ANNUAL REPORT FOR THE HAMLET OF RANKIN INLET

YEAR BEING REPORTED: 2019

The following information is compiled pursuant to the requirements of Part B, Item 1 of Water License No. **3BM-RAN1520** issued to the **Hamlet of Rankin Inlet**.

 ii) tabular summaries of all data generated under the "Monitoring Program"; monthly and annual quantities in cubic metres of freshwater obtained from all sources; monthly and annual quantities in cubic metres of each and all wastes discharged;

Attached are results for Monitoring Station RAN-2.

Month Reported	Quantity of Water Obtained from all sources (m³)	Quantity of Sewage Waste Discharged (Estimated)					
January	None	None					
February	None	None					
March	None	None					
April	None	None					
May	None	None					
June	None	None					
July	None	None					
August	None	None					
September	None	None					
October	None	None					
November	None	None					
December	None	None					
ANNUAL TOTAL	None	None					

Note: The purpose of this License is the deposit of waste; there is no authorized water use.

ANNUAL REPORT FOR THE HAMLET OF RANKIN INLET

- ii) a summary of modifications and/or major maintenance work carried out on the Water Supply and Waste Disposal Facilities, including all associated structures and facilities;
- Batteries have been crated and stacked, as well as stored in a sea can which is now at full capacity. Segregation and clean-up of the wood and metals area has been completed by the Hamlet in the summer of 2019.

iii) a list of unauthorized discharges and summary of follow-up action taken;

	Occurrence			
Spill	Date	Location Description	Product Spilled	Quantity
spill-		Between Health Centre and		
2019452	03-Nov-19	Power Plant		40000
spill-				Unknown
2019480	31-Oct-19	Melvin Bay		Quantity
spill-			Petroleum - fuel oil (jet A,	
2019425	14-Oct-19	414 / 17-13 Ave.	diesel, turbo A, heat)	200
spill-			Petroleum - fuel oil (jet A,	Unknown
2019410	01-Oct-19	902 Maniruq 61st	diesel, turbo A, heat)	Quantity
spill-		188-24 Inukshuk Avenue,	Petroleum - fuel oil (jet A,	
2019270	05-Jul-19	unit 541b	diesel, turbo A, heat)	278
spill-		Condominiums, 44 - 15th		Unknown
2019255	26-Jun-19	Street		Quantity
spill-			Petroleum - fuel oil (jet A,	Unknown
2019216	22-May-19	Box 251	diesel, turbo A, heat)	Quantity
spill-		CBC Building 101-21 Tariuq	Petroleum - fuel oil (jet A,	Unknown
2019194	02-May-19	Avenue	diesel, turbo A, heat)	Quantity
spill-		Courtyard Condominiums,	Wastewater (sewage, mine	
2019155	09-Apr-19	44-15 Ayaruaq street	tailings)	800
spill-		CBC Building 101-21 Tariuq	Petroleum - fuel oil (jet A,	
2019221	01-Mar-19	Avenue	diesel, turbo A, heat)	2000

ANNUAL REPORT FOR THE HAMLET OF RANKIN INLET

iv)	a summary of any abandonment and restoration work completed during the year and an outline of any work anticipated for the next year;
	- None
v)	a summary of any studies requested by the Board that relate to waste disposal, water use or reclamation, and a brief description of any future studies planned;
	- None
vi)	any other details on water use or waste disposal requested by the Board by November 1st of the year being reported; and - None
vii)	Updates or revisions to the approved Operation and Maintenance Plans.
	- None
	ADDITIONAL INFORMATION THAT THE LICENSEE DEEMS USEFUL:
	FOLLOW-UP REGARDING INSPECTION/COMPLIANCE CONCERNS:
oec1	- The 3BM-RAN1520 CIRNAC Inspection took place on July 18 th , 2019. A copy of the tion report has not been received to date.

ANNUAL REPORT FOR THE HAMLET OF RANKIN INLET

Appendix A: Weekly Inspections at Monitoring Program Stations – 1 page

Appendix B: Certificate of Analysis June 26, 2019 – 8 pages Certificate of Analysis July 30, 2019 – 9 pages Certificate of Analysis October 1, 2019 – 9 pages

Appendix C: Hazardous Materials Spill Database, Rankin Inlet 2019 – 2 pages

Appendix D: Rankin Inlet – Hamlet 2019 Sampling Summary – 1 page

ANNUAL REPORT FOR THE HAMLET OF RANKIN INLET

Appendix A

ANNUAL REPORT FOR THE HAMLET OF RANKIN INLET

No Weekly Inspections at Monitoring Program Stations Document were received by CGS.

ANNUAL REPORT FOR THE HAMLET OF RANKIN INLET

Appendix B

Hamlet of Rankin Inlet ATTN: TOMMY SHARP

PO Box 310

Rankin Inlet NU XOC 0G0

Date Received: 28-JUN-19

Report Date: 01-AUG-19 10:14 (MT)

Version: FINAL REV. 2

Client Phone: 867-645-2895

Certificate of Analysis

Lab Work Order #: L2301194
Project P.O. #: NOT SUBMITTED

Job Reference: HAMLET OF RANKIN INLET

C of C Numbers: Legal Site Desc:

Comments:

1-AUG-2019 AMENDED REPORT - Sample ID Corrected to RAN-2

Hua wo

Chemistry Laboratory Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2301194 CONTD....
PAGE 2 of 6
Version: FINAL REV.

Sample Details/Parameters	Result	Qualifier*	* D.L.	Units	Extracted	Analyzed	Batch
L2301194-1 RAN-2							
Sampled By: TS on 26-JUN-19 @ 09:30							
Matrix: WASTE WATER							
BTEX plus F1-F4							
BTX plus F1 by GCMS							
Benzene	<0.00050		0.00050	mg/L		10-JUL-19	R4696444
Toluene	<0.0010		0.0010	mg/L		10-JUL-19	R4696444
Ethyl benzene	<0.00050		0.00050	mg/L		10-JUL-19	R4696444
o-Xylene m+p-Xylenes	<0.00050 <0.00040		0.00050 0.00040	mg/L		10-JUL-19 10-JUL-19	R4696444 R4696444
F1 (C6-C10)	<0.0040		0.00040	mg/L mg/L		10-JUL-19 10-JUL-19	R4696444
Surrogate: 4-Bromofluorobenzene (SS)	82.0		70-130	// // // // // // // // // // // // //		10-JUL-19	R4696444
CCME PHC F2-F4 in Water	02.0			, ,			
F2 (C10-C16)	0.18		0.10	mg/L	05-JUL-19	18-JUL-19	R4699009
F3 (C16-C34)	0.37		0.25	mg/L	05-JUL-19	18-JUL-19	R4699009
F4 (C34-C50)	<0.25		0.25	mg/L	05-JUL-19	18-JUL-19	R4699009
Surrogate: 2-Bromobenzotrifluoride	97.1		60-140	%	05-JUL-19	18-JUL-19	R4699009
CCME Total Hydrocarbons	0.10		0.40			40 11 11 40	
F1-BTEX Total Hydrocarbons (C6-C50)	<0.10		0.10	mg/L		19-JUL-19 19-JUL-19	
Total Hydrocarbons (C6-C50) Sum of Xylene Isomer Concentrations	0.55		0.38	mg/L		19-JUL-19	
Xylenes (Total)	<0.00064		0.00064	mg/L		11-JUL-19	
Nunavut WW Group 1							
Alkalinity, Bicarbonate							
Bicarbonate (HCO3)	103		1.2	mg/L		03-JUL-19	
Alkalinity, Carbonate Carbonate (CO3)	<0.60		0.60	mg/L		03-JUL-19	
Alkalinity, Hydroxide Hydroxide (OH)	<0.34		0.34	mg/L		03-JUL-19	
Alkalinity, Total (as CaCO3) Alkalinity, Total (as CaCO3)	84.4		1.0	mg/L		02-JUL-19	R4692423
Ammonia by colour Ammonia, Total (as N)	3.94		0.10	mg/L		05-JUL-19	R4696524
Biochemical Oxygen Demand (BOD)							
Biochemical Oxygen Demand	9.7		2.0	mg/L		29-JUN-19	R4695960
Carbonaceous BOD	_						
BOD Carbonaceous	7.9		2.0	mg/L		29-JUN-19	R4695960
Chloride in Water by IC Chloride (CI)	70.8		0.50	mg/L		29-JUN-19	R4693621
Conductivity Conductivity	741		1.0	umhos/cm		02-JUL-19	R4692423
Fecal coliforms, 1:10 dilution by QT97 Fecal Coliforms	<10	PEHR	10	MPN/100mL		28-JUN-19	R4691031
Hardness Calculated Hardness (as CaCO3)	174	нтс	0.20	mg/L		09-JUL-19	
Mercury Total Mercury (Hg)-Total	<0.000050		0.0000050	mg/L	12-JUL-19	15-JUL-19	R4712816
Nitrate in Water by IC Nitrate (as N)	0.383		0.020	mg/L		29-JUN-19	R4693621
Nitrate+Nitrite Nitrate and Nitrite as N							114000021
Nitrate and Nitrite as N Nitrite in Water by IC	0.429		0.070	mg/L		04-JUL-19	
Nitrite (as N)	0.046		0.010	mg/L		29-JUN-19	R4693621
Oil & Grease - Gravimetric Oil and Grease	<5.0		5.0	mg/L		04-JUL-19	R4694505
Phenol (4AAP)							

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2301194 CONTD....
PAGE 3 of 6
Version: FINAL REV.

