
Volume 3 - Sewage **Treatment and Future System Expansion**

Final Report - Revision 1 May, 1999

INTE	EPNAL
PC	I.T.P
LA	
OM	
TA	
BS	
ST	
ED	
CEO	
BRD	
EXT.	

Volume 3 - Sewage Treatment and Future **System Expansion**

Resolute Bay, NT

Public Works & Services Government of the Northwest Territories

98-5748-01-01

Submitted by

Dillon Consulting Limited

R:\PROJECTS\FINAL\985748\Text\Reports\Volumes\Volume 3.wpd

TABLE OF CONTENTS

		<u>P</u> :	age No.
1.0	INTRO	DDUCTION	1
	1.1	General	
2.0	EXIST	ING DATA REVIEW	4
	2.1 2.2 2.3	Community Data	4
3.0	REGUI	LATORY COMPLIANCE OF THE UTILIDOR SYSTEM	10
	3.1	The Public Health Act	10
4.0	MODE	ELLING	11
	4.1	Water Distribution Network	11
		4.1.1 Introduction 4.1.2 Existing Conditions 4.1.3 Future Conditions 4.1.4 Hydraulic Model (EPANET)	11
	4.2	Sanitary Sewer System	15
		4.2.1 Introduction	15
5.0	IMPAC	CT STUDY	19
	5.1 5.2 5.3	Introduction	19
		5.3.1 Physical Environment 5.3.2 Water Quality 5.3.3 Phytoplankton 5.3.4 Zooplankton 5.3.5 Benthic Invertebrates 5.3.6 Fisheries and Marine Mammals	22 24 25

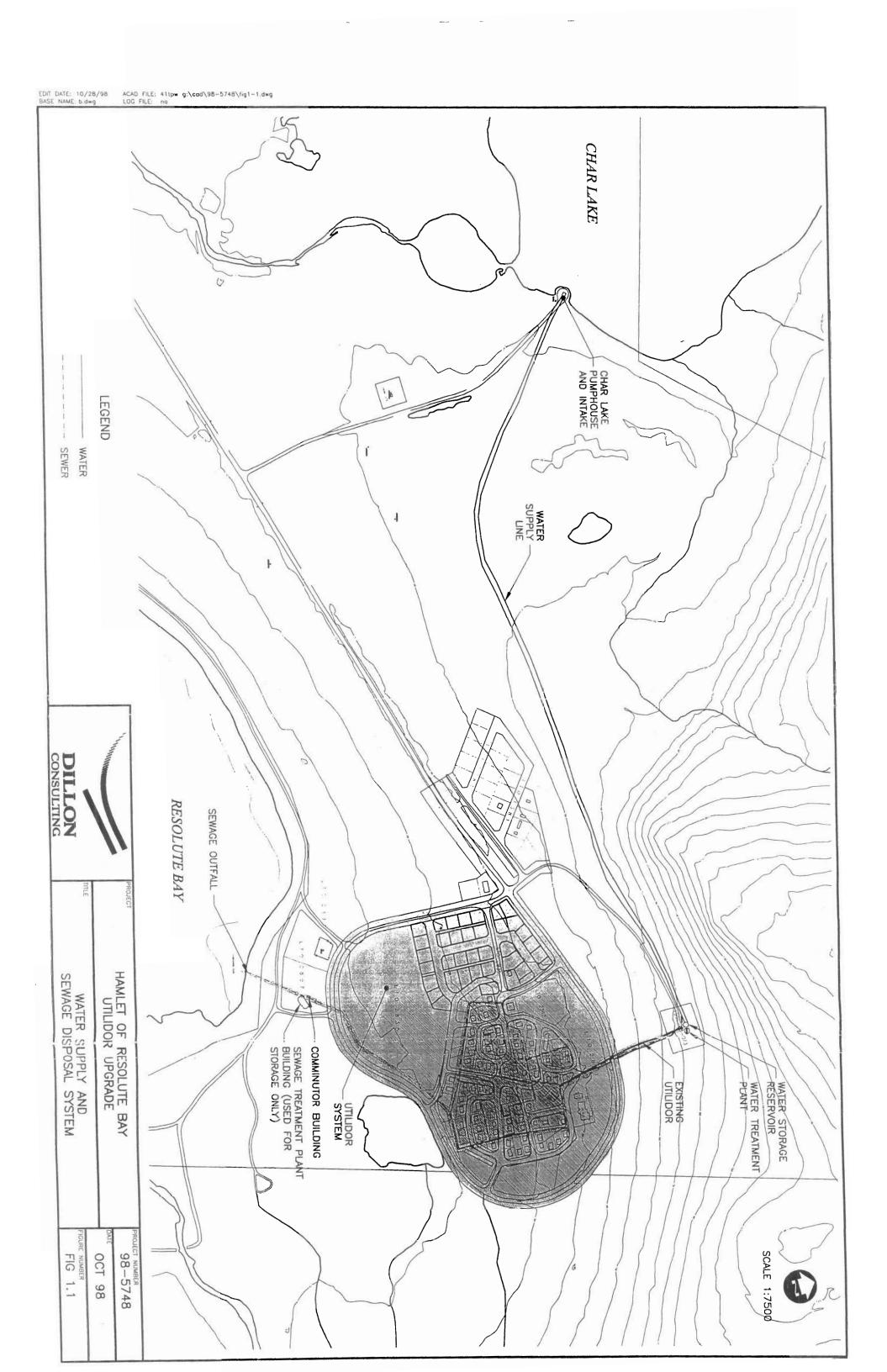
		TABLE OF CONTENTS (Continued)
		Page No.
	5.4	Public and Regulatory Agency Consultation
6.0	REME	DIAL SYSTEM NEEDS
	6.1	Water Mains
	6.2	Sewage Discharge
REFE	RENCES	32
<u>APPE</u>	NDICES	
Appen	dix A -	Pipe Network Model Results
Appen	dix B -	Cost Estimate Data
Appen	dix C -	Impact Study - Community Consultation

1.0 INTRODUCTION

1.1 General

The Hamlet of Resolute Bay is serviced by a water supply system that uses a utilidor system to deliver water to houses and commercial users, and collect the sewage from these users. The water supply and sewage disposal systems are comprised of several components, namely:

- The raw water source known as Char Lake
- The Char Lake pumphouse
- The water supply line from the Char Lake pumphouse to the Water Treatment Plant (WTP)
- The utilidor system that is comprised of the water distribution system and the sewage collection system
- The Sewage Treatment Plant
- The sewage outfall.


The above components are shown in **Figure 1.1** and will be described in more detail in the body of the report. Previous studies (UMA 1996) assessed each of the system components for condition, expected remaining life and required remedial action to be undertaken to extend the current facility life to 20 years. The results of this study indicated that in general the facility components are well maintained, and will meet the Hamlet's requirements for the next 20 years. The exception is the utilidor system that has experienced a number of failures over the past 5 to 7 years. The increase in failures is of significant concern to the utilidor maintainers and the Hamlet Council.

The GNWT, Department of Municipal and Community Affairs (MACA) owns the assets of the water and sewer systems. The Department of Public Works & Services (DPW&S) completes the operation and maintenance on the systems. The GNWT has identified the transfer of the community assets to the communities as a priority. In this vein, the GNWT intends to transfer the water and sewer system to the Hamlet of Resolute Bay. Prior to the transfer of the facilities, the systems are to be upgraded to meet the requirements of the Hamlet for the 20 year design life. Dillon was retained to review the system in this light, and develop an upgrading plan for the sewage and water systems assuming that the piped distribution system will be maintained in the community. Three reports were produced, namely;

Volume 1 - Utilidor Upgrade

Volume 2 - Water System Building Assessment

Volume 3 - Sewage treatment and Future System Expansion

1.2 Scope of work

The scope of work for this volume relates to the sewage discharge and the potential for the future expansion of the utilidor system.. A summary of the scope of work is described below:

- Complete a review of the existing documentation.
- Complete a site investigation to update the previous work.
- Complete a community consultation to determine the current perception of the impacts to the environment created by the sewage discharge.
- Debrief the system operator on his concerns, and review the system operator's records of the system.
- Complete a hydraulic model of the system to determine the requirement for system upgrades as the community grows.

2.0 EXISTING DATA REVIEW

2.1 Community Data

Resolute Bay is located on the south coast of Cornwallis Island and is about 1,660 km north east of Yellowknife and 1,550 Km north west of Iqaluit. The community is located at latitude N74-43-01 and longitude W94-58-10 (NAV CANADA). The average daily minimum and maximum temperatures for July and January are 1.3°C & 6.8°C and -35.8°C & -28.5°C respectively. An average of 50.4 mm of rainfall and 97.3 cm of snowfall for a total of 139.6 mm of precipitation is received each year (Environment Canada).

The community was founded in the early 1970's when it was decided to relocate the existing community from the beach area near the existing south camp to the present location. The development of the community and the initial infrastructure was based on a projected population of some 1,500 people. The expected growth was not realized and the current population is slightly less than 200 persons.

2.2 Population Projection

To be able to develop the system requirements it is necessary to determine the design flow rates for the piped system. The flow rates are based on the population of the community and the expected per capita consumption. The historic populations and per capita water use rates are based on the records found at the Hamlet's office, MACA's records and in previous reports (UMA, 1993, 1996). The population projections are based on the data supplied by the Bureau of Statistics. These are as follows:

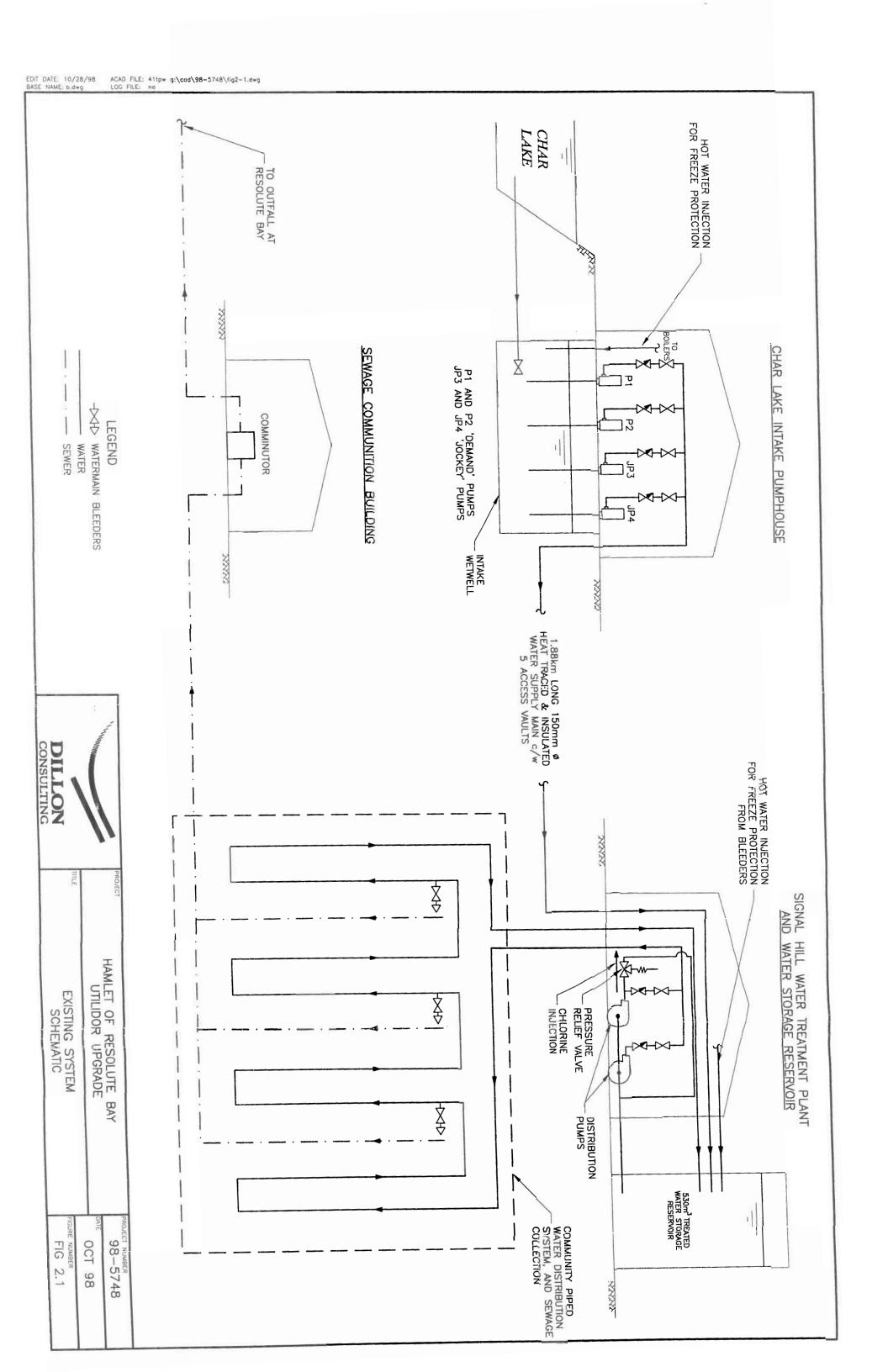
Table 2.2.1
Population Projects from the Bureau of Statistics

Year	Population
1991	171
1992	174
1993	178
1994	181
1995	184
1996	197
2001	224
2006	238

The consumption is based on the formula developed by MACA (MACA, 1986) and on the historic consumption of the community. The formulae for predicting water consumption of communities with piped water distribution and populations less than 2,000 people is:

Based on this formula and the population projections shown in Table 2.2.1, the projected annual consumption for the Hamlet of Resolute Bay for the next 20 years can be predicted. The system uses bleed water from the watermains to provide freeze protection to the sewermains. The bleed water is not metered. The total water pumped into the system is metered, and the individual consumers are metered. The resultant of the water supplied to the system and the metered volume of the consumers is the total of the system losses. The total system losses include the bleed water, losses due to watermain breaks, and water losses within the system. Prior to 1996, this value was fairly constant at approximately 38,000 m³ per year. As a result of increased problems with the system the amount of bleed water has increased in 1996 to 52,000 m³ and again in 1997 to 56,000 m³. At the time of reporting, the Hamlet was projecting an annual total consumption for 1998/99 of 55,000 m³ of which 45,000 m³ would be the bleeders and other system losses. For the purposes of water consumption projections the value of 45,000 m³ of bleed water and other system losses is used. The projected annual consumption is shown in Table 2.2.2.

2.3 System Description


The following is a description of the complete water and sewage system from the up gradient intake to the down gradient sewer outfall. Figure 2.1 illustrates this system in a schematic diagram.

Char Lake

- A ductile iron gravity intake line extends from Char Lake to wet wells in the Char Lake Pump House.
- Char Lake Pump House tempers the water using a hot water injection into the wet wells. Diesel
 fired boilers are used to heat the injection water. The tempered water is pumped through the 150
 mm heat traced and insulated HDPE Water Supply Main to the Water Storage Reservoir at the
 Water Treatment Plant (WTP).
- Two jockey pumps and two demand pumps are operated in the Char Lake Pump House.
 Typically one jockey pump operates 24 hours a day, with one demand pump coming on for less than one hour per day. The second jockey pump and second demand pump are on-line standby pumps and are brought on-line automatically if the first pump fails.
- The Char Lake Pump House pumps are controlled from a level controller located in the Water Storage Reservoir. The controller has a high level alarm, jockey pump off, jockey pump on, demand pump off, demand pump on, and low level alarm control levels.
- A standby diesel engine generator is situated in the Char Lake Pump House in case of loss of power to the Pump House.

Table 2.2.2
Population and Consumption Projections

				-							
Design Year	Year	Population	Growth Rate	Consumtion Icd	Consumption Annual (historic)	Consumption Annual (MACA)	Bleeders Annual	Total Volume (Historic)	Total Volume (MACA)	Daily Average (Historic)	Daily Average (MACA)
	300	11		4	0000		000	47 AEO 47E		000	
	1881			C4-	e / I 'nen's		30,400,000	671,004,74		000,000	
	1992	174	0.0175	145	9,208,950		38,400,000	47,608,950		130,435	
	1993	178	0.0230	145	9,420,650		38,400,000	47,820,650		131,015	
	1994	181	0.0169	145	9,579,425		38,400,000	47,979,425		131,450	
	1995	184	0.0166	145	9,738,200		38,400,000	48,138,200		131,885	
	1996	197	0.0707	145	10,426,225	16,911,678	51,868,684	62,294,909	68,780,362	142,106	188,439
	1997	205	0.0406	145	10,849,625	17,629,425	55,801,509	66,651,134	73,430,934	152,881	201,181
	1998	209	0.0195	145	11,061,325	17,989,204	45,000,000	56,061,325	62,989,204	123,288	172,573
0	1999	214	0.0239	145	11,325,950	18,439,779	45,000,000	56,325,950	63,439,779	123,288	173,808
~	2000	221	0.0327	145	11,696,425	19,072,170	45,000,000	56,696,425	64,072,170	123,288	175,540
2	2001	224	0.0136	145	11,855,200	19,343,762	45,000,000	56,855,200	64,343,762	123,288	176,284
3	2002	227	0.0134	145	12,013,975	19,615,693	45,000,000	57,013,975	64,615,693	123,288	177,029
4	2003	228	0.0044	145	12,066,900	19,706,413	45,000,000	57,066,900	64,706,413	123,288	177,278
5	2004	233	0.0219	145	12,331,525	20,160,576	45,000,000	57,331,525	65,160,576	123,288	178,522
9	2005	237	0.0172	145	12,543,225	20,524,587	45,000,000	57,543,225	65,524,587	123,288	179,519
7	2006	238	0.0042	145	12,596,150	20,615,684	45,000,000	57,596,150	65,615,684	123,288	179,769
ω	2007	239	0.0042	145	12,649,298	20,707,204	45,000,000	57,649,298	65,707,204	123,288	180,020
6	2008	240	0.0042	145	12,702,671	20,799,148	45,000,000	57,702,671	65,799,148	123,288	180,272
0,	2009	241	0.0042	\$24	12,755,209	28/8/8/ 5/10		000000	65,691,519	123.268	
11	2010	242	0.0042	•	12,810,093	20,984,318	45,000,000	57,810,093	65,984,318	123,288	180,779
12	2011	243	0.0042	145	12,864,144	21,077,548	45,000,000	57,864,144	66,077,548	123,288	181,034
13	2012	244	0.0042	145	12,918,423	21,171,212	45,000,000	57,918,423	66,171,212	123,288	181,291
14	2013	245	0.0042	145	12,972,931	21,265,310	45,000,000	57,972,931	66,265,310	123,288	181,549
15	2014	246	0.0042	145	13,027,669	21,359,846	45,000,000	58,027,669	66,359,846	123,288	181,808
16	2015	247	0.0042	145	13,082,638	21,454,821	45,000,000	58,082,638	66,454,821	123,288	182,068
17	2016	248	0.0042	145	13,137,839	21,550,239	45,000,000	58,137,839	66,550,239	123,288	182,329
18	2017	249	0.0042	145	13,193,273	21,646,100	45,000,000	58,193,273	66,646,100	123,288	182,592
19	2018	250	0.0042	145	13,248,941	21,742,407	45,000,000	58,248,941	66,742,407	123,288	182,856
28	2018	592	0.0042	143	13,304,243	21,638,153	45,000,000	53,304,543	69 839, 163	123,288	183,121

Water Treatment Plant

- The Water Storage Reservoir is a steel 530 m³ vertical steel tank constructed above grade. The tank is insulated and is freeze protected by the use of hot water injection.
- The Water Treatment Plant uses diesel fired boilers to provide tempering water for the Water Storage Reservoir hot water injection.
- The distribution water to the community is chlorinated using calcium hypochloride through injection pumps.
- The WTP uses pumps to provide distribution flow. The pressure is maintained at approximately 170 kPa (25 psi) at the WTP (October 1998 reading), and approximately 600 kPa (85 to 90 psi) at the low end of distribution system. The difference between the discharge pressure and the low end main pressure is the result of the static head difference in the mains due to elevation changes. The supply pump runs continuously at a constant rate of 1,700 rpm. The flow to the distribution mains is not regulated. Whatever water is not used within the distribution system is returned to the reservoir through the 150 mm return line.

