

Municipality of Sanikiluaq

ATTN: MOSES NOVALINGA / KENNY

PEARCE

PO Box 157

Sanikiluag NU X0A 0W0

Date Received: 24-JUL-14

Report Date: 11-AUG-14 14:41 (MT)

Version: FINAL

Client Phone: 867-266-7900

Certificate of Analysis

Lab Work Order #: L1492043

Project P.O. #: NOT SUBMITTED

Job Reference: SANIKILUAQ WWTP

C of C Numbers: Legal Site Desc:

Craig Riddell Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

L1492043 CONTD.... PAGE 2 of 6 Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1492043-1 SANI 2 (WASTE DISPOSAL GROUND -	STREAM)						
Sampled By: CLIENT on 23-JUL-14 @ 11:30	STREAM)						
Matrix: DUMP STREAM							
Miscellaneous Parameters							
Ammonia, Total (as N)	<0.010		0.010	mg/L		25-JUL-14	R2899368
Conductivity	504		20	umhos/cm		26-JUL-14	R2898912
Fecal Coliforms	9300			MPN/100mL		28-JUL-14	R2900631
Mercury (Hg)-Total	<0.000020		0.000020	mg/L	28-JUL-14	28-JUL-14	R2900031
, , ,				_	31-JUL-14	31-JUL-14	
Oil and Grease, Total	<2.0		2.0	mg/L			R2907090
Phenols (4AAP)	<0.0010		0.0010	mg/L	29-JUL-14	29-JUL-14	R2901191
Phosphorus (P)-Total	<0.010		0.010	mg/L		30-JUL-14	R2902453
Sulfate	37.6		0.50	mg/L		25-JUL-14	R2899779
Total Suspended Solids	<5.0		5.0	mg/L		28-JUL-14	R2901609
pH	7.93		0.10	pH units		26-JUL-14	R2898912
Total Metals by ICP-MS	0.0050		0.0050		00 110 44	00 410 44	D0040000
Aluminum (Al)-Total	<0.0050		0.0050	mg/L	08-AUG-14	08-AUG-14	R2912990
Antimony (Sb)-Total	0.00045 0.00023		0.00020 0.00020	mg/L	08-AUG-14 08-AUG-14	08-AUG-14 08-AUG-14	R2912990 R2912990
Arsenic (As)-Total Barium (Ba)-Total	0.00023		0.00020	mg/L mg/L	08-AUG-14 08-AUG-14	08-AUG-14 08-AUG-14	R2912990 R2912990
Beryllium (Be)-Total	<0.0020		0.00020	mg/L	08-AUG-14	08-AUG-14	R2912990
Bismuth (Bi)-Total	<0.00020		0.00020	mg/L	08-AUG-14	08-AUG-14	R2912990
Boron (B)-Total	0.113		0.00020	mg/L	08-AUG-14	08-AUG-14	R2912990
Cadmium (Cd)-Total	<0.000010		0.000010	mg/L	08-AUG-14	08-AUG-14	R2912990
Calcium (Ca)-Total	46.4		0.10	mg/L	08-AUG-14	08-AUG-14	R2912990
Cesium (Cs)-Total	<0.00010		0.00010	mg/L	08-AUG-14	08-AUG-14	R2912990
Chromium (Cr)-Total	<0.0010		0.0010	mg/L	08-AUG-14	08-AUG-14	R2912990
Cobalt (Co)-Total	<0.00020		0.00020	mg/L	08-AUG-14	08-AUG-14	R2912990
Copper (Cu)-Total	0.00469		0.00020	mg/L	08-AUG-14	08-AUG-14	R2912990
Iron (Fe)-Total	<0.10		0.10	mg/L	08-AUG-14	08-AUG-14	R2912990
Lead (Pb)-Total	<0.000090		0.000090	mg/L	08-AUG-14	08-AUG-14	R2912990
Lithium (Li)-Total	0.0056		0.0020	mg/L	08-AUG-14	08-AUG-14	R2912990
Magnesium (Mg)-Total	17.1		0.010	mg/L	08-AUG-14	08-AUG-14	R2912990
Manganese (Mn)-Total	0.00039		0.00030	mg/L	08-AUG-14	08-AUG-14	R2912990
Molybdenum (Mo)-Total	0.00049		0.00020	mg/L	08-AUG-14	08-AUG-14	R2912990
Nickel (Ni)-Total	<0.0020		0.0020	mg/L	08-AUG-14	08-AUG-14	R2912990
Phosphorus (P)-Total	<0.10		0.10	mg/L	08-AUG-14	08-AUG-14	R2912990
Potassium (K)-Total	2.70		0.020	mg/L	08-AUG-14 08-AUG-14	08-AUG-14	R2912990
Rubidium (Rb)-Total Selenium (Se)-Total	0.00133 <0.0010		0.00020 0.0010	mg/L	08-AUG-14 08-AUG-14	08-AUG-14 08-AUG-14	R2912990 R2912990
Silicon (Si)-Total	1.61		0.0010	mg/L mg/L	08-AUG-14	08-AUG-14 08-AUG-14	R2912990 R2912990
Silver (Ag)-Total	<0.00010		0.00010	mg/L	08-AUG-14	08-AUG-14 08-AUG-14	R2912990 R2912990
Sodium (Na)-Total	40.1		0.00010	mg/L	08-AUG-14	08-AUG-14	R2912990
Strontium (Sr)-Total	0.132		0.00010	mg/L	08-AUG-14	08-AUG-14	R2912990
Tellurium (Te)-Total	<0.00020		0.00010	mg/L	08-AUG-14	08-AUG-14	R2912990
Thallium (TI)-Total	<0.00010		0.00010	mg/L	08-AUG-14	08-AUG-14	R2912990
Thorium (Th)-Total	<0.00010		0.00010	mg/L	08-AUG-14	08-AUG-14	R2912990
Tin (Sn)-Total	<0.00020		0.00020	mg/L	08-AUG-14	08-AUG-14	R2912990
Titanium (Ti)-Total	<0.00050		0.00050	mg/L	08-AUG-14	08-AUG-14	R2912990
Tungsten (W)-Total	<0.00010		0.00010	mg/L	08-AUG-14	08-AUG-14	R2912990
Uranium (U)-Total	0.00225		0.00010	mg/L	08-AUG-14	08-AUG-14	R2912990
Vanadium (V)-Total	<0.00020		0.00020	mg/L	08-AUG-14	08-AUG-14	R2912990
Zinc (Zn)-Total	0.0036		0.0020	mg/L	08-AUG-14	08-AUG-14	R2912990
Zirconium (Zr)-Total	<0.00040		0.00040	mg/L	08-AUG-14	08-AUG-14	R2912990
Biochemical Oxygen Demand (BOD) Biochemical Oxygen Demand	<6.0		6.0	mg/L		25-JUL-14	R2903636