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2301194-1 RAN-2							
Sampled By: TS on 26-JUN-19 @ 09:30							
Matrix: WASTE WATER							
Phenol (4AAP)							
Phenols (4AAP)	0.0011		0.0010	mg/L		04-JUL-19	R4693880
Phosphorus, Total							
Phosphorus (P)-Total	0.241		0.0030	mg/L		08-JUL-19	R4697472
Sulfate in Water by IC Sulfate (SO4)	170		0.30	mg/L		29-JUN-19	R4693621
Total Metals in Water by CRC ICPMS	170		0.50	mg/L		25-5011-15	114093021
Aluminum (Al)-Total	0.0382		0.0030	mg/L	08-JUL-19	08-JUL-19	R4697480
Arsenic (As)-Total	0.00524		0.00010	mg/L	08-JUL-19	08-JUL-19	R4697480
Cadmium (Cd)-Total	0.0000962		0.0000050	mg/L	08-JUL-19	08-JUL-19	R4697480
Calcium (Ca)-Total	43.0		0.050	mg/L	08-JUL-19	08-JUL-19	R4697480
Chromium (Cr)-Total	0.00084		0.00010	mg/L	08-JUL-19	08-JUL-19	R4697480
Cobalt (Co)-Total	0.00482		0.00010	mg/L	08-JUL-19	08-JUL-19	R4697480
Copper (Cu)-Total	0.0307		0.00050	mg/L	08-JUL-19	08-JUL-19	R4697480
Iron (Fe)-Total	1.43		0.010	mg/L	08-JUL-19	08-JUL-19	R4697480
Lead (Pb)-Total	0.00227		0.000050	mg/L	08-JUL-19	08-JUL-19	R4697480
Magnesium (Mg)-Total	16.2		0.0050	mg/L	08-JUL-19	08-JUL-19	R4697480
Manganese (Mn)-Total	0.207		0.00010	mg/L	08-JUL-19	08-JUL-19	R4697480
Nickel (Ni)-Total	0.0158		0.00050	mg/L	08-JUL-19	08-JUL-19	R4697480
Potassium (K)-Total	22.5		0.050	mg/L	08-JUL-19	08-JUL-19	R4697480
Sodium (Na)-Total Zinc (Zn)-Total	77.0 0.0384		0.050	mg/L	08-JUL-19 08-JUL-19	08-JUL-19 08-JUL-19	R4697480
Total Organic Carbon by Combustion	0.0364		0.0030	mg/L	00-30L-19	00-30L-19	R4697480
Total Organic Carbon	24.2		0.50	mg/L		10-JUL-19	R4707992
Total Suspended Solids Total Suspended Solids	13.6		2.0	mg/L		03-JUL-19	R4693447
pH pH	8.03		0.10	pH units		02-JUL-19	R4692423
μπ	6.03		0.10	pn units		02-JUL-19	K4092423

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

HAMLET OF RANKIN INLET L2301194 CONTD....

Reference Information

PAGE 4 of 6 Version: FINAL REV

Sample Parameter Qualifier Key:

Qualifier	Description
HTC	Hardness was calculated from Total Ca and/or Mg concentrations and may be biased high (dissolved Ca/Mg results unavailable).
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
PEHR	Parameter Exceeded Recommended Holding Time On Receipt: Proceed With Analysis As Requested.

Test Method References:

rest wethou kelelence	·3.		
ALS Test Code	Matrix	Test Description	Method Reference**
ALK-CO3CO3-CALC-WP	Water	Alkalinity, Carbonate	CALCULATION

The Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. The fraction of alkalinity contributed by carbonate is calculated and reported as mg CO3 2-/L.

ALK-HCO3HCO3-CALC- Water Alkalinity, Bicarbonate CALCULATION

WP

The Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. The fraction of alkalinity contributed by bicarbonate is calculated and reported as mg HCO3-/L

ALK-OHOH-CALC-WP Water Alkalinity, Hydroxide CALCULATION

The Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. The fraction of alkalinity contributed by hydroxide is calculated and reported as mg OH-/L.

ALK-TITR-WP Water Alkalinity, Total (as CaCO3) APHA 2320B

The Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. Total alkalinity is determined by titration with a strong standard mineral acid to the successive HCO3- and H2CO3 endpoints indicated electrometrically.

BOD-CBOD-WP Water Carbonaceous BOD APHA 5210 B

Samples are diluted and seeded, have TCMP added to inhibit nitrogenous demands, and then are incubated in airtight bottles at 20°C for 5 days. Dissolved oxygen is measured initially and after incubation, and results are computed from the difference between initial and final DO.

BOD-WP Water Biochemical Oxygen Demand (BOD) APHA 5210 B

Samples are diluted and seeded and then incubated in airtight bottles at 20°C for 5 days. Dissolved oxygen is measured initially and after incubation, and results are computed from the difference between initial and final DO.

BTEXS+F1-HSMS-WP Water BTX plus F1 by GCMS EPA 8260C / EPA 5021A

The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection.

C-TOC-HTC-WP Water Total Organic Carbon by Combustion APHA 5310 B-WP

Sample is acidified and purged to remove inorganic carbon, then injected into a heated reaction chamber where organic carbon is oxidized to CO2 which is then transported in the carrier gas stream and measured via a non-dispersive infrared analyzer.

CL-IC-N-WP Water Chloride in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

EC-WP Water Conductivity APHA 2510B

Conductivity of an aqueous solution refers to its ability to carry an electric current. Conductance of a solution is measured between two spatially fixed and chemically inert electrodes.

F1-F4-CALC-WP Water CCME Total Hydrocarbons CCME CWS-PHC, Pub #1310, Dec 2001-L

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

1. All extraction and analysis holding times were met.

L2301194 CONTD....

L2301194 CONTD....

Reference Information

PAGE 5 of 6 Version: FINAL REV

Test Method References:

ALS Test Code Matrix Test Description Method Reference**

- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F2-F4-FID-WP Water CCME PHC F2-F4 in Water

EPA 3511

Petroleum hydrocarbons in water are determined by liquid-liquid micro-scale solvent extraction using a reciprocal shaker extraction apparatus prior to capillary column gas chromatography with flame ionization detection (GC-FID) analysis.

FC10-QT97-WP

Water

Fecal coliforms, 1:10 dilution by QT97

APHA 9223B QT97

Analysis is carried out using procedures adapted from APHA 9223 "Enzyme Substrate Coliform Test". Fecal (thermotolerant) coliform bacteria are determined by mixing a 1:10 dilution of sample with a product containing hydrolyzable substrates and sealing in a 97-well packet. The packet is incubated at 44.5 – 0.2°C for 18 hours and then the number of wells exhibiting positive responses are counted. The final results are obtained by comparing the number of positive responses to a probability table.

HARDNESS-CALC-WP

Water

Hardness Calculated

APHA 2340B

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

HG-T-CVAA-WP

Water

Mercury Total

EPA 1631E (mod)

Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

MET-T-CCMS-WP

Water

Total Metals in Water by CRC ICPMS

EPA 200.2/6020B (mod.)

Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

NH3-COL-WP

Water

Ammonia by colour

APHA 4500 NH3 F

Ammonia in water samples forms indophenol when reacted with hypochlorite and phenol. The intensity is amplified by the addition of sodium nitroprusside and measured colourmetrically.

NO2+NO3-CALC-WP

Water

Nitrate+Nitrite

CALCULATION

NO2-IC-N-WP

Water

Nitrite in Water by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

NO3-IC-N-WP

Water

Nitrate in Water by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

OG-GRAV-WP

Water

Oil & Grease - Gravimetric

EPA 1664 (modified)

Water samples are acidified and extracted with hexane; the hexane extract is collected in a pre-weighed vial. The solvent is evaporated and Total Oil & Grease is determined from the weight of the residue in the vial.

P-T-COL-WP

Water

Phosphorus, Total

APHA 4500 P PHOSPHORUS-L

This analysis is carried out using procedures adapted from APHA METHOD 4500-P "Phosphorus". Total Phosphorus is determined colourmetrically after persulphate digestion of the sample.

DH-\\\D

Water

pН

APHA 4500H

The pH of a sample is the determination of the activity of the hydrogen ions by potentiometric measurement using a standard hydrogen electrode and a reference electrode.

PHENOLS-4AAP-WT

Water

Phenol (4AAP)

EPA 9066

An automated method is used to distill the sample. The distillate is then buffered to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a red complex which is measured colorimetrically.

SO4-IC-N-WP

Water

Sulfate in Water by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

SOLIDS-TOTSUS-WP

Water

Total Suspended Solids

APHA 2540 D (modified)

Total suspended solids in aquesous matrices is determined gravimetrically after drying the residue at 103 105°C.

HAMLET OF RANKIN INLET

Reference Information

PAGE 6 of 6 Version: FINAL REV

L2301194 CONTD....

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
XYLENES-SUM-CALC- WP	Water	Sum of Xylene Isomer Concentrations	CALCULATED RESULT

Total xylenes represents the sum of o-xylene and m&p-xylene.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WP	ALS ENVIRONMENTAL - WINNIPEG, MANITOBA, CANADA
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

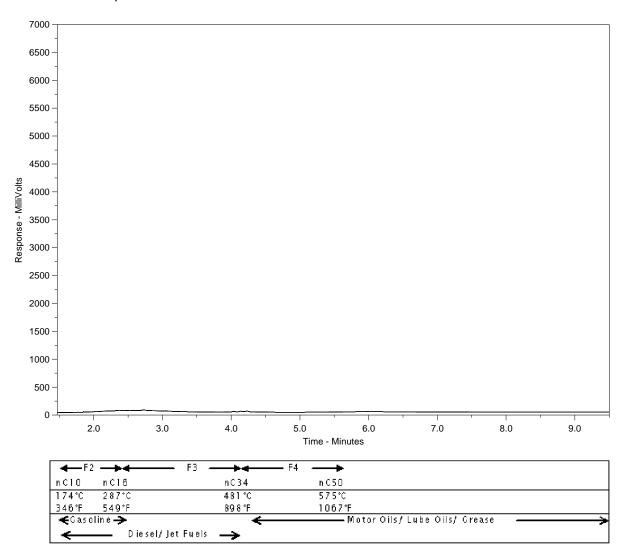
mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.


UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

ALS Sample ID: L2301194-1 Client Sample ID: RAW-2

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at www.alsglobal.com.

