Summary of Effluent Sampling Down-Gradient of Soil Storage Area Hamlet of Repulse Bay Water Licence No. 3BM-REP0409

					Sampli	ng Date
	Parameter ¹	Unit	Detection Limit	CCME Guidelines ²	20-Aug-14	29-Jun-12
BOD		mg/L	6.0	NG	<6.0	<6.0
Faecal	Coliforms	MPN/100mL	3	NG	93	<3
рН		pH units	0.10	6.5-9	8.04	8.72
Condu		umhos/cm	20	NG	373	289
Total S	uspended Solids	mg/L	5.0	25	<5.0	<5.0
Ammo	niam Nitrogen	mg/L	0.010	1.54	<0.010	0.024
Nitrate	-Nitrite	mg/L	0.050	NG	<0.050	<0.050
	Grease	mg/L	2.0	NG	<2.0	<2.0
	henols	mg/L	0.0010	0.004	<0.0010	<0.0010
	lkalinity	mg/L	20	NG	119	130
	lardness	mg/L	0.30	NG	158	168
Calciur	n	mg/L	0.10	NG	45.4	48.9
Magne	sium	mg/L	0.010	NG	10.9	11.1
Potassi		mg/L	0.020	NG	2.89	2.78
Sodiun		mg/L	0.030	NG	20.3	4.96
Sulpha		mg/L	0.50	NG	17.2	26.7
Total A		mg/L	0.00020	0.005	<0.00020	<0.0010
	admium	mg/L	0.000010	0.00009	<0.000010	<0.00020
Total C	• • • • • • • • • • • • • • • • • • • •	mg/L	0.00020	0.002	0.00149	0.0042
Total C	Chromium	mg/L	0.0010	0.001	<0.0010	<0.0020
Total Ir		mg/L	0.10	0.3	<0.10	<0.10
Total L		mg/L	0.000090	0.00229	<0.000090	<0.0010
	/lercury	mg/L	0.000010	0.000026	<0.000020	NS
Total N		mg/L	0.0020	0.07879	<0.0020	<0.0020
TPH	F1 (C6-C10)	mg/L	0.10	NG	<0.10	<0.10
	F2 (C10-C16)	mg/L	0.25	NG	<0.25	<0.25
	F3 (C16-C34)	mg/L	0.25	NG	<0.25	<0.25
	F4 (C34-C50)	mg/L	0.25	NG	<0.25	<0.25
	Total Hydrocarbons (C6-C50)	mg/L	0.44	NG	<0.44	<0.44
PAH	1-Methyl Naphthalene	mg/L	0.000020	NG	<0.000020	<0.000020
	2-Methyl Naphthalene	mg/L	0.000020	NG	<0.000020	<0.000020
	Acenaphthene	mg/L	0.000020	0.0058	<0.000020	<0.000020
	Acenaphthylene	mg/L	0.000020	NG	<0.000020	<0.000020
	Anthracene	mg/L	0.000010	0.000012	<0.000010	
	Acridine	mg/L	0.000020	0.0044	<0.000020	
	Benzo(a)anthracene	mg/L	0.000010	0.000018	<0.000010	<0.000010
	Benzo(a)pyrene	mg/L	0.0000050	0.000015		
	Benzo(b&j)fluoranthene	mg/L	0.000010	NG	<0.000010	
	Benzo(g,h,i)perylene	mg/L	0.000020	NG	<0.000020	<0.000020
	Benzo(k)fluoranthene	mg/L	0.000010	NG	<0.000010	
	Chrysene	mg/L	0.000020			
	Dibenzo(a,h)anthracene	mg/L	0.0000050	NG		<0.0000050
	Fluoranthene	mg/L	0.000020	0.00004	<0.000020	<0.000020
	Fluorene	mg/L	0.000020	0.003	<0.000020	
	Indeno(1,2,3-cd)pyrene	mg/L	0.000010	NG	<0.000010	
	Naphthalene	mg/L	0.000050	0.0011	<0.000050	
	Phenanthrene	mg/L	0.000050	0.0004	<0.000050	<0.000050
	Pyrene	mg/L	0.000010	0.000025	<0.000010	
	Quinoline	mg/L	0.000020	0.0034	<0.000020	<0.000030
DTC	B(a)P Total Potency Equivalent	mg/L	0.000030	NG	<0.000030	<0.000030
BTEX	Benzene	mg/L	0.00050	0.37	<0.00050	<0.00050
	Toluene	mg/L	0.0010	0.002	<0.0010	<0.0010
	Ethylbenzene	mg/L	0.00050	0.09	<0.00050	<0.00050
	Xylene	mg/L	0.00050	0.09	<0.00050	<0.00050

¹Parameters requested in Part H, Item 13 of Water Licence

 $^{^2} Canadian \ Environmental \ Quality \ Guidelines - Water \ Quality \ Guidelines \ for \ the \ Protection \ of \ Aquatic \ Life$

NG - No Guideline

NS - Not Sampled

Hamlet of Repulse Bay ATTN: KEVIN TEGUMIAR

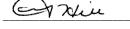
PO Box 10

Repulse Bay NU X0C 0H0

Date Received: 21-AUG-14

Report Date: 30-AUG-14 17:17 (MT)

Version: FINAL


Client Phone: 867-462-9952

Certificate of Analysis

Lab Work Order #: L1506076

Project P.O. #: NOT SUBMITTED

Job Reference: C of C Numbers: Legal Site Desc:

Gail Hill Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1506076-1 REP-2							
Sampled By: JIMMY on 20-AUG-14 @ 08:30							
Matrix: WASTE WATER							
WASTE WATER							
Nunavut WW Group 1							
Alkalinity							
Alkalinity, Total (as CaCO3)	185		20	mg/L		26-AUG-14	R2930538
Bicarbonate (HCO3)	225		24	mg/L		26-AUG-14	R2930538
Carbonate (CO3) Hydroxide (OH)	<12		12	mg/L		26-AUG-14 26-AUG-14	R2930538
Ammonia by colour	<6.8		6.8	mg/L		26-AUG-14	R2930538
Ammonia, Total (as N)	<0.010		0.010	mg/L		22-AUG-14	R2927606
Biochemical Oxygen Demand (BOD)							
Biochemical Oxygen Demand	<6.0		6.0	mg/L		21-AUG-14	R2929126
Carbonaceous BOD							
BOD Carbonaceous	<6.0		6.0	mg/L		21-AUG-14	R2929126
Chloride by Ion Chromatography	44.7		0.50	c: n		00 410 44	Doooccc
Chloride	41.7		0.50	mg/L		22-AUG-14	R2929232
Conductivity Conductivity	565		20	umhos/cm		26-AUG-14	R2930538
Fecal Coliform	000		20	diiii100/0iii		207.0011	112300000
Fecal Coliforms	75		3	MPN/100mL		24-AUG-14	R2928217
Hardness Calculated							
Hardness (as CaCO3)	223		0.30	mg/L		28-AUG-14	
Mercury Total							
Mercury (Hg)-Total	<0.000020		0.000020	mg/L	25-AUG-14	25-AUG-14	R2927763
Nitrate as N by Ion Chromatography Nitrate-N	0.161		0.050	mg/L		22-AUG-14	R2929232
Nitrate+Nitrite	0.161		0.030	IIIg/L		22-AUG-14	R2929232
Nitrate and Nitrite as N	0.161		0.071	mg/L		26-AUG-14	
Nitrite as N by Ion Chromatography							
Nitrite-N	<0.050		0.050	mg/L		22-AUG-14	R2929232
Oil and Grease, Total							
Oil and Grease, Total	<2.0		2.0	mg/L	24-AUG-14	24-AUG-14	R2927614
Phenol (4AAP) Phenols (4AAP)	<0.0010		0.0010	mg/L	27-AUG-14	27-AUG-14	R2931468
Phosphorus, Total	<0.0010		0.0010	IIIg/L	21-700-14	21 700 14	112931400
Phosphorus (P)-Total	0.011		0.010	mg/L		25-AUG-14	R2928472
Sulfate by Ion Chromatography							
Sulfate	35.6		0.50	mg/L		22-AUG-14	R2929232
Total Metals by ICP-MS			0.0055		07 4110 : :	07 4110 : :	Doorse :
Aluminum (Al)-Total	0.0080		0.0050	mg/L	27-AUG-14	27-AUG-14	R2930931
Arsenic (As)-Total Cadmium (Cd)-Total	0.00023		0.00020	mg/L	27-AUG-14 27-AUG-14	27-AUG-14 27-AUG-14	R2930931
Calcium (Ca)-Total	<0.000010 66.6		0.000010	mg/L mg/L	27-AUG-14 27-AUG-14	27-AUG-14 27-AUG-14	R2930931 R2930931
Chromium (Cr)-Total	<0.0010		0.10	mg/L	27-AUG-14 27-AUG-14	27-AUG-14 27-AUG-14	R2930931
Cobalt (Co)-Total	<0.0010		0.0010	mg/L	27-AUG-14	27-AUG-14	R2930931
Copper (Cu)-Total	0.00151		0.00020	mg/L	27-AUG-14	27-AUG-14	R2930931
Iron (Fe)-Total	<0.10		0.10	mg/L	27-AUG-14	27-AUG-14	R2930931
Lead (Pb)-Total	<0.000090		0.000090	mg/L	27-AUG-14	27-AUG-14	R2930931
Magnesium (Mg)-Total	13.7		0.010	mg/L	27-AUG-14	27-AUG-14	R2930931
Manganese (Mn)-Total	0.00352		0.00030	mg/L	27-AUG-14	27-AUG-14	R2930931
Nickel (Ni)-Total	<0.0020		0.0020	mg/L	27-AUG-14	27-AUG-14	R2930931
Potassium (K)-Total	4.03		0.020	mg/L	27-AUG-14	27-AUG-14	R2930931
Sodium (Na)-Total Zinc (Zn)-Total	30.3 0.0024		0.030 0.0020	mg/L mg/L	27-AUG-14 27-AUG-14	27-AUG-14 27-AUG-14	R2930931 R2930931
	0.0024		0.0020	illy/L	21-700-14	21-700-14	175900991