Utilidor

- The distribution system is a looped HDPE insulated pipeline. The pipes are mostly 200 mm in diameter with two sections of 150 mm supply line and a 150 mm return line.
- Water is supplied to users (approximately 60 buildings) through a 20 mm copper heat traced (Stage 1A only) and insulated services. A return service is also installed from each building to the water main. Flow is moved continuously through the supply and return services by a small recirculation pump (1/4 h.p.) located in each building.
- The return water is directed back to the Water Storage Reservoir.
- The building sewage is collected using 100 mm insulated HDPE sewers to the sewer mains.
- The water and sewer services are in a common insulated jacket. The latent heat from the recirculation of the water services is used to freeze-protect the sewer service.
- Bleed water from the water mains is also used to provide freeze protection to the sewer mains during power failures when the water service recirculation pump is not operating
- The sewer mains are gravity run 150 mm insulated HDPE. These are installed in the same trench
 as the watermain.
- The sewermains and watermains are accessed through common concrete cast in place Access Vaults (AVs). The AVs contain all valves, hydrants, pipe connections and sewer clean outs.
- The sewer main is freeze-protected by the use of bleed water from the watermain to the sewermain. The bleeders are unmetered and located in the AVs.

Sewage Discharge

- The sewer mains join at the low end of the community and flow by gravity to a comminutor building.
- The sewage is macerated in this facility and discharged by gravity through an outfall pipe to the

shore line of the marine environment.

There have been several changes to the system since the original design. Some of these changes have been incorporated into the O&M manuals. The changes recorded during the site investigation completed on October 20 to 22, 1998 are from the discussions with the DPW Maintainer, Mr. Neil MacDonald, the Hamlet Administration, Mr. Dan Leman & Mr. Ralph, and from the existing documentation are as follows:

- A heat trace has been installed in the Water Supply Line from the Char Lake Pump House to the WTP in 1993. Five access vaults have been installed along this line as well. (Record Drawings)
- Two jockey pumps have been installed in the Char Lake Pump House.
- The utilidor heat trace system was abandoned in 1984 due to corrosion problems.(UMA, 1996)
- All electrical devices and service were removed from the Access Vaults in 1998. This includes
 the sump pumps, heat trace, and AV heaters. (N. Macdonald)
- The line to Block 1 is abandoned due to a freeze-up prior to 1986. The Health Centre water service currently uses the abandoned water main as a carrier pipe. The other buildings in this area are connected to the water and sewer mains between AV2 & 3. (N. MacDonald) The sewer service to the Health Centre is still in operation (D. Leman).
- The Hydrant in AV 20 was removed prior to 1986.
- AV 15 was never installed during the original construction. (N. MacDonald)
- A new hydrant was installed in 1998 in AV 13, (N. MacDonald)
- The valves in AV3 were replaced in 1998. These are the valves that were indicated to leak in the UMA 1996 report, but were incorrectly identified as AV2 valves in the UMA report (N. MacDonald).
- A new valve was installed in AV30 in 1998. This allows the section of main between AV21 and AV30 to be shut off. (N. MacDonald)
- The ventilation systems for the WTP and Char lake Pump House have been disabled and are blocked up in the winter. Combustion air for the facility burners is supplied through building envelope infiltration. It is reported by the DPW Maintainer that the buildings are very leaky and have poor insulation.

With respect to the utilidor system, there are no known changes made from the original construction other than the changes noted above. The complete system description and components is found in three sets of O&M Manuals. Copies of these manuals are stored in the community, DPW&S Iqaluit, and DPW&S Yellowknife.

3.0 REGULATORY COMPLIANCE OF THE UTILIDOR SYSTEM

3.1 The Public Health Act

The NWT Public Health Act (PHA) regulates the supply of potable water to consumers, and the methods for the collection of waste in the NWT. The applicable sections of the PHA are the "Consolidation of Public Water Supply Regulations, P-23" (PHA P - 23) and the "Consolidation of Public Sewerage Systems Regulations" (PHA P - 22). No other sections of the Public Health Act would relate directly to the water supply and sewage collection system. With respect to the utilidor system the requirements are set out in the in Part III of the PHA-P23.

The utilidor meets the requires of Part III of PHA-P23 except for the requirements of section 20.9 which states:

"Where water and sewer pipes are contained in a utilidor, there shall be adequate provision for drainage in order to prevent contamination of the water supply during repairs to the system."

The AV's contain both water and sewer pipes. The sewer clean out covers have been removed to allow infiltration water to drain out of the AVs. This is an annual problem, as each spring run off water enters the AV and must be removed. This occurs from about June to October (N. MacDonald) and then the remaining water is pumped out of the AVs. The clean out cover remains open year round. This creates concern that in the event of a water main break a negative pressure in the watermain can be created within an upstream AV from a syphoning effect of the down stream main. If the watermain is not completely sealed, or during the repair of the water main, there is the possibility of cross contamination from the open sewer clean out. This is greatly reduced if the clean out is closed and sealed prior to the start of any maintenance on the water main system.

The PHA P - 22 has two requirements that are of issue for the utilidor system. The first is the same as described above. The second is the requirement for treatment for the sewage. The PHA P - 22 states in Part IV article 9:

"Sewage treatment systems shall be designed to provide for adequate protection of the receiving water considering the possible uses of the receiving water"

This issue does not particularly relate to the operation of the utilidor system, but is raised as the UMA, 1996 report indicates that the Public Health Department required that sewage treatment is needed to meet the requirements of the Department. Based on the above section of the act, which is the only section of the PHA that addresses sewage treatment, there appears to be no specific requirement for treatment other than to protect the receiving body of water.

4.0 MODELLING

4.1 Water Distribution Network

4.1.1 Introduction

This section summarizes the development of the water distribution analysis model for the existing system and the 5 year proposed residential development in Resolute Bay, NT. Results of the analysis and recommendations are included.

4.1.2 Existing Conditions

There is approximately 2,500 m of pipe in the water distribution system. All water mains are 200 mm HDPE pipe with the exception of three 150 mm sections. A constant pressure of 150 kPa (20 psi) is provided at the water treatment plant to the distribution system. There are 20 mm bleeds into the sanitary sewer in AV17, AV19, AV22, and AV25. The outflow through these bleeds is approximately 5.25 l/s each.

The water is constantly being recirculated within the system with the aid of a 150 mm return line to the water treatment plant.

4.1.3 Future Conditions

An area to the southwest of the current community is proposed for 37 new residential lots. This will require approximately 1,090 m of 200 mm additional water main. A commercial area to the northwest is proposed but not expected to be developed within the next 5 years and therefore not included in the scope of this project. The connections to the existing system will be made at AV17 and AV11.

4.1.4 Hydraulic Model (EPANET)

EPANET is a computer program that performs extended simulation of hydraulic and water quality behaviour within pressurized pipe networks. A network can consist of pipes, nodes, pumps, valves and storage tanks or reservoirs. EPANET tracks the flow of water in each pipe, the pressure at each node, and the height of water in each tank during a multi-time period simulation. EPANET Version 1.1e was developed by the Water Supply and Water Resources Division, National Risk Management Research Laboratory of the U.S. Environmental Protection Agency in Cincinnati, Ohio.

4.1.4.1 Model Setup and Assumptions

Since the network is relatively small, each pipe is modelled individually. Existing details such as slopes, diameters, elevations and the configuration were obtained from the as-built drawings obtained from PW&S. Elevations and slopes for the proposed development were interpreted from contour mapping. A schematic diagram is shown for existing conditions in **Figure 4.1** and for future conditions in **Figure 4.2**.

The Hazen-Williams head loss equation is used. (h=fn(C,d,L,q))

The Hazen-Williams coefficient (C) for HDPE pipe is assumed to be 110.

The return line to the water treatment plant is modelled with a check valve to ensure one direction of flow. The node at the end of the return line is modelled as a reservoir with a constant elevation equal to the inflow elevation at the plant. The water reservoir is modelled with a constant head of 17.3 m to simulate the a constant pressure of 150 kPa (20 psi) leaving the plant.

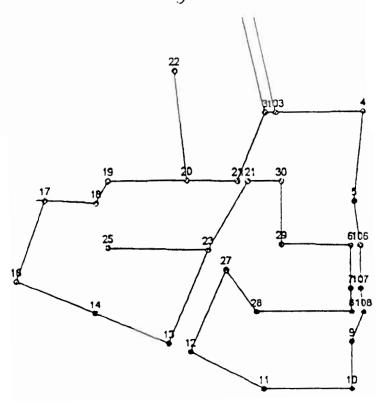
Demands in Resolute Bay are based on an estimated number of units of 63 in the existing model and 113 for the future conditions, and 5 people per unit.

Unit consumption rates are as follows:

Average Day 225 Lpcd

Maximum Day 450 Lpcd

Peak Hour 900 Lpcd


Total water use in a community can be estimated as a function of residential water use(RWU) (MACA, 1986).

Total water use=RWU*(1+(.00023*population)) for a community of less than 1000 people.

Total water use is used in the model, residential and commercial flows are not distinguished.

The allocation of demands is based on the as-built drawings and approximated for the future development. For both existing and future conditions the following scenarios are modelled. Average day demand, maximum day demand, peak hour demands and average day demands plus fire flow at the worst location. The results of these runs is in appendix A.

EPANET Resolute Bay October 1998 Existing Conditions Schematic

EPANET Resolute Bay October 1998

Future Conditions Schematic

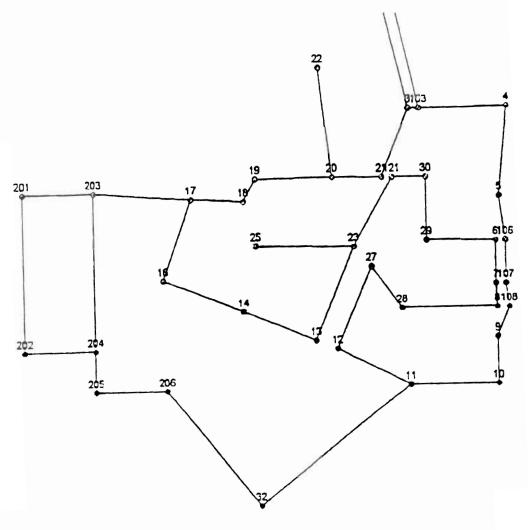


FIGURE 4.2

The fire flow rate based on MACA criteria is 3600 l/min for 2 hours during average day demands. Fire flows were simulated at the edges of the network and at the highest elevations to determine the worst case scenario and verify fire flows can be met. For existing conditions a fire at AV4 has the lowest pressures associated with it but the minimum pressure of 150 kPa can be easily maintained. For future conditions a fire at AV201 has the lowest pressures associated with it, but again the minimum of 150 kPa is maintained throughout the system.

The model was also run with pipe diameters of 150 mm instead of 200 mm to determine if the pipe size can be reduced, as the Community has not grown to the anticipated size. The model indicates that the 150 mm size is not sufficient to maintain the fire flow requirements.

4.2 Sanitary Sewer System

4.2.1 Introduction

This section summarizes the utilization of the existing sanitary sewer system, and estimates the peak hour flows for the 5 year proposed residential development in Resolute Bay, NT. Results of the analysis and recommendations are included.

4.2.2 Existing Conditions

There is approximately 2,500 m of sanitary sewer pipe. Most sewers are 150 mm HDPE pipe with five 200 mm sections at the downstream end of the system. There are 20 mm bleeds into the sanitary sewer in AV17, AV19, AV22, and AV25. The inflow through these bleeds is approximately 5.25 l/s each.

4.2.3 Future Conditions

An area to the southwest of the current community is proposed for 37 new residential lots. This will require approximately 768.5 m of 200 mm additional sewer pipe. A commercial area to the northwest is proposed but not expected to be developed within the next 5 years and therefore not included in the scope of this project. The connection to the existing system will be made at AV32. In addition to the existing 20 mm bleeds into the sanitary sewer, they were also added to AV201 and AV203 to prevent freezing.

4.2.4 Capacity Utilization Analysis

The full flow capacity of a circular pipe can be calculated using Manning's equation $(Q=1/n*(A*R^2/3*S^1/2))$.

Model Setup and Assumptions

Each pipe with its details is identified in the spreadsheet shown for existing conditions in Table 4.1 and for the proposed development in Table 4.2. Existing details such as slopes, diameters, and the configuration were obtained from the as built drawings obtained from PW&S. Slopes for the proposed development were interpreted from contour mapping.

A schematic diagram is shown for existing conditions in **Figure 4.11** and for future conditions in **Figure 4.12**. The Manning's n coefficient for HDPE pipe is assumed to be 0.013.

Demands in Resolute Bay are based on an estimated number of units of 63 in the existing model and 113 for the future conditions, and 5 people per unit.

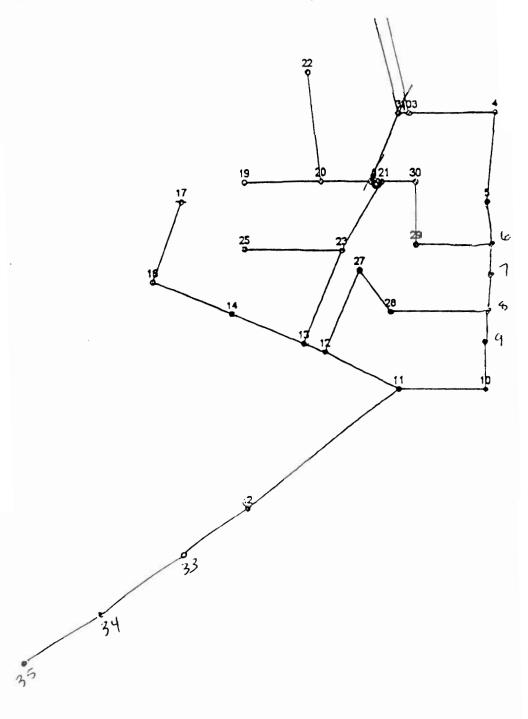
Unit consumption rates are as follows:

Average Day 225 Lpcd

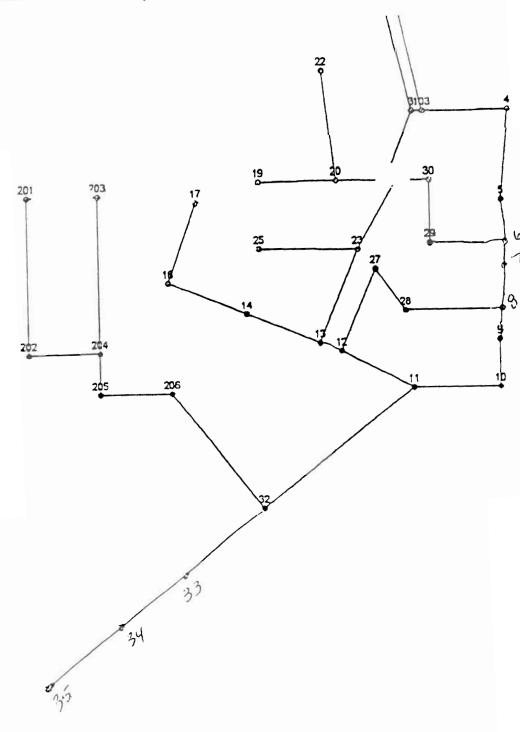
Maximum Day 450 Lpcd

Peak Hour 900 Lpcd

Total water use in a community can be estimated as a function of residential water use(RWU) (MACA, 1986).


Total water use=RWU*(1+(.00023*population)) for a community of less than 1000 people.

It is assumed that waste water is equal to water use.


Results

Nearly all pipe in the system have adequate capacity to carry the peak hour flows. The exception is between AV11 and AV32 in the existing system due to a small slope, and between AV11 and AV35 in the future system. The problem is solved by replacing the sewer pipes at these locations with 250 mm diameter pipe.

EPANET Resolute Bay October 1998 (xishin) Conditions Schematic

EPANET Resolute Bay October 1998 Future Conditions Schematic

5.0 IMPACT STUDY

5.1 Introduction

This section presents an overview of the Environmental Impact Study (EIS) of the Hamlet's current sewage discharge practices to Resolute Bay. This study was initiated as a follow-up to a previous water and sewer facilities study by UMA Engineering Ltd. (1996). That study identified potential concerns relating to the Hamlet's sewage discharge with respect to health issues and components of the Federal Fisheries Act relating to the discharge of a deleterious substance.

The UMA Report reviewed the correspondence from the Baffiri Region Medical Health Officer, and indicated that the sewage disposal system does not comply with the Public Health Act because, "the discharge of sewage is directly into the ocean without any prior treatment". However, the sewage does receive some treatment in the form of dilution from the bleed water.

There is uncertainty whether or not the sewage discharge complies with the Federal Fisheries Act as it relates to the introduction of a deleterious substance to a waterbody. It is not known if the current discharge would be considered deleterious, however, the UMA report states that the preparation of a DFO position brief on Resolute Bay is being considered. Currently, the status of the development of this position paper is unknown.

This EIS is based on existing environmental information for Resolute Bay, discussions with local residents, and Dillon's experience with similar studies (e.g. Repulse Bay Sewage Discharge -Preliminary Impact Assessment 1998). A major component of the EIS is a review of potential impacts of sewage discharge to the marine environment based on existing information. The EIS characterizes the existing environment of Resolute Bay including physical habitat characteristics, water quality, and marine flora and fauna. As part of this task data gaps or deficiencies have been identified to provide direction for a more detailed environmental assessment.

5.2 Potential Impacts of Discharging Sewage Waste to the Marine Environment

When wastewater is discharged to marine waters there are possible implications for the surrounding marine environment. The following discussion is intended to provide background regarding the potential environmental impacts of sewage to the marine environment.

The Department of Indian Affairs and Northern Development (DIAND, 1987), indicates that the principal components of sewage and the potential effects of these components to the receiving water body can be summarized in the following manner:

Organic Matter: organic compound degradation may reduce the dissolved oxygen (DO) concentration of a receiving water body

- Settleable Solids: the benthic community structure may be altered if settling solids modify
 the particle size distribution of the sediments; localized anaerobic
 conditions may be a consequence of organic sediment decay
- Inorganic Nutrients: increased nitrogen and phosphorus levels could lead to increased primary production and hence decreased dissolved oxygen levels from microbial degradation of plant biomass at the sediments
- Pathogenic Organisms: the receiving water body may receive disease-causing bacteria and viruses
- Residual Chlorine: any chlorine remaining in the effluent that was used to reduce pathogenic micro-organism levels may be toxic to fish (not an issue in Resolute Bay)
- Suspended Solids: increased turbidity may alter fish migration patterns and reduce the amount of light available for photosynthesis
- Floatables: slowly degradable materials (i.e. fats, oils, plastic, rubber) may be aesthetically offensive if floating on the receiving water surface

Several of the impacts mentioned above are expanded upon in the following discussion as they relate to sewage discharge from coastal communities into the marine environment.

Of particular concern relating to impacts to the receiving environments is a potential decreased DO concentration due to the breakdown of organic matter, as well as the oxidation of hydrogen sulfide, ammonia, methane and iron compounds (DIAND, 1987). Anoxic conditions have been known to cause fish mortality in marine waters. Problems can arise where there is inadequate dilution or dispersion of an arctic communities sewage discharge which may result in anoxic conditions in the marine environment even when discharge is at relatively low volumes of sewage. DO reductions can also be exacerbated due to the long periods of ice-cover that effectively prevent atmospheric re-aeration. DIAND (1987) concluded that negligible decreases in dissolved oxygen levels could be expected in Arctic waters due to the small size of any one outfall, if dilutions greater than 100 to 200:1 are achieved.