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

L2301194-COFC

COC Number: 17 - 747773

Page (of

		 			<u>.*</u>	[230119					<u> </u>										
Report To	Contact and company name below will appe			Report Format	\overline{I}_{i}						// Co	ntact yo	ur AM t	o conf	irm all	E&P T	ATs (su	ircharg	jes may a	apply)	
Company:	Hamlet of Rankin Inte	+	Select Report Fo	(<u></u>)	= 			Regula	ir [R]	V St	ndard TA	F if receiv	ed by 3 p	m - busi	iness da	ys - no s	urcharg	es apply			
Contact:	10mm-1 Shurp 867-645-2895		Quality Control (QC) Report with Report YES NO				HORUTY HORER Days)	4 day [P	1-20%]		}	1 B	ısines	day	[E - 10	0%]		* (d_ γa•i		
Phone:	861-645-2895	·		ults to Criteria on Report -			Desca [3 day [P:	3-25%]		8	Sam	e Day,	Week	end or	Statu	tory h		[E2 -20		_
	Company address below will appear on the fina	report	Select Distribution		MAIL []		g g	2 day [P:	2-50%]			(Lab	orator	open	ning fe	es ma	у арр	ly)]	,	L F	L
Street:	Po Box 30		Email 1 or Fax	WORKS @ R	antininlet	·ca		Date and Ti	me Requ	red for a	I E&P TA	Гв;	<u> </u>			dd-m	ımm-y	y hh:n	ım		
City/Province:	Pentin Inict, NN		Email 2	(ac Q Ram	wininglet.	10	For tests	that can not	be perform	ed accor	ing to the	service lev	el selecte	d, you w	III be con	tacted.					
Postal Code:	XOC OFFO		Email 3	chaulkner	090v.n	(9	1					A	ıalysis	Requ	est				,, 5		
Invoice To	Same as Report To YES	NO		Invoice Dis					Indica	te Filtere	i (F), Pres	erved (P)	or Filtere	d and P	reserved	∄ (F/P) b	elow			0	
	Copy of Invoice with Report YES	NO	Select Invoice Di	istribution: E	MAIL MAIL	FAX	ONTAINERS						<u> </u>						, il 100 s	HOLD	jë
Company:			Email 1 or Fax				Ĭ₩ſ													0	틸
Contact:	<u> </u>		Email 2				≨				n	۱ م		7	الما		- 1	. "	•	Ī,	Ē
	Project Information			oil and Gas Required	fields (client us	(e)	ΙĐΙ				<u>ا</u> ڄ	'2		3	깇	×	_ , ·	31	1	7 √	<u>8</u>
ALS Account # /	Quote #: W10629		AFE/Cost Center:		PO#		١ <u>٨</u> ١			-		ب ا		- 31	ı l	~	٦	400	, nt	Z O	1 8
Job #:	· 		Major/Minor Code:		Routing Code:]ŏ[英	$\mathcal{E}[\tilde{z}]$	् । इ	্ত	Mer		<u> </u>	×	J.			8
PO / AFE:			Requisitioner:				ఠ	14	_	31	3[]	ځ اڅ	3	٤	ازا	구	±			ES	١٥
LSD:			Location:					غِادِ	Boo	2	4 3) <u>-</u>	15		மி	£2.	t	· ["	ľŠi
ALS Lab Wor	rk Order # (lab use only):		ALS Contact:		Sampler: 10	zważp	NUMBER	Contract	C.B.	Total Metal	20 12 12 10 10 10 10 10 10 10 10 10 10 10 10 10	91 + Greek	Bucteria	黄	BTEX, FI	سلبا	4		,	AMP	SUSPECTED HAZARD (see Special Instructions)
ALS Sample #	Sample Identification	and/or Coordinates	•	Date	Time		1≧ ['	-				.		1			⋜	Ä.
(lab use only)	(This description will a	appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	Z													S	§
	RAN-Z			26-34-19	9:30 Am	WU	١٦	11	1.7	£	PP	Р	9	1	Ρ	1	9				
			<u></u>	1	19		1		╅	-	1	+,			-	<u> </u>			-		\vdash
			.*			-	i i	_	+		+	+			-+	-					 -
		 						-	+-	-		+			\rightarrow	-+		-+-	+		\vdash
				 								-						\dashv			
									+		_									_	\vdash
							<u> </u>		4				_				\perp				
*				<u> </u>																	
					L.	L														: _	
																			T		
* * 1 1																					
								\dashv			\top			_		\neg					
				 	-	 	1	_	+		\dashv	_			-+	-			_		\vdash
		Special Instructions /	Specify Criteria to	add as report by dick	ing on the drop do	Mars Het below	┢──┴─			SAI	IPLE Ç	ONDITIO	N AS	RECE	IVED (lab us	e only	/)			Ч
Drinkin	g Water (DW) Samples' (client use)	openial managements		etronic COC only)	ang on the crop-go	MIL IIST DAIDM	Frozen					Obser		_	Yes				No		J
	n from a Regulated DW System?			(2.0)	10		ice Pac	ks 🔲	Ice C	ubes	□ cu	stody se	al intac	ŧ	Yes			1	Nσ		J
□ ٢	res 🗹 NO	Nuna	wt -wu	J-GRP1			Cooling	Initiated													
Are samples for h	numan consumption/ use?								LCOOLE	R TEMP	RATURE	s °C			F	INAL C	OOLER	TEMPE	RATURES	°C	
<u> </u> Y	ES NO	•	KINTLI	1-F4, PA+	τ		13.	8								į					
	SHIPMENT RELEASE (client use)			INITIAL SHIPMEN	TRECEPTION (la	b use only)					FIN	IAL SH		REC	EPTIO	N (lab	use o	nly)			
Released by:	Date:	21 1.0 Pine:	Received by:	4	Date: June	7.8	Time:	Rec	eived b	y:			Date:						Time	B:	
DESERTO BACK	PAGE FOR ALS LOCATIONS AND SAMPLING IN	26/19 93D			E-LABORATORY	~ ∪							<u> </u>							N MAT	لِــــ
REFER TO BACK	TAGE FOR AES LOCATIONS AND SAMPLING IN	ORMATION		WHII	E - LABORATORY (COPY YELLO\	v - CLIEI	VI COPY												JUNE 20	DIB FRONT

Hamlet of Rankin Inlet ATTN: JUSTIN MERRITT

PO Box 310

Rankin Inlet NU XOC 0G0

Date Received: 31-JUL-19

Report Date: 14-AUG-19 06:59 (MT)

Version: FINAL

Client Phone: 867-645-2895

Certificate of Analysis

Lab Work Order #: L2320122
Project P.O. #: NOT SUBMITTED

Job Reference: HAMLET OF RANKIN INLET WWTP

C of C Numbers: Legal Site Desc:

Comments: Note: No Sterile Bacteria bottle was received for RAN-2 for Fecal Coliform.

Hua Wo

Chemistry Laboratory Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2320122 CONTD.... PAGE 2 of 7 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L 2220422 4 DAN 2							
L2320122-1 RAN-2 Sampled By: CF on 30-JUL-19 @ 14:19							
Matrix: WW BTEX plus F1-F4							
BTX plus F1 by GCMS Benzene	<0.00050		0.00050	mg/L		03-AUG-19	R4739804
Toluene	<0.0010		0.0010	mg/L		03-AUG-19	R4739804
Ethyl benzene	<0.00050		0.00050	mg/L		03-AUG-19	R4739804
o-Xylene	<0.00050		0.00050	mg/L		03-AUG-19	R4739804
m+p-Xylenes	<0.00040		0.00040	mg/L		03-AUG-19	R4739804
F1 (C6-C10)	<0.10		0.10	mg/L		03-AUG-19	R4739804
Surrogate: 4-Bromofluorobenzene (SS)	96.4		70-130	%		03-AUG-19	R4739804
CCME PHC F2-F4 in Water							
F2 (C10-C16)	0.41		0.10	mg/L	01-AUG-19	02-AUG-19	R4739024
F3 (C16-C34)	0.59		0.25	mg/L	01-AUG-19	02-AUG-19	R4739024
F4 (C34-C50)	<0.25		0.25	mg/L	01-AUG-19	02-AUG-19	R4739024
Surrogate: 2-Bromobenzotrifluoride	95.5		60-140	%	01-AUG-19	02-AUG-19	R4739024
CCME Total Hydrocarbons F1-BTEX	<0.10		0.10	mg/L		07-AUG-19	
F2-Naphth	0.41		0.10	mg/L		07-AUG-19 07-AUG-19	
F3-PAH	0.59		0.10	mg/L		07-AUG-19 07-AUG-19	
Total Hydrocarbons (C6-C50)	1.01		0.23	mg/L		07-AUG-19	
Sum of Xylene Isomer Concentrations			0.00	9/ =		0.7.00.10	
Xylenes (Total)	<0.00064		0.00064	mg/L		06-AUG-19	
Polyaromatic Hydrocarbons (PAHs)							
1-Methyl Naphthalene	<0.000020		0.000020	mg/L	01-AUG-19	01-AUG-19	R4742210
2-Methyl Naphthalene	<0.000020		0.000020	mg/L	01-AUG-19	01-AUG-19	R4742210
Acenaphthene	<0.000020		0.000020	mg/L	01-AUG-19	01-AUG-19	R4742210
Acenaphthylene	<0.000020		0.000020	mg/L	01-AUG-19	01-AUG-19	R4742210
Anthracene Acridine	<0.000010		0.000010	mg/L	01-AUG-19 01-AUG-19	01-AUG-19	R4742210
Benzo(a)anthracene	<0.000020 <0.000010		0.000020 0.000010	mg/L mg/L	01-AUG-19 01-AUG-19	01-AUG-19 01-AUG-19	R4742210 R4742210
Benzo(a)pyrene	<0.000010		0.000010	mg/L	01-AUG-19	01-AUG-19 01-AUG-19	R4742210
Benzo(b&j)fluoranthene	<0.000010		0.0000030	mg/L	01-AUG-19	01-AUG-19	R4742210
Benzo(g,h,i)perylene	<0.000010		0.000010	mg/L	01-AUG-19	01-AUG-19	R4742210
Benzo(k)fluoranthene	<0.00010		0.000010	mg/L	01-AUG-19	01-AUG-19	R4742210
Chrysene	<0.000020		0.000020	mg/L	01-AUG-19	01-AUG-19	R4742210
Dibenzo(a,h)anthracene	<0.000050		0.0000050	mg/L	01-AUG-19	01-AUG-19	R4742210
Fluoranthene	<0.000020		0.000020	mg/L	01-AUG-19	01-AUG-19	R4742210
Fluorene	<0.000020		0.000020	mg/L	01-AUG-19	01-AUG-19	R4742210
Indeno(1,2,3-cd)pyrene	<0.000010		0.000010	mg/L	01-AUG-19	01-AUG-19	R4742210
Naphthalene	<0.000050		0.000050	mg/L	01-AUG-19	01-AUG-19	R4742210
Phenanthrene	<0.000050	D	0.000050	mg/L	01-AUG-19	01-AUG-19	R4742210
Pyrene	<0.000020	DLM	0.000010	mg/L	01-AUG-19	01-AUG-19	R4742210
Quinoline P(a)R Total Retenay Equivalent	<0.000020		0.000020	mg/L	01-AUG-19	01-AUG-19	R4742210
B(a)P Total Potency Equivalent	<0.000030		0.000030	mg/L %	01-AUG-19 01-AUG-19	01-AUG-19 01-AUG-19	R4742210
Surrogate: Acenaphthene d10 Surrogate: Acridine d9	73.4 74.1		60-130 60-130	% %	01-AUG-19 01-AUG-19	01-AUG-19 01-AUG-19	R4742210 R4742210
Surrogate: Actionie de Surrogate: Chrysene d12	94.2		60-130	%	01-AUG-19 01-AUG-19	01-AUG-19 01-AUG-19	R4742210 R4742210
Surrogate: Naphthalene d8	75.6		50-130	%	01-AUG-19	01-AUG-19 01-AUG-19	R4742210
Surrogate: Phenanthrene d10	76.1		60-130	%	01-AUG-19	01-AUG-19	R4742210
Nunavut WW Group 1			00	: *			
Alkalinity, Bicarbonate							
Bicarbonate (HCO3)	577		1.2	mg/L		01-AUG-19	
Alkalinity, Carbonate							