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1506076-1 REP-2							
Sampled By: JIMMY on 20-AUG-14 @ 08:30							
Matrix: WASTE WATER							
Total Organic Carbon							
Total Organic Carbon	9.7		1.0	mg/L		27-AUG-14	R2930506
Total Suspended Solids							
Total Suspended Solids	6.0		5.0	mg/L		22-AUG-14	R2929247
рН рН	8.24		0.10	pH units		26-AUG-14	R2930538
L1506076-2 REP-4	0.24		0.10	pri anno		207.00 11	112300000
Sampled By: JIMMY on 20-AUG-14 @ 09:30							
Matrix: WASTE WATER							
Nunavut WW Group 1							
Alkalinity							
Alkalinity Alkalinity, Total (as CaCO3)	157		20	mg/L		26-AUG-14	R2930538
Bicarbonate (HCO3)	192		24	mg/L		26-AUG-14	R2930538
Carbonate (CO3)	<12		12	mg/L		26-AUG-14	R2930538
Hydroxide (OH)	<6.8		6.8	mg/L		26-AUG-14	R2930538
Ammonia by colour Ammonia, Total (as N)	5.6	DLA	1.0	mg/L		26-AUG-14	R2930092
Biochemical Oxygen Demand (BOD)	3.0	DEA	1.0	IIIg/L		20-A00-14	K2930092
Biochemical Oxygen Demand	21.9		6.0	mg/L		21-AUG-14	R2929126
Carbonaceous BOD BOD Carbonaceous	21.1		6.0	mg/L		21-AUG-14	R2929126
Chloride by Ion Chromatography	21.1		0.0	IIIg/L		21-400-14	K2929120
Chloride	27.4		0.50	mg/L		22-AUG-14	R2929232
Conductivity Conductivity	456		20	umhos/cm		26-AUG-14	R2930538
Fecal Coliform Fecal Coliforms	4300		3	MPN/100mL		24-AUG-14	R2928217
Hardness Calculated	4300		3	IVII IV IOOIIIL		247.00 14	112320217
Hardness (as CaCO3)	146		0.30	mg/L		28-AUG-14	
Mercury Total Mercury (Hg)-Total	<0.000020		0.000020	mg/L	25-AUG-14	25-AUG-14	R2927763
Nitrate as N by Ion Chromatography	10.000020		0.000020	9/ _	207.0011	207.0011	112021100
Nitrate-N	0.638		0.050	mg/L		22-AUG-14	R2929232
Nitrate+Nitrite Nitrate and Nitrite as N	0.862		0.071	mg/L		26-AUG-14	
Nitrite as N by Ion Chromatography Nitrite-N	0.223		0.050	mg/L		22-AUG-14	R2929232
Oil and Grease, Total	0.223		0.050	IIIg/L		22-700-14	112323232
Oil and Grease, Total	<2.0		2.0	mg/L	24-AUG-14	24-AUG-14	R2927614
Phenol (4AAP) Phenols (4AAP)	<0.0010		0.0010	mg/L	27-AUG-14	27-AUG-14	R2931468
Phosphorus, Total	\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.		0.0010	9, _	/.00-14	2. 7.00-14	112001700
Phosphorus (P)-Total	1.83		0.010	mg/L		25-AUG-14	R2928472
Sulfate by Ion Chromatography Sulfate	17.1		0.50	mg/L		22-AUG-14	R2929232
Total Metals by ICP-MS			3.00				
Aluminum (Al)-Total	0.0653		0.0050	mg/L	27-AUG-14	27-AUG-14	R2930931
Arsenic (As)-Total	0.00035		0.00020	mg/L	27-AUG-14	27-AUG-14	R2930931
Cadmium (Cd)-Total	0.000013		0.000010	mg/L	27-AUG-14	27-AUG-14	R2930931
Calcium (Ca)-Total	44.3		0.10	mg/L	27-AUG-14	27-AUG-14	R2930931
Chromium (Cr)-Total	<0.0010		0.0010	mg/L	27-AUG-14	27-AUG-14	R2930931
Cobalt (Co)-Total	<0.00020		0.00020	mg/L	27-AUG-14	27-AUG-14	R2930931

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1506076-2 REP-4							
Sampled By: JIMMY on 20-AUG-14 @ 09:30							
Matrix: WASTE WATER							
Total Metals by ICP-MS							
Copper (Cu)-Total	0.00607		0.00020	mg/L	27-AUG-14	27-AUG-14	R2930931
Iron (Fe)-Total	0.30		0.10	mg/L	27-AUG-14	27-AUG-14	R2930931
Lead (Pb)-Total	0.000173		0.000090	mg/L	27-AUG-14	27-AUG-14	R2930931
Magnesium (Mg)-Total	8.54		0.010	mg/L	27-AUG-14	27-AUG-14	R2930931
Manganese (Mn)-Total	0.0354		0.00030	mg/L	27-AUG-14	27-AUG-14	R2930931
Nickel (Ni)-Total	<0.0020		0.0020	mg/L	27-AUG-14	27-AUG-14	R2930931
Potassium (K)-Total	6.77		0.020	mg/L	27-AUG-14	27-AUG-14	R2930931
Sodium (Na)-Total	27.0		0.030	mg/L	27-AUG-14	27-AUG-14	R2930931
Zinc (Zn)-Total	0.0103		0.0020	mg/L	27-AUG-14	27-AUG-14	R2930931
Total Organic Carbon							
Total Organic Carbon	25.4		1.0	mg/L		28-AUG-14	R2933649
Total Suspended Solids							
Total Suspended Solids	42.0		5.0	mg/L		22-AUG-14	R2929247
pH ···							
рН	8.07		0.10	pH units		26-AUG-14	R2930538
L1506076-3 REP-7							
Sampled By: JIMMY on 20-AUG-14 @ 09:00							
Matrix: WASTE WATER							
BTEX plus F1-F4							
BTX plus F1 by GCMS							
Benzene	<0.00050		0.00050	mg/L		23-AUG-14	R2927786
Toluene	<0.0010		0.0010	mg/L		23-AUG-14	R2927786
Ethyl benzene	<0.00050		0.00050	mg/L		23-AUG-14	R2927786
o-Xylene	<0.00050		0.00050	mg/L		23-AUG-14	R2927786
m+p-Xylenes	<0.00050		0.00050	mg/L		23-AUG-14	R2927786
F1 (C6-C10)	<0.10		0.10	mg/L		23-AUG-14	R2927786
Surrogate: 4-Bromofluorobenzene (SS)	98.3		70-130	%		23-AUG-14	R2927786
CCME Total Hydrocarbons F1-BTEX	-0.10		0.40	ma/l		29-AUG-14	
F1-B1EX F2-Naphth	<0.10 <0.25		0.10	mg/L		29-AUG-14 29-AUG-14	
F3-PAH	<0.25		0.25 0.25	mg/L mg/L		29-AUG-14 29-AUG-14	
Total Hydrocarbons (C6-C50)	<0.25		0.23	mg/L		29-AUG-14 29-AUG-14	
F2-F4 PHC method	VU.44		0.44	mg/L		20 700-14	
F2 (C10-C16)	<0.25		0.25	mg/L	22-AUG-14	22-AUG-14	R2926689
F3 (C16-C34)	<0.25		0.25	mg/L	22-AUG-14	22-AUG-14	R2926689
F4 (C34-C50)	<0.25		0.25	mg/L	22-AUG-14	22-AUG-14	R2926689
Surrogate: 2-Bromobenzotrifluoride	96.0		60-140	%	22-AUG-14	22-AUG-14	R2926689
Sum of Xylene Isomer Concentrations							
Xylenes (Total)	<0.0015		0.0015	mg/L		26-AUG-14	
Polyaromatic Hydrocarbons (PAHs)							
1-Methyl Naphthalene	<0.000020		0.000020	mg/L	27-AUG-14	29-AUG-14	R2933368
2-Methyl Naphthalene	<0.000020		0.000020	mg/L	27-AUG-14	29-AUG-14	R2933368
Acenaphthene	<0.000020		0.000020	mg/L	27-AUG-14	29-AUG-14	R2933368
Acenaphthylene	<0.000020		0.000020	mg/L	27-AUG-14	29-AUG-14	R2933368
Anthracene	<0.000010		0.000010	mg/L	27-AUG-14	29-AUG-14	R2933368
Acridine	<0.000020		0.000020	mg/L	27-AUG-14	29-AUG-14	R2933368
Benzo(a)anthracene	<0.000010		0.000010	mg/L	27-AUG-14	29-AUG-14	R2933368
Benzo(a)pyrene	<0.0000050		0.0000050	mg/L	27-AUG-14	29-AUG-14	R2933368
Benzo(b&j)fluoranthene	<0.000010		0.000010	mg/L	27-AUG-14	29-AUG-14	R2933368
Benzo(g,h,i)perylene	<0.000020	1 1	0.000020	mg/L	27-AUG-14	29-AUG-14	R2933368