The DO content immediately above the sediment and in its interstitial spaces may also decrease significantly due to organic compound decomposition. If the water at the level of the sediment were to become anoxic, this would have implications for the benthic and fish communities inhabiting this zone. In fact, Birtwell *et al.* (1983) suggested that the sediment chemical environment was a factor in the observed decrease in fish numbers near the sewage outfall of the Fraser River estuary. The accumulation of particulate organic matter may also have an effect on benthic invertebrates in the area and alter the relationships between benthic and pelagic trophic levels. Otte and Levings (1975) reported alterations

in the benthic community associated with a sewage outfall discharging to the mud flats of the Fraser River estuary increased. The authors observed an increase in the number of individuals, biomass, and species with increasing distance from the discharge. The extent of impacts to the benthos community is dependent on many factors such as: the degree of deposition; the presence or absence of toxic materials; the decomposition rate of the organic matter; and any change to the characteristics of the sediment (i.e. particle size) (DIAND, 1987).

In addition to organic loading and decreased dissolved oxygen levels being potential consequences of sewage discharge, nutrient levels may increase in the marine environment, resulting in the stimulation of primary production. Welch (1980) has suggested that enhanced primary production as a result of increased nutrient levels may lead to increases in zooplankton production and biomass. However, during the open-water season, Arctic marine waters are likely nitrogen-limited, in addition to being light-limited when the sea is covered with ice (DIAND, 1987). Thus, it is unlikely that nitrogen loading from the relatively small sewage outfalls in the north will result in stimulating primary production to any noticeable degree. Furthermore, because zooplankton and phytoplankton are moved continuously through well-circulated areas, any local changes in species composition would likely not significantly alter the structure of the community (DIAND, 1987).

The potential impact of micro-organisms may also be a concern when sewage is discharged into Arctic marine waters. Faecal coliforms, such as *E. coli*, may contaminate local invertebrate species and hence pose a risk to human health if any of these organisms are harvested for consumption by the residents. Shellfish are of particular concern because they are filter feeders and tend to concentrate bacteria in their tissues. This makes shellfish harvesting for human consumption a potential risk. Coliform bacteria have a much higher survival in the Arctic, due to the cold temperatures and because there is less ultra violet light to provide natural disinfection in the winter months (DIAND, 1987).

It is suggested by DIAND, 1987 that sewage discharge to the marine environment from small northern communities may have an insignificant environmental impact at a regional level. There could be minimal impact at the local level if sewage is discharged to a not well-mixed waters where the effluent is not diluted. Any effects to the receiving water from raw or partially treated sewage may be limited to localized benthic impacts (DIAND, 1987). In addition, sewage generation rates for Resolute Bay, both in the present and predicted for future years, are relatively small.

5.3 Existing Environment

Information regarding the existing environment of Resolute Bay is extremely limited, and is generally restricted to marine studies completed in the early 1970's (see summary by Buchanan and Ragnit 1978). Several of the studies provide descriptions and information regarding the general marine biological characteristics of the Resolute Bay and Wellington Channel. Study components include physical measurements, phytoplankton, zooplankton, benthos, and fish.

The following sections provide brief summaries for each of these components or areas:

5.3.1 Physical Environment

The physical data summarized in this section is related to tides and winds. Tidal influences experienced by Resolute Bay are considerably less than those observed in other areas in the eastern Arctic. Resolute Bay has a mean tidal variation of 1.3 m and a maximum tidal variation of 2.1 m (UMA 1996).

Wind speed and direction information is particularly noteworthy as they have a direct effect on physical oceanography of an area and can play an important role in the behaviour and distribution of any pollutant. Mean wind speeds for Resolute Bay are reported to be between 10.4 and 12.6 mph with a predominant wind direction from the northwest (Bitello 1973 *cited in* Buchanan and Ragnit 1978).

5.3.2 Water Quality

Water quality monitoring has been completed periodically for the sewage discharge to Resolute Bay The water quality data includes a small sub-set of parameters from the final sewage discharge into Resolute Bay as well as from a station located 5-10 meters down current of the final discharge. Additional water quality information is available for comparative purposes for run-off from the solid waste disposal facility and for Char Lake waters.

Water quality data related to the sewage discharge are parameters pH, conductivity, total suspended solids, dissolved solids, biochemical oxygen demand (BOD), turbidity, total nitrogen, ammonia-N, nitrate, total phosphorus, and coliform bacteria. The effluent has not been characterized with respect to other parameters of potential concern such as metals or organics. Metal levels have been evaluated however, for the run-off from the solid waste disposal facility and for Char Lake.

The results of water quality monitoring completed between 1992 and 1997 for the Resolute Bay sewage discharge are presented in Table 5.1. Relevant guidelines and criteria have been included for comparison where possible. The solid waste site is not the subject of this assessment and is not discussed further in this report.

Generally, water quality is quite variable between sampling periods, although in all cases within relevant guidelines or criteria. The high variation is not surprising given that sampling likely took place over a wide range of physical conditions and as such may reflect tidal differences, wind- and wave-induced differences, etc.

Water Quality Parameters at the sewage discharge to Resolute Bay and at a station located 5-10meters downcurrent of the discharge (data supplied by DIAND).

Table 5.1

Parameter	Guideline/		Sewage D	Resolute Bay ¹ (Stn 1571-4)	Water Licence			
	Criteria	July 17, 1992	June 28, 1993	Aug. 17, 1994	July 26, 1996	July 8, 1997	July 17, 1992	Criteria
CONVENTIO	NAL PARAM	ETERS						L
рН	7.0-8.72	7.2	7.24		7.82	8.00; 8.03	7.39	6 to 9
Conductivity (uS/cm)	-	450	304			201	420	
Total Suspended Solids (mg/L)	1203	27	19	<3	10	15; 15	26	80
Dissolved Solids (mg/L)	-			260				
BOD (mg/L)	1003				76	15; 18		120
Turbidity (NTU)	-		15	2.9				
NUTRIENTS								I
Nitrates/ Nitrites (mg/L)	-	<0.01	1.26	2.21			<0.01	
Ammonia-N (mg/L)	124			1.41	0.721	0.561; 0.597		
Nitrate (mg/L)	-			2.2				
Total Phosphorus (mg/L)	-	1.3	1.115	0.219			0.691	
BACTERIA								
Total Coliform (CFU/dL)	-				300,000	2,600,000		
Faecal Coliform (CFU/dL)					110,000	210,000		

Notes:

- Resolute Bay 10m down current from discharge pipe.
- CCME Interim Marine and Estuarine Water Quality Variable (December 1996)
- 3- Effluent discharge to a marine bay or fjord (Guidelines or the Discharge of Treated Municipal Wastewater in the Northwest Territories, 1992)
- 4- BCMoELP (Nordin 1990) cited in BCMoELP (1995) water quality criteria for saltwater life. Ammonia to (T = 0°C; Salinity 30g/kg; pH = 7.6)

The range of pH, 7.0 to 8.7, is recommended by the Canadian Water Quality Interim Guidelines for marine and estuarine environments (CCME 1996). The guideline also states that within this range, pH should not vary by more than 0.2 pH units from the natural pH expected at that time. This is intended to protect marine organisms which have narrow pH tolerances. During the July 1992 sampling, the pH 5-10 meters down current of the effluent discharge point is almost 0.2 pH units higher that the pH at the point of discharge (Table 5.2) indicating that the sewage effluent may be resulting in a slight decrease in pH in the immediate vicinity of the discharge.

TSS levels were some what variable between sampling periods which is not surprising given that sewage strength will vary over the day. Diurial testing of the sewage discharge would be required to determine daily/weekly peaks for this parameter.

The Faecal and Total Coliform tests varied considerably (10 fold) over the tests. Like TSS this is an indication of varied sewer strengths. The fact that the FC levels are high when the BODs is low can not be explained. Logically, these levels should follow somewhat similar trends.

5.3.3 Phytoplankton

The following information regarding phytoplankton communities is summarized from Bain et. al. (1977 cited in Buchanan and Ragnit 1978).

Common "spring" phytoplankton species reported in the area include *Nitzschia grunowii*, followed to a less extent by *Nitzschia seriata*, and *Thalassiosira nordenstioeldii*. Common "Summer" phytoplankton species include *Chaetoceros socialis*. No differences in phytoplankton populations observed between sites sampled under ice and those sampled in open water, most likely due to the presence of strong southward moving currents in Wellington Channel. Similarity, phytoplankton communities demonstrated no consistent depth preference, again most likely due to physical influences such as tidal action and light intensity.

Phytoplankton communities reported along the Resolute Passage ice-edge sampled in early July exhibited low standing stock and differed considerably in composition from populations in the Wellington Channel.

Particularly noteworthy is a study by Welch and Kalff (1975 cited in Buchanan and Ragnit 1978) which presents measurements of marine photosynthesis and respiration in Resolute Bay. The authors reported chlorophyll concentrations in the water ranging from 0.001 - 0.1 mg/m³ during the winter to 15 mg/m³ in August. This information could potentially provide an interesting comparison to current conditions within Resolute Bay.

Potential impacts to phytoplankton populations due to the sewage discharge to the bay are expected to be minimal and restricted to the area in the immediate vicinity of the discharge point. Increased loadings of nutrients may result in a localized increase in phytoplankton productivity, however the magnitude of

this increase would be determined by overall nutrient loadings, characteristics of the mixing zone, and physical aspects such as tidal and weather (ie. wind, waves, etc.) effects.

5.3.4 Zooplankton

Thirty-five zooplankton species were identified by Bain et al. (1977). The community was numerically dominated by copepods such as *Pseudocalanus* spp., but in terms of biomass the community was dominated by the copepods *Calanus glacialis* and *Calanus hyperboreus*. Barnacle nauplii were also extremely abundant in some samples. Unlike phytoplankton, pelagic and under-ice fauna are generally less abundant (Green and Steele 1975 cited in Buchanan and Ragnit 1978).

As with phytoplankton, potential impacts to zooplankton populations inhabiting Resolute Bay would most likely be minimal and restricted to the area in the immediate vicinity of the discharge point. Increased phytoplankton productivity due to nutrient loadings could potentially result in an associated increase in zooplankton productivity, but any increases would be expected to be small.

5.3.5 Benthic Invertebrates

Dominant benthic invertebrates reported (Green and Steele 1975 cited in Buchanan and Ragnit 1978) in Resolute Bay include:

clams (Mya truncata)

- mud shrimp (Sclerocrangon boreas)
- brittle star (Ophiura sarsi)
- isopods (Munnopsis typica)
- starfish (Lepasterias groenlandicus)
- whelk (Buccinum belcheri)

Motile invertebrates such as amphipods are often concentrated at the tidal surface and as such provide an important food source to shorebirds and seabirds and fish, particularly Arctic char (Ellis and Wilce 1961).

Benthic invertebrates, including shellfish, within the sewage discharge area could potentially be impacted by contaminant loadings. Unlike phytoplankton and zooplankton which are directly influenced by tides and water currents, benthos form a relatively sedentary population which continually exposed (to varying degrees) to diluted sewage and associated contaminants, and as such, the health of the organisms reflect the quality of the environment they inhabit. Shellfish, such as clams can also bioaccumulate various contaminants such as metals. Shellfish also filter out coliform bacteria from the water column, resulting in a potential health risk to humans if the shellfish are harvested.

5.3.6 Fisheries and Marine Mammals

Available information regarding fish and marine mammal communities is extremely limited for Resolute Bay.

Fish species reported in the area include arctic cod (*Boreogadus saida*), and ninespine stickleback (*Pungitius pungitius*). All fish were found to be actively feeding on amphipods Several species of marine mammals are reported in the Resolute Bay area including Narwhal (*Monodon monoceros*), bowhead (*Balena mysticetus*), and white whales (*Delphinapterus leucas*)

Given the relatively low levels of discharge of sewage to Resolute Bay, fish and marine mammals communities are not likely to be directly impacted. Nutrient enrichment of the bay may in fact result in a localized increase in primary and secondary production (phytoplankton, zooplankton, benthos) which could potentially provide a greater food source for fish.

5.4 Public and Regulatory Agency Consultation

In an effort to further determine the status of a "Position Paper or Brief" (UMA 1996) regarding current sewage treatment and disposal for the Hamlet of Resolute Bay and authored by Fisheries and Oceans Canada and/or Environment Canada, several attempts have been made to contact appropriate staff from both federal agencies. However, no new information has been provided to establish what requirements may or may not be needed to further explore regulatory issues. This being the case, it is still unclear whether or not there are issues and concerns relating to sewage disposal that justify those requirements of the *Act*.

On November 4, 1998 an information session and consultation meeting was held at the Hamlet of Resolute Bay. This session was to provide Hamlet administrators and residents information regarding this study. An introduction to this study was provided to identify the scope of work being completed. The main focus of the meeting was to discuss the current and historical operational practices of sewage outfall and the perceived and potential environmental effects of the discharged wastes to the marine environment.

Consultation with the community consisted of an evening meeting at the Hamlet's community center. The meeting received publication through radio, television and newsprint media one week and again, one day prior to the event to ensure that community members were given adequate notice and the opportunity to attend.

Approximately 20 members of the community, including three Hamlet councilors and the Hamlet's Senior Administrative Officer (SAO), attended the session. Dillons' staff presented a study overview and described the intended scope of work through the use of overhead slides. One member of the community assisted in the presentation of materials to the community group by providing language translation

services for both the presentation of information and follow-up inquiries from local residents. A copy of Dillon's presentation is provided in Appendix 1.

Provided below is a summary of those comments, questions and discussions brought forward by community members at the meeting;

- During certain times of the open water season and when specific wind patterns exist the smell of sewage is very apparent within the Hamlet;
- What were the concerns raised under the NWT Health Act, with respect to the sewage issue?
- What is a cut off population for which the existing type of utilidor facility structure is not appropriate?
- How far out into the bay does effluent travel beyond the immediate discharge point?
- During the open water season the beach or shoreline area, in the vicinity of the sewage outfall, is used as an access point for boating;
- The current discharge location is not considered appropriate, as it is limiting the community development, small boat access, and there are olfactory problems during the summer period;
- Successful hunters will bring their animals (primarily seals) to the beach area where they are
 partially butchered;
- Some hunting does occur in Resolute Bay. Baffin Health Board was to have conducted a study
 to determine any impact from the sewage outfall. Therefore the people of Resolute Bay
 submitted some food samples (seals, whales that were captured from all over, including the Bay)
 to DFO, but no results are available so far. Some seal liver and fat studies were also to have been
 conducted;
- Due to DFO's long-time presence in Resolute, they should be able to provide some information and documents to Dillon with respect to sewage issues;
- Resolute Bay is not a heavily fished area, due to the lack of fish. Shellfish and clams are not
 typically collected from the Bay area, but it was suggested that they be studied as these food
 items are considered as a delicacy by the local people;
- Schools of cod are noted to inhabit the bay area in the vicinity of the outfall, especially when forced close to the shore as a result of feeding whales in the area;
- The bay area is not specifically used by the community for fishing and the cod that are forced

into the near shore area are not typically fished;

- Raw sewage is visible along the shoreline area in close proximity to the outfall location;
- No particular care is taken with respect to the substances being flushed. It is unknown (to the
 people of Resolute) whether DPW has any problems with their cleaning facility;
- There were several questions raised with respect to the acceptability of the current system (only
 grinding, no treatment) and constant flow towards the Bay. The community suggested that they
 would like an upgrade to a cleaning process to be done (e.g., filters at the very least) or any other
 appropriate improvement;
- Although significant concerns regarding the discharge of sewage at this location were not voiced, the potential impacts of the discharged sewage to the marine environment were identified as not being well known to the community;
- Should there be the potential for impact to the marine environment at this location it was noted
 that further study should be conducted to confirm it's significance and to identify/incorporate
 potential changes to the current sewage treatment system that would minimize those impacts and
 any community concern;
- One alternative identified was the relocation of the piped outfall location from its' existing location to a location south along the shoreline away from shoreline areas of use;
- Deep water discharge (e.g., 10-20 m off shore) would also be an acceptable alternative, from the
 prospective of the boat access, quick freezing which typically happens in the winter (which
 would be avoided if the discharge would be somewhere further from the shore), and to establish
 a deeper water discharge location and the enhancement of potential mixing;
- Discussion included the identification of requirements of the federal Fisheries Act and how it
 might apply to the current sewage treatment system and discharge at Resolute Bay;
- Compliance requirements of the Nunuvat Water Board and the associated water licence were also
 discussed resulting in the identification of current and historical licence compliance with the
 required discharge requirements.

In summary, no significant issues were raised by the community with regard to the discharge of sewage to the marine environment. However, they acknowledged that they were not totally familiar with what maybe the potential impacts. Certain activities that involve the processing of hunted seals and other mammals are conducted within the Bay and near shore areas the sewage smells and wastes are obvious to the residents at certain times. Certain food items, such as clams, are opportunistically harvested from the outfall area. Based on these issues it was noted that further consideration of these potential impacts should be reviewed.

6.0 REMEDIAL SYSTEM NEEDS

6.1 Water Mains

Future Capacity

The system was designed for a population of 1,500 people and a consumption of 225 lcd. The total daily average consumption for the original design was approximately 340,000 l/day. The projected 20 year demand based on the current growth rate and bleeder rate is approximately 183,000 l/day. Section 4 developed and completed a model for the distribution system to verify that there is sufficient capacity for the peak demand and the fire flow requirements. The model indicates that the fire flow demand is met by operating a valve in AV3 during the fire flow conditions. This should be verified as part of the standard operating procedures for the facility Maintainer.

One section of sewer main AV11 to AV32 is required to be increased to 250 mm to meet the design flows.

The flow requirements for the proposed new subdivision can be met through the expansion of the existing system. The new areas can be serviced with a 150 mm pipe line for the Water mains and the sewer mains.

The model was also run using 150 mm piping throughout the system. This run indicates that the 150 mm size will not meet the 20 year demand of the community. Therefore all replacement piping should maintain the 200 mm pipe size for the water main.

It should be noted that a significant amount of the system capacity is consumed through the use of the bleeders. These bleeders are not metered for flows. It would be useful to have actual measurements of the bleeder flows, bleed water temperature, as well as sewer pipe temperatures throughout the system. These measurements can be used to assess the required bleeder rates with the indent to reduce the overall bleed water consumption. As the community expands, this will become necessary to allow for the expansion of the system beyond the 20 year horizon to the 40 year planning horizon. The metres can be mechanical type metres, identical to house water metres. They should be read on a weekly bases and recorded by the Hamlet, and/or the system Maintainer. The cost to install the metres would be approximately \$2,000 per unit.

The measurement of the sewer temperatures should be completed for each leg of the sewer system. This will allow for the balancing of the bleed water. The sewer flow temperature should be measured weekly and recorded by the Hamlet and/or DPW&S Maintainer. The temperature metres can be installed for approximately \$1,000 per unit.

Once a year of data is collected, the information can be used to determine the required flows on a seasonal bases for the bleeder system. This will need to be fine tuned through the continued recording

of the bleeder flow metres and the sewer temperature readings.

6.2 Sewage Discharge

The limited water quality data collected from the sewage discharge to Resolute Bay, and a sampling location 5-10 metres down current from the discharge location, tends to indicate that there is localized impacts to the marine receiving environment. The extent or magnitude of these impacts cannot be determined in detail based on the extremely limited data collected to date for water quality and for the biota inhabiting the marine receiving environment.

The Hamlet of Resolute Bay currently meets the discharge requirements of their water licence issued by the Nunavut Water Board. It is also apparent from the results that the strengths of the sewage could be increased two or three times and still meet compliance. This may occur in the bleeding rate is decreased over time.

Regardless of the bleeder rate, the total mass loadings of the contaminant to the receiving environment will remain consistent. The long term environmental and human impacts are more related to the mass loading, rather than the concentration of the discharge. There are impacts related to "shocks" to the marine system created by sudden increases in the contaminants of concern. This would be related to at shore organisms, only. As such, a reduction in the bleeding rate by 1 or 2 fold is not expected to impact the effects of the sewage and the receiving environment. To determine the long term impact of the sewage mass loadings, there is the requirement to collect and assess data at the marine environment. A summary is shown in Table 5.2.

