

HAMLET OF ARVIAT

P.O. BOX 150 ARVIAT, NUNAVUT XOC-0E0

General Office: 867-857-2841 -- e-mail: hamletav@attcanada.ca -- Facsimile: 867-857-2519

Nunavut Water Board P.O. Box 119 Gjoa Haven, NU X0E 1J0

August 26, 2003

Nunavut Water Board SEP 0 2 2003 Public Registry

INT	EKNAL
PC	()) Y
MA	
FO	***
LA	
33	Toler Monara and American
\$7	The second secon
Tái	
TAS	A Proposition of
RC	
ED	of eventure in the first of th
CH	Special and the second
BRD	
EXT.	The same of the sa

Re: Arviat Water Licence Application

Attention: Phyllis,

Please find enclosed Arviat's Water Licence Application and copies of the sewage lagoon drawings.

If you require additional information please feel free to contact the undersigned.

Sincerely,

Rick Van Horne, SAO

Hamlet of Arviat

Spare set fin Wall

NUNAVUT WATER BOARD SCANNED SEP 0 3 2003 REF. #

P.O. Box 119 GJOA HAVEN, NU XOE 1JO

TEL: (867) 360-6338 FAX: (867) 360-6369 KATIMAYINGI _^\$' ΔL~_~\>' ЬΠL>Υ NUNAVUT WATER BOARD NUNAVUT IMALIRIYIN

WATER LICENCE (DRAFT) APPLICATION FROM (ARVIAT, NUNAVUT)

App	olication for: (check one)	
	X New Amendment	Renewal Assignment
	ENCE NO.:	
	NWB use only)	
1.	NAME AND MAILING ADDRESS OF	2. ADDRESS OF CORPORATE
	APPLICANT/LICENSEE	OFFICE IN CANADA (if applicable)
	Hamlet of ARVIAT	N/A
3.	LOCATION OF UNDERTAKING (descr components of the Undertaking)	ibe and attach a topographical map, indicating the main
	Approximate location of hamlet are: Latitude: Longitude N61degrees07minutes W94degrees 04minutes	NTS Maps No.; 55 E/1 Scale: N/A
4.	DESCRIPTION OF UNDERTAKING (a There is no "undertaking" at the momen regulations and obtain its water license.	ttach plans and drawings) t. The Hamlet simply wishes to conform to
5.	TYPE OF UNDERTAKING (A supplementation undertakings listed in "bold")	ary questionnaire must be submitted with the application
	Industria	Remote/Tourism Camp
	Mine Developmen	Water services, Solid waste, sewage disposal
		Municipal
	Advanced Exploration	
	Exploratory Drilling	Other (describe)
		(40001100)

6.	WATER USE		· ·		
	To obtain			To div	ert a watercourse
Ì	To modify the hed or bank of a water		 -		Flood Contro
	To alter the flow of, or store			of Public water service	<u>e Other</u>
	To cross a water		(describe)		
7.	QUANTITY OF WATER INVOLVI including both quantity to be used and quality to	E D (liters to be retur	s per second, rned to sourc	liters per day or cubic ree) 62268.993 cubic met	meters per year, ers per year
8.	WASTE (for each type of waste describe: co LAGOON (55,000cu m) ONE CELL FLOWPATH (200m)	Sewage	n, quantity, m	nethods of treatment and	l disposal, etc.) Waste Oil
	BURN AND LANDFILL (34400sq m) Solid	1	LAGOON (5 FLOWPATH	5,000cu m) ONE CEI I (200m)	L_ Grey Water
					Sludges
	BULKY WASTE SITE (20000sq m) Bulky Items/Scrap Metal	<i>r</i> -			
	INAC xYes Regional Inuit Association xYes	N	o If no,	date expected	
	Commissioner xYes	N	o If no,	date expected	
10.	PREDICTED ENVIRONMENTAL PROPOSED MITIGATION MEASI	URES (d	direct, indirec	et, cumulative impacts, o	ND etc.)
11.	INUIT WATER RIGHTS	Ne	o If no, o	late expected	
	Will the project or activity substantially affect the Owned Lands and the rights of Inuit under Artico	e quality, le 20 of th	, quantity, or ne Nunavut I	flow of water flowing the and Claims Agreement	rrough Inuit ?
	If yes, has the applicant entered into an agreement compensation for any loss or damage that may be has been made, how will compensation be determined.	e caused h	e Designated by the alterat	Inuit organization to paion? If no compensation	y agreement

