

April 30, 2021

Nunavut Water Board P.O. Box 119 Gjoa Haven, NU XOB 1L0

Attention: Richard Dwyer, Manager of Licensing

Dear Richard,

The Hamlet of Coral Harbour is pleased to submit the 2020 Annual Report for water use and disposal of waste as required under the 3BMCOR-1521 water license from January 1-December 31, 2020.

The volume of water withdrawn from Post River to fill the reservoir was 39,973 m³ over the period of 24 days which is below the 45,000 m³ allowable annual limit. The water consumption was 35,750 m³ which is a 11.5% increase from 2019 (32,074 m³).

Sampling of sewage effluent was tested at the ALS Laboratory in Winnipeg. The effluent sampled at the wetland discharge point COR-5 was above the allowable limits for BOD and TSS for the August sample.

Thank you for your consideration. Please do not hesitate to contact me with any questions or concerns.

Regards,

Sarah Collins, P. Eng.
Municipal Planning Engineer
Government of Nunavut
Community and Government Services

Phone: 867-975-5478 Email: scollins@gov.nu.ca

S.Collins

ANNUAL REPORT FOR THE HAMLET OF CORAL HARBOUR

YEAR BEING REPORTED: 2020

The following information is compiled pursuant to the requirements of Part B, Item 1 of Water Licence No. 3BM-COR1521 issued to the Hamlet of Coral Harbour.

a)- d) Tabular summaries of all data generated under the "Monitoring Program"; summary of modifications to the "Monitoring Program" in accordance with Part H, Item 11; the daily, monthly and annual quantities in cubic metres of freshwater obtained from all sources; the daily, monthly and annual quantities in cubic metres of each and all Waste discharged; including the hazardous and non-hazardous Waste accepted at the Solid Waste Facilities;

Attached are results for Monitoring station COR-1, as well as detailed chemical, physical and biological analysis required at COR-3, COR-4 and COR-6.

Month Reported	Quantity of Water Obtained from all Sources (m³)	Quantity of Sewage Waste Discharged (Estimated, m³)				
January	3,590.726	3,590.726				
February	2,954.371	2,954.371				
March	3,381.682	3,381.682				
April	2,726.398	2,726.398				
May	2,860.441	2,860.441				
June	2,886.809	2,886.809				
July	3,345.544	3,345.544				
August	3,681.369	3,681.369				
September	3,332.268	3,332.268				
October	3,638.991	3,638.991				
November	3,242.015	3,242.015				
December	89.608	89.608				
ANNUAL TOTAL	35,730	35,730				

Note: No meter exists to measure the sewage discharge volume, therefore water consumption volume is considered as equal volume to the Sewage discharge volume. The solid waste volumes were not provided to CGS for this submission.

ANNUAL REPORT FOR THE HAMLET OF CORAL HARBOUR

- e) a summary of modifications and/or major maintenance work carried out on the Water Supply and Waste Disposal Facilities, including all associated structures and facilities where structures and facilities are subject to the Act and regulations;
- A higher fence was installed at the Solid Waste site, and fill was dumped and spread to cover the waste within the bermed area.
- Reservoir refill was completed between August 24th and September 16th. A volume of 39,973 m³ was pumped into the reservoirs during this time.
- f) a list of unauthorized discharges and summary of follow-up action taken;

Spill No.	Date	Site Description	Commodity	Quantity
2020145	05/21/20	Coral Harbour	Petroleum-fuel oil (jet A, diesel, turbo A, heat)	2200.00 L

- g) Subject to the Act and Regulations, the proponent is required to provide a summary of abandonment and restoration work completed during the year and an outline of any work anticipated for the next year;
- None
- h) Any updates or revisions for manuals and plans (Including Water Supply, Sewage Waste, Solid Waste, Spill Contingency, Abandonment and Restoration, QA/QC) as required by changes in operation and/or technology;
- Updates to the documents will be submitted to NWB by June 30, 2021.
- i) a summary of any studies, reports and plans requested by the Board that relate to Waste disposal, Water use or reclamation, and a brief description of any future studies planned;
- CGS is seeking funding to develop a business case for upgrades to the current wastewater
 treatment facility. This business case would evaluate design option to develop an impermeable
 lagoon to hold 10-12 month of sewage. It would also include a comprehensive study of the
 wetland treatment area and the receiving environment to recommend effluent treatment
 parameters that are appropriate for this type of wastewater treatment system.

ANNUAL REPORT FOR THE HAMLET OF CORAL HARBOUR

- j) any other details on Water use or Waste disposal requested by the Board by November 1st of the year being reported.
- None

ADDITIONAL INFORMATION THAT THE LICENSEE DEEMS USEFUL:

- CGS, on behalf of the Licensee is in the process of preparing the renewal application. The letter of conformity from the Nunavut Planning Commission was received on April 16, 2021. The application package will be submitted to NWB by May 31, 2021.
- The Licensee is interested in moving the resupply location approximately 100 m upstream to a
 deeper location within the River where rocks will not impact the resupply pump operations. This
 will involve extending the road and moving the removable intake hose and sea can equipment
 upstream. This project has not yet received funding and a letter will be submitted to the NWB
 with details of the work when it is planned to be undertaken.
- The Licensee plans to submit an application for an amendment to the current 30/30 mg/L BOD/TSS effluent parameter limits for the COR-5 sampling point. The effluent results do not consistently meet these treatment objectives. The current lagoon is a bermed natural pond with passive exfiltration. After spring thaw, since there is minimal effluent retention or water run-off diversion, the most concentrated effluent is diluted and washed-out during freshet. In the instances that samples are meeting these objectives, by the time samples are taken, a significant proportion of contaminants have left the wetland treatment area and entered the receiving lake. The effluent is likely relying on dilution and quick passage through the wetland to meet its treatment objectives. CGS is seeking funding to develop a business case for upgrades to the current wastewater treatment system, it will include a study of the lagoon, wetland and receiving body to determine recommended effluent parameters.
- The August 26, 2020 effluent sample exceeded the effluent parameters but had been meeting the objective in all other samples except in August 2015. Based on historic data these results may be outliers. Monitoring will continue during the 2021 sampling program.

FOLLOW-UP REGARDING INSPECTION/COMPLIANCE CONCERNS:

A copy of the 2020 inspection report has not been received at the time of this submission.

ANNUAL REPORT FOR THE HAMLET OF CORAL HARBOUR

LIST OF APPENDICES

Appendix A: COR-5 Effluent Quality Limits – 1 page Appendix B: Laboratory Certificate of Analysis

- Certificate of Analysis July 8, 2020 26 pages
- Certificate of Analysis August 26, 2020 15 pages
- Certificate of Analysis September 10, 2020 17 pages
- Certificate of Analysis September 11, 2020 17 pages

Appendix C: Hazardous Materials Spill Database, Coral Harbour 2020 – 1 page

Appendix D: Coral Harbour 2020 Sampling Summary - 5 pages

Appendix E: CIRNAC Inspection Report – 1 pages

ANNUAL REPORT FOR THE HAMLET OF CORAL HARBOUR

Appendix A: COR-5 Effluent Quality Limits

3BM-COR1521 Coral Harbour Monitoring Program Results 2020 for Effluent Quality

Parameter	Lineia	COR-5							
Parameter	Limit	08-Jul-20	26-Aug-20	10-Sep-20	11-Sep-20				
BOD ₅	30 mg/L	12.1	<mark>47</mark>	<2.0	<2.0				
Total Suspended Solids	30 mg/L	11.8	<mark>152</mark>	<3.0	<3.0				
Fecal Coliforms	1x10 ⁴ CFU/100mL	N/A	3080	10	10				
Oil + Grease	no visible sheen	5.0	<5.0	<5.0	<5.0				
pН	between 6 and 9	8.44	7.79	8.28	8.24				

ANNUAL REPORT FOR THE HAMLET OF CORAL HARBOUR

Appendix B: Laboratory Certificate of Analysis

Hamlet of Coral Harbour

ATTN: DARRYL NAKOOLAK (Waste Water)

PO Box 30

Coral Harbour MB X0C 0C0

Date Received: 09-JUL-20

Report Date: 27-JUL-20 14:05 (MT)

Version: FINAL

Client Phone: 867-925-8970

Certificate of Analysis

Lab Work Order #: L2472151
Project P.O. #: NOT SUBMITTED

Job Reference: CORAL HARBOUR WASTE WATER

C of C Numbers: Legal Site Desc:

Hua Wo

Chemistry Laboratory Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721

ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2472151 CONTD.... PAGE 2 of 16 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2472151-1 COR-3							
Sampled By: CLIENT on 08-JUL-20							
Matrix: WATER							
BTEX plus F1-F4							
BTX plus F1 by GCMS							
Benzene Benzene	<0.00050		0.00050	mg/L		13-JUL-20	R5152396
Toluene	0.0075		0.0010	mg/L		13-JUL-20	R5152396
Ethyl benzene	<0.00050		0.00050	mg/L		13-JUL-20	R5152396
o-Xylene	<0.00050		0.00050	mg/L		13-JUL-20	R5152396
m+p-Xylenes	<0.00040		0.00040	mg/L		13-JUL-20	R5152396
F1 (C6-C10)	<0.10		0.10	mg/L		13-JUL-20	R5152396
Surrogate: 4-Bromofluorobenzene (SS)	81.3		70-130	%		13-JUL-20	R5152396
CCME PHC F2-F4 in Water							
F2 (C10-C16)	0.52		0.10	mg/L	11-JUL-20	11-JUL-20	R5151499
F3 (C16-C34)	5.81		0.25	mg/L	11-JUL-20	11-JUL-20	R5151499
F4 (C34-C50)	1.73		0.25	mg/L	11-JUL-20	11-JUL-20	R5151499
Surrogate: 2-Bromobenzotrifluoride	114.0		60-140	%	11-JUL-20	11-JUL-20	R5151499
CCME Total Hydrocarbons	2.45		6.15			40 "" 22	
F1-BTEX	<0.10		0.10	mg/L		16-JUL-20	
F2-Naphth	0.52		0.10	mg/L		16-JUL-20	
F3-PAH	5.81		0.25	mg/L		16-JUL-20	
Total Hydrocarbons (C6-C50)	8.05		0.38	mg/L		16-JUL-20	
Sum of Xylene Isomer Concentrations Xylenes (Total)	<0.00064		0.00064	mg/L		15-JUL-20	
Miscellaneous Parameters	~0.00004		0.00004	IIIg/L		13-301-20	
Fecal Coliforms	>24200	PEHT	10	MPN/100mL		10-JUL-20	R5149841
Total and E. coli, 1:10 dilution by QT97	724200	1	10	IVII IV/ IOOIIIL		10-301-20	K3149041
Total Coliforms	>24200	PEHT	10	MPN/100mL		10-JUL-20	R5149876
Escherichia Coli	>24200	PEHT	10	MPN/100mL		10-JUL-20	R5149876
CCME PAHs in mg/L							
1-Methyl Naphthalene	0.000023		0.000020	mg/L	14-JUL-20	16-JUL-20	R5153564
2-Methyl Naphthalene	0.000031		0.000020	mg/L	14-JUL-20	16-JUL-20	R5153564
Acenaphthene	<0.000020		0.000020	mg/L	14-JUL-20	16-JUL-20	R5153564
Acenaphthylene	<0.000020		0.000020	mg/L	14-JUL-20	16-JUL-20	R5153564
Anthracene	<0.000010		0.000010	mg/L	14-JUL-20	16-JUL-20	R5153564
Acridine	<0.000020		0.000020	mg/L	14-JUL-20	16-JUL-20	R5153564
Benzo(a)anthracene	<0.000010		0.000010	mg/L	14-JUL-20	16-JUL-20	R5153564
Benzo(a)pyrene	<0.0000050		0.0000050	_	14-JUL-20	16-JUL-20	R5153564
Benzo(b&j)fluoranthene	<0.000010		0.000010	mg/L	14-JUL-20	16-JUL-20	R5153564
Benzo(g,h,i)perylene	<0.000020		0.000020	mg/L	14-JUL-20	16-JUL-20	R5153564
Benzo(k)fluoranthene	<0.000010		0.000010	mg/L	14-JUL-20	16-JUL-20	R5153564
Chrysene	<0.000020		0.000020	mg/L	14-JUL-20	16-JUL-20	R5153564
Dibenzo(a,h)anthracene	<0.0000050		0.0000050	mg/L	14-JUL-20	16-JUL-20	R5153564
Fluoranthene	<0.000020		0.000020	mg/L	14-JUL-20	16-JUL-20	R5153564
Fluorene Indeno(1,2,3-cd)pyrene	<0.000020		0.000020	mg/L	14-JUL-20	16-JUL-20 16-JUL-20	R5153564
Naphthalene	<0.000010		0.000010	mg/L	14-JUL-20 14-JUL-20	16-JUL-20 16-JUL-20	R5153564
Phenanthrene	<0.000050 <0.000050		0.000050 0.000050	mg/L	14-JUL-20 14-JUL-20	16-JUL-20 16-JUL-20	R5153564 R5153564
Pyrene	<0.000050		0.000030	mg/L mg/L	14-JUL-20	16-JUL-20	R5153564 R5153564
Quinoline	0.00010		0.000010	mg/L	14-30L-20 14-JUL-20	16-30L-20 16-JUL-20	R5153564
B(a)P Total Potency Equivalent	<0.000103		0.000020	mg/L	14-30L-20 14-JUL-20	16-JUL-20	R5153564
Surrogate: d8-Naphthalene	149.0		50-150	%	14-30L-20 14-JUL-20	16-JUL-20	R5153564
Surrogate: d10-Phenanthrene	95.7		50-150 50-150	%	14-JUL-20	16-JUL-20	R5153564
Surrogate: d12-Chrysene	89.7		50-150	%	14-JUL-20	16-JUL-20	R5153564
Surrogate: d10-Acenaphthene	94.5		50-150	%	14-JUL-20	16-JUL-20	R5153564
Surrogate: d9-Acridine (SS)	94.9		50-150	%	14-JUL-20	16-JUL-20	R5153564

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2472151 CONTD.... PAGE 3 of 16 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2472151-1 COR-3							
Sampled By: CLIENT on 08-JUL-20							
Matrix: WATER							
Nunavut WW Group 1							
Alkalinity, Bicarbonate							
Bicarbonate (HCO3)	404		1.2	mg/L		14-JUL-20	
Alkalinity, Carbonate	-0.00		0.00			44 1111 20	
Carbonate (CO3) Alkalinity, Hydroxide	<0.60		0.60	mg/L		14-JUL-20	
Hydroxide (OH)	<0.34		0.34	mg/L		14-JUL-20	
Alkalinity, Total (as CaCO3) Alkalinity, Total (as CaCO3)	331		1.0	mg/L		13-JUL-20	R5152186
Ammonia by colour	001		1.0	1119/2		10 002 20	110102100
Ammonia, Total (as N)	62.5		5.0	mg/L		15-JUL-20	R5154364
Biochemical Oxygen Demand (BOD) Biochemical Oxygen Demand	141		50	mg/L		10-JUL-20	R5154400
Carbonaceous BOD							
BOD Carbonaceous	135		50	mg/L		10-JUL-20	R5154400
Chloride in Water by IC Chloride (CI)	38.3		1.0	mg/L		10-JUL-20	R5154959
Conductivity Conductivity	745		1.0	umhos/cm		13-JUL-20	R5152186
Hardness Calculated				335, 5,71		.5 552 25	. 10102100
Hardness (as CaCO3)	108	HTC	0.20	mg/L		17-JUL-20	
Mercury Total Mercury (Hg)-Total	0.0000250		0.0000050	mg/L	16-JUL-20	16-JUL-20	R5156978
Nitrate in Water by IC	0.0000200		0.0000000	9/ _	10 002 20	10 002 20	110100010
Nitrate (as N)	<0.040	DLM	0.040	mg/L		10-JUL-20	R5154959
Nitrate+Nitrite Nitrate and Nitrite as N	<0.070		0.070	mg/L		16-JUL-20	
Nitrite in Water by IC	<0.070		0.070	IIIg/L		10-30L-20	
Nitrite (as N)	<0.020	DLM	0.020	mg/L		10-JUL-20	R5154959
Oil & Grease - Gravimetric	40.0		5.0			45 1111 20	DE454044
Oil and Grease Phenol (4AAP)	10.8		5.0	mg/L		15-JUL-20	R5154644
Phenols (4AAP)	0.424	DLHC	0.0050	mg/L		15-JUL-20	R5154547
Phosphorus, Total							
Phosphorus (P)-Total	8.16		0.030	mg/L		15-JUL-20	R5153892
Sulfate in Water by IC Sulfate (SO4)	<0.60	DLM	0.60	mg/L		10-JUL-20	R5154959
Total Metals in Water by CRC ICPMS			3.00				
Aluminum (AI)-Total	0.0484		0.0030	mg/L	14-JUL-20	15-JUL-20	R5154985
Arsenic (As)-Total	0.00397		0.00010	mg/L	14-JUL-20	15-JUL-20	R5154985
Cadmium (Cd)-Total	0.0000823		0.0000050	mg/L	14-JUL-20	15-JUL-20	R5154985
Calcium (Ca)-Total	36.1		0.050	mg/L	14-JUL-20	15-JUL-20	R5154985
Chromium (Cr)-Total	0.00055		0.00010	mg/L	14-JUL-20	15-JUL-20	R5154985
Cobalt (Co)-Total	0.00097		0.00010	mg/L	14-JUL-20	15-JUL-20	R5154985
Copper (Cu)-Total	0.0245		0.00050	mg/L	14-JUL-20	15-JUL-20	R5154985
Iron (Fe)-Total Lead (Pb)-Total	0.496		0.010	mg/L	14-JUL-20	15-JUL-20	R5154985
Magnesium (Mg)-Total	0.000755		0.000050	mg/L	14-JUL-20	15-JUL-20	R5154985
Manganese (Mn)-Total	4.27		0.0050	mg/L	14-JUL-20	15-JUL-20	R5154985
Nickel (Ni)-Total	0.0618		0.00010	mg/L	14-JUL-20	15-JUL-20	R5154985
Potassium (K)-Total	0.00335 18.8		0.00050 0.050	mg/L	14-JUL-20 14-JUL-20	15-JUL-20 15-JUL-20	R5154985 R5154985
Sodium (Na)-Total	35.1		0.050	mg/L mg/L	14-JUL-20 14-JUL-20	15-JUL-20 15-JUL-20	R5154985 R5154985
Zinc (Zn)-Total	0.0254		0.0030	mg/L	14-JUL-20 14-JUL-20	15-JUL-20 15-JUL-20	R5154985
	3.020						12 12 12 12

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2472151 CONTD.... PAGE 4 of 16 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2472151-1 COR-3							
Sampled By: CLIENT on 08-JUL-20							
Matrix: WATER							
Total Organic Carbon by Combustion							
Total Organic Carbon Total Organic Carbon	122		5.0	mg/L		16-JUL-20	R5156950
Total Suspended Solids							
Total Suspended Solids	34.4		7.5	mg/L		15-JUL-20	R5157074
pH			0.40			40 1111 00	
pН	7.88		0.10	pH units		13-JUL-20	R5152186
L2472151-2 COR-4							
Sampled By: CLIENT on 08-JUL-20							
Matrix: WATER							
BTEX plus F1-F4							
BTX plus F1 by GCMS Benzene	<0.000E0	VOCHS	0.00050	ma/l		12 1111 20	DE150006
Toluene	<0.00050 <0.0010	VOCHS	0.00050	mg/L mg/L		13-JUL-20 13-JUL-20	R5152396 R5152396
Ethyl benzene	<0.0010	VOCHS	0.0010	mg/L		13-JUL-20	R5152396
o-Xylene	<0.00050	VOCHS	0.00050	mg/L		13-JUL-20	R5152396
m+p-Xylenes	<0.00040	VOCHS	0.00040	mg/L		13-JUL-20	R5152396
F1 (C6-C10)	<0.10	VOCHS	0.10	mg/L		13-JUL-20	R5152396
Surrogate: 4-Bromofluorobenzene (SS)	81.6		70-130	%		13-JUL-20	R5152396
CCME PHC F2-F4 in Water							
F2 (C10-C16)	<0.10		0.10	mg/L	11-JUL-20	11-JUL-20	R5151499
F3 (C16-C34)	0.25		0.25	mg/L	11-JUL-20	11-JUL-20	R5151499
F4 (C34-C50)	<0.25		0.25	mg/L	11-JUL-20	11-JUL-20	R5151499
Surrogate: 2-Bromobenzotrifluoride	113.9		60-140	%	11-JUL-20	11-JUL-20	R5151499
CCME Total Hydrocarbons F1-BTEX	<0.10		0.10	mg/L		15-JUL-20	
F2-Naphth	<0.10		0.10	mg/L		15-JUL-20	
F3-PAH	0.25		0.25	mg/L		15-JUL-20	
Total Hydrocarbons (C6-C50)	<0.38		0.38	mg/L		15-JUL-20	
Sum of Xylene Isomer Concentrations							
Xylenes (Total)	<0.00064		0.00064	mg/L		15-JUL-20	
Miscellaneous Parameters							
Fecal Coliforms	200	PEHT	10	MPN/100mL		10-JUL-20	R5149841
Total and E. coli, 1:10 dilution by QT97	10000	DELIT	40	MDNI/400		40 1111 00	D5440070
Total Coliforms Escherichia Coli	12000	PEHT PEHT	10 10	MPN/100mL MPN/100mL		10-JUL-20 10-JUL-20	R5149876 R5149876
CCME PAHs in mg/L	160	FLIII	10	IVIPIN/ TOUTIL		10-30L-20	K3149676
1-Methyl Naphthalene	<0.000020		0.000020	mg/L	14-JUL-20	15-JUL-20	R5153564
2-Methyl Naphthalene	<0.000020		0.000020	mg/L	14-JUL-20	15-JUL-20	R5153564
Acenaphthene	<0.000020		0.000020	mg/L	14-JUL-20	15-JUL-20	R5153564
Acenaphthylene	<0.000020		0.000020	mg/L	14-JUL-20	15-JUL-20	R5153564
Anthracene	<0.000010		0.000010	mg/L	14-JUL-20	15-JUL-20	R5153564
Acridine	0.000025		0.000020	mg/L	14-JUL-20	15-JUL-20	R5153564
Benzo(a)anthracene	<0.000010		0.000010	mg/L	14-JUL-20	15-JUL-20	R5153564
Benzo(a)pyrene	<0.0000050		0.0000050	mg/L	14-JUL-20	15-JUL-20	R5153564
Benzo(b&j)fluoranthene	<0.000010		0.000010	mg/L	14-JUL-20	15-JUL-20	R5153564
Benzo(g,h,i)perylene Benzo(k)fluoranthene	<0.000020		0.000020 0.000010	mg/L mg/l	14-JUL-20 14-JUL-20	15-JUL-20 15-JUL-20	R5153564
Chrysene	<0.000010 <0.000020		0.000010	mg/L mg/L	14-JUL-20 14-JUL-20	15-JUL-20 15-JUL-20	R5153564 R5153564
Dibenzo(a,h)anthracene	<0.000020		0.000020	mg/L	14-JUL-20 14-JUL-20	15-JUL-20 15-JUL-20	R5153564
Fluoranthene	<0.000020		0.0000030	mg/L	14-JUL-20	15-30L-20 15-JUL-20	R5153564
Fluorene	<0.000020		0.000020	mg/L	14-JUL-20	15-JUL-20	R5153564
Indeno(1,2,3-cd)pyrene	<0.000010		0.000010	mg/L	14-JUL-20	15-JUL-20	R5153564

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2472151 CONTD.... PAGE 5 of 16 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2472151-2 COR-4							
Sampled By: CLIENT on 08-JUL-20							
Matrix: WATER							
CCME PAHs in mg/L							
Naphthalene	<0.000050		0.000050	mg/L	14-JUL-20	15-JUL-20	R5153564
Phenanthrene	<0.000050		0.000050	mg/L	14-JUL-20	15-JUL-20	R5153564
Pyrene	<0.000010		0.000010	mg/L	14-JUL-20	15-JUL-20	R5153564
Quinoline B(a)P Total Potency Equivalent	<0.000020 <0.000030		0.000020	mg/L	14-JUL-20 14-JUL-20	15-JUL-20 15-JUL-20	R5153564 R5153564
Surrogate: d8-Naphthalene	83.5		0.000030 50-150	mg/L %	14-JUL-20 14-JUL-20	15-JUL-20 15-JUL-20	R5153564
Surrogate: d10-Phenanthrene	100.0		50-150	%	14-JUL-20	15-JUL-20	R5153564
Surrogate: d12-Chrysene	95.7		50-150	%	14-JUL-20	15-JUL-20	R5153564
Surrogate: d10-Acenaphthene	88.3		50-150	%	14-JUL-20	15-JUL-20	R5153564
Surrogate: d9-Acridine (SS)	106.7		50-150	%	14-JUL-20	15-JUL-20	R5153564
Nunavut WW Group 1							
Alkalinity, Bicarbonate Bicarbonate (HCO3)	220		1.0	mc/l		14 11 11 20	
,	338		1.2	mg/L		14-JUL-20	
Alkalinity, Carbonate Carbonate (CO3)	9.96		0.60	mg/L		14-JUL-20	
Alkalinity, Hydroxide							
Hydroxide (OH)	<0.34		0.34	mg/L		14-JUL-20	
Alkalinity, Total (as CaCO3)	004		4.0	/I		40 1111 00	DE450400
Alkalinity, Total (as CaCO3)	294		1.0	mg/L		13-JUL-20	R5152186
Ammonia by colour Ammonia, Total (as N)	1.57		0.10	mg/L		15-JUL-20	R5154364
Biochemical Oxygen Demand (BOD)	1.01		0.10	9/ =		.0022	110101001
Biochemical Oxygen Demand	26		20	mg/L		10-JUL-20	R5154400
Carbonaceous BOD	_						
BOD Carbonaceous	25		20	mg/L		10-JUL-20	R5154400
Chloride in Water by IC Chloride (CI)	79.0		0.50	mg/L		10-JUL-20	R5154959
Conductivity	75.0		0.50	1119/12		10 002 20	110104000
Conductivity	749		1.0	umhos/cm		13-JUL-20	R5152186
Hardness Calculated							
Hardness (as CaCO3)	277	HTC	0.20	mg/L		27-JUL-20	
Mercury Total	0.0000050		0.0000050	m a/l	16 11 11 20	16 1111 20	DE450070
Mercury (Hg)-Total	0.0000050		0.0000050	mg/L	16-JUL-20	16-JUL-20	R5156978
Nitrate in Water by IC Nitrate (as N)	0.162		0.020	mg/L		10-JUL-20	R5154959
Nitrate+Nitrite				J =			
Nitrate and Nitrite as N	0.204		0.070	mg/L		16-JUL-20	
Nitrite in Water by IC						40	D
Nitrite (as N)	0.041		0.010	mg/L		10-JUL-20	R5154959
Oil & Grease - Gravimetric Oil and Grease	<5.0		5.0	mg/L		15-JUL-20	R5154644
Phenol (4AAP)	3.0		0.0	1119/L		10 001-20	110104044
Phenois (4AAP)	0.0017		0.0010	mg/L		15-JUL-20	R5154547
Phosphorus, Total							
Phosphorus (P)-Total	2.08		0.030	mg/L		15-JUL-20	R5153892
Sulfate in Water by IC Sulfate (SO4)	10.2		0.20	ma/l		10_1111_20	D5154050
Total Metals in Water by CRC ICPMS	19.2		0.30	mg/L		10-JUL-20	R5154959
Aluminum (Al)-Total	0.140		0.0030	mg/L	14-JUL-20	24-JUL-20	R5167579
Arsenic (As)-Total	0.00205		0.00010	mg/L	14-JUL-20	24-JUL-20	R5167579
Cadmium (Cd)-Total	0.000170		0.0000050	mg/L	14-JUL-20	24-JUL-20	R5167579
Calcium (Ca)-Total	98.9		0.050	mg/L	14-JUL-20	24-JUL-20	R5167579

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2472151 CONTD.... PAGE 6 of 16 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2472151-2 COR-4							
Sampled By: CLIENT on 08-JUL-20							
Matrix: WATER							
Total Metals in Water by CRC ICPMS							
Chromium (Cr)-Total	0.00109		0.00010	mg/L	14-JUL-20	24-JUL-20	R5167579
Cobalt (Co)-Total	0.00175		0.00010	mg/L	14-JUL-20	24-JUL-20	R5167579
Copper (Cu)-Total	0.00863		0.00050	mg/L	14-JUL-20	24-JUL-20	R5167579
Iron (Fe)-Total	1.35		0.010	mg/L	14-JUL-20	24-JUL-20	R5167579
Lead (Pb)-Total	0.000496		0.000050	mg/L	14-JUL-20	24-JUL-20	R5167579
Magnesium (Mg)-Total	7.30		0.0050	mg/L	14-JUL-20	24-JUL-20	R5167579
Manganese (Mn)-Total	0.169		0.00010	mg/L	14-JUL-20	24-JUL-20	R5167579
Nickel (Ni)-Total	0.00595		0.00050	mg/L	14-JUL-20	24-JUL-20	R5167579
Potassium (K)-Total	15.7		0.050	mg/L	14-JUL-20	24-JUL-20	R5167579
Sodium (Na)-Total	68.9		0.050	mg/L	14-JUL-20	24-JUL-20	R5167579
Zinc (Zn)-Total	0.0413		0.0030	mg/L	14-JUL-20	24-JUL-20	R5167579
Total Organic Carbon by Combustion Total Organic Carbon	20.0		0.50	ma/l		15 1111 20	DE1E4224
Total Suspended Solids	29.9		0.50	mg/L		15-JUL-20	R5154334
Total Suspended Solids Total Suspended Solids	86.4		3.0	mg/L		15-JUL-20	R5157074
pH	00.4		0.0	9, =		.5 552 25	. 10 10 10 17
pH	8.42		0.10	pH units		13-JUL-20	R5152186
L2472151-3 COR-5							
Sampled By: CLIENT on 08-JUL-20							
Matrix: WATER							
BTEX plus F1-F4							
BTX plus F1 by GCMS							
Benzene	<0.00050	VOCHS	0.00050	mg/L		13-JUL-20	R5152396
Toluene	<0.0010	VOCHS	0.0010	mg/L		13-JUL-20	R5152396
Ethyl benzene	<0.00050	VOCHS	0.00050	mg/L		13-JUL-20	R5152396
o-Xylene	<0.00050	VOCHS	0.00050	mg/L		13-JUL-20	R5152396
m+p-Xylenes	<0.00040	VOCHS	0.00040	mg/L		13-JUL-20	R5152396
F1 (C6-C10)	<0.10	VOCHS	0.10	mg/L		13-JUL-20	R5152396
Surrogate: 4-Bromofluorobenzene (SS)	83.4		70-130	%		13-JUL-20	R5152396
CCME PHC F2-F4 in Water F2 (C10-C16)	<0.10		0.10	mg/L	11-JUL-20	11-JUL-20	R5151499
F3 (C16-C34)	<0.25		0.10	mg/L	11-JUL-20	11-JUL-20	R5151499
F4 (C34-C50)	<0.25		0.25	mg/L	11-JUL-20	11-JUL-20	R5151499
Surrogate: 2-Bromobenzotrifluoride	128.3		60-140	%	11-JUL-20	11-JUL-20	R5151499
CCME Total Hydrocarbons							
F1-BTEX	<0.10		0.10	mg/L		15-JUL-20	
F2-Naphth	<0.10		0.10	mg/L		15-JUL-20	
F3-PAH	<0.25		0.25	mg/L		15-JUL-20	
Total Hydrocarbons (C6-C50)	<0.38		0.38	mg/L		15-JUL-20	
Sum of Xylene Isomer Concentrations Xylenes (Total)	<0.00064		0.00064	mg/L		15-JUL-20	
Miscellaneous Parameters	0.50004		0.00004	9, =		.5 552 25	
Fecal Coliforms	10	PEHT	10	MPN/100mL		10-JUL-20	R5149841
Note: MBEF: Microbiology test results for E. coli > Fecall Coliforms due to sample heterogeneity. Both results are within normal variability for MPN tests			7.5				
Total and E. coli, 1:10 dilution by QT97	1450	PEHT	10	MDN//100~-1		10 1111 20	DE140070
Total Coliforms Escherichia Coli	1450 30	PEHT	10 10	MPN/100mL MPN/100mL		10-JUL-20 10-JUL-20	R5149876 R5149876
Note: MBEF: Microbiology test results for E. coli > Fecall Coliforms due to sample heterogeneity.	30		10	IVIF IN/ TOURIL		10-30L-20	K31490/0