Table 5.2
Summary of Information Required for Detailed Impact Assessment

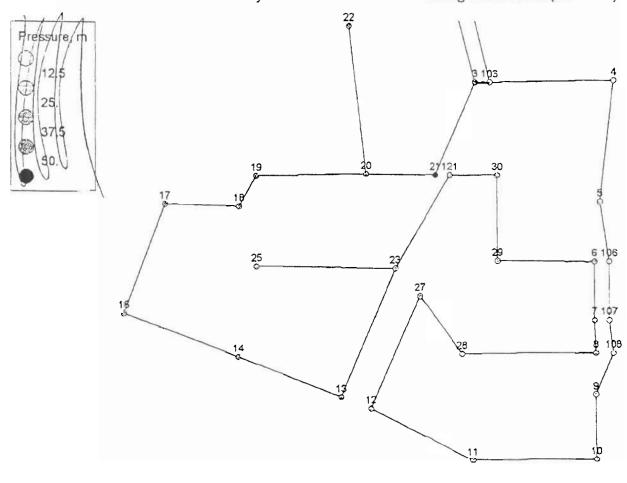
Information/Data Required	Rationale
Physical	
- tidal information, wind speeds, wind directions, wave climate, etc.	 this information will help determine the magnitude and extent of any plume, etc. also help address any dilution issues much of this information should be readily available from Environment Canada
Chemical (i.e. water and sedimen	t quality)
- more detailed characterization of effluent and receiving environment water quality.	 current annual sampling results do not provide the necessary detail to assess diurnal variation in effluent characteristics the current program also does not assist in the determination of the spatial extent of any effluent plume this information would be used to determine average effluent concentrations
- include a control location in any sampling program perhaps in an adjacent bay	- control site data will provide a good comparison to sewage discharge results
- evaluation of dissolved oxygen levels within Resolute Bay	- given concerns with respect to oxygen depletion in the bay it would be worthwhile to determine oxygen levels in the bay particularly under the ice-cover.
- characterize sediment quality with the receiving environment	 determine distribution of any contaminants within the marine sediments sampling program would be designed to delineate impacts from the sewage discharge and those potentially from the solid waste disposal site.
Biological	
Shellfish, such as clams (Mya truncata) should be sampled to assess potential shellfish contamination	- elevated coliform levels observed in the vicinity of the discharge could potentially result in shellfish contamination - clams are also excellent biomonitors for other contaminants such as metals.
Benthic-invertebrate communities	- benthic invertebrates provide excellent indicators of overall environmental quality - benthos information can be related back to water and sediment quality data to assess impacts

REFERENCES

- Guidelines for the Investigation, Design, Construction and Remediation of Buried HDPE Sewer Systems in the Eastern Arctic, Agra Earth & Environmental, March 1996.
- Construction of Water and Sewer Servicing Stage 1A New Townsite, Resolute Bay, NWT, UMA, 1977
- Report on Subsurface Soil Conditions for Proposed Sewage Treatment Plant, Water Reservoir and Pumphouse at Char Lake, Resolute Bay, NWT, UMA, 1975.
- Report on Study of Pollution Control Systems, Resolute Bay, NWT, UMA, 1974.
- Installation of Intake Pipe Char Lake, Resolute Bay, NWT, Underwater Specialists, 1976.
- General Development Plan, Resolute Bay, NWT, UMA, December 1977.
- 1992 Sewer Rehabilitation Manhole 62 to 63, HBT Agra, November 16, 1992, James Anklewich, BSc, P. Eng.
- Assessment of Sewer Collapse Problems, Iqaluit, NWT, Hardy BBT Limited, January 1990, Alan Hanna, M. A. Sc, P. Eng.
- British Columbia Ministry of Environment Lands and Parks. 1995. Approved and Working Criteria for Water Quality 1995. Water Quality Branch, Environmental Protection Department. 44pp.
- Birtwell, I.K., G.L. Greer, M.D. Nassichuk, and I.H. Rogers. 1983. Studies on the Impact of Municipal Sewage Discharged onto an Intertidal Area Within the Fraser River Estuary, British Columbia. Canadian Technical Report of Fisheries and Aquatic Sciences, No. 1170.
- Buchanan, R. A. and W. E. Ragnit. 1978. The Marine Ecology of Lancaster Sound and Adjacent Waters: An Annotated Bibliography - Environmental Studies 7. Report prepared by LGL Limited, Environmental Research Associates, Toronto, Ontario for the Institute of Ocean Sciences.
- Canada Flight Supplement, Canada and North Atlantic Terminal and Enroute Data, November, 1997, Natural Resources Canada. Published under the authority of NAV CANADA.
- Department of Indian Affairs and Northern Development. 1987. Sewage Waste Discharge to the ArcticMarine Environment. Environmental Studies No. 55. Prepared by Stanley Associates Engineering Ltd.

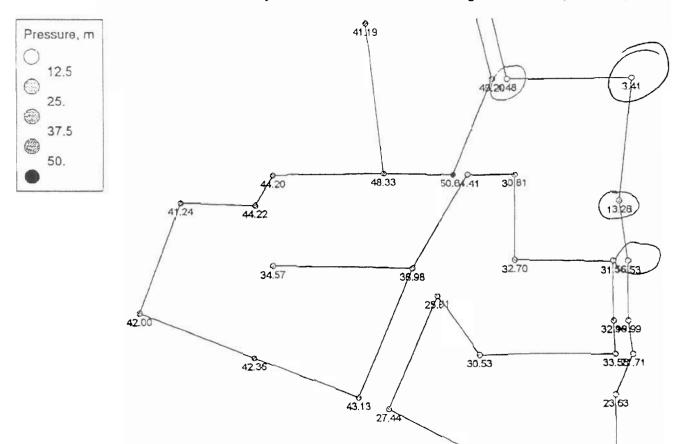
- Draft Report on Iqaluit Sewer Monitoring Program, Iqaluit, Northwest Territories, HBT Agra Limited, July 1993, Alan Hanna, M.A.Sc, P. Eng.
- Draft Guidelines for the Remediation of Collapsed HDPE Pipes in Iqaluit, HBT Agra Limited
- Ellis, D.V. and R. T. Wilce. 1961. Arctic and subarctic examples of intertidal zonation. Arctic 14:224-235.
- Happy Valley Sewer Main Collapse Inspection, HBT AGRA, February, 1992, James Anklewich, BSc, P. Eng.
- Otte, G. and C.D. Levings. 1975. Distribution of Macroinvertebrate Communities on a Mud Flat Influenced by Sewage, Fraser River Estuary, British Columbia. Fisheries and Marine Service, Technical Report No. 476.
- UMA Engineering Ltd. 1996. Resolute Bay, NWT Water and Sewer Facilities Investigation. Final Report. Report prepared for the Government of the Northwest Territories, Public Works and Services.
- Welch, E.B. 1980. Ecological effects of waste water. Cambridge University Press, Cambridge. 337 pp.

APPENDIX A Pipe Network Model Results


```
EPANET Resolute Bay October 1998 Run 1 Existing Conditions
; Vavle at AV3 open
[JUNCTIONS]
      Node Elevation Demand Pattern (m) (homes)
     101 71.68
2 36.48
3 25.44
103 25.44
          2
                                  2
          103
           4
                                3
                     26.51
           5
                     18.78
                                 4
          6
                     16.55
                                 4
                     16.55
          106
           7
                     14.12
          107
                     14.12
                                 3
                    12.96
12.96
11.60
          8
                                 4
          108
                                 1
          9
                                 5
          10
                     9.65
                     9.14
          11
                                 3
                    12.95
          12
                                 3
          13
                     13.82
                                 1
          14
                     16.87
                                 3
          16
                     19.66
          17
                     22.77
                    21.50
          18
          19
                    22.34
                                 5
          20
                    21.14
                                 3
                     20.93
          21
                                  2
         121
                     20.93
          22
                    28.17
                                 1
          23
                     17.11
                    19.41
          25
          27
                    16.72
          28
                     13.72
          29
                     17.08
          30
                     20.48
[DEMANDS]
MULTIPLY .01302 ;225 lpcd * 1/(24*3600) * 5 peolpe/dwelling
  System bleeds (1/s)
 Node Demand Pattern
17 5.25
19 5.25
        5.25
5.25
5.25
1
   22
   25
   30
                     2
   4
[TANKS]
  Node Elevation Initial Minimum Maximum Diameter (m) (m) (m) (m) (m) (m)
```

TITLE

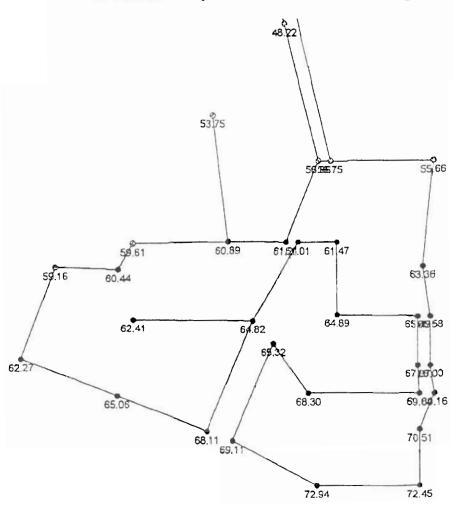
10)1		71.6	8											
î															
[PIPES	·														
; ; ;	Pipe		s	tart		En	d			ngth n)		Dia (B	meter	 C	
,	1		1			2			211	 . 15			200	 110	
	2		2			3			118				200	110	
open	valve	e be	tween	3 an	d 103	for	fire	fl	ows						
	103		10	3	10				329.	41			150	110	CV
	203		3		10				10	0.0			200	110	
	3		3		2	21			70.	71			200	110	
	4		4		10)3			93.	. 38			200	110	
	5		5			4			86.	74			200	110	
	6		106			5			41.	.59			200	110	
10			106		10	7			41.	45			200	110	
10			107		10	8			22.				200	110	
10			9		10	8			22.				200	110	
	7		6			7			41.				200	110	
	8		7			8			22.				200	110	
1	0		10			9			46.				200	110	
1	1		10		1	.1			83.				200	110	
1	2		12		1	.1			78.				200	110	
1	4		14		1	.3			78.				200	110	
1	6		16		1	.4			83.				200	110	
1	7		17		1	.6			80.				200	110	
1	8		18		1	.7			50.				200	110	
1	9		19		1	.8			24.	24			200	110	
2	0		20		1	.9			76.				200	110	
2	1		21		2	0			48.	23			200	110	
2	2		22		2	0			105.	20			150	110	
2	3		13		2	.3			98.				200	110	
2	5		25			3			98.				150	110	
2			27			.2			86.				200	110	
2	7		28			7			69.				200	110	
2			8			8			91.				200	110	
2			29			6			66.				200	110	
3			30			9			60.				200	110	
3			121			0			41.				200	110	
3			23		12				70.				200	110	
[PATTE															
Patte		firs	st hou	ır is	avg d	ay, s	secon	d :	is ma	x day					
;					hour,							ire			
;				~	•				,	- 1					
1 1.0	2.0	4.0	1.0	1.0	1.0	1.0	1.	0	1.0	1.0	1.0	1.	0		
2 0.0	0.0			60.0		0.0			0.0	0.0	0.0	0.			
3 0.0	0.0	0.0			60.0	60.0			0.0	0.0	0.0	0 .			


NETWOOK SCHEMATIC

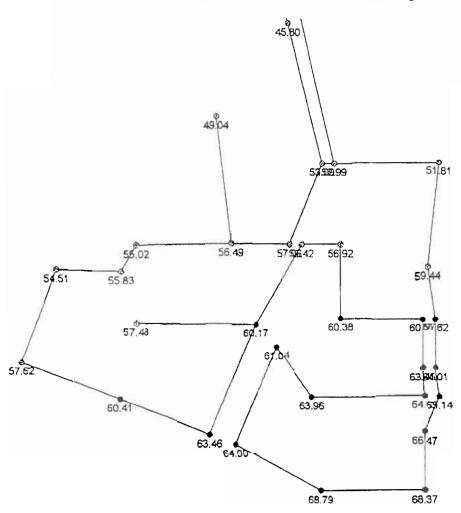
EPANET Resolute Bay October 1998 Run 1 Existing Conditions (6:00 hrs)

NO CONNECTION AT AV3-AVIO3

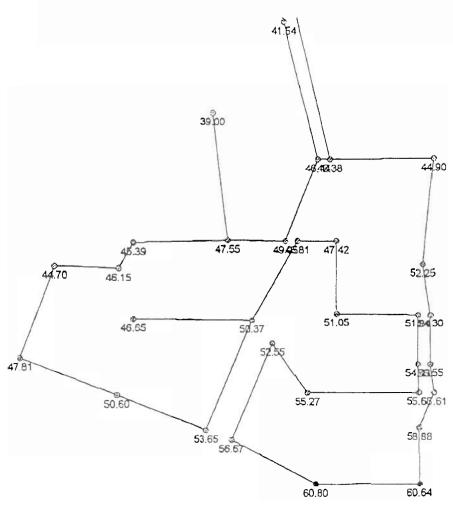
EPANET Resolute Bay October 1998 Run 1 Existing Conditions (5:00 hrs)

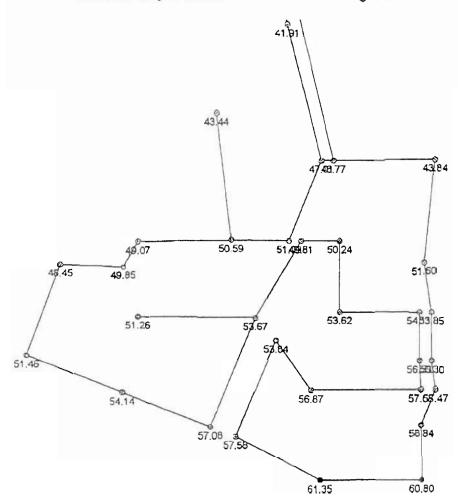


GOE H


Min pressure not net at \$ 100les. Of 150kPa

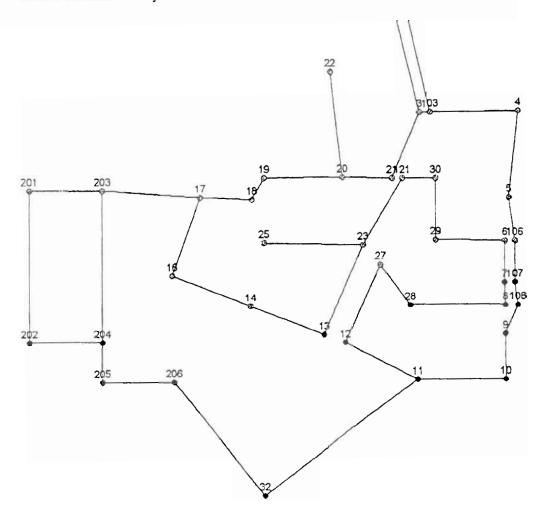
29.30


EPANET Resolute Bay October 1998 Run 1 Existing Conditions Avg Day

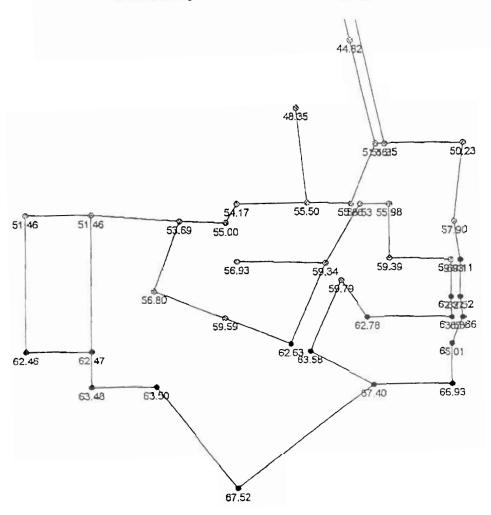

EPANET Resolute Bay October 1998 Run 1 Existing Conditions Max Day

EPANET Resolute Bay October 1998 Run 1 Existing Conditions Peak Hour

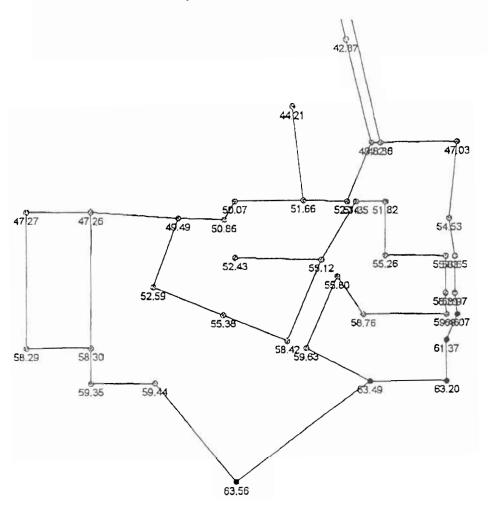
EPANET Resolute Bay October 1998 Run 1 Existing Conditions Avg Day plus Fire at 4

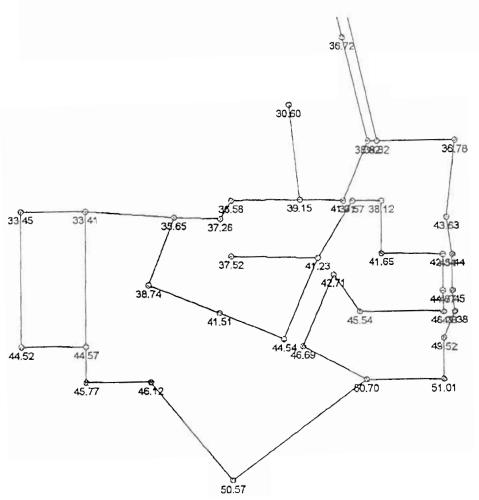


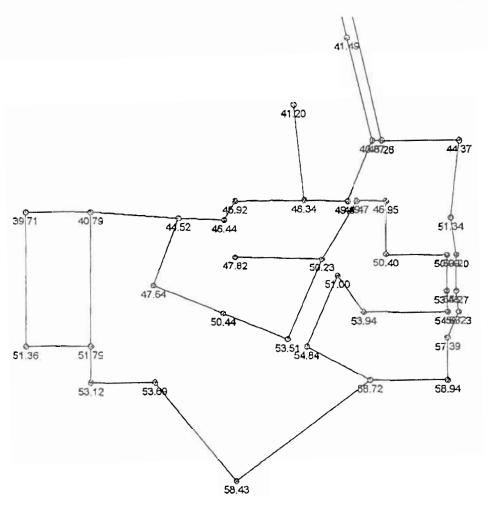

```
[TITLE]
EPANET Resolute Bay October 1998 Run 2 Future Conditions
; Valve at AV3 open
[JUNCTIONS]
Node Elevation Demand Pattern (m) (homes)
        101
                  71.68
36.48
25.44
                   71.68
         2
         3
        103
                  25.44
                            3
         4
                  26.51
          5
                   18.78
                             4
         6
                   16.55
                  16.55
        106
                              2
                  14.12
         7
                            3
4
        107
                   14.12
         8
                   12.96
                   12.96
        108
                            <u>1</u>
5
                              1
                   11.60
         9
         10
                   9.65
                   9.14
                              3
         11
                               3
         12
                   12.95
         13
                   13.82
                             2
                   16.87
                             6
         14
                              4
         16
                   19.66
         17
                   22.77
         18
                   21.50
                              5
         19
                   22.34
                              3
                   21.14
         20
                              2
         21
                   20.93
                  20.93
        121
                            4
2
4
2
3
                   28.17
                              4
         22
         23
                   17.11
                   19.41
         25
                   16.72
         27
         28
                   13.72
                   17.08 1
20.48 1
         29
         30
; future conditions, elevations are approximate
        201 25.0 5
                            8
5
8
3
                   14.0
        202
                   25.0
        203
                   14.0
        204
        205
                   13.0
                   13.0
        206
                    9.0
                              3
         32
DEMANDS]
MULTIPLY .01302 ;225 lpcd * 1/(24*3600) * 5 peolpe/dwelling
  System bleeds (1/s)
 Node Demand Pattern
17 5.25
19 5.25
        5.25
5.25
5.25
   22
   25
  201
  203
  201 1 2
```