12. CONTRAC	FORS AND SUB-CON	NTRACTORS (name, address and functions)
13. STUDIES U	NDERTAKEN TO DA	ATE (list and attach copies of studies, reports, research, etc.)
14. THE FOLLO	OWING DOCUMENT	S MUST BE INCLUDED WITH THE LATORY PROCESS TO BEGIN
	Questionnaire (where applicant summary of Project	able: see section 5) _YesNo If no, date expected
Application fee S 15. PROPOSED	\$30.00 (c/o of Receiver General TIME SCHEDULE	cral for Canada) Yes No If no, date expected
	Annı	ual (or) Multi Year
Start Date:		Completion Date:
Name (Print)	S.A.O. Title (Print)	Signature Date OSB. Richard VAn Herme
For Nunavut Water Bo	oard Use Only	
APPLICATION FEE	Amount: \$	Receipt No.:
WATER USE DEPOSIT	Γ Amount: \$	Receipt No.:

Design Concept for Arviat Sewage Lagoon
Design

Nunavut Water Board

001 08 2003

Public Registry

prepared for:

Department of Community Government & Transportation Government of Nunavut 2nd Floor, Oomolik Building P. O. Box 490

> Rankin Inlet, Nunavut X0C 0G0

> > prepared by:

FSC Architects & Engineers 4910 53rd Street Yellowknife, NT X1A 2P4

	LAIAC
INTER	
PC_	Db
MA	
FQ	
LA.	
ES	
ŞΤ	The same of the same of the same of
TAI	
TA2	
RC	
ED	
CH	
BRD	
EXT.	
The second name of the last	

FSC Project No: 2003-0440

Date: May 23, 2003

TABLE OF CONTENTS

1.0	INTRODUCTION	, 1
2.0	DESIGN CONCEPT	3
2.1	CENERAL	3
2.2	VOLUME	3
2.3	LOCATION	
2.4	OPERATION	
2.5	OVERLAND FLOW CONCEPT	
2.6	PREDICTED EFFLUENT QUALITY	., 5

Appendices

Appendix A Climate Data

Appendix B Sketches

Appendix C Wetland Modeling

1.0 INTRODUCTION

FSC was contracted by the GN on behalf of the Hamlet of Arviat to complete a design and non-resident supervision services for a new sewage lagoon.

FSC completed a growth study to predict the 20-year (2023) population, sewage volume and sewage quality or sewage strength.

Predictions concluded from the growth study, along with information from the Hamlet and mapping provided by CG&T, were used to develop the design concept.

Table 1.1 Projected Sewage Generation, Arviat NU

Census Population1,899Census Year2001% Population Increase2.86

Residential Water Use 60.5 lpcd

Sludge Generation Rate 50 grams/cd BOD 45 grams/ed

SS 48 grams/cd 7-PO4 2.3 grams/cd

TKN 12 grams/cd FC 9.50E+10 #/cd

Planning Year	Calendar Year	Total Population	Projected Water Use	Projected Volume	Projected Sludge Volume	Accumulated Sludge Volume	BOD	TSS	T-PO4	TKN	FC
			(lped)	(litres/year)	(m3/yr)	(m3)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(#/dl)
	2001	1,899	86.9	60,250,472	35	35	518	552	26	138	1.1E+08
	2002	1,953	87.7	62,513,086	36	70	513	547	26	137	1.1E+08
0	2003	2,009	88.5	64,871,706	37	107	509	543	26	136	1.1E+08
	2004	2,067	89.3	67,330,896	38	145	504	538	26	134	1.1E+08
	2005	2,126	90.1	69,895,454	39	183	500	533	26	133	1.1E+08
	2006	2,187	90.9	72,570,424	40	223	495	528	25	132	1.0E+08
	2007	2,249	91.8	75,361,117	41	264	490	523	25	131	1.0E±08
5	2008	2,314	92.7	78,273,117	42	307	485	518	25	129	1.0E±08
	2009	2,380	93.6	81,312,302	43	350	481	513	25	128	1.0E+08
:	2010	2,448	94.6	84,484,856	45	395	476	508	24	127	1.0E+08
	2011	2,518	95.5	87,797,289	46	441	471	502	24	126	9.9E±07
	2012	2,590	96.5	91,256,453	47	488	466	497	24	124	9.8E+07
10	2013	2,664	97.6	94,869,563	49	537	461	492	24	123	9.7E+07
	2014	2,740	98.6	98,644,213	50	587	456	487	23	122	9.6E+07
	2015	2,819	99.7	102,588,400	51	638	451	481	23	120	9.5E+07
	2016	2,899	100.8	106,710,548	53	691	446	476	23	119	9.4E+07
	2017	2,982	102.0	111,019,526	54	745	441	471	23	118	9.3E+07
15	2018	3,067	103.2	115,524,678	56	801	436	465	22	116	9.2E+07
	2019	3,155	104.4	120,235,847	58	859	431	460	22	115	9.1E+07
	2020	3,245	105.7	125,163,404	59	918	426	454	22	114	9.0E+07
	2021	3,338	107.0	130,318,275	61	979	421	449	22	112	8.9E+07
	2022	3,434	108.3	135,711,974	63	1,042	416	443	21	111	8.8E+07
20	2023	3,532	109.6	141,356,636	64	1,106	410	438	21	109	8.7E+07

