13		

Figures

Figure No. 1 and 1A:

Borehole Location Plan
Figure Nos. 2 to 13:

Borehole Logs
Figure Nos. 14 to 21:

Grain Size Analyses
Figure Nos. 22 to 45:

Slope Stability Assessment

1.0 Introduction

A geotechnical investigation was undertaken at the site of the existing sewage lagoon and at the site of the proposed sewage lagoon in the Hamlet of Arctic Bay, Nunavut. This work was authorized by the Government of Nunavut on July 18, 2007.

It is proposed to construct a new sewage lagoon approximately 800 m northwest of the existing lagoon. The lagoon is to be located in an existing valley. The existing lagoon is to be decommissioned subsequent to construction of the new lagoon.

Trow terms of reference for the geotechnical investigation were as follows:

- (1) Establish geotechnical profile of the existing lagoon berm;
- (2) Establish the geotechnical profile at the location of the proposed lagoon; and
- (3) Make recommendations regarding the design and construction of the new lagoon from a geotechnical perspective.

The comments and recommendations given in this report are based on the assumption that the above-described design concept will proceed into construction. If changes are made either in the design phase or during construction, this office must be retained to review these modifications. The result of this review may be a modification of our recommendations or it may require additional field or laboratory work to check whether the changes are acceptable from a geotechnical viewpoint.

2.0 Procedure

2.1. Drilling and Soil Sampling

The fieldwork for the geotechnical investigation was undertaken between August 25 and August 30, 2007 with a Hilti drill rig. The fieldwork was supervised by a representative of Trow Associates Inc. (Trow) on a full time basis.

The fieldwork consisted of drilling 12 boreholes to depths varying between 1.65 m and 5.5 m. The locations of the boreholes are shown on Site Plan, Figures 1 and 1A.

The boreholes were initially advanced by performing continuous standard penetration tests and retrieving the soil samples. However, the boreholes could only be advanced by this method in unfrozen soil to a depth of 0.6 m to 1.7 m below which frost was encountered. The boreholes were then cased and advanced by core drilling techniques with the Hilti drill rig. Most of the boreholes were drilled by dry coring. Water was used in cases where the core barrel could not be advanced by dry coring. During core drilling, a careful record of colour of wash water, wash water return and any sudden drops of the drill rods was kept.

Thermisters were installed in Boreholes 7 and 11 to monitor the ground temperatures.

Water level observations were made in the boreholes during the course of the fieldwork. All the soil samples were visually examined in the field for textural classification, preserved in plastic bags and identified. The boreholes were logged. Similarly, the rock core was placed in the core boxes, identified and logged. On completion of drilling, all the soil samples and rock core were transported to the Trow laboratory in the City of Ottawa.

The locations and elevations of the boreholes were established by representative of Trow Associates Inc. The elevations of the borehole refer to the Geodetic datum.

All the soil samples and rock core were visually examined in the laboratory by a geotechnical engineer and borehole logs prepared. The engineer also assigned the laboratory testing. The laboratory testing consisted of performing natural moisture content on all the samples and grain size analysis, on selected soil samples.

3.0 Site and Soil Description

Arctic Bay is located on the Borden Peninsula of Baffin Island, Nunavut (Figure 1). This northern community is connected by a 21 km road to the mining Town of Nanisivik. The present sewage lagoon, which services approximately 640 residents, is located 2.5 km west of the community of Arctic Bay.

The proposed lagoon will be located approximately 800 metres northwest of the existing lagoon in a valley. The ground surface elevations in the bottom of the valley vary from Elevation 97.0 m to 97.5 m approximately at borehole locations. The ground surface on the northeast side of the valley rises to Elevation 102 m at the north end to Elevation 110 m at the south end. The ground surface on the southwest side of the valley rises to Elevation 105 m approximately. It is proposed to construct two berms across the valley to create the lagoon. The top of the berms would be at Elevation 103.0 m approximately. The height of the berms will therefore vary from 6.0 m to 6.5 m.

A detailed description of the geotechnical conditions encountered in the eleven boreholes drilled are given on Borehole Logs, Figures 2 to 13 inclusive. The borehole logs and related information depict subsurface conditions only at the specific locations and times indicated. Subsurface conditions and water levels at other locations may differ from conditions at the locations where sampling was conducted. The passage of time also may result in changes in the conditions interpreted to exist at the locations where sampling was conducted. Boreholes were drilled to provide representation of subsurface conditions as part of a geotechnical exploration program and are not intended to provide evidence of potential environmental conditions.

3.1. Existing Lagoon

Borehole 1 to 3 inclusive were drilled on top of the existing ice pack holding area. This lagoon is to be decommissioned once the new lagoon has been constructed and is operational. A review of the borehole logs (Figures 2 to 4) indicates that the surficial soil in Boreholes 1 to 3 is fill placed for construction of the berms. It is estimated that the fill extends to a depth of 1.2 m in Borehole 1 to 2 and to the entire depth investigated in Borehole 3 (1.7 m). The fill comprises of sand and gravel to sandy gravel with some silty sand layers. The results of a grain size analyses performed on samples of the fill from Borehole 1 is shown on Figure 14. A review of this figure indicates that the composition of the fill consist of 7 percent clay, 5 percent silt, 30 percent sand and 58 percent gravel. The permeability of the fill was estimated as 2.5 x 10⁻⁵ cm/sec (Table 1).

	Table 1		
Estimated	Permeability	of On-site	Soils

Borehole #	Depth (m)	Soil Description	Estimated Permeability (cm/sec)	Figure No.
1	0.6 – 1.2	Sandy gravel, some silt (fill)	2.5 x 10 ⁻⁵	14
2	1.2 – 1.8	Gravel, some sand	1.6 x 10 ⁻³	15
5	0 – 0.6	Silty sand, some clay (topsoil)	<1 x 10 ⁻⁶	16
8	0.3 - 0.6	Sandy gravel, some silt	4 x 10 ⁻⁴	17
12	0.6 – 1.2	Sand and gravel, some silt	1.7 x 10 ⁻⁴	18
10	1.3 – 1.6	Sand, some silt and gravel	3.6 x 10 ⁻⁵	19
11	1.2 – 1.5	Gravelly sand, some silt, trace clay	4 x 10 ⁻⁶	20
9	0.6 – 1.2	Silty gravelly sand	1.2 x 10 ⁻⁵	21

The fill in Borehole 1 is underlain by silty sand to the entire depth investigated (1.65 m) whereas sandy gravel underlies the fill in Borehole 2 and extends to the entire depth investigated (1.8 m). A grain size analysis performed on the sandy gravel stratum from Borehole 2 yielded a soil composition of 3 percent clay, 8 percent silt, 16 percent sand and 73 percent gravel (Figure 15). The permeability of this stratum was estimated as 1.6 x 10⁻³ cm/sec. The permeability of the soil was estimated using Hazen's Formula*.

3.2. Proposed Lagoon

Boreholes 4 to 6 were drilled at the location of the proposed southeast berm whereas Boreholes 10 to 12 were located at the proposed location of the northwest berm. Boreholes 7 to 9 were located in the lagoon area (Figure 1A).

The area of the proposed lagoon contains 50 mm to 400 mm of topsoil. A grain size analysis performed on a sample of the topsoil from Borehole 5 revealed a soil composition of 15 percent clay, 29 percent silt, 49 percent sand and 7 percent gravel (Figure 16). The topsoil in Boreholes 5, 7, 8 and 12 is underlain by a sand and gravel stratum which extends to 1.2 m to 2.8 m depth (Elevation 94.2 m to 95.7 m). Two grain size analyses performed on this stratum are given on Figures 17 and 18. A review of these figures indicates that this stratum contains 4 to 5 percent clay, 11 to 16 percent silt, 34 to 35 percent sand and 45 to 50 percent gravel. Its permeability varies from 4×10^{-4} cm/sec to 1.7×10^{-4} cm/sec.

Hazen A (1892) "Physical Properties of sands and gravels with reference to their use in filtration", Rept. Mass. State Board of Health.

The topsoil in Boreholes 6 and 11 is underlain by sandy gravel to gravelly sand to 0.6 m to 1.5 m depth (Elevation 95.3 m to 96.3 m). This stratum contains 4 percent clay, 16 percent silt, 35 percent sand and 45 percent gravel (Figure 20). Its permeability is 4×10^{-6} cm/sec.

The topsoil in Boreholes 4 and 10, sand and gravel in Borehole 5 and the sandy gravel in Borehole 6 are underlain by silty sand to 1.5 m to 1.6 m depth (Elevation 95.3 m to 95.9 m). This stratum contains 5 percent clay, 21 percent silt, 57 percent sand and 17 percent gravel (Figure 19). Its permeability is in the order of 3.6×10^{-5} cm/sec.

A layer of ice was encountered underlying the silty sand in Boreholes 5 and 6, sand and gravel in Borehole 8, 11 and the topsoil in Borehole 9. The ice layer extends to 1.2 m to 5.2 m depth (Elevation 91.6 m to 96.0 m).

The ice in Boreholes 5, 6, 9 and 11 is underlain by silty sand till to 2.5 m to 5.5 m depth (Elevation 91.3 m to 94.4 m). This stratum contains 7 percent clay, 25 percent silt, 41 percent sand and 27 percent gravel (Figure 21). The permeability of the till was computed as 1.7×10^{-4} cm/sec.

The silty sand in Boreholes 4 and 10 and the ice in Borehole 8 are underlain by Gasbro bedrock to the entire depth investigated i.e. 3.5 m to 5.2 m (Elevation 91.8 m to 93.9 m). The bedrock is grey to black in colour and massive. It contains some inclined fractures. A Total Core Recovery (TCR) and Rock Quality Designation (RQD) of 40 to 100 percent and 0 to 83 percent respectively was encountered when core drilling the bedrock. On this basis, the bedrock quality may be described as very poor to good quality.

The silty sand till in Borehole 6 and the sand and gravel stratum in Borehole 12 are underlain by Quartzite bedrock. The bedrock is beige to grey in colour and contains calcite intrusions. It is of very poor quality as indicated by Total Core Recovery (TCR) and Rock Quality Designation (RQD) of 40 to 100 percent and 0 percent respectively.

Thermisters were installed in Boreholes 7 and 10 to monitor the ground temperatures. The measured ground temperatures have been tabulated on Table 2.

Table 2
Results of Ground Temperature Monitoring

Borehole #	Depth Below GS (m)	Temperatu	re Reading
Dolellole #	Depth Delow CO (III)	September 10, 2007	September 18, 2007
10	0	-1°C	-1°C
	0.5	-2°C	-2°C
	1.0	-3.2°C	-3°C
	1.5	-4.2°C	-4°C
	2.0	-5.1°C	-5°C
	2.5	-6.0°C	-5.6°C
	3.0	-6.7°C	-6.5°C
7	0.3	5.3°C	2°C
	0.8	5.1°C	1°C
	1.3	5.2°C	1°C
	1.8	1.4°C	0.5°C
	2.3	0.7°C	0°C
	2.8	0.3°C	0°C
	3.3	0°C	-0.5°C
	3.8	-1.5°C	-1.5°C
	4.3	-2°C	-2°C
	4.8	-2.8°C	-3°C

4.0 Discussion

The geotechnical investigation has revealed that the site of the proposed lagoon construction is underlain by ice rich soils which contain ice layers up to 3 m thick. The on site ice rich soils are prone to thaw due to degradation of the permafrost because of construction of the lagoon. This will result in large settlements of the berms.

In addition, the on site soils are permeable and are not suitable for construction of a water tight lagoon. For construction of a water tight lagoon, a synthetic liner would be required. Any liner installed in the lagoon constructed on ice rich soils may rupture due to the large settlements that the berms may experience.

It is therefore considered that there are two alternatives available. The first alternative is to maintain the founding soil underlying the berms in a permanently frozen state and construct conventional berms. This would require installation of thermosyphons to maintain the founding soils in a permanently frozen state. The lagoon may be fully lined or only the berms lined and the liners anchored into the permafrost. The second alternative is to construct the berms of the lagoon as 'ice dams' i.e. maintain the central core of the berms and the underlying natural soils in a constantly frozen state. In this case, the frozen soil will act as a liner. For this purpose, a geothermal analysis should be performed to determine if the agradation of the permafrost into the berms can be achieved by natural process and the time required for this to occur. If the analysis indicates that agradation of the permafrost into the berms cannot be achieved by natural means or that this time required to achieve this would be long, it may be necessary to install thermosyphons in the berms to maintain the central core of the berms and the underlying foundation soils in a constantly frozen state.

5.0 Slope Stability Analysis

It is noted that with 'ice dam' method of construction of the berms, the central core of the berms and the underlying foundation soils would be permanently maintained in a frozen state. However, the surfaces of the inside and outside slopes of the berms would be subject to seasonal freezing and thawing. Also, although the permeability of the frozen soil is very low, it is feasible that a steady state seepage condition may develop in the berms over a long period of time. Therefore, the stability of slope analyses to compute the design side slopes of the berms were based on unfrozen soils. It is considered that this assumption will also be valid for a lined lagoon since these conditions may develop if the liner gets damaged or if the joint(s) fail. However, the analyses assumed that the underlying founding soils would be maintained in a permanently frozen state.

The stability of the slopes was analyzed by using Bishop's Modified Method. Slope/W. Geoslope office, Version 4.23 Computerized system was used to assess stability of the slopes. Two cross-sections of the berm (Cross-Section AA and BB) were analysed. These represent the proposed southeast (Section AA) and northwest berms (Section BB) of the lagoon. The locations of the cross-sections are shown on Figure 1A.