205 32	1	3 4				
[TANKS]						
; Node ; (m)	Elevation (m)	Initial (m)	Minimum (m)	Maximum (m)	Diameter (m)	
1	88.98 71.68					
; [PIPES]						
; Pipe	Start	End	Length (m)	Diamet (m)	er C	
1 2 2003 103 3 4 5 6 107 108 109 7 8 10 11 12 14 16 17 18 19 20 21 22 23	1 2 103 103 3 4 5 106 106 107 9 6 7 10 10 10 12 14 16 17 18 19 20 21 22 13	2 3 3 101 21 103 4 5 107 108 108 7 8 9 11 11 11 13 14 16 17 18 19 20 20 20 23	211.15 118.26 10.0 329.41 70.71 93.38 86.74 41.59 41.45 22.86 22.57 41.45 22.86 46.02 83.82 78.82 78.16 83.23 80.36 50.94 24.24 76.45 48.23 105.20 98.15	200 200 200 200 200 200 200 200 200 200	110 110 110 110 110 110 110 110 110 110	cv
25 26 27 28 29 30 31 32 future 6 203 201 204 202	25 27 28 8 29 30 121 23 conditions 17 203 203 201	23 12 27 28 6 29 30 121 203 201 204 202	98.27 86.00 69.27 91.03 66.75 60.66 41.89 70.33 122.5 105.0 157.0	150 200 200 200 200 200 200 200 200 200 2	110 110 110 110 110 110 110 110 110	
304 205 206 232 211	202 204 205 206 32	204 205 206 32 11	105.0 70.0 122.5 157.0 91.44	200 200 200 200 200	110 110 110	

```
[PATTERNS]
;Pattern 1: first hour is avg day, second is max day,
        third is peak hour, others are avg day plus fire
1 1.0 2.0 4.0
          1.0 1.0 1.0
                      1.0 1.0
                              1.0 1.0 1.0 1.0
2 0.0 0.0 0.0 60.0 60.0 0.0
                      0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 60.0 60.0 0.0
                             0.0 0.0 0.0 0.0
[TIMES]
DURATION 8
PATTERN TIMESTEP 1
[OPTIONS]
UNITS
MAP future.map
[END]
```


EPANET Resolute Bay October 1998 Run 2 Future Conditions Schematic


EPANET Resolute Bay October 1998 Run 2 Future Conditions Avg Day


EPANET Resolute Bay October 1998 Run 2 Future Conditions Max Day

EPANET Resolute Bay October 1998 Run 2 Future Conditions Peak Hour

EPANET Resolute Bay October 1998 Run 2 Future Conditions Avg Day Plus Fire at AV201

POP 209 (1998)

Assummptions 5 people per household, 225 lpcd, PF=4, n=0.013
Total water use=RWU*(1+(.00023*Population)

81.3	0.030	0.0084	0.200		297128	63	0	39.32	AV35	AV34	35
65.1	0.038	0.0131	0.200		297128	63	0	88.09	AV34	AV33	
96.2	0.025	0.0060	0.200		297128	63	0	91.14	AV33	AV32	33
140.8	0.017	0.0028	0.200	0.0244	297128	63	0	91.44	AV32	AV11	311
51.4	0.025	0.0057	0.200	0.0127	193369	41	1	83.82	AV11	AV10	11
40.2	0.032	0.0430	0.150	0.0127	188653	40	5	46.02	AV10	AV9	10
37.	0.033	0.0464	0.150	0.0124	165071	35	0	29.57	AV9	AV8	9
2.9	0.011	0.0056	0.150	0.0003	28298	9	0	91.03	AV8	AV28	28
39.6	0.030	0.0401	0.150		136773	29	2	22.86	AV8	AV7	8
32.5	0.037	0.0584	0.150		127341	27	S	41.45	AV7	AV6	7
1.4	0.034	0.0503	0.150	0.0005	42447	9	2	41.59	AV6	AV5	6
0.8	0.045	0.0889	0.150		33014	7	7	86.74	AV5	AV4	5
84.7	0.013	0.0077	0.150	0.0113	70745	15	4	66.75	AV6	AV29	29
30.8	0.036	0.0561	0.150		51879	11	2	60.66	AV29	30 AV30	30
76.5	0.014	0.0089	0.150		42447	9	0	41.89	AV30	AV21	31
93.2	0.012	0.0060	0.150		42447	9	1	48.23	AV21	AV20	21
13.6	0.039	0.0659	0.150	0.0053	4716	1	1	105.20	AV20	*22 AV22	*22
29.5	0.019	0.0157	0.150	0.0056	33014	7	7	76.45	AV20	20 AV19	20
37.0	0.032	0.0432	0.150	0.0117	103759	22	3	78.82	AV11	AV12	12
0.7	0.032	0.0450	0.150		18865	4	4	86.00	AV12	AV27	26
34.8	0.032	0.0455	0.150		70745	15	0	23,45	AV12	AV13	13
17.5	0.031	0.0422	0.150		18865	4	2	78.18	AV13	AV14	14
19.6	0.027	0.0321	0.150		9433	2	2	83.23	AV14	AV16	16
18.1	0.029	0.0364	0.150	0.0053	0	0	0	80.36	AV16	AV17	*17
23.0	0.025	0.0280	0.150		51879	11	1	98.15	AV13	AV23	23
25.5	0.021	0.0199	0.150		18865	4	4	98.27	AV23	AV25	*25
0.9	0.036	0.0565	0.150		28298	6	3	70.33	AV23	AV21	32
0.4	0.037	0.0595	0.150		14149	S	1	70.85	AV21	AV3	3
0.3	0.043	0.0790	0.150		9433	2	2	118.26	AV3	AV2	2
0	0.052	0.1160	0.150	0.0000	0	0	0	211.53	AV2	Plant	_
					(peakhour)						
(%)	(m3/s)	Slope	(m)	(m3/s)	(L/day)	Dwellings	Dwellings	(m)			
Utilization	Capacity		Diameter	Sewage Flow	Flow	Total	incremental	Length	To AV	From AV	Pipe
				Louisingo I 62000:	0 1140	ו טומו זזמוטו עט			1		

APPENDIX B

Cost Estimate Data

INCHORAGE CONNECTORS inchorage connectors meet the many needs and

polications of fall protection users in construction, industrial and aintenance markets. These connectors must be attached to a structure that can apport a 5,000 pound static pull and can only be used by one worker. All the achorage connectors meet the requirement of QSHA 1926.502 and ANSI

LD-E . LT ANCHOR

nique D-shape ; designed secifically to minate rollout rade of drop ged steel, cadum/zinc plating nd forged steel ingle attached stener with nut

Each

66,92

79.94

92.97

Each

0.00

.1.00

08.00

3.00

).78

217.00

\$105,00

washer is easy to install and can amout and in a variety of positions. gal with the retractable lifelines. Jaximu 1 working load of 310 lbs.

L SEAM CLAMP

e beam clamp is steel anchorage mector design-# for use with mzontal I-beams, beams and Wzams. This steel ated construction inteatu es a avel att.-chment ng to prevent visting of the

oxer's lanyard or connecting device. amps come in two sizes: Model 2006 fits beams up to 9" wide: total SD007 can be used on beams to 12 1/2" wide. Working load of 70 bs. maximum. Colour: Red with ack handle.

LWEBBING/HOOK ANCHOR

asigned: cilize ancho ; to cafolding. te or angle iron. saures a large, 2 7 snap hook for by one-hand Sallation and a ing to accomtotale the

meeting device. No tools required. ro lorged steel, zinc plated hardwith 1 3/4" nylon webbing.

D. HOOK ANCHOR W/SHOCK ABSORBER

This anchorage connector offers the same benefits as Model SD008. but includes a Sofstop™ shock absorber to reduce the forces of falling.

E. CROSS-ARM STRAP

Designed to wrap around I-bearns and other structures forming a secure attachment point for lanyards and other connecting devices. Manufactured from 2" nylon webbing

for maximum strength, the strap features a 2" forged D-ring on one end which slips through a 3" D-ring on opposite end to form a secure anchor, Available in 6 feet length.

F. BEAM TROLLEY

Steel beam trolley creates an anchorage point that moves with the work for maxi-mum mobility. Accommodates I-

wide, and is ideally suited for the attachment of lanyards, carabiners and retractable lifelines, Working load 310 lbs

G. CROSS-ARM STRAP W/SHOCK ABSORBER

Designed to form a secure, low cost anchorage point for various connecting devices. Features 2* nylon webbing, forged D-rings and an integral Sofstop TM

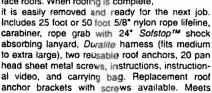
shock absorber which greatly reduces the force of falling. Install on beams, pipes and railings is easily accomplished. No tools required.

1	Mod	.0.	Description	Each
1	SDOC.	2004.24	D-Bolt anchor	\$ 61.02
i	SD006		Beam clamp, 9" wide	352.00
	SD007		Beam clamp, 12 1/2" wide	505.00
1	SD008		Webbing/hook anchor	122.00
1	SD538		Hook anchor w/shock absorber	151.00
	SD009		Cross-arm strap	34.97
1	SD010		Beam trolley	324.00
	SD539		Cross-arm strap w/shock absorber	112.00

CONFINED SPACE RESCUE SYSTEMS

Accessing confined spaces involves a number of life threatening hazards, including the possibility of a vertical fall or being overcome by fumes or gases. Confined space access, rescue and retrieval systems are designed to provide a safe means of accessing a confined space area. In an emergency, confined space systems allow rescuers to retrieva injured or unconscious workers without exposing themselves to similar potential hazards.

Confined space systems meet all applicable OSHA CSA and ANSI standards. A standard confined space system for fall protection and emergency retrieval. Includes a retrieval/retracting lifeline, 7 foot tripod, pulley block, winch bracket and a full


body harness. Where primary access is unavailable, a drum winch can be used as primary access into the confined space. In addition to the drum winch, a retrieval lifeline is used as a secondary backup for fall protection and rescue. The drum winch can be used to lower and raise materials after the worker has accessed the confined space, while still ensuring rescue in the event of an emergency.

Model No.	Description	Each
SE139	7' Aluminum telescopic tripod 10,000 lbs. rated	\$ 1003.00
SA057	Bi-directional retrieval/retracting lifeline S/S wire 60'	2468.00
SD698	Tripod mounting bracket	326.00
SD699	Pulley block	263.00
SD700	Drum winch 55' galvanized steel wire and bracket	1055.00
SA046	Full body harness, one size	89.44

ROOF ANCHOR KITS

Installs on steep-pitched or flat surface roofs. When roofing is complete,

OSHA regulations.

Model No.	Description	Each
SD011	Roofers kit. 25'	\$491.00
SD012	Roofer's kit, 50'	508.00
SD013	Roof anchor brackets	28.56

ROOFSTRIDER KIT

Kit is easily installed with a harrimer and features 360° rotation for great working mobility and provides workers with constant protection through long, hard hours of work. Built to perform, protect, under tough conditions and on steep roofing angles. The retractable lifeline unit easily attaches to the four-legged roof mounting assembly with two integral push pins. The foot pad on the roof mounting assembly are easily adjustable to fit variable roof pitches and should be attached to a roof with 16d nails. System must be installed in accordance with

the manufacturer's instructions. Allowing hands free worker mobility, the locking snap hook of the retractable lifelime unit attaches to the back deering of the roofer's hamess. If a slip or fall should occur, the inertia brakes of the retractable lifeline unit activate, keeping cable payout to two feet or less. The complete kit consists of a selfcontained 25 foot or 50 foot retractable lifeline, four-legged roof mounting assembly, DuraLite Hamess, 24 16d coment-coated nails, instructions, instructional video, and carrying bag. Complies with OSHA's Construction Fall Protection Standard 1926.500.

Model No.	Description	Each
SD541	Roof strider Kit, 25'	\$2053.00
SD542	Roof strider Kit, 50'	2072.00

SA Z94.1.92 APPROVED HARD HATS (A SAFE)

han 19.5 ozs. High-density polyethylene outer shell provides allmpact and penetration protection. Universal slots will accept all **echmen**: xpanded polystyrene inner sneii prevents inner snei the suspension system comes with 2 adjustment levels for headband on front rear tab for additional stability and comfort. 4 point pinlock self-sizing centials for additional stability and comfort. 4 point printed. ef on head. Crown pad and sweatband for user comfort. Meets CSA Z94 1.92.

Model				Each
No.	Suspension	Colour	1	12
SA650	Patchet	Sky Blue	\$31.31	\$28.18
SA651	Ratchet	White	31.31	28.18
SA652	Platchet	Yellow	31.31	28.18
SC064	Pinlock	White	\$23.55	\$21.20
SC065	Pinlock	Yellow	23.55	21.20

ERSONAL GAS MONITORS & AIR MONITORS

PERSONAL GAS MONITOR

Features:

- · Available in one, two, or three gas models
- · High visibility LCD shows continuous gas identification
- Adjustable audible and visual alarms
- simple operation with one-step zeroing
- omatic calibration
- changeable alkaline or NiCad batteries
- · Rugged and lightweight

Simple and intuitive, the Bodyguard monitor detects the presence of oxygen, combustibles and toxic gases. It is available as a one-gas, two-gas or three-gas monitor, and can easily be upgraded in the field for any combination of gases.

Two versions are now available. The basic unit simply displays gases and battery life. The only button is for the backlight. This unit is ideal for confined space entry and applications where user interface is minimal, such as oil, and petroleum refining, waste water treatment, coal mines and general industry.

Mank

The advanced version includes peak displays and the option of latching alarms for use in similar applications. On both versions, buttons are clearly marked for easy identification.

Gudged and water resistant, the Bodyguard monitor can withstand the most abusive condi-Adjustable audible and visual alarms help to ensure user safety

3odyguard uses alkaline or nickel-cadmium batteries. Battery packs are interchangeable and easily replaceable. The water-resistant case is made of high-strength alloy, coated for added durability. Visual alarms on the front and bottom of the instrument ensure visibility from all angles. The audible alarm uses alternating tones to make sure it can be heard in noisy environments. Built-in diagnostics continually monitor the functionality of the unit. A confidence light on the bottom of the instrument lets the user know that it is working properly.

Each Bodyguard comes with a calibration cup, screwdriver and a durable leather case. The case provides added protection and allows the Bodyguard to be carried easily on a belt, harness or shoulder strap. A Confined Space Kit is available for mobile applications like construction, utilities and hazmat teams. It includes a hand-aspirated pump, tubing and personal alarm packaged in a durable Pelican-brand case for storing the instrument

S ecifications:

lau-

1

Iria

ngs

00

:s Detected & Range:

Oxygen: 0 - 30%

Combustible Gases: 0 - 100% LEL (0 - 5% CH4)

Carbon Monoxide: 0 - 999 ppm 0 - 500 ppm Hydrogen Sulfide:

Sampling Method: Diffusion; pump (optional)

Power Supply 2 "AA" alkaline or NiCad battery pack

10 - 12 hours Battery Life:

Operating Conditions: -4 to 122°F (-20 to 50°C); 0 to 99% RH, non-condensing

Dimensions: 2.87" x 1.62" x 4.73" (7.3 x 4.1 x 12.0 cm) Weight:

14 oz (392 g)

Safety Rating: Intrinsically safe for use in Class I,

Division 1 & 2, Groups A, B, C and D and Class II. Divisions 1 & 2, Groups E, F and G hazardous

areas. UL, MSHA, CSA and CENELEC approvals pendings.

Model No.	Description	Each
BASIC UNITS		2 40
HM550	1 Gas Personal Monitor, O ₂	\$1165.00
HM551	1 Gas Personal Monitor, LEL	1195.00
HM552	1 Gas Personal Monitor, CO	1265.00
HM553	1 Gas Personal Monitor, H ₂ S	1265.00
HM554	2 Gas Personal Monitor, O2, LEL	1495.00
HM555	3 Gas Personal Monitor, O2, LEL, CO	1795.00
HM556	3 Gas Personal Monitor, O2, LEL, H2S	2 1795.00
ADVANCED U	VITS	
HM557	1 Gas Personal Monitor, O ₂	\$1240.00
H*1558	1 Gas Personal Monitor, LEL	1265.00
+ :9	1 Gas Personal Monitor, CO	1340.00
F560	1 Gas Personal Monitor, H ₂ S	1340.00
HM561	2 Gas Personal Monitor, O2, LEL	1560.00
HM562	3 Gas Personal Monitor, O2, LEL, CO	1860.00
HM563	3 Gas Personal Monitor, O2, LEL, H2S	1860.00
ACCESSORIES	3	
HM564	Confined Space Kit	\$375.00
HM565	Calibration Kit	210.00

PERSONAL GAS MONITOR

- Capable of monitoring 10 different gases
- High visibility LCD shows continuous gas concentrations
- Audible and visual alarms
- Easy to operate
- Water resistant
- Interchangeable alkaline or NiCad batteries
- · Compact and lightweight

The Canary offers personal protection in a compact, reliable instrument. Portable monitoring for 10 different gases allows you the freedom to work in any environment without the worry of atmospheric hazards. A factory installed,

gas specific sensor on the top of the instrument monitors the surrounding air to alert you to changes in air quality.

Mach

Ten gas versatility makes this instrument easily adaptable for monitoring in a variety of hazardous areas. The range of industry applications is vast including steel manufacturing, pulp and paper mills, oil and petrochemical refineries, water and wastewater treatment, chemical plants, offshore drilling, and more.

Weighing just 10 ounces, the Canary is easily carried in a shirt pocket or with its convenient belt clip. An optional carrying case with neck strap is also available. A red flashing LED and audible alarm let the user know when a dangerous situation occurs and an LCD display gives accurate readings of the amount of gas encountered. Once the gas concentration has dropped out of alarm range, the Canary automatically resets. A push-button backlight and dust and water resistant case allow you to work under many conditions.

For added security, a green LED confidence light flashes every three seconds, letting you know the instrument is working properly and battery levels are adequate. The Canary can be powered by four "AA" size alkaline batteries or a rechargeable Nicad pack.

Maintenance on the Canary is fast and easy, to get you on the job quickly and allow you to make necessary changes in the field. Zeroing the Canary can be done in just one step. Simply open the cover below the display and adjust the preset zero until the display shows the correct reading. Sensor replacement can also be done with minimum effort. Remove the back cover and batteries, unplug the used sensor and replace it with a new sensor.

Specifications:

Gases Detected & Range:

Oxygen: 0 - 25% O₂ 0 - 100% LEL CH. Methane: Carbon Monoxide: 0 - 500 ppm CO Hydrogen Sulfide: Sulfur Dioxide: 0 - 50 ppm H₂S 0 - 10 ppm SO₂ Chlorine: 0 - 5 ppm Cl₂ Nitrogen Dioxide: 0 - 10 ppm NO₂ Hydrogen Chloride: 0 - 10 ppm HCl₂ Hydrogen Cyanide: 0 - 25 ppm HCN Ammonia: 0 - 50 ppm NH₃

Sampling Method: Diffusion Power Supply:

4 "AA" alkaline or NiCad battery pack **Operating Conditions:** 14 to 122°F (-10 to 50°C); 0 to 90% RH, non-condensing

Dimensions: 2.5" x 1.5" x 4.5" (6.4 x 3.8 x 11.4 cm)

Less than 10 oz (268 g) Weight:

Safety Rating: Intrinsically safe for use in Class I. Division 1, Groups A, B, C and D. CSA certified.