2.0 DESIGN CONCEPT

2.1 GENERAL

The proposed design will involve, seasonal retention lagoons followed by overland flow treatment.

Currently there are two lagoons operating in parallel, with a discharge to the foreshore of Hudson's Bay. FSC proposes that a third lagoon be constructed to accommodate the 20-year volume and that the foreshore area be developed so that it naturally evolves into an overland flow treatment area.

At commissioning, we expect the effluent from the lagoons prior to discharge to the overland flow area to potentially meet the Nunavut Water Board Guidelines for discharges to marine environments. The effluent will trigger the development of the overland flow area.

The lagoons will be discharged at a slow continuous rate during the growing season, approximately July and August. At the end, there will be sufficient volume in the lagoons to accept the next years sewage volume.

2.2 VOLUME

The 20-year volume is estimated to be $141,000 \text{ m}^3$. The current lagoon volume is estimated to be $49,600 \text{ m}^3$, based on a 2 metre working depth.

To gain a more accurate scope of the natural hydrologic processes occurring in the area, evaporation rates must be considered. Evaporation maps showing the 10-year mean annual monthly lake evaporation data. This is the most current information available from Environment Canada.

It is assumed that water evaporates from a sewage lagoon at the same rate as from a lake. Sublimation rates are not included in the mapping and therefore shall not be included in the calculations. The evaporation map can be found in Appendix A.

The annual evaporation for Arviat is 203 mm. The annual evaporation was then compared to the annual precipitation. There is no climate normal data from the Environment Canada website for Arviat, therefore information was collected from the Rankin Inlet Climate Normals. The average annual precipitation for Rankin Inlet is 297 mm. Climate Normals can be found in Appendix A

Therefore, if the Rankin rainfall data is comparable to Arviat, the lagoons will incur a net gain of 297 mm 203 mm = 94 mm of precipitation over the area of the lagoons.

Runoff was not considered in the analysis as the lagoon berms are raised and no runoff should enter the lagoons.

Therefore, the required lagoon volume for the 20-year period is 98,353 m³.

With the incorporation of overland flow into the treatment process, a 12-month storage lagoon is not required at this time. The recommend storage period is 7 months. The corresponding total lagoon volume required for the 20-year horizon is 86,306 m³. The additional lagoon volume is therefore, 36,706 m³.

2.3 LOCATION

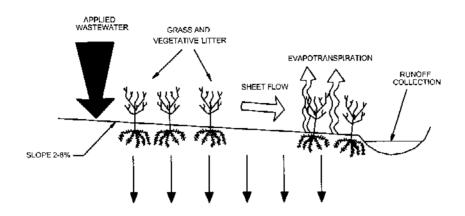
FSC proposes an adjacent lagoon north of the existing lagoons, as shown on the sketch EN-2, in Appendix B.

2.4 OPERATION

Sewage will be discharged to the lagoons year round from the trucked system. As one lagoon becomes full the truck will then discharge to the next empty lagoon.

The lagoons will be discharged annually beginning approximately July 1st and continuously until approximately August 31st, at which time all the lagoons will be at their lowest level.

Lagoons can be discharged in a number of ways, either through pumps or siphons. FSC recommends consideration of windmills to perform the pumping operations. Windmills are low cost, low maintenance, sustainable technology.


2.5 OVERLAND FLOW CONCEPT

The proposed overland flow area is shown on EN-2, Appendix B. Effluent from the lagoons is proposed to be discharged at a slow, continuous rate at the head of the overland flow area. Irrigation techniques and flow attenuation berms will be used to ensure liquid is spread evenly across the area.