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2472151 CONTD.... PAGE 7 of 16 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2472151-3 COR-5							
Sampled By: CLIENT on 08-JUL-20							
Matrix: WATER							
Both results are within normal variability for							
MPN tests							
CCME PAHs in mg/L	-0.00000		0.000000		44 1111 00	45 1111 00	DE450504
1-Methyl Naphthalene	<0.000020		0.000020	mg/L	14-JUL-20 14-JUL-20	15-JUL-20 15-JUL-20	R5153564
2-Methyl Naphthalene Acenaphthene	<0.000020 <0.000020		0.000020 0.000020	mg/L	14-JUL-20 14-JUL-20	15-JUL-20 15-JUL-20	R5153564 R5153564
Acenaphthylene	<0.000020		0.000020	mg/L mg/L	14-JUL-20 14-JUL-20	15-JUL-20 15-JUL-20	R5153564
Anthracene	<0.000020		0.000020	mg/L	14-JUL-20	15-30L-20 15-JUL-20	R5153564
Acridine	<0.000010		0.000010	mg/L	14-JUL-20	15-JUL-20	R5153564
Benzo(a)anthracene	<0.000010		0.000020	mg/L	14-JUL-20	15-JUL-20	R5153564
Benzo(a)pyrene	<0.000050		0.0000050	mg/L	14-JUL-20	15-JUL-20	R5153564
Benzo(b&j)fluoranthene	<0.000010		0.000010	mg/L	14-JUL-20	15-JUL-20	R5153564
Benzo(g,h,i)perylene	<0.000020		0.000020	mg/L	14-JUL-20	15-JUL-20	R5153564
Benzo(k)fluoranthene	<0.000010		0.000010	mg/L	14-JUL-20	15-JUL-20	R5153564
Chrysene	<0.000020		0.000020	mg/L	14-JUL-20	15-JUL-20	R5153564
Dibenzo(a,h)anthracene	<0.0000050		0.0000050	mg/L	14-JUL-20	15-JUL-20	R5153564
Fluoranthene	<0.000020		0.000020	mg/L	14-JUL-20	15-JUL-20	R5153564
Fluorene	<0.000020		0.000020	mg/L	14-JUL-20	15-JUL-20	R5153564
Indeno(1,2,3-cd)pyrene	<0.000010		0.000010	mg/L	14-JUL-20	15-JUL-20	R5153564
Naphthalene	<0.000050		0.000050	mg/L	14-JUL-20	15-JUL-20	R5153564
Phenanthrene	<0.000050		0.000050	mg/L	14-JUL-20	15-JUL-20	R5153564
Pyrene	<0.000010		0.000010	mg/L	14-JUL-20	15-JUL-20	R5153564
Quinoline	<0.000020		0.000020	mg/L	14-JUL-20	15-JUL-20	R5153564
B(a)P Total Potency Equivalent	<0.000030		0.000030	mg/L	14-JUL-20	15-JUL-20	R5153564
Surrogate: d8-Naphthalene	85.2		50-150	%	14-JUL-20 14-JUL-20	15-JUL-20	R5153564
Surrogate: d10-Phenanthrene Surrogate: d12-Chrysene	102.7 99.5		50-150 50-150	% %	14-JUL-20 14-JUL-20	15-JUL-20 15-JUL-20	R5153564 R5153564
Surrogate: d12-Grifyserie Surrogate: d10-Acenaphthene	89.4		50-150	%	14-JUL-20	15-JUL-20	R5153564
Surrogate: d10-Acertaphthene Surrogate: d9-Acridine (SS)	106.3		50-150	%	14-JUL-20	15-30L-20 15-JUL-20	R5153564
Nunavut WW Group 1	100.5		30-130	/0	14 00L 20	10 001 20	113133304
Alkalinity, Bicarbonate							
Bicarbonate (HCO3)	112		1.2	mg/L		14-JUL-20	
Alkalinity, Carbonate Carbonate (CO3)	4.20		0.60	mg/L		14-JUL-20	
Alkalinity, Hydroxide	4.20		0.00	mg/L		14 002 20	
Hydroxide (OH)	<0.34		0.34	mg/L		14-JUL-20	
Alkalinity, Total (as CaCO3)	00 5		1.0	ma/l		13-JUL-20	DE150106
Alkalinity, Total (as CaCO3) Ammonia by colour	98.5		1.0	mg/L		13-JUL-20	R5152186
Ammonia, Total (as N)	0.034		0.010	mg/L		15-JUL-20	R5154364
Biochemical Oxygen Demand (BOD) Biochemical Oxygen Demand	12.1		2.0	mg/L		10-JUL-20	R5154400
Carbonaceous BOD BOD Carbonaceous	7.7		2.0	mg/L		10-JUL-20	R5154400
Chloride in Water by IC Chloride (CI)	35.5		0.50	mg/L		10-JUL-20	R5154959
Conductivity Conductivity	359		1.0	umhos/cm		13-JUL-20	R5152186
Hardness Calculated Hardness (as CaCO3)	95.6	нтс	0.20	mg/L		17-JUL-20	
Mercury Total Mercury (Hg)-Total	<0.000050		0.0000050	mg/L	16-JUL-20	16-JUL-20	R5156978
Nitrate in Water by IC	-0.000000		0.0000000	9/ -	10 001 20	10 001 20	1.0100070
made in tracer by io							

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2472151 CONTD.... PAGE 8 of 16 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2472151-3 COR-5							
Sampled By: CLIENT on 08-JUL-20							
Matrix: WATER							
Nitrate in Water by IC Nitrate (as N)	<0.020		0.020	mg/L		10-JUL-20	R5154959
Nitrate+Nitrite Nitrate and Nitrite as N	<0.070		0.070	mg/L		16-JUL-20	
Nitrite in Water by IC Nitrite (as N)	<0.010		0.010	mg/L		10-JUL-20	R5154959
Oil & Grease - Gravimetric Oil and Grease	<5.0		5.0	mg/L		15-JUL-20	R5154644
Phenol (4AAP) Phenols (4AAP)	<0.0010		0.0010	mg/L		15-JUL-20	R5154547
Phosphorus, Total							
Phosphorus (P)-Total Sulfate in Water by IC	0.166		0.0030	mg/L		15-JUL-20	R5153892
Sulfate (SO4)	41.7		0.30	mg/L		10-JUL-20	R5154959
Total Metals in Water by CRC ICPMS	0.040=		0.0000	m= ==/I	14 11 11 00	15 11 11 00	DE454005
Aluminum (AI)-Total Arsenic (As)-Total	0.0137 0.00146		0.0030 0.00010	mg/L	14-JUL-20 14-JUL-20	15-JUL-20 15-JUL-20	R5154985 R5154985
Cadmium (Cd)-Total	0.000146		0.00010	mg/L mg/L	14-JUL-20 14-JUL-20	15-JUL-20 15-JUL-20	R5154985 R5154985
Calcium (Ca)-Total	28.7		0.050	mg/L	14-JUL-20	15-JUL-20	R5154985
Chromium (Cr)-Total	0.00046		0.00010	mg/L	14-JUL-20	15-JUL-20	R5154985
Cobalt (Co)-Total	0.00040		0.00010	mg/L	14-JUL-20	15-JUL-20	R5154985
Copper (Cu)-Total	0.00213		0.00050	mg/L	14-JUL-20	15-JUL-20	R5154985
Iron (Fe)-Total	0.280		0.010	mg/L	14-JUL-20	15-JUL-20	R5154985
Lead (Pb)-Total	0.000111		0.000050	mg/L	14-JUL-20	15-JUL-20	R5154985
Magnesium (Mg)-Total	5.83		0.0050	mg/L	14-JUL-20	15-JUL-20	R5154985
Manganese (Mn)-Total	0.0523		0.00010	mg/L	14-JUL-20	15-JUL-20	R5154985
Nickel (Ni)-Total	0.00235		0.00050	mg/L	14-JUL-20	15-JUL-20	R5154985
Potassium (K)-Total	11.6		0.050	mg/L	14-JUL-20	15-JUL-20	R5154985
Sodium (Na)-Total	31.5		0.050	mg/L	14-JUL-20	15-JUL-20	R5154985
Zinc (Zn)-Total	0.0141		0.0030	mg/L	14-JUL-20	15-JUL-20	R5154985
Total Organic Carbon by Combustion Total Organic Carbon	26.4		0.50	mg/L		15-JUL-20	R5154334
Total Suspended Solids Total Suspended Solids	11.8		3.0	mg/L		15-JUL-20	R5157074
pH	5		3.0	· J · -			
pH	8.44		0.10	pH units		13-JUL-20	R5152186
L2472151-4 COR-6							
Sampled By: CLIENT on 08-JUL-20							
Matrix: WATER							
BTEX plus F1-F4							
BTX plus F1 by GCMS Benzene	<0.00050		0.00050	mg/L		13-JUL-20	R5152396
Toluene	<0.0010		0.0010	mg/L		13-JUL-20	R5152396
Ethyl benzene	<0.00050		0.00050	mg/L		13-JUL-20	R5152396
o-Xylene	<0.00050		0.00050	mg/L		13-JUL-20	R5152396
m+p-Xylenes	<0.00040		0.00040	mg/L		13-JUL-20	R5152396
F1 (C6-C10)	<0.10		0.10	mg/L		13-JUL-20	R5152396
Surrogate: 4-Bromofluorobenzene (SS)	81.9		70-130	%		13-JUL-20	R5152396
CCME PHC F2-F4 in Water F2 (C10-C16)	<0.10		0.10	mg/L	11-JUL-20	11-JUL-20	R5151499
F3 (C16-C34)	<0.25		0.10	mg/L	11-JUL-20	11-JUL-20	R5151499
F4 (C34-C50)	<0.25		0.25	mg/L	11-JUL-20	11-JUL-20	R5151499

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2472151 CONTD.... PAGE 9 of 16 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2472151-4 COR-6							
Sampled By: CLIENT on 08-JUL-20							
Matrix: WATER							
CCME PHC F2-F4 in Water Surrogate: 2-Bromobenzotrifluoride	120.1		60-140	%	11-JUL-20	11-JUL-20	R5151499
CCME Total Hydrocarbons							
F1-BTEX	<0.10		0.10	mg/L		15-JUL-20	
F2-Naphth	<0.10		0.10	mg/L		15-JUL-20	
F3-PAH	<0.25		0.25	mg/L		15-JUL-20	
Total Hydrocarbons (C6-C50)	<0.38		0.38	mg/L		15-JUL-20	
Sum of Xylene Isomer Concentrations Xylenes (Total)	<0.00064		0.00064	mg/L		15-JUL-20	
Miscellaneous Parameters	10.00004		0.00004	IIIg/L		10-00L-20	
Fecal Coliforms	90	PEHT	10	MPN/100mL		10-JUL-20	R5149841
Total and E. coli, 1:10 dilution by QT97			10			.0 002 20	
Total Coliforms	>24200	PEHT	10	MPN/100mL		10-JUL-20	R5149876
Escherichia Coli	60	PEHT	10	MPN/100mL		10-JUL-20	R5149876
CCME PAHs in mg/L							
1-Methyl Naphthalene	<0.000020		0.000020	mg/L	14-JUL-20	15-JUL-20	R5153564
2-Methyl Naphthalene	<0.000020		0.000020	mg/L	14-JUL-20	15-JUL-20	R5153564
Acenaphthene	<0.000020		0.000020	mg/L	14-JUL-20	15-JUL-20	R5153564
Acenaphthylene	<0.000020		0.000020	mg/L	14-JUL-20	15-JUL-20	R5153564
Anthracene	<0.000010		0.000010	mg/L	14-JUL-20	15-JUL-20	R5153564
Acridine	<0.000020		0.000020	mg/L	14-JUL-20	15-JUL-20	R5153564
Benzo(a)anthracene	<0.000010		0.000010	mg/L	14-JUL-20	15-JUL-20	R5153564
Benzo(a)pyrene	<0.000050		0.0000050	mg/L	14-JUL-20	15-JUL-20	R5153564
Benzo(b&j)fluoranthene	<0.000010		0.000010	mg/L	14-JUL-20	15-JUL-20	R5153564
Benzo(g,h,i)perylene	<0.000020		0.000020	mg/L	14-JUL-20	15-JUL-20	R5153564
Benzo(k)fluoranthene	<0.000010		0.000010	mg/L	14-JUL-20	15-JUL-20	R5153564
Chrysene	<0.000020		0.000020	mg/L	14-JUL-20 14-JUL-20	15-JUL-20 15-JUL-20	R5153564
Dibenzo(a,h)anthracene Fluoranthene	<0.0000050 <0.000020		0.0000050 0.000020	mg/L mg/L	14-JUL-20 14-JUL-20	15-JUL-20 15-JUL-20	R5153564 R5153564
Fluorene	<0.000020		0.000020	mg/L	14-JUL-20	15-JUL-20	R5153564
Indeno(1,2,3-cd)pyrene	<0.000020		0.000020	mg/L	14-30L-20 14-JUL-20	15-JUL-20	R5153564
Naphthalene	<0.000010		0.000010	mg/L	14-JUL-20	15-JUL-20	R5153564
Phenanthrene	<0.000050		0.000050	mg/L	14-JUL-20	15-JUL-20	R5153564
Pyrene	<0.000010		0.000010	mg/L	14-JUL-20	15-JUL-20	R5153564
Quinoline	<0.000020		0.000020	mg/L	14-JUL-20	15-JUL-20	R5153564
B(a)P Total Potency Equivalent	<0.000030		0.000030	mg/L	14-JUL-20	15-JUL-20	R5153564
Surrogate: d8-Naphthalene	85.6		50-150	%	14-JUL-20	15-JUL-20	R5153564
Surrogate: d10-Phenanthrene	103.6		50-150	%	14-JUL-20	15-JUL-20	R5153564
Surrogate: d12-Chrysene	101.7		50-150	%	14-JUL-20	15-JUL-20	R5153564
Surrogate: d10-Acenaphthene	90.0		50-150	%	14-JUL-20	15-JUL-20	R5153564
Surrogate: d9-Acridine (SS)	107.9		50-150	%	14-JUL-20	15-JUL-20	R5153564
Nunavut WW Group 1							
Alkalinity, Bicarbonate Bicarbonate (HCO3)	163		1.2	mg/L		14-JUL-20	
Alkalinity, Carbonate Carbonate (CO3)	4.44		0.60	mg/L		14-JUL-20	
Alkalinity, Hydroxide							
Hydroxide (OH)	<0.34		0.34	mg/L		14-JUL-20	
Alkalinity, Total (as CaCO3) Alkalinity, Total (as CaCO3)	141		1.0	mg/L		13-JUL-20	R5152186
Ammonia by colour Ammonia, Total (as N)	0.051		0.010	mg/L		15-JUL-20	R5154364
Biochemical Oxygen Demand (BOD)							

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2472151 CONTD.... PAGE 10 of 16 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2472151-4 COR-6							
Sampled By: CLIENT on 08-JUL-20							
Matrix: WATER							
Biochemical Oxygen Demand (BOD)							
Biochemical Oxygen Demand	16.4		6.0	mg/L		10-JUL-20	R5154400
Carbonaceous BOD BOD Carbonaceous	10.3		2.0	m a/I		10-JUL-20	DE4E4400
Chloride in Water by IC	10.3		2.0	mg/L		10-JUL-20	R5154400
Chloride (CI)	28.1		0.50	mg/L		10-JUL-20	R5154959
Conductivity Conductivity	365		1.0	umhos/cm		13-JUL-20	R5152186
Hardness Calculated							
Hardness (as CaCO3) Mercury Total	134	HTC	0.20	mg/L		17-JUL-20	
Mercury (Hg)-Total	<0.0000050		0.0000050	mg/L	16-JUL-20	16-JUL-20	R5156978
Nitrate in Water by IC Nitrate (as N)	<0.020		0.020	mg/L		10-JUL-20	R5154959
Nitrate+Nitrite				_			
Nitrate and Nitrite as N Nitrite in Water by IC	<0.070		0.070	mg/L		16-JUL-20	
Nitrite (as N)	<0.010		0.010	mg/L		10-JUL-20	R5154959
Oil & Grease - Gravimetric Oil and Grease	<5.0		5.0	mg/L		15-JUL-20	R5154644
Phenol (4AAP)	-5.0		0.0	9/ _			. 10107077
Phenols (4AAP)	0.0016		0.0010	mg/L		15-JUL-20	R5154547
Phosphorus, Total Phosphorus (P)-Total	0.427		0.0030	mg/L		15-JUL-20	R5153892
Sulfate in Water by IC Sulfate (SO4)	20.5		0.30	mg/L		10-JUL-20	R5154959
Total Metals in Water by CRC ICPMS	20.3		0.30	IIIg/L		10-30L-20	K3134939
Aluminum (Al)-Total	0.116		0.0030	mg/L	14-JUL-20	15-JUL-20	R5154985
Arsenic (As)-Total	0.00136		0.00010	mg/L	14-JUL-20	15-JUL-20	R5154985
Cadmium (Cd)-Total	0.0000458		0.0000050	mg/L	14-JUL-20	15-JUL-20	R5154985
Calcium (Ca)-Total	41.0		0.050	mg/L	14-JUL-20	15-JUL-20	R5154985
Chromium (Cr)-Total	0.00051		0.00010	mg/L	14-JUL-20	15-JUL-20	R5154985
Cobalt (Co)-Total	0.00022		0.00010	mg/L	14-JUL-20	15-JUL-20	R5154985
Copper (Cu)-Total	0.00378		0.00050	mg/L	14-JUL-20	15-JUL-20	R5154985
Iron (Fe)-Total	0.592		0.010	mg/L	14-JUL-20	15-JUL-20	R5154985
Lead (Pb)-Total	0.000341		0.000050	mg/L	14-JUL-20	15-JUL-20	R5154985
Magnesium (Mg)-Total	7.57		0.0050	mg/L	14-JUL-20	15-JUL-20	R5154985
Manganese (Mn)-Total	0.0653		0.00010	mg/L	14-JUL-20	15-JUL-20	R5154985
Nickel (Ni)-Total	0.00116		0.00050	mg/L	14-JUL-20	15-JUL-20	R5154985
Potassium (K)-Total	11.2		0.050	mg/L	14-JUL-20	15-JUL-20	R5154985
Sodium (Na)-Total	20.7		0.050	mg/L	14-JUL-20	15-JUL-20	R5154985
Zinc (Zn)-Total	0.0102		0.0030	mg/L	14-JUL-20	15-JUL-20	R5154985
Total Organic Carbon by Combustion	0		0			45 11 11 00	DE45400:
Total Organic Carbon Total Suspended Solids	27.3		0.50	mg/L		15-JUL-20	R5154334
Total Suspended Solids Total Suspended Solids	10.4		3.0	mg/L		15-JUL-20	R5157074
pH pH	8.34		0.10	pH units		13-JUL-20	R5152186
L2472151-5 COR-7	0.54		0.10	pri unito		10-00L-20	130102100
Sampled By: CLIENT on 08-JUL-20							
Matrix: WATER							
BTEX plus F1-F4							
BTX plus F1 by GCMS							

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2472151 CONTD.... PAGE 11 of 16 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2472151-5 COR-7							
Sampled By: CLIENT on 08-JUL-20							
Matrix: WATER							
BTX plus F1 by GCMS Benzene	<0.00050		0.00050	mg/L		13-JUL-20	R5152396
Toluene	<0.0010		0.00030	mg/L		13-JUL-20	R5152396
Ethyl benzene	<0.0010		0.0010	mg/L		13-JUL-20	R5152396
o-Xylene	<0.00050		0.00050	mg/L		13-JUL-20	R5152396
m+p-Xylenes	<0.00040		0.00040	mg/L		13-JUL-20	R5152396
F1 (C6-C10)	<0.10		0.10	mg/L		13-JUL-20	R5152396
Surrogate: 4-Bromofluorobenzene (SS)	83.8		70-130	%		13-JUL-20	R5152396
CCME PHC F2-F4 in Water							
F2 (C10-C16)	<0.10		0.10	mg/L	11-JUL-20	11-JUL-20	R5151499
F3 (C16-C34)	<0.25		0.25	mg/L	11-JUL-20	11-JUL-20	R5151499
F4 (C34-C50)	<0.25		0.25	mg/L	11-JUL-20	11-JUL-20	R5151499
Surrogate: 2-Bromobenzotrifluoride	114.9		60-140	%	11-JUL-20	11-JUL-20	R5151499
CCME Total Hydrocarbons F1-BTEX	-0.10		0.40	ma/l		15-JUL-20	
F1-BTEX F2-Naphth	<0.10 <0.10		0.10 0.10	mg/L		15-JUL-20 15-JUL-20	
F3-PAH	<0.10		0.10 0.25	mg/L mg/L		15-JUL-20 15-JUL-20	
Total Hydrocarbons (C6-C50)	<0.25		0.23	mg/L		15-JUL-20	
Sum of Xylene Isomer Concentrations	10.00		5.55	9, _		.5 552 20	
Xylenes (Total)	<0.00064		0.00064	mg/L		15-JUL-20	
Miscellaneous Parameters							
Fecal Coliforms	10	PEHT	10	MPN/100mL		10-JUL-20	R5149841
Total and E. coli, 1:10 dilution by QT97							
Total Coliforms	180	PEHT	10	MPN/100mL		10-JUL-20	R5149876
Escherichia Coli	10	PEHT	10	MPN/100mL		10-JUL-20	R5149876
CCME PAHs in mg/L					44 1111 00	45 1111 00	
1-Methyl Naphthalene	<0.000020		0.000020	mg/L	14-JUL-20 14-JUL-20	15-JUL-20 15-JUL-20	R5153564
2-Methyl Naphthalene Acenaphthene	<0.000020 <0.000020		0.000020 0.000020	mg/L mg/L	14-JUL-20 14-JUL-20	15-JUL-20 15-JUL-20	R5153564 R5153564
Acenaphthylene	<0.000020		0.000020	mg/L	14-30L-20 14-JUL-20	15-30L-20 15-JUL-20	R5153564
Anthracene	<0.000020		0.000020	mg/L	14-JUL-20	15-JUL-20	R5153564
Acridine	<0.000020		0.000020	mg/L	14-JUL-20	15-JUL-20	R5153564
Benzo(a)anthracene	<0.00010		0.000010	mg/L	14-JUL-20	15-JUL-20	R5153564
Benzo(a)pyrene	<0.000050		0.0000050	mg/L	14-JUL-20	15-JUL-20	R5153564
Benzo(b&j)fluoranthene	<0.000010		0.000010	mg/L	14-JUL-20	15-JUL-20	R5153564
Benzo(g,h,i)perylene	<0.000020		0.000020	mg/L	14-JUL-20	15-JUL-20	R5153564
Benzo(k)fluoranthene	<0.000010		0.000010	mg/L	14-JUL-20	15-JUL-20	R5153564
Chrysene	<0.000020		0.000020	mg/L	14-JUL-20	15-JUL-20	R5153564
Dibenzo(a,h)anthracene	<0.0000050		0.0000050	mg/L	14-JUL-20	15-JUL-20	R5153564
Fluoranthene	<0.000020		0.000020	mg/L	14-JUL-20	15-JUL-20	R5153564
Fluorene	<0.000020		0.000020	mg/L	14-JUL-20	15-JUL-20	R5153564
Indeno(1,2,3-cd)pyrene Naphthalene	<0.000010		0.000010	mg/L	14-JUL-20 14-JUL-20	15-JUL-20 15-JUL-20	R5153564 R5153564
Phenanthrene	<0.000050 <0.000050		0.000050 0.000050	mg/L mg/L	14-JUL-20 14-JUL-20	15-JUL-20 15-JUL-20	R5153564 R5153564
Pyrene	<0.000030		0.000030	mg/L	14-30L-20 14-JUL-20	15-JUL-20	R5153564
Quinoline	<0.000010		0.000010	mg/L	14-30L-20 14-JUL-20	15-JUL-20	R5153564
B(a)P Total Potency Equivalent	<0.000020		0.000020	mg/L	14-JUL-20	15-JUL-20	R5153564
Surrogate: d8-Naphthalene	83.0		50-150	%	14-JUL-20	15-JUL-20	R5153564
Surrogate: d10-Phenanthrene	101.4		50-150	%	14-JUL-20	15-JUL-20	R5153564
Surrogate: d12-Chrysene	99.4		50-150	%	14-JUL-20	15-JUL-20	R5153564
Surrogate: d10-Acenaphthene	88.2		50-150	%	14-JUL-20	15-JUL-20	R5153564
Surrogate: d9-Acridine (SS)	103.5		50-150	%	14-JUL-20	15-JUL-20	R5153564
Nunavut WW Group 1							

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2472151 CONTD.... PAGE 12 of 16 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2472151-5 COR-7							
Sampled By: CLIENT on 08-JUL-20							
Matrix: WATER							
Alkalinity, Bicarbonate							
Bicarbonate (HCO3)	130		1.2	mg/L		14-JUL-20	
Alkalinity, Carbonate							
Carbonate (CO3)	<0.60		0.60	mg/L		14-JUL-20	
Alkalinity, Hydroxide Hydroxide (OH)	<0.34		0.34	mg/L		14-JUL-20	
Alkalinity, Total (as CaCO3) Alkalinity, Total (as CaCO3)	107		1.0	mg/L		13-JUL-20	R5152186
Ammonia by colour	107		1.0	IIIg/L		13-30L-20	K3132100
Ammonia, Total (as N)	0.049		0.010	mg/L		15-JUL-20	R5154364
Biochemical Oxygen Demand (BOD) Biochemical Oxygen Demand	<2.0		2.0	mg/L		10-JUL-20	R5154400
Carbonaceous BOD BOD Carbonaceous	<2.0		2.0	mg/L		10-JUL-20	R5154400
Chloride in Water by IC							
Chloride (CI)	4.18		0.50	mg/L		10-JUL-20	R5154959
Conductivity Conductivity	526		1.0	umhos/cm		13-JUL-20	R5152186
Hardness Calculated							
Hardness (as CaCO3)	264	HTC	0.20	mg/L		17-JUL-20	
Mercury Total Mercury (Hg)-Total	<0.0000050		0.0000050	mg/L	16-JUL-20	16-JUL-20	R5156978
Nitrate in Water by IC				, ,		40 11 11 00	
Nitrate (as N)	<0.020		0.020	mg/L		10-JUL-20	R5154959
Nitrate+Nitrite Nitrate and Nitrite as N	<0.070		0.070	mg/L		16-JUL-20	
Nitrite in Water by IC Nitrite (as N)	<0.010		0.010	mg/L		10-JUL-20	R5154959
Oil & Grease - Gravimetric							
Oil and Grease	<5.0		5.0	mg/L		15-JUL-20	R5154644
Phenol (4AAP)							
Phenols (4AAP)	<0.0010		0.0010	mg/L		15-JUL-20	R5154547
Phosphorus, Total Phosphorus (P)-Total	0.0856		0.0030	mg/L		15-JUL-20	R5153892
Sulfate in Water by IC							
Sulfate (SO4)	178		0.30	mg/L		10-JUL-20	R5154959
Total Metals in Water by CRC ICPMS							
Aluminum (Al)-Total	0.0081		0.0030	mg/L	14-JUL-20	15-JUL-20	R5154985
Arsenic (As)-Total	0.00062		0.00010	mg/L	14-JUL-20	15-JUL-20	R5154985
Cadmium (Cd)-Total Calcium (Ca)-Total	0.0000636		0.0000050	mg/L	14-JUL-20	15-JUL-20	R5154985
Chromium (Cr)-Total	98.0		0.050 0.00010	mg/L	14-JUL-20 14-JUL-20	15-JUL-20 15-JUL-20	R5154985
Cobalt (Co)-Total	0.00028 0.00019		0.00010	mg/L mg/L	14-JUL-20 14-JUL-20	15-JUL-20 15-JUL-20	R5154985 R5154985
Copper (Cu)-Total	0.00311		0.00010	mg/L	14-JUL-20	15-JUL-20	R5154985
Iron (Fe)-Total	0.454		0.00030	mg/L	14-JUL-20	15-JUL-20	R5154985
Lead (Pb)-Total	0.000186		0.00050	mg/L	14-JUL-20	15-JUL-20	R5154985
Magnesium (Mg)-Total	4.59		0.0050	mg/L	14-JUL-20	15-JUL-20	R5154985
Manganese (Mn)-Total	0.0313		0.00010	mg/L	14-JUL-20	15-JUL-20	R5154985
Nickel (Ni)-Total	0.00195		0.00050	mg/L	14-JUL-20	15-JUL-20	R5154985
Potassium (K)-Total	3.82		0.050	mg/L	14-JUL-20	15-JUL-20	R5154985
Sodium (Na)-Total	5.30		0.050	mg/L	14-JUL-20	15-JUL-20	R5154985
Zinc (Zn)-Total	0.0499		0.0030	mg/L	14-JUL-20	15-JUL-20	R5154985
Total Organic Carbon by Combustion							

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2472151 CONTD.... PAGE 13 of 16 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2472151-5 COR-7							
Sampled By: CLIENT on 08-JUL-20							
Matrix: WATER							
Total Organic Carbon by Combustion Total Organic Carbon	44.0		0.50			45 1111 00	DE454004
Total Suspended Solids	11.9		0.50	mg/L		15-JUL-20	R5154334
Total Suspended Solids	<3.0		3.0	mg/L		15-JUL-20	R5157074
pH pH	7.98		0.10	pH units		13-JUL-20	R5152186
	7.96		0.10	pri units		13-30L-20	K3132100

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2472151 CONTD....

Reference Information

PAGE 14 of 16 Version: FINAL

Sample Parameter Qualifier Key:

Qualifier	Description
В	Method Blank exceeds ALS DQO. Associated sample results which are < Limit of Reporting or > 5 times blank level are considered reliable.
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
HTC	Hardness was calculated from Total Ca and/or Mg concentrations and may be biased high (dissolved Ca/Mg results unavailable).
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
PEHT	Parameter Exceeded Recommended Holding Time Prior to Analysis
VOCHS	VOC analysis was conducted for a water sample that contained > 5% headspace. Results may be biased low.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
ALK-CO3CO3-CALC-WP	Water	Alkalinity, Carbonate	CALCULATION

The Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. The fraction of alkalinity contributed by carbonate is calculated and reported as mg CO3 2-/L.

ALK-HCO3HCO3-CALC- Water Alkalinity, Bicarbonate CALCULATION WP

The Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. The fraction of alkalinity contributed by bicarbonate is calculated and reported as mg HCO3-/L

ALK-OHOH-CALC-WP Water Alkalinity, Hydroxide CALCULATION

The Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. The fraction of alkalinity contributed by hydroxide is calculated and reported as mg OH-/L.

ALK-TITR-WP Water Alkalinity, Total (as CaCO3) APHA 2320B

The Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. Total alkalinity is determined by titration with a strong standard mineral acid to the successive HCO3- and H2CO3 endpoints indicated electrometrically.

BOD-CBOD-WP Water Carbonaceous BOD APHA 5210 B

Samples are diluted and seeded, have TCMP added to inhibit nitrogenous demands, and then are incubated in airtight bottles at 20 C for 5 days. Dissolved oxygen is measured initially and after incubation, and results are computed from the difference between initial and final DO.

BOD-WP Water Biochemical Oxygen Demand (BOD) APHA 5210 B

Samples are diluted and seeded and then incubated in airtight bottles at 20 C for 5 days. Dissolved oxygen is measured initially and after incubation, and results are computed from the difference between initial and final DO.

BTEXS+F1-HSMS-WP Water BTX plus F1 by GCMS EPA 8260C / EPA 5021A

The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection.

C-TOC-HTC-WP Water Total Organic Carbon by Combustion APHA 5310 B-WP

Sample is acidified and purged to remove inorganic carbon, then injected into a heated reaction chamber where organic carbon is oxidized to CO2 which is then transported in the carrier gas stream and measured via a non-dispersive infrared analyzer.

CL-IC-N-WP Water Chloride in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

EC-WP Water Conductivity APHA 2510B

Conductivity of an aqueous solution refers to its ability to carry an electric current. Conductance of a solution is measured between two spatially fixed and chemically inert electrodes.

F1-F4-CALC-WP Water CCME Total Hydrocarbons CCME CWS-PHC, Pub #1310, Dec 2001-L

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

L2472151 CONTD.... PAGE 15 of 16 Version: FINAL

Reference Information

Test Method References:

ALS Test Code Matrix Method Reference** **Test Description**

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F2-F4-FID-WP Water CCME PHC F2-F4 in Water **FPA 3511**

Petroleum hydrocarbons in water are determined by liquid-liquid micro-scale solvent extraction using a reciprocal shaker extraction apparatus prior to capillary column gas chromatography with flame ionization detection (GC-FID) analysis.

FC10-QT97-WP Water Fecal coliforms, 1:10 dilution by QT97 **APHA 9223B QT97**

Analysis is carried out using procedures adapted from APHA 9223 "Enzyme Substrate Coliform Test". Fecal (thermotolerant) coliform bacteria are determined by mixing a 1:10 dilution of sample with a product containing hydrolyzable substrates and sealing in a 97-well packet. The packet is incubated at 44.5 +/- 0.2 degrees C for 18 hours and then the number of wells exhibiting positive responses are counted. The final results are obtained by comparing the number of positive responses to a probability table.

HARDNESS-CALC-WP Water Hardness Calculated **APHA 2340B**

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

HG-T-CVAA-WP Mercury Total EPA 1631E (mod) Water

Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

MET-T-CCMS-WP Water Total Metals in Water by CRC ICPMS EPA 200.2/6020B (mod.)

Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

NH3-COL-WP APHA 4500 NH3 F Water Ammonia by colour

Ammonia in water samples forms indophenol when reacted with hypochlorite and phenol. The intensity is amplified by the addition of sodium

nitroprusside and measured colourmetrically.

NO2+NO3-CALC-WP Water Nitrate+Nitrite CALCULATION NO2-IC-N-WP Water Nitrite in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

NO3-IC-N-WP Water Nitrate in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

OG-GRAV-WP Water Oil & Grease - Gravimetric EPA 1664 (modified)

Water samples are acidified and extracted with hexane; the hexane extract is collected in a pre-weighed vial. The solvent is evaporated and Total Oil &

Grease is determined from the weight of the residue in the vial.

P-T-COL-WP Water Phosphorus, Total APHA 4500 P PHOSPHORUS-L

This analysis is carried out using procedures adapted from APHA METHOD 4500-P "Phosphorus". Total Phosphorus is determined colourmetrically after persulphate digestion of the sample.

PAH-CCMF-PPM-WT CCME PAHs in ma/L EPA 3511/8270D (mod)

PAHs are extracted from water using a hexane micro-extraction technique, with analysis by GC/MS. Because the two isomers cannot be readily separated chromatographically, benzo(j)fluoranthene is reported as part of the benzo(b)fluoranthene parameter.

Water **APHA 4500H**

The pH of a sample is the determination of the activity of the hydrogen ions by potentiometric measurement using a standard hydrogen electrode and a reference electrode.

L2472151 CONTD....

Reference Information PAGE 16 of 16 Version: FINAL

Test Method References:

ALS Test Code Matrix Test Description Method Reference**

PHENOLS-4AAP-WT Water Phenol (4AAP) EPA 9066

An automated method is used to distill the sample. The distillate is then buffered to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a red complex which is measured colorimetrically.

SO4-IC-N-WP Water Sulfate in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

SOLIDS-TOTSUS-WP Water Total Suspended Solids APHA 2540 D (modified)

Total suspended solids in aquesous matrices is determined gravimetrically after drying the residue at 103 105 C.

TC,EC10-QT97-WP Water Total and E. coli, 1:10 dilution by QT97 APHA 9223B QT97

Analysis is carried out using procedures adapted from APHA 9223 "Enzyme Susbtrate Coliform Test". Total coliforms and Eschericia coli bacteria are simultaneously determined by mixing a 1:10 dilution of sample with a product containing hydrolyzable substrates and sealing in a 97-well packet. The packet is incubated at 35.0 +/- 0.5 degrees C for 18 or 24 hours and then the number of wells exhibiting positive responses are counted. The final results are obtained by comparing the number of positive responses to a probability table.

