

Volume 2 - Water System Building Assessment

Final Report - Revision 1
May, 1999

Volume 2 - Water System Building Assessment Resolute Bay, NT

Public Works & Service - GNWT Northwest Territories

98-5748-01-01

Submitted by

Dillon Consulting Limited

R:\PROJECTS\FINAL\985748\Text\Reports\Volumes\Volume 2.wpd

		TABLE OF CONTENTS
		Page No.
1.0	INTRO	DUCTION
	1.2	Scope of work
2.0	EXIST 2.1	ING DATA REVIEW
	2.2 2.3	Population Projection
	2.4 2.5	System Deficiencies
3.0	STOR	AGE TANK ASSESSMENT
4.0	UPGRA	ADE REQUIREMENTS
	4.2	Summary
REFE	RENCES	18
APPE	IDICES	
Appen	dix A -	Pipe Network Model Results

Appendix B - Cost Estimate Data

Appendix C - Impact Study - Community Consultation

1.0 INTRODUCTION

1.1 General

The Hamlet of Resolute Bay is serviced by a water supply system that uses a utilidor system to deliver water to houses and commercial users, and collect the sewage from these users. The water supply and sewage disposal systems are comprised of several components, namely:

- The raw water source known as Char Lake
- The Char Lake pumphouse
- The water supply line from the Char Lake pumphouse to the Water Treatment Plant (WTP)
- The utilidor system that is comprised of the water distribution system and the sewage collection system
- The Sewage Treatment Plant
- The sewage outfall.


The above components are shown in Figure 1.1 and will be described in more detail in the body of the report. Previous studies (UMA 1996) assessed each of the system components for condition, expected remaining life and required remedial action to be undertaken to extend the current facility life to 20 years. The results of this study indicated that in general the facility components are well maintained, and will meet the Hamlet's requirements for the next 20 years. The exception is the utilidor system that has experienced a number of failures over the past 5 to 7 years. The increase in failures is of significant concern to the utilidor maintainers and the Hamlet Council.

The GNWT, Department of Municipal and Community Affairs (MACA) owns the assets of the water and sewer systems. The Department of Public Works & Services (DPW&S) completes the operation and maintenance on the systems. The GNWT has identified the transfer of the community assets to the communities as a priority. In this vein, the GNWT intends to transfer the water and sewer system to the Hamlet of Resolute Bay. Prior to the transfer of the facilities, the systems are to be upgraded to meet the requirements of the Hamlet for the 20 year design life. Dillon was retained to review the system in this light, and develop an upgrading plan for the sewage and water systems assuming that the piped distribution system will be maintained in the community. Three reports were produced, namely;

Volume 1 - Utilidor Upgrade

Volume 2 - Water System Building Assessment

Volume 3 - Sewage treatment and Future System Expansion

1.2 Scope of work

The scope of work for this volume relates to the water system buildings, namely the Char Lake Pump House, the Signal Hill Water treatment Plant, and the Water Storage Tank. A summary of the scope of work is described below:

- Complete a review of the existing documentation.
- Complete a site investigation to update the previous work.
- Debrief the system operator on his concerns, and review the system operator's records of the system.
- Develop a list of required upgrades to be completed to have the system meet the Hamlet's system needs for the next 20 years and complete cost estimates for these upgrades.

2.0 EXISTING DATA REVIEW

2.1 Community Data

Resolute Bay is located on the south coast of Cornwallis Island and is about 1,660 km north east of Yellowknife and 1,550 Km north west of Iqaluit. The community is located at latitude N74-43-01 and longitude W94-58-10 (NAV CANADA). The average daily minimum and maximum temperatures for July and January are 1.3°C & 6.8°C and -35.8°C & -28.5°C respectively. An average of 50.4 mm of rainfall and 97.3 cm of snowfall for a total of 139.6 mm of precipitation is received each year (Environment Canada).

The community was founded in the early 1970's when it was decided to relocate the existing community from the beach area near the existing south camp to the present location. The development of the community and the initial infrastructure was based on a projected population of some 1,500 people. The expected growth was not realized and the current population is slightly less than 200 persons.

2.2 Population Projection

To be able to develop the system requirements it is necessary to determine the design flow rates for the piped system. The flow rates are based on the population of the community and the expected per capita consumption. The historic populations and per capita water use rates are based on the records found at the Hamlet's office, MACA's records and in previous reports (UMA, 1993, 1996). The population projections are based on the data supplied by the Bureau of Statistics. These are as follows:

Table 2.2.1
Population Projects from the Bureau of Statistics

Year	Population
1991	171
1992	174
1993	178
1994	181
1995	184
1996	197
2001	224
2006	238

The consumption is based on the formula developed by MACA (MACA, 1986) and on the historic consumption of the community. The formulae for predicting water consumption of communities with piped water distribution and populations less than 2,000 people is:

Daily Consumption =
$$225*(1 + 0.00023 * (Population)) * Population$$

Based on this formula and the population projections shown in Table 2.2.1, the projected annual consumption for the Hamlet of Resolute Bay for the next 20 years can be predicted. The system uses bleed water from the watermains to provide freeze protection to the sewermains. The bleed water is not metered. The total water pumped into the system is metered, and the individual consumers are metered. The resultant of the water supplied to the system and the metered volume of the consumers is the total of the system losses. The total system losses include the bleed water, losses due to watermain breaks, and water losses within the system. Prior to 1996, this value was fairly constant at approximately 38,000 m³ per year. As a result of increased problems with the system the amount of bleed water has increased in 1996 to 52,000 m³ and again in 1997 to 56,000 m³. At the time of reporting, the Hamlet was projecting an annual total consumption for 1998/99 of 55,000 m³ of which 45,000 m³ would be the bleeders and other system losses. For the purposes of water consumption projections the value of 45,000 m³ of bleed water and other system losses is used. The projected annual consumption is shown in Table 2.2.2.