The land between the lagoons and Hudson's Bay will be used as a microenvironment to further treat sewage, and provide for evaporation of the liquid and disinfection of the effluent. The following sketch shows an overland flow concept.

OVERLAND FLOW

2.6 PREDICTED EFFLUENT QUALITY

2.6.1 LAGOON EFFLUENT QUALITY

It is expected that upon commissioning and with all three lagoons in use, the water will be relatively shallow and retention period will exceed 12 months. Treatment efficiencies for carbon-based parameters should exceed 80% removal. Therefore, we expect an effluent from the lagoons that meet Nunavut Water Board Guidelines as shown in Table 2.1.

Table 2.1 Estimated Effluent Quality Compared to Nunavut Water Board Guidelines (2004)

Parameter	Raw Sewage (2004)	Expected Lagoon Effluent Quality	Nunavut Water Board Requirements
BOD	504 mg/l	less than 100 mg/l	120 mg/l
TSS	538 mg/l	less than 120 mg/l	180 mg/l
T-PO ₄	26 mg/l	less than 16 mg/l	N/A
TKN	134 mg/l	less than 20 mg/l	N/A
Fecal Coliform	1.0 E08 CFU/dl	less than 1.0 E06 CFU/dl	N/A*

^{*}Depending on local fisheries

However, as volumes increase, so will the depths in the lagoons, as will the amount of sludge accumulation. Treatment efficiencies will reduce and although unlikely, for the purposes of the design concept, could be as low as 40% removal for carbon based

parameters. These factors will combine to reduce the effluent quality to concentrations shown in Table 2.2.

Table 2.2 Estimated Effluent Quality Compared to Nunavut Water Board Guidelines (2023)

Parameter	Raw Scwage (2023)	Expected Lagoon Effluent Quality	Nunavut Water Board Requirements
BOD	410 mg/l	246 mg/l	120 mg/l
TSS	438 mg/l	263mg/l	180 mg/l
T-PO ₄	21 mg/l	13 mg/l	N/A
TKN	109 mg/l	66 mg/l	N/A
Feeal Coliform	8.7 E07 CFU/dl	5.20E+07 CFU/dl	N/A*

^{*}Depending on local fisheries

During the period between 2004 and 2023, the overland flow area will have evolved into a functioning microenvironment estimated to be capable of providing treatment to concentrations shown in Table 2.3. The model for this estimation is shown in Appendix C.

Table 2.3 Estimated Effluent Quality Compared to Nunavut Water Board Guidelines (2023)

Parameter	Lagoon Effluent (2023)	Expected Overland Flow Area Effluent Quality	Nunavut Water Board Requirements
BOD	246 mg/l	90 mg/l	120 mg/l
TSS	263mg/l	23 mg/l	180 mg/l
T-PO ₄	13 mg/l	8 mg/l	N/A
TKN	66 mg/l	31 mg/l	N/A
Fecal Coliform	5.20E+07 CFU/dl	3E+06 CFU/dl	Ν/Λ*

^{*}Depending on local fisheries

Therefore, the design concept and modeling illustrates that the facility will be in compliance with the Nunavut Water Board requirements beginning at commissioning and throughout the design life.

APPENDIX A CLIMATE DATA

土

Environment Environnement Canada

Canada | Contact Us Help | Search

Canadã

Français	Confact Us	diah	Search	Canada Site
What's New	Torriera	Publications	Weather	Home
About Us				
ddan Climate	Normals 107	171-2080		

MSC - EC - GC

NOTE!! Data used in the calculation of these Normals may be subject to further quality assurance checks. This may result in minor changes to some values presented here.

Canadian Climate Normals 1971-2000 for

S Merio 7 ma

RANKIN INLET A Nunavut

Latitude: 62° 49' N Longitude: 92° 07' W Elevation: 28.7 m

The minimum number of years used to calculate these Normals is indicated by a code for each element. A "+" beside an extreme date indicates that this date is the first occurrence of the extreme value.