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2320122 CONTD.... PAGE 3 of 7 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
LOCATION A DANG							
L2320122-1 RAN-2 Sampled By: CF on 30-JUL-19 @ 14:19							
Matrix: WW							
Alkalinity, Carbonate Carbonate (CO3)	<0.60		0.60	mg/L		01-AUG-19	
Alkalinity, Hydroxide Hydroxide (OH)	<0.34		0.34	mg/L		01-AUG-19	
Alkalinity, Total (as CaCO3) Alkalinity, Total (as CaCO3)	473		1.0	mg/L		31-JUL-19	R4734401
Ammonia by colour Ammonia, Total (as N)	13.2		1.0	mg/L		31-JUL-19	R4735088
Biochemical Oxygen Demand (BOD) Biochemical Oxygen Demand	13.8		6.0	mg/L		31-JUL-19	R4739685
Carbonaceous BOD				-			
BOD Carbonaceous Chloride in Water by IC	8.8		2.0	mg/L		31-JUL-19	R4739685
Chloride (CI)	240		10	mg/L		31-JUL-19	R4738653
Conductivity Conductivity	2600		1.0	umhos/cm		31-JUL-19	R4734401
Hardness Calculated Hardness (as CaCO3)	747	нтс	0.20	mg/L		14-AUG-19	
Mercury Total Mercury (Hg)-Total	0.0000230		0.0000050	mg/L	07-AUG-19	08-AUG-19	R4744895
Nitrate in Water by IC Nitrate (as N)	1.74		0.40	mg/L		31-JUL-19	R4738653
Nitrate+Nitrite Nitrate and Nitrite as N	1.97		0.45	mg/L		03-AUG-19	
Nitrite in Water by IC Nitrite (as N)	0.23		0.20	mg/L		31-JUL-19	R4738653
Oil & Grease - Gravimetric Oil and Grease	<5.0		5.0	mg/L		02-AUG-19	R4738743
Phenol (4AAP)							
Phenols (4AAP) Phosphorus, Total	0.0020		0.0010	mg/L		01-AUG-19	R4737245
Phosphorus (P)-Total Sulfate in Water by IC	0.285		0.0030	mg/L		02-AUG-19	R4737930
Sulfate (SO4)	615		6.0	mg/L		31-JUL-19	R4738653
Total Metals in Water by CRC ICPMS				,,	00 4116 :-	00 1115	
Aluminum (Al)-Total	0.0436		0.0030	mg/L	08-AUG-19	08-AUG-19	R4746362
Arsenic (As)-Total	0.00715		0.00010	mg/L	08-AUG-19	08-AUG-19	R4746362
Cadmium (Cd)-Total	0.000284		0.0000050	mg/L	08-AUG-19	08-AUG-19	R4746362
Calcium (Ca)-Total	216		0.050	mg/L	08-AUG-19	08-AUG-19	R4746362
Chromium (Cr)-Total	0.00373		0.00010	mg/L	08-AUG-19	08-AUG-19	R4746362
Cobalt (Co)-Total	0.0141		0.00010	mg/L	08-AUG-19	08-AUG-19	R4746362
Copper (Cu)-Total Iron (Fe)-Total	0.0919		0.00050	mg/L	08-AUG-19	08-AUG-19	R4746362
	4.90		0.010	mg/L	08-AUG-19	08-AUG-19	R4746362
Lead (Pb)-Total	0.00311		0.000050	mg/L	08-AUG-19	08-AUG-19	R4746362
Magnesium (Mg)-Total	50.7		0.0050	mg/L	08-AUG-19	08-AUG-19	R4746362
Manganese (Mn)-Total	1.83		0.0010	mg/L	08-AUG-19	12-AUG-19	R4752398
Nickel (Ni)-Total	0.0394		0.00050	mg/L	08-AUG-19	08-AUG-19	R4746362
Potassium (K)-Total	63.2		0.050	mg/L	08-AUG-19	08-AUG-19	R4746362
Sodium (Na)-Total	240		0.050	mg/L	08-AUG-19	08-AUG-19	R4746362
Zinc (Zn)-Total	0.154		0.0030	mg/L	08-AUG-19	08-AUG-19	R4746362
Total Organic Carbon by Combustion Total Organic Carbon	60.4		2.5	mg/L		08-AUG-19	R4745065
Total Suspended Solids							
	l .	I				<u> </u>	

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2320122 CONTD.... PAGE 4 of 7 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2320122-1 RAN-2 Sampled By: CF on 30-JUL-19 @ 14:19 Matrix: WW							
Total Suspended Solids Total Suspended Solids	21.2		6.0	mg/L		06-AUG-19	R4741955
pH pH	8.15		0.10	pH units		31-JUL-19	R4734401

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2320122 CONTD....

Reference Information

PAGE 5 of 7 Version: FINAL

Sample Parameter Qualifier Key:

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
HTC	Hardness was calculated from Total Ca and/or Mg concentrations and may be biased high (dissolved Ca/Mg results unavailable).
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Test Method References:

rest metriod References:							
ALS Test Code	Matrix	Test Description	Method Reference**				
ALK-CO3CO3-CALC-WP	Water	Alkalinity, Carbonate	CALCULATION				

The Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. The fraction of alkalinity contributed by carbonate is calculated and reported as mg CO3 2-/L.

ALK-HCO3HCO3-CALC- Water Alkalinity, Bicarbonate CALCULATION WP

The Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. The fraction of alkalinity contributed by bicarbonate is calculated and reported as mg HCO3-/L

ALK-OHOH-CALC-WP Water Alkalinity, Hydroxide CALCULATION

The Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. The fraction of alkalinity contributed by hydroxide is calculated and reported as mg OH-/L.

ALK-TITR-WP Water Alkalinity, Total (as CaCO3) APHA 2320B

The Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. Total alkalinity is determined by titration with a strong standard mineral acid to the successive HCO3- and H2CO3 endpoints indicated electrometrically.

BOD-CBOD-WP Water Carbonaceous BOD APHA 5210 B

Samples are diluted and seeded, have TCMP added to inhibit nitrogenous demands, and then are incubated in airtight bottles at 20°C for 5 days. Dissolved oxygen is measured initially and after incubation, and results are computed from the difference between initial and final DO.

BOD-WP Water Biochemical Oxygen Demand (BOD) APHA 5210 B

Samples are diluted and seeded and then incubated in airtight bottles at 20°C for 5 days. Dissolved oxygen is measured initially and after incubation, and results are computed from the difference between initial and final DO.

BTEXS+F1-HSMS-WP Water BTX plus F1 by GCMS EPA 8260C / EPA 5021A

The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection.

C-TOC-HTC-WP Water Total Organic Carbon by Combustion APHA 5310 B-WP

Sample is acidified and purged to remove inorganic carbon, then injected into a heated reaction chamber where organic carbon is oxidized to CO2 which is then transported in the carrier gas stream and measured via a non-dispersive infrared analyzer.

CL-IC-N-WP Water Chloride in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

EC-WP Water Conductivity APHA 2510B

Conductivity of an aqueous solution refers to its ability to carry an electric current. Conductance of a solution is measured between two spatially fixed and chemically inert electrodes.

F1-F4-CALC-WP Water CCME Total Hydrocarbons CCME CWS-PHC, Pub #1310, Dec 2001-L

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

1. All extraction and analysis holding times were met.

L2320122 CONTD....

PAGE 6 of 7 Version: FINAL

Reference Information

Test Method References:

ALS Test Code Matrix Test Description Method Reference**

- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.

4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F2-F4-FID-WP Water CCME PHC F2-F4 in Water EPA 3511

Petroleum hydrocarbons in water are determined by liquid-liquid micro-scale solvent extraction using a reciprocal shaker extraction apparatus prior to capillary column gas chromatography with flame ionization detection (GC-FID) analysis.

HARDNESS-CALC-WP Water Hardness Calculated APHA 2340B

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents.

Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

HG-T-CVAA-WP Water Mercury Total EPA 1631E (mod

Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

MET-T-CCMS-WP Water Total Metals in Water by CRC ICPMS EPA 200.2/6020B (mod.)

Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

NH3-COL-WP Water Ammonia by colour APHA 4500 NH3 F

Ammonia in water samples forms indophenol when reacted with hypochlorite and phenol. The intensity is amplified by the addition of sodium

nitroprusside and measured colourmetrically.

NO2+NO3-CALC-WP Water Nitrate+Nitrite CALCULATION

NO2-IC-N-WP Water Nitrite in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

NO3-IC-N-WP Water Nitrate in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

OG-GRAV-WP Water Oil & Grease - Gravimetric EPA 1664 (modified)

Water samples are acidified and extracted with hexane; the hexane extract is collected in a pre-weighed vial. The solvent is evaporated and Total Oil &

Grease is determined from the weight of the residue in the vial.

P-T-COL-WP Water Phosphorus, Total APHA 4500 P PHOSPHORUS-L

This analysis is carried out using procedures adapted from APHA METHOD 4500-P "Phosphorus". Total Phosphorus is determined colourmetrically

after persulphate digestion of the sample.