2.3 System Description

The following is a description of the complete water and sewage system from the up gradient intake to the down gradient sewer outfall. Figure 2.1 illustrates this system in a schematic diagram.

Char Lake

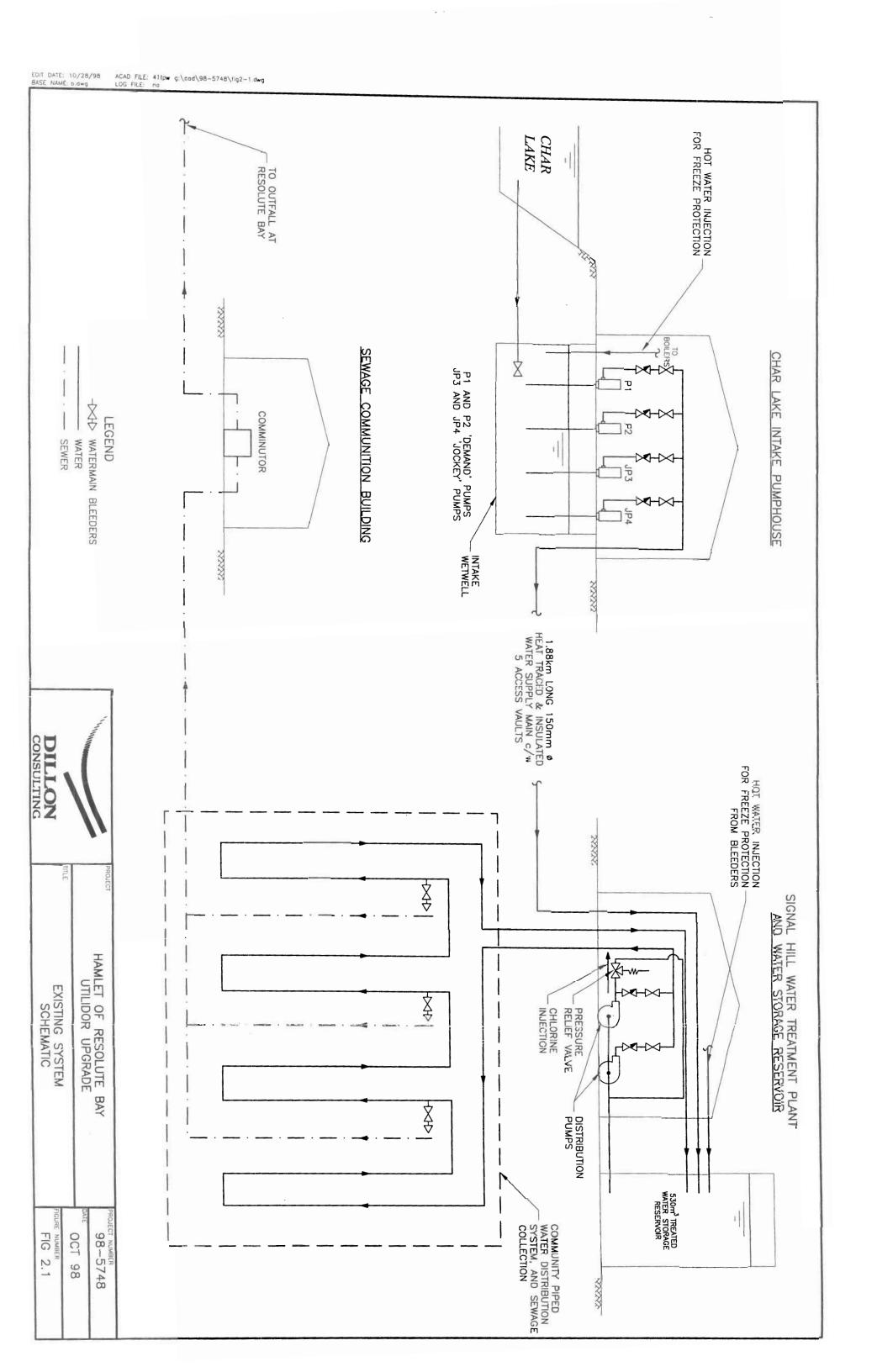

- A ductile iron gravity intake line extends from Char Lake to wet wells in the Char Lake Pump House.
- Char Lake Pump House tempers the water using a hot water injection into the wet wells. Diesel
 fired boilers are used to heat the injection water. The tempered water is pumped through the 150
 mm heat traced and insulated HDPE Water Supply Main to the Water Storage Reservoir at the
 Water Treatment Plant (WTP).
- Two jockey pumps and two demand pumps are operated in the Char Lake Pump House.
 Typically one jockey pump operates 24 hours a day, with one demand pump coming on for less than one hour per day. The second jockey pump and second demand pump are on-line standby pumps and are brought on-line automatically if the first pump fails.
- The Char Lake Pump House pumps are controlled from a level controller located in the Water Storage Reservoir. The controller has a high level alarm, jockey pump off, jockey pump on, demand pump off, demand pump on, and low level alarm control levels.
- A standby diesel engine generator is situated in the Char Lake Pump House in case of loss of power to the Pump House.