Normals from January to Year Vermans from January-December

Back to station list Another location

										1		:	4	
	Temperature:	Jan	Feb	Mar	Apr				Aug	Sep	ö	No No	၁၅ Dec	Year Cod
×,°	Daily Mean (°C)	-31.9	-30.1	-25.2	-16.3				9.5	3.4	-5.3	-17.8	-26.7	-11.0
	Standard Deviation	2.8	3.2	2.8	2.6				77	1.5	1.9	3.3	3.5	1.3
	Daily Maximum (°C)	-283	-26.2	-20.9	-11.7				13.0	5.8	-2.4	-13.9	-22.9	-7.3
	Daily Minimum (°C)	-35.5	-33.9	-29.5	-20.8	-9.2	0.4	5.9	6.9	0.9	-8.2	-8.2 -21.6	-30.4	-14.7
	Extreme Maximum (°C)	23.4	4.4	1.3	3,4				30.5	20.6	9.3	6.0	-2.4	30.5
أ	Date (vvv/dd)	397/05	998/18	989/56	984/17				991/10	996/18	80/886	983/04+	999/01	991/10
	Extreme Minimum (°C)	46.1	-49.8	-43.4	-35.7				4.1-	-9.0	-27.4	-36.5	-43.6	-49.8
	Date (yyy/dd)	982/07	990/15	984/11	984/06				986/31	989/30	986/31	982/24	06/966	990/15
*	Precipitation:													
	Rainfall (mm)	0.0	0.1			7.4	25.0	39.5	57.3	39.2	11.9		0.0	181.5
	Snowfall (cm)	6.7	9.3			11.5	4.9	0.0	0.3	4.6	23.1		11.9	119.7
	Precipitation (mm)	9.9	9.9			18.4	29.8	39.5	57.6	43.8	34.6	19.8	11.3	297.1
	Mean Snow Depth (ст.)	27	30			20	•	0	0	0	რ		23	16
¥. 	Median Snow Depth (cm)	27	30			2	0	0	0	0	က		23	16
*	Snow Depth at Month-end (cm)	28	34	38	33	9	0	0	0	0	80		25	16
	Extrama Daily Painfall (mm)	c	c •			20 A	45.9	714	41.0	450	1 VC	ч С	6.0	45 ጸ