Model No.	Description	Each
HM566	Personal Gas Monitor, O ₂	\$595.00
HM567	Personal Gas Monitor, CH,	855.00
HM568	Personal Gas Monitor, CO	870.00
HM569	Personal Gas Monitor, H,S	870.00
HM570	Personal Gas Monitor, SO ₂	895.00
HM571	Personal Gas Monitor, Cl.	930.00
HM572	Personal Gas Monitor, NO ₃	930.00
HM573	Personal Gas Monitor, HCl ₂	980.00
HM574	Personal Gas Monitor, HCN	980.00
HM575	Personal Gas Monitor, NH ₂	980.00

AIR MONITORS

The monitor shows an immediate colour change in the presence of a specific gas. Compare colour on badge to chart which indicates OSHA and ACGIH time limit as, to find precise accumulation or exposure to substance. No laboratory analysis required, Ideal or monitoring areas for accumulation and ceilings, for monitoring critical joints, and for sampling the environment to indicate the ppm present. Exposed monitors may be retained as a permanent record. Note: Supplied in cartons of 10 badges.

Model	Critical	Toxic	Colour	
No.	Level	Substance	Change	Each
HD654	25 ppm	Ammonia	Yellow - Blue	\$48.00
HF169	1 ppm	Chlorine	White - Yellow	48.00
HF746	.1 ppm	Hydrazine	White - Yellow	48.00
HF902	10 ppm	Hydrogen Sulfide	White - Brown	48.00
HK247	5 ppm	Nitrogen Dioxide	White - Yellow	48.00
HK278	1 ppm	Ozone	White - Brown	48.00
HF223	50 ppm	Carbon Monoxide	Tan - Black	48.00

REGULATION FIRST AID KITS

REGULATION FIRST AID KITS CONT.

NOON

NEW BRUNSWICK FIRST AID KITS

Component	Contents	CSST plus
Product Description	1 9 Emp.	10 - 100 Emp.
First aid manual	1	1
Scissors 5 1/2"	1	1
Tweezers	1	1
Assorted safety pins (12)	1	1
Plastic adhesive strips 3/4" x 3" sterile		25
Plastic adhesive strips 1" x 3" sterile	25	25
Gauze pad sterile 4" x 4"	5	24
Gauze bandage 3" x 10 yds.	25	4
Gauze bandage 2" x 10 yds.	1	
Pressure bandage 4" sterile	2	4
Triangular bandage	2	6
Adhesive tape 1" x 10 yds.	1	2
Eye pad oval sterile	2	4
Peroxide 100 ml.	1	1
P.E.G. water soluble burn ointment 65 g.	1	1
Latex gloves (1 pair)	1	1
Emersafe pocket mask	1	1
Cotton tipped applicators 3" (100)	1	1
Hand cleansers	24	36
Tongue depressors	2	6

No. E	malayaaa			imen	SIC	ns	Unit/	
	mployees	W"	X	H"	×	D"	Box	Each
PLASTIC								
SD790 1	- 9	10	X	7	x	3	16	\$29.74
SD791 1	0 - 100	13.5	X	9.5	X	3	36	57.51
METAL	F-04-2-10							
SD792 1	- 9	7	x	10	×	3	16	\$43,55
SD793 1	0 - 100	13.5	X	9.5	x	3	36	65.83
BULK REFILL	.S	100						
SD794 F	or 1 - 9 employees							\$26,13
SD795 F	or 10-100 employees	S						41.82

NEWFOUNDI AND & LARRADOR FIRST AID KITS

Component	1000 A 100 A 1	Contents	
Product Description	1 - 5 Emp.	6 - 14 Emp.	15 - 200 Emp.
First Aid manual	1	1	1
Accident record book	1	1	1
Instrument kit in unit box	1	1	1
	(1	2) pack safety	oins
	(1) splinter tweez	ers
		(1) pair scissor	s
Pressure bandage, 4" sterile	2	2	6
Plastic strips, 1" x 3" sterile	12	16	32
Gauze pad sterile, 3" x 3"	12	16	32
Triangular bandage	4	6	6
Adhesive tape 1" x 5 yds.		1	2
Tubular dressing w/applicator	-	-	1
Fingertips large sterile		-	10
Knuckle bands sterile	*	(4.7)	10
Peroxide 100 ml.	1	1	1
Adhesive tape 1/2" x 5 yds.	1		-
Pair latex gloves	1	1	1

Model	No. of	Box	D	imer	ISic	ns	Unit/	
No.	Employees	W"	X	H"	X	D"	Box	Each
PLASTIC			- 17			EST EV		
SD796	1 - 5	7.5	X	5	×	3.5	10	\$15.61
SD797	6 - 14	10	X	7	X	3	16	20.87
SD798	15 - 200	10	X	10	×	3	24	45.27
METAL						10.00		
SD799	1 - 5	7.5	×	5	K	3	10	\$27.85
SD800	6 - 14	7	X	10	X	3	16	33.11
SD801	15 - 200	10	×	10	4	3	24	50.53
BULK RE	FILLS							
SD802	For 1 - 5 employ	ees						\$12.16
SD803	For 6 - 14 emplo	yees						15.61
SD804	For 15 - 200 emp	olovees						29.58

NORTHWEST TERRITORIES FIRST AID KITS

Optional items not included in kits, should be ordered separately.

Component Product Description	Kit #1	Contents	
First Aid manual		Kit #2	Kit
	1	1	1
Accident record book	1	1	1
Latex gloves large (1 pair)	5	5	5
Instant cold pack	:	•	3
Emersale pocket mask / one way valve	2	2	1
Fabric adhesive strips 3/4" x 3" sterile	50	100	100
Fabric adhesive strips 1" x 3" sterile	50	100	100
Gauze pad 2" x 2" sterile	•	12	12
Gauze pad 3" x 3" sterile	6	6	54
Pressure bandage 2" sterile	-	-	6
Pressure bandage 3* sterile	•	-	6
Pressure bandage 4* sterile	1	1	6
Field dressing 6" sterile	•	4	
Pressure bandage 6" sterile	•	5	
Combine pad 7 1/2" x 8" sterile		•	6
Combine pad 8" x 10" sterile	1	5	5
Eye pad oval sterile	2	6	6
Double adhesive strips for eye pads	2	3	6
Elastic bandage 3" x 5 yds.	1	3	6
Elastic pressure bandage 6" sterile	1	1	1
Gauze bandage 2" x 5 yds.	6	10	10
Gauze bandage 1" x 10 yds.		1	1
Adhesive tape 1" x 5 yds.	1	1	2
Esmarch bandage 1 box		-	2
Safety pins assorted	12	12	12
Antiseptic sachet Benzalkonium	6	12	12
Antiseptic green soap 50 ml.	-	•	1
Eye wash 8 oz. sterile	-	-	1
Eye dropper		-	1
Eye bath		-	1
Eye shield		-	2
Tongue depressor I.W.		-	12
Tweezers 3 1/2*	1	1	1
X-fine splinter tweezers 4.5"		•	1
Scissor angled lister	1	1	1
Wire splint 3 5/8" x 24"		Í	2
Scrub (nail) brush	-	1	1
Kidney basin stainless steel		•	1
Steri strip skin closure 1/4" x 3"		-	5
Triangular bandage	2	3	12
Ammonia inhalants	-	-	20
Burn Free dressing		12	
OPTIONAL ITEMS			
*Blanket, 100% wool	-	-	3
*Wood splints (set of 6)	-	-	1
*Bum Free emergency burn trauma kit	-	-	1
*Collapsible stretcher	-		1

No. of	Во	×	Dime	ns	ions	Unit	
Kit	L"	x	W"	X	D"	Box	Each
#1	10	х	10	×	3	24	\$47.00
		_					
#1	10	×	10	×	3	24	\$ 52.26
#2	15.5	x	12	X	4.5	•	124.00
#3	14.5	х	16.5	X	6.5		195.00
FILLS			2000				\$ 31.31
For kit #1							95.86
For kit #2							148.00
For kit #3							
	#1 #1 #2 #3 FILLS For kit #1 For kit #2	#1 10 #1 10 #2 15.5 #3 14.5 FILLS For kit #1 For kit #2	#1 10 x #1 10 x #2 15.5 x #3 14.5 x For kit #1 For kit #2	#1 10 x 10 #1 10 x 10 #1 10 x 10 #2 15.5 x 12 #3 14.5 x 16.5 For kit #1 For kit #2	#1 10 x 10 x #1 10 x 10 x #2 15.5 x 12 x #3 14.5 x 16.5 x For kit #1 For kit #2	#1 10 x 10 x 3 #1 10 x 10 x 3 #2 15.5 x 12 x 4.5 #3 14.5 x 16.5 x 6.5 For kit #1 For kit #2	#1 10 x 10 x 3 24 #1 10 x 10 x 3 24 #1 10 x 10 x 3 24 #2 15.5 x 12 x 4.5 - #3 14.5 x 16.5 x 6.5 - For kit #1 For kit #2

OPTIONAL	ITEMS	Each
Model No.	Description	2 54.01
SE082	Blanket, 100% wool, 54" x 90"	3.62
SE077	Wood splints (set of 6 assorted)	197.00
SD857	Burn Free burn trauma kit	213.09
SC408	Collapsible stretcher	1.00

Blanket: 100% red wool. 54" x 90".

Wooden splints: Sets of six assorted sizes; 2 of each: 2" x 8", 3" x 10", and 3

Collapsible stretcher: Fibre reinforced vinyl, fire retardant with a load case. of 400 lbs. In carrying case.

P 1
R:\PROJECTS\DRAFT\985748\TEXT\REPORTS\LINKS.WB2

Cost Estimates	nates				Scenario 1	1				Scenario 2	2			
					Total Replacement	acement					Sewer for Various Lines	arions Line	S	
Start AV	Fnd AV	W/M Length (m)	th (m) 150 mm	S/M Length 150 mm (m)	W & S	W Only	S Only	Unit Cost	Extension (\$)	W & S	W Only	S Only	Unit Cost (\$/m)	Extension (\$)
Clair	1000	100	, 100	7 200	4 300			F4 027	\$20E 200					
WIP	7 6	1183	1183	1183	1183			\$1,927	\$22,25					O
١ ٣))	93.3		\$1,717	\$160,196					80
0.4				86.6	86.6			\$1.927	\$166,878	86.6			\$1,927	\$166,878
				41.5				\$1,927	\$79,971	41.5			\$1,927	\$79,971
о с		41.5		41.5				\$1,927	\$79,971	41.5			\$1,927	\$79,971
7				22.9				\$1,927	\$44,128				\$1,927	\$44,128
- 00				29.6				\$1,927	\$57,039				\$1,927	\$57,039
0 0				46	-			\$1,927	\$88,642				\$1,927	\$88,642
				83.8	00			\$1,927	\$161,483	83.8		201	\$1,927	\$161,483
7		78.6		78.6				\$1927	\$151 462					0\$
12	70			98				\$1927	\$165 722					09
27		9		3	3	69 2		\$1,717	\$118,816					\$0
280				91.1	91 1			\$1,927	\$175,550					0 6
04		707		707	707			\$1,927	\$136 239					O.S.
0 40				α 17				\$1 927	\$80.549	418			\$1 927	\$80 549
7 6				200				\$1 007	\$116,050	5.14			\$1,927	4116,040
30	200			7.00				44,027	6420 424	000			41,027	6100 704
67		9.00 0		000.0			7	128,14	9770716	0.00			176,14	477'0714
11		21 -					- 6	740,14	9140,470					9 6
32		~		91.3			91.3	21,542	\$140,785					2
33	34			88.1			88.1	\$1,542	\$135,850					\$0
34		10		39.8	რ		39.8	\$1,542	\$61,372					0\$
32	STP			09	09		90	\$1,542	\$92,520					0
Stage 1a Total		1333.5	323.4	1541.3	1541.3	162.5	370.3		\$3,106,532	521.2	0	0		\$1,004,352
Stage 1b						L								
		_	105.2	105.2	105.2			\$1,927	\$202,720					\$0
25			98.3	98.3	98.3			\$1,927	\$189,424					0\$
21				48.2	48.2			\$1,927	\$92,881					\$0
20				76.45	76.45			\$1,927	\$147,319				_	\$0
19	18	3 24.2				24.2		\$1,717	\$41,551					\$0
18				,		50.9		\$1,717	\$87,395					0\$
17		_		80.4			80.4	\$1,542	\$123,977		_			03
16				83.2			83.2	\$1,542	\$128,294					0\$
4				78.2			78.2	\$1,542	\$120,584					0,8
13				23.3			23.3	\$1,542	\$35,929					0\$
13		98.2		98.2			98.2	\$1,542	\$151,424					0\$
٠.,				/0.3			/0.3	\$1,542	\$108,403					0.9
Stage 1b Total		633.35	203.5	761.75	328.15	75.1	433.6		\$1,429,903					\$
- - -		4000	0 001	30 0000	Ľ	27.00	0 000		\$4 EDG 40E	0.403	c			64 004 252
otais		1800.80	6.020	2303.00	1009.45	627.0	903.9		\$4,050,450		0	0		\$1,004,332
						Unit Co	Unit Costs (\$/m)				Unit Co	Unit Costs (\$/m)		
					W&S Replacement	lacement	\$1,927		1	W&S Reg	W&S Replacement	\$1,927		
					>	Water Only	\$1,717			S	Water Only	na		
					Se	Sewer Only	\$1,542			Ś	Sewer Only	na		
														•

W. & S. W. Wonly S. Only Unit Cost Extension W. & S. W. Wonly S. Only Unit Cost E. S.	Cost Estimates	nates				Scenario 3 Water Only	-	Cover Vari	ous Pipes		Replace Se		where Poo	or Flow	
2 2 2051 183 183 183 183 183 183 866 866 81455 8143200 814320 814	Start AV	End AV	W/M Leng 200 mm	gth (m) 150 mm		W & S (m)	W Only (m)	S Only (m)	Unit Cost (\$/m)	.0	W & S (m)	W Only (m)	S Only (m)	Unit Cost (\$/m)	.0
1				205	205.1					0\$					0\$
1	w 4				86.6		86.6		\$1,550	\$134 230					₩
1	2				41.5		41.5		\$1,550	\$64,325					0\$
8 9 25.6	1 0				27.5		41.5		\$1,550	\$64,325					9
10	_ α			CATUR	22.9		22.9		\$1,550	845,480 845,880					OA G
10	0 0				46		46		\$1,550	\$71,300				Con.	80
1	10				83.8		83.8		\$1,550	\$129,890					\$0
12 28 69 50 50 50 50 50 50 50 5	11				78.6					\$0			78.6	\$771	\$60,601
24	12	27			98					80					0\$
28 5771 29 668 668 668 668 668 668 668 668 668 8 51,550 \$84,790 29 66 668 668 668 668 668 668 8 51,550 \$81,550 \$103,540 29 66 668 668 668 668 668 668 668 8 51,550 \$103,540 29 25 20 3482 983 982 983 982 983 982 983 983 983 983 983 983 983 983 983 983	27	28								9 6					0 6
1966 Sec 9	28	D 70			7.07					A G					₽ ₩
19 19 19 19 19 19 19 19	0 4	200			77.0		418		\$1 550	\$64 790					9 €
1 1 1 1 1 1 1 1 1 1	30	29			60.7		60.7		\$1,550	\$94,085					9
1 32 34 35 35 35 35 35 35 35	50	9			668		899		\$1,550	\$103,540					9
133.5 323.4 1541.3 0 521.2 0 5807.860 0 0 786	2 -	32			91 1			0.4		80					0\$
3 3 4 5 5 5 5 5 5 5 5 5	32	33			913					\$0					\$0
35 STP 35 39.8	33	34			88.1					\$					\$0
133.5 STP 133.5 323.4 1541.3 0 521.2 0 5807,860 0 0 0 78.6	34				39.8					0\$					\$
1333.5 323.4 1541.3 0 521.2 0 \$807,860 0 0 78.6 15.					09					\$0					\$0
105 105	Stage 1a Total		1333.5	323	1541	0		0		\$807,860	0		78.		\$60,601
22 20 20 48.2 105.2 105.2 20 48.2 203.5 105.2 203.5 771.7 23 23 3.5 5.26.9 2.30.3 0.															
25 23 48.2 98.3 98.3 98.3 5771 50.9 5771 16 80.4 80.4 80.4 80.2 176.45 5771 16 80.4 80.2 176.45 5771 16 14 80.2 176.45 17	22	20		105.2						09					80\$
20 19 76.45 76.45 76.45 5771 20 19 76.45 76.45 76.45 5771 21 19 76.45 76.45 5771 22 23.3 23.3 23.3 23 24	25	23								0 6			20	\$777	\$38,550
19 18 24.2 18 24.2 19 18 24.2 19 18 24.2 19 18 24.2 19 18 24.2 19 18 24.2 19 18 3.2 19 23.3 19 23.3 23 24.2 23.3 23 24.2 23.3 24.2 25.3 25.3 25.3 25.3 26.3 27.1 27.2 27.3 28.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2	21	202		_	78.45					04			76.45	8771	\$58,162
18 17 50.9 80.4 80.4 50 19 18 83.2 83.2 83.2 83.2 50.3 98.2 80.4 80.4 80.4 80.4 80.4 80.4 80.4 80.4	19	. 62		_	r S					0\$			2	•	0\$
17 16 80.4 80.4 80.4 80.4 4	9 6	17								0\$					0\$
14 83.2 83.2 83.2 83.2 83.2 83.2 83.2 83.2 83.2 83.3 83	17	16			80.4					\$0					\$0
13 78.2 78.2 78.2 78.2 53.3 50.8 50.0 40 \$7771 \$30,8 13 23 98.2 98.2 98.2 98.2 98.2 70.3 70.3 70.3 70.3 70.3 70.3 70.3 70.3	16	14			83.2					O\$,	₩
13 12 23.3 23.3	14	13			78.2					\$0			9	\$771	\$30,840
13 23 98.2	13	12			23.3					\$0					\$0
1966.85 526.9 2303.05 0 521.2 0 \$807,860 0 0 78.6 \$226,0 W&S Replacement na Water Only \$1,550 Sewer Only \$1,550 Sewer Only \$771	13				98.2					S					₩
1966.85 526.9 2303.05 0 521.2 0 \$807,860 0 0 78.6					10.3					OA.					9
1966.85 526.9 2303.05 0 521.2 0 \$807,860 0 0 78.6 Unit Costs (\$/m)	Stage 10 Total		633.35	203.						\$0					\$165,495
W&S Replacement na Water Only \$1,550 Sewer	Totals		1966.85	526.	2303	0	521.2	0		\$807,860	0	0	78.6		\$226,096
na W&S Replace \$1,550 Water Sewer							2	10,0		Len					
\$1,550 Was Replacement \$1,550 Water Only na Sewer Only						000	3 -	osts (\$/m)			000	Onit C	osts (≱/m)		
Sewer Only						W&V Ke	viacement	81.550			7 V V X V	placement Vater Only			
						·	awer Only	2 6			· 07	ewer Only	\$777		

(m/s	27		
osts (\$	\$1,9	Б	B
Unit Costs (\$/m	W&S Replacement	Water Only	Sewer Only

Cost Estimates	nates				Scenario 5				
					Replace V	Replace W & S Mains from AV20 to AV22	from AV2	20 to AV22	
		W/M Length (m)	th (m)	S/M Length	W&S	W Only	Sonly	Unit Cost	Extension
Start AV	End AV	200 mm	150 mm	150 mm (m)	(m)	(m)	(m)	(\$/m)	(\$)
WTP	2	205.1	205.1	205.1					O\$
2	3	118.3	118.3	118.3					0\$
0	4	93.3							\$0
4	2	86.6		86.6					\$0
5		41.5		41.5					\$0
9		41.5		41.5					\$0
7		22 9		22.9					0\$
- 0		2000		0000					9 4
000				23.0					9 6
ת	2			40					9 6
10				83.8					04
11	12	7	2500	78.6					\$0
12	27	86		86					\$0
27	28	69.2							\$0
28				91.1					\$0
) (707		707					C
7	7 0								9 6
21	30			41.8					04
30				2.09					\$0
29	9	8.99		8.99					\$0
	32			91.1					\$0
32	33			91.3					\$0
33	200			288					C
2 6	2, 2,			- 80					Q 4
2, 2,	QTD			2 6					0\$
3				3				,	
Stage 1a Total		1333.5	323.4	1541.3	0	0	0		\$0
Stage 1b									
20 5600			105.2	105.2	105.2			\$1,927	\$202,720
35	2 2		983	983					\$0
27		48.2		482					\$0
200				76 45					08
0 0									09
2 0									80
17	19			80.4					\$
. 15				83.2					8
7	. 62			78.2					69
. 6.				23.3					\$0
13		_		98.2					\$0
23		70.3		70.3					80
Stage 1b									
Total	830-	633.35	203.5	761.75					\$202,720
Totals		1966.85	526.9	2303.05	0	0	0		\$202,720

From: Joe Hidalgo, P. Eng.