The following assumptions were made in the slope stability analyses:

- (1) The crest of the berm is at Elevation 103.0 m. The crest width of the berm is 5 m. The inside and outside slopes of the southeast berm were analysed for a slope of 3.0H:1V and 3.5H:1V. The inside slope of the northwest berm was analysed for an inclination of 3H:1V and 3.5H:1V. The outside slope of this berm was analysed for a slope of 3.5H:1V and 4H:1V.
- (2) The berms will be constructed with silty sand and gravel fill which contains some cobbles and boulders. The berms would be founded on silty sand to sandy silt soils which are ice rich.
- (3) The ice rich soils underlying the berms would be maintained in a permanently frozen state.
- (4) The engineering properties of the various layers were assumed to be as follows:

Soil Type	Unit Weight (kN/m3)	Effective Cohesion c' (kPa)	Effective Angle of Internal Friction φ (degrees)
Sand and Gravel	22	0	34
Sandy Gravel	22	0	34
Ice	9	100	0
Sandy Gravel and Silty Sand Till	22	0	34

(5) The water level in the pond would be at Elevation 102.0 m approximately or lower and that the berms would not be overtopped at any time. Also, the berms would not be subject to rapid drawdown condition.

The inside slopes were analysed for a fully submerged condition whereas the outside slopes were analysed for steady state seepage condition. The analysis was performed for static as well as seismic loading conditions.

The results of the analyses are given on Figures 22 to 41 inclusive and have been tabulated on Table 3.

Table 3
Computed Factors of Safety for Upstream and Downstream Berm Slopes

Slope Section	Slope Identification	Slope Inclination	Loading Condition	Computed Factor of Safety	Figure #	
AA			Completely submerged	2.29	22	
South East	(inside)	3.H:1V	Completely submerged with seismic loading	1.80	23	
Berm		3H:1V	Lagoon drained. Water level in berms at Elevation 99.0 m	1.58	24	
		1.38	25			
		3.5H:1V	Completely submerged	2.60	26	
		3.5H:1V	Completely submerged with seismic loading	1.97	27	
	Downstream	3.0H:1V	Steady state seepage	1.54	28	
	Slope (outside)	3.0H:1V Steady state seepage with seismic loading			29	
		3.0H:1V	Lagoon drained. Water level in berms at Elevation 99.0 m	1.73	30	
		3.0H:1V Lagoon drained. Water level in berms at Elevation 99.0 m with seismic loading		in berms at Elevation 99.0 m	1.50	31
		3.5H:1V	Steady state seepage	1.58	32	
		3.5H:1V	Steady state seepage with seismic loading	1.36	33	

Table 3 (cont.)
Computed Factors of Safety for Upstream and Downstream Berm Slopes

Slope Section	Slope Identification	Slope Inclination	Loading Condition	Computed Factor of Safety	Figure #
BB	Upstream Slope	3H:1V	Completely submerged	2.19	34
	(inside)	3H:1V	Completely submerged with seismic loading	1.72	35
		3.5H:1V Completely submerged		2.54	36
		3.5H:1V	Completely submerged with seismic loading	1.92	37
	Downstream	3.0H:1V	Steady state seepage	1.52	38
	Slope (outside)	3.0H:1V	Steady state seepage with seismic loading	1.33	39
		4H:1V	Steady state seepage	1.89	40
		4H:1V	Steady state seepage with seismic loading	1.59	41

Based on current practice in the industry, a minimum factor of safety of 1.5 is required for static loading conditions and a factor of safety of 1.1 for seismic loading conditions. A review of Table 3 indicates that a 3.H:1V upstream and downstream slope would satisfy the requisite factors of safety for the southeast berm. An upstream and downstream slope of 3H:1V would meet the requisite factors of safety for the northwest berm. Therefore, these slopes may be used in the design. However, it is noted that geothermal considerations may require the inside slope of the berms to be constructed at a flatter inclination than recommended.

It is noted that the computed slopes would be stable provided that the berms are not overtopped, that they are not subjected to rapid drawdown conditions and that the underlying ice rich soils are permanently maintained in a frozen state.

6.0 Rapid Drawdown Condition

The upstream slope was also analysed for rapid drawdown condition. The results are given on Table 4.

Table 4
Computed Factors of Safety of Inside Slope of the Berms for Rapid Drawdown
Condition

Section	Slope Inclination	Loading Condition	Computed Factor of Safety	Figure#
AA	3.5H:1V	Static	1.53	42
AA	3.5H:1V	Seismic	1.33	43
ВВ	4H:1V	Static	1.51	44
ВВ	4H:1V	Seismic	1.29	45

A review of Table 4 indicates that an upstream slope of 3.5H:1V would have adequate factor of safety for the rapid drawdown condition in the case of the southeast berm. A slope inclination of 4H:1V would have adequate factor of safety against the rapid drawdown condition in the case of the northwest berm. Consequently, if the berms are to be designed to satisfy rapid drawdown conditions, the inside slope of the southeast berm should be constructed at a slope of 3.5H:1V whereas the inside slope of the northwest berm should be constructed at an inclination of 4H:1V.

7.0 Erosion Protection

It is noted that the computed upstream and downstream slope of inclinations will be stable provided that the berms are not overtopped. Potential exists for considerable erosion and possibly failure of the berms if overtopped. Overtopping of the berms may be prevented by construction of a proper spillway structure which is capable of holding the overflow.

8.0 General Comments

The comments given in this report are intended only for the guidance of design engineers. The number of boreholes required to determine the localized underground conditions between boreholes affecting construction costs, techniques, sequencing, equipment, scheduling, etc., would be much greater than has been carried out for the design purposes. Contractors bidding on or undertaking the works should, in this light, decide on their own investigations, as well as their own interpretations of the factual borehole results, so that they may draw their own conclusions as to how the subsurface conditions may affect them.

The information contained in this report is not intended to reflect on environmental aspects of the soils. Should specific information be required, including for example, the presence of pollutants, contaminants or other hazards in the soil, additional testing may be required.

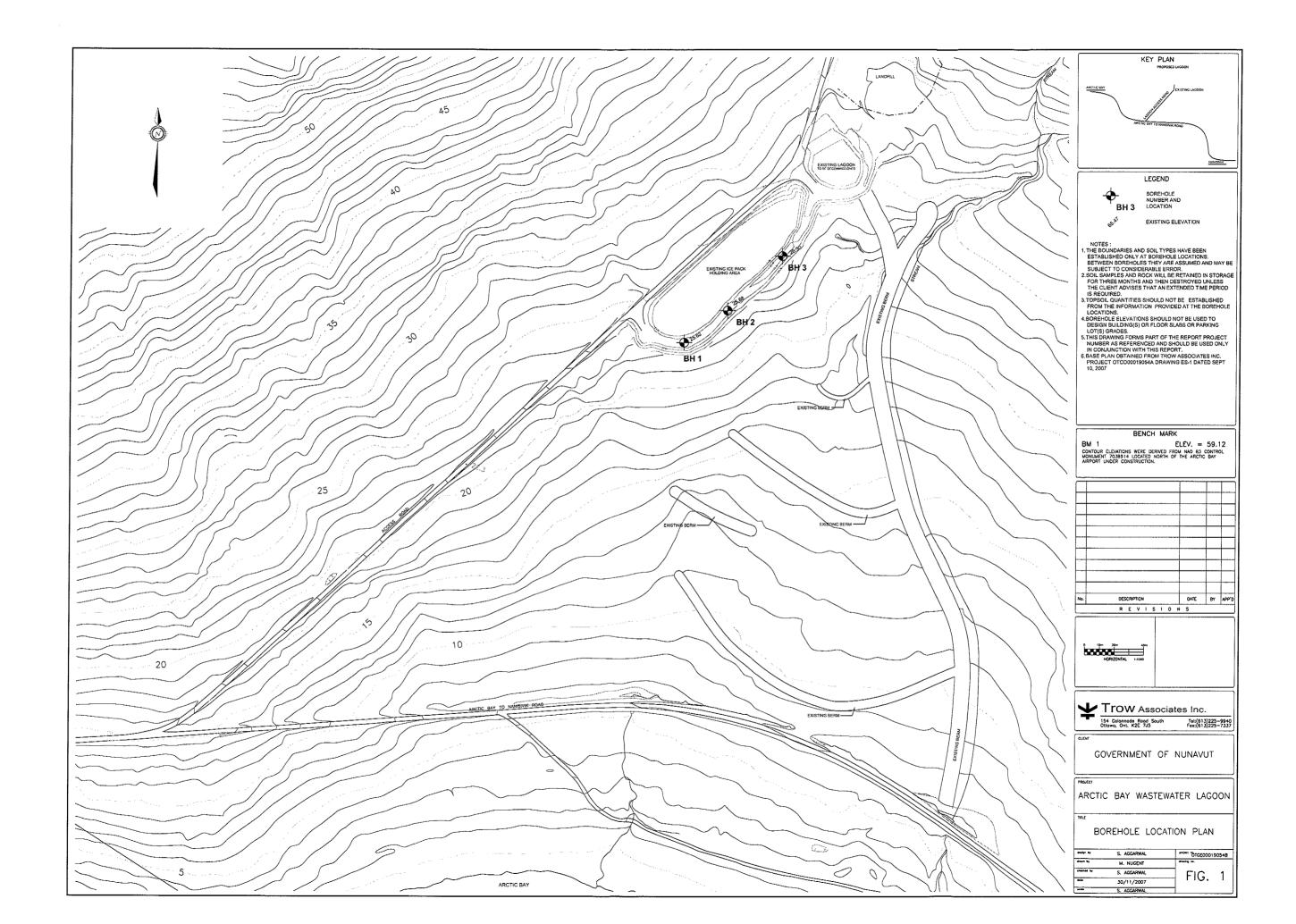
We trust that the information contained in this report will be satisfactory for your purposes. Should you have any questions, please do not hesitate to contact this office.

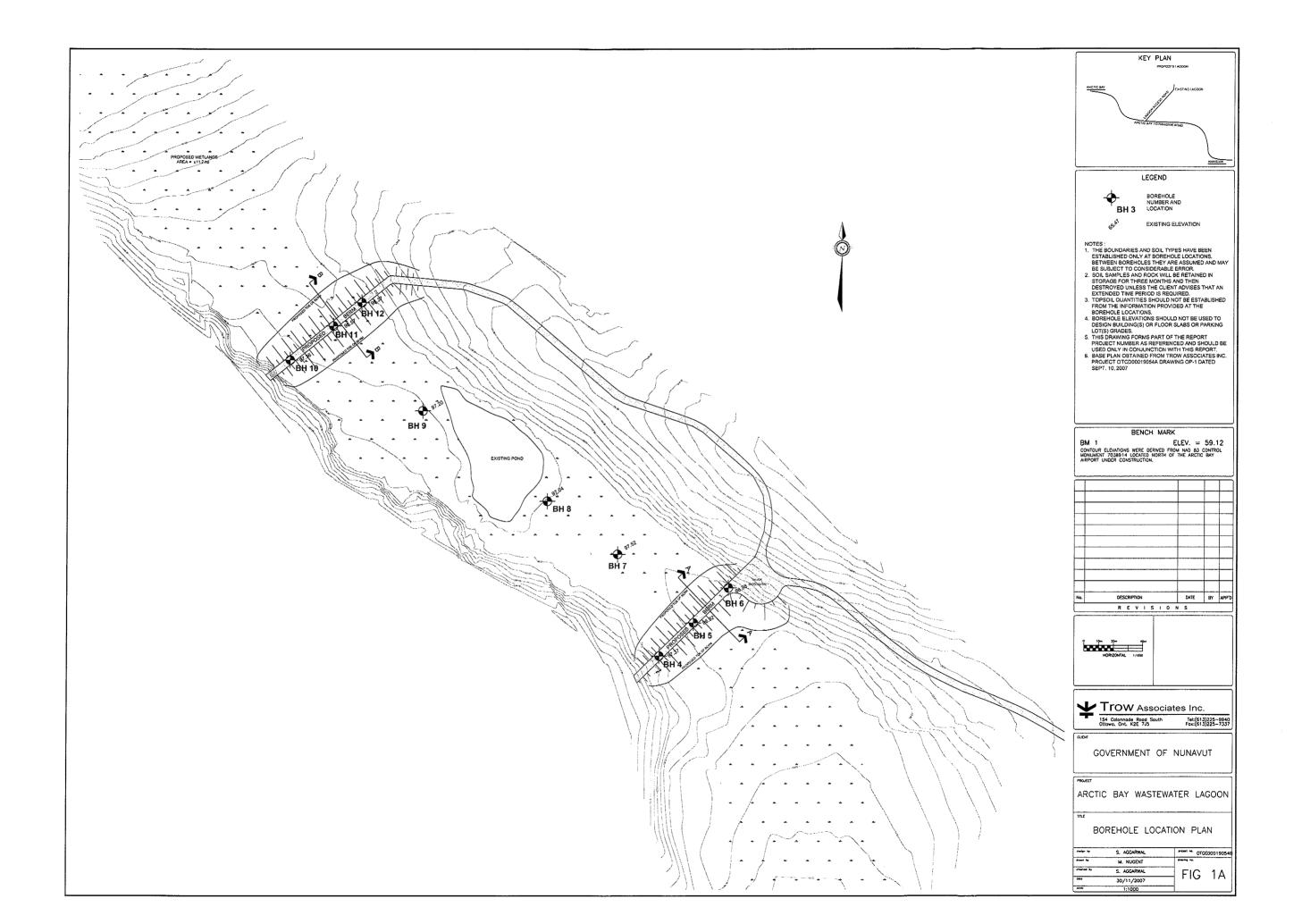
Trow Associates Inc

Surinder K. Aggarwal, Month

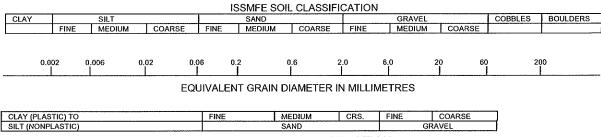
Senior Project Manager

Geotechnical & Materials Engineering Services


Ismail M. Taki, M.Eng, P. Eng.