Table 2.2.2

Population and Consumption Projections

Consumption Consumption

				:	Consumption	Consumption	Distant	Total	Total	
Design Year	Year	Population	Growth Rate	Icd	Annual (historic)	Annual (MACA)	Annual	Volume (Historic)		(MACA)
	1991	171		145	9,050,175		38,400,000	47,450,175		
	1992	174	0.0175	145	9,208,950		38,400,000	608		
	1993	178	0.0230	145			38,400,000	47,820,650		
	1994	181	0.0169	145			38,400,000	47,979,425		
	1995	184	0.0166	145	9,738,200		38,400,000	48,138,200		
	1996	197	0.0707	145	10,426,225	16,911,678	51,868,684	62,294,909		68,780,362
	1997	205	0.0406	145	10,849,625	17,629,425	55,801,509	66,651,134		73 430 934
	1998	209	0.0195	145	11,061,325	17,989,204	45,000,000	56,061,325		თ
0	1999	214	0.0239	145	11,325,950	18,439,779	45,000,000	56,325,950		
	2000	221	0.0327	145	11,696,425	19,072,170	45,000,000	56,696,425		
2	2001	224	0.0136	145	11,855,200	19,343,762	45,000,000	56,855,200		64,343,762
ω	2002	227	0.0134	145	12,013,975	19,615,693	45,000,000	57,013,975		
4	2003	228	0.0044	145	12,066,900		45,000,000	57,066,900		
თ .	2004	233	0.0219	145	12,331,525		45,000,000	57,331,525		
თ	2005	237	0.0172	145	12,543,225		45,000,000	57,543,225		
7	2006	238	0.0042	145	12,596,150		45,000,000	57,596,150		
8	2007	239	0.0042	145	12,649,298	20,707,204	45,000,000	57,649,298		
9	2008	240	0.0042	145	12,702,671	20,799,148	45,000,000	57,702,671		65,799,148
÷	2009	241	0.0042	145	12 756 200	20.889.646	48,000,000	37 700 200		
11	2010	242	0.0042	145	12,810,093	20,984,318	45,000,000	57,810,093	ω	
12	2011	243	0.0042	145	12,864,144	21,077,548	45,000,000	57,864,144	4	66,
13	2012	244	0.0042	145	12,918,423	21,171,212	45,000,000	57,918,423	ω	66,
14	2013	245	0.0042	145	12,972,931	21,265,310	45,000,000	57,972,931	_	66
15	2014	246	0.0042	145	13,027,669	21,359,846	45,000,000	58,027,669	W	
16	2015	247	0.0042	145	13,082,638	21,454,821	45,000,000	58,082,638	w	66,454,821
17	2016	248	0.0042	145	13,137,839	21,550,239	45,000,000	58,137,839		66,550,239
18	2017	249	0.0042	145	13,193,273	21,646,100	45,000,000	58,193,273		66,646,100
19	0			1/5	ر د	2 1 2 2 1		7000		66 742 407

1.2 Scope of work

The scope of work for this volume relates to the water system buildings, namely the Char Lake Pump House, the Signal Hill Water treatment Plant, and the Water Storage Tank.. A summary of the scope of work is described below:

- Complete a review of the existing documentation.
- Complete a site investigation to update the previous work.
- Debrief the system operator on his concerns, and review the system operator's records of the system.
- Develop a list of required upgrades to be completed to have the system meet the Hamlet's system needs for the next 20 years and complete cost estimates for these upgrades.

2.0 EXISTING DATA REVIEW

2.1 Community Data

Resolute Bay is located on the south coast of Cornwallis Island and is about 1,660 km north east of Yellowknife and 1,550 Km north west of Iqaluit. The community is located at latitude N74-43-01 and longitude W94-58-10 (NAV CANADA). The average daily minimum and maximum temperatures for July and January are 1.3°C & 6.8°C and -35.8°C & -28.5°C respectively. An average of 50.4 mm of rainfall and 97.3 cm of snowfall for a total of 139.6 mm of precipitation is received each year (Environment Canada).

The community was founded in the early 1970's when it was decided to relocate the existing community from the beach area near the existing south camp to the present location. The development of the community and the initial infrastructure was based on a projected population of some 1,500 people. The expected growth was not realized and the current population is slightly less than 200 persons.

2.2 Population Projection

To be able to develop the system requirements it is necessary to determine the design flow rates for the piped system. The flow rates are based on the population of the community and the expected per capita consumption. The historic populations and per capita water use rates are based on the records found at the Hamlet's office, MACA's records and in previous reports (UMA, 1993, 1996). The population projections are based on the data supplied by the Bureau of Statistics. These are as follows:

Table 2.2.1
Population Projects from the Bureau of Statistics

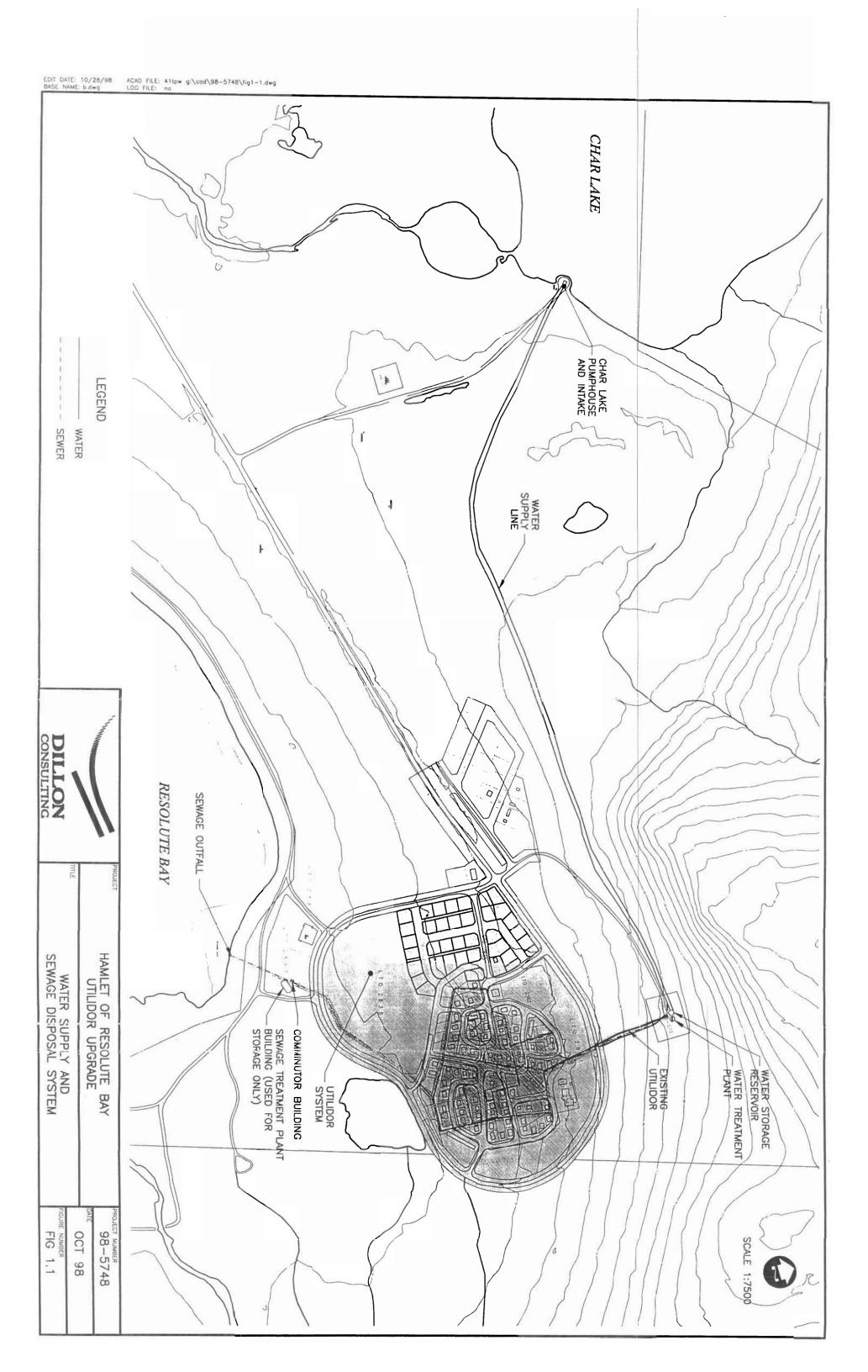
Year	Population
1991	171
1992	174
1993	178
1994	181
1995	184
1996	197
2001	224
2006	238

The consumption is based on the formula developed by MACA (MACA, 1986) and on the historic consumption of the community. The formulae for predicting water consumption of communities with piped water distribution and populations less than 2,000 people is:

Based on this formula and the population projections shown in Table 2.2.1, the projected annual consumption for the Hamlet of Resolute Bay for the next 20 years can be predicted. The system uses bleed water from the watermains to provide freeze protection to the sewermains. The bleed water is not metered. The total water pumped into the system is metered, and the individual consumers are metered. The resultant of the water supplied to the system and the metered volume of the consumers is the total of the system losses. The total system losses include the bleed water, losses due to watermain breaks, and water losses within the system. Prior to 1996, this value was fairly constant at approximately 38,000 m³ per year. As a result of increased problems with the system the amount of bleed water has increased in 1996 to 52,000 m³ and again in 1997 to 56,000 m³. At the time of reporting, the Hamlet was projecting an annual total consumption for 1998/99 of 55,000 m³ of which 45,000 m³ would be the bleeders and other system losses. For the purposes of water consumption projections the value of 45,000 m³ of bleed water and other system losses is used. The projected annual consumption is shown in Table 2.2.2.

2.3 System Description

The following is a description of the complete water and sewage system from the up gradient intake to the down gradient sewer outfall. Figure 2.1 illustrates this system in a schematic diagram.


Char Lake

- A ductile iron gravity intake line extends from Char Lake to wet wells in the Char Lake Pump House.
- Char Lake Pump House tempers the water using a hot water injection into the wet wells. Diesel
 fired boilers are used to heat the injection water. The tempered water is pumped through the 150
 mm heat traced and insulated HDPE Water Supply Main to the Water Storage Reservoir at the
 Water Treatment Plant (WTP).
- Two jockey pumps and two demand pumps are operated in the Char Lake Pump House.
 Typically one jockey pump operates 24 hours a day, with one demand pump coming on for less than one hour per day. The second jockey pump and second demand pump are on-line standby pumps and are brought on-line automatically if the first pump fails.
- The Char Lake Pump House pumps are controlled from a level controller located in the Water Storage Reservoir. The controller has a high level alarm, jockey pump off, jockey pump on, demand pump off, demand pump on, and low level alarm control levels.
- A standby diesel engine generator is situated in the Char Lake Pump House in case of loss of power to the Pump House.