PAH,PANH-WP Water Polyaromatic Hydrocarbons (PAHs) EPA 3511/8270D (mod)

PAHs are extracted from water using a hexane micro-extraction technique, with analysis by GC/MS. Because the two isomers cannot be readily

separated chromatographically, benzo(j)fluoranthene is reported as part of the benzo(b)fluoranthene parameter.

PH-WP Water pH APHA 4500H

The pH of a sample is the determination of the activity of the hydrogen ions by potentiometric measurement using a standard hydrogen electrode and a

reference electrode.

PHENOLS-4AAP-WT Water Phenol (4AAP) EPA 9066

An automated method is used to distill the sample. The distillate is then buffered to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a

red complex which is measured colorimetrically.

SO4-IC-N-WP Water Sulfate in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

SOLIDS-TOTSUS-WP Water Total Suspended Solids APHA 2540 D (modified)

Total suspended solids in aquesous matrices is determined gravimetrically after drying the residue at 103 105°C.

XYLENES-SUM-CALC- Water Sum of Xylene Isomer Concentrations CALCULATED RESULT

HAMLET OF RANKIN INLET WWTP

L2320122 CONTD....

PAGE 7 of 7 Version: FINAL

Reference Information

Test Method References:

ALS Test Code Matrix Test Description Method Reference**

WP

Total xylenes represents the sum of o-xylene and m&p-xylene.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WP	ALS ENVIRONMENTAL - WINNIPEG, MANITOBA, CANADA
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

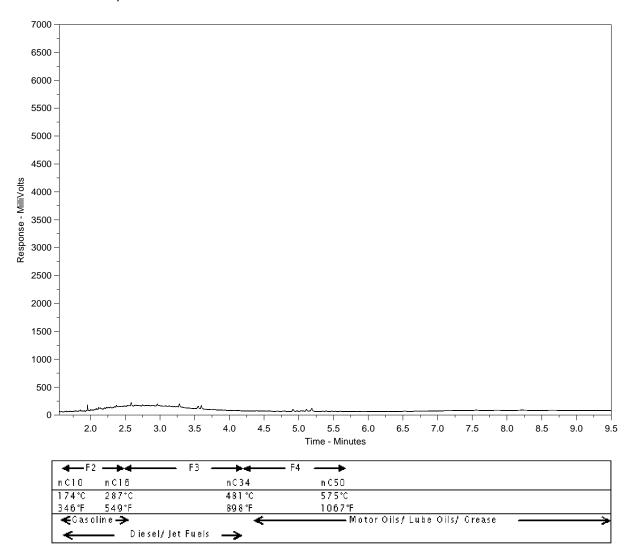
mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.


UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

ALS Sample ID: L2320122-1 Client Sample ID: RAN-2

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at www.alsglobal.com.

Chain of Custody (COC) / Analytical Request Form

coc Number: 17 - 747774

L2320122-COFC Environmental Canada Toll Free: 1 800 668 9878 www.alsglobal.com Report Format 7 Distribution Contact and company name below will appear on the final report Select Service Level Below - Contact your AM to confirm all E&P TATs (surcharges may apply) Report To Hamlet of Grentin Intel Select Report Format: PDF EXCEL | EDD (DIGITAL) Standard TAT if received by 3 pm - business days - no surcharges apply Company: Regular [R] Tistin mo with Contact: Quality Control (QC) Report with Report 4 day [P4-20%] 1 Business day [E - 100%] Compare Results to Criteria on Report - provide details below if box checked 3 day [P3-25%] Phone: 967-645-2895 Same Day, Weekend or Statutory holiday [E2 -200% MAIL | FAX Company address below will appear on the final report Select Distribution: 2 day [P2-50%] (Laboratory opening fees may apply)] Date and Time Required for all E&P TATs: Sao @ rankinin let-ca dd-mmm-yy hh:mm Street: Email 1 or Fax (for kno Q gov. no. Ca Rankin Inlet No Email 2 For tests that can not be performed according to the service level selected, you will be contacted. City/Province: Postal Code: KUC OGO Email 3 Analysis Request Invoice To Same as Report To YES [NO Invoice Distribution Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below ON HOLD TED HAZARD (see Special Instructions) CONTAINERS EMAIL MAIL Copy of Invoice with Report YES 🗍 Select Invoice Distribution: Email 1 or Fax Company: Contact: Email 2 չ **Project Information** Oil and Gas Required Fields (client use) χ ALS Account # / Quote #: PO# AFE/Cost Center PSdami Job#: Major/Minor Code: Routing Code: STEX, FI PO / AFE: Ŗ Requisitioner: 100/201/ LSD: Location BER ALS Lab Work Order # (lab use only): ALS Contact:

						100		J 🥆 I		~	_		- 1		- 1									
ALS Sample # (lab use only)	Sample Identification (This description will:			Date (dd-mmm-yy)	Tin (bh:n		Sample Type	NON	ľ	≥ <u>7</u>		2										V	AC.	SUSPEC
	KAN-Z			30-701-19	7:F1	pm	MM	16	./	√		P	P	6	1	1	ρ	f	Ø					
									•															
												T												
148 July															\neg									
		1												Ü										
		-																						
													7											
813 W																		_						
						_					1	T												
	•-																							
4 84 1						_														_			1	
	Mary (DM) D	Special Instructions /	Specify Criteria to a	dd on report by clici	king on the	drop-do	wn list below					SAI	MPLE	CON	DITIO	N AS	RECE	IVED	(lab u	se on	ly)			
Urinking	Water (DW) Samples¹ (client use)			ronic COC only)				Froze	п				٠.	SIF O	oserva	ations		Yes]		No -]
	from a Regulated DW System?		Tupory X78	- WW - (MI	xp2-	ψ٥	<u> </u>	lce Pa Coolir		ated	Ice C	ubes		Custo	dy sea	intac	at	Yes			•	No]
Are samples for hut	man consumption/ use?		. n-v	E1-154	DAM					WITIAL	COOLE	R TEMP	ERATU	JRES ℃	;				FINAL	COOLE	R TEMPE	RATURES °	С	
YES	;		brr	1	1,			[19	. 7															
	SHIPMENT RELEASE (client use)			INITIAL SHIPMEN	TRECEPT	TION (la	b use only)					\mathcal{T}	\sum_{i}	FINAL	SHIF	MEN	TREC	EPTIC	ON (la	b use	only)			
Released by:	Fullner July 36	Time:	Received by:)4	Date:	uly	3(Time:	40	Rece	ived by		X			Date:	JU	L 3	1	201	9	Time	W	

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

Hamlet of Rankin Inlet ATTN: TAMMY SHARP

PO Box 310

Rankin Inlet NU XOC OGO

Date Received: 02-OCT-19

Report Date: 18-OCT-19 11:26 (MT)

Version: FINAL

Client Phone: 867-645-2895

Certificate of Analysis

Lab Work Order #: L2358336
Project P.O. #: NOT SUBMITTED

Job Reference: C of C Numbers: Legal Site Desc:

Hua Wo

Chemistry Laboratory Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721

ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2358336-1 RAN 2							
Sampled By: CLIENT on 01-OCT-19 @ 13:30							
' '							
Matrix: WW BTEX plus F1-F4							
•							
BTX plus F1 by GCMS Benzene	<0.00050	HTD	0.00050	mg/L		17-OCT-19	R4873346
Toluene	<0.0010	HTD	0.0010	mg/L		17-OCT-19	R4873346
Ethyl benzene	<0.00050	HTD	0.00050	mg/L		17-OCT-19	R4873346
o-Xylene	<0.00050	HTD	0.00050	mg/L		17-OCT-19	R4873346
m+p-Xylenes	<0.00040	HTD	0.00040	mg/L		17-OCT-19	R4873346
F1 (C6-C10)	<0.10	HTD	0.10	mg/L		17-OCT-19	R4873346
Surrogate: 4-Bromofluorobenzene (SS)	95.0		70-130	%		17-OCT-19	R4873346
Note: VOC analysis was conducted for a water sample that contained >5% headspace. Results may be biased low.							
CCME PHC F2-F4 in Water		D. 15		"	07.00= :-	00 00= :-	5 105 : -
F2 (C10-C16)	<0.20	DLIS	0.20	mg/L	07-OCT-19	09-OCT-19	R4871231
F3 (C16-C34)	<0.50	DLIS DLIS	0.50	mg/L	07-OCT-19 07-OCT-19	09-OCT-19	R4871231
F4 (C34-C50) Surrogate: 2-Bromohenzotrifluoride	<0.50	DLIO	0.50	mg/L %	07-OCT-19 07-OCT-19	09-OCT-19 09-OCT-19	R4871231 R4871231
Surrogate: 2-Bromobenzotrifluoride	136.7		60-140	70	07-001-19	09-001-19	K40/1231
CCME Total Hydrocarbons F1-BTEX	<0.10		0.10	mg/L		17-OCT-19	
F2-Naphth	<0.20		0.10	mg/L		17-OCT-19	
F3-PAH	<0.50		0.50	mg/L		17-OCT-19	
Total Hydrocarbons (C6-C50)	<0.74		0.74	mg/L		17-OCT-19	
Sum of Xylene Isomer Concentrations	-			J			
Xylenes (Total)	<0.00064		0.00064	mg/L		17-OCT-19	
Polyaromatic Hydrocarbons (PAHs)							
1-Methyl Naphthalene	0.000034		0.000020	mg/L	08-OCT-19	11-OCT-19	R4867488
2-Methyl Naphthalene	0.000023		0.000020	mg/L	08-OCT-19	11-OCT-19	R4867488
Acenaphthene	<0.000020		0.000020	mg/L	08-OCT-19	11-OCT-19	R4867488
Acenaphthylene	<0.000020		0.000020	mg/L	08-OCT-19	11-OCT-19 11-OCT-19	R4867488
Anthracene Acridine	<0.000010		0.000010 0.000020	mg/L	08-OCT-19 08-OCT-19	11-OCT-19	R4867488 R4867488
Benzo(a)anthracene	<0.000020 <0.000010		0.000020	mg/L mg/L	08-OCT-19 08-OCT-19	11-OCT-19	R4867488
Benzo(a)pyrene	<0.000010		0.000010	mg/L	08-OCT-19 08-OCT-19	11-OCT-19	R4867488
Benzo(b&j)fluoranthene	<0.000010		0.0000030	mg/L	08-OCT-19	11-OCT-19	R4867488
Benzo(g,h,i)perylene	<0.000010		0.000010	mg/L	08-OCT-19	11-OCT-19	R4867488
Benzo(k)fluoranthene	<0.000010		0.000010	mg/L	08-OCT-19	11-OCT-19	R4867488
Chrysene	<0.000020		0.000020	mg/L	08-OCT-19	11-OCT-19	R4867488
Dibenzo(a,h)anthracene	<0.000050		0.0000050	mg/L	08-OCT-19	11-OCT-19	R4867488
Fluoranthene	<0.000020		0.000020	mg/L	08-OCT-19	11-OCT-19	R4867488
Fluorene	<0.000020		0.000020	mg/L	08-OCT-19	11-OCT-19	R4867488
Indeno(1,2,3-cd)pyrene	<0.000010		0.000010	mg/L	08-OCT-19	11-OCT-19	R4867488
Naphthalene	<0.000050		0.000050	mg/L	08-OCT-19	11-OCT-19	R4867488
Phenanthrene	<0.000050		0.000050	mg/L	08-OCT-19	11-OCT-19	R4867488
Pyrene	0.000010		0.000010	mg/L	08-OCT-19	11-OCT-19	R4867488
Quinoline	<0.000020		0.000020	mg/L	08-OCT-19	11-OCT-19	R4867488
B(a)P Total Potency Equivalent	<0.000030		0.000030	mg/L	08-OCT-19	11-OCT-19	R4867488
Surrogate: Aceiding do	94.3		60-130	%	08-OCT-19	11-OCT-19	R4867488
Surrogate: Acridine d9	109.9		60-130	%	08-OCT-19	11-OCT-19	R4867488
Surrogate: Chrysene d12 Surrogate: Naphthalene d8	114.8		60-130	%	08-OCT-19 08-OCT-19	11-OCT-19 11-OCT-19	R4867488
Surrogate: Naphthalene d8 Surrogate: Phenanthrene d10	93.3 109.6		50-130 60-130	% %	08-OCT-19 08-OCT-19	11-OCT-19 11-OCT-19	R4867488 R4867488
Nunavut WW Group 1	0.801		00-130	/0	00-001-19	11-001-19	134007400
Tanarat IIII Group I							