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1492043 CONTD.... PAGE 3 of 6 Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Par	rameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1492043-1 SA	.NI 2 (WASTE DISPOSAL GROUND -	STREAM)						
	IENT on 23-JUL-14 @ 11:30	,						
. ,	JMP STREAM							
	kygen Demand (BOD)							
Biochemical Oxy		<6.0		6.0	mg/L		30-JUL-14	R2903636
L1492043-2 SA	NI 2 (WASTE DISPOSAL GROUND -	STREAM) - TROUT						
Sampled By: CL	IENT on 23-JUL-14 @ 11:30							
	JMP STREAM							
Miscellaneous F								
Trout Bioassay -	Pass/Fail	See attached.					25-JUL-14	R2909951
	NI 2 (WASTE DISPOSAL GROUND -	STREAM) - DAPHN	IA					
Sampled By: CL	IENT on 23-JUL-14 @ 11:30							
-	JMP STREAM							
Miscellaneous F								
Daphnia Magna -	- Pass/Fail	See attached.					25-JUL-14	R2902258
	NI 4 (LAGOON - STREAM)							
Sampled By: CL	IENT on 23-JUL-14 @ 11:00							
	GOON STREAM							
Miscellaneous F								
Ammonia, Total	(as N)	0.017		0.010	mg/L		25-JUL-14	R2899368
Conductivity		1810		20	umhos/cm		26-JUL-14	R2898912
Fecal Coliforms		9		3	MPN/100mL		28-JUL-14	R2900631
Mercury (Hg)-Tot		0.000026		0.000020	mg/L	28-JUL-14	28-JUL-14	R2901935
Oil and Grease,	Total	<2.0		2.0	mg/L	31-JUL-14	31-JUL-14	R2907090
Phenols (4AAP)		<0.0010		0.0010	mg/L	29-JUL-14	29-JUL-14	R2901191
Phosphorus (P)-	Total	0.162		0.010	mg/L		30-JUL-14	R2902453
Sulfate		117		2.5	mg/L		25-JUL-14	R2899779
Total Suspended	d Solids	6.0		5.0	mg/L		28-JUL-14	R2901609
рН		7.94		0.10	pH units		26-JUL-14	R2898912
Total Metals by								
Aluminum (AI)-To		<0.0050		0.0050	mg/L	08-AUG-14	08-AUG-14	R2912990
Antimony (Sb)-To		<0.00020		0.00020	mg/L	08-AUG-14	08-AUG-14	R2912990
Arsenic (As)-Tota Barium (Ba)-Tota		0.00070		0.00020	mg/L	08-AUG-14 08-AUG-14	08-AUG-14	R2912990
Beryllium (Be)-To		0.0109 <0.00020		0.00020 0.00020	mg/L mg/L	08-AUG-14 08-AUG-14	08-AUG-14 08-AUG-14	R2912990 R2912990
Bismuth (Bi)-Tota		<0.00020		0.00020	mg/L	08-AUG-14	08-AUG-14	R2912990
Boron (B)-Total		0.128		0.00020	mg/L	08-AUG-14	08-AUG-14	R2912990
Cadmium (Cd)-T	otal	0.000013		0.000010	mg/L	08-AUG-14	08-AUG-14	R2912990
Calcium (Ca)-Tot		97.4		0.10	mg/L	08-AUG-14	08-AUG-14	R2912990
Cesium (Cs)-Tota	al	<0.00010		0.00010	mg/L	08-AUG-14	08-AUG-14	R2912990
Chromium (Cr)-T	「otal	<0.0010		0.0010	mg/L	08-AUG-14	08-AUG-14	R2912990
Cobalt (Co)-Tota		0.00023		0.00020	mg/L	08-AUG-14	08-AUG-14	R2912990
Copper (Cu)-Tota	al	0.00171		0.00020	mg/L	08-AUG-14	08-AUG-14	R2912990
Iron (Fe)-Total		<0.10		0.10	mg/L	08-AUG-14	08-AUG-14	R2912990
Lead (Pb)-Total		<0.000090		0.000090	mg/L	08-AUG-14	08-AUG-14	R2912990
Lithium (Li)-Total		0.0104		0.0020	mg/L	08-AUG-14	08-AUG-14	R2912990
Magnesium (Mg)		48.7		0.010	mg/L	08-AUG-14	08-AUG-14	R2912990
Manganese (Mn) Molybdenum (Mo		0.0103 0.00049		0.00030 0.00020	mg/L mg/l	08-AUG-14 08-AUG-14	08-AUG-14 08-AUG-14	R2912990
Nickel (Ni)-Total	•	<0.0020		0.00020	mg/L mg/L	08-AUG-14 08-AUG-14	08-AUG-14 08-AUG-14	R2912990 R2912990
		0.17		0.0020	mg/L	08-AUG-14	08-AUG-14 08-AUG-14	R2912990
Phosphorus (P)-Total		0.17		0.10				
Potassium (K)-To	otal	4.94		0.020	mg/L	08-AUG-14	08-AUG-14	R2912990