Manager/Assistant Branch Manager

Geotechnical & Material Engineering Services


Figures

Notes On Sample Descriptions

1. All sample descriptions included in this report follow the Canadian Foundations Engineering Manual soil classification system. This system follows the standard proposed by the International Society for Soil Mechanics and Foundation Engineering. Laboratory grain size analyses provided by Trow Associates Inc. also follow the same system. Different classification systems may be used by others; one such system is the Unified Soil Classification. Please note that, with the exception of those samples where a grain size analysis has been made, all samples are classified visually. Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification systems.

UNIFIED SOIL CLASSIFICATION

- 2. Fill: Where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc., none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the gas. These readings are to advise of the presence of gas only, and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites; unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional geotechnical site investigation.
- 3. Till: The term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone; caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.

Project No: OTGE00019054B Project: Geotechnical Investigation -	Existing Sewage I	agoon			Figure No.	2	_
Location: Arctic Bay, Nunavut					Sheet No.	_1_ of _1_	_
Data Drillad: Musuch 25, 2007		Split Spoor	Sample	⊠	Combustible \	/apour Reading	
Drill Type:		Auger Sam SPT (N) Va	ple		Natural Moiste Atterberg Limi	ure Content	×
Datum: Geodetic		Dynamic C	one Test —	<u> </u>	Undrained Tri	axial at	Φ
Logged by: Checked by:		Shelby Tub Shear Strei Vane Test		+ S	Shear Strengt Penetrometer	h by	A
G M SOIL/ROCK DESCRIPTION	Geodelic Elevation	D Stand	ard Penetration Test N 40 60	Value 80	250	/apour Reading (pp 500 750 pisture Content %	il∆l ι
	25.6 ^m	p 20 t Shear Stre	ength 100 150	kPa 200	Atterberg Lii	oisture Content % mits (% Dry Weight 20 30) LE KA
Sandy gravel, fine to coarse, slightly cohesive, some silt, brown, moist to (loose to compact)	v	9 O			X		
(coss to sompast)	1	- 10					
	_	1 0					ÄΧ
SILTY SAND	24.4	00.000		160/	275 mm		
Slightly cohesive, red brown, wet (v	ery	20100		12 1 2 2 2 3	Φ		$\mathbb{H}^{\mathbb{N}}$
Frozeń below 1.6 m depth Refusal to split spoon sampler @ Depth	/						
NOTES: Borehote/Test Pit data requires Interpretation by Trow	WATER	LEVEL REC	ORDS		CORE DE	RILLING RECOF	RD
before use by others 2. A 19 mm slotted standpipe was installed upon	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
B. Field work supervised by a Trow representative I. See Notes on Sample Descriptions B. Trow Associates Inc. report OTGE00019054B							

	rojec rojeci	t No: OTGE00019054B Ceotechnical Investigation - Existing	Sowago k	2000					F	igure	No	3			
	ocatio	-	Jewaye i	agoon						Sheet	No	<u>1</u> of	1		
		rilled: 'August 25, 2007		0 111						0. 1					
	ill Ty	noi		Aug	er Sa	on Samp imple	ie	⊠ ∎				pour Read Content	aing		×
	atum:					Value Cone Te	est				rg Limits ned Triax		ŀ		- 0
	gged				lby T	ube rength by	,	■			n at Failu Strength I				⊕
	ggoc	Official by.		Van	e Te	st	,	+ s			meter Te				
G	SYMBOL		Geodetic	161				Test N Val		2	250 8	our Readi 500 7	50	S A M	Unit
G W L	0 L B	SOIL/ROCK DESCRIPTION	Elevation 25.7 m	n	ear S	trength	-		80 kPa 00	1		ture Conte s (% Dry V 20	ent % Veight) 30	SAMPLES	Weight kN/m³
		FILL Sand and gravel, silty, occassional	20.7	0	. ; .; .									Ň	
	\bowtie	cobbles, brown to red brown, moist to wet _(loose to dense)		-7 -0						×			4414	Ň	
	₩			12.1										\mathbb{H}	
	\bowtie	_))	· i · ; · ; · i ·	+ 1-3 ÷			×			4444	IXI.	
	\bowtie	SANDY GRAVEL	24.5			.;;;;;; .;;;;;;	\$1.55 \$1.55				.; ; ; ;		4444		
	60	Silty, slightly cohesive, red brown, wet (dense)				31								M	
	000	Frozen below 1.8 m depth	23.9	33	1.2	. 1-2-0-1-	*****	-3-3-3-3		200	-1-0-1-1	- 3-1-3-3-	0010 0010	\mathbb{N}	
		Refusal @ 1.8 m Depth													
													:::::		

	l.				::		::::								
1.B	TES: orehole efore u:	/Test Pit data requires Interpretation by Trow se by others	WATER						Dun T			LLING R			ND 9/
		, i i i i i i i i i i i i i i i i i i i	ne	Wat Level			lole Op To (m)		Run No.	Dep (m		% Red	<i>j.</i>	KC	≬D %
3 F	ield wo	'k supervised by a Trow representative						-							
		es on Sample Descriptions						***************************************							
5. T	his Figu TGE00	ore is to read with Trow Associates Inc. report 019054B													
								_ `							-

Project No:	OTGE00019054B	OTGE00019054B								4		
Project:	Geotechnical Investigation - Existin	ig Sewage la	agoon							 _1_ of		
Location:	Arctic Bay, Nunavut							CHOOL				
Date Drilled:	'August 25, 2007			oon Samı	ple	۵				/apour Reading)	
Drill Type:			Auger Sa SPT (N)			II		Natura Atterbe		re Content ts	⊢	× —⊖
Datum:	Geodetic		Dynamic Shelby T	Cone Te	est	_	-	Undrai % Strai				\oplus
Logged by:	Checked by:		-	rength by	у	+	•	Shear : Penetro	Strength	h by		A
S			Sto		netration [*]					apour Reading	(mag	<u>s1</u>
G M B L O	SOIL/ROCK DESCRIPTION	Geodetic Elevation	e 0 2				80 kPa	1 :	250	500 750 Disture Content mits (% Dry Wei	/6 	M Unit P Weigh L kN/m ³
× FILL		26.3 ^m	h l	-	00 1	50	200	1::::	10	20 30	::::	KN/m
Sanc	ly gravel, silty, fine to coarse, brown, t to wet (loose to very dense)	*	. 9 . O						X		::::\ :::::\	χl
		-	12 (11)								/	
			33.13		46 O						\ 	/ 41
		1	1		10 mm				-1111			\setminus
lce le	enses below 1.3 m depth		3 4 1 4 1			-2		104				-) 39
		24.6						0			1	1
Refu	sal @ 1.68 m Depth											

		444										
		1										
00/1/07		8.0										
3												
9												
NOTES: 1. Borehole/Test Pit before use by oth	data requires Interpretation by Trow	WATER	LEVEL RE	CORDS	 }			CO	RE DR	ILLING REC	ORD	
before use by oth 2. A 19 mm slotted s	standpipe was installed upon	apsed ime	Water Level (m)	ŀ	lole Ope To (m)	en	Run No.	Dep (m		% Rec.	F	RQD %
completion of drill												
2. A 19 mm slotted s completion of drill 3. Field work superv 4. See Notes on Sar 5. This Figure is to r OTGE000190548	ised by a Trow representative											
5. This Figure is to r OTGE000190548	ead with Trow Associates Inc. report											

3. Field work supervised by a Trow representative 4. See Notes on Sample Descriptions 5. This Figure is to read with Trow Associates Inc. report OTGE00019054B

Time	Level (m)	To (m)
[

	COVE DVILLING VECOVD											
Run No.	Depth (m)											

Project:	Geotechnical Investigation -	New Sewage Lago	on					Figure I Sheet I	_			-
Location:	Arctic Bay, Nunavut							SHEEL			'	-
Date Drilled	: 'August 28, 2007			oon Samp	ole	×		Combus			-	[
Orill Type:			Auger S SPT (N)			II.		Natural Atterbei			nt	; ⊢ —
Datum:	Geodetic		Dynamion Shelby	Cone Te	est			Undrain % Strair				(
ogged by:	Checked by	:	_	trength by	/	+ s		Shear S Penetro	trength	by		4
S			Sta	andard Pei	netration [*]		ue	Combu	stible Va	pour Re	ading (ppi	m) ISI
G M W B L O	SOIL/ROCK DESCRIPTION	Geodelic Elevation		20 4 Strength	10 (30	80 kPa	2	50	500	750 ntent % y Weight)	IAI
<u> </u>	ATY TOPSOIL ~300 mm	97.4 m	n	-	00 1	50 2	00		10 : : :	20	30 : : : :	Ë S
431	TY SAND	97.1		9					×			
	ce clay, gravel and organics, br	own –	10 (181)			-2-2-2-3		11111			* * * * ! ! ! !	
	npact) en below 1.4 m depth		9316	20				4444				44
		_	1	P::::::	5165				11111		1 221	
			-9-6-6-9 -2-4-1-2 -2-1-1-1	40/15	0 mm D			4444	×			\bigvee
GAE	BBRO BEDROCK	95.8			4111		- 1 - 1 - 1 - 1	3111				
Grey	y to black, some inclined fractu sive, medium to coarse grained	res,	2000									÷
Illas	sive, medium to coarse gramed	'	2						×			1
			9.00									
		-										
		***************************************	0.010									
			3									
		93.9	33.13									
Bore	ehole Terminated @ 3.51 m D	epth										
		1										
		, and the state of										
										1:::		
	it data requires Interpretation by Trow	WATER	LEVEL RE	CORDS		_][COF	RE DRI	LLING	RECOR	:D
before use by of	ners standpipe was installed upon lling	Elapsed Time	Water Level (m)		lole Ope To (m)	n	Run No.	Dept (m)		% R	ec.	RQD

2.A 19 mm slotted standpipe was installed upon completion of drilling

3. Field work supervised by a Trow representative

4. See Notes on Sample Descriptions

LOG OF BOREHOLE 5. This Figure is to read with Trow Associates Inc. report OTGE00019054B

WATER LEVEL RECORDS										
Elapsed Time	Water Level (m)	Hole Open To (m)								

	CORE DRILLING RECORD											
Run No.	Depth (m)	RQD %										
1	1.63 - 2.39	93	57									
2	2.39 - 2.69	92	83									
3	2.69 - 3.51	97	80									

	t No: OTGE00019054B					IUI								UΥ
Projec		New Sewage Lac	ഥവ	n					Figure	No.	6			
Locati		rion comage Lag	,00						Sheet	No.	of	_1_		
	rilled: Margaret 28, 2007			Calit Ca	Com	ala.			0	-126.1 - 3.1				
Orill Ty			_	Split Spo Auger S	ample	pie		⊠ 10			apour Rea re Content	•		×
Datum			-	SPT (N) Dynamic		est		<u> </u>	Atterbe Undrair	-		ŀ		⊕
_ogge			-	Shelby T Shear Si				=	% Strai Shear S					⊕
- 55				Vane Te		'y		+ s	Penetro					•
SYMBO	SOIL/ROCK DESCRIPTION	Geodetic	Dep	1 .		netration	Test N 60	Value 80	1 2	250	apour Read	'50	SAMP LWS	Ur Wei
l E		Elevation 96.9 m	h o	Shear S	Strength		150	kP 200		berg Lin	isture Conte nits (% Dry \ 20	Veight) 30	Lus	kN/
17 77 1 21 78	TOPSOIL Slightly cohesive, organics, trace gr	avel,	41'	150 mm									\bigvee	
10	reddish brown, wet (very loose)	96.4		O:::::	1122					×		0010	\mathbb{N}	
0	SAND AND GRAVEL Fine to coarse, some ice lenses, from reddish brown	ozen,		15									\int	
0	_75 mm thick ice layer	_	1	Ö			- - - - -		×				X	
11	SILTY SAND	95.7		0.010	36/12: O	mm	1001			*			\bigvee	
	Some gravel, slightly cohesive, redontrial some gravel, slightly cohesive, redontrial some gravel, redontrial some gravel, slightly cohesive, sligh	dish95.3					· · : · : : : : : : : : : : : : : : :		×				П	Rui
	ICE Some silty sand and gravel											2010	H	
	_~ 80 to 90 percent ice content	94.8	2											Rui
	Some gravel, slightly cohesive, redo	dish											Ц	Rui
	_brown, wet	_			· [· 2 · 5 · 5 · 5 · 5 · 5 · 5 · 5 · 5 · 5	2122						2010		Rui
		-		3213. 22131	. 1441. - 1441.		444						Ц	
	_	-	3									2010		
		-		-3								-5.4-1-5		Rur
													Ш	
	_	-	4									3313		
	Borehole Terminated @ 4.27 m De	92.6 epth											Ц	
<u> </u>			[::::		1111								-
OTES: Borehole before us	/Test Pit data requires Interpretation by Trow se by others			VEL RE							LLING RE			
	backfilled upon completion of drilling	Elapsed Time		Water vel (m)		fole Op To (m)		Run No.	Dept (m)	h	% Rec		RQ	D %
	k supervised by a Trow representative													
	re is to read with Trow Associates Inc. report													