Table 2.2.2

Population and Consumption Projections

202	19	18	17	16	15	14	13	12	11	10	9	8	7	0	ζħ	4	ω	2	_	0										Design Year	
6102	2018	2017	2016	2015	2014	2013	2012	2011	2010	2009	2008	2007	2006	2005	2004	2003	2002	2001	2000	1999	1998	1997	1996	1995	1994	1993	1992	1991		Year	
6	250	249	248	247	246	245	244	243	242	241	240	239	238	237	233	228	227	224	221	214	209	205	197	184	181	178	174	171		Population	
E S	0.0042	0.0042	0.0042	0.0042	0.0042	0.0042	0.0042	0.0042	0.0042	0.0042	0.0042	0.0042	0.0042	0.0172	0.0219	0.0044	0.0134	0.0136	0.0327	0.0239	0.0195	0.0406	0.0707	0.0166	0.0169	0.0230	0.0175			Growth Rate	
	145	145	145	145	145	145	145	145	145	145	145	145	_	145	145	145	145		145	145	145	145	145	145	145	145	145	145		Consumtion lcd	
	13,248,941	13,193,273	13,137,839	13,082,638	13,027,669	12,972,931	12,918,423	12,864,144	12,810,093	12 755 269	12,702,671	12,649,298	12,596,150	12,543,225	12,331,525	12,066,900	12,013,975	11,855,200	11,696,425	11,325,950	11,061,325	10,849,625	10,426,225	9,738,200	9,579,425	9,420,650	9,208,950	9,050,175	(historic)	Annual	Consumption
	21,742,407	21,646,100	21,550,239	21,454,821	21,359,846	21,265,310	21,171,212	21,077,548	20 984,318	20 801,510	20,799,148	20,707,204	20,615,684	20,524,587	20,160,576	19,706,413	19,615,693	19,343,762	19,072,170	18,439,779	17,989,204	17,629,425	16,911,678						(MACA)	Annual	Consumption
45 000,000	45,000,000	45,000,000	45,000,000	45,000,000	45,000,000	45,000,000	45,000,000	45,000,000	45,000,000	45,000,000	45,000,000	45,000,000	45,000,000	45,000,000	45,000,000	45,000,000	45,000,000	45,000,000	45,000,000	45,000,000	45,000,000	55,801,509	51,868,684	38,400,000	38,400,000	38,400,000	38,400,000	38,400,000		Bleeders Annual	
52 (QA 54)	58,248,941		58,137,839	58,082,638	58,027,669	57,972,931	57,918,423	57,864,144	57,810,093	57 '50 200	57,702,671	57,649,298	57,596,150	57,543,225	57 331,525	57,066,900	57,013,975	56,855,200	56,696,425	56,325,950	56,061,325	66,651,134	62,294,909	48,138,200	47 979,425	47,820,650	47,608,950	47,450,175	(Historic)	Volume	Total
96 839 193	66,742,407	646	66,550,239	66,454,821	66,359,846	66,265,310	66,171,212	66,077,548	65,984,318	65,891,519	65,799,148	65,707,204	65,615,684	65,524,587	65,160,576	64,706,413	64,615,693	64,343,762	64,072,170	439	62,989,204	73,430,934	68,780,362						(MACA)	Volume	Total
172 283	123	123	4					123	_			123,288						123,288		123,288			142,106	131,885	131,450	131,015	130,435	130,000	(Historic)	Average	Daily
183.121	182,856	182,592	182,329	182,068	181,808	181,549	181,291	181,034	180,779	180 525	180,272	180,020	179,769	179,519	178 522	177,278	177,029	176,284	175,540	173,808	172,573	201,181	188,439						(MACA)	Average	Daily

Water Treatment Plant

- The Water Storage Reservoir is a steel 530 m³ vertical steel tank constructed above grade. The
 tank is insulated and is freeze protected by the use of hot water injection.
- The Water Treatment Plant uses diesel fired boilers to provide tempering water for the Water Storage Reservoir hot water injection.
- The distribution water to the community is chlorinated using calcium hypochloride through injection pumps.
- The WTP uses pumps to provide distribution flow. The pressure is maintained at approximately 170 kPa (25 psi) at the WTP (October 1998 reading), and approximately 600 kPa (85 to 90 psi) at the low end of distribution system. The difference between the discharge pressure and the low end main pressure is the result of the static head difference in the mains due to elevation changes. The supply pump runs continuously at a constant rate of 1,700 rpm. The flow to the distribution mains is not regulated. Whatever water is not used within the distribution system is returned to the reservoir through the 150 mm return line.

Utilidor

- The distribution system is a looped HDPE insulated pipeline. The pipes are mostly 200 mm in diameter with two sections of 150 mm supply line and a 150 mm return line.
- Water is supplied to users (approximately 60 buildings) through a 20 mm copper heat traced (Stage 1A only) and insulated services. A return service is also installed from each building to the water main. Flow is moved continuously through the supply and return services by a small recirculation pump (1/4 h.p.) located in each building.
- The return water is directed back to the Water Storage Reservoir.
- The building sewage is collected using 100 mm insulated HDPE sewers to the sewer mains.
- The water and sewer services are in a common insulated jacket. The latent heat from the recirculation of the water services is used to freeze-protect the sewer service.
- Bleed water from the water mains is also used to provide freeze protection to the sewer mains during power failures when the water service recirculation pump is not operating
- The sewer mains are gravity run 150 mm insulated HDPE. These are installed in the same trench
 as the watermain.
- The sewermains and watermains are accessed through common concrete cast in place Access Vaults (AVs). The AVs contain all valves, hydrants, pipe connections and sewer clean outs.
- The sewer main is freeze-protected by the use of bleed water from the watermain to the sewermain. The bleeders are unmetered and located in the AVs.