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L1492043 CONTD.... PAGE 4 of 6 Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1492043-4 SANI 4 (LAGOON - STREAM)							
Sampled By: CLIENT on 23-JUL-14 @ 11:00							
Matrix: LAGOON STREAM							
Total Metals by ICP-MS							
Selenium (Se)-Total	<0.0010		0.0010	mg/L	08-AUG-14	08-AUG-14	R2912990
Silicon (Si)-Total	2.22		0.10	mg/L	08-AUG-14	08-AUG-14	R2912990
Silver (Ag)-Total	<0.00010		0.00010	mg/L	08-AUG-14	08-AUG-14	R2912990
Sodium (Na)-Total	273		0.030	mg/L	08-AUG-14	08-AUG-14	R2912990
Strontium (Sr)-Total	0.445		0.00010	mg/L	08-AUG-14	08-AUG-14	R2912990
Tellurium (Te)-Total	<0.00020		0.00020	mg/L	08-AUG-14	08-AUG-14	R2912990
Thallium (TI)-Total	<0.00010		0.00010	mg/L	08-AUG-14	08-AUG-14	R2912990
Thorium (Th)-Total	<0.00010		0.00010	mg/L	08-AUG-14	08-AUG-14	R2912990
Tin (Sn)-Total	<0.00020		0.00020	mg/L	08-AUG-14	08-AUG-14	R2912990
Titanium (Ti)-Total	<0.00050		0.00050	mg/L	08-AUG-14	08-AUG-14	R2912990
Tungsten (W)-Total Uranium (U)-Total	<0.00010 0.00230		0.00010	mg/L	08-AUG-14	08-AUG-14	R2912990
Vanadium (V)-Total	<0.00230		0.00010 0.00020	mg/L mg/L	08-AUG-14 08-AUG-14	08-AUG-14 08-AUG-14	R2912990 R2912990
Zinc (Zn)-Total	<0.00020		0.00020	mg/L	08-AUG-14 08-AUG-14	08-AUG-14 08-AUG-14	R2912990 R2912990
Zirconium (Zr)-Total	<0.0020		0.0020	mg/L	08-AUG-14	08-AUG-14	R2912990 R2912990
Biochemical Oxygen Demand (BOD)	\0.000 4 0		0.00040	,g/ L	307.00-14	30 7.00-14	112012000
Biochemical Oxygen Demand	<6.0		6.0	mg/L		25-JUL-14	R2903636
Biochemical Oxygen Demand	<6.0		6.0	mg/L		30-JUL-14	R2903636
L1492043-5 SANI 4 (LAGOON - STREAM) - TROUT							
Sampled By: CLIENT on 23-JUL-14 @ 11:00							
Matrix: LAGOON STREAM							
Miscellaneous Parameters							
Trout Bioassay - Pass/Fail	See attached.					25-JUL-14	R2909951
L1492043-6 SANI 4 (LAGOON - STREAM) - DAPHN							
Sampled By: CLIENT on 23-JUL-14 @ 11:00							
Matrix: LAGOON STREAM							
Miscellaneous Parameters							
Daphnia Magna - Pass/Fail	See attached.					25-JUL-14	R2902258
- Saprilla Magria 1 acort all	occ attacrica.					20 002 11	112302200

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

SANIKILUAQ WWTP

Reference Information

PAGE 5 of 6 Version: FINAL

L1492043 CONTD....

Test Method References:

ALS Test Code Matrix Method Reference** **Test Description**

BOD-WP APHA 5210 B Water Biochemical Oxygen Demand (BOD)

The sample is incubated for 5 days at 20 degrees Celcius. Comparison of dissolved oxygen content at the beginning and end of incubation provides a measure of biochemical oxygen demand. If carbonaceous BOD is requested, TCMP is added to the sample to chemically inhibit nitrogenous oxygen demand. If soluble BOD is requested, the sample is filtered prior to analysis. Surface waters have a DL of 1 mg/L. Effluents are diluted according to their history and will have a sample DL of 6 mg/L or greater, depending on the dilutions used.

DAPHNIA-P/F-WP EPS/1/RM/11,EPS 1/RM/14 Daphnia Magna Pass/Fail

Daphnia Magna, grown under controlled conditions, are introduced into a single 100% concentration of a sample in order to obtain an Pass/Fail

indication of toxicity. A Fail occurs when greater than 50% of the organisms die.

EC-WP Water Conductivity **APHA 2510B**

Conductivity of an aqueous solution refers to its ability to carry an electric current. Conductance of a solution is measured between two spatially fixed and chemically inert electrodes.