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Details/Parameters	Result	Qualifier* D.L.	Units	Extracted	Analyzed	Batch
L1506076-3 REP-7						
Sampled By: JIMMY on 20-AUG-14 @ 09:00						
Matrix: WASTE WATER						
Polyaromatic Hydrocarbons (PAHs)						
Benzo(k)fluoranthene	<0.000010	0.000010	mg/L	27-AUG-14	29-AUG-14	R2933368
Chrysene	<0.000020	0.000020	mg/L	27-AUG-14	29-AUG-14	R2933368
Dibenzo(a,h)anthracene	<0.000050	0.000050	mg/L	27-AUG-14	29-AUG-14	R2933368
Fluoranthene	<0.000020	0.000020	mg/L	27-AUG-14	29-AUG-14	R2933368
Fluorene	<0.000020	0.000020	mg/L	27-AUG-14	29-AUG-14	R2933368
Indeno(1,2,3-cd)pyrene Naphthalene	<0.000010	0.000010	mg/L	27-AUG-14 27-AUG-14	29-AUG-14 29-AUG-14	R2933368
Phenanthrene	<0.000050 <0.000050	0.000050 0.000050	mg/L mg/L	27-AUG-14 27-AUG-14	29-AUG-14 29-AUG-14	R2933368 R2933368
Pyrene	<0.000030	0.000030	mg/L	27-AUG-14 27-AUG-14	29-AUG-14 29-AUG-14	R2933368
Quinoline	<0.000010	0.000010	mg/L	27-AUG-14	29-AUG-14	R2933368
B(a)P Total Potency Equivalent	<0.000030	0.000030	mg/L	27-AUG-14	29-AUG-14	R2933368
Surrogate: Acenaphthene d10	86.8	40-130	%	27-AUG-14	29-AUG-14	R2933368
Surrogate: Acridine d9	96.1	40-130	%	27-AUG-14	29-AUG-14	R2933368
Surrogate: Chrysene d12	74.8	40-130	%	27-AUG-14	29-AUG-14	R2933368
Surrogate: Naphthalene d8	81.6	40-130	%	27-AUG-14	29-AUG-14	R2933368
Surrogate: Phenanthrene d10	92.1	40-130	%	27-AUG-14	29-AUG-14	R2933368
Nunavut WW Group 1 Alkalinity						
Alkalinity Alkalinity, Total (as CaCO3)	119	20	mg/L		26-AUG-14	R2930538
Bicarbonate (HCO3)	146	24	mg/L		26-AUG-14	R2930538
Carbonate (CO3)	<12	12	mg/L		26-AUG-14	R2930538
Hydroxide (OH)	<6.8	6.8	mg/L		26-AUG-14	R2930538
Ammonia by colour Ammonia, Total (as N)	<0.010	0.010	mg/L		22-AUG-14	R2927606
Biochemical Oxygen Demand (BOD)	40.010	0.010	g/ L		22 7.00 11	112027000
Biochemical Oxygen Demand	<6.0	6.0	mg/L		21-AUG-14	R2929126
Carbonaceous BOD BOD Carbonaceous	<6.0	6.0	mg/L		21-AUG-14	R2929126
Chloride by Ion Chromatography Chloride	31.6	0.50	mg/L		22-AUG-14	R2929232
Conductivity						
Conductivity	373	20	umhos/cm		26-AUG-14	R2930538
Fecal Coliform			MDN/400-1		04 4110 44	D0000017
Fecal Coliforms	93	3	MPN/100mL		24-AUG-14	R2928217
Hardness Calculated Hardness (as CaCO3)	158	0.30	mg/L		28-AUG-14	
Mercury Total Mercury (Hg)-Total	<0.000020	0.000020	mg/L	25-AUG-14	25-AUG-14	R2927763
Nitrate as N by Ion Chromatography Nitrate-N	<0.050	0.050	mg/L		22-AUG-14	R2929232
Nitrate+Nitrite Nitrate and Nitrite as N					26-AUG-14	
Nitrite as N by Ion Chromatography	<0.071	0.071	mg/L		20-AUG-14	
Nitrite-N	<0.050	0.050	mg/L		22-AUG-14	R2929232
Oil and Grease, Total Oil and Grease, Total	<2.0	2.0	mg/L	24-AUG-14	24-AUG-14	R2927614
Phenol (4AAP) Phenols (4AAP)	<0.0010	0.0010	mg/L	27-AUG-14	27-AUG-14	R2931468
Phosphorus, Total Phosphorus (P)-Total	0.012	0.010	mg/L		25-AUG-14	R2928472
Sulfate by Ion Chromatography						
Sulfate	17.2	0.50	mg/L		22-AUG-14	R2929232

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
1450007C 2							
L1506076-3 REP-7							
Sampled By: JIMMY on 20-AUG-14 @ 09:00							
Matrix: WASTE WATER							
Total Metals by ICP-MS Aluminum (Al)-Total	0.0056		0.0050	ma/l	27-AUG-14	27-AUG-14	D2020024
Arsenic (As)-Total	<0.0030		0.0030	mg/L mg/L	27-AUG-14 27-AUG-14	27-AUG-14 27-AUG-14	R2930931 R2930931
Cadmium (Cd)-Total	<0.00020		0.00020	mg/L	27-AUG-14 27-AUG-14	27-AUG-14 27-AUG-14	R2930931
Calcium (Ca)-Total	45.4		0.10	mg/L	27-AUG-14	27-AUG-14	R2930931
Chromium (Cr)-Total	<0.0010		0.0010	mg/L	27-AUG-14	27-AUG-14	R2930931
Cobalt (Co)-Total	<0.00020		0.00020	mg/L	27-AUG-14	27-AUG-14	R2930931
Copper (Cu)-Total	0.00149		0.00020	mg/L	27-AUG-14	27-AUG-14	R2930931
Iron (Fe)-Total	<0.10		0.10	mg/L	27-AUG-14	27-AUG-14	R2930931
Lead (Pb)-Total	<0.000090		0.000090	mg/L	27-AUG-14	27-AUG-14	R2930931
Magnesium (Mg)-Total	10.9		0.010	mg/L	27-AUG-14	27-AUG-14	R2930931
Manganese (Mn)-Total	0.00488		0.00030	mg/L	27-AUG-14	27-AUG-14	R2930931
Nickel (Ni)-Total	<0.0020		0.0020	mg/L	27-AUG-14	27-AUG-14	R2930931
Potassium (K)-Total	2.89		0.020	mg/L	27-AUG-14	27-AUG-14	R2930931
Sodium (Na)-Total	20.3		0.030	mg/L	27-AUG-14	27-AUG-14	R2930931
Zinc (Zn)-Total	0.0129		0.0020	mg/L	27-AUG-14	27-AUG-14	R2930931
Total Organic Carbon Total Organic Carbon	7.3		1.0	mg/L		29-AUG-14	R2933649
Total Suspended Solids Total Suspended Solids	<5.0		5.0	mg/L		22-AUG-14	R2929247
pH pH	8.04		0.10	pH units		26-AUG-14	R2930538

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

Reference Information

PAGE 7 of 9 Version: FINAL

Sample Parameter Qualifier Key:

Qualifier	Description
DLA	Detection Limit adjusted for required dilution
DLM	Detection Limit Adjusted due to sample matrix effects.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Test Method References:

TOOL MOUNTAIN	-		
ALS Test Code	Matrix	Test Description	Method Reference**
ALK-TOT-WP	Water	Alkalinity	APHA 2320B

Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. It is determined by titration with a standard solution of strong mineral acid to the successive HCO3- and H2CO3 endpoints indicated electrometrically.

BOD-CBOD-WP Water Carbonaceous BOD APHA 5210 B-5 day Incub.-O2 electrode

A sample of water is incubated for 5 days at 20 degrees Celcius. Comparison of dissolved oxygen content at beginning and end of incubation provides a measure of Biochemical oxygen demand. If carbonaceous BOD is requested, TCMP is added to the sample to chemically inhibit nitrogenous oxygen demand. If soluble BOD is requested, the sample is filtered prior to analysis.

BOD-WP Water Biochemical Oxygen Demand (BOD) APHA 5210 B

The sample is incubated for 5 days at 20 degrees Celcius. Comparison of dissolved oxygen content at the beginning and end of incubation provides a measure of biochemical oxygen demand. If carbonaceous BOD is requested, TCMP is added to the sample to chemically inhibit nitrogenous oxygen demand. If soluble BOD is requested, the sample is filtered prior to analysis. Surface waters have a DL of 1 mg/L. Effluents are diluted according to their history and will have a sample DL of 6 mg/L or greater, depending on the dilutions used.

BTEXS+F1-HSMS-WP Water BTX plus F1 by GCMS EPA 8260C / EPA 5021A

The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection.

C-TOT-ORG-WP Water Total Organic Carbon APHA 5310 B-INSTRUMENTAL-WP

This method is applicable to the analysis of ground water, wastewater, and surface water samples. The form detected depends upon sample pretreatment: Unfiltered sample = TC, 0.45um filtered = TDC. Samples are injected into a combustion tube containing an oxidation catalyst. The carrier gas containing the combustion product from the combustion tube flows through an inorganic carbon reactor vessel and is then sent through a halogen scrubber into a sample cell set in a non-dispersive infrared gas analyzer (NDIR) where carbon dioxide is detected. For total inorganic carbon and dissolved inorganic carbon, the sample is injected into an IC reactor vessel where only the IC component is decomposed to become carbon dioxide.

The peak area generated by the NDIR indicates the TC/TDC or TIC/DIC as applicable. The total organic carbon content of the sample is calculated by subtracting the TIC from the TC.

TOC = TC-TIC, DOC = TDC-DIC, Particulate = Total - Dissolved.

CL-IC-WP Water Chloride by Ion Chromatography EPA 300.1 (Modified)

Anions in aqueous matrices are analyzed using ion chromatography with conductivity and/or UV absorbance detectors.

EC-WP Water Conductivity APHA 2510B

Conductivity of an aqueous solution refers to its ability to carry an electric current. Conductance of a solution is measured between two spatially fixed and chemically inert electrodes.

ETL-HARDNESS-TOT-WP Water Hardness Calculated HARDNESS CALCULATED

F1-F4-CALC-WP Water CCME Total Hydrocarbons CCME CWS-PHC DEC-2000 - PUB# 1310-L

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

1. All extraction and analysis holding times were met.

L1506076 CONTD....

PAGE 8 of 9 Version: FINAL

Reference Information

Test Method References:

ALS Test Code Matrix Test Description Method Reference**

2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.

- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F2-F4-FID-WP Water F2-F4 PHC method CWS (CCME)

Petroleum Hydrocarbons (F2-F4) in Water Method is adapted from US EPA Method 3511: Organic Compounds in Water by Micro-extraction" (Nov 2002) with instrumental analysis as per the "Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil - Tier 1 Method" (CCMS, Dec 2000) Water samples (in their entirety) are extracted using hexane prior to capillary column gas chromatography with flame ionization detection (GC/FID).

FC-MPN-WP Water Fecal Coliform APHA 9221E

The Most Probable Number (MPN) method is based on the Multiple Tube Fermentation technique. The results of examination of replicate tubes and dilutions of a sample are reported after confirmations specific to total coliform, fecal coliform and E. coli are performed. Results are reported in MPN/100 mL for water and MPN/gram for food and solid samples.

HG-T-CVAF-WP Water Mercury Total EPA245.7 V2.0

Mercury in filtered and unfiltered waters is oxidized with Bromine monochloride and analyzed by cold-vapour atomic fluorescence spectrometry.

MET-T-L-MS-WP Water Total Metals by ICP-MS APHA 3030E/EPA 6020A-TL

This analysis involves preliminary sample treatment by hotblock acid digestion (APHA 3030E). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

NH3-COL-WP Water Ammonia by colour APHA 4500 NH3 F

Ammonia in water samples forms indophenol when reacted with hypochlorite and phenol. The intensity is amplified by the addition of sodium nitroprusside and measured colourmetrically.

NO2+NO3-CALC-WP Water Nitrate+Nitrite CALCULATION

NO2-IC-WP Water Nitrite as N by Ion Chromatography EPA 300.1 (Modified)

Anions in aqueous matrices are analyzed using ion chromatography with conductivity and/or UV absorbance detectors.

NO3-IC-WP Water Nitrate as N by Ion Chromatography EPA 300.1 (Modified)

Anions in aqueous matrices are analyzed using ion chromatography with conductivity and/or UV absorbance detectors.

OGG-TOT-WT Water Oil and Grease, Total APHA 5520 B

Sample is extracted with hexane, extract is then evaporated and the residue is weighed to determine total oil and grease.

P-T-COL-WP Water Phosphorus, Total APHA 4500 P PHOSPHORUS

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is determined colourimetrically after persulphate digestion of the sample.

PAH,PANH-WP Water Polyaromatic Hydrocarbons (PAHs) EPA SW 846/8270-GC/MS

Water is spiked with a surrogate spike mix and extracted using solvent extraction techniques. Analysis is performed by GC/MS in the selected ion monitoring (SIM) mode.

PH-WP Water pH APHA 4500H

The pH of a sample is the determination of the activity of the hydrogen ions by potentiometric measurement using a standard hydrogen electrode and a reference electrode.

PHENOLS-4AAP-WT Water Phenol (4AAP) EPA 9066

An automated method is used to distill the sample. The distillate is then buffered to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a red complex which is measured colorimetrically.

SO4-IC-WP Water Sulfate by Ion Chromatography EPA 300.1 (Modified)

Anions in aqueous matrices are analyzed using ion chromatography with conductivity and/or UV absorbance detectors.

SOLIDS-TOTSUS-WP Water Total Suspended Solids APHA 2540 D (modified)

Total suspended solids in aquesous matrices is determined gravimetrically after drying the residue at 103 105°C.

XYLENES-SUM-CALC- Water Sum of Xylene Isomer Concentrations CALCULATED RESULT

WP

Total xylenes represents the sum of o-xylene and m&p-xylene.

L1506076 CONTD....

PAGE 9 of 9 Version: FINAL

Reference Information

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WP	ALS ENVIRONMENTAL - WINNIPEG, MANITOBA, CANADA
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

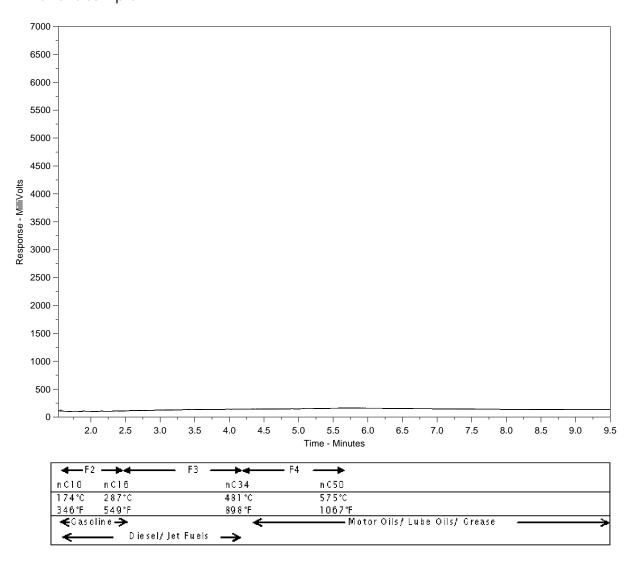
mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.


UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

ALS Sample ID: L1506076-3 Client Sample ID: REP-7

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at www.alsglobal.com.

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

L1506076-COFC

Form

10-026471

Page of

Report To	Report Fo	rmat / Distributi	on		Т	Servi	ce Re	ques	ted:	(Rusi	h subi	ect to	avail	ability))	
Company: HAMLET OF REPULSE BAY	Standard:		specify):		1./	_	ılar (S			<u> </u>				,		
Contact: KEVIN TEGU	Select: PD		Digital	Fax	 		ity, Da							(Surch	arges	apply)
Address: Po Box 10		MMOSER			1	Eme	rgenc	y (1 B	usine	ess Da	ay) - 1	00%	Surch	iarge		
	Email 2: 🗥	hsty@gov	. Naurea		1 -	_									ntact A	LS
Phone: 867 462 9952 Fax: 867 462 4411		1-10- Jan	· iurc»						Α	naly	sis Re	ques	it			-
	Client / Pr	oject Informatio	n			-	(lr	ndicat	e Filte	ered o	r Pre	serve	d, F/F	٦)		_
Copy of Invoice with Report? (circle) (Yes) or No	Job #:		<u> </u>										$\overline{}$	$\overline{}$	\overline{A}	7
Company:	PO / AFE:												- "			
Contact:	LSD:													.		
Address:											اي ا		Ī	.		ers
Phone: Fax:	Quote #:				7			_	,		3			.		ţa.
Lab Work Order # (lab@seonly)	ALS Contact:	ě	Sampler: J	immy] a	Rowhine	Metals	Muzhrients	Phrenols	Backeria	ξ. .+	H	Ы Х	1		Number of Containers
Sample Identification		Date	Time	Sample Tune	305	ۇ ا	(2)	1) રી	ز ٔ	Ó	PAH	6TEX	, ij		- 1 ag
Sample # (This description will appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	10	(2)	Σ	` ~	ğ	2	O	8-	€	17		
REP-2		20 Aug 14	08:30	WASTE WATE	₹ ✓	✓	P	P	9	ρ	Q					7
REP-4		20 Ava 14	09:30	11 11	17	$\overline{}$	P	P	ρ	ρ	ρ				$\neg \neg$	8
1 0 0		20 Aug 14		n u	1.7	 	. 0	P	· ·	P	Q.	8	Q	Q		
REP-4		20 14	07.00		 	+	V	-			4.	4	•	7		12
				 	—	ļ										\rightarrow
												1				
											-					
			<u> </u>		 	 -		-								+
					+	 								\dashv	-+	
					-	<u> </u>										
Sp.	ecial instr	uctions / Regula	ations / Hazard	lous Details		<u> </u>										
Failure to complete all p	ortions of	this form may o	lelay analysis.	Please fill in thi	s form	LEG	IBLY.									
By the use of this form the user acknowledges an			-					f the	white	- rep	ort c	ору.				
SHIPMENT RELEASE (client use)	SHIF	MENT RECEPT	ION (lab_use or	nly) 到是概念的	i	ATT POLICE	″#¥S⊦	ПРМ	ENT,\	/ERIF	ICAT	ION (lab us	e only	/)爱。	v.
Released by Date: / Time: Receive		Date:	Time:	Temperature:		fied b	y:	· · ·	Date			Time);	,	Yes / N	vations: No ? add SIF

Hamlet of Repulse Bay ATTN: KEVIN TEGUMIAR

PO Box 10

Repulse Bay NU X0C 0H0

Date Received: 03-JUL-12

Report Date: 26-JUL-12 14:11 (MT)

Version: FINAL

Client Phone: 867-462-9952

Certificate of Analysis

Lab Work Order #: L1171564

Project P.O. #: NOT SUBMITTED

Job Reference: REPULSE BAY MONITORING PROGRAM

C of C Numbers: Legal Site Desc:

<u>Paul Necolas</u> Paul Nicolas

Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

L1171564 CONTD.... PAGE 2 of 10 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1171564-1 REP-2							
Sampled By: KEVIN TEGUMIAR on 29-JUN-12 @ 11:40							
Matrix: WASTE WATER							
Miscellaneous Parameters							
Ammonia, Total (as N)	0.014		0.010	mg/L		11-JUL-12	R2396763
Biochemical Oxygen Demand	<6.0		6.0	mg/L	04-JUL-12	09-JUL-12	R2394790
BOD Carbonaceous	<6.0		6.0	mg/L	04-JUL-12	09-JUL-12	R2394789
Fecal Coliforms	<3		3	MPN/100mL	0.002.2	06-JUL-12	R2394237
Oil and Grease, Total	<2.0		2.0	mg/L	06-JUL-12	06-JUL-12	R2394615
Phenols (4AAP)	<0.0010		0.0010	mg/L	10-JUL-12	10-JUL-12	R2395644
Phosphorus (P)-Total	<0.010		0.0010	mg/L	10 30L 12	09-JUL-12	R2394869
Total Organic Carbon	5.5		1.0	mg/L		26-JUL-12	R2405143
Total Suspended Solids				_		14-JUL-12	
Routine Soluble + Metal scan	8.0		5.0	mg/L		14-JUL-12	R2399078
Alkalinity Alkalinity, Total (as CaCO3)	85		20	mg/L		03-JUL-12	R2391974
Bicarbonate (HCO3)	103		24	mg/L		03-JUL-12	R2391974
Carbonate (CO3)	<12		12	mg/L		03-JUL-12	R2391974
Hydroxide (OH)	<6.8		6.8	mg/L		03-JUL-12	R2391974
Chloride by Ion Chromatography							
Chloride	12.2		0.50	mg/L		04-JUL-12	R2393169
Conductivity							
Conductivity	224		20	umhos/cm		03-JUL-12	R2391974
Hardness Calculated							
Hardness (as CaCO3)	93.6		0.30	mg/L		06-JUL-12	
Nitrate as N by Ion Chromatography							
Nitrate-N	<0.050		0.050	mg/L		04-JUL-12	R2393169
Nitrate+Nitrite	0.074		0.074			00 1111 40	
Nitrate and Nitrite as N	<0.071		0.071	mg/L		03-JUL-12	
Nitrite as N by Ion Chromatography Nitrite-N	<0.050		0.050	mg/L		04-JUL-12	R2393169
Sulfate by Ion Chromatography	<0.050		0.050	IIIg/L		04-30L-12	K2393109
Sulfate by for Chromatography Sulfate	16.5		0.50	mg/L		04-JUL-12	R2393169
TDS calculated	10.5		0.50	iiig/L		04 002 12	112555105
TDS (Calculated)	125		5.0	mg/L		06-JUL-12	
Total Metals by ICP-MS	-						
Aluminum (Al)-Total	<0.020		0.020	mg/L	05-JUL-12	05-JUL-12	R2393489
Antimony (Sb)-Total	< 0.0010		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393489
Arsenic (As)-Total	<0.0010		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393489
Barium (Ba)-Total	0.00909		0.00050	mg/L	05-JUL-12	05-JUL-12	R2393489
Beryllium (Be)-Total	<0.0010		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393489
Bismuth (Bi)-Total	<0.00050		0.00050	mg/L	05-JUL-12	05-JUL-12	R2393489
Boron (B)-Total	<0.030		0.030	mg/L	05-JUL-12	05-JUL-12	R2393489
Cadmium (Cd)-Total	<0.00020		0.00020	mg/L	05-JUL-12	05-JUL-12	R2393489
Calcium (Ca)-Total	29.1		0.20	mg/L	05-JUL-12	05-JUL-12	R2393489
Cesium (Cs)-Total	<0.00050		0.00050	mg/L	05-JUL-12	05-JUL-12	R2393489
Chromium (Cr)-Total	<0.0020		0.0020	mg/L	05-JUL-12	05-JUL-12	R2393489
Cobalt (Co)-Total	<0.00050		0.00050	mg/L	05-JUL-12	05-JUL-12	R2393489
Copper (Cu)-Total	<0.0020		0.0020	mg/L	05-JUL-12	05-JUL-12	R2393489
Iron (Fe)-Total	<0.10		0.10	mg/L	05-JUL-12	05-JUL-12	R2393489
Lead (Pb)-Total	<0.0010		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393489
Lithium (Li)-Total Magnesium (Mg)-Total	<0.0020		0.0020	mg/L	05-JUL-12	05-JUL-12 05-JUL-12	R2393489
IVIAULIESIUITI (IVIU <i>)</i> - I Ulai	5.12	1	0.050	mg/L	05-JUL-12		R2393489
Manganese (Mn)-Total	0.0034		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393489

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1171564 CONTD.... PAGE 3 of 10 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1171564-1 REP-2							
Sampled By: KEVIN TEGUMIAR on 29-JUN-12 @ 11:	40						
Matrix: WASTE WATER							
Total Metals by ICP-MS							
Nickel (Ni)-Total	<0.0020		0.0020	mg/L	05-JUL-12	05-JUL-12	R2393489
Phosphorus (P)-Total	<0.50		0.50	mg/L	05-JUL-12	05-JUL-12	R2393489
Potassium (K)-Total	1.53		0.10	mg/L	05-JUL-12	05-JUL-12	R2393489
Rubidium (Rb)-Total	0.00148		0.00050	mg/L	05-JUL-12	05-JUL-12	R2393489
Selenium (Se)-Total	< 0.0050		0.0050	mg/L	05-JUL-12	05-JUL-12	R2393489
Silicon (Si)-Total	< 0.30		0.30	mg/L	05-JUL-12	05-JUL-12	R2393489
Silver (Ag)-Total	<0.0010		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393489
Sodium (Na)-Total	9.82		0.050	mg/L	05-JUL-12	05-JUL-12	R2393489
Strontium (Sr)-Total	0.0298		0.00050	mg/L	05-JUL-12	05-JUL-12	R2393489
Tellurium (Te)-Total	<0.0010		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393489
Thallium (TI)-Total Thorium (Th)-Total	<0.0050		0.0050	mg/L	05-JUL-12	05-JUL-12	R2393489
Thorium (Th)-Total Tin (Sn)-Total	<0.0010 <0.00060		0.0010 0.00060	mg/L mg/L	05-JUL-12 05-JUL-12	05-JUL-12 05-JUL-12	R2393489 R2393489
Titanium (Ti)-Total	<0.00060		0.00060	mg/L	05-JUL-12 05-JUL-12	05-JUL-12 05-JUL-12	R2393489 R2393489
Tungsten (W)-Total	<0.0010		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393489
Uranium (U)-Total	0.00134		0.0020	mg/L	05-JUL-12	05-JUL-12	R2393489
Vanadium (V)-Total	<0.0020		0.0020	mg/L	05-JUL-12	05-JUL-12	R2393489
Zinc (Zn)-Total	<0.020		0.020	mg/L	05-JUL-12	05-JUL-12	R2393489
Zirconium (Zr)-Total	<0.0010		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393489
рН							
pH	7.90		0.10	pH units		03-JUL-12	R2391974
L1171564-2 REP-4							
Sampled By: KEVIN TEGUMIAR on 29-JUN-12 @ 11:	40						
Matrix: WASTE WATER							
Miscellaneous Parameters							
Ammonia, Total (as N)	12.5	DLA	1.0	mg/L		12-JUL-12	R2397587
Biochemical Oxygen Demand	<6.0		6.0	mg/L	04-JUL-12	09-JUL-12	R2394790
BOD Carbonaceous	<6.0		6.0	mg/L	04-JUL-12	09-JUL-12	R2394789
Fecal Coliforms	430		3	MPN/100mL		06-JUL-12	R2394237
Oil and Grease, Total	<2.0		2.0	mg/L	06-JUL-12	06-JUL-12	R2394615
Phenols (4AAP)	0.0010		0.0010	mg/L	10-JUL-12	10-JUL-12	R2395644
Phosphorus (P)-Total	1.08		0.010	mg/L		09-JUL-12	R2394869
Total Organic Carbon	13.1		1.0	mg/L		26-JUL-12	R2405143
Total Suspended Solids	11.0		5.0	mg/L		14-JUL-12	R2399078
Routine Soluble + Metal scan							
Alkalinity							
Alkalinity, Total (as CaCO3)	94		20	mg/L		03-JUL-12	R2391974
Bicarbonate (HCO3)	115		24	mg/L		03-JUL-12	R2391974
Carbonate (CO3)	<12		12	mg/L		03-JUL-12	R2391974
Hydroxide (OH)	<6.8		6.8	mg/L		03-JUL-12	R2391974
Chloride by Ion Chromatography Chloride	13.7		0.50	mg/L		04-JUL-12	R2393169
Conductivity Conductivity	240		20	umhos/cm		03-JUL-12	R2391974
Hardness Calculated Hardness (as CaCO3)	77.3		0.30	mg/L		24-JUL-12	
Nitrate as N by Ion Chromatography Nitrate-N	0.116		0.050	mg/L		04-JUL-12	R2393169
Nitrate+Nitrite Nitrate and Nitrite as N						03-JUL-12	1.2000100
Nitrite as N by Ion Chromatography	0.116		0.071	mg/L		03-JUL-12	