XYLENES-SUM-CALC- Water Sum of Xylene Isomer Concentrations CALCULATED RESULT

WP

Total xylenes represents the sum of o-xylene and m&p-xylene.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WP	ALS ENVIRONMENTAL - WINNIPEG, MANITOBA, CANADA
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA
-	

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

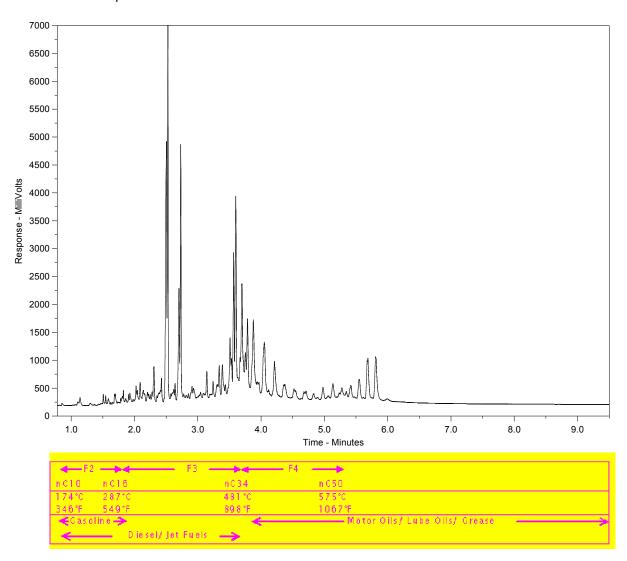
mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

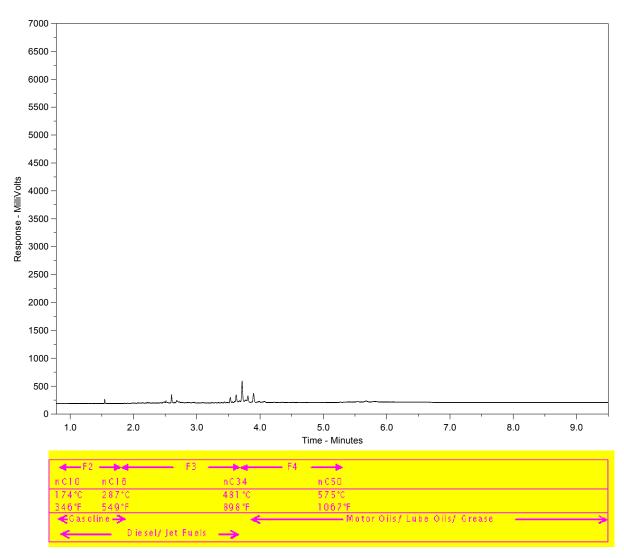
D.L. - The reporting limit.


N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

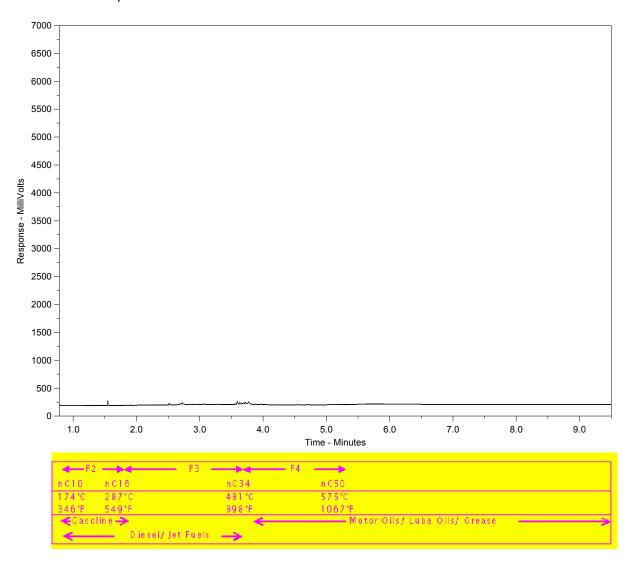
ALS Sample ID: L2472151-1 Client Sample ID: COR-3


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

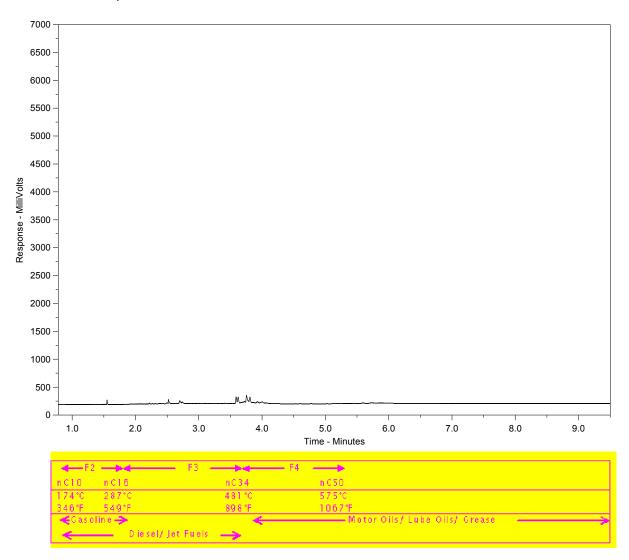
ALS Sample ID: L2472151-2 Client Sample ID: COR-4


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

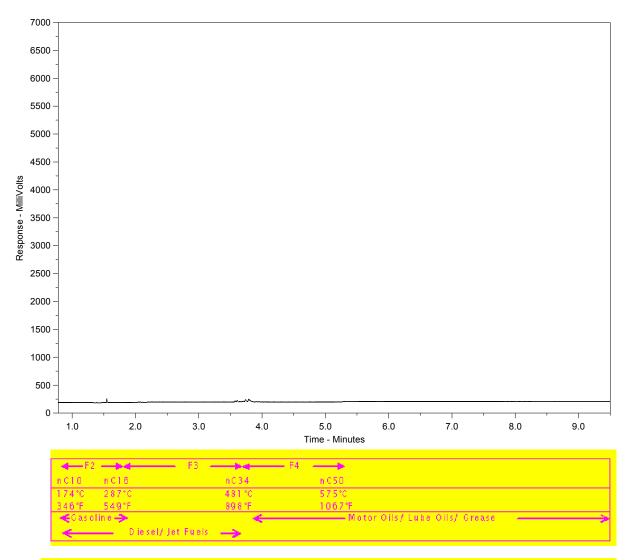
ALS Sample ID: L2472151-3 Client Sample ID: COR-5


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L2472151-4 Client Sample ID: COR-6


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

ALS Sample ID: L2472151-5 Client Sample ID: COR-7

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Name of Sampler(s): Varay	Vator late
Date of Sampling: $8/07/20$	D L2472151-COFC
Time of Sampling: 10:20	
Monitoring Station Number:	or-6
GPS Coordinates: N <u>VY ° 767</u>	" W <u>\$7 ° 1('628 "</u>
Weather Conditions:Summ	of Cloudy
Samples:	
√ 500 mL BOD x 2	60 mL Metals + Pres
500 mL Routine	3 x 40 mL BTEX, F1 Vials + Pres
500 mL CBOD	2 x 100 mL Amber F2-F4 Vials + Pres
40 mL Glass Mercury Vial + Pres	2 x 250 mL Amber PAH + Pres
100 mL Amber Nutrients + Pres	Other:
100 mL Amber Phenols + Pres	
250 mL Sterile Bacteria Bottle	
2 x 250 mL Amber Oil & Grease + Pres	
Other Notes: (any unusual conditions, any sample was not taken, etc.)	deviation from standard procedures, reason
Done	

Name of Sampler(s): Durcy Nakoo lak
Date of Sampling: 8/67/20
Time of Sampling: Corollabor Waster Votor 100
Monitoring Station Number:
GPS Coordinates: N 64 ° 04 '6/6" W 43 ° 1('537"
Weather Conditions: Summy / Gonda
Samples:
$\sqrt{500 \text{mL BOD}} $
500 mL Routine 3 x 40 mL BTEX, F1 Vials + Pres
500 mL CBOD 2 x 100 mL Amber F2-F4 Vials + Pres
40 mL Glass Mercury Vial + Pres 2 x 250 mL Amber PAH + Pres
100 mL Amber Nutrients + Pres Other:
100 mL Amber Phenols + Pres
250 mL Sterile Bacteria Bottle
2 x 250 mL Amber Oil & Grease + Pres
Other Notes: (any unusual conditions, any deviation from standard procedures, reason sample was not taken, etc.)
Done

Name of Sampler(s): Darcy	Vakoolde
Date of Sampling: $\frac{g/\delta 7/2}{2}$	0
Time of Sampling:	50
Monitoring Station Number:	y-3
GPS Coordinates: N <u>& Y ° 09 '87</u>	
Weather Conditions: Sum	1 Cloudy
Samples:	
500 mL BOD	60 mL Metals + Pres
500 mL Routine	3 x 40 mL BTEX, F1 Vials + Pres
500 mL CBOD	2 x 100 mL Amber F2-F4 Vials + Pres
40 mL Glass Mercury Vial + Pres	2 x 250 mL Amber PAH + Pres
100 mL Amber Nutrients + Pres	Other:
100 mL Amber Phenols + Pres	
250 mL Sterile Bacteria Bottle	
2 x 250 mL Amber Oil & Grease + Pres	
Other Notes: (any unusual conditions, an sample was not taken, etc.)	ny deviation from standard procedures, reason
	· · · · · · · · · · · · · · · · · · ·

JUL 0 9 2020 () U()

Name of Sampler(s):	Koolde
Date of Sampling: 8/07/2	2
Time of Sampling: 10,40	
Monitoring Station Number:	V-4
GPS Coordinates: N 64° 69' 426	" W <u>\$3 ° 11 ' 405"</u>
Weather Conditions: 54	
Samples:	
500 mL BOD	60 mL Metals + Pres
500 mL Routine	3 x 40 mL BTEX, F1 Vials + Pres
500 mL CBOD	2 x 100 mL Amber F2-F4 Vials + Pres
40 mL Glass Mercury Vial + Pres	2 x 250 mL Amber PAH + Pres
100 mL Amber Nutrients + Pres	Other:
100 mL Amber Phenols + Pres	
250 mL Sterile Bacteria Bottle	
2 x 250 mL Amber Oil & Grease + Pres	·
Other Notes: (any unusual conditions, any d sample was not taken, etc.)	eviation from standard procedures, reason
Done	
· •	····

Name of Sampler(s):	N. Skarlia
Date of Sampling: 8/07	/ 2 <i>0</i>
Time of Sampling:// このお	
Monitoring Station Number:	Cor-5
GPS Coordinates: N <u>LY ° 69'58</u>	7" W <u>83 ° U '047"</u>
Weather Conditions: 5000	Young.
Samples:	
500 mL BOD	60 mL Metals + Pres
V 500 mL Routine	3 x 40 mL BTEX, F1 Vials + Pres
1 S00 mL CBOD	2 x 100 mL Amber F2-F4 Vials + Pres
40 mL Glass Mercury Vial + Pres	2 x 250 mL Amber PAH + Pres
100 mL Amber Nutrients + Pres	Other:
100 mL Amber Phenols + Pres	
250 mL Sterile Bacteria Bottle	
2 x 250 mL Amber Oil & Grease + Pres	
Other Notes: (any unusual conditions, any sample was not taken, etc.)	deviation from standard procedures, reason
<u> </u>	

B 6 JUL 0 8 2020

Hamlet of Coral Harbour ATTN: LEONIE PAMEOLIK

PO Box 30

Coral Harbour MB X0C 0C0

Date Received: 28-AUG-20

Report Date: 08-SEP-20 15:52 (MT)

Version: FINAL

Client Phone: 867-925-8970

Certificate of Analysis

Lab Work Order #: L2495813
Project P.O. #: NOT SUBMITTED

Job Reference: HAMLET OF CORAL HARBOUR - WASTE WATERS

C of C Numbers: Legal Site Desc:

..........

Hua Wo

Chemistry Laboratory Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721

ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2495813 CONTD.... PAGE 2 of 12 Version: FINAL

Sample Details/Parameters	Result	Qualifier* D.L.	Units	Extracted	Analyzed	Batch
L2495813-1 COR 7						
Sampled By: CASEY on 26-AUG-20						
Matrix: Waste Water						
BTEX plus F1-F4						
BTX plus F1 by GCMS						
Benzene	<0.00050	0.00050	mg/L		31-AUG-20	R5207057
Toluene	<0.0010	0.0010	mg/L		31-AUG-20	R5207057
Ethyl benzene	<0.00050	0.00050	mg/L		31-AUG-20	R5207057
o-Xylene	<0.00050	0.00050	mg/L		31-AUG-20	R5207057
m+p-Xylenes	<0.00040	0.00040	mg/L		31-AUG-20	R5207057
F1 (C6-C10)	<0.10	0.10	mg/L		31-AUG-20	R5207057
Surrogate: 4-Bromofluorobenzene (SS)	85.1	70-130	%		31-AUG-20	R5207057
CCME PHC F2-F4 in Water						
F2 (C10-C16)	<0.10	0.10	mg/L	02-SEP-20	02-SEP-20	R5209346
F3 (C16-C34)	<0.25	0.25	mg/L	02-SEP-20	02-SEP-20	R5209346
F4 (C34-C50)	<0.25	0.25	mg/L	02-SEP-20	02-SEP-20	R5209346
Surrogate: 2-Bromobenzotrifluoride	94.9	60-140	%	02-SEP-20	02-SEP-20	R5209346
CCME Total Hydrocarbons	_					
F1-BTEX	<0.10	0.10	mg/L		03-SEP-20	
F2-Naphth	<0.10	0.10	mg/L		03-SEP-20	
F3-PAH	<0.25	0.25	mg/L		03-SEP-20	
Total Hydrocarbons (C6-C50)	<0.38	0.38	mg/L		03-SEP-20	
Sum of Xylene Isomer Concentrations Xylenes (Total)	<0.00064	0.00064	ma/l		01-SEP-20	
Ayleries (Total)	<0.00064	0.00064	mg/L		01-3EF-20	
CCME PAHs in mg/L						
1-Methyl Naphthalene	<0.000020	0.000020	mg/L	31-AUG-20	03-SEP-20	R5209421
2-Methyl Naphthalene	<0.000020	0.000020	mg/L	31-AUG-20	03-SEP-20	R5209421
Acenaphthene	<0.000020	0.000020	mg/L	31-AUG-20	03-SEP-20	R5209421
Acenaphthylene	<0.000020	0.000020	mg/L	31-AUG-20	03-SEP-20	R5209421
Anthracene	<0.000010	0.000010	mg/L	31-AUG-20	03-SEP-20	R5209421
Acridine	<0.000020	0.000020	mg/L	31-AUG-20	03-SEP-20	R5209421
Benzo(a)anthracene	<0.000010	0.000010	mg/L	31-AUG-20	03-SEP-20	R5209421
Benzo(a)pyrene	<0.000050	0.000050	mg/L	31-AUG-20	03-SEP-20	R5209421
Benzo(b&j)fluoranthene	<0.000010	0.000010	mg/L	31-AUG-20	03-SEP-20	R5209421
Benzo(g,h,i)perylene	<0.000020	0.000020	mg/L	31-AUG-20	03-SEP-20	R5209421
Benzo(k)fluoranthene	<0.000010	0.000010	mg/L	31-AUG-20	03-SEP-20	R5209421
Chrysene	<0.000020	0.000020	mg/L	31-AUG-20	03-SEP-20	R5209421
Dibenzo(a,h)anthracene Fluoranthene	<0.0000050 <0.000020	0.0000050	mg/L	31-AUG-20 31-AUG-20	03-SEP-20 03-SEP-20	R5209421
Fluorene	<0.000020	0.000020 0.000020	mg/L mg/L	31-AUG-20 31-AUG-20	03-SEP-20 03-SEP-20	R5209421 R5209421
Indeno(1,2,3-cd)pyrene	<0.000020	0.000020	mg/L	31-AUG-20 31-AUG-20	03-SEP-20	R5209421
Naphthalene	<0.000010	0.000010	mg/L	31-AUG-20	03-SET-20 03-SEP-20	R5209421
Phenanthrene	<0.000050	0.000050	mg/L	31-AUG-20	03-SEP-20	R5209421
Pyrene	<0.000010	0.000010	mg/L	31-AUG-20	03-SEP-20	R5209421
Quinoline	<0.000020	0.000020	mg/L	31-AUG-20	03-SEP-20	R5209421
B(a)P Total Potency Equivalent	<0.000030	0.000030	mg/L	31-AUG-20	03-SEP-20	R5209421
Surrogate: d8-Naphthalene	81.1	50-150	%	31-AUG-20	03-SEP-20	R5209421
Surrogate: d10-Phenanthrene	95.9	50-150	%	31-AUG-20	03-SEP-20	R5209421
Surrogate: d12-Chrysene	86.4	50-150	%	31-AUG-20	03-SEP-20	R5209421
Surrogate: d10-Acenaphthene	86.6	50-150	%	31-AUG-20	03-SEP-20	R5209421
Surrogate: d9-Acridine (SS)	98.1	50-150	%	31-AUG-20	03-SEP-20	R5209421
Nunavut WW Group 1						
Alkalinity, Bicarbonate	400		ma c: //		04.055.00	
Bicarbonate (HCO3)	120	1.2	mg/L		01-SEP-20	
Alkalinity, Carbonate						

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2495813 CONTD.... PAGE 3 of 12 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2495813-1 COR 7							
' '							
Matrix: Waste Water							
Alkalinity, Carbonate Carbonate (CO3)	<0.60		0.60	mg/L		01-SEP-20	
Alkalinity, Hydroxide Hydroxide (OH)	<0.34		0.34	mg/L		01-SEP-20	
Alkalinity, Total (as CaCO3) Alkalinity, Total (as CaCO3)	98.5		1.0	mg/L		31-AUG-20	R5207259
Ammonia by colour Ammonia, Total (as N)	0.079		0.010	mg/L		01-SEP-20	R5208683
Biochemical Oxygen Demand (BOD) Biochemical Oxygen Demand	7.7		6.0	mg/L		28-AUG-20	R5209364
Carbonaceous BOD BOD Carbonaceous	<6.0		6.0	mg/L		28-AUG-20	R5209364
Chloride in Water by IC Chloride (CI)	6.8		1.0	mg/L		28-AUG-20	R5208621
Conductivity Conductivity	901		1.0	umhos/cm		31-AUG-20	R5207259
Fecal coliforms, 1:10 dilution by QT97 Fecal Coliforms	30	PEHR		MPN/100mL		28-AUG-20	R5204025
Hardness Calculated Hardness (as CaCO3)	486	HTC	0.20	mg/L		02-SEP-20	110207023
Mercury Total Mercury (Hg)-Total	<0.000050		0.20	mg/L	08-SEP-20	08-SEP-20	R5215541
Nitrate in Water by IC Nitrate (as N)	<0.040	DLM	0.040	mg/L	00 021 20	28-AUG-20	R5208621
Nitrate+Nitrite Nitrate and Nitrite as N	<0.070	J 2	0.070	mg/L		02-SEP-20	110200021
Nitrite in Water by IC Nitrite (as N)	<0.020	DLM	0.020	mg/L		28-AUG-20	R5208621
Oil & Grease - Gravimetric Oil and Grease	<5.0	DEIVI	5.0	mg/L		04-SEP-20	R5210446
Phenol (4AAP) Phenols (4AAP)	0.0010		0.0010	mg/L		31-AUG-20	R5210446
Phosphorus, Total Phosphorus (P)-Total	0.0010		0.0010	mg/L		02-SEP-20	R5207979
Sulfate in Water by IC							
Sulfate (SO4) Total Metals in Water by CRC ICPMS	421		0.60	mg/L	04.055.00	28-AUG-20	R5208621
Aluminum (AI)-Total Arsenic (As)-Total	0.0234 0.00070		0.0030 0.00010	mg/L	01-SEP-20 01-SEP-20	01-SEP-20 01-SEP-20	R5208572
Cadmium (Cd)-Total	0.00070		0.00010	mg/L mg/L	01-SEP-20 01-SEP-20	01-SEP-20 01-SEP-20	R5208572 R5208572
Calcium (Ca)-Total	178		0.00000	mg/L	01-SEP-20 01-SEP-20	01-SEP-20 01-SEP-20	R5206572 R5208572
Chromium (Cr)-Total	0.00037		0.00010	mg/L	01-SEP-20	01-SEP-20	R5208572
Cobalt (Co)-Total	0.00029		0.00010	mg/L	01-SEP-20	01-SEP-20	R5208572
Copper (Cu)-Total	0.00395		0.00050	mg/L	01-SEP-20	01-SEP-20	R5208572
Iron (Fe)-Total	1.36		0.010	mg/L	01-SEP-20	01-SEP-20	R5208572
Lead (Pb)-Total	0.000544		0.000050	mg/L	01-SEP-20	01-SEP-20	R5208572
Magnesium (Mg)-Total	9.99		0.0050	mg/L	01-SEP-20	01-SEP-20	R5208572
Manganese (Mn)-Total	0.0334		0.00010	mg/L	01-SEP-20	01-SEP-20	R5208572
Nickel (Ni)-Total	0.00354		0.00050	mg/L	01-SEP-20	01-SEP-20	R5208572
Potassium (K)-Total	6.61		0.050	mg/L	01-SEP-20	01-SEP-20	R5208572
Sodium (Na)-Total	12.5		0.050	mg/L	01-SEP-20	01-SEP-20	R5208572
Zinc (Zn)-Total	0.0559		0.0030	mg/L	01-SEP-20	01-SEP-20	R5208572
Total Organic Carbon by Combustion							

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2495813 CONTD.... PAGE 4 of 12 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2495813-1 COR 7							
Sampled By: CASEY on 26-AUG-20							
' '							
Matrix: Waste Water							
Total Organic Carbon by Combustion Total Organic Carbon	17.7		0.50	mg/L		02-SEP-20	R5209758
Total Suspended Solids				,,			
Total Suspended Solids	15.7		3.0	mg/L		31-AUG-20	R5207964
pH pH	7.89		0.10	pH units		31-AUG-20	R5207259
·	7.09		0.10	priunits		31-AUG-20	K3207239
L2495813-2 COR 6							
Sampled By: CASEY on 26-AUG-20							
Matrix: Waste Water							
BTEX plus F1-F4							
BTX plus F1 by GCMS Benzene	<0.00050		0.00050	mg/L		31-AUG-20	R5207057
Toluene	<0.00050		0.00050	•		31-AUG-20 31-AUG-20	R5207057
Ethyl benzene	<0.0010		0.0010	mg/L mg/L		31-AUG-20 31-AUG-20	R5207057
o-Xylene	<0.00050		0.00050	mg/L		31-AUG-20	R5207057
m+p-Xylenes	<0.00030		0.00030	mg/L		31-AUG-20	R5207057
F1 (C6-C10)	<0.10		0.10	mg/L		31-AUG-20	R5207057
Surrogate: 4-Bromofluorobenzene (SS)	86.5		70-130	%		31-AUG-20	R5207057
CCME PHC F2-F4 in Water	00.0		70 100	,,		01710020	110201001
F2 (C10-C16)	<0.10		0.10	mg/L	02-SEP-20	02-SEP-20	R5209346
F3 (C16-C34)	0.28		0.25	mg/L	02-SEP-20	02-SEP-20	R5209346
F4 (C34-C50)	<0.25		0.25	mg/L	02-SEP-20	02-SEP-20	R5209346
Surrogate: 2-Bromobenzotrifluoride	105.5		60-140	%	02-SEP-20	02-SEP-20	R5209346
CCME Total Hydrocarbons							
F1-BTEX	<0.10		0.10	mg/L		03-SEP-20	
F2-Naphth	<0.10		0.10	mg/L		03-SEP-20	
F3-PAH	0.28		0.25	mg/L		03-SEP-20	
Total Hydrocarbons (C6-C50)	<0.38		0.38	mg/L		03-SEP-20	
Sum of Xylene Isomer Concentrations							
Xylenes (Total)	<0.00064		0.00064	mg/L		01-SEP-20	
CCME PAHs in mg/L	10,000,000		0.000000	m a /l	31-AUG-20	02 CED 20	R5209421
1-Methyl Naphthalene 2-Methyl Naphthalene	<0.000020 <0.000020		0.000020 0.000020	mg/L mg/L	31-AUG-20 31-AUG-20	03-SEP-20 03-SEP-20	R5209421
Acenaphthene	<0.000020		0.000020	mg/L	31-AUG-20	03-SEP-20	R5209421
Acenaphthylene	<0.000020		0.000020	mg/L	31-AUG-20	03-SEP-20	R5209421
Anthracene	<0.000020		0.000020	mg/L	31-AUG-20	03-SEP-20	R5209421
Acridine	<0.000010		0.000010	mg/L	31-AUG-20	03-SEP-20	R5209421
Benzo(a)anthracene	<0.000020		0.000020	mg/L	31-AUG-20	03-SEP-20	R5209421
Benzo(a)pyrene	<0.000010		0.0000010	mg/L	31-AUG-20	03-SEP-20	R5209421
Benzo(b&j)fluoranthene	<0.000010		0.000010	mg/L	31-AUG-20	03-SEP-20	R5209421
Benzo(g,h,i)perylene	<0.000020		0.000020	mg/L	31-AUG-20	03-SEP-20	R5209421
Benzo(k)fluoranthene	<0.000010		0.000010	mg/L	31-AUG-20	03-SEP-20	R5209421
Chrysene	<0.000020		0.000020	mg/L	31-AUG-20	03-SEP-20	R5209421
Dibenzo(a,h)anthracene	<0.000050		0.0000050	mg/L	31-AUG-20	03-SEP-20	R5209421
Fluoranthene	<0.000020		0.000020	mg/L	31-AUG-20	03-SEP-20	R5209421
Fluorene	<0.000020		0.000020	mg/L	31-AUG-20	03-SEP-20	R5209421
Indeno(1,2,3-cd)pyrene	<0.000010		0.000010	mg/L	31-AUG-20	03-SEP-20	R5209421
Naphthalene	<0.000050		0.000050	mg/L	31-AUG-20	03-SEP-20	R5209421
Phenanthrene	<0.000050		0.000050	mg/L	31-AUG-20	03-SEP-20	R5209421
Pyrene	<0.000010		0.000010	mg/L	31-AUG-20	03-SEP-20	R5209421
Quinoline	0.000028		0.000020	mg/L	31-AUG-20	03-SEP-20	R5209421

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2495813 CONTD.... PAGE 5 of 12 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2495813-2 COR 6							
Sampled By: CASEY on 26-AUG-20							
Matrix: Waste Water							
CCME PAHs in mg/L							
B(a)P Total Potency Equivalent	<0.000030		0.000030	mg/L	31-AUG-20	03-SEP-20	R5209421
Surrogate: d8-Naphthalene	85.7		50-150	%	31-AUG-20	03-SEP-20	R5209421
Surrogate: d10-Phenanthrene	99.2		50-150	%	31-AUG-20	03-SEP-20	R5209421
Surrogate: d12-Chrysene Surrogate: d10-Acenaphthene	89.4 90.2		50-150 50-150	% %	31-AUG-20 31-AUG-20	03-SEP-20 03-SEP-20	R5209421 R5209421
Surrogate: d9-Acridine (SS)	104.5		50-150	%	31-AUG-20	03-SEP-20	R5209421
Nunavut WW Group 1							
Alkalinity, Bicarbonate Bicarbonate (HCO3)	297		1.2	mg/L		01-SEP-20	
Alkalinity, Carbonate							
Carbonate (CO3)	<0.60		0.60	mg/L		01-SEP-20	
Alkalinity, Hydroxide	10.01		0.04			04.055.00	
Hydroxide (OH) Alkalinity, Total (as CaCO3)	<0.34		0.34	mg/L		01-SEP-20	
Alkalinity, Total (as CaCO3)	243		1.0	mg/L		31-AUG-20	R5207259
Ammonia by colour Ammonia, Total (as N)	0.091		0.010	mg/L		01-SEP-20	R5208683
Biochemical Oxygen Demand (BOD) Biochemical Oxygen Demand	27.9		6.0	mg/L		28-AUG-20	R5209364
Carbonaceous BOD BOD Carbonaceous	9.9		2.0	mg/L		28-AUG-20	R5209364
Chloride in Water by IC Chloride (CI)	53.9		0.50	mg/L		28-AUG-20	R5208621
Conductivity Conductivity	655		1.0	umhos/cm		31-AUG-20	R5207259
Fecal coliforms, 1:10 dilution by QT97 Fecal Coliforms	40	PEHR	10	MPN/100mL		28-AUG-20	R5204025
Hardness Calculated Hardness (as CaCO3)	241	HTC	0.20	mg/L		02-SEP-20	
Mercury Total Mercury (Hg)-Total	0.0000050		0.0000050	mg/L	08-SEP-20	08-SEP-20	R5215541
Nitrate in Water by IC Nitrate (as N)	<0.020		0.020	mg/L		28-AUG-20	R5208621
Nitrate+Nitrite Nitrate and Nitrite as N	<0.070		0.070	mg/L		02-SEP-20	
Nitrite in Water by IC Nitrite (as N)	<0.070		0.010	mg/L		28-AUG-20	R5208621
Oil & Grease - Gravimetric Oil and Grease	<5.0		5.0	mg/L		04-SEP-20	R5210446
Phenol (4AAP) Phenols (4AAP)	0.0018		0.0010	mg/L		31-AUG-20	R5207979
Phosphorus, Total Phosphorus (P)-Total	0.308		0.0010	mg/L		02-SEP-20	R5207979
Sulfate in Water by IC							
Sulfate (SO4) Total Metals in Water by CRC ICPMS	35.8		0.30	mg/L		28-AUG-20	R5208621
Aluminum (Al)-Total	0.126		0.0030	mg/L	01-SEP-20	01-SEP-20	R5208572
Arsenic (As)-Total	0.00266		0.00010	mg/L	01-SEP-20	01-SEP-20	R5208572
Cadmium (Cd)-Total	0.0000087		0.0000050	"	01-SEP-20	01-SEP-20	R5208572
Calcium (Ca)-Total	62.1		0.050	mg/L	01-SEP-20	01-SEP-20	R5208572
Chromium (Cr)-Total	0.00076		0.00010	mg/L	01-SEP-20	01-SEP-20	R5208572
Cobalt (Co)-Total	0.00030		0.00010	mg/L	01-SEP-20	01-SEP-20	R5208572

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2495813 CONTD.... PAGE 6 of 12 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2495813-2 COR 6							
Sampled By: CASEY on 26-AUG-20							
Matrix: Waste Water							
Total Metals in Water by CRC ICPMS							
Copper (Cu)-Total	0.00270		0.00050	mg/L	01-SEP-20	01-SEP-20	R5208572
Iron (Fe)-Total	1.50		0.010	mg/L	01-SEP-20	01-SEP-20	R5208572
Lead (Pb)-Total	0.000524		0.000050	mg/L	01-SEP-20	01-SEP-20	R5208572
Magnesium (Mg)-Total	20.8		0.0050	mg/L	01-SEP-20	01-SEP-20	R5208572
Manganese (Mn)-Total Nickel (Ni)-Total	0.0663 0.00218		0.00010 0.00050	mg/L mg/L	01-SEP-20 01-SEP-20	01-SEP-20 01-SEP-20	R5208572 R5208572
Potassium (K)-Total	24.4		0.00030	mg/L	01-SEP-20	01-SEP-20	R5208572
Sodium (Na)-Total	48.8		0.050	mg/L	01-SEP-20	01-SEP-20	R5208572
Zinc (Zn)-Total	0.0082		0.0030	mg/L	01-SEP-20	01-SEP-20	R5208572
Total Organic Carbon by Combustion							
Total Organic Carbon	38.8		0.50	mg/L		02-SEP-20	R5209758
Total Suspended Solids							
Total Suspended Solids	34.9		3.0	mg/L		31-AUG-20	R5207964
pH	0.40		0.40	nH unito		31 ALIC 20	DE207250
pH	8.19		0.10	pH units		31-AUG-20	R5207259
L2495813-3 COR 5							
Sampled By: CASEY on 26-AUG-20							
Matrix: Waste Water							
Nunavut WW Group 1							
Alkalinity, Bicarbonate							
Bicarbonate (HCO3)	422		1.2	mg/L		01-SEP-20	
Alkalinity, Carbonate Carbonate (CO3)	<0.60		0.60	mg/L		01-SEP-20	
Alkalinity, Hydroxide	<0.00		0.00	IIIg/L		01-3LF-20	
Hydroxide (OH)	<0.34		0.34	mg/L		01-SEP-20	
Alkalinity, Total (as CaCO3)							
Alkalinity, Total (as CaCO3)	346		1.0	mg/L		31-AUG-20	R5207259
Ammonia by colour	45.0		1.0	ma/l		01-SEP-20	DEGOGGGG
Ammonia, Total (as N) Biochemical Oxygen Demand (BOD)	45.2		1.0	mg/L		U1-3EP-20	R5208683
Biochemical Oxygen Demand	47		20	mg/L		28-AUG-20	R5209364
Carbonaceous BOD							
BOD Carbonaceous	30.2		6.0	mg/L		28-AUG-20	R5209364
Chloride in Water by IC							
Chloride (CI)	60.1		1.0	mg/L		28-AUG-20	R5208621
Conductivity Conductivity	879		1.0	umhos/cm		31-AUG-20	R5207259
Fecal coliforms, 1:10 dilution by QT97	079		1.0	ummos/cm		31-A0G-20	R5207259
Fecal Colliforms	3080	PEHR	10	MPN/100mL		28-AUG-20	R5204025
Hardness Calculated							
Hardness (as CaCO3)	151	HTC	0.20	mg/L		02-SEP-20	
Mercury Total							
Mercury (Hg)-Total	0.0000060		0.0000050	mg/L	08-SEP-20	08-SEP-20	R5215541
Nitrate in Water by IC Nitrate (as N)	0.070		0.040	mg/L		28-AUG-20	R5208621
Nitrate (as N) Nitrate+Nitrite	0.070		0.040	illy/L		20-AUG-20	K0200021
Nitrate and Nitrite as N	0.100		0.070	mg/L		02-SEP-20	
Nitrite in Water by IC							
Nitrite (as N)	0.031		0.020	mg/L		28-AUG-20	R5208621
Oil & Grease - Gravimetric							
Oil and Grease	<5.0		5.0	mg/L		04-SEP-20	R5210446

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2495813 CONTD.... PAGE 7 of 12 Version: FINAL