FC-MPN-WP Water Fecal Coliform **APHA 9221E**

The Most Probable Number (MPN) method is based on the Multiple Tube Fermentation technique. The results of examination of replicate tubes and dilutions of a sample are reported after confirmations specific to total coliform, fecal coliform and E. coli are performed. Results are reported in MPN/100 mL for water and MPN/gram for food and solid samples.

EPA245.7 V2.0 HG-T-CVAF-WP Water Mercury Total

Mercury in filtered and unfiltered waters is oxidized with Bromine monochloride and analyzed by cold-vapour atomic fluorescence spectrometry.

MET-T-L-MS-WP Water Total Metals by ICP-MS APHA 3030E/EPA 6020A-TL

This analysis involves preliminary sample treatment by hotblock acid digestion (APHA 3030E). Instrumental analysis is by inductively coupled plasma mass spectrometry (EPA Method 6020A).

NH3-COL-WP Water Ammonia by colour APHA 4500 NH3 F

Ammonia in water samples forms indophenol when reacted with hypochlorite and phenol. The intensity is amplified by the addition of sodium

nitroprusside and measured colourmetrically.

OGG-TOT-WT Water Oil and Grease, Total APHA 5520 B

Sample is extracted with hexane, extract is then evaporated and the residue is weighed to determine total oil and grease.

P-T-COL-WP APHA 4500 P PHOSPHORUS Water Phosphorus, Total

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is determined colourimetrically after

persulphate digestion of the sample.

Water **APHA 4500H**

The pH of a sample is the determination of the activity of the hydrogen ions by potentiometric measurement using a standard hydrogen electrode and a

reference electrode.

PHENOLS-4AAP-WT Water Phenol (4AAP) **EPA 9066**

An automated method is used to distill the sample. The distillate is then buffered to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a

red complex which is measured colorimetrically.

SO4-IC-WP Water Sulfate by Ion Chromatography EPA 300.1 (Modified)

Anions in aqueous matrices are analyzed using ion chromatography with conductivity and/or UV absorbance detectors.

SOLIDS-TOTSUS-WP APHA 2540 D (modified) Water **Total Suspended Solids**

Total suspended solids in aquesous matrices is determined gravimetrically after drying the residue at 103 105°C.

Trout Bioassay Pass/Fail TROUT-P/F-WP Water EPS 1/RM/13, EPS 1/RM/9

Certified, disease-free rainbow trout (Oncorhynchus mykiss) are exposed to the full-strength (100%) sample, under static conditions in order to obtain a pass/fail indication of toxicity. A sample is considered to "fail" if >50% mortality is observed within a 96-hour exposure period.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location SANIKILUAQ WWTP L1492043 CONTD....

Reference Information

PAGE 6 of 6 Version: FINAL

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
WP	/P ALS ENVIRONMENTAL - WINNIPEG, MANITOBA, CANADA		
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA		

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million.

< - Less than. D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Rainbow Trout Bioassay Test Report - Pass/Fail

Summary Results

96-hour Pass/Fail: PASS	
-------------------------	--

Sample Information

Sample Origin:	Municipality of Sanikiluaq
Sample Description:	SANI-2 (Waste Disposal Ground - Stream)
Sampling Date and Time:	23-Jul-14 11:30
Sampling Method:	Grab
Sampled By:	Moses
Container(s) Description:	1 x 20L polyethylene pail with liner
Sample Volume:	20L
Date and Time Received:	24-Jul-14 12:30
Transit Irregularities:	None
Storage Temperature (°C):	15

Test Information

Test Organism:	Oncorhynchus mykiss
Test Description:	Acute, 96-hour, Static, Pass/Fail
D. C Mathe d(c)	EPS 1/RM/13, 2nd Ed. Dec. 2000, with May 2007 amendments, Environment Canada
Reference Method(s):	EPS 1/RM/9, May 1996 with May 2007 amendments, Environment Canada
Performed By:	JRB
Starting Date and Time:	25-Jul-14 10:45
Deviations from Reference Method:	None

Initial Parameters

Observations

Colour:	Light Yellow
Odour:	Mild
Turbidity:	None
Solids:	None
Hardness (mg/L):	1.9 mL Titration Solution/ 10 mL of Sample x 1000 = 190
Alkalinity (mg/L):	1.6 mL Titration Solution/ 10 mL of Sample x 1000 = 160
Temperature (℃):	15
Dissolved Oxygen (mg/L):	9.32
Conductivity (µmhos/cm):	481
pH (5.5-8.5 pH units):	7.69
pH Adjustment:	Not Adjusted
pH Adjustment Procedure:	n/a

Pre-Aeration

Aeration Rate (5.5-7.5 mL/min/L):	6.40 ± 0.6	
Aeration Time (min):	30	
Sample Test Concentration (v/v):	100%	0%
Dissolved Oxygen (D.O.) Before Pre-Aeration (%):	95.9	94.4
Average D.O. After Pre-Aeration (%):	98.5	91.8

Test Organism Data

Lot Number:	28/05/14 T2
Weekly Mortality Preceeding Test (%):	0.4
Sample Size:	10

Conditions Common to All Concentrations During Test

Source of Holding/Dilution Water:	Dechlorinated UV Treated City of Winnipeg Tap Water
Container Description:	20 L Polyethylene Pail with Liner
Aeration Method:	Compressed air bubbled through silica-glass air diffuser
Aeration Rate (5.5-7.5 mL/min/L):	6.40 ± 0.6
Test Solution Volume (L):	20
Test Solution Depth (cm):	34
Number of Test Organisms per Container:	10
Loading Density (g/L):	0.28