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1171564 CONTD.... PAGE 4 of 10 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1171564-2 REP-4							
	10						
Sampled By: KEVIN TEGUMIAR on 29-JUN-12 @ 11:	40						
Matrix: WASTE WATER							
Nitrite as N by Ion Chromatography Nitrite-N	<0.050		0.050	mg/L		04-JUL-12	R2393169
Sulfate by Ion Chromatography							
Sulfate	7.96		0.50	mg/L		04-JUL-12	R2393169
TDS calculated	404		5 0	/1		04 1111 40	
TDS (Calculated)	124		5.0	mg/L		24-JUL-12	
Total Metals by ICP-MS Aluminum (Al)-Total	0.031		0.020	mg/L	05-JUL-12	05-JUL-12	R2393489
Antimony (Sb)-Total	<0.0010		0.020	mg/L	05-JUL-12	05-JUL-12	R2393489
Arsenic (As)-Total	<0.0010		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393489
Barium (Ba)-Total	0.00403		0.00050	mg/L	05-JUL-12	05-JUL-12	R2393489
Beryllium (Be)-Total	<0.0010		0.0000	mg/L	05-JUL-12	05-JUL-12	R2393489
Bismuth (Bi)-Total	<0.00050		0.00050	mg/L	05-JUL-12	05-JUL-12	R2393489
Boron (B)-Total	<0.030		0.030	mg/L	05-JUL-12	05-JUL-12	R2393489
Cadmium (Cd)-Total	<0.00020		0.00020	mg/L	05-JUL-12	05-JUL-12	R2393489
Calcium (Ca)-Total	23.2		0.20	mg/L	05-JUL-12	05-JUL-12	R2393489
Cesium (Cs)-Total	<0.00050		0.00050	mg/L	05-JUL-12	05-JUL-12	R2393489
Chromium (Cr)-Total	<0.0020		0.0020	mg/L	05-JUL-12	05-JUL-12	R2393489
Cobalt (Co)-Total	<0.00050		0.00050	mg/L	05-JUL-12	05-JUL-12	R2393489
Copper (Cu)-Total	0.0059		0.0020	mg/L	05-JUL-12	05-JUL-12	R2393489
Iron (Fe)-Total	0.38		0.10	mg/L	05-JUL-12	05-JUL-12	R2393489
Lead (Pb)-Total	<0.0010		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393489
Lithium (Li)-Total	<0.0020		0.0020	mg/L	05-JUL-12	05-JUL-12	R2393489
Magnesium (Mg)-Total	4.71		0.050	mg/L	05-JUL-12	05-JUL-12	R2393489
Manganese (Mn)-Total	0.0229		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393489
Molybdenum (Mo)-Total	0.00057		0.00050	mg/L	05-JUL-12	05-JUL-12	R2393489
Nickel (Ni)-Total	<0.0020		0.0020	mg/L	05-JUL-12	05-JUL-12	R2393489
Phosphorus (P)-Total	0.92		0.50	mg/L	05-JUL-12	05-JUL-12	R2393489
Potassium (K)-Total	4.56		0.10	mg/L	05-JUL-12	05-JUL-12	R2393489
Rubidium (Rb)-Total	0.00489		0.00050	mg/L	05-JUL-12	05-JUL-12	R2393489
Selenium (Se)-Total	<0.0050		0.0050	mg/L	05-JUL-12	05-JUL-12	R2393489
Silicon (Si)-Total	0.85		0.30	mg/L	05-JUL-12	05-JUL-12	R2393489
Silver (Ag)-Total	<0.0010		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393489
Sodium (Na)-Total	13.1		0.050	mg/L	05-JUL-12	05-JUL-12	R2393489
Strontium (Sr)-Total	0.0340		0.00050	mg/L	05-JUL-12 05-JUL-12	05-JUL-12 05-JUL-12	R2393489
Tellurium (Te)-Total Thallium (Tl)-Total	<0.0010 <0.0050		0.0010 0.0050	mg/L mg/L	05-JUL-12 05-JUL-12	05-JUL-12 05-JUL-12	R2393489 R2393489
Thorium (Th)-Total	<0.0050		0.0050	mg/L	05-JUL-12 05-JUL-12	05-JUL-12	R2393489
Tin (Sn)-Total	<0.0010		0.00060	mg/L	05-JUL-12	05-JUL-12	R2393489
Titanium (Ti)-Total	<0.0010		0.00000	mg/L	05-JUL-12	05-JUL-12	R2393489
Tungsten (W)-Total	<0.0010		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393489
Uranium (U)-Total	0.00072		0.0020	mg/L	05-JUL-12	05-JUL-12	R2393489
Vanadium (V)-Total	<0.0020		0.0020	mg/L	05-JUL-12	05-JUL-12	R2393489
Zinc (Zn)-Total	<0.020		0.020	mg/L	05-JUL-12	05-JUL-12	R2393489
Zirconium (Zr)-Total	<0.0010		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393489
pH			-				
pH	7.76		0.10	pH units		03-JUL-12	R2391974
L1171564-3 REP-6							
Sampled By: KEVIN TEGUMIAR on 29-JUN-12 @ 11:	40						
Matrix: WASTE WATER							
BTEX plus F1-F4							
BTX plus F1 by GCMS							
p, come							

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1171564 CONTD.... PAGE 5 of 10 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1171564-3 REP-6							
L1171564-3 REP-6 Sampled By: KEVIN TEGUMIAR on 29-JUN-12 @ 11:	10						
	40						
Matrix: WASTE WATER							
BTX plus F1 by GCMS Benzene	-0.000E0		0.00050	mg/L		11-JUL-12	D2206249
Toluene	<0.00050 <0.0010		0.00050 0.0010	"		11-JUL-12 11-JUL-12	R2396218 R2396218
Ethyl benzene	<0.0010		0.0010	mg/L mg/L		11-JUL-12	R2396218
o-Xylene	<0.00050		0.00050	mg/L		11-JUL-12	R2396218
m+p-Xylenes	<0.00050		0.00050	mg/L		11-JUL-12	R2396218
Xylenes	<0.0015		0.00050	mg/L		11-JUL-12	R2396218
F1 (C6-C10)	<0.10		0.10	mg/L		11-JUL-12	R2396218
Surrogate: 4-Bromofluorobenzene (SS)	80.5		70-130	%		11-JUL-12	R2396218
CCME Total Hydrocarbons	00.0		70 100	, , ,			112000210
F1-BTEX	<0.10		0.10	mg/L		13-JUL-12	
F2-Naphth	<0.25		0.25	mg/L		13-JUL-12	
F3-PAH	<0.25		0.25	mg/L		13-JUL-12	
Total Hydrocarbons (C6-C50)	<0.44		0.44	mg/L		13-JUL-12	
F2-F4 PHC method							
F2 (C10-C16)	<0.25		0.25	mg/L	05-JUL-12	05-JUL-12	R2393657
F3 (C16-C34)	<0.25		0.25	mg/L	05-JUL-12	05-JUL-12	R2393657
F4 (C34-C50)	<0.25		0.25	mg/L	05-JUL-12	05-JUL-12	R2393657
Surrogate: 2-Bromobenzotrifluoride	87.6		65-135	%	05-JUL-12	05-JUL-12	R2393657
Miscellaneous Parameters							
Ammonia, Total (as N)	0.024		0.010	mg/L		11-JUL-12	R2396763
Biochemical Oxygen Demand	<6.0		6.0	mg/L	04-JUL-12	09-JUL-12	R2394790
BOD Carbonaceous	<6.0		6.0	mg/L	04-JUL-12	09-JUL-12	R2394789
Fecal Coliforms	<3		3	MPN/100mL		06-JUL-12	R2394237
Oil and Grease, Total	<2.0		2.0	mg/L	06-JUL-12	06-JUL-12	R2394615
Phenols (4AAP)	<0.0010		0.0010	mg/L	10-JUL-12	10-JUL-12	R2395644
Phosphorus (P)-Total	0.033		0.010	mg/L		09-JUL-12	R2394869
Total Organic Carbon	19.8		1.0	mg/L		26-JUL-12	R2405143
Total Suspended Solids	<5.0		5.0	mg/L		14-JUL-12	R2399078
Polyaromatic Hydrocarbons (PAHs)	10.0		0.0	9, =			112000070
1-Methyl Naphthalene	<0.000020		0.000020	mg/L	06-JUL-12	11-JUL-12	R2398036
2-Methyl Naphthalene	<0.000020		0.000020	mg/L	06-JUL-12	11-JUL-12	R2398036
Acenaphthene	<0.000020		0.000020	mg/L	06-JUL-12	11-JUL-12	R2398036
Acenaphthylene	<0.000020		0.000020	mg/L	06-JUL-12	11-JUL-12	R2398036
Anthracene	<0.000010		0.000010	mg/L	06-JUL-12	11-JUL-12	R2398036
Acridine	<0.000020		0.000020	mg/L	06-JUL-12	11-JUL-12	R2398036
Benzo(a)anthracene	<0.000010		0.000010	mg/L	06-JUL-12	11-JUL-12	R2398036
Benzo(a)pyrene	<0.0000050		0.0000050	mg/L	06-JUL-12	11-JUL-12	R2398036
Benzo(b&j)fluoranthene	<0.000010		0.000010	mg/L	06-JUL-12	11-JUL-12	R2398036
Benzo(g,h,i)perylene	<0.000020		0.000020	mg/L	06-JUL-12	11-JUL-12	R2398036
Benzo(k)fluoranthene	<0.000010		0.000010	mg/L	06-JUL-12	11-JUL-12	R2398036
Chrysene	<0.000020		0.000020	mg/L	06-JUL-12	11-JUL-12	R2398036
Dibenzo(a,h)anthracene	<0.000050		0.0000050	mg/L	06-JUL-12	11-JUL-12	R2398036
Fluoranthene	<0.000020		0.000020	mg/L	06-JUL-12	11-JUL-12	R2398036
Fluorene	<0.000020		0.000020	mg/L	06-JUL-12	11-JUL-12	R2398036
Indeno(1,2,3-cd)pyrene	<0.000010		0.000010	mg/L	06-JUL-12	11-JUL-12	R2398036
Naphthalene	<0.000050		0.000050	mg/L	06-JUL-12	11-JUL-12	R2398036
Phenanthrene	<0.000050		0.000050	mg/L	06-JUL-12	11-JUL-12	R2398036
Pyrene	<0.000010	DIM	0.000010	mg/L	06-JUL-12	11-JUL-12	R2398036
Quinoline	<0.000030	DLM	0.000030	mg/L	06-JUL-12	11-JUL-12	R2398036
B(a)P Total Potency Equivalent	<0.000030		0.000030	mg/L	06-JUL-12	11-JUL-12	R2398036
Surrogate: Acenaphthene d10	60.5		50-150	%	06-JUL-12	11-JUL-12	R2398036