Project: Geotechnical Investigation - New	Sewane La	ann	ın					Figure	No.	7		
Location: Arctic Bay, Nunavut	Conage La	goo						Feu	ıille.	of	_1_	
Date Drilled: 'August 27, 2007			Colit Coo	0								_
Orill Type:		_	Split Spo Auger Sa		pie		⊠ II			apour Read e Content	ling	>
Datum: Geodetic		_	SPT (N) Dynamic		est		<u> </u>		erg Limits ned Tria:		H	
		_	Shelby To		001	ı		% Strai	in at Fail	ure		•
Logged by: Checked by:			Shear Str Vane Tes		У	-	 S		Strength ometer T			A
S	Depth	D	1	idard Pe	netration 1	Test N V	'alue			pour Readir		S
G H M DESCRIPTION DU SOL	Below Grade	e p t h	Shear S		40 €	30	80 kPa	Na Atter	250 Itural Moi berg Lim	500 75 sture Contents (% Dry W	50 nt % /eight)	SA N M Dr L
<u>Ē</u> <u>TOPSOIL</u> ~150 mm	96.9 ^m 96.8	0	50) 1	00 1	50	200		20		0	L E S
SANDY GRAVEL Silty, slightly cohesive, ice lenses			9 · · · · · · · · · · · · · · · · · · ·									\mathbb{N}
to wet	st - 96.3								1::::::		11111	₩
SILTY SAND Some gravel, slightly clayey, red-brown,			3414	38/22	5 mm							M
wet, frozen below 1.0 m depth	_	1	32.13			1111		×	-3-3-3-3			-IXI
14 (4) 13 (4)											3010	H
	95.3											1
ICE Some silty sand, ~60 percent ice content											200	П
SILTY SAND	94.9	2										H
Slightly cohesive, ice lenses throughout, reddish brown to brown, moist to wet								×				Ш
QUARTZITE	94.4		1111			1111		×		11111	<u> </u>	11
Beige to grey, iron oxidized, calcite intrusions, fractured (poor quality)			32131									П
	4	3	2012	1991	1111	440		19199	19.00		2012	H
												H
	4											
	ļ											Ħ
Borehole Terminated @ 4.0 m Depth	92.9	4	1111		1111							Ц_
												. [
DTES:	\A/ATE6	215	VEL REC	OBDO)E DO::	LNCSE		
	lapsed	ν	Vater		ole Oper		Run	Depti		LING REG		RQD %
A 19 mm slotted standpipe was installed upon completion of drilling	Time	Le	vel (m)		To (m)		No.	(m)				

A 19 mm slotled standpipe was installed upon completion of drilling

3. Field work supervised by a Trow representative

4. See Notes on Sample Descriptions

5. This Figure is to read with Trow Associates Inc. report OTGE000190548

WATER LEVEL RECORDS									
Elapsed Time	Water Level (m)	Hole Open To (m)							
11116	Level (III)	10 (111)							

	CORE DRILLING RECORD												
Run No.	Depth (m)	RQD %											
1	2.59 - 3	100	0										
2	3 - 3.15	67	0										
3	3.15 - 3.63	89	0										
4	3.63 - 3.76	100	0										
5	3.76 - 3.89	40	0										
6	3.89 - 4	100	0										

Project	t No: OTGE00019054B	9 01						`		Figure	No.	8		. •
Project		ewage Lag	00	n	,					•		1 of	1	
Location														
	rilled: 'August 30, 2007					oon Sam _l ample	ple		X I)			Vapour Rea lure Content	•	[
Orill Ty -			-	SPT	Γ (N)	Value			0		erg Lim		ŀ	<u> </u>
Datum:			-	-	amio lby 1	Cone Tour	est		_		ined Tri in at Fa	iaxial at ailure		(
Logged	l by: Checked by:				ar Si e Te	rength b	у	-	 S		Streng ometer			
SY M B O L E	SOIL/ROCK DESCRIPTION	Geodetic Elevation	ΙÞ	L	ear S	Strength	40	60	80 kP		250 atural M rberg Li	Vapour Read 500 7 foisture Conte imits (% Dry V	50	SAMP LES
77	FIBROUS PEAT ~300 mm	97.5 m	0	-3.5				150	200		10	20	30 	S
00	SILTY SAND AND GRAVEL	97.2		0.0		36 • • • • • •							0.010	***
• (Fine to coarse, some cobbles, reddish brown, moist to wet	1												
0						26 O	0.000				×			$\ \cdot\ $
Ø	_	96.3	1				4.1.3						3013	
	SILTY SAND TILL Some ice lenses, scattered gravel, cobbles					37/150 O	mm :				×			M
	and boulders, slightly cohesive, red brown Frozen below 1.45 m depth			30			0100						3613	
	_		2							×				
			_											\prod
	-		•	***	1.3.	-1-3-0-1-	****	336					*****	
	-		3		1.2.	-1-2-(-1-		-3-4-3-		×	1000		2010	
													3 24 3 2 2 1 2	
		_												11
					1-3- 1-2- 1-1-								0.000	
			4											Ħ
	<u>.</u> .	_												1
													3315. 3015.	
<i>99</i> 288_	Borehole Terminated @ 5.0 m Depth	92.5	5				****				1:1:	1 1 1 1 1	+++++	
OTES:								<u> </u>		1	Lini	-		
Borehole before us	Test Pit data requires Interpretation by Trow e by others		1	Wate	 er		lole Ope	en	Run	CO Dep		RILLING RE		RQD
.Borehole		me		evel (-	To (m)		No.	(m			-	
.Field worl	k supervised by a Trow representative													
.See Note	s on Sample Descriptions													
This Figur	re is to read with Trow Associates Inc. report 019054B													

Projec		New Sewa	ige Lago	00	n							9 1 of			
Locati											_				
Date D	Orilled: 'August 29, 2007				Split Spo		ple		₫			pour Read	ding		
Orill Ty	ype:				Auger Sa SPT (N)			[]		Natural Atterbei		e Content	ŀ		× ⊕
Datum	Geodetic				Dynamic Shelby T		est	_	-		ed Triax n at Failu				⊕
_ogge	d by: Checked by:				Shear St Vane Te	rength b	у	_	- 6	Shear S		by			•
SYMBO-L	SOIL/ROCK DESCRIPTION		Geodelic Elevation	Depth	Shear S	0 strength		30	80 kPa	Nai Attert	50 ural Mois perg Limi	sture Conte ts (% Dry V	50 nt % /eight)	SAMP-ING	V kN
<u> </u>	PEATY TOPSOIL ~300 mm		97 m	0		0 1	00 1	50	200		10	20 3	50 	\ \	
900	SANDY GRAVEL		96.7		ó		1000	-2-0-1-				×		X	
	Fine to coarse, some silt, slightly co reddish brown, moist to wet	hesive,												$\langle \rangle$	
60°	Frozen below 1.2 m depth Some ice crystals				12 O						×		4010	M	
000	_			1										\mathbb{N}	
					33.13										
000							0100						0.00	П	
90				_						×				П	
000	_	1		2											
. O					9919		10.00								
		٦													
<u></u>	ICE	9	94.2	_	9019									Н	
			ŀ	3	3313		6166		1.5.5.5		4444				
					33333		0.000	-9 -5 -5 -5			-3-5-4	1::::::	3673	i	
			3.2											l	
	GABBRO BEDROCK Grey to black, some inclined fracture		75.2	4											
	massive, coarse grained	es, –		4										П	
	_				2012		0100		-1-1-0-1	2112				Н	
														H	
	_			5	-9 (+1+9 + -9 (+1+9 +		- 6-1-0-6-1 - 6-1-0-6-1		111111	****		- 6-3-6-6-	99499 99499		
	Parahala Tarminatad @ 5 24 Da	9	1.8	_					1::::::	3.1.1.2.				Ц	
	Borehole Terminated @ 5.21 m De	eptn													
														•	
OTES:	e/Test Pit data requires Interpretation by Trow		WATER	LF	VEL RF	CORDS	3			COF	RE DRII	LING RE	CORD		
before u	ise by others	Elapsed	ď		Water		Hole Ope	en	Run	Dept	h	% Rec		RQ	D %
Borehole	e backfilled upon completion of drilling	Time		Le	evel (m)	+	To (m)	_	No.	(m) 4.01 - 4		79	—-	Ę	

3. Field work supervised by a Trow representative

4. See Notes on Sample Descriptions

WATER LEVEL RECORDS											
Elapsed	Water	Hole Open									
Time	Level (m)	To (m)									
	L										

	CORE DR	RILLING RECO	RD
Run No.	Depth (m)	% Rec.	RQD %
1	4.01 - 4.32	79	50
2	4.32 - 4.57	85	45
3	4.57 - 5.21	92	74

Proje		:00019054B echnical Investigation	- New Sew	age Lag	00	n						Figure					
Locat	ion: Arctic	Bay, Nunavut										Sheet	No.	_1_	of	1_	
Date [Orilled: 'Augus	t 29, 2007				Split S	poon S	Samo	ple		—— ⊠	Comb	ustible V	anour E	Reading		
Drill T					_	Auger	Sampl	e .		İ	a a	Natura	ıl Moistu	re Cont		ı	
Datum					-	SPT (N Dynam			est		0		erg Limit ined Tria			—	
Logge					-	Shelby	Tube			-		% Stra	in at Fai	lure			
Logge	ш <i>ру.</i>	Checked b	y:			Shear Vane T	Streng est	lh by	у		+ s		Strength ometer				
G M B O L E	SO	IL/ROCK DESCRIPTION		Geodetic Elevation	ΙÞ		20 Streng	ıth		60	80 kPa	i	ustible Va 250 atural Mo rberg Lim	500 isture Co its (% D	750	1.	S A M P L
7.7	Farmer leaders	SOI L ~400 mm v 0.5 m depth		97.2 m	0		50	1(00	150	200		10	20	30	. i . i . i . i	š
7 7	Some ice lay	v 0.5 m deptn rers		96.8	١,	1 P:										2 X)	71
	_ ICE Some silty sa	and and gravel	\dashv														
	Ice content 7	0 % - 80 %															
	-		-	06.6	1					13.2							
٥	SAND AND C			96.0			26 O										
0 (brown, moist	ed cobbles and bould to wet	ers,				- O			1 1 1 1		X					ı
0			[1000				I
, O	_		-		2		1	. ; .									
0 (l
0			_	ĺ					0100							101	l
0 6							<u> </u>	. <u></u> .									
) (·-				,	4414 4314	1103		0100 5135			1000		100			
0					,[. ;	202	1111					1 11		
٥١	_			ĺ							1						
2 4	Roreholo Tor	minated @ 3.66 m [Jonth 9	3.5	_		-1.5				1						L
	20.0000 101	a.cu (y 5.00 lB L	, sapul		- item -												The state of the s
OTES: Borehole	Test Pit data require	es Interpretation by Trow		WATER L	.EV	ÆL RE	CORE	 DS				COF	E DRIL	LING	RECO	5D	
before us	e by others backfilled upon com		Elapsed Time	<u> </u>	W	ater el (m)		Но	le Ope	n	Run	Dept		% Re		RC	QΩ
_0.01016	audianica aport com	product of disting	11116		-64	or (III)			Го (m)	7	No.	(m)	-+				
Field worl	supervised by a Tr	ow representative															
	s on Sample Descrip	1															
rnis Figui OTGEOOC	e is to read with Tro 19054B	w Associates Inc. report															

Projec	t No: OTGE00019054B					OIC.	_	_	Cienne Nie	. 41		•
Projec	t: Geotechnical Investigation - New Sev	wage Lag	00	n					Figure No	o. <u>11</u> o. 1 of	 1	
Location	on: Arctic Bay, Nunavut								Officering	, <u> </u>	1	
Date D	rilled: 'August 30, 2007		-	Split Sp		nple		3		le Vapour Readin)	
Drill Ty	pe:		-	Auger S SPT (N)				[]	Natural Mo Atterberg I	oisture Content Limits	-	×
Datum:			-	Dynamic Shelby 1		ſest -		-	Undrained % Strain a	Triaxial at l Failure		Ф
Logged	d by: Checked by:			Shear S Vane Te		ру	3	 }	Shear Stre Penetrome			•
SY			D	1	ndard P	enetration Te	st N V	alue	Combustib 250	le Vapour Reading 500 750	(ppm) S	S C
GW L E	SOIL/ROCK DESCRIPTION	Geodelic Elevation	IΡ	Shear	20 Strength	40 60		80 kPa	Natura Atterberg	I Moisture Content Limits (% Dry Wei	(ppm) SA N N Spht) L S	W ki
117	PEATY TOPSOIL ~330 mm	97.4 m	0		0	100 150) 	200	10	20 30		<u>}</u>
4 4	SAND	97.1		2012	1 - 2 - 3 - 3	45 O					×X	(
	Some silt and gravel, fine to coarse, brown, moist to wet											1
	_										6-1-5- 5-1-5-	
			ľ	4414								
		_ _95.9							×			ĺ
	GABBRO BEDROCK Grey to black, massive, fine to coarse			2012								l
	grained 	-	2	-34-1-3- -1-1-1-	-1-2-2-2							
		-		11111	-1-2-4-1			1 1 1 1 1 1				
				9919							::::::: ::::::::::::::::::::::::::::::	
			3		-1-5-5-1						(-1-0 (-1-0	
				3313	-1-2-0-1			11001				
		}			- - -							
	Borehole Terminated @ 3.89 m Depth	93.5										L
	Describe reminated & 0.00 in Deptil											:
į												
]												
NOTES:					::::		::: <u>:</u>	[::::]:::: ::		<u>:: </u>	<u></u>
I.Borehote	/Test Pit data requires Interpretation by Trow e by others Etaps	WATER		VEL RE		S Hole Open	_	Run	CORE	DRILLING REC		QD ·
2. Borehole	backfilled upon completion of drilling			vel (m)	-	To (m)	-	No.	(m) 2.82 - 3.2		"	<u>0</u>
3. Field work	k supervised by a Trow representative							2	3.2 - 3.89			0
I.See Note	s on Sample Descriptions											
5. This Figu	re is to read with Trow Associates Inc. report 019054B											