Conditions During Test

Concentration (% v/v)	Temperature (°C) (15 ± 1°C)			Dissolved Oxygen (mg/L)			pH (pH units)								
(% V/V)	0h	24h	48h	72h	96h	0h	24h	48h	72h	96h	0h	24h	48h	72h	96h
0	15	n/a	n/a	n/a	15	8.77	n/a	n/a	n/a	9.71	7.43	n/a	n/a	n/a	7.53
100	15	n/a	n/a	n/a	15	9.92	n/a	n/a	n/a	9.68	7.74	n/a	n/a	n/a	7.93

Conc. (% v/v)	Conductivity (µmhos/cm)	Number of Fish Dead				Number of Fish Stressed			
(% V/V)	0h	24h	48h	72h	96h	24h	48h	72h	96h
0	280	0	n/a	n/a	0	0	n/a	n/a	0
100	491	0	n/a	n/a	0	0	n/a	n/a	0

Control Fish Information at End of Test

Mean Fork Length (mm):	41
Lower Range Fork Length (mm):	36
Upper Range Fork Length (mm):	46
Mean Wet Weight:	0.56

Mortality and Stressed Behaviour Information

Conc. (% v/v)		er of Fish at f Test	Mean Rate of Fish at End of Test (%)		
(/6 V/V)	Dead	Stressed	Dead	Stressed	
0	0	0	0	0	
100	0	0	0	0	

Reference Toxicant Test Results

Reference Toxicant:	Zinc Sulfate
Date Reference Toxicant Initiated:	24-Jul-14
Recent 96h Reference Toxicant Test LC50 (mg/L Zinc):	0.45
Lower 95% Confidence Limit (mg/L Zinc):	0.31
Upper 95% Confidence Limit (mg/L Zinc):	0.61
Historic Geometric Mean LC50 (mg/L Zinc):	0.65
Lower 95% Confidence Limit (mg/L Zinc):	0.24
Upper 95% Confidence Limit (mg/L Zinc):	1.72
Method of Calculation:	Stephan LC50 Program, Probit
Confirmed by Graph:	Yes

Sublethal Biological Effects

	Observations/Comments	
	<u>observacions, comments</u>	
No toxicity observed.		

No sublethal biological effects observed.

Daphnia Magna Bioassay Test Report - Pass/Fail

Sample ID:	L1492043-3

Summary Results

48-hour Pass/Fail:	PASS
--------------------	------

Sample Information

Sample Origin:	Municipality of Sanikiluaq
Sample Description:	SANI-2 (Waste Disposal Ground - Stream)
Sampling Date and Time:	23-Jul-14 11:30
Sampling Method:	Grab
Sampled By:	Moses
Container(s) Description:	1 x 20L polyethylene pail with liner
Sample Volume:	20L
Date and Time Received:	24-Jul-14 12:30
Transit Irregularities:	None
Storage Temperature (°C):	20

Test Information

Test Organism:	Daphnia magna		
Test Description:	Acute, 48-hour, Static, Pass/Fail		
Reference Method(s):	S 1/RM/14, 2nd Ed. Dec. 2000, Environment Canada		
Reference Method(s).	EPS 1/RM/11, July 1990, Environment Canada		
Performed By:	JRB		
Starting Date and Time:	25-Jul-14 14:00		
Deviations from Reference Method:	None		

Condition of Effluent at 100% v/v Before Preparing Dilutions

Observations

Colour:	Light Yellow
Odour:	Mild
Turbidity:	None
Solids:	None
Temperature ($^{\circ}$):	20
Dissolved Oxygen (mg/L):	10.15
Conductivity (µmhos/cm):	547
	7.57
pH Adjustment:	Not Adjusted
pH Adjustment Procedure:	n/a
Hardness (mg/L) Before Adjustment:	1.9 mL Titration Solution/ 10 mL of Sample x 1000 = 190
Hardness (mg/L) After Adjustment:	
Alkalinity (mg/L):	1.6 mL Titration Solution/ 10 mL of Sample x 1000 = 160

Pre-Aeration

Aeration Rate (25-50 mL/min/L):	33.5 ± 0.2	
Aeration Time (min):	30	
Sample Test Concentration (v/v):	100%	0%
Dissolved Oxygen (D.O.) Before Pre-Aeration (%):	110.7	93.6
Average D.O. After Pre-Aeration (%):	99.8	94.2

Test Organism Data

Average age of daphnia at first brood (days):	10
Average number of neonates per brood:	24
Weekly Mortality Preceeding Test (%):	5.6
Date Parents Born:	8-Jul-14
Loading Density (organisms/20 mL):	1
Age of test organisms at beginning of test (hrs):	<24

Conditions Common to All Concentrations During Test

Volume Tested:	200 mL (for control and 100%)
Triplicate solutions for control & 100%:	Yes
Neonates per Vessel:	10
Volume per Neonate:	20 mL
Test Solution Depth:	70 mm
Container Description:	Plastic Cups
Source of Holding/Dilution Water:	Dechlorinated UV Treated City of Winnipeg Tap Water

Conditions During Test

Concentration	Temp	oeratur	e (℃)	Оху	olved /gen g/L)	р	Н	Conductivity (µmhos/cm)	Hardness (mg/L)	(#	bility of inids)	Mortality (# of daphnids)
(% v/v)	0h	24h	48h	0h	48h	0h	48h	0h	0h	24h	48h	48h
0	20	20	20	8.57	8.60	7.79	7.75	329	90	0	0	0
0	20	20	20	8.61	8.63	7.79	7.74	329	90	0	0	0
0	20	20	20	8.75	8.57	7.80	7.73	329	90	0	0	0
100	20	20	20	9.18	8.59	7.93	8.10	543	190	0	0	0
100	20	20	20	9.05	8.62	7.93	8.11	545	190	0	0	0
100	20	20	20	8.99	8.61	7.94	8.11	544	190	0	0	0