Project Management

Department of Public works and Services

Fax Number: (849) 645-2116 Phone Number: (819) 645-5013

OCT. 23,1998 Date:

TO:

KIRIC GUENTHER, P. ENG.

Company: DILLON CONSULTING LTD. YEZLOWENIFE, NT

Fax Number: (867) 873 - 3328

Total Number of Pages Including Cover:

Unit Prices for Hyunk Subdivision. Your Reference:

Message:

Here are the Prices that you were requesting. bur plane was delayed, we almost flew over Rankin Inlet because of bad weather here as always.

Jop

The Original of This Fax Will Not Be Sent Unless Requested

Government of the Northwest Territories, Rankin Inlet, NT, X0C 0G0

PAGE. 21

					O	D. C. C.	CONSULTANT						
	5	PANUK SURDMISION	LIST OF LIMIT PRICES	T PRICES			O KUNSAN						_
	3.5 2.5	ROKPINET Phace 1 (998	SCHEDULE OF QUANTIFIES AND	JANTINES A	2			RTL	i	Sanajiil	1	Kudlik	r R
		3 1 7 7 7 N P P P P P P P P P P P P P P P P	UNIT PRICE TARKE	TABLE			Proe ! of 6	Tender	Exl.	Tender	ExI	lender	LxI.
	ITEM	N DESCRIPTION	CLAUSE		CUAHIITY U	UNIT PRICE	EXTERSION	THY.	EXTENSION	PRICE	EXTENSION	PRICE	CXTENSION
ازم	177	12. 2	11200	_	_	CU m 150	00 55	1140 00	\$ 14,000 OD			170 00	17 oun (IC)
	N2	-	11 570	- 5	_	1.8. \$1,000	000,18	\$4.500 00	\$9,500 00	-		\$ 3.000 €0	F. CONTOO IL
	2	_	16.2			\$ 4,000	000 m	14.800 00	\$4,800.00	\$5,000 00	\$5,000 00	125.un0 co	125.030 00
			1,6.3		6.00	<u>د</u>	5 53,700	115 00	00 009'61			05 51	\$1.520 00
	A A	_	02500	\$17	099	E	165 \$1117,900	\$450 00	\$297,000 00	\$204 PD	1134,640 00	1165 00	00 006 8011
		_	131	- 92	35	E	527.51	1450 00	\$15,750 co	\$247.00	\$8,645 CO	\$330 00	111,550 Gn
	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		02687		- 8	<u>=</u>	357,915	1450 60	\$157,950 00	\$204 60	171,604.00	\$ 165 W	157,915 00
	3	Cammon Trench Install Sewis	01667		273	= =	165 \$15,045	\$450 00	\$122,850 00	3204 CO	155,692 00	1165 00	\$45,045 00
	GY A	Corrnon Derry Indail Form da Sardary Seutt	02867		<u> </u>	E	5815	1450 00	\$2,250.00	\$408 00	\$2,040,00	00 0753	11,650 [23
'	A PIO	Single Alain 10 Supply 200mm HDPE SENMANIALE	0766501867		1,016	٠ ٤	003.6152	\$128.00	CD 989'EE13	1175.15	\$183,205 90	1127 69	\$133,469 60
/e	<u>\$</u>	Supply 150mm HOPE Seatt	02657		278	<u>-</u>	135 123,530	\$99.00	\$27,522 00	\$121.70	\$33.832 60	08 961	\$76,910 40
		_	02/25		_								100000000000000000000000000000000000000
	- VIX	_	-			40002	200 073	537.000 00	\$37,000 CD	139,447.45	139,447.45	\$34,771.00	134 771 00 135,252 RC
		- AV 98-19						\$45,000.00	\$ (6,010.00	\$49,053 79	\$49,060 29	\$50.479 co	\$50,479.00
		AV 26.21				00000	\$43,000	146,000 00	\$15,000 CO	\$49,532.65 \$38,605.69	\$49,512 63	\$30,239.00	\$38.278 90
		. AV 93.13						144,000 00	239 000 00	\$46,874.79	546,824.79	\$36,333,00	\$41,882 50 \$36,313 00
	£ 53	. AV 33 WALP 3 Supply 8 Inter Laddon on Avs 94-1 to 94-3	57775		- 62	` 		\$560.00	\$17,200 00	1277 20	\$5,511.00	\$308 00	16,160 011
	714		02725	~ 50	, E	Each 9000	363,000	\$10,000.00	\$70,000.00	37,142.46	\$50,000.02	16,600.00	\$46,200.00
	A15	Over excevation (if e equ).	1.4.3		<u>8</u>	- E	000'15 at	16.50	\$),650.00	\$10.00	11,000 00	\$1100	D CO 1101.11
	914	_	1.4.2		404	- E 3	15 \$6,000	02 853	\$23,200 00	1)6 00	\$6,400 m	00 223	18,400 to
	_		14.5		200	- E	30 000	1000	\$14,000 Un	1.614 CO	11 1,600 (10	CO 221	54,405 GO U
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		14.6			2502	<u> </u>	E500.000.00	CD 000'005\$	\$208,850.00	\$208,850.00	1484.262.13	1484,362 13 8
	1		7.4	-	1	- -	1.a.1	+	X 202 150 (0)		1 079.945 16) .	\$1.262.239.33
	200	Subjects Part A - Page 1	I ST OF UNIT PRICES	PRICES				0					11
	2	ROWN SUBCONISION	UNIT PRICE CCHTRACT	CHTRACT			APPENDIX D	11.1.1				-	ĒT
	2	Phase 3, 1938	SCHEDULE OF OVARITIES AND USET PRICE TABLE	TABLE	₽		Page 7 of 6				-		υ.
	NO E	OESCAPTION	CLAUSE		CUANTITY IN	UPILT PPRICE					-		03/
11'11	/ etA	Part A - Mains & Services (Sla, 7 & 8) 9 Install 100mm des Viater Service Canker	59500	·, ·, ·, ·		8	200 8613	\$315.00	\$217,359.00	\$219 04	\$153,137 60	\$143 ac	15 33 JC9'861
	A20		_		9	m 250	\$10.000	\$315.00	\$12,600.00	1219 04	D) 197.41	CD.E.513	F5,720 CO
	ZY	P.p.e.cha 1.25mm dia and 1.50mm dia water servee plots A21 Instit 100mm dia Sewer Servee	131		 83	200	003 96613 00	\$315.00	\$217,350 00	\$219.04	6151,137 60	00 6715	30 079,472
	-		,										

M4 11:50 1X4 8881-52-100

				0	(CIISULTANT		127C		る	Kar	Kupil K.
A27 Inchal 150mm dia Sewel Sentoe	1.1.1	60	Ę	200	\$8,000	1315 00	\$12,600.00	1219 04	13,761.60	1143 00	\$5,720.50
A23 Suppl / Smm Wafer Service Pipe	072.65	2.014	E	8	\$4,140	00 13	\$2,074,00	\$1.23	\$2,509 54	\$1.87	\$3,878.38 T
A24 Study SQ.mm Water Service Pipe	07665	\$	ε	0	28	\$4 00	\$16000	25 33	\$238.80	06 24	\$116 00 p.
A25 Supply 100mm Water Service certies pipe	02865	8	E	080	\$55,200	00 143	\$35,190 00	\$353.55	\$243,949 50	\$52.80	136,432 00
A16 Supply 150mm Water Service canlot Ripo	132	ş	8	001	14 000	\$71.00	\$2,840 00	104 00	\$4,160 co	\$71.50	12,860 bu of
A27 Stpply 100mm HDPE Scary Norman	0.2645	029	ē	2	155,200	151 00	135,190 On	\$301.45	\$ 208,000 50	242 HD	10038891
A28 Supply 15Qnm140PE Sewer Service	07665	03	s'	001	\$4,000	171.00	\$2,840 00	\$304 00	14.16.9 CO	65 173	\$2,600 00 (1
A23 Styly and Insian Connection	03665	(ã)	;	2000	\$110,000	\$3.990 00	00 001,783	\$7,701 65	159,435 20	111,000 00	\$742,000 00 1
Subtotal Part A. Page 2 15 15Colleil			. Y	"A"+"B"="C"	\$516,948		\$2,328,134.00		5842,751 9H		S1,795,595,11
Part B. Services for Sis 4 & 5 (Provisional) B30 Instal 100nm, dia, Violor Service Camer	02665	.85	Ę	200	\$117,000	\$190 00	\$169,150 00	00 6763	\$159,105 00	\$143.00	1120,555 00
Pipt of 1-25mm da waler sennee pipes [131 Innian 100mm, da Sweel Sentee	0.2.1	865	E	200	1177,000	\$190.00	\$168,150 00	\$1/3.00	\$153,105 00	\$143 CD	1126,555 00
872 Supply 15mm Wales Sennse Apa	01665	2.014	É	7	\$4,068	\$1.09	12,034 00	\$1.26	\$2,562 83	11 97	\$3,403 5R
D33 Suppy 100mm Water Service carrier gipe	02665	RBS	E	08	\$10,600	\$5100	\$45,135.00	1122.31	\$196,744.35	\$52.80	146,728 00
B34 Supty 100mm HOPE Server Service	02565	885	Ε	80	\$70,800	151.00	\$45,135.00	\$60.78	\$53,790.30	\$52.80	\$46,728 00
635 Supply and Install Connection	02(65	я	2	200	1165,000	\$11,000 00	4363,000 00	13,601.60	\$125,452 80	18,937.50	\$294,927 50
Total Parl B - Services (Provisional)				Ö	\$56,666 OJ	<u> </u>	\$791,604 00		\$584,760 23		1645 397 00
Tender Surmary								•			
Total Parl A - Mains & Services (Streets 7 & 8)				J.:2-	\$1,679,798.00		\$2,328,134 00	<u>.,,</u>	\$1,522,197 10		11,095,095,11
[Tolal Part B - Services Sireels & & 6 [Provisional]				10.	\$654,659.00		\$191,614.00		\$584,769 29		3545, 307 US
Total Tender			5	_c.+.o.*.e.	\$1,794,455.00		12,119,738 00		\$2,666,957.39	11	17,440 St 1 79
GST			7.% X	7% X"E"="F"	\$160,612 62	.1	\$218,391.66	-	\$187,497.02		\$170 863 27 5.
Tulul Tender (including GST)				يقه و المرا	\$2,455,078.62		\$3,309,119.66		\$1,769,441 41		77.61.767.05 D
	BH 3									177/	777 (6:7.35 P
											° 2,03/0
											37

7	STI KOSUNDON SANIA	UST OF UNIT PRICES	SES		J				_	6.14		
RANSOR		UNIT PRICE CONTINUE	מכז		•	APPENDIX D	Ĺď		Sanaliit		Kudlik	
Pliase	Pliase 4, 1999 SCHEDU	SCHEDULE OF QUANTITIES AND UNIT PRICE TABLE	IES AND		5 274 C.T.	₹. [.	Tender	EX.	Tender	Ext	Tender	Ex
ITEM	No. Company	PAYMBE	EST.	- Ling	UNIT	EXTENSION	LINIT	EXTENSION	PRICE	EXTENSION	PRICE	EXIENSION
1	Parl A - Mains & Services (Sts. 2 & 3) Rock Extansion If Rogid	11770	100	3	981	000'F3	\$140 EO	\$14,000.00			877 CO	17,700 00
	Pretion in product il Rega	16.1	-	1.6	11,000	00111	00 025,83	18,500.00			111000	5110.60
	Habi / Demoir tor Hock Extransion, Il Regid	116.7	-	L S	\$ 4,900	7,000	\$4,800 00	\$7.800 00	\$5,000 00	\$5,000 co	\$5,500 tin	\$5,500 110
	Rook LocathoyVerdealton	16.3	6.0	Ē	2	13,700	\$1500	00 009'6\$			\$5.50	13,520 00
	installat 200 and 50 Noteman	184	Š	Ę	51	\$132950	2450 00	\$362,700 60	\$204 00	\$164,424.00	\$ 165 00	\$132,990 CD
-	Control Tends Inval 2007 of Sector Seven	13.1	607	£	165	\$115,995	\$450.00	1316.350 00	\$204 00	\$143,412.00	\$ 165 00	1115, 22, 23, 150
	Corrust Berch Install (South de Service	131	104	E	591	\$17,160	1450.00	\$46,800.00	\$204 60	\$21,216 00	\$165.00	\$17.160 00
	Cormon Trench Instal 200mm dia Santany Sawar	1.3.1	228	E	591	837,62n	\$450 00	\$102.600.00	\$407 58	\$92,928.24	\$330 00	\$75,240 to
	Single Main Sittly Norm FETE SevenName	132	1,737	E	210	335770	\$132.00	\$229,284 00	\$165 24	\$287,021 89	\$127 00	\$220,539 00
Ŧ	Suppy 150nm HDPE Savor	02667	3	E	135	81400	\$102.00	\$10,608 00	\$133 62	\$13,896,48	\$26.80	\$10.057.20
A12	Stypy Access Vaults	02725	•		0000	000	00000.73	OO COU EFF	345.498.16	145.498 16	\$47,631 10	\$47 631 10
	. AV 97-24	-		2 2	40000	7000	\$37,000,09	co.cop /fs	\$39,351 58	\$39,351 58	139,320 60	139,320 G0
	. 47.97-26		_	rs.	40000	27,000	\$18,000 00	\$38.002.00	\$40,150 23	140,190 BB 143,512,44	\$46,514 60	146,514 E0
_	. NV 97-27			2 2	0000 0	20.02	\$47,020 00	\$47,000 00	\$50,480 72	\$50,480.72	153,332 70	\$53,302.70
	N 97.79			5, 5	40000	\$6.00	\$37,000 00	\$37,000 to	\$39,125 64 \$39,851 64	\$39,851.64	139,491 10	\$39,367
	0.79 VA			ر د د	40000	240,000	00 000'16\$	\$37,000 00	139,328.92	\$39,328.92	141.661.40	141,661 40
-	. AV 57-32			L.S	0000	000	\$40.000 00 \$32.000 00	\$40,000,000 \$32,000 to	\$33,669 42	133,659,42	131,345.70	11,315 70
	. AV 97-33 - AV 97-34			S	40000	200,000	33,000 00	\$33,000.00	\$33,831 12	\$33,831.12	131.644 80	\$31,64480
77.7	Install Appeals Values	02725	=	d'a	9000	BOSS	00.0000	00000011	0000			
¥	Overendardien (4 seyd),	02221	<u>8</u>	£	Ē	31,000	\$16 50	13.650 00	\$ 10 00	00 nop.13	\$ 100	11,100.cu
917	Grandor Dickill (Load Hay and Hace)	1220	24D	E 33	12	609,[3	\$58 00	\$ 13.920 CM	3,5 90	\$3,840.00	00.274	35 ZKO 05
A17	(if required) Granned Road Grant (Supply and Install)	1,020	740	ED3	50	\$12,000	\$70.00	\$ 16,800.00	\$ 16 00	\$3,840.00	\$22.00	\$5.280 00
	(if required) Mobilization/Demokilinkion	01500	-	LS	•		\$141,000.00	\$141,000.00	\$137,600 00	\$137,600 00	\$247,91A 6A	F247.9111 GG
Cirpio	Para Dad A Dad	~			ים	\$1,254,375		\$1,811,612.00		11,397,496.34		\$1,390,015 05
N IVE		LIST OF UNIT PRICES	33									
RANGNIMET		UNIT PRICE CONTRACT	WCT DES END			APPENDIK D						
FURSE	ALIANE 4, 1888	UNIT PRICE TABLE	LE CASE			Page 4 of 6						
23.0	OESCRIPTION	PAYMENT	EST. JAYFIIY	5 5	UNI	EXTENSION						
-	Part A - Mains & Services (Sis. 2 & 3) Instill 10mm da Water Service Canier	02565	610	E	500	11200)	\$315.00	\$192,150 00	\$219.04	\$133,614 40	\$14300	A C. (2, 2 J.) (A
_	Plye Un 2-25mm of a water service pipes	-	_	_	-			-	-	-	•	

OCT-23-1998 FRI 03:12 PM

						LONSULTANT PTL	M PA	7.		X. K.		KODSIK	
A20	AZO Instai ISanm da Wale Senke Camer		ã	E	250	\$25,000	\$315.00	\$41,100 00	\$219,04	\$30,665 60	1143.00	\$20.020.00	
72	Pipe c/w 125mm du. and 150mm dia waler servici Implai Itimm dia Sever service		610	E	200	\$122,000	531500	\$192.150 60	\$21904	\$133,614.40	\$143.00	\$87 230 00	
V	AZZ Install 150mm da Save Sento	02665	140	E	200	\$23,000	\$315.00	\$64,100.00	\$219.04	\$30,565 60	1113 00	\$20.020.00	
A23	A23 Stoply ZómnWaler Service Plos	1.3.1 02665	1,50	E	2	992'CI	\$1 00	\$1,533 00	\$1.23	\$1,885.59	31.97	\$2.865 71	
A24	A24 Sugay MrmWater Sorver Ape	0,2650	8	E	01	41,700	2 00	\$560 00	\$4.58	\$641.20	12 9n	00 90:1	
725	A25 Supply 100um Wast Sentes calder pips	132	939	5	80	CON 'SY'S	\$51.00	\$31,11000	\$755 88	1156,085.80	1,72,90	\$32,200 co	
۸	A36 Suppy 150mm Wales Sente caund upe	02665	3	E	18	\$14,000	\$71.00	00 046'6\$	\$6.68\$	\$12,590.20	\$71.50	\$10,010 00	
Ş	A22 Suppy Incmmil FFF Sewer Service	01500	610	E	080	\$ 4	\$5100	\$37,110,00	1266.47	\$162,546.70	152 00	132,208 00	
A28	A28 Sypy 130mm HOPE Sems Sanice	0.2005	140	£	100	\$14,000	\$71.00	19,940 00	\$89 93	\$12,550 2n	\$71.50	110,010 00	
A29	A29 Supply and Investigations	132	90	5	Source	\$140,000	00'066'6\$	\$111,720.00	3,251 60	191,044.80	58,937 50	\$250,250 00	
Sub	Subiolal Parl A - Page 2		li		H.	\$577,056.00		\$568,413.00		5785,945.49		\$552,458.71	
101 GST	10131 Jenust 1013 1013 1013 1013 1013 1013 1013 101			-				\$173,601.75		\$151,440.93		\$135,273.16	
Tola	Total Tender (including GST)				7.4.1.	\$1,959,641.87		\$2,653,626 75		\$2,314,882.76		2,067,746.93	
					P. H.	4)/\'a))//us., (c				