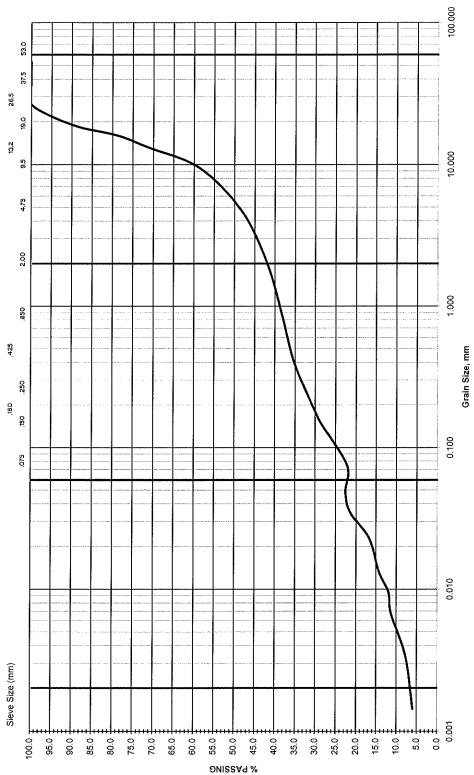
5. This Figure is to read with Trow Associates Inc. report	-1
o. This rigore is to read with from Associates life, reput	·
OTGE00019054B	

WAT	ER LEVEL RECO	RDS
Elapsed Time	Water Level (m)	Hole Open To (m)

		CORE DF	RILLING RECO	RD
	Run No.	Depth (m)	% Rec.	RQD %
	1	2.82 - 3.2	60	0
	2	3.2 - 3.89	70	0
ı				

Projec		v Sewage Lag	00	n						_	12 1 of			
Locati					-					•	_			
	Orilled: 'August 28, 2007		-	Split Spo Auger S		nple					apour Read	-		[
Drill Ty			-	SPT (N)	Value		C		Atterber	g Limit	s	F		(
Datum			-	Dynamic Shelby T		rest		- 	Undrain % Strair					6
Logge	d by: Checked by:			Shear S Vane Te		ру	1 S	-	Shear S Penetro					4
SY M B O	SOIL/ROCK DESCRIPTION	Geodetic Elevation	18	'l 2		enetration ²		alue 80 kPa	2	50	apour Readi 500 7 isture Conte its (% Dry V	50	SAMPLES	W
777 F	PEATY TOPSOIL ~300 mm	96.8 m	t h o	1	-	100 1	50 2	200	1	0	20 3	30 : : : :	Š	k
1, 1,	GRAVELLY SAND	96.5) :0: D:				1200		×		\mathbb{N}	
о ъ. ј.	 Some silt, fine to medium, slightly 	., -		2012			1 1 1 1 1	11111	1111	111		4414	\mathbb{N}	
	cohesive, brown, moist to wet (compact Frozen below 1.3 m depth	t)		17			-1 -1 -1 -1					-2-6-3-2-	\bigvee	
$a \circ$	<u> </u>	-	1	· · · · · · •		12::22			2010	X		2616	Ň	
						60/2	50 mm			٠٠٠٠			М	
?	ICE	95.3				1:::::	٧ - : : : : :		<u> </u>	\			Å	
	Trace sand and gravel ~90 % - 100 % ice content											2010		
		4	2			1233		11111	1 1 1 1 1					
	_	4			-1441							÷ ; ; ; ; .		
									2000					
	_		3						4.14			90000		
				2010										
	_													
												÷ (-1 -) -		
	_													
			4											
	_											\$215. \$415.		
	_	7												
		1570.00					30.00					0 6 1 6 4 6 4 1 6 4		
		91.6	5						÷:::::			4414		
٥	SILTY SAND AND GRAVEL Brown, wet										10100			
9.1	Borehole Terminated @ 5.5 m Depth	91.3	1										4	_
			L							<u> </u>				_
OTES: Borehole	e/Test Pit data requires Interpretation by Trow se by others	WATER									LLING RE	CORD		_
	a slotted standpipe was installed upon on of drilling	Elapsed Time		Water evel (m)		Hole Ope To (m)	n	Run No.	Depth (m)	1	% Rec	•	RQD)
Field wor	rk supervised by a Trow representative													
	es on Sample Descriptions													
This Figu	ore is to read with Trow Associates Inc. report 0190548													

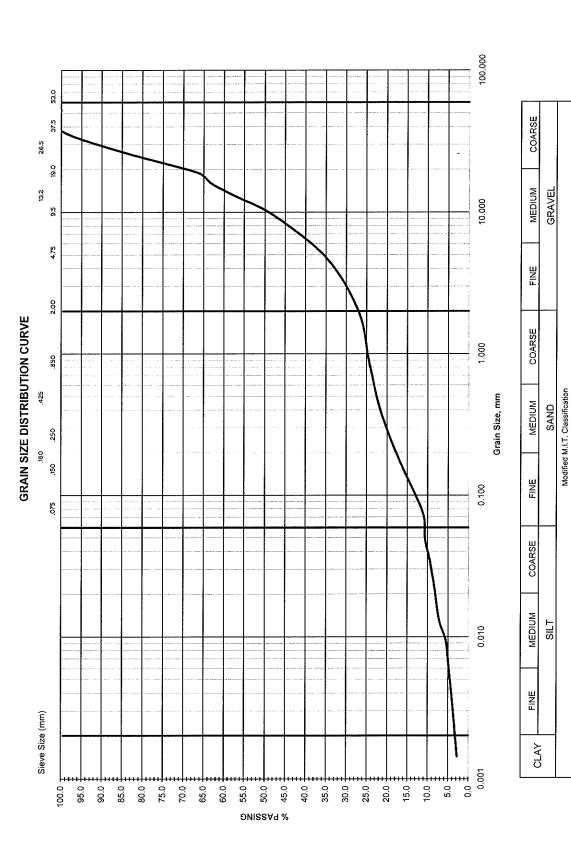
Project: Location		ewage Lag	00	n					Sheet	No	<u>1</u> of <u>1</u>	<u> </u>	
Drill Type			-	Split Spo Auger Sa SPT (N)	mple Value			0	Natural Atterbe	l Moisture erg Limits		-	_ × —€
Datum: Logged b	Geodetic 'y: Checked by:		_	Shelby T Shear St Vane Te	ube rength b			•	% Strai	ned Triax in at Faili Strength ometer T	ure by		€
SYM BOLL	SOIL/ROCK DESCRIPTION	Geodelic Elevation 96.4 m	l h	Shear S	trength		50	80 kPa	Na Na	250 Itural Mois	pour Reading (p 500 750 sture Content % Is (% Dry Weig 20 30	opm) }	S M M W L L E S
• () F	OPSOIL ~ 50 mm SAND AND GRAVEL Fine to medium, some silt, brown, moist compact)	96.4	0	10 O						X			
0 F	Frozen below 1.2 m depth	-	1		30 O				×			\rangle	
0 0 2 2	QUARTZITE BEDROCK Beige to grey, fractured, poor quality	94.9						1		×			
	olgo to groy, naotureu, pour quality		2										
	orehole Terminated @ 3.43 m Depth	93.0	3				-2-0-0-0						
S	ee the attached sheet for core drilling ecord		Angele Company										The state of the s
before use b	· Ei8	WATER apsed ime	,	VEL RE Water evel (m)		S Hole Ope To (m)	n	Run	Dep	th	LING RECO		QD '
.Field work si .See Notes o	ckfilled upon completion of drilling upervised by a Trow representative n Sample Descriptions s to read with Trow Associates Inc. report			zroi (III)		10 (111)		No.	(m)				


Project No.: OTGE00019054B

С	ORE DRILLI (BH		RD
Run	Depth	Rec	RQD
No.	(m)	(%)	(%)
1	1.52 - 1.68	92	0
2	1.68 - 1.80	90	0
3	1.80 - 2.06	90	0
4	2.06 - 2.31	90	0
5	2.31 - 2.52	100	0
6	2.52 - 2.72	88	0
7	2.72 - 2.97	90	0
8	2.97 - 3.07	100	0
9	3.07 - 3.25	86	0
10	3.25 - 3.43	86	0

卡Trow

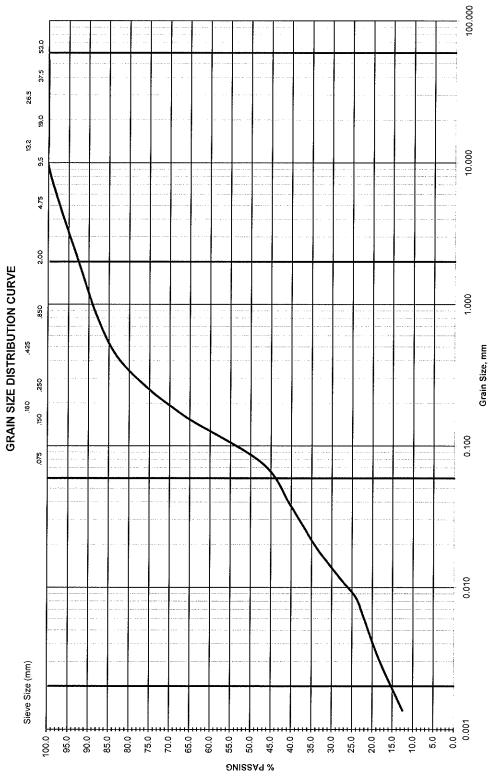
FIGURE: 14



 } }	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	ENE.	MEDIUM	COARSE
:		SILT			SAND			GRAVEL	

PROJECT: OTGEOOD DATE SAMPLED: Se SAMPLE DESCRIPTION:	00019054B NAN September 17, 200	ME & LOCATION: 7 BOREHOLE No.:	Proposed S	Proposed Sewage Lagoon - Arctic Bay, Nunavut (Existing Lagoon) 11 SAMPLE No.: SS2 DEPTH (m):	Bay, Nunav	ut (Existing Lagoon) DEPTH (m):	0.6 to 1.2
, , , , , , , , , , , , , , , , , , , ,			Sandy Gr	Sandy Gravel, Some Silf. Frace Clay	<u> </u>		

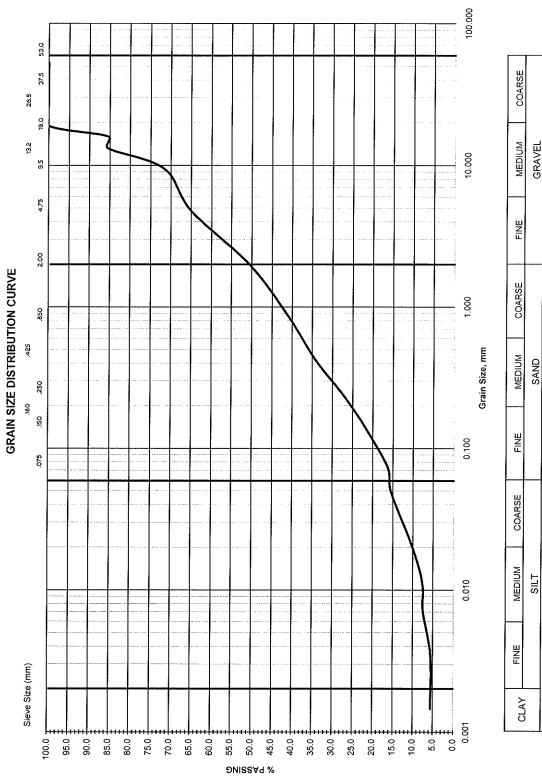
十Trow


FIGURE: 15

	1.2 to 1.8	
ay, Nunavut	DEPTH (m):	
- Arctic E	SS3	lay
roposed Sewage Lagoon - Arctic Bay, Nunavut	SAMPLE No.:	Gravel, Some Sand, Trace Silt and Clay
Ь	BH 2	Gravel, So
ME & LOCATION:	BOREHOLE No.:	
NAME	, 2007	
OTGE00019054B	September 17, 2007	TION:
PROJECT: OT	DATE SAMPLED:	SAMPLE DESCRIPTION:

十Trow

FIGURE: 16



	GRAVEL			SAND			SILT	
COARSE	MEDIUM	FINE	COARSE	MEDIUM	J.N.	COARSE	MEDIUM	FINE

PROJECT: (OTGE00019054B	NAME &	E & LOCATION:	Proposed S	Proposed Sewage Lagoon - Arctic Bay, Nunavut (Existing Lagoon)	Bay, Nuna	vut (Existing Lagoon)	
DATE SAMPLED:	September 17, 2007	2007	BOREHOLE No.:	BH 5	SAMPLE No.:	SS1	DEPTH (m):	0 to 0.5
SAMPLE DESCRIPTION	RIPTION:			Silty sand. So	Silty sand. Some Clay. Trace Gravel (Topsoil)	Consoil		

卡Trow

FIGURE: 17

)		2,4		
		Mo	Modified M.I.T. Classification				
PROJECT: OTGE00019054B	Z	ME & LOCATION:	ď	Proposed Sewage Lagoon - Arctic Bay, Nunavut	Arctic Bay, N	unavut	
DATE SAMPLED:	DATE SAMPLED: September 17, 2007	7 BOREHOLE No.:	BH 8	SAMPLE No.:	SS1 DEPTH(m):	EPTH (m):	0 to 0.6
SAMPLE DESCRIPTION	NOIL:		Sandy	Sandy Grayel. Trace Silt and Clay			

十Trow

100.000 53.0 8 37,5 COARSE 26.5 FIGURE: 0.61 MEDIUM 13.2 GRAVEL 10.000 9.5 ξ. Σ FINE 2,00 GRAIN SIZE DISTRIBUTION CURVE COARSE 1.000 .850 SAND Modified M.I.T. Classification Grain Size, mm MEDIUM 250 05 FINE 0.100 .075 COARSE MEDIUM SILT 0.010 FINE Sieve Size (mm) CLAY

2NIS2A9 % ಔ ಔ ಔ 提 Ö: Ö: Ö: Ö:

40.0 35.0 30.0 25.0 ∓

20.0

15.0 🛨

60.0

55.0

75.0 ₹ 70.0 65.0

95.0 ₹ 90.0 85.0 ‡ 80.0

PROJECT:	OTGE00019054B	NAME &	ME & LOCATION:		Proposed Sewage Lagoon - Arctic Ray Nunavut	n - Arctic B	av Nimaviit	
					006	2000	ay, wandvar	
DATE SAMPLED:	 September 17, 200 	2007	BOREHOLE No.:	BH 12	SAMPLE No.:	882	DEPTH (m):	0.640.12
COULC LIGHT	1011011							2.1 010.0
JOHNSTEE CHOCKET ICN:	ALCO.:			Sand one	F 41:0	č		
				Salid allo	Salid alid Gravel, Some Silt, Trace Clay	Clay		

0.001

卡Trow

90.06

85.0 80.0 75.0 70.0 65.0

95.0

€0.0

55.0

100.000 53.0 19 37.5 COARSE 26.5 FIGURE: 19.0 MEDIUM 13.2 GRAVEL 10.000 9.5 4.75 HINE. 2.00 GRAIN SIZE DISTRIBUTION CURVE COARSE 1.000 .850 .425 Grain Size, mm MEDIUM SAND 250 180 051. FINE 0.100 .075 COARSE MEDIUM SILT 0.010 FINE Sieve Size (mm)

	7		134016	
		sav, Nunavut	SS2 DEPTH(m)	
		- Arctic B	882	Clav
		Proposed Sewage Lagoon - Arctic Bay, Nunavut	SAMPLE No.:	Sand, Some Silt and Gravel. Trace Clav
Modified M.I.T. Classification			BH 10	Sand, So
W		ME & LOCATION:	BOREHOLE No.:	
		NAME 8	7, 2007	
		TGE00019054B	September 1	TION:
		PROJECT: OTGE00019054B	DATE SAMPLED: September 17, 2007	SAMPLE DESCRIPTION

CLAY

10.0 11.