Mortality and Immobility Information

Conc.	Conc. Mean Number of Daphnids at End of Test Mean Rate of Daphnids at End of Test (%)			•
(% v/v)	Dead Immobile		Dead	Immobile
0	0	0	0	0
100	0	0	Λ	0

Reference Toxicant Test Results

Reference Toxicant:	Sodium Chloride
Date Reference Toxicant Initiated:	
Recent 48h Reference Toxicant Test LC50 (mg/L NaCl):	6382
Lower 95% Confidence Limit (mg/L NaCl):	
Upper 95% Confidence Limit (mg/L NaCl):	6975
Historic Geometric Mean LC50 (mg/L NaCl):	5806
Lower Warning Limit (-2 S.D.):	5220
Upper Warning Limit (+2 S.D.):	6459
Method of Calculation:	Stephan LC50 Program, Probit
Confirmed by Graph:	Yes

Observations/Comments

No toxicity observed.			

Rainbow Trout Bioassay Test Report - Pass/Fail

Sample ID:	L1492043-5
5ap.c .2.	-1.0-1-0-0

Summary Results

96-hour Pass/Fail: PASS	
-------------------------	--

Sample Information

Sample Origin:	Municipality of Sanikiluaq
Sample Description:	SANI-4 (Lagoon-Stream)
Sampling Date and Time:	23-Jul-14 11:00
Sampling Method:	Grab
Sampled By:	Moses
Container(s) Description:	1 x 20L polyethylene pail with liner
Sample Volume:	20L
Date and Time Received:	24-Jul-14 12:30
Transit Irregularities:	None
Storage Temperature (°C):	15

Test Information

Test Organism:	Oncorhynchus mykiss
Test Description:	Acute, 96-hour, Static, Pass/Fail
Defending Making d(a)	EPS 1/RM/13, 2nd Ed. Dec. 2000, with May 2007 amendments, Environment Canada
Reference Method(s):	EPS 1/RM/9, May 1996 with May 2007 amendments, Environment Canada
Performed By:	JRB
Starting Date and Time:	25-Jul-14 10:45
Deviations from Reference Method:	None

Initial Parameters

Observations

Colour:	Light Yellow
Odour:	Mild
Turbidity:	None
Solids:	None
Hardness (mg/L):	4.3 mL Titration Solution/ 10 mL of Sample x 1000 = 430
Alkalinity (mg/L):	1.7 mL Titration Solution/ 10 mL of Sample x 1000 = 170
Temperature ($^{\circ}$):	15
Dissolved Oxygen (mg/L):	10.39
Conductivity (µmhos/cm):	1990
pH (5.5-8.5 pH units):	7.75
pH Adjustment:	Not Adjusted
pH Adjustment Procedure:	n/a

Pre-Aeration

Aeration Rate (5.5-7.5 mL/min/L):	6.40 ± 0.6	
Aeration Time (min):		
Sample Test Concentration (v/v):	100%	0%
Dissolved Oxygen (D.O.) Before Pre-Aeration (%):	103.8	93.5
Average D.O. After Pre-Aeration (%):	100.2	95.2

Test Organism Data

Lot Number:	28/05/14 T2
Weekly Mortality Preceeding Test (%):	0.4
Sample Size:	10

Conditions Common to All Concentrations During Test

Source of Holding/Dilution Water:	Dechlorinated UV Treated City of Winnipeg Tap Water
Container Description:	20 L Polyethylene Pail with Liner
Aeration Method:	Compressed air bubbled through silica-glass air diffuser
Aeration Rate (5.5-7.5 mL/min/L):	6.40 ± 0.6
Test Solution Volume (L):	20
Test Solution Depth (cm):	34
Number of Test Organisms per Container:	10
Loading Density (g/L):	0.28

Conditions During Test

Concentration (% v/v)	Temperature (°C) (15 ± 1°C)			tration $(15 \pm 1^{\circ}C)$ Dissolved Oxygen (mg/L)			pH (pH units)								
(/o V/V)	0h	24h	48h	72h	96h	0h	24h	48h	72h	96h	0h	24h	48h	72h	96h
0	15	n/a	n/a	n/a	15	9.37	n/a	n/a	n/a	9.70	7.46	n/a	n/a	n/a	7.50
100	15	n/a	n/a	n/a	15	10.07	n/a	n/a	n/a	9.59	7.77	n/a	n/a	n/a	8.15

Conc. (% v/v)	Conductivity (µmhos/cm)	Nun	Number of Fish Dead			Number of Fish Stressed			
(% V/V)	0h	24h	48h	72h	96h	24h	48h	72h	96h
0	277	0	n/a	n/a	0	0	n/a	n/a	0
100	1980	0	n/a	n/a	0	0	n/a	n/a	0

Control Fish Information at End of Test

Mean Fork Length (mm):	41
Lower Range Fork Length (mm):	37
Upper Range Fork Length (mm):	45
Mean Wet Weight:	0.57

Mortality and Stressed Behaviour Information

Conc. (% v/v)		er of Fish at f Test	Mean Rate of Fish at End of Test (%)		
(/6 V/V)	Dead	Stressed	Dead	Stressed	
0	0	0	0	0	
100	0	0	0	0	

Reference Toxicant Test Results

Reference Toxicant:	Zinc Sulfate
Date Reference Toxicant Initiated:	24-Jul-14
Recent 96h Reference Toxicant Test LC50 (mg/L Zinc):	0.45
Lower 95% Confidence Limit (mg/L Zinc):	0.31
Upper 95% Confidence Limit (mg/L Zinc):	0.61
Historic Geometric Mean LC50 (mg/L Zinc):	0.65
Lower 95% Confidence Limit (mg/L Zinc):	0.24
Upper 95% Confidence Limit (mg/L Zinc):	1.72
Method of Calculation:	Stephan LC50 Program, Probit
Confirmed by Graph:	Yes

Sublethal Biological Effects

	Observations/Comments	
	<u>observacions, comments</u>	
No toxicity observed.		