Sample Details/Parameters	Result	Qualifier	* D.L.	Units	Extracted	Analyzed	Batch
L2495813-3 COR 5							
Sampled By: CASEY on 26-AUG-20							
Matrix: Waste Water							
Phenol (4AAP)							
Phenols (4AAP)	<0.0050	DLM	0.0050	mg/L		31-AUG-20	R5207979
Phosphorus, Total							
Phosphorus (P)-Total	8.55		0.030	mg/L		02-SEP-20	R5208817
Sulfate in Water by IC	40.0		0.00			20 4110 20	DE000004
Sulfate (SO4) Total Metals in Water by CRC ICPMS	12.8		0.60	mg/L		28-AUG-20	R5208621
Aluminum (Al)-Total	0.0738		0.0030	mg/L	01-SEP-20	01-SEP-20	R5208572
Arsenic (As)-Total	0.00109		0.00010	mg/L	01-SEP-20	01-SEP-20	R5208572
Cadmium (Cd)-Total	0.0000131		0.0000050	mg/L	01-SEP-20	01-SEP-20	R5208572
Calcium (Ca)-Total	50.7		0.050	mg/L	01-SEP-20	01-SEP-20	R5208572
Chromium (Cr)-Total	0.00037		0.00010	mg/L	01-SEP-20	01-SEP-20	R5208572
Cobalt (Co)-Total	0.00056		0.00010	mg/L	01-SEP-20	01-SEP-20	R5208572
Copper (Cu)-Total	0.0100		0.00050	mg/L	01-SEP-20	01-SEP-20	R5208572
Iron (Fe)-Total Lead (Pb)-Total	0.429 0.000288		0.010 0.000050	mg/L	01-SEP-20 01-SEP-20	01-SEP-20 01-SEP-20	R5208572 R5208572
Magnesium (Mg)-Total	6.04		0.000050	mg/L mg/L	01-SEP-20 01-SEP-20	01-SEP-20 01-SEP-20	R5208572 R5208572
Manganese (Mn)-Total	0.0630		0.0030	mg/L	01-SEP-20	01-SEP-20	R5208572
Nickel (Ni)-Total	0.00245		0.00050	mg/L	01-SEP-20	01-SEP-20	R5208572
Potassium (K)-Total	24.7		0.050	mg/L	01-SEP-20	01-SEP-20	R5208572
Sodium (Na)-Total	57.3		0.050	mg/L	01-SEP-20	01-SEP-20	R5208572
Zinc (Zn)-Total	0.0184		0.0030	mg/L	01-SEP-20	01-SEP-20	R5208572
Total Organic Carbon by Combustion							
Total Organic Carbon	89.9		5.0	mg/L		02-SEP-20	R5209758
Total Suspended Solids Total Suspended Solids	152		3.0	mg/L		31-AUG-20	R5207964
pH	132		3.0	mg/L		31-A00-20	13207904
pH	7.79		0.10	pH units		31-AUG-20	R5207259
L2495813-4 COR 4							
Sampled By: CASEY on 26-AUG-20							
Matrix: Waste Water							
Nunavut WW Group 1							
Alkalinity, Bicarbonate Bicarbonate (HCO3)	329		1.2	mg/L		01-SEP-20	
Alkalinity, Carbonate	329		1.4	illy/L		01-0L1-20	
Carbonate (CO3)	<0.60		0.60	mg/L		01-SEP-20	
Alkalinity, Hydroxide							
Hydroxide (OH)	<0.34		0.34	mg/L		01-SEP-20	
Alkalinity, Total (as CaCO3)	0-0					04 4110 00	D5007070
Alkalinity, Total (as CaCO3)	270		1.0	mg/L		31-AUG-20	R5207259
Ammonia by colour Ammonia, Total (as N)	1.08		0.10	mg/L		01-SEP-20	R5208683
Biochemical Oxygen Demand (BOD)	1.00		0.10	1119/L		31 OLI -20	1.020000
Biochemical Oxygen Demand	6.1		2.0	mg/L		28-AUG-20	R5209364
Carbonaceous BOD				,			
BOD Carbonaceous	2.7		2.0	mg/L		28-AUG-20	R5209364
Chloride in Water by IC	0		0.50			00 4110 00	DECCCOO.
Chloride (CI)	61.7		0.50	mg/L		28-AUG-20	R5208621
Conductivity Conductivity	710		1.0	umhos/cm		31-AUG-20	R5207259
Fecal coliforms, 1:10 dilution by QT97	7 10		1.0	3111103/0111		317100-20	1.0201200
Fecal Coliforms	30	PEHR	10	MPN/100mL		28-AUG-20	R5204025
	1 22	1					

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2495813 CONTD.... PAGE 8 of 12 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2495813-4 COR 4							
Sampled By: CASEY on 26-AUG-20							
Matrix: Waste Water							
Hardness Calculated							
Hardness (as CaCO3)	257	нтс	0.20	mg/L		02-SEP-20	
Mercury Total Mercury (Hg)-Total	<0.0000050		0.0000050	mg/L	08-SEP-20	08-SEP-20	R5215541
Nitrate in Water by IC Nitrate (as N)	2.11		0.020	mg/L		28-AUG-20	R5208621
Nitrate+Nitrite Nitrate and Nitrite as N	2.21		0.070	mg/L		02-SEP-20	
Nitrite in Water by IC Nitrite (as N)	0.104		0.010	mg/L		28-AUG-20	R5208621
Oil & Grease - Gravimetric Oil and Grease						04-SEP-20	
Phenol (4AAP)	<5.0		5.0	mg/L			R5210465
Phenols (4AAP)	0.0023	SP	0.0010	mg/L		31-AUG-20	R5207979
Phosphorus, Total Phosphorus (P)-Total	0.146		0.0030	mg/L		02-SEP-20	R5208817
Sulfate in Water by IC Sulfate (SO4)	23.0		0.30	mg/L		28-AUG-20	R5208621
Total Metals in Water by CRC ICPMS Aluminum (AI)-Total	0.0124		0.0030	mg/L	01-SEP-20	01-SEP-20	R5208572
Arsenic (As)-Total	0.00104		0.00010	mg/L	01-SEP-20	01-SEP-20	R5208572
Cadmium (Cd)-Total	0.0000263		0.0000050	mg/L	01-SEP-20	01-SEP-20	R5208572
Calcium (Ca)-Total	88.2		0.050	mg/L	01-SEP-20	01-SEP-20	R5208572
Chromium (Cr)-Total	0.00019		0.00010	mg/L	01-SEP-20	01-SEP-20	R5208572
Cobalt (Co)-Total	0.00154		0.00010	mg/L	01-SEP-20	01-SEP-20	R5208572
Copper (Cu)-Total	0.00221		0.00050	mg/L	01-SEP-20	01-SEP-20	R5208572
Iron (Fe)-Total	0.187		0.010	mg/L	01-SEP-20	01-SEP-20	R5208572
Lead (Pb)-Total	<0.000050		0.000050	mg/L	01-SEP-20	01-SEP-20	R5208572
Magnesium (Mg)-Total	8.86		0.0050	mg/L	01-SEP-20	01-SEP-20	R5208572
Manganese (Mn)-Total	0.103		0.00010	mg/L	01-SEP-20	01-SEP-20	R5208572
Nickel (Ni)-Total	0.00544		0.00050	mg/L	01-SEP-20	01-SEP-20	R5208572
Potassium (K)-Total	10.3		0.050	mg/L	01-SEP-20	01-SEP-20	R5208572
Sodium (Na)-Total	50.9		0.050	mg/L	01-SEP-20	01-SEP-20	R5208572
Zinc (Zn)-Total	0.0030		0.0030	mg/L	01-SEP-20	01-SEP-20	R5208572
Total Organic Carbon by Combustion Total Organic Carbon	11.4		0.50	mg/L		04-SEP-20	R5215101
Total Suspended Solids Total Suspended Solids	127		3.0	mg/L		31-AUG-20	R5207964
pH pH	8.23		0.10	pH units		31-AUG-20	R5207259
L2495813-5 COR 3				•			
Sampled By: CASEY on 26-AUG-20							
Matrix: Waste Water							
Nunavut WW Group 1							
Alkalinity, Bicarbonate							
Bicarbonate (HCO3)	187		1.2	mg/L		01-SEP-20	
Alkalinity, Carbonate Carbonate (CO3)	<0.60		0.60	mg/L		01-SEP-20	
Alkalinity, Hydroxide Hydroxide (OH)	<0.34		0.34	mg/L		01-SEP-20	
Alkalinity, Total (as CaCO3)				-			DEGGES
Alkalinity, Total (as CaCO3)	153		1.0	mg/L		31-AUG-20	R5207259

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2495813 CONTD.... PAGE 9 of 12 Version: FINAL

			D.L.	Units	Extracted	Analyzed	Batch
L2495813-5 COR 3							
Sampled By: CASEY on 26-AUG-20							
Matrix: Waste Water							
Ammonia by colour							
Ammonia, Total (as N)	0.049		0.010	mg/L		01-SEP-20	R5208683
Biochemical Oxygen Demand (BOD) Biochemical Oxygen Demand	<2.0		2.0	mg/L		28-AUG-20	R5209364
Carbonaceous BOD BOD Carbonaceous	<2.0		2.0	mg/L		28-AUG-20	R5209364
Chloride in Water by IC							
Chloride (CI) Conductivity	50.4		0.50	mg/L		28-AUG-20	R5208621
Conductivity Fecal coliforms, 1:10 dilution by QT97	535		1.0	umhos/cm		31-AUG-20	R5207259
Fecal Coliforms Hardness Calculated	<10	PEHR	10	MPN/100mL		28-AUG-20	R5204025
Hardness (as CaCO3)	164	нтс	0.20	mg/L		02-SEP-20	
Mercury Total Mercury (Hg)-Total	<0.000050		0.0000050	mg/L	08-SEP-20	08-SEP-20	R5215541
Nitrate in Water by IC Nitrate (as N)	<0.020		0.020	mg/L		28-AUG-20	R5208621
Nitrate+Nitrite Nitrate and Nitrite as N	<0.070		0.070	mg/L		02-SEP-20	
Nitrite in Water by IC							D
Nitrite (as N) Oil & Grease - Gravimetric	<0.010		0.010	mg/L		28-AUG-20	R5208621
Oil and Grease	<5.0		5.0	mg/L		04-SEP-20	R5210465
Phenol (4AAP) Phenols (4AAP)	0.0020		0.0010	mg/L		31-AUG-20	R5207979
Phosphorus, Total Phosphorus (P)-Total	0.0431		0.0030	mg/L		02-SEP-20	R5208817
Sulfate in Water by IC Sulfate (SO4)	56.6		0.30			28-AUG-20	
Total Metals in Water by CRC ICPMS	0.00		0.30	mg/L		20-AUG-20	R5208621
Aluminum (Al)-Total	0.0081		0.0030	mg/L	01-SEP-20	01-SEP-20	R5208572
Arsenic (As)-Total	0.00086		0.00010	mg/L	01-SEP-20	01-SEP-20	R5208572
Cadmium (Cd)-Total	<0.000050		0.0000050	mg/L	01-SEP-20	01-SEP-20	R5208572
Calcium (Ca)-Total	48.0		0.050	mg/L	01-SEP-20	01-SEP-20	R5208572
Chromium (Cr)-Total	0.00028		0.00010	mg/L	01-SEP-20	01-SEP-20	R5208572
Cobalt (Co)-Total	0.00028		0.00010	mg/L	01-SEP-20	01-SEP-20	R5208572
Copper (Cu)-Total	0.00082		0.00050	mg/L	01-SEP-20	01-SEP-20	R5208572
Iron (Fe)-Total	0.168		0.010	mg/L	01-SEP-20	01-SEP-20	R5208572
Lead (Pb)-Total	<0.000050		0.000050	mg/L	01-SEP-20	01-SEP-20	R5208572
Magnesium (Mg)-Total	10.6		0.0050	mg/L	01-SEP-20	01-SEP-20	R5208572
Manganese (Mn)-Total	0.0215		0.00010	mg/L	01-SEP-20	01-SEP-20	R5208572
Nickel (Ni)-Total	0.00202		0.00050	mg/L	01-SEP-20	01-SEP-20	R5208572
Potassium (K)-Total	10.5		0.050	mg/L	01-SEP-20	01-SEP-20	R5208572
Sodium (Na)-Total	49.3		0.050	mg/L	01-SEP-20	01-SEP-20	R5208572
Zinc (Zn)-Total	0.0057		0.0030	mg/L	01-SEP-20	01-SEP-20	R5208572
Total Organic Carbon by Combustion Total Organic Carbon	19.9		0.50	mg/L		02-SEP-20	R5209758
Total Suspended Solids Total Suspended Solids	<3.0		3.0	mg/L		31-AUG-20	R5207964
pH							
pH	8.22		0.10	pH units		31-AUG-20	R5207259

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2495813 CONTD....

PAGE 10 of 12 Version: FINAL

Reference Information

Sample Parameter Qualifier Key:

Qualifier	Description
В	Method Blank exceeds ALS DQO. Associated sample results which are < Limit of Reporting or > 5 times blank level are considered reliable.
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
HTC	Hardness was calculated from Total Ca and/or Mg concentrations and may be biased high (dissolved Ca/Mg results unavailable).
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
PEHR	Parameter Exceeded Recommended Holding Time On Receipt: Proceed With Analysis As Requested.
SP	Sample was Preserved at the laboratory

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
ALK-CO3CO3-CALC-WP	Water	Alkalinity, Carbonate	CALCULATION

The Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. The fraction of alkalinity contributed by carbonate is calculated and reported as mg CO3 2-/L.

ALK-HCO3HCO3-CALC-Water Alkalinity, Bicarbonate **CALCULATION**

The Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. The fraction of alkalinity contributed by bicarbonate is calculated and reported as mg HCO3-/L

ALK-OHOH-CALC-WP Water Alkalinity, Hydroxide CALCULATION

The Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. The fraction of alkalinity contributed by hydroxide is calculated and reported as mg OH-/L.

ALK-TITR-WP Water Alkalinity, Total (as CaCO3) **APHA 2320B**

The Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. Total alkalinity is determined by titration with a strong standard mineral acid to the successive HCO3- and H2CO3 endpoints indicated electrometrically.

BOD-CBOD-WP Water Carbonaceous BOD **APHA 5210 B**

Samples are diluted and seeded, have TCMP added to inhibit nitrogenous demands, and then are incubated in airtight bottles at 20 C for 5 days. Dissolved oxygen is measured initially and after incubation, and results are computed from the difference between initial and final DO.

BOD-WP Water Biochemical Oxygen Demand (BOD) APHA 5210 B

Samples are diluted and seeded and then incubated in airtight bottles at 20 C for 5 days. Dissolved oxygen is measured initially and after incubation, and results are computed from the difference between initial and final DO.

BTFXS+F1-HSMS-WP Water BTX plus F1 by GCMS EPA 8260C / EPA 5021A

The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph.

Target compound concentrations are measured using mass spectrometry detection.

C-TOC-HTC-WP Total Organic Carbon by Combustion **APHA 5310 B-WP** Water

Sample is acidified and purged to remove inorganic carbon, then injected into a heated reaction chamber where organic carbon is oxidized to CO2 which is then transported in the carrier gas stream and measured via a non-dispersive infrared analyzer.

CL-IC-N-WP Water Chloride in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

Water Conductivity **APHA 2510B**

Conductivity of an aqueous solution refers to its ability to carry an electric current. Conductance of a solution is measured between two spatially fixed and chemically inert electrodes.

F1-F4-CALC-WP **CCME Total Hydrocarbons** CCME CWS-PHC, Pub #1310, Dec 2001-L

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH

Reference Information

L2495813 CONTD....
PAGE 11 of 12
Version: FINAL

Test Method References:

ALS Test Code Matrix Test Description Method Reference**

represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F2-F4-FID-WP Water CCME PHC F2-F4 in Water EPA 3511

Petroleum hydrocarbons in water are determined by liquid-liquid micro-scale solvent extraction using a reciprocal shaker extraction apparatus prior to capillary column gas chromatography with flame ionization detection (GC-FID) analysis.

FC10-QT97-WP Water Fecal coliforms, 1:10 dilution by QT97 APHA 9223B QT97

Analysis is carried out using procedures adapted from APHA 9223 "Enzyme Substrate Coliform Test". Fecal (thermotolerant) coliform bacteria are determined by mixing a 1:10 dilution of sample with a product containing hydrolyzable substrates and sealing in a 97-well packet. The packet is incubated at 44.5 +/- 0.2 degrees C for 18 hours and then the number of wells exhibiting positive responses are counted. The final results are obtained by comparing the number of positive responses to a probability table.

HARDNESS-CALC-WP Water Hardness Calculated APHA 2340B

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

HG-T-CVAA-WP Water Mercury Total EPA 1631E (mod)

Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

MET-T-CCMS-WP Water Total Metals in Water by CRC ICPMS EPA 200.2/6020B (mod.)

Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

NH3-COL-WP Water Ammonia by colour APHA 4500 NH3 F

Ammonia in water samples forms indophenol when reacted with hypochlorite and phenol. The intensity is amplified by the addition of sodium nitroprusside and measured colourmetrically.

NO2+NO3-CALC-WP Water Nitrate+Nitrite CALCULATION

NO2-IC-N-WP Water Nitrite in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

NO3-IC-N-WP Water Nitrate in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

OG-GRAV-WP Water Oil & Grease - Gravimetric EPA 1664 (modified)

Water samples are acidified and extracted with hexane; the hexane extract is collected in a pre-weighed vial. The solvent is evaporated and Total Oil & Grease is determined from the weight of the residue in the vial.

P-T-COL-WP Water Phosphorus, Total APHA 4500 P PHOSPHORUS-L

This analysis is carried out using procedures adapted from APHA METHOD 4500-P "Phosphorus". Total Phosphorus is determined colourmetrically after persulphate digestion of the sample.

PAH-CCME-PPM-WT Water CCME PAHs in mg/L EPA 3511/8270D (mod)

PAHs are extracted from water using a hexane micro-extraction technique, with analysis by GC/MS. Because the two isomers cannot be readily separated chromatographically, benzo(j)fluoranthene is reported as part of the benzo(b)fluoranthene parameter.

PH-WP Water pH APHA 4500H

The pH of a sample is the determination of the activity of the hydrogen ions by potentiometric measurement using a standard hydrogen electrode and a reference electrode.

PHENOLS-4AAP-WT Water Phenol (4AAP) EPA 9066

Reference Information

L2495813 CONTD....
PAGE 12 of 12
Version: FINAL

Test Method References:

ALS Test Code Matrix Test Description Method Reference**

An automated method is used to distill the sample. The distillate is then buffered to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a

red complex which is measured colorimetrically.

SO4-IC-N-WP Water Sulfate in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

SOLIDS-TOTSUS-WP Water Total Suspended Solids APHA 2540 D (modified)

Total suspended solids in aquesous matrices is determined gravimetrically after drying the residue at 103 105 C.

XYLENES-SUM-CALC-

Water

Sum of Xylene Isomer Concentrations

CALCULATED RESULT

Total xylenes represents the sum of o-xylene and m&p-xylene.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

WP ALS ENVIRONMENTAL - WINNIPEG, MANITOBA, CANADA WT ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA	Laboratory Definition Code	Laboratory Location
WT ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA	WP	ALS ENVIRONMENTAL - WINNIPEG, MANITOBA, CANADA
	WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

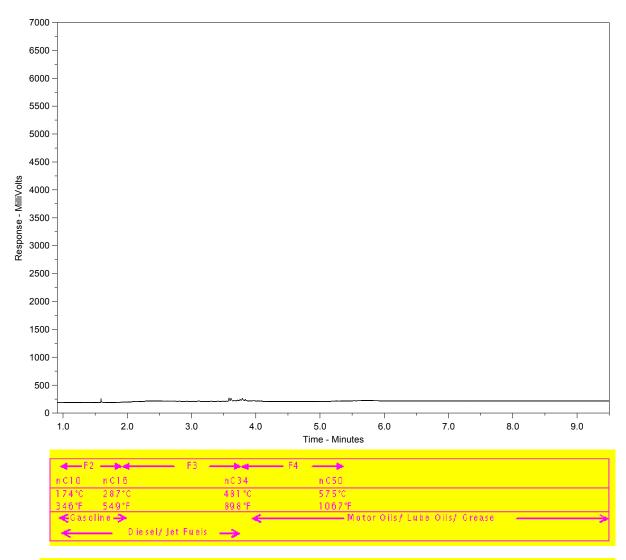
mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.


Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

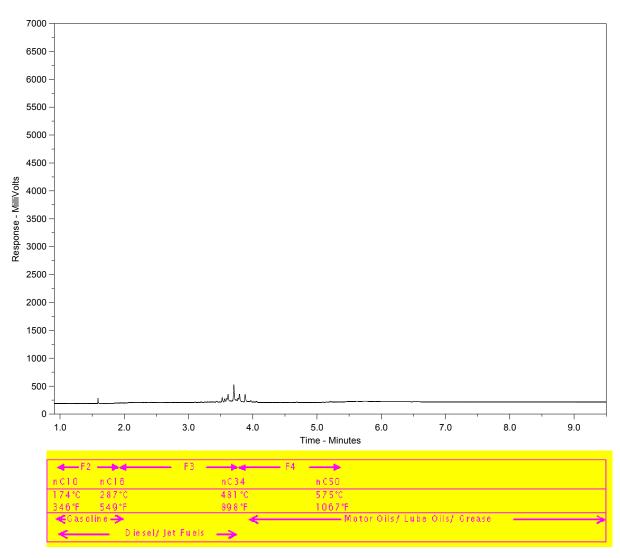
Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

ALS Sample ID: L2495813-1 Client Sample ID: COR 7

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at www.alsglobal.com.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

ALS Sample ID: L2495813-2 Client Sample ID: COR 6

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at www.alsglobal.com.

ALS Environmental

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

L2495813-COFC

COC Number: 17 - 673965

age

	www.aisglobal.com				<u> </u>																
Report To	Contact and company name below will appear			Report Format							jor	tact yo	ur AM to	o confir	m all E	&P TATS	(surch:	arges m	ау арр	ly)	
Company:	HAMLET OF Goral Ha	Chour	elect Report Fo	rmat: PDF	Ţ ŗ EXCEL ŢĒ	DD (DIGITAL)		Regula	r [R] 🗀	Sta	ndård TAT	if receive	ed by 3 pn	n · busin	iess days	- no surc	harges ap	ply			
Contact:	Leonic PAMSOLIK			QC) Report with Repo			ays)	4 day [P	4-20%]	. 🗆	EN C	1 B	usiness	day [F	E-100%	6]					
Phone:	867 425 8870		Compare Resu	lts to Criteria on Report - p			. ≅ €	3 day [P:	-		WERG		e Day, \						200%		
	Company address below will appear on the final		elect Distributio	n: EMAIL	MAIL [FAX	l e	2 day [P2	2-50%]			(Lab	oratory	r openi	ing fee	s may	ıppiy)]				ᆜ
Street:	POBOX 36 Coral Har	hour !	mail 1 or Fax					Date and T	me Requi	red for al	E&P TAT	1.20	<u></u>			dd-mm	ni-yy hi	imm			
City/Province:	Neinovat		mail 2					that can not	be perform	ed accord	ing to the s	ervice lav	el selected	i, you witi	l be conta	acted.	·				
Postal Code:	X0C-0C0	E	mail 3 7	steem Foren	150 to H &	ging Com						A	nalysis	Reque	:st						_]
Invoice To	Same as Report To YES	NO		Invoice Dis	tribution		L		Indicate F	iltered (F)	, Preserve	d (P) or F	iltered an	d Preser	ved (F/P) below				details	
	Copy of Invoice with Report YES] NO [5	Select Invoice Di	stribution: 🗹 🗈	AAIL 🔲 MAIL 📗	FAX													ı		
Company:	Leonie PAMED	Ha boar	mail 1 or Fax										147	T				1		ovide further	
Contact:	Leonie PAMED	lik !	mail 2				1					١.		.							
	Project Information			il and Gas Required	l Fields (client u	se) (1.5.1)		1				2	417	, I	1			`l.,	İ	Š	
ALS Account#	/ Quote #:		FE/Cost Center:		PO#	<u> </u>	.			_		1		ادئنا		' ' ₁		` `		ă	
Job#:	<u> </u>	A	lajor/Minor Code:		Routing Code:	<u> </u>]			M	U	18	14			** *****	ייסו			988	SSS
PO/AFE:		F	Requisitioner:]	1		5	J (1/ 1	ا، لہ	7		· · >	- J		ا ۾ ا	<u> </u>	Ž
LSD:		Į	ocation:					- K	0),	V	70	1 9	' `]	41	ا ا	•		. 31,	ногр	ᅙ	N
35 87 X 25 37 X 25 3				0 (11	/	2	12	₩. ~		8	, (4 4	∤.^\		T				NO	928	ŭ
ALS Lab Wo	rk Order # (lab use only);		LS Contact:	Kiddell	Sampler:	asey	300	20 2	5 2	ato	9 7	\$ \	$ \omega $	<i>'</i>	4				ES	<u>s</u>	8
ALS Sample #	Sample Identification			Date	Time	Sample Type	1 '~-'	Rose		3	2 6	<u>"</u>	12	Tr.	(Jref				SAMPL	Sample	NUMBER OF CONTAINERS
(lab use only)	(This description will a	appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type			<u> </u>	7	7 7	<u> </u>	1 1	\Box			$oldsymbol{oldsymbol{\perp}}$		SA	Sar	₹
CorT				26/08/20										ı l							
0.0%				U								1									
7				1.0											\neg						\neg
2013				1/		-		-			\dashv	+	+		\dashv	-	+				
Co-7 7	·			 - ``		-	├		 		-	+	+		-+		+	 	\vdash		\dashv
(0/2				11		ļ	-		+			+	+		\dashv		+	╁┈	-	\dashv	_
							└								\rightarrow		——	 -	ļ		
17.30%	<u></u>																				
100 m																					
								-						\Box							
													\top								
			_	 			1 1	_	 - -			+	+	\Box	_		+	1			
		<u> </u>				 	\vdash		+-		-	+-	+	\vdash	-		+				-
	<u> </u>			<u> </u>	<u> </u>		1		1	SAI	MPLE CO	OMBITI		RECE	IVED (lah usa	only):	e jarret			
Drinkir	ng Water (DW) Samples¹ (client use)	Special Instructions / S		add on report by clic! ctronic COC only)	king oπ the drop-C	lown list below	Froze	1000	ं ज	/ SAI			vations		Yes	, L	Only)	No	300		
L.	en from a Regulated DW System?	4			b 1		Ice Pa			uhes	☐ Cui	the state of the state of	 *** 1.56 (1.3%) 	10.0	Yes			No		<u> </u>	1
	YES NO	Number t- n	1 W - C- A	(b 1 + - m	,		1000	ig Initiated			Ц 👊	atouy a	SOI IIIIEN							\$ 7	∎°s Se
	human consumption/ use?							INIITارم	<u> </u>	ER TEMP	ERATURE	s°c			<u>2000 € 2</u> 38899 F	INAL CO	OLER TEI	MPERATI	JRES °C		
	YES NO							3		PS and	3/11/2		130					7 <u>2</u> 3 4		\$40 B	7.7
	SHIPMENT RELEASE (client use)			INITIAL SHIPMEN	T RECEPTION (ab use only)				n de seus de la companya de la comp La companya de la co	FIN	IAL SH	IPMEN	TREC	EPTIO	N (lab i	ise onl	y)			200 A
Released by:	Date:	Time:	Received by:				Time:	Re	ceived t	y:			Date						Time:	4.5	
Cades	Janes Aughtel	20 1140	<u> </u>	M	Date: 28	110A	Time:	<u> </u>		19.0				0 3							
REFER TO BACK	PAGE FOR ALS LOCATIONS AND SAMPLING IN			WHI	TE - LABORATOR	COPY VELLO	W - CLIE	NT COPY												JULY 201	17 FRONT

Hamlet of Coral Harbour

ATTN: LEONIE PAMEOLIK (Waste Water)

PO Box 30

Coral Harbour MB X0C 0C0

Date Received: 15-SEP-20

Report Date: 24-SEP-20 13:28 (MT)

Version: FINAL

Client Phone: 867-925-8970

Certificate of Analysis

Lab Work Order #: L2503221
Project P.O. #: NOT SUBMITTED

Job Reference: CORAL HARBOUR - WASTE WATER (10-SEP-20)

C of C Numbers: Legal Site Desc:

Hua Wo

Chemistry Laboratory Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721

ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2503221 CONTD.... PAGE 2 of 13 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2503221-1 COR-3							
Sampled By: CLIENT on 10-SEP-20 @ 13:56							
Matrix: EFFLUENT							
Total and E. coli, 1:10 dilution by QT97							
Total Coliforms	>24200	PEHR	10	MPN/100mL		15-SEP-20	R5224776
Escherichia Coli	>24200	PEHR	10	MPN/100mL		15-SEP-20	R5224776
Nunavut WW Group 1 Alkalinity, Bicarbonate							
Bicarbonate (HCO3)	364		1.2	mg/L		17-SEP-20	
Alkalinity, Carbonate							
Carbonate (CO3)	<0.60		0.60	mg/L		17-SEP-20	
Alkalinity, Hydroxide	10.04		0.04			47.050.00	
Hydroxide (OH)	<0.34		0.34	mg/L		17-SEP-20	
Alkalinity, Total (as CaCO3) Alkalinity, Total (as CaCO3)	298		1.0	mg/L		16-SEP-20	R5225679
Ammonia by colour							
Ammonia, Total (as N)	33.3		1.0	mg/L		16-SEP-20	R5227317
Biochemical Oxygen Demand (BOD)							
Biochemical Oxygen Demand	40		20	mg/L		16-SEP-20	R5232007
Carbonaceous BOD BOD Carbonaceous	35.2		6.0	mg/L		16-SEP-20	R5232007
Chloride in Water by IC	33.2		0.0	IIIg/L		10-021 -20	13232007
Chloride (CI)	62.6		1.0	mg/L		16-SEP-20	R5230882
Conductivity							
Conductivity	799		1.0	umhos/cm		16-SEP-20	R5225679
Fecal coliforms, 1:10 dilution by QT97		DELID		1 4 D 1 / 4 0 0 1		45.050.00	D=00.4=00
Fecal Coliforms Hardness Calculated	>24200	PEHR	10	MPN/100mL		15-SEP-20	R5224789
Hardness (as CaCO3)	142	нтс	0.20	mg/L		21-SEP-20	
Mercury Total			0.20	3. =			
Mercury (Hg)-Total	<0.0000050		0.0000050	mg/L	21-SEP-20	21-SEP-20	R5231723
Nitrate in Water by IC							
Nitrate (as N)	0.436		0.040	mg/L		16-SEP-20	R5230882
Nitrate+Nitrite Nitrate and Nitrite as N	0.535		0.070	mg/L		21-SEP-20	
Nitrite in Water by IC	0.555		0.070	1119/2		2101-20	
Nitrite (as N)	0.099		0.020	mg/L		16-SEP-20	R5230882
Oil & Grease - Gravimetric							
Oil and Grease	<5.0		5.0	mg/L		24-SEP-20	R5234180
Phenol (4AAP)	<0.0050	DLM	0.0050	ma/l		18-SEP-20	D5220000
Phenols (4AAP) Phosphorus, Total	<0.0050	DLIVI	0.0050	mg/L		10-357-20	R5229080
Phosphorus (P)-Total	7.68		0.030	mg/L		18-SEP-20	R5229452
Sulfate in Water by IC							
Sulfate (SO4)	16.0		0.60	mg/L		16-SEP-20	R5230882
Total Metals in Water by CRC ICPMS	2.27		0.0055		40.055.00	40.055.05	DE00165=
Aluminum (AI)-Total Arsenic (As)-Total	0.0713 0.00105		0.0030 0.00010	mg/L	18-SEP-20 18-SEP-20	18-SEP-20 18-SEP-20	R5231297
Cadmium (Cd)-Total	0.00105		0.00010	mg/L mg/L	18-SEP-20 18-SEP-20	18-SEP-20 18-SEP-20	R5231297 R5231297
Calcium (Ca)-Total	47.5		0.00000	mg/L	18-SEP-20	18-SEP-20	R5231297
Chromium (Cr)-Total	0.00066		0.00010	mg/L	18-SEP-20	18-SEP-20	R5231297
Cobalt (Co)-Total	0.00054		0.00010	mg/L	18-SEP-20	18-SEP-20	R5231297
Copper (Cu)-Total	0.0144		0.00050	mg/L	18-SEP-20	18-SEP-20	R5231297
Iron (Fe)-Total	0.542		0.010	mg/L	18-SEP-20	18-SEP-20	R5231297
Lead (Pb)-Total	0.000411		0.000050	mg/L	18-SEP-20	18-SEP-20	R5231297

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2503221 CONTD.... PAGE 3 of 13 Version: FINAL