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2358336-1 RAN 2							
Sampled By: CLIENT on 01-OCT-19 @ 13:30							
Matrix: WW							
Alkalinity, Bicarbonate Bicarbonate (HCO3)	322		1.2	mg/L		16-OCT-19	
Alkalinity, Carbonate	322		1.2	IIIg/L		10-001-13	
Carbonate (CO3)	<0.60		0.60	mg/L		16-OCT-19	
Alkalinity, Hydroxide							
Hydroxide (OH)	<0.34		0.34	mg/L		16-OCT-19	
Alkalinity, Total (as CaCO3) Alkalinity, Total (as CaCO3)	264		1.0	mg/L		03-OCT-19	R4858974
Ammonia by colour	204		1.0	IIIg/L		03-001-19	K4030974
Ammonia, Total (as N)	2.00		0.10	mg/L		09-OCT-19	R4866430
Biochemical Oxygen Demand (BOD)							
Biochemical Oxygen Demand	2.9		2.0	mg/L		03-OCT-19	R4862279
Carbonaceous BOD BOD Carbonaceous	<2.0		2.0	mg/L		03-OCT-19	R4862279
Chloride in Water by IC	~2.0		2.0	9, _		33 301-10	TAGULLI 3
Chloride (CI)	99.2		1.0	mg/L		03-OCT-19	R4859075
Conductivity						00.00= :-	
Conductivity	1360		1.0	umhos/cm		03-OCT-19	R4858974
Hardness Calculated Hardness (as CaCO3)	385	нтс	0.20	mg/L		18-OCT-19	
Mercury Total			0.20				
Mercury (Hg)-Total	0.0000070		0.0000050	mg/L	10-OCT-19	10-OCT-19	R4866644
Nitrate in Water by IC				,,		00 00T 10	D
Nitrate (as N) Nitrate+Nitrite	6.32		0.040	mg/L		03-OCT-19	R4859075
Nitrate and Nitrite as N	6.38		0.070	mg/L		04-OCT-19	
Nitrite in Water by IC							
Nitrite (as N)	0.062		0.020	mg/L		03-OCT-19	R4859075
Oil & Grease - Gravimetric Oil and Grease	<5.0		5.0	mg/L		10-OCT-19	R4865788
Phenol (4AAP)	<5.0		3.0	IIIg/L		10-001-19	K4003700
Phenols (4AAP)	0.0013		0.0010	mg/L		04-OCT-19	R4860755
Phosphorus, Total							
Phosphorus (P)-Total	0.160		0.0030	mg/L		04-OCT-19	R4858936
Sulfate in Water by IC Sulfate (SO4)	295		0.60	mg/L		03-OCT-19	R4859075
Total Metals in Water by CRC ICPMS			0.00			30 001 10	
Aluminum (Al)-Total	0.565		0.0030	mg/L	09-OCT-19	09-OCT-19	R4866592
Arsenic (As)-Total	0.00284		0.00010	mg/L	09-OCT-19	09-OCT-19	R4866592
Cadmium (Cd)-Total	0.0000806		0.0000050	mg/L	09-OCT-19	09-OCT-19	R4866592
Calcium (Ca)-Total Chromium (Cr)-Total	119 0.00436		0.050 0.00010	mg/L mg/L	09-OCT-19 09-OCT-19	09-OCT-19 09-OCT-19	R4866592 R4866592
Cobalt (Co)-Total	0.00436		0.00010	mg/L	09-OCT-19 09-OCT-19	09-OCT-19 09-OCT-19	R4866592
Copper (Cu)-Total	0.0290		0.00010	mg/L	09-OCT-19	09-OCT-19	R4866592
Iron (Fe)-Total	1.92		0.010	mg/L	09-OCT-19	09-OCT-19	R4866592
Lead (Pb)-Total	0.00186		0.000050	mg/L	09-OCT-19	09-OCT-19	R4866592
Magnesium (Mg)-Total	21.2		0.0050	mg/L	09-OCT-19	09-OCT-19	R4866592
Manganese (Mn)-Total Nickel (Ni)-Total	0.587		0.00010	mg/L	09-OCT-19	09-OCT-19	R4866592
Potassium (K)-Total	0.0197 22.2		0.00050 0.050	mg/L mg/L	09-OCT-19 09-OCT-19	09-OCT-19 09-OCT-19	R4866592 R4866592
Sodium (Na)-Total	70.0		0.050	mg/L	09-OCT-19	09-OCT-19	R4866592
Zinc (Zn)-Total	0.0613		0.0030	mg/L	09-OCT-19	09-OCT-19	R4866592
Total Organic Carbon by Combustion							
		1					

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2358336 CONTD.... PAGE 4 of 7 Version: FINAL

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2358336-1 RAN 2 Sampled By: CLIENT on 01-OCT-19 @ 13:30							
Matrix: WW							
Total Organic Carbon by Combustion Total Organic Carbon	45.0		0.50			00 007 40	D 4000000
Total Organic Carbon Total Suspended Solids	15.8		0.50	mg/L		08-OCT-19	R4862336
Total Suspended Solids	35.9		2.0	mg/L		08-OCT-19	R4862539
pH pH	8.13		0.10	pH units		03-OCT-19	R4858974

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

PAGE 5 of 7 Version: FINAL

Reference Information

Sample Parameter Qualifier Key:

Qualifier	Description
DLIS	Detection Limit Adjusted: Insufficient Sample
HTC	Hardness was calculated from Total Ca and/or Mg concentrations and may be biased high (dissolved Ca/Mg results unavailable).
HTD	Hold time exceeded for re-analysis or dilution, but initial testing was conducted within hold time.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Test Method References:

	~-		
ALS Test Code	Matrix	Test Description	Method Reference**
ALK-CO3CO3-CALC-WP	Water	Alkalinity, Carbonate	CALCULATION

The Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. The fraction of alkalinity contributed by carbonate is calculated and reported as mg CO3 2-/L.

ALK-HCO3HCO3-CALC- Water Alkalinity, Bicarbonate CALCULATION

The Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. The fraction of alkalinity contributed by bicarbonate is calculated and reported as mg HCO3-/L

ALK-OHOH-CALC-WP Water Alkalinity, Hydroxide CALCULATION

The Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. The fraction of alkalinity contributed by hydroxide is calculated and reported as mg OH-/L.

ALK-TITR-WP Water Alkalinity, Total (as CaCO3) APHA 2320B

The Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water. Total alkalinity is determined by titration with a strong standard mineral acid to the successive HCO3- and H2CO3 endpoints indicated electrometrically.

BOD-CBOD-WP Water Carbonaceous BOD APHA 5210 B

Samples are diluted and seeded, have TCMP added to inhibit nitrogenous demands, and then are incubated in airtight bottles at 20°C for 5 days. Dissolved oxygen is measured initially and after incubation, and results are computed from the difference between initial and final DO.

BOD-WP Water Biochemical Oxygen Demand (BOD) APHA 5210 B

Samples are diluted and seeded and then incubated in airtight bottles at 20°C for 5 days. Dissolved oxygen is measured initially and after incubation, and results are computed from the difference between initial and final DO.

BTEXS+F1-HSMS-WP Water BTX plus F1 by GCMS EPA 8260C / EPA 5021A

The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection.

C-TOC-HTC-WP Water Total Organic Carbon by Combustion APHA 5310 B-WP

Sample is acidified and purged to remove inorganic carbon, then injected into a heated reaction chamber where organic carbon is oxidized to CO2 which is then transported in the carrier gas stream and measured via a non-dispersive infrared analyzer.

CL-IC-N-WP Water Chloride in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

EC-WP Water Conductivity APHA 2510B

Conductivity of an aqueous solution refers to its ability to carry an electric current. Conductance of a solution is measured between two spatially fixed and chemically inert electrodes.

F1-F4-CALC-WP Water CCME Total Hydrocarbons CCME CWS-PHC, Pub #1310, Dec 2001-L

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

PAGE 6 of 7 Version: FINAL

Reference Information

Test Method References:

ALS Test Code Matrix Test Description Method Reference**

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F2-F4-FID-WP Water CCME PHC F2-F4 in Water EPA 3511

Petroleum hydrocarbons in water are determined by liquid-liquid micro-scale solvent extraction using a reciprocal shaker extraction apparatus prior to capillary column gas chromatography with flame ionization detection (GC-FID) analysis.