OCL-53-1888 EKI 03:13 bW

UNITPRI SCHOUSE (SIS, 1 & 6) UNITPRI UNITPRI PA FA INACE GC CC	CONTRACT CON	OM		•							
Mains & Services (\$1s, 1 & 6) Mains & Redd Mains & Redd Mains and Mains an Mains a Service Server	CE TABLE VENT USE CUI	2			A-rendin o	118		Sanajiit		Kudak	
DESCRIPTION Park A - Mains & Services (\$19, 1 & 6) Rock Excession, It Redd Problem Impection, If Redd Meb J Demob for Rock Excession, If Regd Rock Localing/Valication healst 200mm dis Waternain Common Trench Instal 200mm da Senfary Sever Continuo Trench Instal 150mm da Senfary Sever	USE CO				Paye 5 of 6	Trader	Cot	lende/	EM.	Tender	Ем
Part A - Mains & Services (\$1s, 1 & 6) Rock Exceveron, It Nedd Prockast Impection, K Revid Mos / Derust for Rock Excernion, If Regid Most Localing/Vericesten Most Localing/Vericesten Most Localing/Vericesten Common Terror Install Somm de Sanday Sever	H	CUANITY	UNIT	PRICE	EXIENSION	PRICE	EXTENSION	PRICE	EXTENSION	PRICE	EYTERSION
Prick exceeding in mage Prick and linguation, if Revid Mork Localing/Validation Medial 200mm dis Sentany Swell Common Trench Common Trench Common Trench Install 150mm dis Sentary Swell		8	8	045	36,000	140 00	14000 00			סט כנ	17001
Mee / Demap for flock Examition, If Regid Hork Localing/Validation Metal 2 200mm dis Walemain Carriora Tierch Continual Tierch Install 150mm dis Sanitay Sever			6.3	\$1,000	31,000	8500 00	850000			25000	1054
Hork Localing/Validation healst 200mm du Walemain Cammon Tercah Cammon Tercah Common da Sanlay Swei Godina Tercah Instal 150mm da Sanlay Swei	62		LS	\$ 4,000	34,600	4800.00	4800 00	5000 CO	5090 000	550000	55001
history 200mm dis Walemain Cummon Tierch Castilla 200mm das Sanfary Siwel Castilla 150mm das Sanfary Siwel		- (69	E	6	\$3,200	15.00	no DO36			\$ 50	1525(
Common Trench Instal 200mm du Sanfary Swite Continum Trench Instal 150mm dia Saritery Sewer		750	٤	165	\$123,750	450.00	337500 00	204 Ou	153000 00	16500	123753
Comman Tersch Install 150mm da Sardey Newer		225	5	165	521,125	450 00	101250 00	204 60	4590000	165 00	37125
		80	E	165	172,270	450.00	197100.00	204 00	89352 00	165 00	12279(
Common Trench 1.3.1 A9 Install (50mm dia Sanilay Saway	1.3.1	52	E	165	19,580	450 00	23400 00	408 00	21216 00	330 00	17160
		972	E	210	\$204,120	132.00	128334 00	175.30	19 166071	327.60	12:1027 :
Supply 159mm II DPE Sever		490	٤	135	\$65,150	102.00	49980.00	130.95	64165.50	96 80	47.432.0
A12 Suigply Access Vaulis 02722	725		-	40000	240 000	39000 00	3900000	40810 65	40810.65		BL 1.1C
			5 05 1	0000	\$40,000	41000.00	41000 00	-	42698	40540.50	52707
. AV 00 37			ر د به	40000	140,000 140,000	3500000	350000	36721.29	٠,		39555
. AV 00.33			L.S.	40000	240,000 140,000	35000 00 45000 00	46000 00	4874869	. 🔪		49869
- AV 00-41 A14 Install Access Vaults 07725	522		L.S.	9000	\$40,000 \$63,000	00 0000t	7000000	7000.00	49020 00	00.0033	46700
Over extavation (il red 6).		8	CO.E.	o	11,600	16.50	1650.00	10 OD	1000 00	11 00	1100
_		240	8	SI	\$3,600	58 00	13920 00	16 90	3840 QU	16.50	1961
(if required) Couthed Road Gapply and Install)		340	SK. IB	8	\$12,000	70 00	16900 00	16 00	3840 011	22 00	62201
(If require)	200		L 9.	\$750,000	1750,000	124300.00	124300.00	32000.00	32000 00	1995.37 52	195637
_	4			ķ	\$1,137,795		1,383,10400		5 934,534.27		935160
NOSIA	NIT PPRICES				ADDENDIX						
RAKKII INLET CONTRACTI Phase 5, 2000 BCHEDUI E OF QUARTITIES AND CHIT PRICE TABLE	CE TABLE	2			Page 6 of 6	-					
INETAL DESCRIPTION CAUSE	NENT E	EST. QUANTIITY	נואנד	PRICE	EXTENSION						
Port A - Mains & Services (Sis. 1 & 6) A19 Install (Ucma da Vair Service Carres		02	ε	S	\$84,000	315.00	132300.00	219 00	91980.00	03 5:1	פנייתני
		28		250	162,500	315 00	7875000	219.00	54750.00	11300) 09/52

OCT-23-1998 FRI 03:13 PM

											LO
A21 Insist 100mm dia Sewer Service	02565	470	E	230	284,000	315 00	132300 00	219 00	91930 00	143 00	1009039
A22 Instal 150mm die Sewer Suvice	02685	250	E	82	250,000	315 00	78750.00	219.00	54750 00	143 00	JF 10 6272E
A23 Supply 25mm Water Service Pipe	02665	1,325	E	7	\$2,650	1 00	1325 00	1.32	1749.00	1.87	2477 71. A
A24 Suppy Summ Waler Service Pipe	02885	350	Ę	0	\$2,500	4.00	00 0001	92 5	1315 00	2 90	725 6.
A25 Supply 100mm Water Seaka corder pipe	02655	420	E	98	009'663	21 00	21420 00	213.43	89640 60	52 80	22176 01
A26 Supply 15/mm Wales Service cander pro-	02655	250	E	8	\$25,C00	218	17750.00	91.89	22972 50	7150	17975016
A27 Supply 100 num HOPE Sewer Bernice	07665	420	£	80	\$33,600	\$1.00	21420 00	216.78	91047 60	52 RO	22176015
A70 Suppy 155mm HDPE Sewel Service	02665	250	Ē	100	125,000	21 00	17750 00	222 19	55547 50	71.50	1787501-1
A29 Supply and Install Connection To consider to existing features	07655	24	8	\$und	\$120,000	3990 00	00 09256	3251 60	7возн 40	m2 7E60	2145000
Subiolal Part A - Page 2 Total Tender				.K.+.L.+.W.	\$522,850	* *	\$ 558 525 00 \$ 1,981,679.00		1,568,27407	<u>•] •i</u>	1,404,021.27
GST			*]N.=_W X X.	\$116,245	8	138,714.03	_	\$ 109,779.24		103,691.4
Total Tender (including OSI)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			.N.+.W.	\$1,776,890		2,120,343,03		\$ 1,678,05411		1,507,902,11
)									£.	
IENDER SUMMARY Total Tender (including GST) Phase 3 (from Page 2 of 6)	of 6)	F. W.			\$2,455,078.67		3,338,119.66		\$ 2,789,414.41	2	2,611,767.01
Tolal Tender (Including GST) Plase 4 (Itom Page 4 of 6)	of (1)	13 عا	. \].r.•.1.	11,959,641.87		2,653,626.75	<u></u>	\$ 2,314,882.76	<u> </u>	7,067,746.9.
Total Tender (including GST) Phase 5 (from above) TOTAL TENDER ALL PHASES (including GST) TOTAL TENDER ALL PHASES (Excluding GST)	cF	· (.N4W	\$1,776,890 15 \$ \$6,191,610.64 \$ \$,786,552.00	w w	2,170,343 03 : 8,112,089 44 7,581,392.00		\$ 1,678,05411 \$ 6,782,381,28 \$ 6,338,67409	<u>~ ~</u>	1,587,902 // 6,267,416 7/ 5,857,398 R:
				3 N O E 5	LOCAL NORTHERA OTHER TOTAL UIP LOCAL	******	1,132,500 00 3,770,742.47 2,678,149.53 7,581,392 00 (226,500 00) (565,611.37)		\$ 6,034,804,60 \$ 60,000,00 \$ 1145,500,00 \$ 6,281,304,60 \$ (1,205,960,92) \$ (9,000,00)	44444	5.058,828 97 112,149 53 654,205 61 5.835,184 11 (1.013,765 75 (16,822 43
			Adjusted Adjusted	Tender (Ex Tender (in	Adjusted Tender (Excluding GST) Adjusted Tender (including GST)	ch c h	7,264,530.27		\$ 6,122,713.19 \$ 5,481,303.09	* "	4,826.810.61 5,164,687.3!
				Vaulis Nains Servicas		****	987,000.U0 675,366 00 243,152 00 1,905,518 00		RREFT NREFT NREFT NREFT	55 Vi Vi Vi	758,740 00; 562,595 40; 171,013 ::: 1,71,019 ::: 10,019,858 R R V

** TOTAL PAGE.07 **

COST ESTIMATES FOR RECOLUTE WATER AND SEWER CONSTRUCTION AND RETROTITING.

ASSUMPTIONS:

- 1. NO ROCK EXCADATION WILL BE REQUIRED. THE BACKFILLED EXISTING TREAKH CAN BE EXCAUATED AND REUSED.
- 2. WHERE APPLICABLE REMOUND OF EXISTING LUATERISENER LINES WILL COST CXTRA.
- 3. LOCAL CONTRACTOR WILL BID ON THE JOB, THEREFORE MOBIDEMOB COST WILL BE LOCAL

NOTE: ANY OTHER ASSUMPTIONS THAT ARE USED WILL BE NETED IN ESTIMATE.

4. SERVICE LINES WILL BE REUSED, BUT SERVICE SADDLES WILL BE NEW

SCENARIO | - TOTAL WATER/SEWER REPLACEMENT

(1) WATER MAIN SUPPLY AND RETURN CINES

i. SUPPLY

Z LINES X \$175/m/CINE

= \$350/m

ii. INSTALLATION

\$450 / TRENCH / M X 1 TREATH = \$450/m

NOTE: THIS IS ANTRENCH FOR SEWER ALSO

ASSUME: COST FOR 150 IS SIMILAR TO 200 PIPE AS THERE IS ONLY A SMALL PORTINO OF 150 PIPE REQUIRED.

Ву	KAG	Date	00 27/18	Project Name	UTILIDOR UPG	PADE
Check	ked	Date	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		RESOLUTE BAY, N	T
Page		of	7	Project No.	98-5748	DILLON

iii. se	- WER MAIN - LINE X \$ = \$175	175 /m /LINE
LOUNTED 30 AUS ON PROSECT	CCESS VAULTS SUPPLY VAULT SUPPLY VAULT APPORTEMES -INSTALL VAULTS	\$40,000 10,000 \$50,900 /AV
	BECTION OF TRE	ALLOCATE FER NUN IE AVO TO AVE. PER UNIT PRICE \$776/m \$107/m
D D	IPES	2 37 2 2 1 3 7 7 8 0
	PIPING WITTO CONTPAN TO CONTPAN RENCHING IS ACREADY N MEY II. PIPE N LIT AND HAULED TO ONNECTIONS NE E PARTS TO BE SALU	ACCOUNTED FOR LEDS TO BE 12 DUMP. SERVICE D 70 BE DETIMONED,
	15 x \$50 = \$750 1750 / 1750 = \$750	17 OF CONNECTION 15 15 CANACOTTES
(5)	CUTTING AND SHE	UAGING (420 St = 128m) MANNER = = 11 (175 \$330 \$330/128m)
By YAC.	Project Name	

985742

Project No.

Ву

Page

Checked __

Date

DILLOF

(C) HAUL & NISPOSE ASSUME TANDEMS AVAILABLE
APX 10 SECTIONS PER TINDEN. (15Ection is 3 PIPES) LATE OND HALL TO LANDFILL \$ 200 / WAD (2 HRS of TRUCK TILIE AND LOADER THE \$200/60+D - 128m/Loti TUM a,b, c 10R \$ / m; for 178 m Vi. (\$5.90+\$260+\$1.00)/m =\$10.1/m VII. SUPPLY AND INSTALL SERVICE CONNECTIONS TO WATER AND SEWER A-34ME EXKTING SERVICE LINES WILL REMAIN. ALL THAT IS REQUIRED ARE SADDLES FOR GANGETIOUS, CONNECTIC TO EXISTING, AND SOME FILLING TO MAINS \$ 200/ SADDLE \$ 200/ EXCHUATION & COVER \$ 1001 L4 BOUR \$ 500 /CAN NECTION \$ STOREX 15 CONNECTIONS = \$7500 47500/125m = \$58.60/m TOTAL ITEMS FOR \$/m COST OF ENTIRE REPLACE MENT. i. + ii + [(iv x No. AVs)/TOTAL m] + (v./Toracai) + vi + vii = \$/m Date Project Name

Project No.

Page

\$ 350 /m + \$450/m + \$175/m + (\$50,900 /AV × 30 AV)/1966.25 m + \$210,000 / 1966.35 m + \$10.10/in +\$58.60/m = 9975/m+ \$776 /m + \$106.8/m, +\$68.7/m = \$1927 / WI STURE REFERENCE WATER GNLY INCLUDES - SUPPLY 2 WATER LINES TRENCHIUG/INSTALLATION - ACCESS VALLETS - MOBIDEMOR - REMOVE / DISPOSE SE ETITIOS ULY - NEW SADDLES & RETENDENT SEGNICES \$ 350/m + \$450/m + \$776/m + \$107/m + \$107/m 1/2 WORK OF BOTH 1/2 welle at your FOR REMOVE & DISPETE FORE RETURNETION = \$ 1717 /m SEWER ONLY INCLUDES · SUPPLY I SEWER LINE - TRENCHING / INSTALNIAU - ACCESS VALLETS - MOB / DE 428 - REMOVE DISPOSE EXICTING SENTER - NEWSTELES IFE CONNECT \$450 + 175 + 776+ 107 + 5 + 2-9 = \$1542/m Project Name Checked Date 4 Page Project No.

SCENARIO 2 REPLACE FROM AU4 TO AUTO / AUIO TO AUII AUZI TO AUG FOR BOTH WATER AND SEWER. \$ 1927 /m PER SCENARIO 1. SCENARIO 3 REPLACE WIM'S ONLY FOR AUG TO AUIO AUTO TO AUII AUZI TO AUG CINSTRUCT IN SHALLOW TRENCH & I m COVER 1. WIM SUPPLY \$350/m (P-1) 11. INSTAZLATION - APY 1/2 DEPTH OF EXISTING TRENCH - INSTALLATION PEMAINS THE SAME - REFLECT LESS EXCHUATION \$450/m × 60% = \$270/m (P.1) 111 NONE ACCESS VALLE COST IS CONSTANT WITH IV. 66 UST # STILL 18.2) \$776/m " MOBIDEMOB SAME \$107/m PEMOLE & DISPOSE OF EXITTING PIPES V i -NONE SOME - ASSUME EXISTING WIMS CAN PLAIAIN IN PLACE HETUDONED.

Ву		Date	 Project Name	
Checke	ed be	Date		
Page	5	of	 Project No.	 DILLOR

- ACCOUNT FOR AU'S REMOUTE AND

SEZVICE DIS CANNECTIONS.

(a) DETTAZU SERVICES \$5.9/m (P.Z) Ch! SOME PIPE CUTTING AN AUS C-1C ONLY 40% OF THE WORK 04 x \$2.60/m = \$1.00/m (C) HAUL AND DISTOSE APY. 60% WORK \$ 1.00/m a1810 = \$7.9/2 VII. SERVICE CONNECTIONS TO LUTTER 2/3 WORK - 1 9.3 2/58.6/m = \$39/m TOTAL ITEMS FOR WATER LINE REPLACEDE! = ILM BELOW GRADE. , + ii + iv. + v. + vi + vii (35n+270+776+107+7.9+39)\$/m, = \$1550/m SCENARIO 4 REPLACE SEWERS AT 2195. PLACE. MUST REMOVE AND DISPOSE OF EXISTIVE NO W/M ii. INSTALLATION \$450 /m \$ 175/ m III. SE WER IV. NONE ましてノい MOBIDE YOU

Project Name

Project No.

V.

Ву

Checked _____

Page

6

Date

VI. PEMOVE DISPOSE OF EXICTING PIPE \$10.1/m VII. SUPPLY & INSTALL SERVICE SOUNEETIES TO SEWER APX 1/2 WORK 1/2 x458.60/m = \$29/m TOTAL ITEMS = \$450 + 175 + 107 + 19.1 + 27) = \$771/m SAGS ON SEGMENTS APY, DIST TO PEPLACE V AV25 - AV23 40 m 50 m × 10m MORE TO 78. Cm - ALL PREFLECT PARD AU12 - AU11 AU19 AU20 AU21 ALL PERDUG. LECLQUATION) SCENARIO S SAME COST ESTIMATES AS FOR SCENARIO 1.

PEPLACE WATER & SEWER FROM AUZO TO AVZZ \$ 1927 /m

15,15,676				and the second	et/c.d
Ву		Date	 Project Name		
Check	ed	Date			
Page	7	of	 Project No		

APPENDIX C

Impact Study Community Consultation

HAMLET OF RESOLUTE BAY

1998/99 UTILIDOR UPGRADE PROJECT

IMPACT STUDY COMMUNITY CONSULTATION

SCOPE OF WORK

- Review of Existing Documentation
- Complete Site Investigation of Utilidor to Update Latest Reported Information (UMA 1996)
- Review Utilidor Operations and Identify Concerns
- Complete an Assessment of the Hydraulic and Thermal Capacity of the System to meet 20 Year Design Requirements
- Complete an Impact Study to Develop an Understanding of Potential Environmental Effects of Sewage Discharge to Resolute Bay
- Develop a List of Utilidor Upgrades Required to meet the Hamlet's 20 Year Needs
- Develop a Plan and Cost Estimate for System Upgrades

IMPACT STUDY

SCOPE OF WORK

 Task 1 - Background Review and Consultation

If Required Proceed

- Task 2 Data Collection and Field Assessment
- Task 3 Data Assessment and Reporting

IMPACT STUDY

TASK 1 - BACKGROUND REVIEW AND CONSULTATION

- Review Relevant Sewage Treatment Reports, Designs, Licences, SNP Results, and Scientific Literature;
- Consult Government Agencies (i.e., Department of Fisheries and Oceans, Environment Canada, and Nunavut Water Board) to Determine Historical and Current Positions Relevant to Existing Legislation and Operations for the Community;
- Consult the Community of Resolute Bay Regarding the Current Sewage Disposal Operations and the Needs and Requirements of an Impact Study;
- Identify Regulatory and Licence Performance Requirements for Discharged Effluent; and
- Proceed to Task 2, if Required

IMPACT STUDY

POTENTIAL IMPACTS OF SEWAGE WASTE DISCHARGE TO THE MARINE ENVIRONMENT 1

Organic Matter: Organic compound degradation may reduce the

dissolved oxygen concentration of a receiving marine

environment.

Settleable Solids: Benthic community structure may be altered due to

particle size change and/or anaerobic conditions as a

result of organic sediment decay.

Inorganic Nutrients: Increased levels of nitrogen and phosphorous could

increase primary production and therefore decrease

dissolved oxygen levels at or near sediments.

Pathogenic Organisms: Receiving environment may be subjected to disease-

causing bacteria or viruses.

Residual Chlorine: Chlorine within discharged water may be toxic to fish

if levels are high enough.

Suspended Solids: An increase in turbidity may alter fish behaviour and

available light for primary production.

Floatables: Slowly degradeable materials that may be

aesthetically offensive.

Department of Indian Affairs and Northern Development 1987. Sewage waste Disposal to the Arctic Marine Environment. Environmental Studies No. 55. Stanley Associates Engineering Ltd.

IMPACT STUDY

PREVIOUSLY IDENTIFIED ISSUES 1

- Complience with the NWT Health Act as it relates to the Discharge of Untreated Sewage to the Ocean Environment
- Complience with the Federal Fisheries Act as it Relates to the Disposal of a Deleterious Substance
- 1 Resolute Bay, NWT, Water and Sewer Facilities Investigations, Final Report. 1996. UMA Engineering Ltd.

IMPACT STUDY

COMMUNITY CONSULTATION

- Discuss with the Hamlet of Resolute Bay Waste Disposal System;
- Identify Historical and Current uses of the Marine Area where Discharge Occurs
- Identify Environmental Concerns, if any, Regarding the Current Disposal System; and
- Identify any Significant Changes to the Area from Past to Present.

19 15		N 74
	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

* 3/4" bleed into sewer, 0.00525 m^3/s