Canadian Cline Normals 1971-2000	mals 1971-2000				. -				,	i	!	2	3	Ee 2	of 3
* **	y reminent princip	;		;	;	5	5	r. !	1 :			0,000	00,100	50000	
	Date (yyy/dd)	981/15+	998/17	981/19+	000/24	998/15	999/23	990/28	984/14			988/24+	881/30	CZIRRR	
	Extreme Daily Snowfall (cm)	6.4	17.4	12.2	14.0	13.6	21.5	2.4	2.6	10.4	18.2	23.6	8.6	23.6	
		0000000000	T66/300	001/04	004/43	001/07	90/000	001/03	985/28	982/11	997/13	982/06	999/01	985/06	
	Date (yyy/ud)	22702	107/066	17/100	2 4		2000	*	2 - 2		33.0	23.9	8	45.8	
	Extreme Daily Precipitation (mm)	4.0	4.7	D	<u>.</u> 5.	3.1.5	0.0	<u>†</u>	7			1.01	0 0		
	Date (yyy/dd)	992/03 996/23+	996/23+	991/24	994/13	90/666	999/23	990/28	984/14		997/13	882/02	10/886	27/886	
	Extreme Snow Depth (cm)	20.0	64.0	73.0	86.0	68.0	20.0	0.1	0.0	4.0	22.0	57.0	59.0	86.0	
		991/17+ 996/28+	996/28+					001/03	981/01+	985/25	985/31	985/30	985/11+	991/22+	
	Days With:												,	•	
	Freezing Rain or Freezing Drizzle	0.2	0.2	0.7	<u>_</u>	3.9	, 3	0.1	0.0	0.3	3.0	9.1	0.5	13.4	
	Thunderstorms	0.0	0.0	0.0	0.0	0.1	0.4	1.0	9.0	9.0	0.0	0.0	0.0	2.8	
	lich	000		0	00	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.1	
		3 6		ים פי פי			4.7	, r	4.7	4.0	48	2.2	2.7	44.1	
	rog, ice rog, or ribezing rog	4.7	7.7	9 6	9 6	9 6	ř	- c	ì	2	2 0		0	10	
	Smoke or Haze	0.0	0.0	0.0	0.0	0.0	_ o	4.	5	7.0	9 (2 6	3 6	- 6	
	Blowing Dust	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	
	Blowing Snow	15.4	12.9	13.5	8.1	3.3	7 .0	0.0	0.1	0.7	9.6	12.6	4	80.4	
	Days with Maximum Temperature:	erature													
	ე _ი ∪ =>	31.0	28.3	30.9	29.0	9	4.	0.0	0.0	1.6	20.1	29.8	31.0	222.8	
	0 0	} -		5	10	1,0	28.6	31.0	31.0	28.4	11.0	0.3	0.0	142.5	
		3 6	9 6	- c	9 6		200	, a	900	4	0	0	0.0	62.1	
	۷ او د	_ 5	0.0	0.0	0.0	- , S	2 4	9 1	4 6) 1	2 6	9 6		ָ מ	
	> 20 °C	0.1	0.0	0.0	0.0	0.0	0.7	5.4	2.2	0.1	0.0	0.0	0.0	0 0	
	> 30 °C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	C	
	> 35 °C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Days with Minimum Temperature:	erature:													
		3	ć	9	c	2	17.0	20	30.7	18.8	26	0.0	0.0	1001	
	ر ۱	2 2	0.0	9 5	9 6	3 5	2 6	3 0		40.0	30.4	30.0	34.0	286 4	
	<= 2 °C	31.0	28.3	31.0	D.08	31.U	21.8	λ.	C (7.01	1.00	9 6	2 2	2 0	
	೦ 0 =>	31.0	28.3	31.0	30.0	30.5	13.1	C:D	0.0	7.1.7	28.4	0.00	0.10	707	
	<= -2 °C	31.0	28.3	31.0	29.8	27.1	4.7	0.0	0.0	5.3	25.5	29.8	31.0	243.4	
	<= -10 °C	31.0	28.3	30.5	27.1	12.7	0.0	0.0	0.0	0.0	10.9	26.9	30.8	198.1	
	<= -20 °C	30.5	27.2	27.8	17.2	1.7	0.0	0.0	0.0	0.0	1,3	18.8	27.7	152.0	
	J, 0€ - =>	26.1	21.6	17.4	3.0	0.0	0.0	0.0	0.0	0.0	0.0	3.8	19.6	91.4	
	Davs with Rainfall:														
		Ċ	5	0	0	24	6.3	10.2	13.9	10.2	3.8	0.3	0.1	46.9	
		2 6	5 6	9 6	3 6	į	1 -	5 6			0.0	00	0.0	10.4	
	>≓ 5 fmm	0.0	0 0	9 6	- c	± c	† 44 - C	, <u>.</u>		, ,	9 6	0.0	0	4.9	
	>= 10 mm	0.0	0	0.0	2 (0.7	0.0	- 7	- 6	? ?	9 6	2 6	2 0		
	>= 25 mm	0.0	0.0	0.0	0.0	0.1	0.7	D.4	4.0	_))	0.0	0.0	-	
	Days With Snowfall:														
	>= 0.2 cm	6.9	7.2	9.1	8.0	7.1	1.9	0.1	0.2	3.9	12.1	12.0	9.5	77.8	
	>= 5 cm	0.2	0.2	0.5	9.0	0.7	0.3	0.0	0.0	0.2	_	0.9	0.4	4.9	
	11 10 500	c	ç	0.1	0.0	0	0.0	0.0	0.0	0.1	0.2	0.5	0.0	1.	
		9 0			0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		3	3	5	3	;	}	j							
	Days with Precipitation:												(
	>= 0.2 mm	6.8	7.1	9.0	8.4	& &	7.4	10.2	13.2	12.8	14.3	71.9 9.6	Ω ·	 	
	>= 5 mm	0.2	0.2	0.5	0.7	- :	1.6	2.0	3.3	2.8	2.0		0.4	15.3	