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1171564 CONTD.... PAGE 6 of 10 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1171564-3 REP-6							
Sampled By: KEVIN TEGUMIAR on 29-JUN-12 @ 11:	40						
Matrix: WASTE WATER							
Polyaromatic Hydrocarbons (PAHs)							
Surrogate: Acridine d9	68.0		50-150	%	06-JUL-12	11-JUL-12	R2398036
Surrogate: Chrysene d12	80.8		50-150	%	06-JUL-12	11-JUL-12	R2398036
Surrogate: Naphthalene d8	50.4		50-150	%	06-JUL-12	11-JUL-12	R2398036
Surrogate: Phenanthrene d10	64.4		50-150	%	06-JUL-12	11-JUL-12	R2398036
Routine Soluble + Metal scan							
Alkalinity							
Alkalinity, Total (as CaCO3)	130		20	mg/L		03-JUL-12	R2391974
Bicarbonate (HCO3)	138		24	mg/L		03-JUL-12	R2391974
Carbonate (CO3)	<12		12	mg/L		03-JUL-12	R2391974
Hydroxide (OH)	<6.8		6.8	mg/L		03-JUL-12	R2391974
Chloride by Ion Chromatography Chloride	40.0		0.50	ma/l		04-JUL-12	D2202460
	10.2		0.50	mg/L		04-JUL-12	R2393169
Conductivity Conductivity	289		20	umhos/cm		03-JUL-12	R2391974
Hardness Calculated	200		20	311113373111		30 00L 12	112001014
Hardness (as CaCO3)	168		0.30	mg/L		06-JUL-12	
Nitrate as N by Ion Chromatography			-	3-			
Nitrate-N	<0.050		0.050	mg/L		04-JUL-12	R2393169
Nitrate+Nitrite							
Nitrate and Nitrite as N	<0.071		0.071	mg/L		03-JUL-12	
Nitrite as N by Ion Chromatography							
Nitrite-N	<0.050		0.050	mg/L		04-JUL-12	R2393169
Sulfate by Ion Chromatography							
Sulfate	26.7		0.50	mg/L		04-JUL-12	R2393169
TDS calculated	400		5 0			00 1111 40	
TDS (Calculated)	183		5.0	mg/L		06-JUL-12	
Total Metals by ICP-MS Aluminum (AI)-Total	0.046		0.020	mg/L	05-JUL-12	05-JUL-12	R2393489
Antimony (Sb)-Total	<0.0010		0.020	mg/L	05-JUL-12	05-JUL-12	R2393489
Arsenic (As)-Total	<0.0010		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393489
Barium (Ba)-Total	0.0123		0.00050	mg/L	05-JUL-12	05-JUL-12	R2393489
Beryllium (Be)-Total	<0.0010		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393489
Bismuth (Bi)-Total	<0.00050		0.00050	mg/L	05-JUL-12	05-JUL-12	R2393489
Boron (B)-Total	<0.030		0.030	mg/L	05-JUL-12	05-JUL-12	R2393489
Cadmium (Cd)-Total	<0.00020		0.00020	mg/L	05-JUL-12	05-JUL-12	R2393489
Calcium (Ca)-Total	48.9		0.20	mg/L	05-JUL-12	05-JUL-12	R2393489
Cesium (Cs)-Total	<0.00050		0.00050	mg/L	05-JUL-12	05-JUL-12	R2393489
Chromium (Cr)-Total	<0.0020		0.0020	mg/L	05-JUL-12	05-JUL-12	R2393489
Cobalt (Co)-Total	<0.00050		0.00050	mg/L	05-JUL-12	05-JUL-12	R2393489
Copper (Cu)-Total	0.0042		0.0020	mg/L	05-JUL-12	05-JUL-12	R2393489
Iron (Fe)-Total	<0.10		0.10	mg/L	05-JUL-12	05-JUL-12	R2393489
Lead (Pb)-Total	<0.0010		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393489
Lithium (Li)-Total	0.0059		0.0020	mg/L	05-JUL-12	05-JUL-12	R2393489
Magnesium (Mg)-Total	11.1		0.050	mg/L	05-JUL-12	05-JUL-12	R2393489
Manganese (Mn)-Total	0.0011		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393489
Molybdenum (Mo)-Total	0.00125		0.00050	mg/L	05-JUL-12	05-JUL-12	R2393489
Nickel (Ni)-Total	<0.0020		0.0020	mg/L	05-JUL-12	05-JUL-12	R2393489
Phosphorus (P)-Total	<0.50		0.50	mg/L	05-JUL-12	05-JUL-12	R2393489
Potassium (K)-Total	2.78		0.10	mg/L	05-JUL-12	05-JUL-12	R2393489
Rubidium (Rb)-Total Selenium (Se)-Total	0.00209		0.00050	mg/L	05-JUL-12 05-JUL-12	05-JUL-12	R2393489
Silicon (Si)-Total	<0.0050		0.0050	mg/L	05-JUL-12 05-JUL-12	05-JUL-12 05-JUL-12	R2393489
Silicuit (SI)-Tulai	0.70		0.30	mg/L	00-JUL-12	00-JUL-12	R2393489

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1171564 CONTD.... PAGE 7 of 10 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1171564-3 REP-6							
Sampled By: KEVIN TEGUMIAR on 29-JUN-12 @ 11:	40						
Matrix: WASTE WATER							
Total Metals by ICP-MS							
Silver (Ag)-Total	<0.0010		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393489
Sodium (Na)-Total	4.96		0.050	mg/L	05-JUL-12	05-JUL-12	R2393489
Strontium (Sr)-Total	0.0401		0.00050	mg/L	05-JUL-12	05-JUL-12	R2393489
Tellurium (Te)-Total	<0.0010		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393489
Thallium (TI)-Total	<0.0050		0.0050	mg/L	05-JUL-12	05-JUL-12	R2393489
Thorium (Th)-Total	<0.0010		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393489
Tin (Sn)-Total	<0.00060		0.00060	mg/L	05-JUL-12	05-JUL-12	R2393489
Titanium (Ti)-Total	0.0016		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393489
Tungsten (W)-Total	<0.0020		0.0020	mg/L	05-JUL-12	05-JUL-12	R2393489
Uranium (U)-Total	0.00439		0.00050	mg/L	05-JUL-12	05-JUL-12	R2393489
Vanadium (V)-Total	<0.0020		0.0020	mg/L	05-JUL-12	05-JUL-12	R2393489
Zinc (Zn)-Total	<0.020		0.020	mg/L	05-JUL-12	05-JUL-12	R2393489
Zirconium (Zr)-Total	<0.0010		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393489
pH							
pH	8.72		0.10	pH units		03-JUL-12	R2391974

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1171564 CONTD....

Reference Information

PAGE 8 of 10 Version: FINAL

Sample Parameter Qualifier Kev:

Qualifier	Description
DLA	Detection Limit Adjusted For required dilution
DLM	Detection Limit Adjusted For Sample Matrix Effects
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Test Method References:

root mountain trononom			
ALS Test Code	Matrix	Test Description	Method Reference**
ALK TOT WD	Motor	Alkalinity	ADLIA 2220D
ALK-TOT-WP	Water	Alkalinity	APHA 2320B

Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. It is determined by titration with a standard solution of strong mineral acid to the successive HCO3- and H2CO3 endpoints indicated electrometrically.

BOD-CBOD-WP Water Carbonaceous BOD APHA 5210 B-5 day Incub.-O2 electrode

A sample of water is incubated for 5 days at 20 degrees Celcius. Comparison of dissolved oxygen content at beginning and end of incubation provides a measure of Biochemical oxygen demand. If carbonaceous BOD is requested, TCMP is added to the sample to chemically inhibit nitrogenous oxygen demand. If soluble BOD is requested, the sample is filtered prior to analysis.

APHA 5210 B **BOD-WP** Water Biochemical Oxygen Demand (BOD)

The sample is incubated for 5 days at 20 degrees Celcius. Comparison of dissolved oxygen content at the beginning and end of incubation provides a measure of biochemical oxygen demand. If carbonaceous BOD is requested, TCMP is added to the sample to chemically inhibit nitrogenous oxygen demand. If soluble BOD is requested, the sample is filtered prior to analysis. Surface waters have a DL of 1 mg/L. Effluents are diluted according to their history and will have a sample DL of 6 mg/L or greater, depending on the dilutions used.

BTEXS+F1-HSMS-WP BTX plus F1 by GCMS EPA SW846 8260B REV 2 SEPT 1994 Water

The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection.

C-TOT-ORG-WP **Total Organic Carbon** APHA 5310 B-INSTRUMENTAL-WP

This method is applicable to the analysis of ground water, wastewater, and surface water samples. The form detected depends upon sample pretreatment: Unfiltered sample = TC, 0.45um filtered = TDC. Samples are injected into a combustion tube containing an oxidation catalyst. The carrier gas containing the combustion product from the combustion tube flows through an inorganic carbon reactor vessel and is then sent through a halogen scrubber into a sample cell set in a non-dispersive infrared gas analyzer (NDIR) where carbon dioxide is detected. For total inorganic carbon and dissolved inorganic carbon, the sample is injected into an IC reactor vessel where only the IC component is decomposed to become carbon dioxide.

The peak area generated by the NDIR indicates the TC/TDC or TIC/DIC as applicable. The total organic carbon content of the sample is calculated by subtracting the TIC from the TC.

TOC = TC-TIC, DOC = TDC-DIC, Particulate = Total - Dissolved.

CI -IC-WP Water Chloride by Ion Chromatography EPA 300.1 (modified)

Anions in aqueous matrices are analyzed using ion chromatography with conductivity and/or UV absorbance detectors.

FC-WP **APHA 2510B** Water Conductivity

Conductivity of an aqueous solution refers to its ability to carry an electric current. Conductance of a solution is measured between two spatially fixed and chemically inert electrodes.

ETL-HARDNESS-TOT-WP Water Hardness Calculated HARDNESS CALCULATED

ETL-SOLIDS-CALC-WP TDS calculated CALCULATION Water

F1-F4-CALC-WP **CCME Total Hydrocarbons** CCME CWS-PHC DEC-2000 - PUB# 1310-L Water

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

L1171564 CONTD....

Reference Information

PAGE 9 of 10 Version: FINAL

Test Method References:

ALS Test Code Matrix Method Reference** **Test Description**

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.

4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F2-F4-WS-WP Water F2-F4 PHC method EPA 3510/8000

This is the determination of the Petroleum Hydrocarbon fractions in water (F2, F3 and F4). A water sample volume of 200 mL in a 250 mL glass amber bottle is shaken with 10 mL hexane for two hours on a wrist action shaker, and then sonicated for 5 minutes. After extraction, the solvent layer is drawn off and analyzed against C10, C16 and C34 standards on a gas chromatograph equipped with a flame ionization detector.