L2503221-1	R5231297 R5231297 R5231297
Sampled By: CLIENT on 10-SEP-20 @ 13:56 Matrix: EFFLUENT Total Metals in Water by CRC ICPMS Magnesium (Mg)-Total	R5231297
Matrix: EFFLUENT 5.83 0.0050 mg/L 18-SEP-20	R5231297
Total Metals in Water by CRC ICPMS Magnesium (Mg)-Total S.83 0.0050 mg/L 18-SEP-20 18-SEP-20 Manganese (Mn)-Total 0.0079 0.00010 mg/L 18-SEP-20 18-SEP-20 Nickel (Ni)-Total 0.00242 0.00050 mg/L 18-SEP-20 18-SEP-20 Nickel (Ni)-Total 0.00242 0.00050 mg/L 18-SEP-20 18-SEP-20 Nickel (Ni)-Total 23.9 0.050 mg/L 18-SEP-20 Nickel (Ni)-Total 0.050 mg/L 18-SEP-20 Nickel (Ni)-Total 0.050 mg/L 18-SEP-20 Nickel (Ni)-Total 0.0218 0.0030 mg/L 18-SEP-20 Nickel (Ni)-Total 0.0218 0.0030 mg/L 18-SEP-20 Nickel (Ni)-Total Organic Carbon by Combustion 122 0.50 mg/L 18-SEP-20 Nickel (Ni)-Total Organic Carbon by Combustion 122 0.50 mg/L 18-SEP-20 Nickel (Ni)-Total Suspended Solids 171 3.0 mg/L 16-SEP-20 Nickel (Ni)-Total Suspended Solids 171 3.0 mg/L 16-SEP-20 Nickel (Ni)-Total (Nickel (Ni)-Total (Nickel (Ni)-Total (Nickel (Ni)-Total (Nickel (Ni)-Total (Nickel (Nic	R5231297
Magnesium (Mg)-Total 5.83 0.0050 mg/L 18-SEP-20 18-SEP-20 Manganese (Mn)-Total 0.0679 0.00010 mg/L 18-SEP-20 18-SEP-20 Nickel (Ni)-Total 0.00242 0.00050 mg/L 18-SEP-20 18-SEP-20 Potassium (K)-Total 23.9 0.050 mg/L 18-SEP-20 18-SEP-20 Sodium (Na)-Total 54.7 0.050 mg/L 18-SEP-20 18-SEP-20 Zinc (Zn)-Total 0.0218 0.0030 mg/L 18-SEP-20 18-SEP-20 Total Organic Carbon by Combustion 122 0.50 mg/L 18-SEP-20 18-SEP-20 Total Suspended Solids 171 3.0 mg/L 18-SEP-20 18-SEP-20 PH 7.82 0.10 pH units 16-SEP-20 Matrix: EFFLUENT 5170 PEHR 10 MPN/100mL 15-SEP-20 Nunavut WW Group 1 Alkalinity, Bicarbonate 11-2 mg/L 17-SEP-20 Alkalinity, Carbonate 40.60 0.60 mg/L 17-SEP-20	R5231297
Nickel (Ni)-Total	
Potassium (K)-Total 23.9 0.050 mg/L 18-SEP-20 18-SEP-20 Sodium (Na)-Total 54.7 0.050 mg/L 18-SEP-20 18-SEP-20 20.000 mg/L 18-SEP-20 18-SEP-20 20.000 mg/L 20.000 mg/L 20.000 20.000 mg/L 20.000 20.000 mg/L 20.000	R5231297
Sodium (Na)-Total 54.7 0.050 mg/L 18-SEP-20 18-SEP-20 20.0030 mg/L 18-SEP-20 18-SEP-20 20.0030 mg/L 20.0030 mg/L 20.0030 20.0030 mg/L 20.0030 20.003	
Zinc (Zn)-Total	R5231297 R5231297
Total Organic Carbon by Combustion Total Organic Carbon Total Organic Carbon Total Organic Carbon Total Suspended Solids Total Suspended Suspended Solids Total Suspended Solids Tot	R5231297
Total Suspended Solids 171 3.0 mg/L 16-SEP-20 pH pH 7.82 0.10 pH units 16-SEP-20 L2503221-2 COR-4 COR-4 CLIENT on 10-SEP-20 @ 14:05 Matrix: EFFLUENT FFLUENT FEHR 10 MPN/100mL 15-SEP-20 Escherichia Coli forms 5170 PEHR 10 MPN/100mL 15-SEP-20 Escherichia Coli 130 PEHR 10 MPN/100mL 15-SEP-20 Nunavut WW Group 1 Alkalinity, Bicarbonate 321 1.2 mg/L 17-SEP-20 Alkalinity, Carbonate Carbonate (CO3) <0.60	
Total Suspended Solids pH pH pH 7.82 7.82 0.10 pH units 16-SEP-20 16-SE	R5231578
PH	R5225848
PH	110223040
Sampled By: CLIENT on 10-SEP-20 @ 14:05 Matrix: EFFLUENT Total and E. coli, 1:10 dilution by QT97 Total Coliforms 5170 PEHR 10 MPN/100mL 15-SEP-20 Escherichia Coli 130 PEHR 10 MPN/100mL 15-SEP-20 Nunavut WW Group 1 Alkalinity, Bicarbonate 321 1.2 mg/L 17-SEP-20 Alkalinity, Carbonate Carbonate (CO3) <0.60	R5225679
Matrix: EFFLUENT 5170 PEHR 10 MPN/100mL 15-SEP-20 Total Coliforms 130 PEHR 10 MPN/100mL 15-SEP-20 Escherichia Coli 130 PEHR 10 MPN/100mL 15-SEP-20 Nunavut WW Group 1 4 MPN/100mL 15-SEP-20 Alkalinity, Bicarbonate 321 1.2 mg/L 17-SEP-20 Alkalinity, Carbonate Carbonate (CO3) <0.60	
Total and E. coli, 1:10 dilution by QT97 5170 PEHR 10 MPN/100mL 15-SEP-20 Escherichia Coli 130 PEHR 10 MPN/100mL 15-SEP-20 Nunavut WW Group 1 Alkalinity, Bicarbonate 321 1.2 mg/L 17-SEP-20 Alkalinity, Carbonate Carbonate (CO3) <0.60	
Total Coliforms 5170 PEHR 10 MPN/100mL 15-SEP-20 Escherichia Coli 130 PEHR 10 MPN/100mL 15-SEP-20 Nunavut WW Group 1 MRN/100mL 15-SEP-20 Alkalinity, Bicarbonate Bicarbonate (HCO3) 321 1.2 mg/L 17-SEP-20 Alkalinity, Carbonate (CO3) <0.60	
Total Coliforms 5170 PEHR 10 MPN/100mL 15-SEP-20 Escherichia Coli 130 PEHR 10 MPN/100mL 15-SEP-20 Nunavut WW Group 1 MRN/100mL 15-SEP-20 Alkalinity, Bicarbonate Bicarbonate (HCO3) 321 1.2 mg/L 17-SEP-20 Alkalinity, Carbonate (CO3) <0.60	
Nunavut WW Group 1 Image: Control of the	R5224776
Alkalinity, Bicarbonate 321 1.2 mg/L 17-SEP-20 Alkalinity, Carbonate Carbonate (CO3) <0.60 mg/L 17-SEP-20	R5224776
Bicarbonate (HCO3) 321 1.2 mg/L 17-SEP-20 Alkalinity, Carbonate (CO3) <0.60	
Carbonate (CO3) <0.60 0.60 mg/L 17-SEP-20	
Alkalinity, Hydroxide	
Hydroxide (OH) <0.34 mg/L 17-SEP-20	
Alkalinity, Total (as CaCO3) 263 1.0 mg/L 16-SEP-20	R5225679
Ammonia by colour 0.67 0.10 mg/L 16-SEP-20	R5227317
Biochemical Oxygen Demand (BOD) Biochemical Oxygen Demand 14.4 6.0 mg/L 16-SEP-20	R5232007
Carbonaceous BOD18.46.0mg/L16-SEP-20	R5232007
Chloride in Water by IC 90.7 1.0 mg/L 16-SEP-20	R5230882
Conductivity8221.0umhos/cm16-SEP-20	R5225679
Fecal coliforms, 1:10 dilution by QT97 Fecal Coliforms 150 PEHR 10 MPN/100mL 15-SEP-20	R5224789
Hardness Calculated 292 HTC 0.20 mg/L 18-SEP-20	
Mercury Total 0.0000050 mg/L 21-SEP-20 21-SEP-20	R5231723
Nitrate in Water by IC 3.72 0.040 mg/L 16-SEP-20	R5230882
Nitrate+Nitrite 3.81 0.070 mg/L 21-SEP-20	
Nitrite in Water by IC 0.093 0.020 mg/L 16-SEP-20	1
Oil & Grease - Gravimetric <5.0 5.0 mg/L 24-SEP-20	R5230882

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2503221 CONTD.... PAGE 4 of 13 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	* D.L.	Units	Extracted	Analyzed	Batch
L2503221-2 COR-4							
Sampled By: CLIENT on 10-SEP-20 @ 14:05							
Matrix: EFFLUENT							
Phenol (4AAP)							
Phenols (4AAP)	0.0011		0.0010	mg/L		18-SEP-20	R5229080
Phosphorus, Total							
Phosphorus (P)-Total	0.274		0.0030	mg/L		18-SEP-20	R5229452
Sulfate in Water by IC	07.4		0.00			40 CED 20	D500000
Sulfate (SO4)	37.1		0.60	mg/L		16-SEP-20	R5230882
Total Metals in Water by CRC ICPMS Aluminum (AI)-Total	0.0413		0.0030	mg/L	17-SEP-20	17-SEP-20	R5228537
Arsenic (As)-Total	0.00108		0.00010	mg/L	17-SEP-20	17-SEP-20	R5228537
Cadmium (Cd)-Total	0.0000634		0.0000050	_	17-SEP-20	17-SEP-20	R5228537
Calcium (Ca)-Total	100		0.050	mg/L	17-SEP-20	17-SEP-20	R5228537
Chromium (Cr)-Total	0.00064		0.00010	mg/L	17-SEP-20	17-SEP-20	R5228537
Cobalt (Co)-Total	0.00139		0.00010	mg/L	17-SEP-20	17-SEP-20	R5228537
Copper (Cu)-Total	0.00590		0.00050	mg/L	17-SEP-20	17-SEP-20	R5228537
Iron (Fe)-Total	0.459		0.010	mg/L	17-SEP-20	17-SEP-20	R5228537
Lead (Pb)-Total Magnesium (Mg)-Total	0.000089 10.0		0.000050 0.0050	mg/L	17-SEP-20 17-SEP-20	17-SEP-20 17-SEP-20	R5228537 R5228537
Manganese (Mn)-Total	0.0725		0.0050	mg/L mg/L	17-SEP-20 17-SEP-20	17-SEP-20 17-SEP-20	R5228537
Nickel (Ni)-Total	0.00556		0.00010	mg/L	17-SEP-20	17-SEP-20	R5228537
Potassium (K)-Total	11.6		0.050	mg/L	17-SEP-20	17-SEP-20	R5228537
Sodium (Na)-Total	64.2		0.050	mg/L	17-SEP-20	17-SEP-20	R5228537
Zinc (Zn)-Total	0.0069		0.0030	mg/L	17-SEP-20	17-SEP-20	R5228537
Total Organic Carbon by Combustion							
Total Organic Carbon	14.6		0.50	mg/L		21-SEP-20	R5232337
Total Suspended Solids						40.055.00	D=00=040
Total Suspended Solids	23.4		3.0	mg/L		16-SEP-20	R5225848
pH pH	7.66		0.10	pH units		16-SEP-20	R5225679
L2503221-3 COR-5			00	p			1102200.0
Sampled By: CLIENT on 10-SEP-20 @ 14:16							
Matrix: EFFLUENT							
Wattix. Li i LOLINI							
Total and E. coli, 1:10 dilution by QT97							
Total Coliforms	100	PEHR	10	MPN/100mL		15-SEP-20	R5224776
Escherichia Coli	10	PEHR	10	MPN/100mL		15-SEP-20	R5224776
Nunavut WW Group 1							
Alkalinity, Bicarbonate	206		10	ma/l		17 SED 20	
Bicarbonate (HCO3) Alkalinity, Carbonate	206		1.2	mg/L		17-SEP-20	
Carbonate (CO3)	<0.60		0.60	mg/L		17-SEP-20	
Alkalinity, Hydroxide						5 25	
Hydroxide (OH)	<0.34		0.34	mg/L		17-SEP-20	
Alkalinity, Total (as CaCO3)							
Alkalinity, Total (as CaCO3)	169		1.0	mg/L		16-SEP-20	R5225679
Ammonia by colour	0.040		0.040	ma/l		16 CED 20	DE007047
Ammonia, Total (as N) Biochemical Oxygen Demand (BOD)	0.048		0.010	mg/L		16-SEP-20	R5227317
Biochemical Oxygen Demand (BOD) Biochemical Oxygen Demand	<2.0		2.0	mg/L		16-SEP-20	R5232007
Carbonaceous BOD							
BOD Carbonaceous	<2.0		2.0	mg/L		16-SEP-20	R5232007
Chloride in Water by IC							
Chloride (CI)	59.0		0.50	mg/L		16-SEP-20	R5230882
Conductivity							

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2503221 CONTD.... PAGE 5 of 13 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch	
L2503221-3 COR-5								
Sampled By: CLIENT on 10-SEP-20 @ 14:16								
Matrix: EFFLUENT								
Conductivity								
Conductivity	591		1.0	umhos/cm		16-SEP-20	R5225679	
Fecal coliforms, 1:10 dilution by QT97								
Fecal Coliforms	10	PEHR	10	MPN/100mL		15-SEP-20	R5224789	
Hardness Calculated	405	LITO	0.00	/1		40 CED 20		
Hardness (as CaCO3) Mercury Total	195	HTC	0.20	mg/L		18-SEP-20		
Mercury (Hg)-Total	<0.000050		0.0000050	mg/L	21-SEP-20	21-SEP-20	R5231723	
Nitrate in Water by IC								
Nitrate (as N)	<0.020		0.020	mg/L		16-SEP-20	R5230882	
Nitrate+Nitrite	<u> </u>		0.0==			04.055.55		
Nitrate and Nitrite as N	<0.070		0.070	mg/L		21-SEP-20		
Nitrite in Water by IC Nitrite (as N)	<0.010		0.010	mg/L		16-SEP-20	R5230882	
Oil & Grease - Gravimetric	٧٠.٥١٥		3.010	1119/2		10 OLI -20	. 10200002	
Oil and Grease	<5.0	RRR	5.0	mg/L		24-SEP-20	R5234919	
Note: RRR: OGG decanted from 500 mL								
bottle. Phenol (4AAP)								
Phenol (4AAP) Phenols (4AAP)	<0.0010		0.0010	mg/L		18-SEP-20	R5231444	
Phosphorus, Total	0.0010							
Phosphorus (P)-Total	0.0294		0.0030	mg/L		18-SEP-20	R5229452	
Sulfate in Water by IC								
Sulfate (SO4)	67.3		0.30	mg/L		16-SEP-20	R5230882	
Total Metals in Water by CRC ICPMS Aluminum (AI)-Total	0.0039		0.0030	mg/L	17-SEP-20	17-SEP-20	R5228537	
Arsenic (As)-Total	0.00061		0.0000	mg/L	17-SEP-20	17-SEP-20	R5228537	
Cadmium (Cd)-Total	<0.000050		0.0000050	mg/L	17-SEP-20	17-SEP-20	R5228537	
Calcium (Ca)-Total	59.9		0.050	mg/L	17-SEP-20	17-SEP-20	R5228537	
Chromium (Cr)-Total	0.00023		0.00010	mg/L	17-SEP-20	17-SEP-20	R5228537	
Cobalt (Co)-Total	0.00024		0.00010	mg/L	17-SEP-20	17-SEP-20	R5228537	
Copper (Cu)-Total	0.00075		0.00050	mg/L	17-SEP-20	17-SEP-20	R5228537	
Iron (Fe)-Total Lead (Pb)-Total	0.107 <0.000050		0.010 0.000050	mg/L mg/L	17-SEP-20 17-SEP-20	17-SEP-20 17-SEP-20	R5228537 R5228537	
Magnesium (Mg)-Total	10.9		0.000050	mg/L	17-SEP-20 17-SEP-20	17-SEP-20 17-SEP-20	R5228537	
Manganese (Mn)-Total	0.00846		0.0000	mg/L	17-SEP-20	17-SEP-20	R5228537	
Nickel (Ni)-Total	0.00189		0.00050	mg/L	17-SEP-20	17-SEP-20	R5228537	
Potassium (K)-Total	9.45		0.050	mg/L	17-SEP-20	17-SEP-20	R5228537	
Sodium (Na)-Total	48.3		0.050	mg/L	17-SEP-20	17-SEP-20	R5228537	
Zinc (Zn)-Total	<0.0030		0.0030	mg/L	17-SEP-20	17-SEP-20	R5228537	
Total Organic Carbon by Combustion Total Organic Carbon	17.4		0.50	mg/L		18-SEP-20	R5231578	
Total Suspended Solids								
Total Suspended Solids	<3.0		3.0	mg/L		16-SEP-20	R5225848	
pH	_							
рН			0.10	pH units		16-SEP-20	R5225679	
L2503221-4 COR-6								
Sampled By: CLIENT on 10-SEP-20 @ 13:46								
Matrix: EFFLUENT BTEX plus F1-F4								
BTX plus F1-F4 BTX plus F1 by GCMS								
Benzene	<0.00050		0.00050	mg/L		18-SEP-20	R5229336	
Toluene	<0.0010		0.0010	mg/L		18-SEP-20	R5229336	

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2503221 CONTD.... PAGE 6 of 13 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L. Units		Extracted	Analyzed	Batch		
L2503221-4 COR-6									
Matrix: EFFLUENT									
BTX plus F1 by GCMS Ethyl benzene	-0.00050		0.00050	m a/l		10 CED 20	DECOCOCO		
o-Xylene	<0.00050 <0.00050		0.00050 0.00050	mg/L mg/L		18-SEP-20 18-SEP-20	R5229336 R5229336		
m+p-Xylenes	<0.00030		0.00030	mg/L		18-SEP-20	R5229336		
F1 (C6-C10)	<0.10		0.00040	mg/L		18-SEP-20	R5229336		
Surrogate: 4-Bromofluorobenzene (SS)	86.4		70-130	%		18-SEP-20	R5229336		
CCME PHC F2-F4 in Water	33.1		70 100	, ,		.002. 20	110220000		
F2 (C10-C16)	<0.10		0.10	mg/L	17-SEP-20	17-SEP-20	R5228457		
F3 (C16-C34)	<0.25		0.25	mg/L	17-SEP-20	17-SEP-20	R5228457		
F4 (C34-C50)	<0.25		0.25	mg/L	17-SEP-20	17-SEP-20	R5228457		
Surrogate: 2-Bromobenzotrifluoride	97.8		60-140	%	17-SEP-20	17-SEP-20	R5228457		
CCME Total Hydrocarbons									
F1-BTEX	<0.10		0.10	mg/L		22-SEP-20			
F2-Naphth	<0.10		0.10	mg/L		22-SEP-20			
F3-PAH	<0.25		0.25	mg/L		22-SEP-20			
Total Hydrocarbons (C6-C50)	<0.38		0.38	mg/L		22-SEP-20			
Sum of Xylene Isomer Concentrations	<0.00064		0.00004	mc/l		18-SEP-20			
Xylenes (Total)	<0.00064		0.00064	mg/L		10-SEP-20			
Total and E. coli. 1:10 dilution by OT07									
Total and E. coli, 1:10 dilution by QT97 Total Coliforms	800	PEHR	10	MPN/100mL		15-SEP-20	R5224776		
Escherichia Coli	<10	PEHR	10	MPN/100mL		15-SEP-20	R5224776		
CCME PAHs in mg/L							110221110		
1-Methyl Naphthalene	<0.000020		0.000020	mg/L	17-SEP-20	22-SEP-20	R5232400		
2-Methyl Naphthalene	<0.000020		0.000020	mg/L	17-SEP-20	22-SEP-20	R5232400		
Acenaphthene	<0.000020		0.000020	mg/L	17-SEP-20	22-SEP-20	R5232400		
Acenaphthylene	<0.000020		0.000020	mg/L	17-SEP-20	22-SEP-20	R5232400		
Anthracene	<0.000010		0.000010	mg/L	17-SEP-20	22-SEP-20	R5232400		
Acridine	0.000025		0.000020	mg/L	17-SEP-20	22-SEP-20	R5232400		
Benzo(a)anthracene	<0.000010		0.000010	mg/L	17-SEP-20	22-SEP-20	R5232400		
Benzo(a)pyrene	<0.0000050		0.0000050	mg/L	17-SEP-20	22-SEP-20	R5232400		
Benzo(b&j)fluoranthene	<0.000010		0.000010	mg/L	17-SEP-20	22-SEP-20	R5232400		
Benzo(g,h,i)perylene	<0.000020		0.000020	mg/L	17-SEP-20	22-SEP-20	R5232400		
Benzo(k)fluoranthene	<0.000010		0.000010	mg/L	17-SEP-20	22-SEP-20	R5232400		
Chrysene	<0.000020		0.000020	mg/L	17-SEP-20 17-SEP-20	22-SEP-20 22-SEP-20	R5232400		
Dibenzo(a,h)anthracene Fluoranthene	<0.0000050 <0.000020		0.0000050 0.000020	mg/L mg/L	17-SEP-20 17-SEP-20	22-SEP-20 22-SEP-20	R5232400 R5232400		
Fluorene	<0.000020		0.000020	mg/L	17-SEP-20 17-SEP-20	22-SEP-20 22-SEP-20	R5232400 R5232400		
Indeno(1,2,3-cd)pyrene	<0.000020		0.000020	mg/L	17-SEP-20	22-SEP-20	R5232400		
Naphthalene	<0.000010		0.000010	mg/L	17-SEP-20	22-SEP-20	R5232400		
Phenanthrene	<0.000050		0.000050	mg/L	17-SEP-20	22-SEP-20	R5232400		
Pyrene	<0.000010		0.000010	mg/L	17-SEP-20	22-SEP-20	R5232400		
Quinoline	0.000025		0.000020	mg/L	17-SEP-20	22-SEP-20	R5232400		
B(a)P Total Potency Equivalent	<0.000030		0.000030	mg/L	17-SEP-20	22-SEP-20	R5232400		
Surrogate: d8-Naphthalene	110.5		50-150	%	17-SEP-20	22-SEP-20	R5232400		
Surrogate: d10-Phenanthrene	103.6		50-150	%	17-SEP-20	22-SEP-20	R5232400		
Surrogate: d12-Chrysene	102.9		50-150	%	17-SEP-20	22-SEP-20	R5232400		
Surrogate: d10-Acenaphthene	95.8		50-150	%	17-SEP-20	22-SEP-20	R5232400		
Surrogate: d9-Acridine (SS)	98.0		50-150	%	17-SEP-20	22-SEP-20	R5232400		
Nunavut WW Group 1									
Alkalinity, Bicarbonate Bicarbonate (HCO3)	394		1.2	mg/L		17-SEP-20			
Alkalinity, Carbonate									

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2503221 CONTD.... PAGE 7 of 13 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L0500004 4 COD C							
L2503221-4 COR-6							
Sampled By: CLIENT on 10-SEP-20 @ 13:46							
Matrix: EFFLUENT							
Alkalinity, Carbonate Carbonate (CO3)	<0.60		0.60	mg/L		17-SEP-20	
Alkalinity, Hydroxide Hydroxide (OH)	<0.34		0.34	mg/L		17-SEP-20	
Alkalinity, Total (as CaCO3) Alkalinity, Total (as CaCO3)	323		1.0	mg/L		16-SEP-20	R5225679
Ammonia by colour Ammonia, Total (as N)	1.40		0.10	mg/L		16-SEP-20	R5227317
Biochemical Oxygen Demand (BOD) Biochemical Oxygen Demand	9.1		2.0	mg/L		16-SEP-20	R5232007
Carbonaceous BOD BOD Carbonaceous	6.4		2.0			16-SEP-20	
Chloride in Water by IC				mg/L			R5232007
Chloride (CI) Conductivity	60.9		0.50	mg/L		16-SEP-20	R5230882
Conductivity	753		1.0	umhos/cm		16-SEP-20	R5225679
Fecal coliforms, 1:10 dilution by QT97 Fecal Coliforms	20	PEHR	10	MPN/100mL		15-SEP-20	R5224789
Hardness Calculated Hardness (as CaCO3)	299	нтс	0.20	mg/L		18-SEP-20	
Mercury Total Mercury (Hg)-Total	<0.000050		0.0000050	mg/L	21-SEP-20	21-SEP-20	R5231723
Nitrate in Water by IC Nitrate (as N)	0.151		0.020	mg/L		16-SEP-20	R5230882
Nitrate+Nitrite Nitrate and Nitrite as N	0.151		0.070	mg/L		21-SEP-20	
Nitrite in Water by IC Nitrite (as N)	<0.010		0.010	mg/L		16-SEP-20	R5230882
Oil & Grease - Gravimetric Oil and Grease	620		5.0	mg/L		24-SEP-20	R5234180
Phenol (4AAP) Phenols (4AAP)	0.0069		0.0010	mg/L		18-SEP-20	R5231444
Phosphorus, Total							
Phosphorus (P)-Total Sulfate in Water by IC	0.304		0.0030	mg/L		18-SEP-20	R5229452
Sulfate (SO4)	26.1		0.30	mg/L		16-SEP-20	R5230882
Total Metals in Water by CRC ICPMS							
Aluminum (AI)-Total	0.0465		0.0030	mg/L	17-SEP-20	17-SEP-20	R5228537
Arsenic (As)-Total	0.00220		0.00010	mg/L	17-SEP-20	17-SEP-20	R5228537
Cadmium (Cd)-Total	<0.000050		0.0000050	mg/L	17-SEP-20	17-SEP-20	R5228537
Calcium (Ca)-Total	84.8		0.050	mg/L	17-SEP-20	17-SEP-20	R5228537
Chromium (Cr)-Total	0.00084		0.00010	mg/L	17-SEP-20	17-SEP-20	R5228537
Cobalt (Co)-Total	0.00023		0.00010	mg/L	17-SEP-20	17-SEP-20	R5228537
Copper (Cu)-Total	0.00108		0.00050	mg/L	17-SEP-20	17-SEP-20	R5228537
Iron (Fe)-Total	0.670		0.010	mg/L	17-SEP-20	17-SEP-20	R5228537
Lead (Pb)-Total	0.000191		0.000050	mg/L	17-SEP-20	17-SEP-20	R5228537
Magnesium (Mg)-Total	21.1		0.0050	mg/L	17-SEP-20	17-SEP-20	R5228537
Manganese (Mn)-Total	0.0739		0.00010	mg/L	17-SEP-20	17-SEP-20	R5228537
Nickel (Ni)-Total	0.00205		0.00050	mg/L	17-SEP-20	17-SEP-20	R5228537
Potassium (K)-Total	26.6		0.050	mg/L	17-SEP-20	17-SEP-20	R5228537
Sodium (Na)-Total	49.4		0.050	mg/L	17-SEP-20	17-SEP-20	R5228537
Zinc (Zn)-Total	0.0076		0.0030	mg/L	17-SEP-20	17-SEP-20	R5228537
Total Organic Carbon by Combustion							

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2503221 CONTD.... PAGE 8 of 13 Version: FINAL

Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
32.9		0.50	mg/L		18-SEP-20	R5231578
31.4		3.0	mg/L		16-SEP-20	R5225848
8.17		0.10	pH units		16-SEP-20	R5225679
<0.00050			-			R5229336
			-			R5229336
			-			R5229336
			-			R5229336
			-			R5229336
			-			R5229336
86.0		70-130	%		18-SEP-20	R5229336
~ 0.10		0.10	ma/l	17 SED 20	17 SED 20	R5228457
						R5228457
						R5228457
						R5228457
55.4		00-140	70	17 OLI 20	17 021 20	110220407
<0.10		0.10	mg/L		22-SEP-20	
<0.10		0.10	"		22-SEP-20	
<0.25		0.25	_		22-SEP-20	
<0.38		0.38	mg/L		22-SEP-20	
<0.00064		0.00064	mg/L		18-SEP-20	
<10	PEHR	10	MPN/100mL		15-SEP-20	R5224776
<10	PEHR	10	MPN/100mL		15-SEP-20	R5224776
<0.000020		0.000020	mg/L	17-SEP-20	22-SEP-20	R5232400
<0.000020		0.000020				R5232400
						R5232400
<0.000020			-			R5232400
						R5232400
						R5232400
						R5232400
			- 1			R5232400
			-			R5232400
						R5232400
			- 1			R5232400
<0.000020 <0.0000050		0.000020	mg/L mg/L	17-SEP-20 17-SEP-20	22-SEP-20 22-SEP-20	R5232400 R5232400
~U.UUUUU3U	1			17-SEP-20 17-SEP-20	22-SEP-20 22-SEP-20	R5232400 R5232400
<0.000000		() ()(nnnoon	ma/i			
<0.000020 <0.000020		0.000020	mg/L mg/l			
<0.000020 <0.000020 <0.000010		0.000020 0.000020 0.000010	mg/L mg/L mg/L	17-SEP-20 17-SEP-20	22-SEP-20 22-SEP-20	R5232400 R5232400
	32.9 31.4 8.17 <0.00050 <0.0010 <0.00050 <0.00050 <0.00050 <0.00040 <0.10 86.0 <0.10 <0.25 <0.25 99.4 <0.10 <0.25 <0.38 <0.00064 <10 <10 <0.00020 <0.000020 <0.000020 <0.000020 <0.000020	32.9 31.4 8.17 <0.00050 <0.0010 <0.00050 <0.00050 <0.00040 <0.10 86.0 <0.10 <0.25 <0.25 99.4 <0.10 <0.10 <0.25 <0.38 <0.0064 <10 PEHR PEHR <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000010 <0.000050 <0.000010 <0.000050 <0.000010 <0.000020 <0.000010 <0.000020 <0.000010 <0.000020 <0.000010	32.9 0.50 31.4 3.0 8.17 0.10 <0.00050 <0.00040 <0.00050 <0.00040 <0.10 <0.00064 <0.00064 <0.00064 <0.000020	32.9	32.9	32.9

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2503221 CONTD.... PAGE 9 of 13 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2503221-5 COR-7							
Sampled By: CLIENT on 10-SEP-20 @ 13:33							
Matrix: EFFLUENT							
CCME PAHs in mg/L							
Phenanthrene	<0.000050		0.000050	mg/L	17-SEP-20	22-SEP-20	R5232400
Pyrene	<0.000010		0.000010	mg/L	17-SEP-20	22-SEP-20	R5232400
Quinoline B(a)P Total Potency Equivalent	<0.000020 <0.000030		0.000020 0.000030	mg/L	17-SEP-20 17-SEP-20	22-SEP-20 22-SEP-20	R5232400 R5232400
Surrogate: d8-Naphthalene	92.7		50-150	mg/L %	17-SEP-20 17-SEP-20	22-SEP-20 22-SEP-20	R5232400 R5232400
Surrogate: d10-Phenanthrene	101.3		50-150	%	17-SEP-20	22-SEP-20	R5232400
Surrogate: d12-Chrysene	100.6		50-150	%	17-SEP-20	22-SEP-20	R5232400
Surrogate: d10-Acenaphthene	93.8		50-150	%	17-SEP-20	22-SEP-20	R5232400
Surrogate: d9-Acridine (SS)	95.8		50-150	%	17-SEP-20	22-SEP-20	R5232400
Nunavut WW Group 1							
Alkalinity, Bicarbonate Bicarbonate (HCO3)	189		1.2	mg/L		17-SEP-20	
Alkalinity, Carbonate							
Carbonate (CO3)	<0.60		0.60	mg/L		17-SEP-20	
Alkalinity, Hydroxide Hydroxide (OH)	<0.34		0.34	mg/L		17-SEP-20	
Alkalinity, Total (as CaCO3) Alkalinity, Total (as CaCO3)	155		1.0	mg/L		16-SEP-20	R5225679
Ammonia by colour Ammonia, Total (as N)	0.029		0.010	mg/L		16-SEP-20	R5227317
Biochemical Oxygen Demand (BOD) Biochemical Oxygen Demand	2.7		2.0	mg/L		16-SEP-20	R5232007
Carbonaceous BOD BOD Carbonaceous	<2.0		2.0	mg/L		16-SEP-20	R5232007
Chloride in Water by IC Chloride (CI)	10.0		1.0	mg/L		16-SEP-20	R5230882
Conductivity Conductivity	1020		1.0	umhos/cm		16-SEP-20	R5225679
Fecal coliforms, 1:10 dilution by QT97 Fecal Coliforms	10	PEHR		MPN/100mL		15-SEP-20	R5224789
Hardness Calculated Hardness (as CaCO3)	576	нтс	0.20	mg/L		18-SEP-20	
Mercury Total Mercury (Hg)-Total	<0.000050		0.0000050	mg/L	21-SEP-20	21-SEP-20	R5231723
Nitrate in Water by IC Nitrate (as N)	0.094		0.040	mg/L	21 021 20	16-SEP-20	R5230882
Nitrate+Nitrite Nitrate and Nitrite as N	0.094		0.070	mg/L		21-SEP-20	1.020002
Nitrite in Water by IC Nitrite (as N)	<0.020	DLM	0.020	mg/L		16-SEP-20	R5230882
Oil & Grease - Gravimetric Oil and Grease	<5.0	22.111	5.0	mg/L		24-SEP-20	R5234180
Phenol (4AAP)							
Phenols (4AAP) Phosphorus, Total Phosphorus (D) Total	<0.0010		0.0010	mg/L		18-SEP-20	R5231444
Phosphorus (P)-Total Sulfate in Water by IC	0.0638		0.0030	mg/L		18-SEP-20	R5229452
Sulfate (SO4)	441		0.60	mg/L		16-SEP-20	R5230882
Total Metals in Water by CRC ICPMS Aluminum (AI)-Total	0.0170		0.0030	mg/L	17-SEP-20	17-SEP-20	R5228537
Arsenic (As)-Total	0.00051		0.00010	mg/L	17-SEP-20	17-SEP-20	R5228537
Cadmium (Cd)-Total	0.0000288		0.0000050	mg/L	17-SEP-20	17-SEP-20	R5228537

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2503221 CONTD.... PAGE 10 of 13 Version: FINAL

ample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
2503221-5 COR-7							
ampled By: CLIENT on 10-SEP-20 @ 13:33							
atrix: EFFLUENT							
Total Metals in Water by CRC ICPMS							
Calcium (Ca)-Total	213		0.050	mg/L	17-SEP-20	17-SEP-20	R5228537
Chromium (Cr)-Total	0.00065		0.00010	mg/L	17-SEP-20	17-SEP-20	R5228537
Cobalt (Co)-Total	0.00034		0.00010	mg/L	17-SEP-20	17-SEP-20	R5228537
Copper (Cu)-Total	0.00230		0.00050	mg/L	17-SEP-20	17-SEP-20	R5228537
Iron (Fe)-Total	1.33		0.010	mg/L	17-SEP-20	17-SEP-20	R5228537
Lead (Pb)-Total	0.000455		0.000050	mg/L	17-SEP-20	17-SEP-20	R5228537
Magnesium (Mg)-Total	10.7		0.0050	mg/L	17-SEP-20	17-SEP-20	R5228537
Manganese (Mn)-Total	0.0842		0.00010	mg/L	17-SEP-20	17-SEP-20	R5228537
Nickel (Ni)-Total	0.00300		0.00050	mg/L	17-SEP-20	17-SEP-20	R5228537
Potassium (K)-Total	7.60		0.050	mg/L	17-SEP-20	17-SEP-20	R5228537
Sodium (Na)-Total	14.7		0.050	mg/L	17-SEP-20	17-SEP-20	R5228537
Zinc (Zn)-Total	0.0282		0.0030	mg/L	17-SEP-20	17-SEP-20	R5228537
Total Organic Carbon by Combustion Total Organic Carbon	17 1		0.50	ma/l		18-SEP-20	D5234570
Total Suspended Solids	17.1		0.50	mg/L		10-357-20	R5231578
Total Suspended Solids	11.0		3.0	mg/L		16-SEP-20	R5225848
pH pH	8.06		0.10	pH units		16-SEP-20	R5225679

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2503221 CONTD....

Reference Information

PAGE 11 of 13 Version: FINAL

Sample Parameter Qualifier Key:

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
HTC	Hardness was calculated from Total Ca and/or Mg concentrations and may be biased high (dissolved Ca/Mg results unavailable).
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
PEHR	Parameter Exceeded Recommended Holding Time On Receipt: Proceed With Analysis As Requested.
RRR	Refer to Report Remarks for issues regarding this analysis

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
ALK-CO3CO3-CALC-WP	Water	Alkalinity, Carbonate	CALCULATION

The Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. The fraction of alkalinity contributed by carbonate is calculated and reported as mg CO3 2-/L.

ALK-HCO3HCO3-CALC- Water Alkalinity, Bicarbonate CALCULATION

The Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. The fraction of alkalinity contributed by bicarbonate is calculated and reported as mg HCO3-/L

ALK-OHOH-CALC-WP Water Alkalinity, Hydroxide CALCULATION

The Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. The fraction of alkalinity contributed by hydroxide is calculated and reported as mg OH-/L.

ALK-TITR-WP Water Alkalinity, Total (as CaCO3) APHA 2320B

The Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. Total alkalinity is determined by titration with a strong standard mineral acid to the successive HCO3- and H2CO3 endpoints indicated electrometrically.

BOD-CBOD-WP Water Carbonaceous BOD APHA 5210 B

Samples are diluted and seeded, have TCMP added to inhibit nitrogenous demands, and then are incubated in airtight bottles at 20 C for 5 days. Dissolved oxygen is measured initially and after incubation, and results are computed from the difference between initial and final DO.

BOD-WP Water Biochemical Oxygen Demand (BOD) APHA 5210 B

Samples are diluted and seeded and then incubated in airtight bottles at 20 C for 5 days. Dissolved oxygen is measured initially and after incubation, and results are computed from the difference between initial and final DO.

BTEXS+F1-HSMS-WP Water BTX plus F1 by GCMS EPA 8260C / EPA 5021A

The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection.