20.0 15.0 ==

30.0 25.0

40.0 35.0

100.000 23.0 20 37.5 26.5 FIGURE: 0.61 13,2 10.000 9.5 4.75 2,00 GRAIN SIZE DISTRIBUTION CURVE 1.000 .850 Grain Size, mm 250 021 0.100 075 0.010 Sieve Size (mm)

65.0 0.09

45.0

40.0 35.0 30.0

55.0

50.0 % PASSING 25.0 🗜 20.0

₹ 0.06 85.0 80.0 75.0 🛨 70.0

95.0

	C! AY	ENE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	
	; i)		SILT			SAND			GRAVEL		
					Modified N	Modified M.I.T. Classification					
PROJECT:		OTGE00019054B	NAME	& LOCATION:		Pre	Proposed Sewage Lagoon - Arctic Bay, Nunavut	e Lagoon - A	rctic Bay, Nu	navut	
DATE SAMPLED:	PLED:	September 17, 2007	r 17, 2007	BOREHOLE No.:		BH 11	SAMPLE No.:	No.:	SS3 DE	DEPTH (m):	1.2 to 1.8
SAMPLE DESCRIPTION	ESCRIP.	TION:				Gravelly S	Gravelly Sand. Some Silt. Trace Clay	Trace Clay			

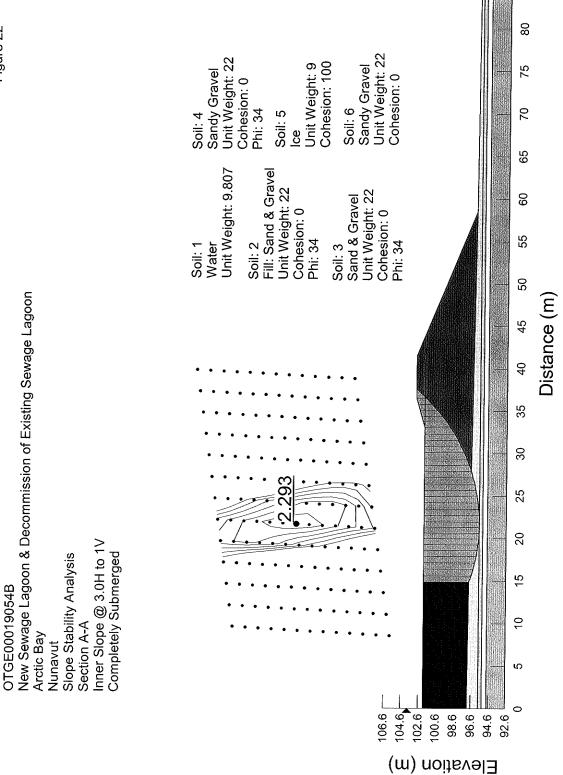
0.001

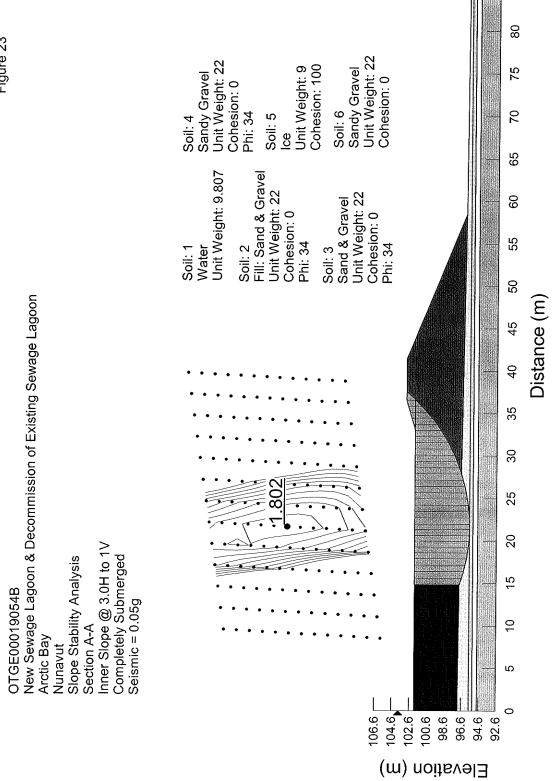
十Trow

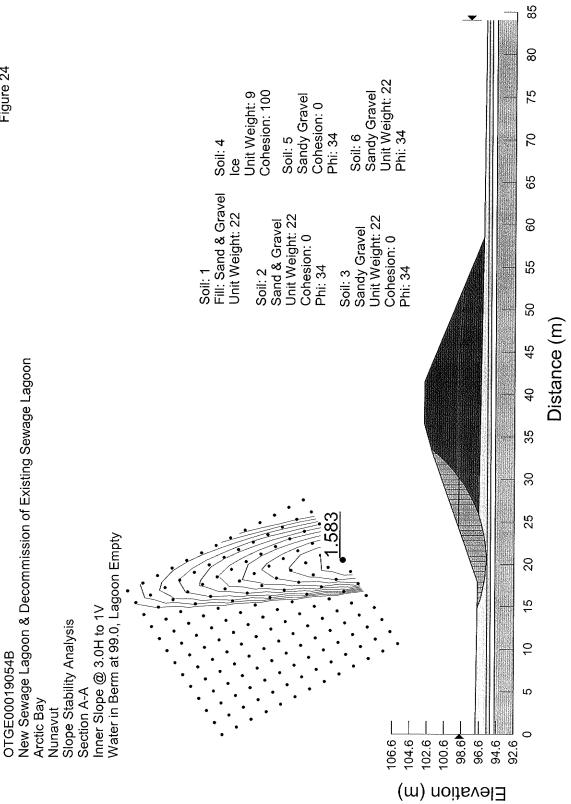
95.0 90.0 85.0 80.0 75.0 65.0 60.0 55.0 50.0

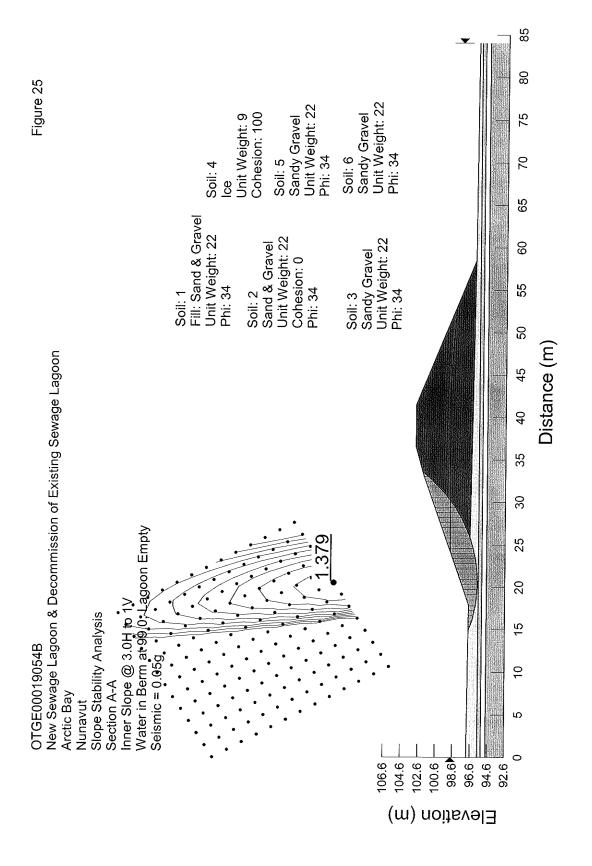
100.000 23.0 21 37.5 26.5 FIGURE: 0.61 13.2 10.000 9.5 7.75 II. 2.00 GRAIN SIZE DISTRIBUTION CURVE COARSE 1.000 .850 .455 MEDIUM Grain Size, mm 250 081 50 E E E 0.100 270 MEDIUM COARSE 0.010 FINE Sieve Size (mm)