HARDNESS-CALC-WP Water Hardness Calculated APHA 2340B

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents.

Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

HG-T-CVAA-WP Water Mercury Total EPA 1631E (mod)

Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

MET-T-CCMS-WP Water Total Metals in Water by CRC ICPMS EPA 200.2/6020B (mod.)

Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

NH3-COL-WP Water Ammonia by colour APHA 4500 NH3 F

Ammonia in water samples forms indophenol when reacted with hypochlorite and phenol. The intensity is amplified by the addition of sodium nitroprusside and measured colourmetrically.

NO2+NO3-CALC-WP Water Nitrate+Nitrite CALCULATION

NO2-IC-N-WP Water Nitrite in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

NO3-IC-N-WP Water Nitrate in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

OG-GRAV-WP Water Oil & Grease - Gravimetric EPA 1664 (modified)

Water samples are acidified and extracted with hexane; the hexane extract is collected in a pre-weighed vial. The solvent is evaporated and Total Oil & Grease is determined from the weight of the residue in the vial.

D T 001 WD

P-T-COL-WP Water Phosphorus, Total APHA 4500 P PHOSPHORUS-L

This analysis is carried out using procedures adapted from APHA METHOD 4500-P "Phosphorus". Total Phosphorus is determined colourmetrically after persulphate digestion of the sample.

3....

PAH,PANH-WP Water Polyaromatic Hydrocarbons (PAHs) EPA 3511/8270D (mod)

PAHs are extracted from water using a hexane micro-extraction technique, with analysis by GC/MS. Because the two isomers cannot be readily separated chromatographically, benzo(j)fluoranthene is reported as part of the benzo(b)fluoranthene parameter.

PH-WP Water pH APHA 4500H

The pH of a sample is the determination of the activity of the hydrogen ions by potentiometric measurement using a standard hydrogen electrode and a reference electrode.

PHENOLS-4AAP-WT Water Phenol (4AAP) EPA 9066

An automated method is used to distill the sample. The distillate is then buffered to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a red complex which is measured colorimetrically.

SO4-IC-N-WP Water Sulfate in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

SOLIDS-TOTSUS-WP Water Total Suspended Solids APHA 2540 D (modified)

Total suspended solids in aquesous matrices is determined gravimetrically after drying the residue at 103 105°C.

L2358336 CONTD....

PAGE 7 of 7 Version: FINAL

Reference Information

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
XYLENES-SUM-CALC-	Water	Sum of Xylene Isomer Concentrations	CALCULATED RESULT

Total xylenes represents the sum of o-xylene and m&p-xylene.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WP	ALS ENVIRONMENTAL - WINNIPEG, MANITOBA, CANADA
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

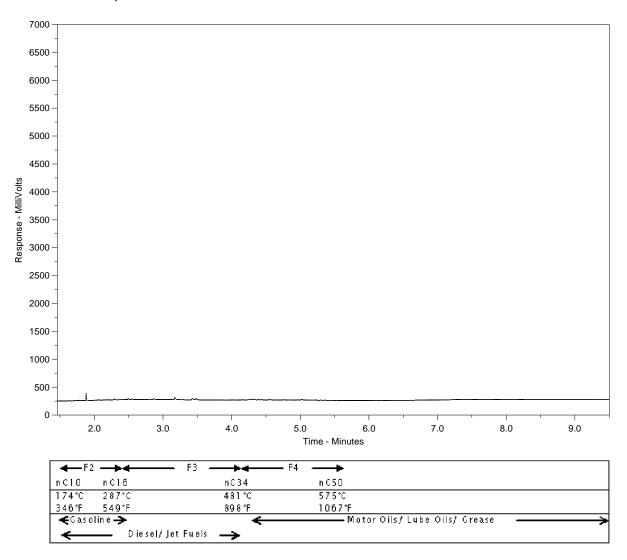
mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.


UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

ALS Sample ID: L2358336-1 Client Sample ID: RAN 2

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at www.alsglobal.com.

ALS Environmental

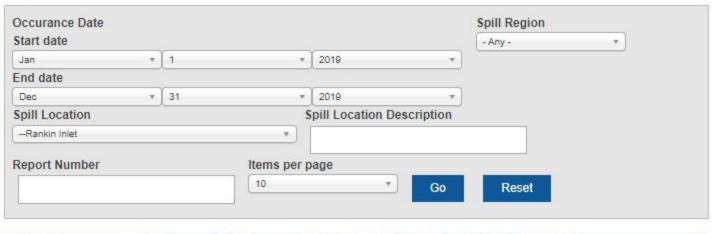
www.alsqlobal.com

Chain of Custody (COC) / Analytic

L2358336-COF0

COC Number: 17 - 747772

0


Canada Toll Free: 1 800 668 9878

Contact and company name below will appear on the final report Report Format / Distribution Report To Level Below - Contact your AM to confirm all E&P TATs (surcharges may apply) Regular [R] Select Report Format: PDF F EXCEL | | Company: EDD (DIGITAL) Standard TAT If received by 3 pm - business days - no surcharges apply Quality Control (QC) Report with Report Contact: 4 day [P4-20%] 1 Business day [E - 100%] Compare Results to Criteria on Report - provide details below If box checked 3 day [P3-25%] Phone: Same Day, Weekend or Statutory holiday [E2 -200% EMAIL | MAIL | FAX Select Distribution: 2 day [P2-50%] (Laboratory opening fees may apply)] Company address below will appear on the final report Email 1 or Fax Works @ Rankininet.cg Email 2 SAD@ Rankininet.cg Date and Time Required for all E&P TATs: dd-mmm-yy hh:mm Street: City/Province: or tests that can not be performed according to the service level selected, you will be contacted. Postal Code 400 - 066 Analysis Request YES NO nvoice To Same as Report To Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below ON HOLD Select Invoice Distribution: YES | EMAIL [MAIL Copy of Invoice with Report H Company: Email 1 or Fax CONTAIN Contact: Email 2 **Project Information** Oil and Gas Required Fields (client use) W10629 ALS Account # / Quote # AFE/Cost Center: PO# Job#: Major/Minor Code: Routing Code: SAMPLES PO / AFE: Requisitioner 9 SD: Location: NUMBER ALS Contact: ALS Lab Work Order # (lab use only): Sampler: Sample Identification and/or Coordinates Date ALS Sample # Time Sample Type (tab use only) (This description will appear on the report) (dd-mmm-yy) (hh:mm) RAN-2 01/10/19 WW 13000 SAMPLE CONDITION AS RECEIVED (lab use only) Special Instructions / Specify Criteria to add on report by clicking on the drop-down list below Drinking Water (DW) Samples1 (client use) (electronic COC only) Frozen SIF Observations No Are samples taken from a Regulated DW System? Annarut - mm - GRP1 - wp ☐ Ice Cubes ☐ Custody seat intact tce Packs No YES NO Cooling Initiated Are samples for human consumption/ use? FTX, FI-F4, PAH INITIAL COOLER TEMPERATURES °C FINAL COOLER TEMPERATURES °C | YES | NO INITIAL SHIPMENT RECEPTION (lab use only) SHIPMENT RELEASE (client use) Received by: Released by: Received by: Time: REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

ANNUAL REPORT FOR THE HAMLET OF RANKIN INLET

Appendix C

Spills

Spill	Occurance Date -	Spill Region	Location	Location Description	Product Spilled	Quantity	Measurement	Spill Cause	Lead Agency
spill- 2019452	November 3, 2019	Keewatin	Rankin Inlet, Community, Nunavut	Between Health Centre and Power Plant		40000.00	Litres	Breakage	GN - Government of Nunavut
spill- 2019480	October 31, 2019	Keewatin	Rankin Inlet, Community, Nunavut	Melvin Bay		Unknown Quantity			INAC - Indigenous and Northern Affairs Canada
spill- 2019425	October 14, 2019	Keewatin	Rankin Inlet, Community, Nunavut	414 / 17-13 Ave.	Petroleum - fuel oil (jet A, diesel, turbo A, heat)	200.00	Litres	Tank Leak	GN - Government of Nunavut

					heat)				
spill- 2019270	July 5, 2019	Keewatin	Rankin Inlet, Community, Nunavut	188-24 Inukshuk Avenue, unit 541b	Petroleum - fuel oil (jet A, diesel, turbo A, heat)	278.00	Litres	Breakage	GN - Government of Nunavut
spill- 2019255	June 26, 2019	Keewatin	Rankin Inlet, Community, Nunavut	Condominiums, 44 - 15th Street		Unknown Quantity			GN - Government of Nunavut
spill- 2019216	May 22, 2019	Keewatin	Rankin Inlet, Community, Nunavut	Box 251	Petroleum - fuel oil (jet A, diesel, turbo A, heat)	Unknown Quantity		Pipe Leaks	GN - Government of Nunavut
spill- 2019194	May 2, 2019	Keewatin	Rankin Inlet, Community, Nunavut	CBC Building 101-21 Tariuq Avenue	Petroleum - fuel oil (jet A, diesel, turbo A, heat)	Unknown Quantity			GN - Government of Nunavut
spill- 2019155	April 9, 2019	Keewatin	Rankin Inlet, Community, Nunavut	Courtyard Condominiums, 44-15 Ayaruaq street	Wastewater (sewage, mine tailings)		Breakage	GN - Government of Nunavut	
spill- 2019221	March 1, 2019	Keewatin	Rankin Inlet, Community, Nunavut	CBC Building 101-21 Tariuq Avenue	Petroleum - fuel oil (jet A, diesel, turbo A,	2000.00	Litres	Fitting Leak	GN - Government of Nunavut

heat)