C-TOC-HTC-WP Water Total Organic Carbon by Combustion APHA 5310 B-WP

Sample is acidified and purged to remove inorganic carbon, then injected into a heated reaction chamber where organic carbon is oxidized to CO2 which is then transported in the carrier gas stream and measured via a non-dispersive infrared analyzer.

CL-IC-N-WP Water Chloride in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

EC-WP Water Conductivity APHA 2510B

Conductivity of an aqueous solution refers to its ability to carry an electric current. Conductance of a solution is measured between two spatially fixed and chemically inert electrodes.

F1-F4-CALC-WP Water CCME Total Hydrocarbons CCME CWS-PHC, Pub #1310, Dec 2001-L

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Reference Information

L2503221 CONTD....
PAGE 12 of 13
Version: FINAL

Test Method References:

ALS Test Code Matrix Test Description Method Reference**

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F2-F4-FID-WP Water CCME PHC F2-F4 in Water EPA 3511

Petroleum hydrocarbons in water are determined by liquid-liquid micro-scale solvent extraction using a reciprocal shaker extraction apparatus prior to capillary column gas chromatography with flame ionization detection (GC-FID) analysis.

FC10-QT97-WP Water Fecal coliforms, 1:10 dilution by QT97 APHA 9223B QT97

Analysis is carried out using procedures adapted from APHA 9223 "Enzyme Substrate Coliform Test". Fecal (thermotolerant) coliform bacteria are determined by mixing a 1:10 dilution of sample with a product containing hydrolyzable substrates and sealing in a 97-well packet. The packet is incubated at 44.5 +/- 0.2 degrees C for 18 hours and then the number of wells exhibiting positive responses are counted. The final results are obtained by comparing the number of positive responses to a probability table.

HARDNESS-CALC-WP Water Hardness Calculated APHA 2340B

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

HG-T-CVAA-WP Water Mercury Total EPA 1631E (mod)

Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

MET-T-CCMS-WP Water Total Metals in Water by CRC ICPMS EPA 200.2/6020B (mod.)

Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

NH3-COL-WP Water Ammonia by colour APHA 4500 NH3 F

Ammonia in water samples forms indophenol when reacted with hypochlorite and phenol. The intensity is amplified by the addition of sodium nitroprusside and measured colourmetrically.

NO2+NO3-CALC-WP Water Nitrate+Nitrite CALCULATION

NO2-IC-N-WP Water Nitrite in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

NO3-IC-N-WP Water Nitrate in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

OG-GRAV-WP Water Oil & Grease - Gravimetric EPA 1664 (modified)

Water samples are acidified and extracted with hexane; the hexane extract is collected in a pre-weighed vial. The solvent is evaporated and Total Oil & Grease is determined from the weight of the residue in the vial.

P-T-COL-WP Water Phosphorus, Total APHA 4500 P PHOSPHORUS-L

This analysis is carried out using procedures adapted from APHA METHOD 4500-P "Phosphorus". Total Phosphorus is determined colourmetrically after persulphate digestion of the sample.

PAH-CCME-PPM-WT Water CCME PAHs in mg/L EPA 3511/8270D (mod)

PAHs are extracted from water using a hexane micro-extraction technique, with analysis by GC/MS. Because the two isomers cannot be readily separated chromatographically, benzo(j)fluoranthene is reported as part of the benzo(b)fluoranthene parameter.

PH-WP Water pH APHA 4500H

The pH of a sample is the determination of the activity of the hydrogen ions by potentiometric measurement using a standard hydrogen electrode and a reference electrode.

PHENOLS-4AAP-WT Water Phenol (4AAP) EPA 9066

An automated method is used to distill the sample. The distillate is then buffered to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a red complex which is measured colorimetrically.

L2503221 CONTD....

PAGE 13 of 13 Version: FINAL

Reference Information

Test Method References:

ALS Test Code Matrix Method Reference** **Test Description** SO4-IC-N-WP Water Sulfate in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. SOLIDS-TOTSUS-WP Water Total Suspended Solids APHA 2540 D (modified) Total suspended solids in aquesous matrices is determined gravimetrically after drying the residue at 103 105 C.

Analysis is carried out using procedures adapted from APHA 9223 "Enzyme Susbtrate Coliform Test". Total coliforms and Eschericia coli bacteria are simultaneously determined by mixing a 1:10 dilution of sample with a product containing hydrolyzable substrates and sealing in a 97-well packet. The packet is incubated at 35.0 +/- 0.5 degrees C for 18 or 24 hours and then the number of wells exhibiting positive responses are counted. The final results are obtained by comparing the number of positive responses to a probability table.

XYLENES-SUM-CALC-Water Sum of Xylene Isomer Concentrations CALCULATED RESULT

TC,EC10-QT97-WP

Total and E. coli, 1:10 dilution by QT97

APHA 9223B QT97

Total xylenes represents the sum of o-xylene and m&p-xylene.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WP	ALS ENVIRONMENTAL - WINNIPEG, MANITOBA, CANADA
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

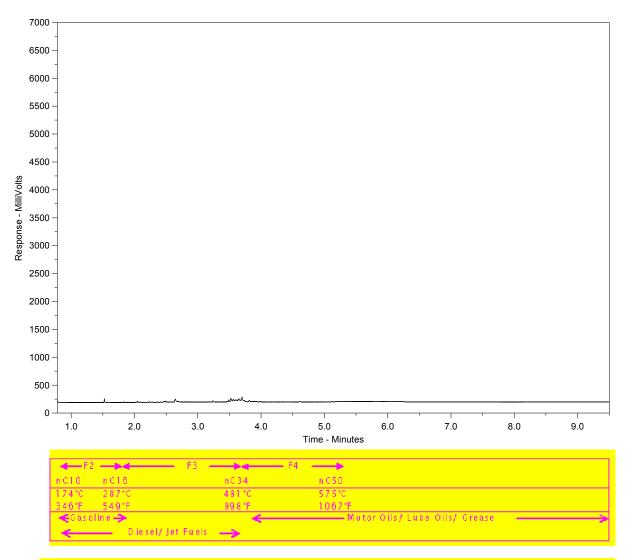
mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.


Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED. ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

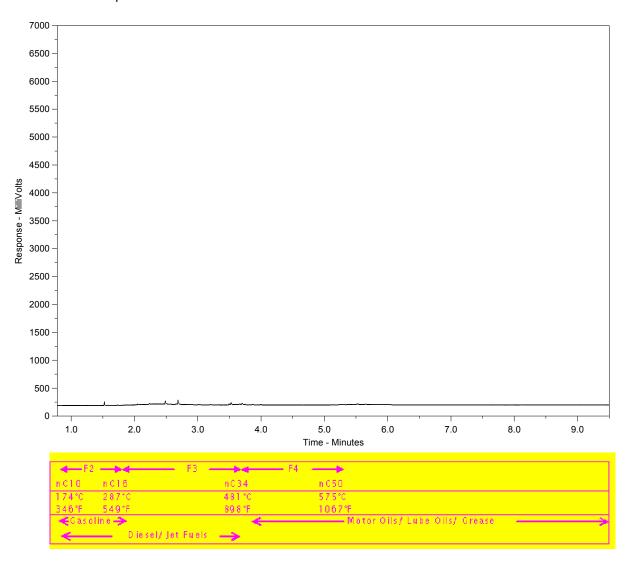
Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

ALS Sample ID: L2503221-4 Client Sample ID: COR-6

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at www.alsglobal.com.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

ALS Sample ID: L2503221-5 Client Sample ID: COR-7

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at www.alsglobal.com.

ALS Environmental

Chain of Custody (COC) / Analytical Request Form

L2603221-COFC

COC Number: 15 -

age 1 o

uronmental	Canada Toll Free: 1 800 668 9878
------------	----------------------------------

	www.alsglobal,com			<u>u</u>								<u>: </u>		<u> </u>					
Report To	Contact and company name below will appear on the final report	L		/ Discountion*		Select	Service I	Level Se	low - Ple	ase conf	កែក គារី	&P TA	is with	your A	M - sun	harges	wii) app	dy	
Company:	Hamlet of Coral Harbour	Select Report F	ormat: 💹 PDF [J EXCEL □ EC	D (DIGITAL)	[Re	gular	[R]	✓ Sta	ndard 1	AT if n	eceive	d by 3	pm - bi	usiness	days -	no surch	arges apply
Contact:	Darryl Nakoolak	Quality Control	(QC) Report with R	eport 🗍 YES	□ NO	_					κ	1	Busi	ness	day [E1]			
Phone:	867-925-8970	Compare Resu	lts to Criteria on Report	- provide details belo	w If box Checked	100	불흥 3 day [P3]			EMERGENCY	Same Day, Weekend or								
	Company address below will appear on the final report	Select Distributi	Select Distribution: E EMAIL MAIL FAX				4 day [P4]							ay [E0					
Street:	PO Box 30	Email 1 or Fax	foremanch@qiniq.	com			Date a	nd Time	Requir	ed for a	II E&P	TATs:			•	dd-n	ל-ונווווי	y bha	nn -
City/Province:	Coral Harbour, NU	Email 2	cfaulkner@gov.nu	,ca		For tes	ts that c	an not b	e perfor	ned acco	rding to	the se	rvice le	vel set	cted, y	ou will I	e conta	cted.	
Postal Code:	XOC 0C0	Email 3	scollins@gov.nu.ca	а								Analy	sis R	eque	st				
Invoice To	Same as Report To YES NO .		Invoice Dis	tribution			Indi	cate Filt	ered (F)	. Preser	ved (P)	or Filte	ered a	nd Pre	served	(F/P) b	elow		
	Copy of Invoice with Report	Select Invoice D	Distribution: 🔽 EM	IAIL 🗌 MAIL 🗍) FAX						L								
Company:		Email 1 or Fax																	
Contact:	· · .	Email 2																	ي
	Project Information	Oil	and Gas Required	l Fields (client i	ıse)		ļ ·									l .			. <u>.</u>
ALS Account #	# / Quote #: W10622	AFE/Cost Center:		PO#											ļ,				onta
Job #:		Major/Minor Code:		Routing Code:									1				١	1	Number of Containers
PO / AFE:		Requisitioner:		-							ີ			[•		o To
LSD:		Location:	,]					s (x2)		_						փ
ALS Lab Wo	rk Order# (lab use only)	ALS Contact:		Sampler: 0	nnon				Total Metals	Fotal Mercury	Vutrients/Phenois		Oil & Grease (x2)	1 (x3)	6		,		z
ALS Sample #	Sample Identification and/or Coordinates		Date	Time *		ا ا	tine	ا ۾ ا	Me	II Me	ients	Bacteria	8	× +	¥.	22		1	
(lab use only)	(This description will appear on the report)	•	(dd-mmm-yy)	(hh:mm)	Sample Type	8	Routine	CBOD	Tota	Tota	Į.	Bac	8	BTEX-F1	F2-F4 (x2)	PAH (x2)	'	. 1	
{	COR-3	٠.	10-50A-26	1:56 pm	Effluent	R	R	R	R	R	R	R	R						10
2	COR-4		11	2:05 PM	Effluent	R	R	R	R	Ŕ	R	R	R						10
2	COR-5		11 236 pm	V-G-FM	Effluent	R	R	R	R	R	R	R	R						10
T d	COR-6		1)	1:46 PM	Effluent	R	R	R	R	R	R	R	R	R	R	R			17
- 7	COR-7	· .	1Š	1:33 PM	Effluent	R	R	R	R	R	R	R	R	R	R	R			17
1			.,,								_			_					
							i												
											_	-							
														_					
	 	<u></u>	· 			-		· · ·			_	_			_			_	
	Special Instructions / Sp	pecify Criteria to a	dd on report by clici	king on the dree	iown list below	 	لـــا		SAME	LE CO	ONDI?	ION /	45 R	<u>L</u> EČEľ	/ED (ab u	se on	 V}	g:
Drinking	Water (DW) Samples' (client use)		tronic COC only)		20 1100 201011	Froze	n							rvatio		Yes		No	
	en from a Regulated DW System?					ice Pa	acks		Ice C	ubes		Cust	ody s	eal in	tact	Yes		No	ā
	res ☑ NO						ng Initi	_			_						_		
Are samples for	human drinking water use? NUNAVUT-WW-GRP1-	WP, BTEX, F1-F	4, PAH				-		OLER TI	EMPERA	TURE	s °C	-	FINAL COOLER TEMPERATUR				TURES °C	
□ Y	res 🖸 no						17.6												
	SHIPMENT RELEASE (client use)		INITIAL SHIPMEN	T RECEPTION (lab use only)			198		FIN	IAL S	HIPMI	ENT	RECE	PTIC	N (lal	use	only)	
Released by:	Date: Ser 10/20 Fime:	Received by		Date: Sep	+ 15	/31	D	Rece	ived by	y:				Date);				Time:
REFER TO BACK	PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION		WHI	TE - LABORATOR	Y COPY YELL	.OW - (CLIENT	COPY	′		_								OCTOBER 2015 FRONT

Environmental

Chain of Custody (COC) / Analytical Request Form

COC Number: 15 -

Environmental	Canada Toll Free: 1 800 668 9878
www,alsglobal,com	
Contact and company name below will appear on t	he final rapert Pencet

Report To	Contact and company name below will app	ear on the final report		Report Format	/ Disconvenion ~		Select	Service L	evel Be	low - Ple	ase conf	irm all (&P TAI	s with	your Al	M - surç	harges	will app	ły	_
Company:	Hamlet of Coral Harbout		Select Report F	ormat: 🔽 PDF [DEXCEL DE	D (DIGITAL)		Re	gular	(R)	✓ Sta	ndard 1	AT if n	eceived	l by 3	pm - bu	siness	days - r	no surch	arges apply
Contact:	Darryl Nakoolak		Quality Control	(QC) Report with R	eport 🗌 YES	□ NO	4 day [P4] 🔲 💆 1 Business day [E1] .													
Phone:	867-925-8970		Compare Resu	ts to Criteria on Report	provide details belo	w if box checked	G S	3 (day [P	2]			ROEN	l s	ame	Day.	Week	end o	Mr.	
	Company address below will appear on the final	report	Select Distributi	on: 🖳 EMAIL	MAIL [FAX	PRJ (Busin	2 (day [P	2]			70					y (E0		
Street:	PO Box 30		Email 1 or Fax	foremanch@qiniq.	com		Ĺ	Date an	d Time	Requir	red for e	II E&P	TATs:				dd-r;	imm-y	y hhin	m
City/Province:	Coral Harbour, NU		Email 2	cfaulkner@gov.nu	,ca		For tes	ts that ca	in act b	e perforr	ned acco	rding to	the se	rvice le	vel sek	cted, y	34 WII b	e conta	cted	
Postal Code:	X0C 0C0	·	Email 3	scollins@gov.nu.c	a .								Analy	sis R	eque	st	•			
Invoice To	Same as Report To	NO		Invoice Dis			<u> </u>	India	ate Fill	ered (F)	. Preser	ved (P)	or Filte	ered an	d Pres	erved	(F/P) b	elow		
	Copy of Invoice with Report	. NO	Select Invoice E	istribution: 🔽 EM	AIL 🗌 MAIL 🗌	FAX														
Company:			Email 1 or Fax					"												
Contact:	<u> </u>		Email 2					١. ا								i	ı			શ
	Project Information			and Gas Required		ise)			ļ								- [ajire
ALS Account #			AFE/Cost Center:		PO#			1	i				·				i	- 1		Containers
Job#:			Major/Minor Code:		Routing Code:				Į				Į I		. :		Į		ļ	ot C
PO / AFE:			Requisitioner:									8	ļ				ļ			
LSD:			Location: ·											2)						Number
ALS Lab Wor	rk Order# (lab use only)		ALS Contact:		Sampler: O	2291				rotal Metals	Total Mercury	Vutrients/Phenols		Dil & Grease (x2)	1 (x3)	(2 2)	<u>.</u>	i		
ALS Sample#	Sample Identification	and/or Coordinates		Date	Time	Sample Type	۵	Routine	CBOD	E X	E M	je.	Bacteria	S.	BTEX-F1	F4 (;	PAH (x2)		l	
(lab use only)	(This description will a	ppear on the report)		(dd-mmm-yy)	(hh:mm)	oumple Type	gog	ڇ	8	ž H	Ţo	_ <u>5</u>	Вас	δ	1≟	F2-F4	P.		[
	COR-3			10-50pt-25	1:56 pm	Effluent	R	; R .	R	R	Ŗ	R	R	R				ŀ		10
2	COR-4			II.	2:05 PM	Effluent	R	R	Ŕ	Ŕ	Ŕ	R	R	R						10
マ	COR-5	-		11 Z:16 pm	PAT STIP	Effluent	R	R	R	R	R	R	R	R			i			10
4	ÇOR-6			11	the em	Effluent	R	R	R	R	R	R	R	R	R	R	R	┪		17
7	COR-7	<u> </u>		n	1:33 PM	Effluent	R	R	R	R	R	R	R	R	R	R	R			17
																			\neg	
									$\neg \neg$	-								\neg		
_				-			_													
	· · · · · · · · · · · · · · · · · · ·						_						H				-	\dashv		
	 	- , - ,							_				<u> </u>			·			[
		<u> </u>																		
	<u></u>			·													[
Drinkina	Water (DW) Samples ¹ (client use)	Special Instructions / Sp			dng on the drop-	lown list below				_	LE CO	TION					_	e oni	y)	
			(elec	tronic COC only)		_	Froze	·n	_			_	SIF (Yes		No	□ □
	en from a Regulated DW System?						Ice Pa			Ice C	ubes		Cust	ody se	eal in	tact	Yes		No	
	'ES ☑ NO		_				Coolii	ng Initi	_											
		NUNAVUT-WW-GRP1-	WP, BTEX, F1-F	4, PAH				<i>-7</i>		LER T	MPERA	TURE	s ·c		:	FINAL	COOL	ER TEI	MPERA1	URES *C
	ES 🔽 NO		.					7	0											
Released W:	SHIPMENT RELEASE (dient use)	1=		INITIAL SHIPMEN		ab use only)	T=		o.			IAL S	HIPM	NT F	_		N (lab	use		
		120 Jime:	Received by		Date: Sep	+15	131			ived by	y: 			i	Date): 				l'ime:
REFER TO BACK	PAGE FOR ALS LOCATIONS AND SAMPLING	LINEOPMATION		unuli	E - LABORATOR	V CORY YELL	OWL.	CLIENT	COOV											OCTOBER 2015 FRONT

Hamlet of Coral Harbour

ATTN: LEONIE PAMEOLIK (Waste Water)

PO Box 30

Coral Harbour MB X0C 0C0

Date Received: 15-SEP-20

Report Date: 24-SEP-20 10:55 (MT)

Version: FINAL

Client Phone: 867-925-8970

Certificate of Analysis

Lab Work Order #: L2503215
Project P.O. #: NOT SUBMITTED

Job Reference: HAMLET OF CORAL HARBOUR - WASTE WATER

(11-SEP-20)

C of C Numbers: Legal Site Desc:

Mhl

Hua Wo

Chemistry Laboratory Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721

ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2503215 CONTD.... PAGE 2 of 13 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2503215-1 COR-3							
Sampled By: CLIENT on 11-SEP-20 @ 11:13							
Matrix: EFFLUENT							
Total and E. coli, 1:10 dilution by QT97							
Total Coliforms	>24200	PEHR	10	MPN/100mL		15-SEP-20	R5224776
Escherichia Coli	8160	PEHR	10	MPN/100mL		15-SEP-20	R5224776
Nunavut WW Group 1							
Alkalinity, Bicarbonate Bicarbonate (HCO3)	342		1.2	mg/L		17-SEP-20	
Alkalinity, Carbonate Carbonate (CO3)	<0.60		0.60	mg/L		17-SEP-20	
Alkalinity, Hydroxide Hydroxide (OH)	<0.34		0.34	mg/L		17-SEP-20	
Alkalinity, Total (as CaCO3)	10.04		0.54	IIIg/L		17-0L1-20	
Alkalinity, Total (as CaCO3)	281		1.0	mg/L		16-SEP-20	R5225679
Ammonia by colour Ammonia, Total (as N)	31.0		1.0	mg/L		16-SEP-20	R5227317
Biochemical Oxygen Demand (BOD) Biochemical Oxygen Demand	38		20	mg/L		16-SEP-20	R5232007
Carbonaceous BOD BOD Carbonaceous	34.2		6.0	mg/L		16-SEP-20	R5232007
Chloride in Water by IC							
Chloride (CI)	60.3		0.50	mg/L		16-SEP-20	R5230882
Conductivity Conductivity	774		1.0	umhos/cm		16-SEP-20	R5225679
Fecal coliforms, 1:10 dilution by QT97 Fecal Coliforms	4610	PEHR	10	MPN/100mL		15-SEP-20	R5224789
Hardness Calculated Hardness (as CaCO3)	153	HTC	0.20	mg/L		18-SEP-20	
Mercury Total Mercury (Hg)-Total	<0.000050		0.0000050	mg/L	21-SEP-20	21-SEP-20	R5231723
Nitrate in Water by IC Nitrate (as N)	0.385		0.020	mg/L		16-SEP-20	R5230882
Nitrate+Nitrite	0.365		0.020	IIIg/L		10-3LF-20	K3230002
Nitrate and Nitrite as N	0.483		0.070	mg/L		21-SEP-20	
Nitrite in Water by IC Nitrite (as N)	0.099		0.010	mg/L		16-SEP-20	R5230882
Oil & Grease - Gravimetric Oil and Grease	<5.0		5.0	mg/L		24-SEP-20	R5234180
Phenol (4AAP)	<0.0050	DLM				18-SEP-20	
Phenols (4AAP) Phosphorus, Total		DEIVI	0.0050	mg/L			R5229080
Phosphorus (P)-Total	7.01		0.030	mg/L		18-SEP-20	R5229452
Sulfate in Water by IC Sulfate (SO4)	23.7		0.30	mg/L		16-SEP-20	R5230882
Total Metals in Water by CRC ICPMS	0.0700		0.0000		47.055.00	47.050.00	DE000-0-
Aluminum (AI)-Total Arsenic (As)-Total	0.0530 0.00092		0.0030 0.00010	mg/L	17-SEP-20 17-SEP-20	17-SEP-20 17-SEP-20	R5228537
Cadmium (Cd)-Total	0.00092		0.00010	mg/L mg/L	17-SEP-20 17-SEP-20	17-SEP-20 17-SEP-20	R5228537 R5228537
Calcium (Ca)-Total	51.5		0.00000	mg/L	17-SEP-20	17-SEP-20	R5228537
Chromium (Cr)-Total	0.00046		0.00010	mg/L	17-SEP-20	17-SEP-20	R5228537
Cobalt (Co)-Total	0.00051		0.00010	mg/L	17-SEP-20	17-SEP-20	R5228537
Copper (Cu)-Total	0.0144		0.00010	mg/L	17-SEP-20	17-SEP-20	R5228537
Iron (Fe)-Total	0.588		0.010	mg/L	17-SEP-20	17-SEP-20	R5228537

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2503215 CONTD.... PAGE 3 of 13 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2503215-1 COR-3							
Sampled By: CLIENT on 11-SEP-20 @ 11:13							
Matrix: EFFLUENT							
Total Metals in Water by CRC ICPMS							
Magnesium (Mg)-Total	5.83		0.0050	mg/L	17-SEP-20	17-SEP-20	R5228537
Manganese (Mn)-Total	0.0622		0.00010	mg/L	17-SEP-20	17-SEP-20	R5228537
Nickel (Ni)-Total	0.00257		0.00050	mg/L	17-SEP-20	17-SEP-20	R5228537
Potassium (K)-Total	23.5		0.050	mg/L	17-SEP-20	17-SEP-20	R5228537
Sodium (Na)-Total	54.0		0.050	mg/L	17-SEP-20	17-SEP-20	R5228537
Zinc (Zn)-Total	0.0331		0.0030	mg/L	17-SEP-20	17-SEP-20	R5228537
Total Organic Carbon by Combustion Total Organic Carbon	150		0.50	mg/L		18-SEP-20	R5231578
Total Suspended Solids							
Total Suspended Solids	183		3.0	mg/L		16-SEP-20	R5225848
pH pH	7.86		0.10	pH units		16-SEP-20	R5225679
L2503215-2 COR-4							
Sampled By: CLIENT on 11-SEP-20 @ 11:22							
Matrix: EFFLUENT							
Total and E. coli, 1:10 dilution by QT97 Total Coliforms	3260	PEHR	10	MPN/100mL		15-SEP-20	R5224776
Escherichia Coli	20	PEHR	10	MPN/100mL		15-SEP-20	R5224776
Nunavut WW Group 1			10				110221110
Alkalinity, Bicarbonate							
Bicarbonate (HCO3)	322		1.2	mg/L		17-SEP-20	
Alkalinity, Carbonate Carbonate (CO3)	<0.60		0.60	mg/L		17-SEP-20	
Alkalinity, Hydroxide Hydroxide (OH)	<0.34		0.34	mg/L		17-SEP-20	
Alkalinity, Total (as CaCO3) Alkalinity, Total (as CaCO3)	264		1.0	mg/L		16-SEP-20	R5225679
Ammonia by colour Ammonia, Total (as N)	0.63		0.10	mg/L		16-SEP-20	R5227317
Biochemical Oxygen Demand (BOD) Biochemical Oxygen Demand	3.4		2.0	mg/L		16-SEP-20	R5232007
Carbonaceous BOD BOD Carbonaceous	<2.0		2.0	mg/L		16-SEP-20	R5232007
Chloride in Water by IC Chloride (CI)	91.3		1.0	mg/L		16-SEP-20	R5230882
Conductivity Conductivity	836		1.0	umhos/cm		16-SEP-20	R5225679
Fecal coliforms, 1:10 dilution by QT97 Fecal Coliforms	10	PEHR	10	MPN/100mL		15-SEP-20	R5224789
Hardness Calculated Hardness (as CaCO3)	304	нтс	0.20	mg/L		18-SEP-20	
Mercury Total Mercury (Hg)-Total	<0.0000050		0.0000050	mg/L	21-SEP-20	21-SEP-20	R5231723
Nitrate in Water by IC Nitrate (as N)	3.94		0.040	mg/L		16-SEP-20	R5230882
Nitrate+Nitrite Nitrate and Nitrite as N	3.98		0.070	mg/L		21-SEP-20	
Nitrite in Water by IC Nitrite (as N)	0.047		0.020	mg/L		16-SEP-20	R5230882
Oil & Grease - Gravimetric Oil and Grease	<5.0		5.0	mg/L		24-SEP-20	R5234180
				··• -			1

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2503215 CONTD.... PAGE 4 of 13 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2503215-2 COR-4							
Sampled By: CLIENT on 11-SEP-20 @ 11:22							
Matrix: EFFLUENT							
Phenol (4AAP)							
Phenols (4AAP)	<0.0010		0.0010	mg/L		18-SEP-20	R5229080
Phosphorus, Total							
Phosphorus (P)-Total	0.119		0.0030	mg/L		18-SEP-20	R5229452
Sulfate in Water by IC	07.0		0.00			40 CED 20	DECCOOL
Sulfate (SO4) Total Metals in Water by CRC ICPMS	37.3		0.60	mg/L		16-SEP-20	R5230882
Aluminum (Al)-Total	0.0090		0.0030	mg/L	17-SEP-20	17-SEP-20	R5228537
Arsenic (As)-Total	0.00091		0.00010	mg/L	17-SEP-20	17-SEP-20	R5228537
Cadmium (Cd)-Total	0.0000371		0.0000050	mg/L	17-SEP-20	17-SEP-20	R5228537
Calcium (Ca)-Total	105		0.050	mg/L	17-SEP-20	17-SEP-20	R5228537
Chromium (Cr)-Total	0.00043		0.00010	mg/L	17-SEP-20	17-SEP-20	R5228537
Cobalt (Co)-Total	0.00135		0.00010	mg/L	17-SEP-20	17-SEP-20	R5228537
Copper (Cu)-Total	0.00399		0.00050	mg/L	17-SEP-20 17-SEP-20	17-SEP-20 17-SEP-20	R5228537 R5228537
Iron (Fe)-Total Lead (Pb)-Total	0.094 <0.00050		0.010	mg/L mg/L	17-SEP-20 17-SEP-20	17-SEP-20 17-SEP-20	R5228537 R5228537
Magnesium (Mg)-Total	10.3		0.00050	mg/L	17-SEP-20 17-SEP-20	17-SEP-20 17-SEP-20	R5228537
Manganese (Mn)-Total	0.0744		0.00010	mg/L	17-SEP-20	17-SEP-20	R5228537
Nickel (Ni)-Total	0.00548		0.00050	mg/L	17-SEP-20	17-SEP-20	R5228537
Potassium (K)-Total	11.8		0.050	mg/L	17-SEP-20	17-SEP-20	R5228537
Sodium (Na)-Total	66.2		0.050	mg/L	17-SEP-20	17-SEP-20	R5228537
Zinc (Zn)-Total	0.0116		0.0030	mg/L	17-SEP-20	17-SEP-20	R5228537
Total Organic Carbon by Combustion Total Organic Carbon	14.3		0.50	mg/L		18-SEP-20	R5231578
Total Suspended Solids Total Suspended Solids	8.8		3.0	mg/L		16-SEP-20	R5225848
pH	0.0		3.0	IIIg/L		10-021 -20	13223040
pH	7.91		0.10	pH units		16-SEP-20	R5225679
L2503215-3 COR-5							
Sampled By: CLIENT on 11-SEP-20 @ 11:32							
Matrix: EFFLUENT							
Total and E. coli, 1:10 dilution by QT97							
Total Coliforms	120	PEHR	10	MPN/100mL		15-SEP-20	R5224776
Escherichia Coli	<10	PEHR	10	MPN/100mL		15-SEP-20	R5224776
Nunavut WW Group 1							
Alkalinity, Bicarbonate Bicarbonate (HCO3)	214		1.2	mg/L		17-SEP-20	
Alkalinity, Carbonate						17-SEP-20	
Carbonate (CO3) Alkalinity, Hydroxide	<0.60		0.60	mg/L		11-357-20	
Hydroxide (OH)	<0.34		0.34	mg/L		17-SEP-20	
Alkalinity, Total (as CaCO3) Alkalinity, Total (as CaCO3)	176		1.0	mg/L		16-SEP-20	R5225679
Ammonia by colour Ammonia, Total (as N)	0.037		0.010	mg/L		16-SEP-20	R5227317
Biochemical Oxygen Demand (BOD) Biochemical Oxygen Demand	<2.0		2.0	mg/L		16-SEP-20	R5232007
Carbonaceous BOD BOD Carbonaceous	<2.0		2.0	mg/L		16-SEP-20	R5232007
Chloride in Water by IC							
Chloride (CI)	58.5		0.50	mg/L		16-SEP-20	R5230882
Conductivity			L				

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2503215 CONTD.... PAGE 5 of 13 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2503215-3 COR-5							
Sampled By: CLIENT on 11-SEP-20 @ 11:32							
Matrix: EFFLUENT							
Conductivity							
Conductivity	603		1.0	umhos/cm		16-SEP-20	R5225679
Fecal coliforms, 1:10 dilution by QT97		55115					
Fecal Coliforms	10	PEHR	10	MPN/100mL		15-SEP-20	R5224789
Hardness Calculated Hardness (as CaCO3)	205	нтс	0.20	mg/L		18-SEP-20	
Mercury Total	200		0.20	g, L		10 DE1 -20	
Mercury (Hg)-Total	<0.0000050		0.0000050	mg/L	21-SEP-20	21-SEP-20	R5231723
Nitrate in Water by IC							
Nitrate (as N)	0.026		0.020	mg/L		16-SEP-20	R5230882
Nitrate+Nitrite Nitrate and Nitrite as N	<0.070		0.070	ma/l		21-SEP-20	
Nitrite in Water by IC	~ 0.070		0.070	mg/L		21-3EF-20	
Nitrite in Water by iC Nitrite (as N)	<0.010		0.010	mg/L		16-SEP-20	R5230882
Oil & Grease - Gravimetric							
Oil and Grease	<5.0		5.0	mg/L		24-SEP-20	R5234180
Phenol (4AAP)	-0.0040		0.0040			40.055.00	DECCCCC
Phenols (4AAP)	<0.0010		0.0010	mg/L		18-SEP-20	R5229080
Phosphorus, Total Phosphorus (P)-Total	0.0299		0.0030	mg/L		18-SEP-20	R5229452
Sulfate in Water by IC	, .					· ·	
Sulfate (SO4)	65.8		0.30	mg/L		16-SEP-20	R5230882
Total Metals in Water by CRC ICPMS					47.0==	47.0==	D=06:
Aluminum (Al)-Total	0.0047		0.0030	mg/L	17-SEP-20	17-SEP-20	R5228537
Arsenic (As)-Total Cadmium (Cd)-Total	0.00061 <0.000050		0.00010 0.0000050	mg/L mg/L	17-SEP-20 17-SEP-20	17-SEP-20 17-SEP-20	R5228537 R5228537
Calcium (Ca)-Total	64.0		0.0000	mg/L	17-SET-20 17-SEP-20	17-SET-20 17-SEP-20	R5228537
Chromium (Cr)-Total	0.00051		0.00010	mg/L	17-SEP-20	17-SEP-20	R5228537
Cobalt (Co)-Total	0.00024		0.00010	mg/L	17-SEP-20	17-SEP-20	R5228537
Copper (Cu)-Total	0.00081		0.00050	mg/L	17-SEP-20	17-SEP-20	R5228537
Iron (Fe)-Total	0.119		0.010	mg/L	17-SEP-20	17-SEP-20	R5228537
Lead (Pb)-Total	<0.000050		0.000050	mg/L	17-SEP-20	17-SEP-20	R5228537
Magnesium (Mg)-Total	10.9		0.0050	mg/L	17-SEP-20	17-SEP-20	R5228537
Manganese (Mn)-Total Nickel (Ni)-Total	0.0108 0.00193		0.00010 0.00050	mg/L mg/L	17-SEP-20 17-SEP-20	17-SEP-20 17-SEP-20	R5228537 R5228537
Potassium (K)-Total	9.51		0.00050	mg/L	17-SEP-20 17-SEP-20	17-SEP-20 17-SEP-20	R5228537
Sodium (Na)-Total	47.7		0.050	mg/L	17-SEP-20	17-SEP-20	R5228537
Zinc (Zn)-Total	0.0076		0.0030	mg/L	17-SEP-20	17-SEP-20	R5228537
Total Organic Carbon by Combustion							
Total Organic Carbon	16.4		0.50	mg/L		18-SEP-20	R5231578
Total Suspended Solids Total Suspended Solids	<3.0		3.0	mg/L		16-SEP-20	R5225848
pH	~ 3.0		3.0	IIIg/L		10-3LF-20	13223040
pH	8.24		0.10	pH units		16-SEP-20	R5225679
L2503215-4 COR-6							
Sampled By: CLIENT on 11-SEP-20 @ 11:06							
Matrix: EFFLUENT							
BTEX plus F1-F4							
BTX plus F1 by GCMS Benzene	<0.000E0		0.00050	mall		10 CED 20	DECOURSE
Toluene	<0.00050 <0.0010		0.00050 0.0010	mg/L mg/L		18-SEP-20 18-SEP-20	R5229336 R5229336
Ethyl benzene	<0.0010		0.0010	mg/L		18-SEP-20	R5229336
o-Xylene	<0.00050		0.00050	mg/L		18-SEP-20	R5229336