No sublethal biological effects observed.

Daphnia Magna Bioassay Test Report - Pass/Fail

Sample ID:	L1492043-6

Summary Results

48-hour Pass/Fail: PASS

Sample Information

Sample Origin:	Municipality of Sanikiluaq
Sample Description:	SANI-4 (Lagoon - Stream)
Sampling Date and Time:	23-Jul-14 11:00
Sampling Method:	Grab
Sampled By:	Moses
Container(s) Description:	1 x 20L polyethylene pail with liner
Sample Volume:	20L
Date and Time Received:	24-Jul-14 12:30
Transit Irregularities:	None
Storage Temperature (°C):	20

Test Information

Test Organism:	Daphnia magna
Test Description:	Acute, 48-hour, Static, Pass/Fail
Defended Making d(a)	EPS 1/RM/14, 2nd Ed. Dec. 2000, Environment Canada
Reference Method(s):	EPS 1/RM/11, July 1990, Environment Canada
Performed By:	JRB
Starting Date and Time:	25-Jul-14 14:00
Deviations from Reference Method:	None

Condition of Effluent at 100% v/v Before Preparing Dilutions

Observations

Colour:	Light Yellow
Odour:	Mild
Turbidity:	None
Solids:	None
Temperature ($^{\circ}$):	20
Dissolved Oxygen (mg/L):	10.27
Conductivity (µmhos/cm):	2.6
	7.65
pH Adjustment:	Not Adjusted
pH Adjustment Procedure:	n/a
Hardness (mg/L) Before Adjustment:	4.3 mL Titration Solution/ 10 mL of Sample x 1000 = 430
Hardness (mg/L) After Adjustment:	
Alkalinity (mg/L):	1.7 mL Titration Solution/ 10 mL of Sample x 1000 = 170

Pre-Aeration

Aeration Rate (25-50 mL/min/L):	33.5 ± 0.2	
Aeration Time (min):	30	
Sample Test Concentration (v/v):	100%	0%
Dissolved Oxygen (D.O.) Before Pre-Aeration (%):	112.4	93.6
Average D.O. After Pre-Aeration (%):	99.1	95.5

Test Organism Data

Average age of daphnia at first brood (days):	10
Average number of neonates per brood:	24
Weekly Mortality Preceeding Test (%):	5.6
Date Parents Born:	8-Jul-14
Loading Density (organisms/20 mL):	1
Age of test organisms at beginning of test (hrs):	<24

Conditions Common to All Concentrations During Test

Volume Tested:	200 mL (for control and 100%)
Triplicate solutions for control & 100%:	Yes
Neonates per Vessel:	10
Volume per Neonate:	20 mL
Test Solution Depth:	70 mm
Container Description:	Plastic Cups
Source of Holding/Dilution Water:	Dechlorinated UV Treated City of Winnipeg Tap Water

Conditions During Test

Concentration	Temp	eratur	e (℃)	Dissolved Oxygen (mg/L) Omductivity (pmhos/cm)		рН		рН		Hardness (mg/L)	(#	bility of inids)	Mortality (# of daphnids)
(% v/v)	0h	24h	48h	0h	48h	0h	0h 48h 0h		0h	24h	48h	48h	
0	20	20	20	8.75	8.64	7.80	7.57	330	90	0	0	0	
0	20	20	20	8.77	8.60	7.81	7.53	330	90	0	0	0	
0	20	20	20	8.82	8.62	7.81	7.53	331	90	0	0	0	
100	20	20	20	9.07	8.64	7.89	7.97	2170	430	0 0		0	
100	20	20	20	9.03	8.56	7.90	7.99	2170	430	0	0	0	
100	20	20	20	9.03	8.63	7.91	8.00	2160	430	0 0		0	

Mortality and Immobility Information

Conc.		umber of End of Test	Mean Rate of Daphnids at End of Test (%)					
(% v/v)	Dead	Immobile	Dead	Immobile				
0	0	0	0	0				
100	^	Λ	Λ	Λ				

Reference Toxicant Test Results

Reference Toxicant:	Sodium Chloride
Date Reference Toxicant Initiated:	
Recent 48h Reference Toxicant Test LC50 (mg/L NaCl):	6382
Lower 95% Confidence Limit (mg/L NaCl):	
Upper 95% Confidence Limit (mg/L NaCl):	6975
Historic Geometric Mean LC50 (mg/L NaCl):	5806
Lower Warning Limit (-2 S.D.):	5220
Upper Warning Limit (+2 S.D.):	6459
Method of Calculation:	Stephan LC50 Program, Probit
Confirmed by Graph:	Yes

Observations/Comments

No toxicity observed.			