Displaying 1 - 10 of 10

spill-

2019410

October 1,

2019

Keewatin

Rankin

Community,

Nunavut

Inlet,

902 Maniruq

61st

Petroleum -

fuel oil (jet

A, diesel,

turbo A,

Unknown

Quantity

Breakage

GN -

Government

of Nunavut

ANNUAL REPORT FOR THE HAMLET OF RANKIN INLET

Appendix D

		2014		2015		2016		2017			2018			2019			Statistics	
Parameter	Unit	06-Aug-14	25-Jun-15	22-Jul-15	25-Aug-15	29-Jun-16	15-Jun-17	25-Jul-17	16-Aug-17	27-Jun-18	30-Jul-18	15-Aug-18	26-Jun-19	30-Jul-19	01-Oct-19	Min	Max	Average
Alkalinity																		
Bicarbonate (HCO3)	mg/L	/	150	341	731	353	411	1200	664	205	1010	845	103	577	322	103	1200	531.692
Carbonate (CO3)	mg/L	/	0.60	0.60	0.60	0.60	0.60	0.60	0.60	<0.60	<0.60	<0.60	0.60	0.60	0.60	0.6	0.6	0.6
Hydroxide (OH)	mg/L	/	0.34	0.34	0.34	0.34	0.34	0.34	0.34	<0.34	<0.34	<0.34	0.34	0.34	0.34	0.34	0.34	0.34
Total (as CaCO3)	mg/L	431	123	279	599	289	337	982	544	168	828	692	84.4	473	264	84.4	982	435.243
Ammonia by Colour																		
Total (as N)	mg/L	2.61	1.09	1.53	5.5	37.5	56.5	173	67.7	3.97	53.0	26.1	3.95	13.2	2	1.09	173	31.975
Biochemical Oxygen Demand (BOD)																		
Biochemical Oxygen Demand	mg/L	<6.0	6.7	26.9	53	10.0	8.5	60	9.2	<2.0	72	18.9	9.7	13.8	2.9	2.9	72	24.3
Carbonaceous BOD																		
BOD Carbonaceous	mg/L	/	/	22.5	54	8.5	8.9	62	8.3	3.1	60	15	7.9	8.8	2	2	62	21.75
Chloride in Water by IC																		
Chloride (CI)	mg/L	408	51.2	123	162	115	98.0	276	270	70.4	340	244	70.8	240	99.2	51.2	408	183.4
Conductivity																		
Conductivity	umhos/cm	3000	630	1310	1730	1410	1370	3180	2500	753	3220	2680	741	2600	1360	630	3220	1891.71
Fecal Coliforms																		
Fecal Coliforms	MPN/100mL	4	4	230	4300	9	60	310	150	80	170	200	10			4	4300	460.583
Hardness Calculated																		
Hardness (as CaCO3)	mg/L	936	234	483	654	393	267	578	801	215	1010	773	174	747	385	174	1010	546.429
Mercury Total																		
Mercury (Hg)	mg/L	/	0.00020	0.00020	0.00020	0.000023	0.0000148	0.000060	0.0000244	0.0000051	0.0000600	0.0000330	0.0000050	0.0000230	0.0000070	0.000005	0.0002	6.6E-05
Nitrate in Water by IC																		
Nitrate (as N)	mg/L	/	0.138	0.10	0.10	0.21	0.054	0.40	0.27	0.486	<0.40	<0.40	0.383	1.74	6.32	0.054	6.32	0.92736
Nitrate + Nitrite																		
Nitrate and Nitrite as N	mg/L	0.35	0.167	0.11	0.11	0.27	0.070	0.45	0.27	0.549	<0.45	<0.45	0.429	1.97	6.38	0.07	6.38	0.92708
Nitrite in Water by IC																		
Nitrite (as N)	mg/L	/	0.030	0.050	0.050	0.060	0.020	0.20	0.10	0.06	<0.20	<0.20	0.046	0.230	0.062	0.02	0.23	0.08291
Oil & Grease - Gravimetric	Ţ.																	
Oil and Grease	mg/L	2.0	2.0	2.0	2.0	5.0	5.0	10.4	5.3	<5.0	<5.0	<5.0	5	5	5	2	10.4	4.42727
Phenol	O,																	
Phenols	mg/L	0.0060	0.0052	0.0029	0.50	0.0047	0.0040	0.013	0.0039	0.0013	0.0333	0.0082	0.0011	0.0020	0.0013	0.0011	0.5	0.04192
Phosphorus, Total	O/																	
Phosphorus (P)	mg/L	/	0.203	0.370	0.904	0.470	0.424	1.03	0.434	0.199	0.622	0.567	0.241	0.285	0.160	0.16	1.03	0.45454
Sulfate in Water by IC	8/ =	,	0.200				*****	2.00					0.12.12	0.200	0.200			
Sulfate (SO4)	mg/L	670	122	238	151	257	224	413	630	115	688	466	170	615	295	115	688	361
Total Metals by ICP-MS	8/ =	0.0												0.0				
Aluminium (Al)	mg/L	0.0486	0.0196	0.0472	0.0447	0.0403	0.0453	0.229	0.0582	0.0199	0.0981	0.0703	0.0382	0.0436	0.565	0.0196	0.565	0.098
Arsenic (As)	mg/L	0.00538	0.00238	0.00470	0.00722	0.00532	0.00698	0.0186	0.0108	0.00285	0.0107	0.0113	0.00524	0.00715	0.00284	0.00238	0.0186	
Cadmium (Cd)	mg/L	0.000077	0.000136	0.000416	0.000060	0.000410	0.000238	0.000710	0.000342	0.00004	0.000670	0.000387	0.0000962			0.0000361	0.00071	
Calcium (Ca)	mg/L	276	77.2	152	204	123	77.9	149	223	60.3	297	226	43	216	119	43	297	160.24
Chromium (Cr)	mg/L	0.0015	0.0010	0.0022	0.0034	0.0015	0.0019	0.00864	0.00481	0.00079	0.00718	0.00433	0.00084	0.00373	0.00436	0.00079	0.00864	0.0033
Cobalt (Co)	mg/L	0.00463	0.00400	0.0139	0.00270	0.00578	0.00441	0.0145	0.00890	0.00309	0.0145	0.01300	0.00482	0.0141	0.00577	0.0027	0.0145	0.0082
Copper (Cu)	mg/L	0.00894	0.01090	0.0269	0.00876	0.0499	0.0606	0.191	0.0690	0.0147	0.121	0.0810	0.0307	0.0919	0.0290	0.00876	0.191	0.057
Iron (Fe)	mg/L	4.42	4.76	8.14	2.96	5.88	4.06	7.64	7.29	1.62	11.0	8.03	1.43	4.90	1.92	1.43	11	5.29
Lead (Pb)	mg/L	0.000755	0.00242	0.00208	0.00112	0.00475	0.00410	0.00563	0.00299	0.000314	0.00893	0.00430	0.00227	0.00311	0.00186	0.000314	0.00893	
Magnesium (Mg)	mg/L	60.0	9.93	25.4	35.0	20.7	17.7	50.3	59.7	15.6	64.3	50.7	16.2	50.7	21.2	9.93	64.3	35.53
Manganese (Mn)	mg/L	2.04	0.527	2.69	2.08	0.499	0.336	0.846	0.994	0.228	2.92	1.63	0.207	1.83	0.587	0.207	2.92	1.24
Nickel (Ni)	mg/L	0.0219	0.0106	0.0240	0.0137	0.0214	0.0178	0.0529	0.0360	0.0121	0.0440	0.0385	0.0158	0.0394	0.0197	0.0106	0.0529	
Potassium (K)	mg/L		12.2	34.0	40.7	27.2	29.0	72.2	70.1	16.1	87.4	64.6	22.5	63.2	22.2	12.2	87.4	44.1714
Sodium (Na)	mg/L	57 358	37.3	104	128	88.4	91.4	313	300	69.0	308	249	77	240	70	37.3	358	173.79
Zinc (Zn)	mg/L	0.002	0.114	0.194	0.0429	0.187	0.101	0.255	0.0882	0.0247	0.392	0.0939	0.0384	0.154	0.0613	0.002	0.392	0.12
Total Organic Carbon by Combustion	111 ₀ / 2	3.002	0.114	0.104	3.0123	3.107	0.101	5.255	3.0002	3.02-17	3.33E	3.0333	5.030T	0.107	5.0015	3.002	3.332	5.12
Total Organic Carbon	mg/L	/	14.1	48.6	85.5	48.1	36.5	157	83.4	23.0	108	77.9	24.2	60.4	15.8	14.1	157	60.1923
Total Suspended Solids	1118/ L		17.1	10.0	03.5	70.1	33.3	157	53.7	23.0	100	77.5	L T.L	00.7	13.0	±-√.±	137	55.1525
Total Suspended Solids	mg/L	12.0	8.0	15.0	310	10.0	18.0	33.0	12.0	7.2	80	29.7	13.6	21.2	35.9	7.2	310	43.2571
pH	1118/ L	12.0	3.0	13.0	310	10.0	10.0	33.0	12.0	7.2	- 50	25.7	13.0	£ ± . £	33.3	,	510	13.23/1
рН	pH Units	8.10	7.53	7.92	8.11	7.86	8.12	8.00	7.95	7.85	7.82	7.97	8.03	8.15	8.13	7.53	8.15	7.97
Benzene	mg/L	/	1.55	1.52	/	/.80	0.00050	0.00050	0.00050	<0.00050	<0.00050	<0.00050	0.00050	0.00050	0.00050	0.0005	0.0005	
Toluene	-		/	1	/	/	0.00030	0.00030	0.0010	<0.0010	0.0057	<0.00030	0.00030	0.00030	0.00030	0.0003	0.0003	
	mg/L		/	/	/	/	0.0010	0.0076	0.0010	<0.0010	0.0037	<0.0010	0.0010	0.0010	0.0010	0.001	0.0076	
Ethyl Benzene	mg/L		/	/	/	/	0.00050	0.00245	0.00050	<0.00050	0.00336	<0.00050	0.00050	0.00050	0.00050	0.0005	0.00336	
0-Xylene	mg/L		/	1	/	/	0.00076	0.00457	0.00050	<0.00050	<0.10	<0.00050			0.00050			
F1 (C6-C10)	mg/L		/	/	/	/	0.10	0.10	0.10				0.10	0.10		0.1	0.1	0.1
F2 (C16-C16)	mg/L		/	/	/	/				0.14	0.78	0.79	0.18	0.41	0.20	0.14	0.99	0.49111
F3 (C16-C34)	mg/L		/	/	/	/	0.62	1.60	1.00	0.30	1.09	0.98	0.37	0.59	0.50	0.3	1.6	0.78
F4 (C34-C50)	mg/L		/	/	/	/	0.25	0.25	0.25	<0.25	<0.25	<0.25	0.25	0.25	0.50	0.25	0.5	0.29167
Total Hydrocarbons (C6-C50)	mg/L	/	/	/	/	1	0.98	2.59	1.57	0.45	1.87	1.76	0.55	1.01	0.74	0.45	2.59	1.28