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2503215 CONTD.... PAGE 6 of 13 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2503215-4 COR-6							
Sampled By: CLIENT on 11-SEP-20 @ 11:06							
Matrix: EFFLUENT							
BTX plus F1 by GCMS	-0.00040		0.00040	ma/l		10 000 20	DECOCOCO
m+p-Xylenes F1 (C6-C10)	<0.00040 <0.10		0.00040 0.10	mg/L		18-SEP-20 18-SEP-20	R5229336 R5229336
Surrogate: 4-Bromofluorobenzene (SS)	88.7		70-130	mg/L %		18-SEP-20	R5229336
CCME PHC F2-F4 in Water	00.7		70-130	/6		10-3LF-20	K3229330
F2 (C10-C16)	<0.10		0.10	mg/L	17-SEP-20	17-SEP-20	R5228457
F3 (C16-C34)	0.27		0.25	mg/L	17-SEP-20	17-SEP-20	R5228457
F4 (C34-C50)	<0.25		0.25	mg/L	17-SEP-20	17-SEP-20	R5228457
Surrogate: 2-Bromobenzotrifluoride	99.4		60-140	%	17-SEP-20	17-SEP-20	R5228457
CCME Total Hydrocarbons							
F1-BTEX	<0.10		0.10	mg/L		22-SEP-20	
F2-Naphth	<0.10		0.10	mg/L		22-SEP-20	
F3-PAH	0.27		0.25	mg/L		22-SEP-20	
Total Hydrocarbons (C6-C50)	<0.38		0.38	mg/L		22-SEP-20	
Sum of Xylene Isomer Concentrations							
Xylenes (Total)	<0.00064		0.00064	mg/L		18-SEP-20	
Total and E. coli, 1:10 dilution by QT97							
Total Coliforms	1020	PEHR	10	MPN/100mL		15-SEP-20	R5224776
Escherichia Coli	20	PEHR	10	MPN/100mL		15-SEP-20	R5224776
CCME PAHs in mg/L							
1-Methyl Naphthalene	<0.000020		0.000020	mg/L	17-SEP-20	22-SEP-20	R5232400
2-Methyl Naphthalene	<0.000020		0.000020	mg/L	17-SEP-20	22-SEP-20	R5232400
Acenaphthene	<0.000020		0.000020	mg/L	17-SEP-20	22-SEP-20	R5232400
Acenaphthylene	<0.000020		0.000020	mg/L	17-SEP-20	22-SEP-20	R5232400
Anthracene	<0.000010		0.000010	mg/L	17-SEP-20	22-SEP-20	R5232400
Acridine	<0.000020		0.000020	mg/L	17-SEP-20	22-SEP-20	R5232400
Benzo(a)anthracene Benzo(a)pyrene	<0.000010		0.000010	mg/L	17-SEP-20 17-SEP-20	22-SEP-20 22-SEP-20	R5232400
Benzo(b&j)fluoranthene	<0.0000050 <0.000010		0.0000050 0.000010	1 0 1	17-SEP-20 17-SEP-20	22-SEP-20 22-SEP-20	R5232400 R5232400
Benzo(g,h,i)perylene	<0.000010		0.000010	mg/L mg/L	17-SEP-20 17-SEP-20	22-SEP-20 22-SEP-20	R5232400 R5232400
Benzo(k)fluoranthene	<0.000020		0.000020	mg/L	17-SEP-20	22-SEP-20	R5232400
Chrysene	<0.000010		0.000010	mg/L	17-SEP-20	22-SEP-20	R5232400
Dibenzo(a,h)anthracene	<0.000020		0.000020	- 1	17-SEP-20	22-SEP-20	R5232400
Fluoranthene	<0.000020		0.0000030	mg/L	17-SEP-20	22-SEP-20	R5232400
Fluorene	<0.000020		0.000020	mg/L	17-SEP-20	22-SEP-20	R5232400
Indeno(1,2,3-cd)pyrene	<0.000010		0.000010	mg/L	17-SEP-20	22-SEP-20	R5232400
Naphthalene	<0.000050		0.000050	mg/L	17-SEP-20	22-SEP-20	R5232400
Phenanthrene	<0.000050		0.000050	mg/L	17-SEP-20	22-SEP-20	R5232400
Pyrene	<0.000010		0.000010	mg/L	17-SEP-20	22-SEP-20	R5232400
Quinoline	<0.000020		0.000020	mg/L	17-SEP-20	22-SEP-20	R5232400
B(a)P Total Potency Equivalent	<0.000030		0.000030	mg/L	17-SEP-20	22-SEP-20	R5232400
Surrogate: d8-Naphthalene	96.2		50-150	%	17-SEP-20	22-SEP-20	R5232400
Surrogate: d10-Phenanthrene	97.2		50-150	%	17-SEP-20	22-SEP-20	R5232400
Surrogate: d12-Chrysene	96.1		50-150	%	17-SEP-20	22-SEP-20	R5232400
Surrogate: d10-Acenaphthene	91.8		50-150	%	17-SEP-20	22-SEP-20	R5232400
Surrogate: d9-Acridine (SS)	85.8		50-150	%	17-SEP-20	22-SEP-20	R5232400
Nunavut WW Group 1							
Alkalinity, Bicarbonate Bicarbonate (HCO3)	418		1.2	mg/L		17-SEP-20	
Alkalinity, Carbonate							
Carbonate (CO3)	<0.60		0.60	mg/L		17-SEP-20	
Alkalinity, Hydroxide							

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2503215 CONTD.... PAGE 7 of 13 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2503215-4 COR-6							
Sampled By: CLIENT on 11-SEP-20 @ 11:06							
Matrix: EFFLUENT							
Alkalinity, Hydroxide Hydroxide (OH)	<0.34		0.34	mg/L		17-SEP-20	
Alkalinity, Total (as CaCO3)							
Alkalinity, Total (as CaCO3)	343		1.0	mg/L		16-SEP-20	R5225679
Ammonia by colour Ammonia, Total (as N)	1.26		0.10	mg/L		16-SEP-20	R5227317
Biochemical Oxygen Demand (BOD)	1.20		0.10	9/ =			110227017
Biochemical Oxygen Demand	11.6		2.0	mg/L		16-SEP-20	R5232007
Carbonaceous BOD BOD Carbonaceous	9.2		2.0	mg/L		16-SEP-20	R5232007
Chloride in Water by IC							
Chloride (CI)	56.1		0.50	mg/L		16-SEP-20	R5230882
Conductivity Conductivity	790		1.0	umhos/cm		16-SEP-20	R5225679
Fecal coliforms, 1:10 dilution by QT97		DETTE	4-	MONIZACE		45.050.05	D =00:
Fecal Coliforms Hardness Calculated	50	PEHR	10	MPN/100mL		15-SEP-20	R5224789
Hardness (as CaCO3)	291	HTC	0.20	mg/L		21-SEP-20	
Mercury Total	10.0000050		0.0000050		04.055.00	04.055.00	D5004700
Mercury (Hg)-Total Nitrate in Water by IC	<0.0000050		0.0000050	mg/L	21-SEP-20	21-SEP-20	R5231723
Nitrate (as N)	<0.020		0.020	mg/L		16-SEP-20	R5230882
Nitrate+Nitrite Nitrate and Nitrite as N	40.070		0.070	ma/l		24 CED 20	
Nitrite in Water by IC	<0.070		0.070	mg/L		21-SEP-20	
Nitrite (as N)	<0.010		0.010	mg/L		16-SEP-20	R5230882
Oil & Grease - Gravimetric Oil and Grease	<5.0		5.0	mg/L		24-SEP-20	R5234180
Phenol (4AAP)	\5.0		5.0	IIIg/L		24-3LF-20	K3234100
Phenols (4AAP)	0.0029		0.0010	mg/L		18-SEP-20	R5229080
Phosphorus, Total	0.000		0.0000			40.050.00	D5000450
Phosphorus (P)-Total Sulfate in Water by IC	0.302		0.0030	mg/L		18-SEP-20	R5229452
Sulfate (SO4)	23.5		0.30	mg/L		16-SEP-20	R5230882
Total Metals in Water by CRC ICPMS							
Aluminum (Al)-Total	0.0456		0.0030	mg/L	18-SEP-20	18-SEP-20	R5231297
Arsenic (As)-Total	0.00211		0.00010	mg/L	18-SEP-20	18-SEP-20	R5231297
Cadmium (Cd)-Total	<0.0000050		0.0000050	mg/L	18-SEP-20	18-SEP-20	R5231297
Calcium (Ca)-Total	83.0		0.050	mg/L	18-SEP-20	18-SEP-20	R5231297
Chromium (Cr)-Total	0.00107		0.00010	mg/L	18-SEP-20	18-SEP-20	R5231297
Cobalt (Co)-Total	0.00024		0.00010	mg/L	18-SEP-20	18-SEP-20	R5231297
Copper (Cu)-Total	0.00124		0.00050	mg/L	18-SEP-20	18-SEP-20	R5231297
Iron (Fe)-Total	0.685		0.010	mg/L	18-SEP-20	18-SEP-20	R5231297
Lead (Pb)-Total	0.000246		0.000050	mg/L	18-SEP-20	18-SEP-20	R5231297
Magnesium (Mg)-Total	20.4		0.0050	mg/L	18-SEP-20	18-SEP-20	R5231297
Manganese (Mn)-Total	0.0876		0.0000	mg/L	18-SEP-20	18-SEP-20	R5231297
Nickel (Ni)-Total	0.0070		0.00010	mg/L	18-SEP-20	18-SEP-20	R5231297
Potassium (K)-Total	25.0		0.050	mg/L	18-SEP-20	18-SEP-20	R5231297
Sodium (Na)-Total	48.3		0.050	mg/L	18-SEP-20	18-SEP-20	R5231297
` '				-			
Zinc (Zn)-Total	0.0074		0.0030	mg/L	18-SEP-20	18-SEP-20	R5231297
Total Organic Carbon by Combustion Total Organic Carbon	32.4		0.50	mg/L		18-SEP-20	R5231578
Total Suspended Solids							

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2503215 CONTD.... PAGE 8 of 13 Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2503215-4 COR-6							
Sampled By: CLIENT on 11-SEP-20 @ 11:06							
Matrix: EFFLUENT							
Total Suspended Solids Total Suspended Solids	12.2		3.0	mg/L		16-SEP-20	R5225848
pH							
рН	8.06		0.10	pH units		16-SEP-20	R5225679
L2503215-5 COR-7							
Sampled By: CLIENT on 11-SEP-20 @ 10:56							
Matrix: EFFLUENT							
BTEX plus F1-F4							
BTX plus F1 by GCMS							
Benzene	<0.00050		0.00050	mg/L		18-SEP-20	R5229336
Toluene	<0.0010		0.0010	mg/L		18-SEP-20	R5229336
Ethyl benzene	<0.00050		0.00050	mg/L		18-SEP-20	R5229336
o-Xylene	<0.00050		0.00050	mg/L		18-SEP-20	R5229336
m+p-Xylenes	<0.00040		0.00040	mg/L		18-SEP-20	R5229336
F1 (C6-C10)	<0.10		0.10	mg/L		18-SEP-20	R5229336
Surrogate: 4-Bromofluorobenzene (SS)	85.8		70-130	%		18-SEP-20	R5229336
CCME PHC F2-F4 in Water F2 (C10-C16)	<0.10		0.10	mg/L	17-SEP-20	17-SEP-20	R5228457
F3 (C16-C34)	<0.25		0.10	mg/L	17-SEP-20	17-SEP-20	R5228457
F4 (C34-C50)	<0.25		0.25	mg/L	17-SEP-20	17-SEP-20	R5228457
Surrogate: 2-Bromobenzotrifluoride	100.9		60-140	%	17-SEF-20	17-SET-20	R5228457
CCME Total Hydrocarbons	100.9		00-140	/6	17-3L1 -20	17-3L1 -20	K3220437
F1-BTEX	<0.10		0.10	mg/L		22-SEP-20	
F2-Naphth	<0.10		0.10	mg/L		22-SEP-20	
F3-PAH	<0.25		0.25	mg/L		22-SEP-20	
Total Hydrocarbons (C6-C50)	<0.38		0.38	mg/L		22-SEP-20	
Sum of Xylene Isomer Concentrations							
Xylenes (Total)	<0.00064		0.00064	mg/L		18-SEP-20	
Total and E. coli, 1:10 dilution by QT97							
Total Coliforms	10	PEHR	10	MPN/100mL		15-SEP-20	R5224776
Escherichia Coli	<10	PEHR	10	MPN/100mL		15-SEP-20	R5224776
CCME PAHs in mg/L							
1-Methyl Naphthalene	<0.000020		0.000020	mg/L	17-SEP-20	22-SEP-20	R5232400
2-Methyl Naphthalene	<0.000020		0.000020	mg/L	17-SEP-20	22-SEP-20	R5232400
Acenaphthene	<0.000020		0.000020	mg/L	17-SEP-20	22-SEP-20	R5232400
Acetagora	<0.000020		0.000020	mg/L	17-SEP-20	22-SEP-20	R5232400
Anthracene	<0.000010		0.000010	mg/L	17-SEP-20	22-SEP-20	R5232400
Acridine	<0.000020		0.000020 0.000010	mg/L	17-SEP-20	22-SEP-20	R5232400
Benzo(a)anthracene Benzo(a)pyrene	<0.000010 <0.000050			mg/L	17-SEP-20 17-SEP-20	22-SEP-20 22-SEP-20	R5232400
Benzo(b&j)fluoranthene	<0.000050		0.0000050 0.000010	mg/L mg/L	17-SEP-20 17-SEP-20	22-SEP-20 22-SEP-20	R5232400 R5232400
Benzo(g,h,i)perylene	<0.000010		0.000010	mg/L	17-SEP-20 17-SEP-20	22-SEP-20 22-SEP-20	R5232400 R5232400
Benzo(k)fluoranthene	<0.000020		0.000020	mg/L	17-SEP-20 17-SEP-20	22-SEP-20 22-SEP-20	R5232400 R5232400
Chrysene	<0.000010		0.000010	mg/L	17-SEP-20	22-SEP-20	R5232400
Dibenzo(a,h)anthracene	<0.000020		0.0000020	mg/L	17-SEP-20	22-SEP-20	R5232400
Fluoranthene	<0.000030		0.0000030	mg/L	17-SEP-20	22-SEP-20	R5232400
	<0.000020		0.000020	mg/L	17-SEP-20	22-SEP-20	R5232400
Fluorene		1	3.000020				
Fluorene Indeno(1,2,3-cd)pyrene			0.000010	ma/l	17-955-70	22-000-70	R5/3/400
Indeno(1,2,3-cd)pyrene	<0.000010		0.000010	mg/L mg/L	17-SEP-20 17-SEP-20	22-SEP-20 22-SEP-20	R5232400 R5232400
			0.000010 0.000050 0.000050	mg/L mg/L mg/L	17-SEP-20 17-SEP-20 17-SEP-20	22-SEP-20 22-SEP-20 22-SEP-20	R5232400 R5232400 R5232400

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2503215 CONTD.... PAGE 9 of 13 Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2503215-5 COR-7							
Sampled By: CLIENT on 11-SEP-20 @ 10:56							
Matrix: EFFLUENT							
CCME PAHs in mg/L							
Quinoline	<0.000020		0.000020	mg/L	17-SEP-20	22-SEP-20	R5232400
B(a)P Total Potency Equivalent	<0.000030		0.000030	mg/L	17-SEP-20	22-SEP-20	R5232400
Surrogate: d8-Naphthalene	90.3		50-150	%	17-SEP-20	22-SEP-20	R5232400
Surrogate: d10-Phenanthrene	96.0		50-150	%	17-SEP-20	22-SEP-20	R5232400
Surrogate: d12-Chrysene	95.1		50-150	%	17-SEP-20	22-SEP-20	R5232400
Surrogate: d10-Acenaphthene	91.2		50-150	%	17-SEP-20	22-SEP-20	R5232400
Surrogate: d9-Acridine (SS)	87.4		50-150	%	17-SEP-20	22-SEP-20	R5232400
Nunavut WW Group 1							
Alkalinity, Bicarbonate							
Bicarbonate (HCO3)	184		1.2	mg/L		17-SEP-20	
Alkalinity, Carbonate				,,		47.050.00	
Carbonate (CO3)	<0.60		0.60	mg/L		17-SEP-20	
Alkalinity, Hydroxide Hydroxide (OH)	<0.34		0.34	ma/l		17-SEP-20	
• • • • • • • • • • • • • • • • • • • •	<0.34		0.34	mg/L		17-3EF-20	
Alkalinity, Total (as CaCO3) Alkalinity, Total (as CaCO3)	151		1.0	mg/L		16-SEP-20	R5225679
Ammonia by colour	101		1.0	iiig/L		10 021 20	110220070
Ammonia, Total (as N)	0.029		0.010	mg/L		16-SEP-20	R5227317
Biochemical Oxygen Demand (BOD)	0.020		0.0.0				
Biochemical Oxygen Demand	<2.0		2.0	mg/L		16-SEP-20	R5232007
Carbonaceous BOD							
BOD Carbonaceous	<2.0		2.0	mg/L		16-SEP-20	R5232007
Chloride in Water by IC							
Chloride (CI)	6.7		1.0	mg/L		16-SEP-20	R5230882
Conductivity							
Conductivity	976		1.0	umhos/cm		16-SEP-20	R5225679
Fecal coliforms, 1:10 dilution by QT97		DELLO		MENULOGI		45.050.00	D=00.4=00
Fecal Coliforms	<10	PEHR	10	MPN/100mL		15-SEP-20	R5224789
Hardness Calculated	523	нтс	0.20	ma/l		18-SEP-20	
Hardness (as CaCO3) Mercury Total	523	1110	0.20	mg/L		10-3EF-20	
Mercury (Hg)-Total	<0.000050		0.0000050	mg/L	21-SEP-20	21-SEP-20	R5231723
Nitrate in Water by IC	10.000000		0.0000000	iiig/L	21 021 20	2102120	110201720
Nitrate (as N)	<0.040	DLM	0.040	mg/L		16-SEP-20	R5230882
Nitrate+Nitrite							
Nitrate and Nitrite as N	<0.070		0.070	mg/L		21-SEP-20	
Nitrite in Water by IC							
Nitrite (as N)	<0.020	DLM	0.020	mg/L		16-SEP-20	R5230882
Oil & Grease - Gravimetric							
Oil and Grease	<5.0		5.0	mg/L		24-SEP-20	R5234180
Phenol (4AAP)							
Phenols (4AAP)	<0.0010		0.0010	mg/L		18-SEP-20	R5229080
Phosphorus, (P) Total	0.0504		0.0000	ma/l		10 000 00	DE000450
Phosphorus (P)-Total	0.0524		0.0030	mg/L		18-SEP-20	R5229452
Sulfate in Water by IC Sulfate (SO4)	422		0.60	mg/L		16-SEP-20	R5230882
Total Metals in Water by CRC ICPMS	422		0.00	IIIg/L		10-3LF-20	13230002
Aluminum (Al)-Total	0.0062		0.0030	mg/L	17-SEP-20	17-SEP-20	R5228537
Arsenic (As)-Total	0.00050		0.0000	mg/L	17-SEP-20	17-SEP-20	R5228537
Cadmium (Cd)-Total	0.0000074		0.0000050	mg/L	17-SEP-20	17-SEP-20	R5228537
Calcium (Ca)-Total	193		0.050	mg/L	17-SEP-20	17-SEP-20	R5228537
Chromium (Cr)-Total	0.00032		0.00010	mg/L	17-SEP-20	17-SEP-20	R5228537
	0.00002		0.50010	9,2	52. 20	52. 20	1.0220001

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2503215 CONTD.... PAGE 10 of 13 Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2503215-5 COR-7							
Sampled By: CLIENT on 11-SEP-20 @ 10:56							
Matrix: EFFLUENT							
Total Metals in Water by CRC ICPMS							
Cobalt (Co)-Total	0.00030		0.00010	mg/L	17-SEP-20	17-SEP-20	R5228537
Copper (Cu)-Total	0.00102		0.00050	mg/L	17-SEP-20	17-SEP-20	R5228537
Iron (Fe)-Total	1.17		0.010	mg/L	17-SEP-20	17-SEP-20	R5228537
Lead (Pb)-Total	0.000145		0.000050	mg/L	17-SEP-20	17-SEP-20	R5228537
Magnesium (Mg)-Total	10.0		0.0050	mg/L	17-SEP-20	17-SEP-20	R5228537
Manganese (Mn)-Total	0.0831		0.00010	mg/L	17-SEP-20	17-SEP-20	R5228537
Nickel (Ni)-Total	0.00273		0.00050	mg/L	17-SEP-20	17-SEP-20	R5228537
Potassium (K)-Total	6.84		0.050	mg/L	17-SEP-20	17-SEP-20	R5228537
Sodium (Na)-Total	14.1		0.050	mg/L	17-SEP-20	17-SEP-20	R5228537
Zinc (Zn)-Total	0.0205		0.0030	mg/L	17-SEP-20	17-SEP-20	R5228537
Total Organic Carbon by Combustion Total Organic Carbon	16.9		0.50	mg/L		18-SEP-20	R5231578
Total Suspended Solids	10.0		0.00	9, _			. 10201070
Total Suspended Solids	56.8		3.0	mg/L		16-SEP-20	R5225848
рН							
pH	8.15		0.10	pH units		16-SEP-20	R5225679
	1						
					1	1	1

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2503215 CONTD....

Reference Information

PAGE 11 of 13 Version: FINAL

Sample Parameter Qualifier Key:

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
HTC	Hardness was calculated from Total Ca and/or Mg concentrations and may be biased high (dissolved Ca/Mg results unavailable).
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
PEHR	Parameter Exceeded Recommended Holding Time On Receipt: Proceed With Analysis As Requested.

Test Method References:

	- -			
ALS Test Code	Matrix	Test Description	Method Reference**	
ALK-CO3CO3-CALC-WP	Water	Alkalinity, Carbonate	CALCULATION	

The Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. The fraction of alkalinity contributed by carbonate is calculated and reported as mg CO3 2-/L.

ALK-HCO3HCO3-CALC- Water Alkalinity, Bicarbonate CALCULATION

The Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. The fraction of alkalinity contributed by bicarbonate is calculated and reported as mg HCO3-/L

ALK-OHOH-CALC-WP Water Alkalinity, Hydroxide CALCULATION

The Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. The fraction of alkalinity contributed by hydroxide is calculated and reported as mg OH-/L.

ALK-TITR-WP Water Alkalinity, Total (as CaCO3) APHA 2320B

The Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. Total alkalinity is determined by titration with a strong standard mineral acid to the successive HCO3- and H2CO3 endpoints indicated electrometrically.

BOD-CBOD-WP Water Carbonaceous BOD APHA 5210 B

Samples are diluted and seeded, have TCMP added to inhibit nitrogenous demands, and then are incubated in airtight bottles at 20 C for 5 days. Dissolved oxygen is measured initially and after incubation, and results are computed from the difference between initial and final DO.

BOD-WP Water Biochemical Oxygen Demand (BOD) APHA 5210 B

Samples are diluted and seeded and then incubated in airtight bottles at 20 C for 5 days. Dissolved oxygen is measured initially and after incubation, and results are computed from the difference between initial and final DO.

BTEXS+F1-HSMS-WP Water BTX plus F1 by GCMS EPA 8260C / EPA 5021A

The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection.

C-TOC-HTC-WP Water Total Organic Carbon by Combustion APHA 5310 B-WP

Sample is acidified and purged to remove inorganic carbon, then injected into a heated reaction chamber where organic carbon is oxidized to CO2 which is then transported in the carrier gas stream and measured via a non-dispersive infrared analyzer.

CL-IC-N-WP Water Chloride in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

EC-WP Water Conductivity APHA 2510B

Conductivity of an aqueous solution refers to its ability to carry an electric current. Conductance of a solution is measured between two spatially fixed and chemically inert electrodes.

F1-F4-CALC-WP Water CCME Total Hydrocarbons CCME CWS-PHC, Pub #1310, Dec 2001-L

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Reference Information

L2503215 CONTD.... PAGE 12 of 13 Version: FINAL

Test Method References:

ALS Test Code Matrix Method Reference** **Test Description**

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F2-F4-FID-WP CCME PHC F2-F4 in Water Water FPA 3511

Petroleum hydrocarbons in water are determined by liquid-liquid micro-scale solvent extraction using a reciprocal shaker extraction apparatus prior to capillary column gas chromatography with flame ionization detection (GC-FID) analysis.

Water Fecal coliforms, 1:10 dilution by QT97 APHA 9223B QT97

Analysis is carried out using procedures adapted from APHA 9223 "Enzyme Substrate Coliform Test". Fecal (thermotolerant) coliform bacteria are determined by mixing a 1:10 dilution of sample with a product containing hydrolyzable substrates and sealing in a 97-well packet. The packet is incubated at 44.5 +/- 0.2 degrees C for 18 hours and then the number of wells exhibiting positive responses are counted. The final results are obtained by comparing the number of positive responses to a probability table.

HARDNESS-CALC-WP Water Hardness Calculated **APHA 2340B**

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

EPA 1631E (mod) **HG-T-CVAA-WP** Water Mercury Total

Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

MET-T-CCMS-WP Total Metals in Water by CRC ICPMS EPA 200.2/6020B (mod.) Water

Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

NH3-COL-WP Water Ammonia by colour APHA 4500 NH3 F

Ammonia in water samples forms indophenol when reacted with hypochlorite and phenol. The intensity is amplified by the addition of sodium nitroprusside and measured colourmetrically.

CALCULATION NO2+NO3-CALC-WP Water Nitrate+Nitrite Nitrite in Water by IC NO2-IC-N-WP Water EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

Nitrate in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

OG-GRAV-WP Water Oil & Grease - Gravimetric EPA 1664 (modified)

Water samples are acidified and extracted with hexane: the hexane extract is collected in a pre-weighed vial. The solvent is evaporated and Total Oil & Grease is determined from the weight of the residue in the vial.

APHA 4500 P PHOSPHORUS-L

P-T-COL-WP Water Phosphorus, Total

This analysis is carried out using procedures adapted from APHA METHOD 4500-P "Phosphorus". Total Phosphorus is determined colourmetrically after persulphate digestion of the sample.

PAH-CCME-PPM-WT Water CCME PAHs in mg/L EPA 3511/8270D (mod)

PAHs are extracted from water using a hexane micro-extraction technique, with analysis by GC/MS. Because the two isomers cannot be readily separated chromatographically, benzo(j)fluoranthene is reported as part of the benzo(b)fluoranthene parameter.

PH-WP **APHA 4500H** Water

The pH of a sample is the determination of the activity of the hydrogen ions by potentiometric measurement using a standard hydrogen electrode and a reference electrode.

PHENOLS-4AAP-WT Phenol (4AAP) **EPA 9066** Water

An automated method is used to distill the sample. The distillate is then buffered to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a red complex which is measured colorimetrically.

L2503215 CONTD....

Reference Information

PAGE 13 of 13 Version: FINAL

Test Method References:

ALS Test Code Matrix Method Reference** **Test Description** SO4-IC-N-WP Water Sulfate in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. SOLIDS-TOTSUS-WP Water **Total Suspended Solids** APHA 2540 D (modified) Total suspended solids in aquesous matrices is determined gravimetrically after drying the residue at 103 105 C. TC,EC10-QT97-WP Total and E. coli, 1:10 dilution by QT97 **APHA 9223B QT97**

Analysis is carried out using procedures adapted from APHA 9223 "Enzyme Susbtrate Coliform Test". Total coliforms and Eschericia coli bacteria are simultaneously determined by mixing a 1:10 dilution of sample with a product containing hydrolyzable substrates and sealing in a 97-well packet. The packet is incubated at 35.0 +/- 0.5 degrees C for 18 or 24 hours and then the number of wells exhibiting positive responses are counted. The final results are obtained by comparing the number of positive responses to a probability table.

XYLENES-SUM-CALC-

Water

Total xylenes represents the sum of o-xylene and m&p-xylene.

Sum of Xylene Isomer Concentrations

CALCULATED RESULT

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WP	ALS ENVIRONMENTAL - WINNIPEG, MANITOBA, CANADA
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

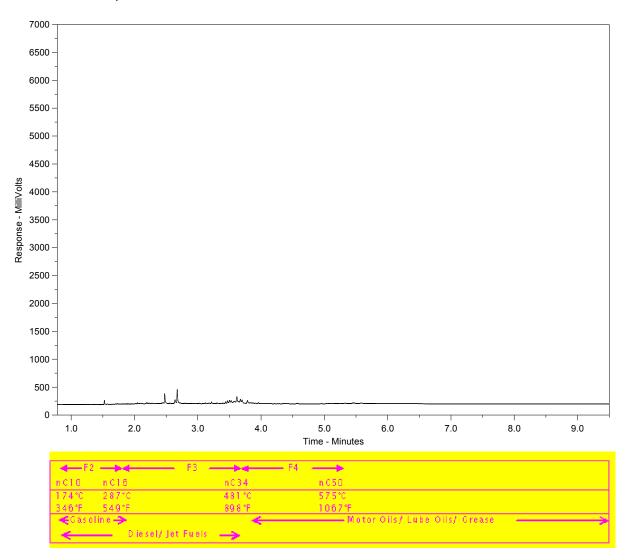
mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.


Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED. ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

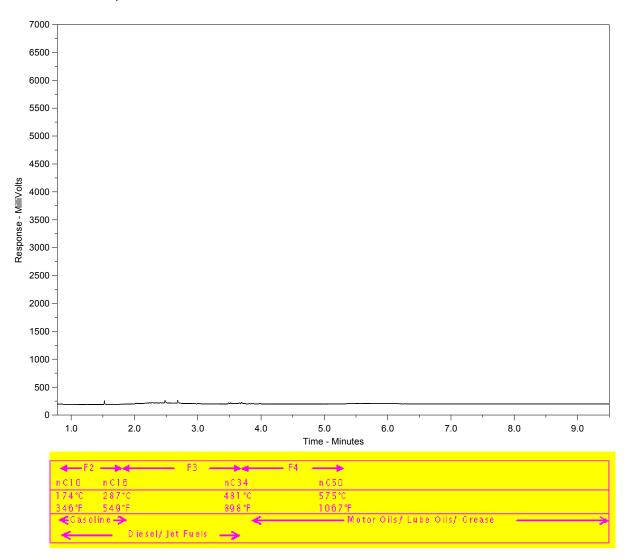
Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

ALS Sample ID: L2503215-4 Client Sample ID: COR-6

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at www.alsglobal.com.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

ALS Sample ID: L2503215-5 Client Sample ID: COR-7

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at www.alsglobal.com.