ANDRE LARABIE SAO

Municipality of SANIKILUAQ (W10375)

Report To

Company:

Contact:

∘rm

Fax

L1492043-COFC

☐ Digital

U Other

Excel

✓ PDF

COC#	

						co	С#						-
								Pa	ge		of .		-
Serv	ice R	eque	sted	(Rush	for ro	utine a	analys	is sub	ject to	availa	bility)		1
● Re	gular (Standa	rd Tur	naroun	d Time	s - Bus	siness l	Days)]
O Pri	iority (2-4 Bus	iness (Days) -	50% :	Surcha	ge - C	ontact	ALS to	Confin	n TAT		l
										o Confi	TAT m		1
O Sa	me Da	y or W	eekend			Conta			firm T	AT .			l
		0 .				sis R			11. (c D		_	ŀ
Plea	ase ir	ndicat	e belo	ow Fil	tered	, Pres	serve	d or t	oth (F, P,	F/P)		Ν
												S	ı
			(2)							ļ		0	ν
80D-WP	pH, Cond	TSS, SO4	FC-MPN (Fecal Coliform)	NH3, P-Total	Met-T-L-MS-WP	HG-T-CVAF-WP	Phenols-4AAP-WT	OGG-TOT-WT		TROUT-P/F-WP	DAPHNIA-P/F-WP	Number of Containers	
x	X	X	X	X	x	X	X	x		X	X		
х	х	X	x	x	х	х	х	x		x	x		
													1
				,									1
													1
													┨╸
						· · · ·			-				┨
					_								ļ
													1
													1
					-							_	1
							-		_			<u> </u>	1
al/AB	Tier	1 - N	atura	l. etc) / Ha	zard	ous [Detail	s			L	1
-													1
HCL	, 2 <u>50</u>	ml Pl	henol	s,20	LPa	iil w li	ner	_					
is for													١
rovid ervati							mma	n	sluee	_			
ervat	1011 /				_	ICAT							┨
Manie	fied b			Dot			Tim	•	130 UI	Obo	am ea ti	onn:	1

Address:	Box 157 Email 1: sanisao@qiniq.com						O Emergency (1-2 Bus, Days) - 100% Surcharge - Contact ALS to Confirm TAT											
	Sanikiluaq, NU, X0A 0W0	Email 2: sanilands@qiniq.com					Same Day or Weekend Emergency - Contact ALS to Confirm TAT											
Phone:	867-266-7900 Fax: 867-266-8919	Email 3: <u>broy@gov.nu.ca</u>					Analysis Request											
Invoice To	Same as Report ? Yes No	Client / P	roject Information	on		Please indicate below Filtered, Preserved or both (F.								oth (F,	P, F/F	"]/		
Hardcopy of	Invoice with Report? Yes No	Job#:	SANIKILUAQ W	WTP													_/ <	
Company:	(W10375)	PO / AFE	:											- 1				
Contact:		LSD:							E			ŀ	İ	- 1			V _s	
Address:	•	Į <u>.</u>	<u> </u>		<u></u> _				i ii				⊢l				Tel .	
Phone:	Fax:	Quote #:	Q37083						alC	_	<u>₽</u>	ş	اڄ	_		<u>B</u>	Z E	
Lab V (lab	Vork Order # o use only)	ALS Contact:		Sampler:	10565	₽	Cond	SO4	FC-MPN (Fecal Coliform)	P-Total	Met-T-L-MS-WP	HG-T-CVAF-WP	Phenols-4AAP-WT	OGG-TOT-WT		IT-P/F-WP	DAPHNIA-P/F-WP Number of Container	
Sample #	Sample Identification (This description will appear on the report)		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	BOD-WP	F.	TSS,	FC-M	NH3,	Met-T	HG-T	Pheno	990		TROUT	DAPH Numb	
ración de la composition della	Sani 2 (Waste Disposal Ground - Stream)	_	23-07-14	11:30 AM	DUMP STRM	x	x	x	х	x	x	x	х	x		x :	x	
inc	Sani 4 (Lagoon - Stream)		23-07-14		LAGOON STA	х	х	х	х	x	х	х	х	х		x :	x	
kiriking rijikin												ľ				7		
Principal Control (1988)			-														\top	
			 											\neg		╅		
			1		-		\vdash					_	\dashv		-	-	+-	
			1		 		\vdash			-+				\dashv	- -			
	1			 	 	<u> </u>	\vdash											
1 15	<u> </u>		<u> </u>		ļ <u> </u>						_					_		
				ļ. <u> </u>												_		
		_	· .															
			1										Ī					
	Special Instructions / Regulations with water or land	d use (CCN	E-Freshwater A	quatic Life/BC	CSR - Commerc	al/AE	3 Tier	1 - N	atura	i, etc	/ Ha	zardo	ous D	etails				
Bottles Requ	ired - 500 ml BOD, 125 ml Sterile Bacti, 250 ml Nutrient, 1 L A Failure to complete all By the use of this form the user acknown Also provided on another Excel tab are the ALS location SHIPMENT RELEASE (client use)	mber W/M portions o owledges a n addresse	OGG, 1 L Routing of this form may and agrees with	e, 250 ml Metal delay analysis the Terms and ers and sample	s, 40 ml Mercury (Please fill in th Conditions as p container / pres	HCL is for rovid ervat	., 250i m LEi led on	ml P GIBL assenoldi	henol Y. para ng tir	s , 20 te Exe ne tal	L Pa cel ta ole fo ERIF	il w lir ıb. or cor	ner	n ana lab us	lyses. se only	bserv	vations:	
	PC		74/7/4	12:30	10 °C											es/N		
<u> </u>		<u> </u>		L	1 <u>``</u>	L.						1				resa	add SIF	