1971-2000
Normals
Cliniuce
Canadian

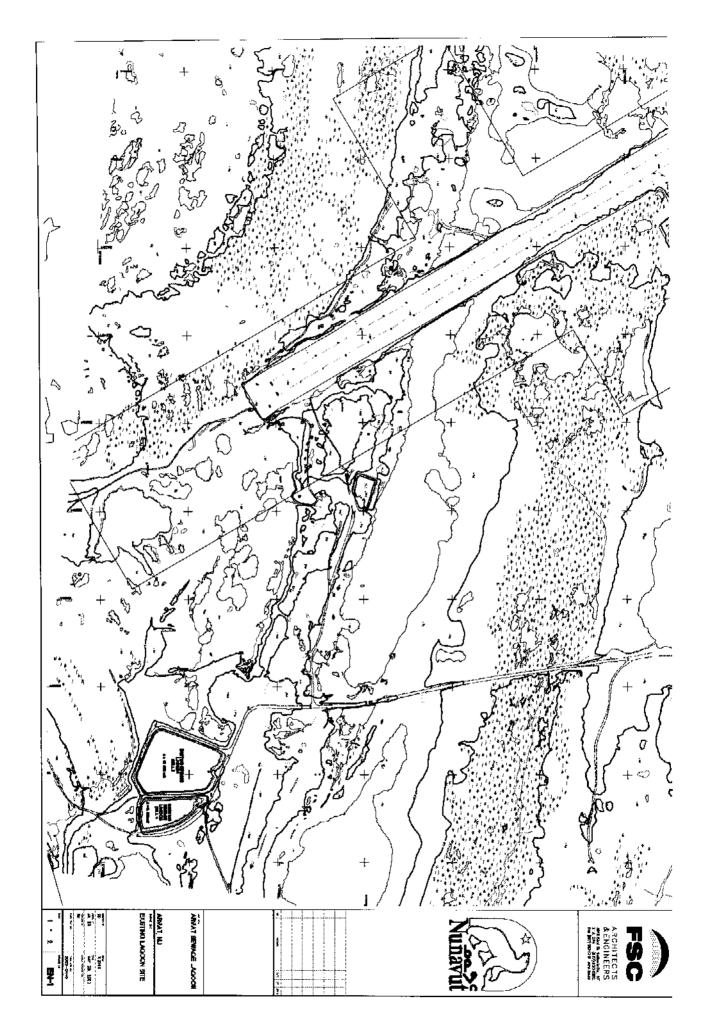
1 use 3 of 3

5.8	1.2		237.3	213.7	192.6	136.4		45.6	16.2	137.0	997/14	≷	!	0.0	4,1	10.7	88.7	367.4	874.2	4847.7	6167.1	7714.6	9462.9	10549.4	er location
0.0	0.0	,	31.0	31.0	29.5	16.1	+	5.5	← 80:	124.0	985/27	Š		0.0	0.0	0.0	0.0	0.0	0.0	829.5	984.5	1139.5	1294.5	1387.5	Anoth
0.1	0.0		30.0	27.9	19.5	8.4		5.0	1.9	124.0	90/986	z		0.0	0.0	0.0	0.0	0.0	0.0	532.7	682.7	832.7	982.7	1072.7	
0.5	0.1		18.1	8.2	3.7	0.1		5.4	2.0	137.0	997/14	₹		0.0	0.0	0.0	0.0	0.1	8.4	171.1	317.8	472.7	627.7	720.7	ation iis
4.1	0.1		0.5	0.0	0.0	0.0			1.5	_	989/20+	×		0.0	0.0	0.0	1.6	21.0	111.5	9.5	69.0	199.6	348.0	438.0	Back to station list
1.6	4.0		0.0	0.0	0.0	0.0		2.8	1.2	124.0	984/03	N		0.0	0.2	2.5	30.1	139.0	292.0	0.0	2.0	48.1	175.4	266.1	Δ
1.1	4.0		0.0	0.0	0.0	0.0		1.6	0.5	106.0	990/59	Š N N		0.0	1.2	7.9	52.7	172.7	325.4	0.0	2.4	37.4	147.6	233.9	
0.7	0.2		7.8	9.	0.6	0.1		1.2	0.5	111.0				0.0	0.0	0.3	4.2	8,5	131.9	7.0	59.5	179.3	325.4	415.1	
0.2	0.1		29.8	24.7	21.7	14.3		2.8	0.5	117.0	986/29	Ν×		0.0	0.0	0.0	0.0	0.1	5.0	186.3	336.4	491.3	646.3	739.3	
0.2	0.0		30.0	29.8	29.2	26.0		2.6	0.7	111.0	999/25	ŠZ		0.0	0.0	0.0	0.0	0.0	0.0	488.7	638.7	788.7	938.7	1028.7	
0.1	0.0		31.0	31.0	31.0	28.7		4.7	1.7	111.0	986/05	Š		0.0	0.0	0.0	0.0	0.0	0.0	784.0	939.0	1094.0	1249.0	1342.0	
0.1	0.0		28.3	28.3	28.1	22.8		5.4	6 .	113.0	999/02	뮏		0.0	0.0	0.0	0.0	0.0	0.0	849.5	2.066	1132.0	1273.2	1358 0	
0.0	0.0		31.0	31.0	29.4	23.7		5.5	2.3	132.0				0.0	0.0	0.0	0.0	0.0	0.0	989.5	1144.5	1299.5	1454.5	1547.5	?
>= 10 mm	>= 25 mm	Days with Snow Depth:	>= 1 cm	NH 5 CH	>= 10	>= 20	Days with Wind:	Wind Speed >= 52 km/hr	Wind Speed >= 63 km/hr	Maximum Wind Gust	Date (vvv/dd)	Direction of Extreme Wind Gust	Degree Days:	Above 24 °C	Above 18 °C	Above 15 °C	Above 10 °C	Above 5 °C	Above 0 °C	Below 0 °C	Below 5 °C	Below 10 °C	Below 15 °C	Balow 18 °C	

Meteorologica: Service, af Canada - Environment, Canada - Government, of Can

Graphics : [Turn off] | Formats : [Print] [PDA.]