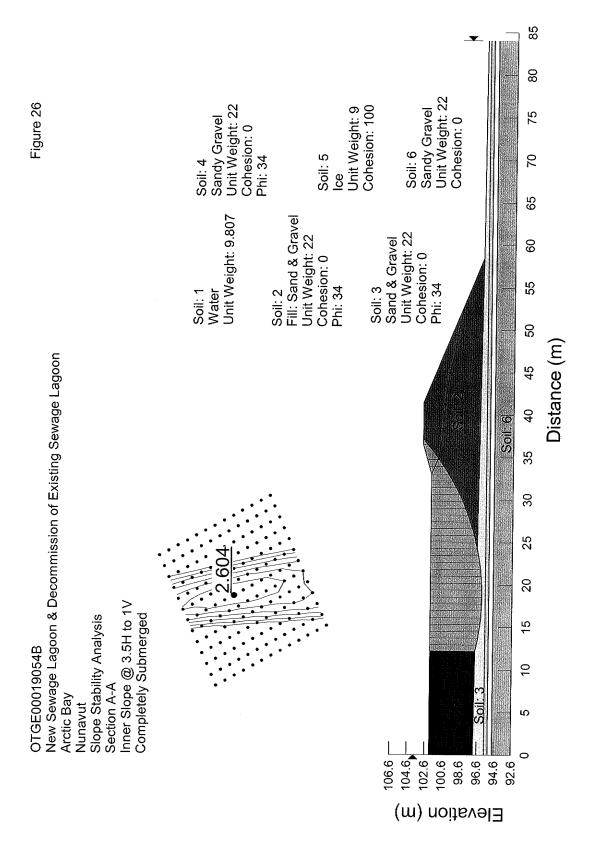
30.0 ₹

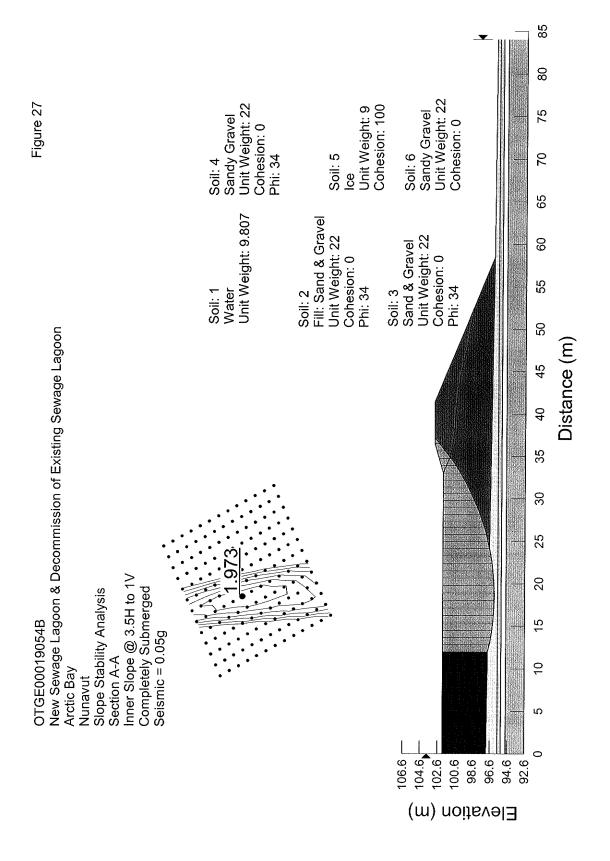

35.0

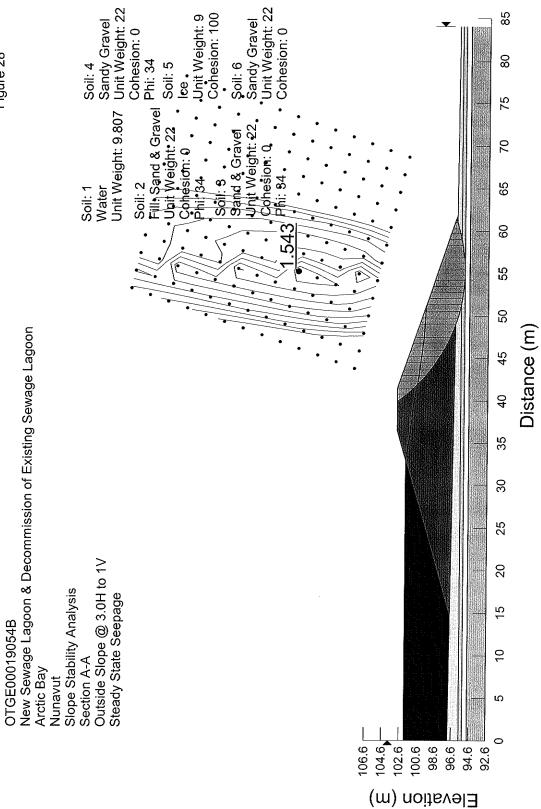

% PASSING

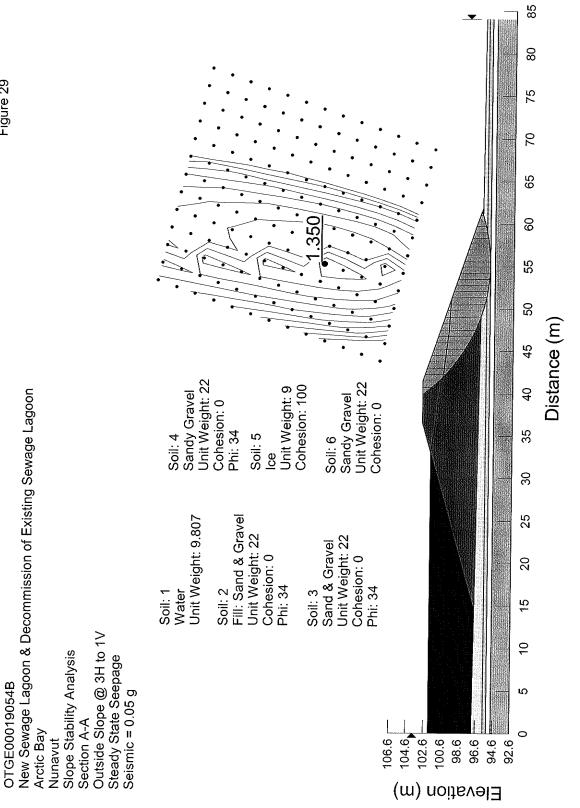

20.0 15.0

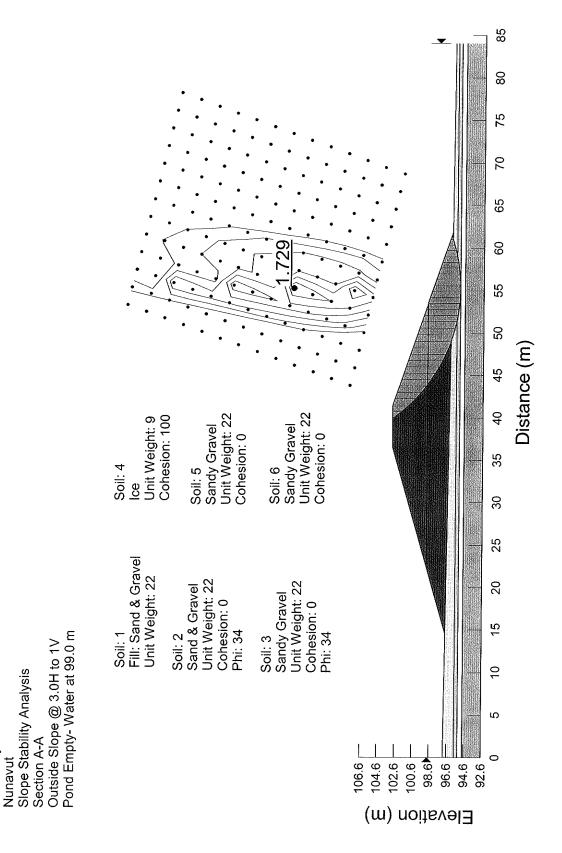

25.0

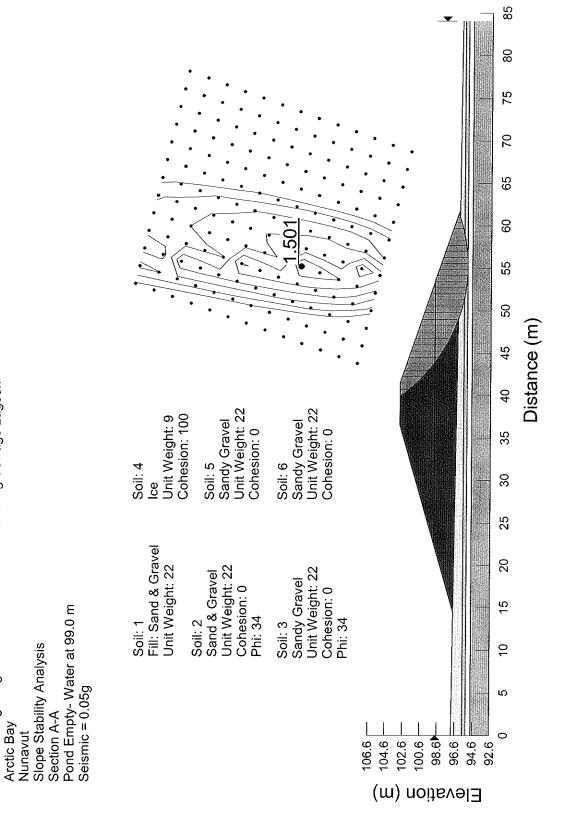

	CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	E NE	MEDIUM	COARSE	
_			SILT			SAND			GBAVEI	1	
_					Modified N	Modified M.I.T. Classification					
DDO ITOT		27.000,000	ľ								
י באמצער	5	TRUSECT . OTGEN0019054B	=	NAME & LOCATION:		Ą	Proposed Sewage Lagoon - Arctic Bay, Nunavut	je Lagoon - A	rctic Bay, Nu	inavut	
DATE SAMPLED:	PLED:	September 17, 20	r 17, 2007	BOREHOLE No.:		BH 9	SAMPLE No:	No.	SS2 DEPTH (m):	FPTH (m):	104010
SAMPLE DESCRIPTION	FSCRIPT	-NCI						1	700		0.1 01 2.1
						Silty G	Silty Gravelly Sand, Trace Clav	race Clay			