Sewage Discharge

- The sewer mains join at the low end of the community and flow by gravity to a community building.
- The sewage is macerated in this facility and discharged by gravity through an outfall pipe to the

shore line of the marine environment.

There have been several changes to the system since the original design. Some of these changes have been incorporated into the O&M manuals. The changes recorded during the site investigation completed on October 20 to 22, 1998 are from the discussions with the DPW Maintainer, Mr. Neil MacDonald, the Hamlet Administration, Mr. Dan Leman & Mr. Ralph Alexander, and from the existing documentation are as follows:

- A heat trace has been installed in the Water Supply Line from the Char Lake Pump House to the WTP in 1993. Five access vaults have been installed along this line as well. (Record Drawings)
- Two jockey pumps have been installed in the Char Lake Pump House.
- The utilidor heat trace system was abandoned in 1984 due to corrosion problems. (UMA, 1996)
- All electrical devices and service were removed from the Access Vaults in 1998. This includes
 the sump pumps, heat trace, and AV heaters. (N. Macdonald)
- The line to Block 1 is abandoned due to a freeze-up prior to 1986. The Health Centre water service currently uses the abandoned water main as a carrier pipe. The other buildings in this area are connected to the water and sewer mains between AV2 & 3. (N. MacDonald) The sewer service to the Health Centre is still in operation (D. Leman).
- The Hydrant in AV 20 was removed prior to 1986.
- AV 15 was never installed during the original construction. (N. MacDonald)
- A new hydrant was installed in 1998 in AV 13, (N. MacDonald)
- The valves in AV3 were replaced in 1998. These are the valves that were indicated to leak in the UMA 1996 report, but were incorrectly identified as AV2 valves in the UMA report (N. MacDonald).
- A new valve was installed in AV30 in 1998. This allows the section of main between AV21 and AV30 to be shut off. (N. MacDonald)
- The ventilation systems for the WTP and Char lake Pump House have been disabled and are blocked up in the winter. Combustion air for the facility burners is supplied through building envelope infiltration. It is reported by the DPW Maintainer that the buildings are very leaky and have poor insulation.

With respect to the building systems there are no known changes made from the original construction other than the changes noted above. The complete system description and components is found in three sets of O&M Manuals. Copies of these manuals are stored in the community, DPW&S Iqaluit, and DPW&S Yellowknife.

2.4 System Deficiencies

The previous assessment of the facility as a whole was completed by UMA and documented in a report dated 1996. The report identified a number of concerns with the system, some of which have been addressed through the maintenance of the system while others are still outstanding. Table 2.4.1 lists the

deficiencies noted in the UMA report, and the changes that have occurred with respect to these deficiencies since the writing of the UMA report.

Table 2.4.1
Reported System Deficiency Update

	Deficiency Noted in 1996	Current Status
1.	Building ventilation may not meet code requirements.	The building envelopes are poor, and there is significant leakage of air into the building. The ventilation system has been disconnected to prevent the buildings from freezing. These systems can be re-instated if the building envelope is improved.
2.	Wet well in Char Lake pump house requires confined entry safety equipment to access.	No action taken.
3.	Inadequate safety equipment. (First Aid kit and fire extinguisher)	Fire extinguishers installed. First aid kits ordered but not yet received in Hamlet
4.	The heat trace for the water supply line must be manually turned on when there is a no flow alarm on this line.	No action required. The no flow alarm is a major alarm, and the operator must go to the Char Lake Pump House to respond to the alarm. The no flow alarm only occurs if the Water Supply Line is frozen, which is very infrequent. The DPW&S Maintainer does not see any reason to make changes to the control system on this issue.
5.	The lighting level in the Char Lake Pump House is insufficient.	No action taken.

2.5 Occupational Health and Safety

Occupation Health and Safety Act (OH&S) regulates the entry into confined spaces. The AVS are clearly considered to be a confirmed entry location and require the appropriate safety requirements. These requirements include:

- A metre to detect and monitor gases in the AV during the entry into this space. Gases of concern
 are methane from the sewage, and for low oxygen levels. The maintainers are not supplied with
 these meters.
- Safety harness and extraction equipment. These devises are required to remove a person from the AV in the event of injury or if the person becomes unconscious. This equipment is required to be on hand and used for entry into the AVS

3.0 STORAGE TANK ASSESSMENT

The water storage tank has an approximate capacity of 530 m³. This volume is to be compared to the volume of storage required to meet the Hamlet's requirements over the next 20 years. MACA provides criteria for the storage volumes required in municipalities. The storage is required when the raw water source is 3.2 km (2 miles) from the town and is to be sized to meet the following demands;

- Interruption of supply from the raw water source. The intent of the storage is to allow for continued service to prevent distribution mains freeze up while the repairs to the supply can be made. The criteria indicate that the emergency supply should be sized to meet the communities needs for the length of a maximum probable interruption. This is difficult quantify, and MACA has in the past used two days storage.
- Fire demand,
- Daily balancing of the water supply. This allows the supply from the raw water source to be pumped at the average daily consumption, and the tank is used to meet the peak daily demand.

The following is the requirement for each of these demands.