FC-MPN-WP APHA 9221A-C Water Fecal Coliform

The Most Probable Number (MPN) method is based on the Multiple Tube Fermentation technique. The results of examination of replicate tubes and dilutions of a sample are reported after confirmations specific to total coliform, fecal coliform and E. coli are performed. Results are reported in and MPN/gram for food and solid samples. MPN/100 mL for water

IONBALANCE-OP05-WP Ion Balance Calculation No Reporting **APHA 1030E** Water MET-T-MS-WP Total Metals by ICP-MS U.S. EPA 200.8-T Water

Total Metals by ICP-MS: This analysis is carried out using sample preparation procedures adapted from Standard Methods for the examination of Water and Wastewater Method 3030E and analytical procedures adapted from U.S EPA Method 200.8 for analysis of metals by inductively coupled-mass spectrometery.

NH3-COL-WP Water APHA 4500 NH3 F Ammonia by colour

Ammonia in water samples forms indophenol when reacted with hypochlorite and phenol. The intensity is amplified by the addition of sodium nitroprusside and measured colourmetrically.

NO2+NO3-CALC-WP Water Nitrate+Nitrite CALCULATION

NO2-IC-WP Water Nitrite as N by Ion Chromatography EPA 300.1 (modified)

Anions in aqueous matrices are analyzed using ion chromatography with conductivity and/or UV absorbance detectors.

NO3-IC-WP Nitrate as N by Ion Chromatography Water EPA 300.1 (modified)

Anions in aqueous matrices are analyzed using ion chromatography with conductivity and/or UV absorbance detectors.

Water OGG-TOT-WT Oil and Grease, Total APHA 5520 B

Sample is extracted with hexane, extract is then evaporated and the residue is weighed to determine total oil and grease.

P-T-COL-WP APHA 4500 P PHOSPHORUS Water Phosphorus, Total

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorous is determined colourimetrically after persulphate digestion of the sample.

Polyaromatic Hydrocarbons (PAHs) EPA SW 846/8270-GC/MS

Water is spiked with a surrogate spike mix and extracted using solvent extraction techniques. Analysis is performed by GC/MS in the selected ion monitoring (SIM) mode.

PH-WP **APHA 4500H**

The pH of a sample is the determination of the activity of the hydrogen ions by potentiometric measurement using a standard hydrogen electrode and a reference electrode.

PHENOLS-4AAP-WT Phenol (4AAP) **EPA 9066** Water

An automated method is used to distill the sample. The distillate is then buffered to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a red complex which is measured colorimetrically.

SO4-IC-WP Water Sulfate by Ion Chromatography EPA 300.1 (modified)

Anions in aqueous matrices are analyzed using ion chromatography with conductivity and/or UV absorbance detectors.

SOLIDS-TOTSUS-WP **Total Suspended Solids** APHA 2540 D (modified) Water

Total suspended solids in aquesous matrices is determined gravimetrically after drying the residue at 103 105°C.

^{**} ALS test methods may incorporate modifications from specified reference methods to improve performance.

L1171564 CONTD....

PAGE 10 of 10 Version: FINAL

Reference Information

Test Method References:

ALS Test Code Matrix Test Description Method Reference**

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition CodeLaboratory LocationWPALS ENVIRONMENTAL - WINNIPEG, MANITOBA, CANADAWTALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

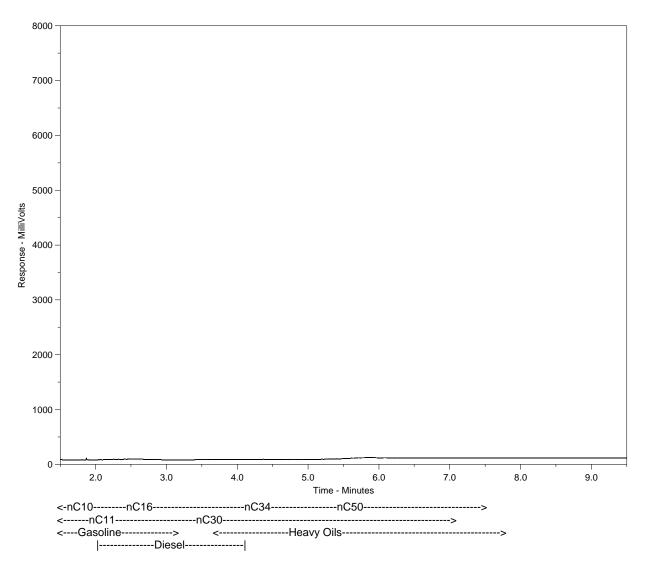
Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.


Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Hydrocarbon Distribution Report

ALS Sample ID: L1171564-3 Client ID: REP-6

The Canada Wide Standard Hydrocarbon Distribution Report is intended to assist you in characterizing hydrocarbon products that may be present in your sample. The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products as well as a number of specified n-alkane hydrocarbon marker compounds. Comparison of this report with those of reference standards may also assist in characterizing hydrocarbons present in the sample.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Note: This chromatogram was produced with a high temperature GC method that is specific to the Canada-Wide Standard method (December 2007 version). Note that retention times and distribution profiles from reports produced using different GC programs will differ.

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

U17156U

	_	
Page	(of	(

COC#

Report To	rt To Report Format / Distribution Serv						ice R	Bqııa	eted	(Rush	for ro	utine a	analys	is sub	ject to a	vailabili	ity)			
Company:						☑ Standard ☐ Other					S									-
Contact:						☑ PDF ☐ Excel ☐ Digital ☑ Fax					Regular (Si Priority (2- Emergency							11 111	_	
Address:	Address: P.O. Box 10, Repulse Bay, NU X0C 0H0					mmorepulse@0	inig.com		O Emergency						1 B B				_	
						saorepulse@qir	nig.com		O Sa	me Day	7			L117	7156	4-C	OFC			_
Phone:	(867) 462-9952		: (867) 462-44	11	Email 3:	mlusty@gov.nu	.ca				1									
Invoice To	Same as Report	? ☑ Yes	☐ No		Client / P	roject Information	on _	_	Ple	ase in	dicate	e belo	w Fil	tered,	Pres	erved	orbo	oth (F,	P, F/P)	, —
	Invoice with Repor	t? 🗹 Yes	☐ No		Job#:	Repulse Bay Me	onitoring Progra	m					7							٦ '
Company:					PO / AFE	:				-			$\neg \neg$		ĺ					7 '
Contact:					LSD:				1	Demand				l	ı	g		1	- 5	٤
Address:									1	De l	اء		_	- 1	1	졅	ş	ľ	-	ers la
Phone:		Fax	:		Quote #:				8	Oxygen	Carbor	支	Total	-E		ž	&			햹
	Vork Order # o use only)	are ann			ALS Contact:	Craig Riddell	Sampler: K	y'a gum'es	Carbonaceous B	Biochemical Oxy	ganic Ca	ia by colour	Oil and Grease,	Phosphorus, Total	Phenol [4AAP]	Routine Soluble + Metal Scan	Total Suispended Solids	Fecal Coliforms	BTEX plus F1-F4	Polyaromatic Hydrocarbons Number of Containers
Sample		Sample	Identification			Date	Time	Sample Type	اَقِ ا	P. P.	ō a	튙	g	g	2	E e	<u>~</u>	<u>8</u>	X I	ag ag
#	(Т	his description v	vill appear on th	e report)		(dd-mmm-yy)	(hh:mm)	Sample Type	Ü	8	Total	Ę	ō	윤	품	逐	ğ		B 2	
	REP-2					29/06/12	11:40am	Unste Water	1	1	$\overline{\mathcal{A}}$	/	1	<i></i>	V	₩		$\sqrt{}$		8
	REP-4				_	29/04/12	10:50 an	Waste Water		/	$\overline{/}$	フ	7	ᅴ	$\sqrt{}$	7	$\overline{\mathcal{L}}$			3
	REP-6	<u> </u>		_		29/06/12		Waste Water		7	7		7	7	Ž			راكم	オン	14
Description of the							1 1 1 2 7 2 1			_		\neg				_		-	+	+++
A Section		-								-+	\dashv		-	\dashv	\dashv	\dashv	\dashv		+	+
eria in territoria.								 	\vdash		\dashv			-						+
						-			\vdash	-+	-		_			4	_		4	1
en e				<u> </u>		<u> </u>				\dashv	_	-	_			_		_	┿	
<u>Terminal property and a second contract of the second contract of t</u>											_			_	_	_	_	_ _		ot
			-	 _									_			_	_	\perp	Щ	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$
																-				
								· —												
	Special Inst	tructions / Reg	ulations with w	ater or land	use (CCM	E-Freshwater A	quatic Life/BC	CSR - Commerci	al/AB	Tier 1	- Na	itural,	etc)	/ Haz	ardo	us De	tails			
												_								-
		Du the	Failure to C	omplete all p	portions of	this form may o	delay analysis.	Please fill in thi	s form	LEG	IBLY	•	_						_	
	Also provided o	by the USe C	o this form the altabare the A	user acknow	wiedges a	no agrees with t	ne Terms and	Conditions as proceed to container / prese	ovide	o on a	sep	arate	Exce	el tab						
g al el ale	SHIPMENT RELI	EASE (client use	A CONTRACTOR			NENT RECEPTION													A Programme	de la parace
Released by:		Date (dd-mmm-yy)	7	Received I		Date:	Time:	Temperature:	.,	ed by:		1-1-1			- 198 S	ON (II Time:	Condition of the con-		servat	
		29/06/12		_	•			_	veiill	eu by:		[]	Date:			inie.			servat s / No	
		2 1106/12	(S-pw	120	mes.	03 JUL-12	13:10	2.5 °C							L				es ado	1
				(~														CAIC OO	00 Fmr	