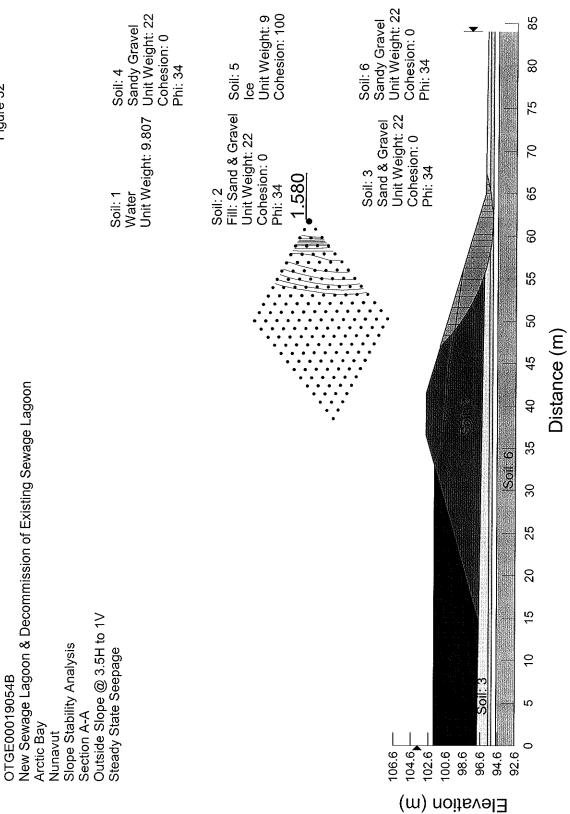


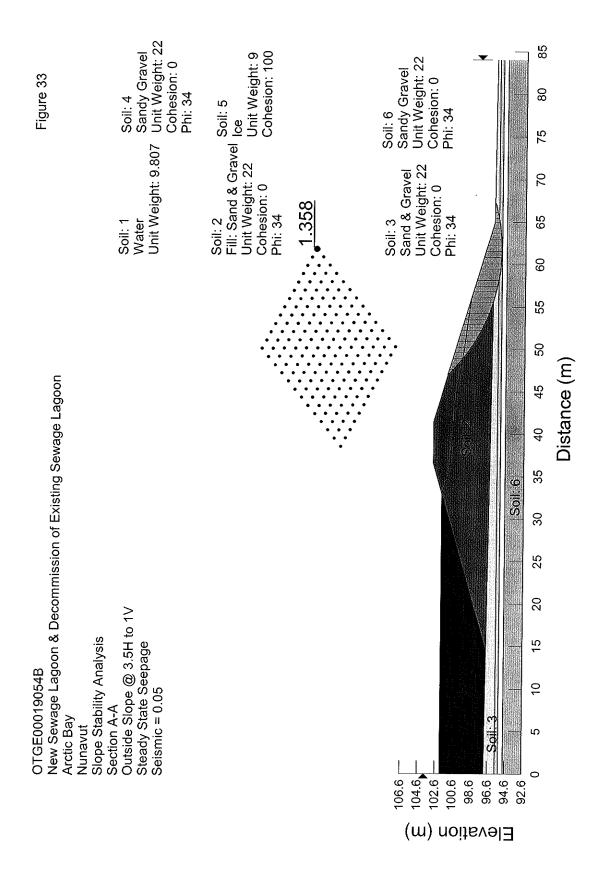




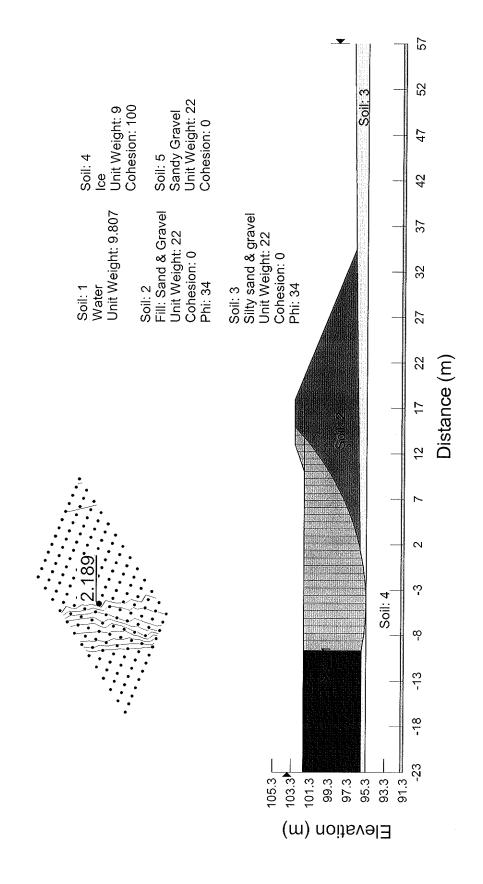


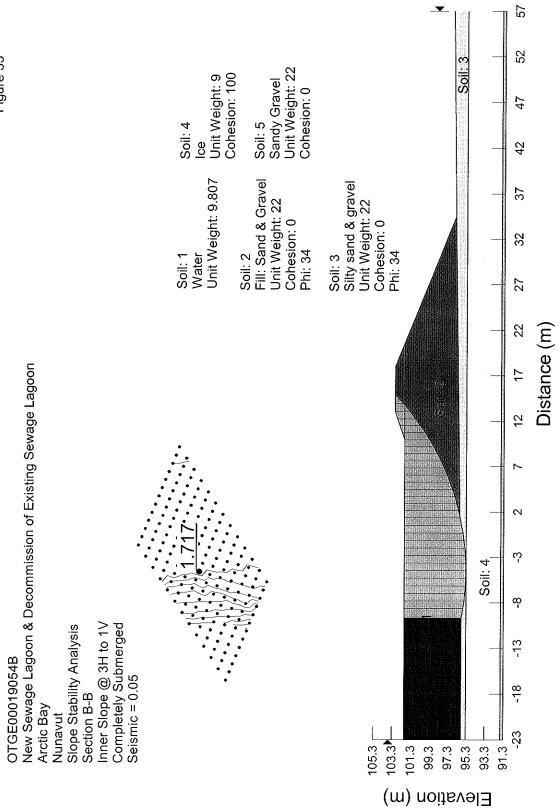


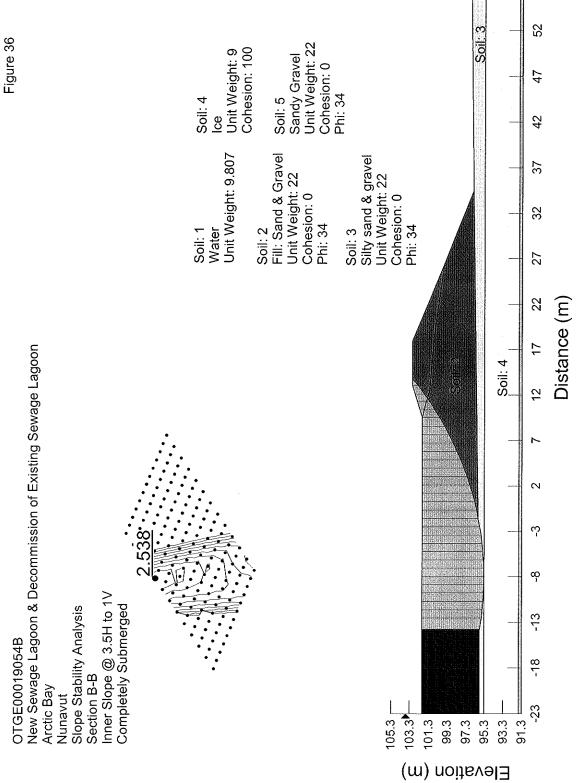

OTGE00019054B

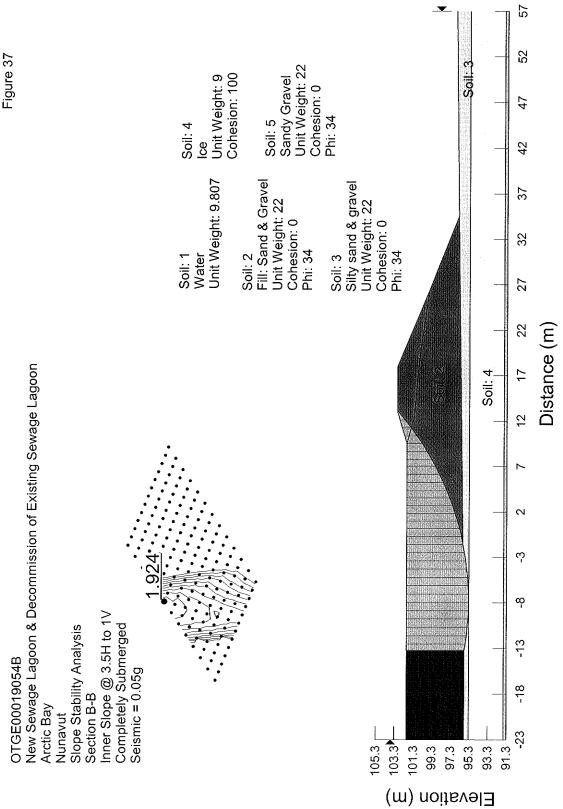

Arctic Bay

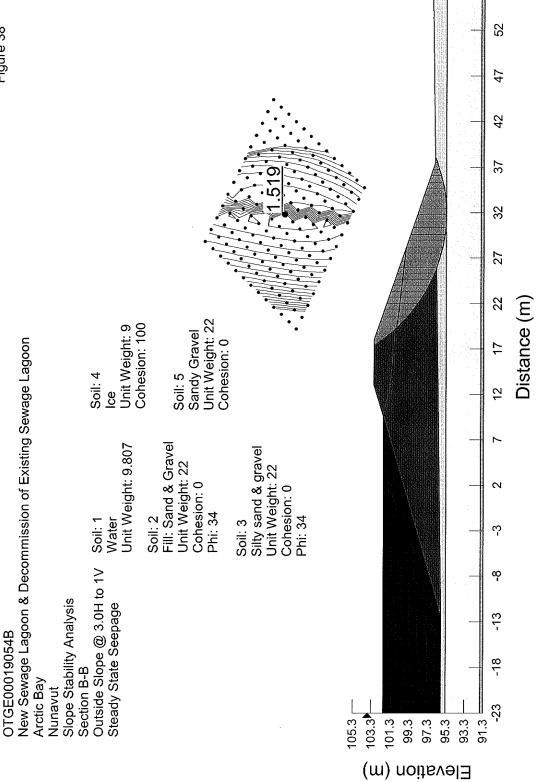
OTGE00019054B

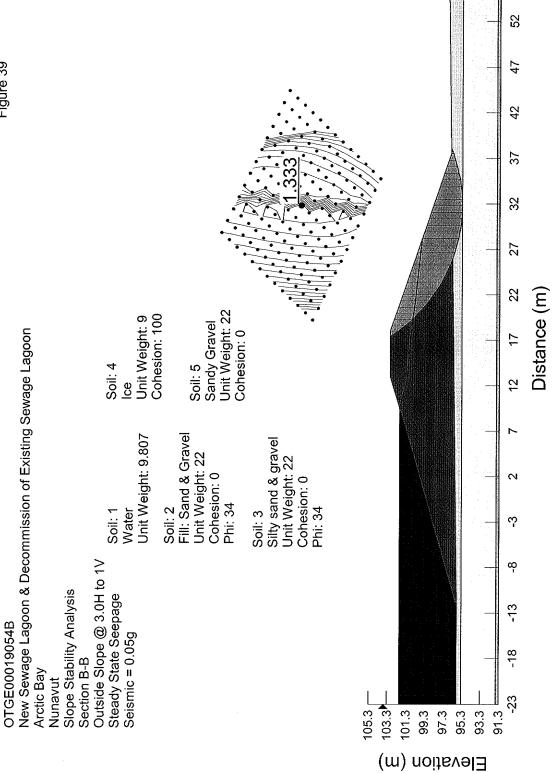


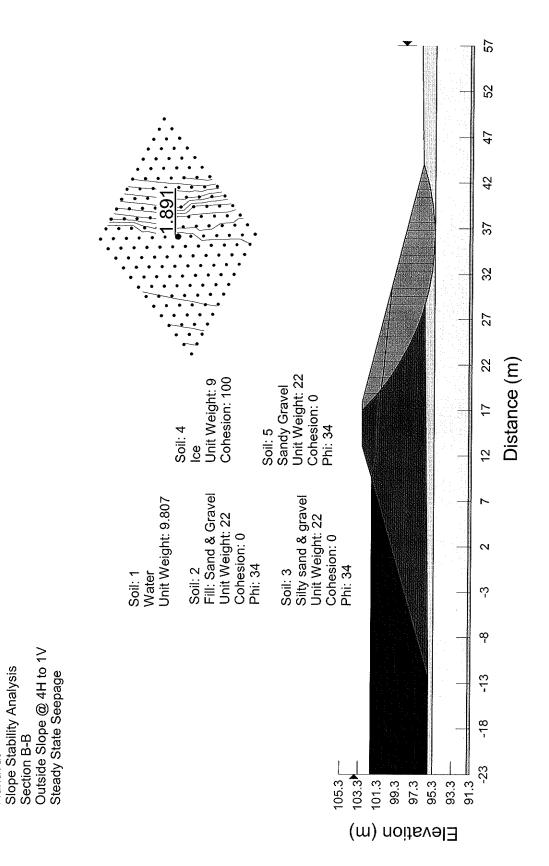



OTGE00019054B

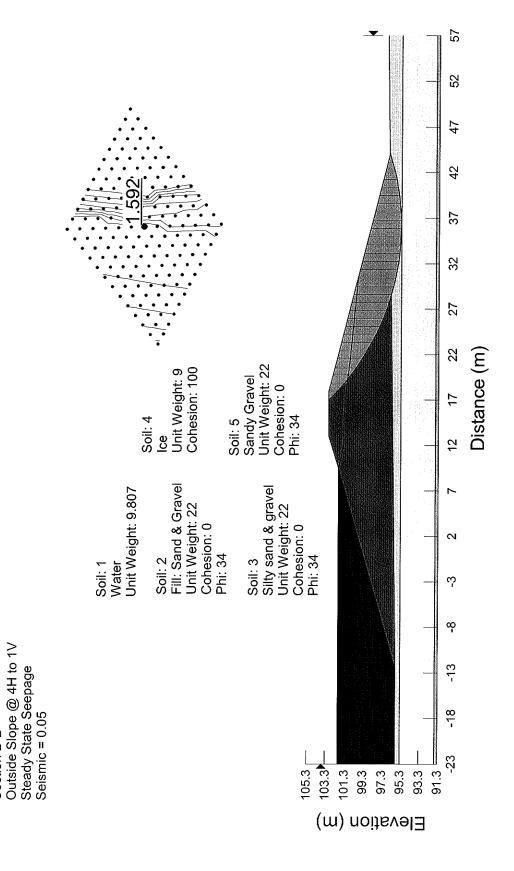

Arctic Bay Nunavut Inner Slope @ 3H to 1V Completely Submerged


Slope Stability Analysis Section B-B





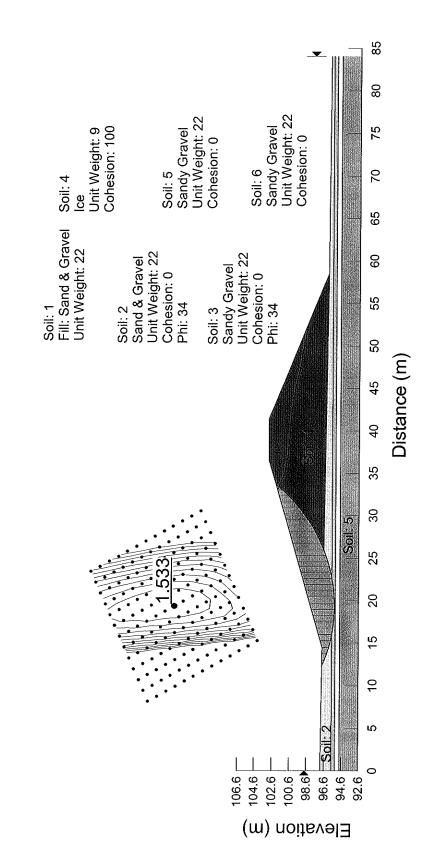
OTGE00019054B


Arctic Bay Nunavut

OTGE00019054B

Arctic Bay Nunavut

Slope Stability Analysis Section B-B

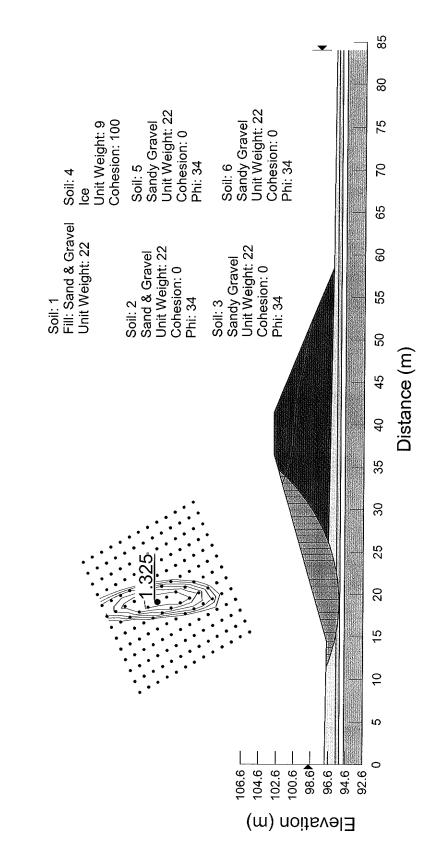


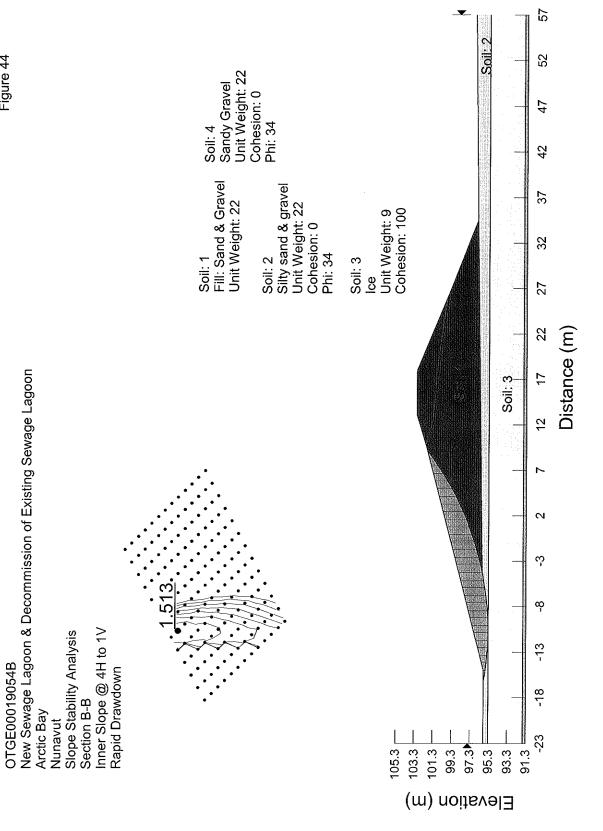
OTGE00019054B

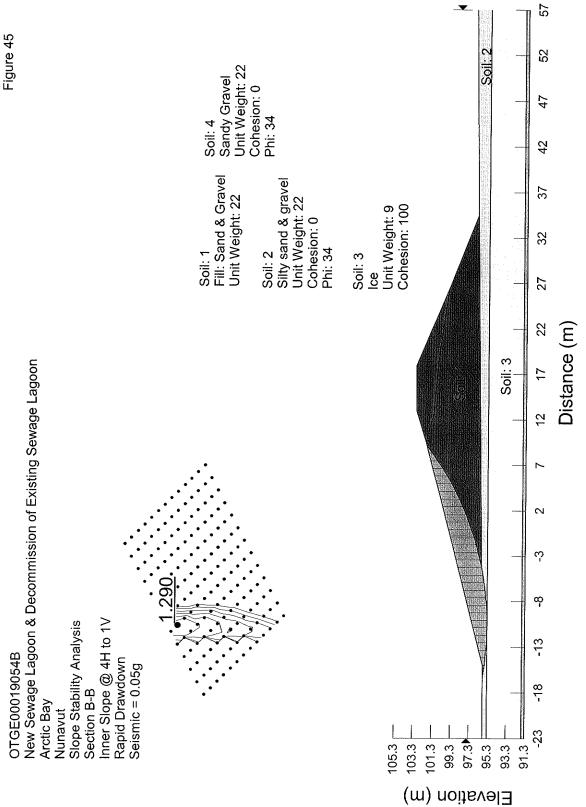
Section A-A Inner Slope @ 3.5H to 1V Rapid Drawdown

Nunavut Slope Stability Analysis

Arctic Bay




OTGE00019054B


Inner Slope @ 3.5H to 1V Rapid Drawdown Seismic = 0.05g

Slope Stability Analysis

Arctic Bay Nunavut Section A-A