Storage During Interruption of Water Supply

MACA has set that two day of average consumption is required for storage when the raw water supply is more than 3.2 kilometres from the community. Based on this criteria, the year 20 average daily deamnd for Resolute Bay is 366,000 litres (366 m³).

Fire Flow Requirements

The fire flow requirements for a piped distribution system is set by MACA at 3,600 l/min for 2 hours. This equates to a total storage of;

 $3,600 \text{ l/min } \times 60 \text{min/hr } \times 2 \text{hrs} = 432,000 \text{ litres or } 432 \text{ m}^3$

Daily Balancing

The difference between the average day, and the peak day water consumption is the required daily balancing to be provided by the water storage tank. A peaking factor of 2.25 is used for this calculation. The amount of water that is used for bleeders is not considered in this calculation since the bleeder rate is relatively constant on a day to day basis. Therefore the peak day storage requirement in year 20 is;

Peak day - average day = 74,800 litres or 74.8 m³

Total Required Storage

MACA has in the past calculated the maximum storage, and the minimum storage requirements using the above values. This is based on the following;

- The maximum storage is the sum of all of the above values, namely
 Emergency Storage + Fire Flow + Daily Balancing = 873,000 litres or 873 m³
- 2) The minimum storage requirement is the greater of;
 - Emergency Storage + Daily Balancing = 440,800 litres, or 440.8 m³
 - B) Fire Flow Storage + Daily Balancing = 506,800 litres, or 506.8 m³

The rational for criteria 2) is based on the assumption that it would be unlikely for the supply system to be down and the same time as a fire flow condition. The risk of this event has not been evaluated for the community of Resolute Bay, and is beyond the current scope of work. The fire marshal of the NWT has in the past allowed for the fire storage and the emergency storage to be considered as part of the same storage volume. At this time it is unknown what the position of the Fire Marshall of Nunavut will be on this matter. It is noted that since 1975 there has not been a period of time when the supply was disrrupted when there was a fire.

Based on the above, the available storage of 530 m³ meets the 20 year requirements of the community if the scenario 2) is used. However, this should be revisited once the Fire Marshal of Nunavut is fully established.

4.0 UPGRADE REQUIREMENTS

The water and sewage system in Resolute Bay has previously been assessed by UMA, and the findings of that assessment are in the 1996 report. Several of the recommendations from the UMA report that relate to the building have been completed, while others are outstanding. For the purpose of providing an overall picture of the current upgrading requirements, the outstanding issues relating to the building from the UMA report are brought forward. The following sections describe the system upgrade requirements, the alternatives to the upgrades and the recommendations for the upgrades.

Char Lake Pumphouse

Building Envelope is Poor

The vapour seal on the building and insulation value of the building need to be upgraded to improve the overall building envelope performance. There are two approaches to this upgrade;

- Add insulation, air barrier and cladding to the outside of the building. This will require an
 structural assessment of the building frame to determine if the rigid frame of the building meets
 the structural requirements for the additional load.
- Add insulation to the inside of the building using spray foam.

Typically the external construction is the less expensive approach. As this would require an assessment of the structure, which is beyond the current scope of work. The use of the internal spray foam will be used for costing purposes. The cost to complete this work typically runs at \$150/m² of building wall and roof space. The Char Lake Pump house is approximately 9.7 m x 7.9 m (32' x 26'). The estimated cost to complete the insulation work is \$35,000 to \$40,000.

Wet Well

A safety harness and retrieval device is required in the wet well. Safety harnesses cost approximately \$200 per harness. A safety lifting device is approximately \$5,000.

Lighting Levels

The lighting in the pump house is insufficient for a work space. The wet well also needs a light. Currently a trouble light is used in this space to allow the operator access to the wet well. The lighting levels can be increased for an estimated \$5,000.

First Aid Kit

A first aid kit needs to be installed in the pump house. These kits typically cost \$100 to \$200.

WTP Pump House

Building Envelope is Poor

The vapour seal on the building and insulation value of the building need to be upgraded to improve the overall building envelope performance. There are two approaches to this upgrade;

- Add insulation, air barrier and cladding to the outside of the building. This will require an
 structural assessment of the building frame to determine if the rigid frame of the building meets
 the structural requirements for the additional load.
- Add insulation to the inside of the building using spray foam.

Typically the external construction is the less expensive approach. This would require an assessment of the structure, which is beyond the current scope of work. The use of the internal spray foam will be used for costing purposes. The cost to complete this work typically runs at \$150/m² of building wall and roof space. The WTP Pump House is approximately 25 m x 15 m (80' x 50'). The estimated cost to complete the insulation work is \$105,000 to \$120,000.

First Aid Kit

A first aid kit needs to be installed in the pump house. These kits typically cost \$100 to \$200.

Table 4.1 shows a summary of the possible upgrades for the system.

Table 4.1 Summary of Remedial Work

Component	Deficiency	Remedial Action	Estimated Costs
Char Lake Pump House	Building envelope is poor.	Install insulation, vapour barrier, and cladding.	\$ 40,000
	Wet well does not have confined entry provisions.	Provide safety harness and retrieval device.	6,000
	Light levels are insufficient.	Install new lighting bank.	5,000
	Requires First Aid kit.	Install First Aid kit.	200
WTP Pump House	Building envelope is poor.	Install insulation, vapour barrier, and cladding.	120,000
	Requires First Aid kit.	Install First Aid kit.	200

4.1 Prioritization

The previous section developed some \$175,000 in upgrades that could be completed to the water and sewer system. Not all of these upgrades carry the same importance nor are all necessary in the near future unless conditions change. Some require immediate attention, others may not be completed for several years, while others can be omitted without adversely effecting the system. To prioritize the upgrading requirement, a set of criteria is required. The set has been developed for this system.