ALS Environmental

Chain of Custody (COC) / Analytical Request Form

L2503215-COFC

COC Number: 15 -

age 1

(ALS)	Environmentai Canada	Toll Free: 1 800 (68 9878	L.	2000210-0	JOI	0					1							
	www.alsglobal.com											1		-					
Report To	Contact and company name below will appear on the final report		Report Format	/ Distribution		Select	Service	Level Bo	etow - Pie	ase con/	im all i	E&P TA	Ts with	your A	M-sur	charges	will ap	ply	
Company:	Hamlet of Coral Harbour	Select Report	Format: 📝 PDF	D EXCEL EC	D (DIGITAL)		Re	gular	[R] [√ Sta	ndard T	TAT if r	eceiver	d by 3	pm - b	usiness	days -	no surc	harges apply
Contact:	Darryl Nakoolak	Quality Contro	(QC) Report with R	teport 🗍 YES	□ NO	(in the last of th	4	day [l	P4]			ζ	1	Busi	ness	day [Ē1]		
Phone:	867-925-8970	☐ Compare Res	ults to Criteria on Report	- provide details belo	w if box Checked	DRICE Cases	3	day [l	P3]			EMERGENCY		Same	Day.	, Weel	kend	or	_
	Company address below will appear on the final report	Select Distribu	tion: 🖸 EMAIL	MAIL [FAX	P. P. Bush	2	day [l	P2]			-ä.				holid			
Street:	PO Box 30	Email 1 or Fax	foremanch@qiniq	.com			Date ar	nd Time	e Requir	ed for a	ill E&P	TATs:	:			dd-n	նանի	yy Im:	,mm
City/Province:	Coral Harbour, NU	Email 2	cfaulkner@gov.nu	i,ca		For tes	ts that c	an not b	e perform	ed acco	ording to	the se	rvice le	vel sel	ected, y	ou will	be cont	.acted.	
Postal Code:	X0C 0C0	Email 3	scollins@gov.nu,c	а		Analysis Request													
Invoice To	Same as Report To		Invoice Di	stribution		1	India	cate Fil	tered (F)	Preser	ved (P)	or Filt	ered ar	nd Pre	served	(F/P), b	ielow		Į
	Copy of Invoice with Report 🗵 YES 🗍 NO	Select Invoice	Distribution: 🕡 Er	MAIL MAIL	FAX .] .
Company:		Email 1 or Fax														1		Ī .	1
Contact:		Email 2			-													•	يو
	Project Information	0	il and Gas Require	d Fields (client u	ıse)						l] : ·		1	ine
ALS Account #	# / Quote #: W10622	AFE/Cost Center:		PO#							ĺ		1	١.		[: ·			ants
Job #:		Major/Minor Code		Routing Code:											l. ,			1	ن ا
PO / AFE:		Requisitioner:			-						່ລ			.				ľ	ă
LSD:		Location:		-							\$ (X)	i	_						Number of Containers
ALS Lab Wo	rk Order# (lab use only)	ALS Contact:	:	Sampler:	entrong!				Total Metals Total Mercury Nutrients/Phenols				8se (x2)	<u> </u>	<u></u>				.: Z
ALS Sample #	Sample Identification and/or Coordinat		Date	Time	,	1	ē	۵	₹	Σ	ents	를	Oil & Grease	BTEX-F1	F2-F4 (x2)	PAH (x2)	ł		
(lab use only)	(This description will appear on the repo	t)	(dd-mmm-yy)	(hh:mm)	Sample Type	gg G	Routine	CBOD	otal		Ę	Bacteria	1 😤	3.5	77	Į ₹	i i	1	}
	COR-3	· · · · · · · · · · · · · · · · · · ·	11-Sep-70	11:13 AM	Effluent	R	R	R	R	R	R	R	R	<u> </u>		┢	†	<u>† </u>	10
	COR-4		1	11:52 ATA	Effluent	R	R	R	R	R	R	R	R	\vdash	\vdash	 	一	+	10
	COR-5		ti	11:35 AW		R	R	R	R	R	R	R	R	\vdash	 	╁	\vdash	\vdash	10
	COR-6		11	11 06 AM	Effluent	R	R	R	R	R	R	R	R	R	R	R		 	17
	COR-7	· -··	1000	10:56 AM	Effluent	R	R	R	R	R	R	R	R	R	R	R		\vdash	17
. 4			- -	10.50.16.			<u> </u>					<u> </u>			<u> </u>	 	\vdash	 	
			1.	 	<u> </u>				\vdash		_		<u> </u>		一			+-	
			 			†						_		 	一	\vdash	┢	╁	
			 	-		 			┤			\vdash	 	\vdash	├─	\vdash	├──	-	
	- -		 			 	<u> </u>	<u> </u>	 		 	├	\vdash	\vdash	├	├	\vdash	}	
			+	<u> </u>		-			\vdash		ļ <u>.</u>	 	—		├	 	├	—	<u> </u>
													匚	<u> </u>	<u> </u>	1		ــــــ	
	<u> </u>	·	<u> </u>														<u>L. </u>		
Drinkina	Water (DW) Samples ¹ (client use)	s / Specify Criteria to		king on the drop-	down list below	.7%			SAMP	LE C	TIGNE					<u> </u>	_	ly)	
		(ele	ctronic COC only)			Froze		_			_			rvatio		Yes	_	No	
-	en from a Regulated DW System?		.#San	aple back	ccia					ubes		Cust	ody s	eal in	tact	Yes		No	
_			مرين للب	~ 200 ·			ng Initi	_						,					
		RP1-WP, BTEX, F1-				_	_	4	OLER TE	MPER	ATURE	s •c			FINA	L COO	LER TE	MPERA	ATURES °C
<u> </u>	/ES 📝 NC	· ,		outine &		$\mathcal{L}_{\mathcal{L}}$	0.										<u> </u>		
Released by:	SHIPMENT RELEASE (client use) Date: Tir	ne: Received by:	INITIAL SHIPMEN			Time		D			VAL S	HIPM	ENT			ON (la	o use	only)	TT:
Released by:)	ne. Received by:	$\Box \mathcal{V}$	Date Date	$f \Delta$	177	3	Kece	eived by	r:			ı	Date	31				Time:

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

WHITE - LABORATORY COPY YELLOW - CLIENT COPY

Failure to complete all portions of this form may delay analysis. Please \$10 in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

COC Number: 15 -

	www.aisujobai.com							<u> </u>						1							
Report To	Contact and company nam	e below will appear on the fi	nal report		Report Format	/ Distribution		Select :	ervice L	evel Be	low - Pie	ase conf	îrm ali E	&P TAT	s with	your Af	d - surc	harges	will app	ly	
Company:	Hamlet of Coral Harbour		s	Select Report F	ormat: 📝 Þof [☑ EXCEL 🗍 ED	D (DIGITAL)		Re	gular	[R] [✓ Sta	ndard 1	AT if n	ceived	1 by 3 p	pm - bu	isiness	days -	no surch	arges apply
Contact:	Darryl Nakoolak			Quality Control (QC) Report with R	eport 🦳 YES	NO	\ - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	4	day [F	·4]			λO	1	Busi.	ness	day [l	E1]	_	
Phone:	867-925-8970			Compare Resul	ts to Criteria on Report			HORI	3	day [F	3]			ERGE	S	ame	Day,	Week	end o	or .	
	Company address below will ap	pear on the final report	· s	Select Distribution	on: EMAIL	MAIL .	AX .	6.	2	day [F	2]			EN		Statu	tory 1	holida	ay [E0	<u> </u>	
Street:	PO Box 30		E	mail 1 or Fax	foremanch@qiniq.	com			Date an	d Time	Requir	ed for a	II E&P	TATs:				dd-m	anım-y	y filter	om
City/Province:	Coral Harbour, NU		E	mail 2	cfaulkner@gov.nu	,ca		For tes	s that ca	in not be	e perform	ned acco	ording to	the sea	vice le	vel sele	cted, ye	ou will b	e conta	cted,	
Postal Code:	X0C 0C0		E	mail 3	scollins@gov.nu.c	a								haly	sis R	eque	st _				
Invoice To	Same as Report To	✓ YES 🔲 NO			Invoice Dis	tribution			Indic	ate Fift	ered (F)	, Preser	ved (P)	or Filte	red ar	id Pres	erved	(F/P) b	elow		
	Copy of Invoice with Report	✓ YES 🗌 NO	s	Select Invoice D	istribution: 🔽 EM	AIL MAIL	FAX														•
Company:			E	mail 1 or Fax					_												
Contact:			E	mail 2										-			:				ஒ
	Project Inform	nation		Oil	and Gas Required	l Fields (client u	se)	1 .									[. ::]	.			. je
ALS Account #	/ Quote #: W106	522	AF	FE/Cost Center:		PO#												· [1	onta
Job #:			M	lajor/Minor Code:		Routing Code:		1												Ċ	Number of Containers
PO / AFE:			R	Requisitioner:				Ĭ					₂₂						-		ær (
LSD:			L	ocation:				1					\$ \$		(Ĕ
ALS Lab Wor	rk Order# (lab use only)	<u> </u>	Α	LS Contact:		Sampler:	entrongl arcu				Total Metals	Total Mercury	Nutrients/Phenois	_	Oil & Grease (x2)	1 (x3)	(ઇ	_		:	. Z
ALS Sample #	Sample I	dentification and/or C	oordinates		Date	Time		۱ ٍ ا	Routine	õ	ž	M.	ent	Bacteria	Ö	X	17	PAH (x2)		•	
(lab use only)	(This de	scription will appear on	the report)		(dď-mmm-yy)	(hh;mm)	Sample Type	မ္မ	Rou	CBOD	盲	Tota	호	Bac	ō	STEX-F1	F2-F4 (x2)	A	'		,
	COR-3				11- Sep- 20	11:13 AM	Effluent	R	R	R	R	R	R	R	R						10
	COR-4				11	11:22 ATA	Effluent	R	R	R	R	R	R	R	R						10
	COR-5			-		11-32 AM	Effluent	R	R	R	R	R	R	R	R						10
	COR-6				11	11:06 AM	Effluent .	R	R	R	R	R	R	R	R	R	R	R			17
_	COR-7				- 11	10:56 AM	Effluent	R	R	R	R	R	R	R	R	R	R	R			17
																_	<u> </u>		_		· · · · · · · · · · · · · · · · · · ·
								\vdash	-					-		_					
					<u> </u>	-							_				-				
	<u> </u>		<u> </u>			<u> </u>		├								<u> </u>	H				
						 											Н	\dashv			
								-	_								-				
								<u> </u>					-					_4			
		· .						<u>L</u> .					L				با				
Drinking	Water (DW) Samples ¹ (clier	t use) Special in	structions / Spec		dd on report by clici tronic COC only)	king on the drop-c	lown list below				_	LE CO	ONDIT								1.00
Are samples take	en from a Regulated DW Syster	n2		(6186	tronic COC omy)			Froze		$\overline{}$				SIF						No	
	ES 🔽 NO	¹¹¹			#Saw	ple bact	cri4		acks			ubes	Ц	Cust	ody s	eal in	tact	Yes	Ш	No	
	human drinking water use?	NIL INVALA						MDC5:	Timen												
	-	INDINAVU	VUT-WW-GRP1-WP, BTEX, F1-F4, PAH WOW SOU IN INITIAL COOLER TEMPERATURES "C FINAL COOLER TEMPERATURES "C					UKES "C													
Y	ES 🔽 NO SHIPMENT RELEAS	E (client use)	—		Y INITIAL SHIPMEN			└ {.\	<u> </u>			· ·		LUGS.	- 17		-philip	NI Zine			
Released by:	SHIPMENT RELEAS		Time: F	Received by:	INTHAL SHIPWEN	Date# -	ab use only)	Time		Ross	ived b		NAL S	ніРМ	ENT	Date		in (lai	use	onty)	Time:
las	F "II	- ser-20	W:45AM		\mathcal{V}	Les 7	⁻ />	//3	ער	Rece	aveu D	у.				Dell					rime.
REFER TO BACK	PAGE FOR ALS LOCATIONS A	NO SAMPLING INFORM			WHI	TE - LABORATOR	COPY YEL	OW	CLIENT	COP	-						_	_			OCTOBER 2015 FRONT

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY, By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

ANNUAL REPORT FOR THE HAMLET OF CORAL HARBOUR

Appendix C: Hazardous Materials Spill Database

Spill	Occurance Date -	Spill Region	Location	Location Description	Product Spilled	Quantity	Measurement	Spill Cause	Lead Agency
spill- 2020145	May 21, 2020	Keewatin	Coral Harbour, Community, Nunavut	Coral Harbour	Petroleum - fuel oil (jet A, diesel, turbo A, heat)	2200.00	Litres	Collision or Crash	GN - Government of Nunavut

ANNUAL REPORT FOR THE HAMLET OF CORAL HARBOUR

Appendix D: Coral Harbour 2020 Sampling Summary

COR-3				20	20	
Parameter	Unit	DL	08-Jul-20	26-Aug-20	10-Sep-20	11-Sep-20
Alkalinity						
Bicarbonate (HCO3)	mg/L	1.2	404	187	364	342
Carbonate (CO3)	mg/L	0.60	0.60	<0.60	<0.60	<0.60
Hydroxide (OH)	mg/L	0.34	0.34	<0.34	<0.34	<0.34
Total (as CaCO3)	mg/L	1.0	331	153	298	281
Ammonia by Colour	0.					
Total (as N)	mg/L	0.20	62.5	0.049	33.3	31
Biochemical Oxygen Demand (BOD)						
Biochemical Oxygen Demand	mg/L	6.0	141	<2.0	40	38
Carbonaceous BOD						
BOD Carbonaceous	mg/L	6.0	135	<2.0	35.2	34.2
Chloride in Water by IC						
Chloride (CI)	mg/L	10	38.3	50.4	62.6	60.3
Conductivity						
Conductivity	umhos/cm	1.0	745	535	799	774
Fecal Coliforms						
Fecal Coliforms	MPN/100mL	3	N/A	<10	>24200	4610
Hardness Calculated						
Hardness (as CaCO3)	mg/L	0.30	108	164	142	153
Mercury Total						
Mercury (Hg)	mg/L	0.00020	0.0000250	<0.0000050	<0.0000050	<0.0000050
Nitrate in Water by IC						
Nitrate (as N)	mg/L	0.40	0.040	<0.020	0.436	0.385
Nitrate + Nitrite						
Nitrate and Nitrite as N	mg/L	0.45	0.070	<0.070	0.535	0.483
Nitrite in Water by IC						
Nitrite (as N)	mg/L	0.20	0.020	<0.010	0.099	0.099
Oil & Grease - Gravimetric						
Oil and Grease	mg/L	5.0	10.8	<5.0	<5.0	<5.0
Phenol						
Phenols	mg/L	0.0010	0.424	0.002	<0.0050	<0.0050
Phosphorus, Total						
Phosphorus (P)	mg/L	0.010	8.16	0.0431	7.68	7.01
Sulfate in Water by IC						
Sulfate (SO4)	mg/L	6.0	0.60	56.60	16.00	23.70
Total Metals by ICP-MS						
Aluminium (AI)	mg/L	0.0050	0.0484	0.0081	0.0713	0.0530
Arsenic (As)	mg/L	0.00020	0.00397	0.00086	0.00105	0.00092
Cadmium (Cd)	mg/L	0.000010	0.0000823	<0.000050	0.0000158	0.0000121
Calcium (Ca)	mg/L	0.10	36.1	48	47.5	51.5
Chromium (Cr)	mg/L	0.0010	0.00055	0.00028	0.00066	0.00046
Cobalt (Co)	mg/L	0.00020	0.000097	0.000280	0.000540	0.000510
Copper (Cu)	mg/L	0.00020	0.0245	0.00082	0.0144	0.0144
Iron (Fe)	mg/L	0.010	0.496	0.168	0.542	0.588
Lead (Pb)	mg/L	0.000090	0.000755	<0.000050	0.000411	0.000335
Magnesium (Mg)	mg/L	0.010	4.27	10.6	5.83	5.83
Manganese (Mn)	mg/L	0.00030	0.0618	0.0215	0.0679	0.0622
Nickel (Ni)	mg/L	0.0020	0.00335	0.00202	0.00242	0.00257
Potassium (K)	mg/L	0.020	18.8 35.1	10.5 49.3	23.9 54.7	23.5 54
Sodium (Na) Zinc (Zn)	mg/L	0.030	0.0254	0.0057		
Zinc (Zn) Total Organic Carbon by Combustion	mg/L	0.0020	0.0254	0.0057	0.0218	0.0331
,	ma/l	0.50	122	10.0	122	150
Total Organic Carbon Total Suspended Solids	mg/L	0.50	122	19.9	122	150
Total Suspended Solids Total Suspended Solids	ma/l	13	34.4	<3.0	171	183
pH	mg/L	15	34.4	₹3.0	1/1	100
рн pH	pH Units	0.10	7.88	8.22	7.82	7.86
рп Benzene		0.00050	0.00050	8.22 N/A		7.86 N/A
Toluene	mg/L mg/L	0.00050	0.00050	N/A N/A	N/A N/A	N/A N/A
	mg/L mg/L	0.0010	0.0075	N/A N/A	N/A N/A	N/A N/A
Ethyl Benzene o-Xylene	mg/L mg/L	0.00050	0.00050	N/A N/A	N/A N/A	N/A N/A
F1 (C6-C10)	mg/L	0.10	0.10	N/A N/A	N/A N/A	N/A N/A
F2 (C10-C16)	mg/L	0.10	0.10	N/A N/A	N/A N/A	N/A N/A
F3 (C16-C34)	mg/L	0.25	5.81	N/A	N/A	N/A N/A
F4 (C34-C50)	mg/L	0.25	1.73	N/A	N/A	N/A
Total Hydrocarbons (C6-C50)	mg/L	0.23	8.05	N/A N/A	N/A	N/A N/A
Total Tryulocal bolls (Co-C50)	ilig/L	0.44	6.03	IN/A	IN/A	IN/A

COR-4				20	20	
Parameter	Unit	DL	08-Jul-20	26-Aug-20	10-Sep-20	11-Sep-20
Alkalinity	- Cilic		33 04.1 23			
Bicarbonate (HCO3)	mg/L	1.2	338	329	321	322
Carbonate (CO3)	mg/L	0.60	9.96	<0.60	<0.60	<0.60
Hydroxide (OH)	mg/L	0.34	0.34	<0.34	<0.34	<0.34
Total (as CaCO3)	mg/L	1.0	294	270	263	264
Ammonia by Colour	/	0.00	4.53	4.00	0.67	0.62
Total (as N)	mg/L	0.20	1.57	1.08	0.67	0.63
Biochemical Oxygen Demand (BOD)	mg/L	6.0	26	6.1	14.4	3.4
Biochemical Oxygen Demand Carbonaceous BOD	IIIg/L	0.0	20	0.1	14.4	5.4
BOD Carbonaceous	mg/L	6.0	25	2.7	18.4	<2.0
Chloride in Water by IC	8/ =	0.0			20.1	
Chloride (CI)	mg/L	10	79	61.7	90.7	91.3
Conductivity						
Conductivity	umhos/cm	1.0	749	710	822	836
Fecal Coliforms						
Fecal Coliforms	MPN/100mL	3	N/A	30	150	10
Hardness Calculated						
Hardness (as CaCO3)	mg/L	0.30	277	257	292	304
Mercury Total	/I	0.00020	0.0000050	40,000,000	*0.00000E0	*0.00000E0
Mercury (Hg) Nitrate in Water by IC	mg/L	0.00020	0.0000050	<0.0000050	<0.0000050	<0.0000050
Nitrate in Water by ic Nitrate (as N)	mg/L	0.40	0.162	2.11	3.72	3.94
Nitrate + Nitrite	IIIg/L	0.40	0.102	2.11	3.72	3.94
Nitrate and Nitrite as N	mg/L	0.45	0.204	2.21	3.81	3.98
Nitrite in Water by IC	G/					
Nitrite (as N)	mg/L	0.20	0.041	0.104	0.093	0.047
Oil & Grease - Gravimetric						
Oil and Grease	mg/L	5.0	5	<5.0	<5.0	<5.0
Phenol						
Phenols	mg/L	0.0010	0.0017	0.0023	0.0011	<0.0010
Phosphorus, Total						
Phosphorus (P)	mg/L	0.010	2.08	0.146	0.274	0.119
Sulfate in Water by IC	ma/l	6.0	19.2	23.0	37.1	37.3
Sulfate (SO4) Total Metals by ICP-MS	mg/L	6.0	19.2	23.0	57.1	37.3
Aluminium (Al)	mg/L	0.0050	0.140	0.012	0.041	0.009
Arsenic (As)	mg/L	0.00020	0.00205	0.00104	0.00108	0.00091
Cadmium (Cd)	mg/L	0.000010	0.000170	0.000026	0.000063	0.000037
Calcium (Ca)	mg/L	0.10	98.9	88.2	100	105
Chromium (Cr)	mg/L	0.0010	0.00109	0.00019	0.00064	0.00043
Cobalt (Co)	mg/L	0.00020	0.00175	0.00154	0.00139	0.00135
Copper (Cu)	mg/L	0.00020	0.00865	0.00221	0.0059	0.00399
Iron (Fe)	mg/L	0.010	1.35	0.187	0.459	0.094
Lead (Pb)	mg/L	0.000090	0.000496	<0.000050	0.000089	<0.000050
Magnesium (Mg)	mg/L	0.010	7.30	8.86	10.00	10.30
Manganese (Mn)	mg/L	0.00030	0.169	0.103	0.0725	0.0744 0.00548
Nickel (Ni) Potassium (K)	mg/L mg/L	0.0020	0.00595 15.7	0.00544 10.3	0.00556 11.6	11.8
Sodium (Na)	mg/L	0.020	68.9	50.9	64.2	66.2
Zinc (Zn)	mg/L	0.0020	0.0413	0.0030	0.0069	0.0116
Total Organic Carbon by Combustion	8/ =		3.3.120			
Total Organic Carbon	mg/L	0.50	29.9	11.4	14.6	14.3
Total Suspended Solids						
Total Suspended Solids	mg/L	13	86.4	127	23.4	8.8
рН						
рН	pH Units	0.10	8.42	8.23	7.66	7.91
Benzene	mg/L	0.00050	0.00050	N/A	N/A	N/A
Toluene	mg/L	0.0010	0.0010	N/A	N/A	N/A
Ethyl Benzene	mg/L	0.00050	0.00050	N/A	N/A	N/A
o-Xylene F1 (C6-C10)	mg/L	0.00050	0.00050 0.10	N/A N/A	N/A N/A	N/A N/A
F2 (C10-C16)	mg/L mg/L	0.10	0.10	N/A N/A	N/A N/A	N/A N/A
F3 (C16-C16)	mg/L	0.25	0.10	N/A	N/A N/A	N/A N/A
F4 (C34-C50)	mg/L	0.25	0.25	N/A	N/A	N/A
Total Hydrocarbons (C6-C50)	mg/L	0.44	0.38	N/A	N/A	N/A
,	··Or =					-,-

COR-5				20	20	
Parameter	Unit	DL	08-Jul-20	26-Aug-20	10-Sep-20	11-Sep-20
Alkalinity	- Cilic		00 00 20		20 000 20	
Bicarbonate (HCO3)	mg/L	1.2	112	422	206	214
Carbonate (CO3)	mg/L	0.60	4.20	<0.60	<0.60	<0.60
Hydroxide (OH)	mg/L	0.34	0.34	<0.34	<0.34	<0.34
Total (as CaCO3)	mg/L	1.0	98.5	346	169	176
Ammonia by Colour	/	0.00	0.004	45.0	0.040	0.007
Total (as N)	mg/L	0.20	0.034	45.2	0.048	0.037
Biochemical Oxygen Demand (BOD)	mg/L	6.0	12.1	47	<2.0	<2.0
Biochemical Oxygen Demand Carbonaceous BOD	IIIg/L	0.0	12.1	47	₹2.0	<2.0
BOD Carbonaceous	mg/L	6.0	7.7	30.2	<2.0	<2.0
Chloride in Water by IC	8/ =	0.0		33.2		
Chloride (CI)	mg/L	10	35.5	60.1	59	58.5
Conductivity						
Conductivity	umhos/cm	1.0	359	879	591	603
Fecal Coliforms						
Fecal Coliforms	MPN/100mL	3	N/A	3080	10	10
Hardness Calculated						
Hardness (as CaCO3)	mg/L	0.30	95.6	151	195	205
Mercury Total	/I	0.00020	0.0000050	0.0000000	*0.00000E0	*0.00000E0
Mercury (Hg) Nitrate in Water by IC	mg/L	0.00020	0.0000050	0.0000060	<0.0000050	<0.0000050
Nitrate in Water by ic Nitrate (as N)	mg/L	0.40	0.020	0.070	<0.020	0.026
Nitrate + Nitrite	IIIg/L	0.40	0.020	0.070	\0.020	0.020
Nitrate and Nitrite as N	mg/L	0.45	0.070	0.100	< 0.070	< 0.070
Nitrite in Water by IC	G/					
Nitrite (as N)	mg/L	0.20	0.010	0.031	<0.010	<0.010
Oil & Grease - Gravimetric						
Oil and Grease	mg/L	5.0	5	<5.0	<5.0	<5.0
Phenol						
Phenols	mg/L	0.0010	0.0010	<0.0050	<0.0010	<0.0010
Phosphorus, Total						
Phosphorus (P)	mg/L	0.010	0.166	8.55	0.0294	0.0299
Sulfate in Water by IC	ma/l	6.0	41.7	12.8	67.3	65.8
Sulfate (SO4) Total Metals by ICP-MS	mg/L	6.0	41.7	12.6	07.5	05.8
Aluminium (Al)	mg/L	0.0050	0.0137	0.0738	0.0039	0.0047
Arsenic (As)	mg/L	0.00020	0.00146	0.00109	0.00061	0.00061
Cadmium (Cd)	mg/L	0.000010	0.0000646	0.0000131	<0.0000050	<0.0000050
Calcium (Ca)	mg/L	0.10	27.7	50.7	59.9	64
Chromium (Cr)	mg/L	0.0010	0.00046	0.00037	0.00023	0.00051
Cobalt (Co)	mg/L	0.00020	0.00058	0.00056	0.00024	0.00024
Copper (Cu)	mg/L	0.00020	0.00213	0.01	0.00075	0.00081
Iron (Fe)	mg/L	0.010	0.280	0.429	0.107	0.119
Lead (Pb)	mg/L	0.000090	0.000111	0.000288	<0.000050	<0.000050
Magnesium (Mg)	mg/L	0.010	5.83	6.04	10.90	10.90
Manganese (Mn)	mg/L	0.00030	0.0523	0.063	0.00846	0.0108
Nickel (Ni) Potassium (K)	mg/L mg/L	0.0020	0.00235 11.6	0.00245 24.7	0.00189 9.45	0.00193 9.51
Sodium (Na)	mg/L	0.020	31.5	57.3	48.3	47.7
Zinc (Zn)	mg/L	0.0020	0.0141	0.0184	<0.0030	0.0076
Total Organic Carbon by Combustion	6/ -	0.0020	0.0111	0.0101	.5.5050	0.0070
Total Organic Carbon	mg/L	0.50	26.4	89.9	17.4	16.4
Total Suspended Solids						
Total Suspended Solids	mg/L	13	11.8	152	<3.0	<3.0
рН						
рН	pH Units	0.10	8.44	7.79	8.28	8.24
Benzene	mg/L	0.00050	0.00050	N/A	N/A	N/A
Toluene	mg/L	0.0010	0.0010	N/A	N/A	N/A
Ethyl Benzene	mg/L	0.00050	0.00050	N/A	N/A	N/A
o-Xylene F1 (C6-C10)	mg/L	0.00050	0.00050	N/A N/A	N/A N/A	N/A N/A
F2 (C10-C16)	mg/L mg/L	0.10 0.25	0.10 0.10	N/A N/A	N/A N/A	N/A N/A
F3 (C16-C34)	mg/L	0.25	0.10	N/A	N/A	N/A
F4 (C34-C50)	mg/L	0.25	0.25	N/A	N/A	N/A
Total Hydrocarbons (C6-C50)	mg/L	0.44	0.38	N/A	N/A	N/A
,	- Jr -			,	,	, , ,

COR-6				20	120	
Parameter	Unit	DL	08-Jul-20	26-Aug-20	10-Sep-20	11-Sep-20
Alkalinity	- Cilic		00 00 20		20 000 20	
Bicarbonate (HCO3)	mg/L	1.2	163	297	394	418
Carbonate (CO3)	mg/L	0.60	4.44	<0.60	<0.60	<0.60
Hydroxide (OH)	mg/L	0.34	0.34	<0.34	<0.34	<0.34
Total (as CaCO3)	mg/L	1.0	141	243	323	343
Ammonia by Colour	/	0.20	0.054	0.004		4.06
Total (as N)	mg/L	0.20	0.051	0.091	1.4	1.26
Biochemical Oxygen Demand (BOD)	mg/L	6.0	16.4	27.9	9.1	11.6
Biochemical Oxygen Demand Carbonaceous BOD	IIIg/L	0.0	10.4	27.9	9.1	11.0
BOD Carbonaceous	mg/L	6.0	10.3	9.9	6.4	9.2
Chloride in Water by IC	8/ =	0.0				0.12
Chloride (CI)	mg/L	10	28.1	53.9	60.9	56.1
Conductivity						
Conductivity	umhos/cm	1.0	365	655	753	790
Fecal Coliforms						
Fecal Coliforms	MPN/100mL	3	365	40	20	50
Hardness Calculated						
Hardness (as CaCO3)	mg/L	0.30	134	241	299	291
Mercury Total	/I	0.00020	0.0000050	0.0000000	40,00000000	<0.0000050
Mercury (Hg) Nitrate in Water by IC	mg/L	0.00020	0.0000050	0.0000050	<0.0000050	<0.0000050
Nitrate in Water by ic Nitrate (as N)	mg/L	0.40	0.020	<0.020	0.151	<0.020
Nitrate (83 N)	IIIg/L	0.40	0.020	₹0.020	0.131	\0.020
Nitrate and Nitrite as N	mg/L	0.45	0.070	< 0.070	0.151	< 0.070
Nitrite in Water by IC	G/					
Nitrite (as N)	mg/L	0.20	0.010	<0.010	<0.010	<0.010
Oil & Grease - Gravimetric						
Oil and Grease	mg/L	5.0	5	<5.0	620	<5.0
Phenol						
Phenols	mg/L	0.0010	0.0016	0.0018	0.0069	0.0029
Phosphorus, Total						
Phosphorus (P)	mg/L	0.010	0.427	0.308	0.304	0.302
Sulfate in Water by IC	ma/l	6.0	20.5	35.8	26.1	23.5
Sulfate (SO4) Total Metals by ICP-MS	mg/L	6.0	20.5	33.6	20.1	23.5
Aluminium (Al)	mg/L	0.0050	0.116	0.126	0.047	0.046
Arsenic (As)	mg/L	0.00020	0.00136	0.00266	0.0022	0.00211
Cadmium (Cd)	mg/L	0.000010	0.0000458	0.0000087	<0.0000050	<0.0000050
Calcium (Ca)	mg/L	0.10	41	62.1	84.8	83
Chromium (Cr)	mg/L	0.0010	0.00051	0.00076	0.00084	0.00107
Cobalt (Co)	mg/L	0.00020	0.00022	0.00030	0.00023	0.00024
Copper (Cu)	mg/L	0.00020	0.00378	0.0027	0.00108	0.00124
Iron (Fe)	mg/L	0.010	0.592	1.500	0.670	0.685
Lead (Pb)	mg/L	0.000090	0.000341	0.000524	0.000191	0.000246
Magnesium (Mg)	mg/L	0.010	7.57	20.80	21.10	20.40
Manganese (Mn)	mg/L	0.00030	0.0653	0.0663	0.0739	0.0876
Nickel (Ni) Potassium (K)	mg/L mg/L	0.0020 0.020	0.00116 11.2	0.00218 24.4	0.00205 26.6	0.00192 25
Sodium (Na)	mg/L	0.020	20.7	48.8	49.4	48.3
Zinc (Zn)	mg/L	0.0020	0.0102	0.0082	0.0076	0.0074
Total Organic Carbon by Combustion	8/ =	5.5020		3.1002		,
Total Organic Carbon	mg/L	0.50	27.3	38.8	32.9	32.4
Total Suspended Solids						
Total Suspended Solids	mg/L	13	10.4	34.9	31.4	12.2
рН						
рН	pH Units	0.10	8.34	8.19	8.17	8.06
Benzene	mg/L	0.00050	0.00050	<0.00050	<0.00050	<0.00050
Toluene	mg/L	0.0010	0.0010	<0.0010	<0.0010	<0.0010
Ethyl Benzene	mg/L	0.00050	0.00050	<0.00050	<0.00050	<0.00050
o-Xylene F1 (C6-C10)	mg/L	0.00050	0.00050	<0.00050	<0.00050 <0.10	<0.00050 <0.10
F1 (C6-C10) F2 (C10-C16)	mg/L mg/L	0.10 0.25	0.10 0.10	<0.10 <0.10	<0.10	<0.10
F3 (C16-C16)	mg/L	0.25	0.10	0.28	<0.10	0.27
F4 (C34-C50)	mg/L	0.25	0.25	<0.25	<0.25	<0.25
Total Hydrocarbons (C6-C50)	mg/L	0.44	0.38	<0.38	<0.38	<0.38
,	··Or =					

COR-7				20	20	
Parameter	Unit	DL	08-Jul-20	26-Aug-20	10-Sep-20	11-Sep-20
Alkalinity						
Bicarbonate (HCO3)	mg/L	1.2	130	120	189	184
Carbonate (CO3)	mg/L	0.60	0.60	<0.60	<0.60	<0.60
Hydroxide (OH)	mg/L	0.34	0.34	<0.34	<0.34	<0.34
Total (as CaCO3)	mg/L	1.0	107	98.5	155	151
Ammonia by Colour Total (as N)	mg/L	0.20	0.049	0.079	0.029	0.029
Biochemical Oxygen Demand (BOD)	IIIg/L	0.20	0.049	0.073	0.023	0.029
Biochemical Oxygen Demand	mg/L	6.0	2	7.7	2.7	<2.0
Carbonaceous BOD	G/					-
BOD Carbonaceous	mg/L	6.0	2	<6.0	<2.0	<2.0
Chloride in Water by IC						
Chloride (CI)	mg/L	10	4.18	6.8	10	6.7
Conductivity						
Conductivity	umhos/cm	1.0	526	901	1020	976
Fecal Coliforms	NADAL/100mml	2	NI/A	20	10	-10
Fecal Coliforms Hardness Calculated	MPN/100mL	3	N/A	30	10	<10
Hardness (as CaCO3)	mg/L	0.30	264	486	576	523
Mercury Total	IIIB/ L	0.50	204	700	370	323
Mercury (Hg)	mg/L	0.00020	0.0000050	<0.0000050	<0.0000050	<0.0000050
Nitrate in Water by IC						
Nitrate (as N)	mg/L	0.40	0.020	<0.040	0.094	<0.040
Nitrate + Nitrite						
Nitrate and Nitrite as N	mg/L	0.45	0.070	<0.070	0.094	<0.070
Nitrite in Water by IC						
Nitrite (as N)	mg/L	0.20	0.010	<0.020	<0.020	<0.020
Oil & Grease - Gravimetric Oil and Grease	ma/l	5.0	5	<5.0	<5.0	<5.0
Phenol	mg/L	3.0	3	₹3.0	₹3.0	\3.0
Phenols	mg/L	0.0010	0.0010	0.0010	<0.0010	<0.0010
Phosphorus, Total	8/ =	0.0020	0.0020	0.0020	0.0020	0.0020
Phosphorus (P)	mg/L	0.010	0.0856	0.0794	0.0638	0.0524
Sulfate in Water by IC						
Sulfate (SO4)	mg/L	6.0	178	421	441	422
Total Metals by ICP-MS						
Aluminium (AI)	mg/L	0.0050	0.0081	0.0234	0.0170	0.0062
Arsenic (As)	mg/L	0.00020	0.00062	0.0007	0.00051	0.0005
Cadmium (Cd) Calcium (Ca)	mg/L	0.000010 0.10	0.0000636 98	0.0000426 178	0.0000288 213	0.0000074 193
Chromium (Cr)	mg/L mg/L	0.0010	0.00028	0.00037	0.00065	0.00032
Cobalt (Co)	mg/L	0.00020	0.00019	0.00037	0.00034	0.00032
Copper (Cu)	mg/L	0.00020	0.00311	0.00395	0.0023	0.00102
Iron (Fe)	mg/L	0.010	0.454	1.360	1.330	1.170
Lead (Pb)	mg/L	0.000090	0.000186	0.000544	0.000455	0.000145
Magnesium (Mg)	mg/L	0.010	4.59	9.99	10.70	10.00
Manganese (Mn)	mg/L	0.00030	0.0313	0.0334	0.0842	0.0831
Nickel (Ni)	mg/L	0.0020	0.00195	0.00354	0.003	0.00273
Potassium (K)	mg/L	0.020	3.82	6.61	7.6	6.84
Sodium (Na)	mg/L	0.030	5.3	12.5	14.7	14.1
Zinc (Zn) Total Organic Carbon by Combustion	mg/L	0.0020	0.0499	0.0559	0.0282	0.0205
Total Organic Carbon by Combustion Total Organic Carbon	mg/L	0.50	11.9	17.7	17.1	16.9
Total Suspended Solids						20.0
Total Suspended Solids	mg/L	13	3	15.7	11	56.8
pH						
рН	pH Units	0.10	7.98	7.89	8.06	8.15
Benzene	mg/L	0.00050	0.00050	<0.00050	<0.00050	<0.00050
Toluene	mg/L	0.0010	0.0010	<0.0010	<0.0010	<0.0010
Ethyl Benzene	mg/L	0.00050	0.00050	<0.00050	<0.00050	<0.00050
o-Xylene	mg/L	0.00050	0.00050	<0.00050	<0.00050	<0.00050
F1 (C6-C10) F2 (C10-C16)	mg/L mg/L	0.10 0.25	0.10 0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10
F3 (C16-C34)	mg/L	0.25	0.10	<0.10	<0.10	<0.10
F4 (C34-C50)	mg/L	0.25	0.25	<0.25	<0.25	<0.25
Total Hydrocarbons (C6-C50)	mg/L	0.44	0.38	<0.38	<0.38	<0.38

ANNUAL REPORT FOR THE HAMLET OF CORAL HARBOUR

Appendix E : CIRNAC Inspection Report

The CIRNAC inspection report was not received by CGS at the time of this submission.