Created : 2002-12-31 Modified : 2002-12-31 Reviewed : 2002-12-31 Url of this page : http://www.msc.ec.gc.ca/climate/climate_normals/results_e.cfm


Canad

Important Notices, and Disclaims

The Green Lane $^{\text{TM}}$, Environment Canada's World Wide Web Site.

APPENDIX B SKETCHES

.. .--

,.. n.

ARMAT BEWADE LAGOON ARCHITECTS
&ENGINEERS
APPROPRIEST VALUE OF THE PROPRIEST Ţ

APPENDIX C WETLAND MODELING

Alberta Environment Wetlands Calculations

Surface Flow Wetland Treatment

Design Flow m3/d	Q =	1341					
Design Flow more	u –						
		TSS BC	D TP	TN	NI	-1 4-N F	€C
Wastewater Characterization	Ci	246	263	13	66	80	5.20E+07
Target Effluent Quality	Ce	120	100	2	4	2	10000
Wetland Background Input	C* =	23	17	0.05	2	0	100
for TSS, $C^* = 7.8 + 6$ for BOD, $C^* = 3.5 + 6$							
Area Rate Constant @20oC	k =	1000	34	12	22	18	77
Required Wetland Area	A =	0.04	1.567	7.591	7.700	10.032	5.446
Models A = <u>0.0365*C</u> k	*	In Ci - C* Ce - C*	Av	ailable Area		[7
Projected Effluent Quality	Co	23	19	2.30	4.74	6.10	9.59E+02
Co = C* + [Ci - C*] exp	- kAmax 0.0365*0	—					
Overall % removal		90.53	92.65	81.69	92.78	92.38	100.00

Alberta Environment Wetlands Calculations

10C Area rate constant, k, has been divided by 2 from 20C value

Alberta Environment Wetlands Calculations

Surface Flow Wetland Treatment

Design Flow m3/d	Q =	1341					
		TSS BOI) TF	r TN	l N	H4-N F	С
Wastewater Characterization	Ci	246	263	13	66	80 5	.20 E+ 07
Target Effluent Quality mg/l	Ce	120	100	2	4	2	10000
Wetland Background Input	C* =	23	17	0.05	2	0	100
for TSS, $C^* = 7.8 + 10^{-4}$ for BOD, $C^* = 3.5 + 10^{-4}$							
Area Rate Constant @10oC	k =	500	17	6	11	9	38.5
Required Wetland Area, ha	A =	0.08	3.135	15.182	15.400	20.064	10.892
Models A = <u>0.0365*C</u> k	*	Ce - C*	A	vailable Area	2		7
Projected Effluent Quality	Со	23	39	5.37	15.21	22.09	2.11E+05
$Co = C^* + [Ci - C^*] exp$	- kAmax 0.0365*0						
Overall % removal		90.53	85.16	57.37	76.84	72.39	99.59

Alberta Environment Wetlands Calculations

5C Area rate constant, k, has been divided by 2 from 10C value

Alberta Environment Wetlands Calculations

Surface Flow Wetland Treatment

Design Flow m3/d	Q =	1341					
		TSS BO	TT C	νT (1 N	IH4-N F	С
Wastewater Characterization	Ci	246	263	13	66	80 5	.20E+07
Target Effluent Quality mg/l	Ce	120	100	2	4	2	10000
Wetland Background input	C* =	23	17	0.05	2	0	100
for TSS, $C^* = 7.8 +$ for BOD, $C^* = 3.5 +$							
Area Rate Constant @5oC	k =	250	8.5	3	5.5	4.5	19.25
Required Wetland Area, ha	A =	0.16	6.269	30.364	30.801	40.129	21.784
Models A = <u>0.0365*C</u> k	<u> *</u>	In Ci - C* Ce - C*	А	vailable Are	a		7
Projected Effluent Quality	Co	23	90	8.21	31.00	42.04	3.31E+06
Co = C* + [Ci - C*] exp	- kAmax 0.0365*0	_					
Overall % removal		90.53	65.68	34.74	52.80	47.45	93.62