Table 4.2.1
Prioritization Rational

Priority	Description	Comments
1	Risk to Human Health Concerns	The maintenance for good health is a fundamental importance for the delivery of water and sewer services. These should be completed as soon as possible in the program.
2	Minimize risk of failure to the system	Work that can be under taken to reduce the potential future risk of the system is of high priority. These should be completed early in the program.
3	Reduce future emergency repair costs.	This is the basis for sound economic management of a system. A dollar spent on maintenance can save several dollars spend on emergency or more costly repairs. Should be scheduled in 1 to 5 year of program.
4	Reduce operating costs	The infusion of capital funds can make a system more efficient, and therefore reduce the future O&M costs. To be implemented at the discretion of the owner.

Table 4.2.2 Priority of Remedial Work

Component	Deficiency	Remedial Action	Priority
Char Lake Pump House	Building envelope is poor.	Install insulation, vapour barrier, and cladding.	4
	Wet well does not have confined entry provisions.	Provide safety harness and retrieval device.	1
	Light levels are insufficient.	Install new lighting bank.	1
	Requires First Aid kit.	Install First Aid kit.	1
WTP Pump House	Building envelope is poor.	Install insulation, vapour barrier, and cladding.	4
	Requires First Aid kit.	Install First Aid kit.	1

At the time of the final report, Public Works and Services were purchasing the required first aid and safety equipment. Once completed there would only be the requirement for improved lighting in the Char Lake pump house to be completed to address all the priority 1 items.

The completion of the items under priority 4 are not required to meet the communities long term needs, but may result in a reduction of the overall operating costs. The following analysis is based on rough estimates, but provides some insight into the expected cost savings from proceeding with the building insulation work. The detailed analysis of the life cycle costs for the improvements to the building envelop were not included in the projet scope.

Table 4.2.3

Cost Benefit Analysis - Pumphouse Insulation

Item	Char Lake Pump House	Signal Hill Pump House
Estimated annual fuel costs for heating with existing building envelop.	\$5,100	\$7,400
Estimated annual fuel costs for heating after insulation installation	\$3,600	\$5,300
Net savings on an annual basis	\$1,500	\$2,100
Amortized savings over 20 years at 8% interest	\$15,000	\$21,000
Amortized savings over 20 years at 6% interest	\$17,000	\$24,000
Amortized savings over 20 years at 4% interest	\$20,000	\$28,000
Cost of capital works	\$40,000	\$120,000
Net cost benefit at 6% interest over 20 Years	-\$23,000	-\$96,000

From the above analysis it can be seen that the insulation of the buildings is not cost effective over a 20 year analysis. The buildings are over 20 years old presently, and it would not be prudent to complete the above analysis over a period of time greater than 20 years.

4.2 Summary

The review of the water supply building indicates that the building are meeting the needs of the community, and are expected to meet the needs with normal operational maintenance for the next 20 years. Several items were identified as requiring some upgrading to meet current occupational health and safety requirements. It is understood by the author that these items will be addressed through the

operations division of Public Works and Services.

An analysis of proceeding with applying insulation to the buildings was completed, and shown to be not costs effective over a 20 year period. It is therefore recommended that this work not proceed.

The lighting in the Char Lake Pump House does not meet the needs of the operators. It is suggested that a upgrade to this system be completed within the next 5 years.

REFERENCES

Guidelines for the Investigation, Design, Construction and Remediation of Buried HDPE Sewer Systems in the Eastern Arctic, Agra Earth & Environmental, March 1996.

Construction of Water and Sewer Servicing Stage 1A - New Townsite, Resolute Bay, NWT, UMA, 1977

Report on Subsurface Soil Conditions for Proposed Sewage Treatment Plant, Water Reservoir and Pumphouse at Char Lake, Resolute Bay, NWT, UMA, 1975.

Report on Study of Pollution Control Systems, Resolute Bay, NWT, UMA, 1974.

Installation of Intake Pipe Char Lake, Resolute Bay, NWT, Underwater Specialists, 1976.

General Development Plan, Resolute Bay, NWT, UMA, December 1977.

1992 Sewer Rehabilitation Manhole 62 to 63, HBT Agra, November 16, 1992, James Anklewich, BSc, P. Eng.

Assessment of Sewer Collapse Problems, Iqaluit, NWT, Hardy BBT Limited, January 1990, Alan Hanna, M. A. Sc, P. Eng.

Department of Indian Affairs and Northern Development. 1987. Sewage Waste Discharge to the ArcticMarine Environment. Environmental Studies No. 55. Prepared by Stanley Associates Engineering Ltd.

Draft Report on Iqaluit Sewer Monitoring Program, Iqaluit, Northwest Territories, HBT Agra Limited, July 1993, Alan Hanna, M.A.Sc, P. Eng.

Draft Guidelines for the Remediation of Collapsed HDPE Pipes in Iqaluit, HBT Agra Limited

Ellis, D.V. and R. T. Wilce. 1961. Arctic and subarctic examples of intertidal zonation. Arctic 14:224-235.

Happy Valley Sewer Main Collapse Inspection, HBT AGRA, February, 1992, James Anklewich, BSc, P. Eng.

UMA Engineering Ltd. 1996. Resolute Bay, NWT Water and Sewer Facilities Investigation. Final Report. Report prepared for the Government of the Northwest Territories, Public Works and Services.