1 PROJECT TITLE

OPERATION AND MAINTENANCE MANUAL VOLUME 1 FOR THE WATER TREATMENT PLANT AT TALOYOAK, NUNAVUT

Set No. of

Year of Completion: 2011

Original Scope: Work of this Contract comprises general construction, located at

Taloyoak, Nunavut; and further identified as:

- Supply of all materials and construction of the access road and truck turn around pad.
- Supply and installation of HDPE intake casing pipes.
- Supply and installation of bedding and riprap protection for the intake casing pipes.
- Supply and installation of intake screens.
- Supply and installation of HDPE intake line and pump system including heat trace system.
- Construction of earthworks and steel skid foundation for the water treatment plant.
- Supply and construction of building for the water treatment plant.
- Supply and installation of water treatment plant including cartridge filtration system, chlorination system, water storage, waste water storage and truck fill station.
- Supply and installation of mechanical, electrical and control and instrumentation systems.
- Supply and installation of HVAC system including but not limited to the furnace system and air handling systems.
- Coordinate and pay for the installation of the power supply from the existing grid to the water treatment facility.
- Coordinate and pay for the supply of telephone service to the facility.
- Supply and installation of alternative energy systems including but not limited to the solar voltaic collectors, wind generator, battery storage, and inverters.

Distribution:

Set 1: Department of Community and Government Services, Government of Nunavut, Cambridge Bay Regional Main Office

Set 2: Department of Community and Government Services, Government of Nunavut, Headquarters Main Office

Set 3: Hamlet Office, Taloyoak, NU

Set 4: Water Treatment Plant, Taloyoak, NU

Set 5: Dillon Consulting Limited, Yellowknife, NT

2 REVISION DATA

This manual has been updated to include:

Date	Description of Change
Sept. 17, 2012	Addition Madison Chlorine Tank Level Switch – Filters
	Section
December 10, 2020	updated contact informations

3 PROJECT REPRESENTATIVES

Owner Hamlet of Taloyoak

General Delivery

Taloyoak, NU X0E 1B0

Contact: Janice Anderson, SAO

Phone: 867-561-2302 Fax: 867-561-5057 Owner Government of Nunavut

Department of Community and Government Services

Cambridge Bay Regional Office Bag 200, Helen Maksagak Center Cambridge Bay, NU X0B 0C0

Contact: Shah Alam, P.Eng., E.P, MPE

Shane Slifka, RPM

Phone: 867-983-4156, 867-983-4141

Fax: 867-983-4123

General Contractor Kitnuna, Cambridge Bay Office

P.O. Box 92

Cambridge Bay, NU X0B 0C0

Kitnuna, Edmonton Office

Suite 203, 15023 123 Avenue, NW

Edmonton, AB T5V 1J7 Phone: 780-447-1008 Fax: 780-447-3664

Process and Mechanical BI Pure Water Inc.

#2, 9790 190 Street Surrey BC V4N 3M9 Contact: John Kang

Phone: 604-882-6650 Toll Free: 1-888-901-3111 Fax: 604-882-6659 Electrical ADCO Power Ltd.

8750 58 Avenue

Edmonton, AB T6E 6G6 Contact: Jeff Hohl

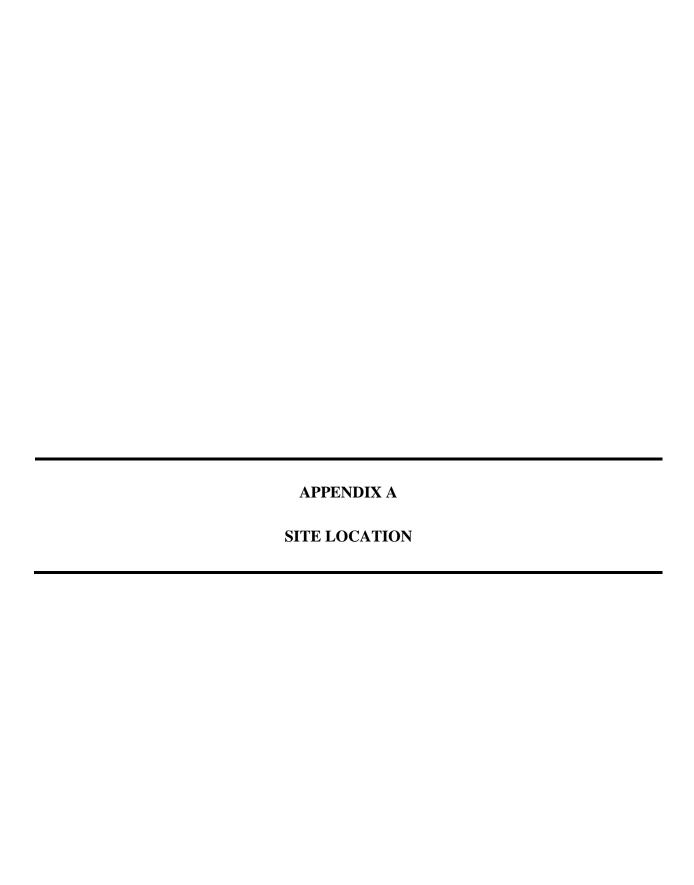
Phone: 780-465-3265 Fax: 780-466-8086

Alternative Energy EA Energy Alternatives Ltd.

5-4217 Glanford Ave Victoria, BC V8Z 4B9 Contact: Keven Pegg

Phone: 250-727-0522; 1-800-265-8898

Fax: 250-727-2286


Consultant Dillon Consulting Limited

P.O. Box 1409

Suite 303, 4920 47th Street Yellowknife, NT X1A 2P1

Contact: Mr. Gary Strong, P. Eng., Project Manager

Phone: 867-920-4555 Fax: 867-873-3328

- Chapter 1 Introduction
- Chapter 2 TABLE OF CONTENTS
- Chapter 3 BACKGROUND DESIGN
- Chapter 4 SCHEMATIC FUNCTIONAL DATA
- Chapter 5 COMPONENT DETAILS
- Chapter 6 OPERATING PROCEDURES
 - 1. OPERATION CHART
 - 2. OPERATION PROCEDURE
 - 3. EA TALOYOAK COMPONENT MAINTENANCE & OPERATIONS GUIDE
- Chapter 7 MAINTENANCE PROCEDURES
 - 1. MAINTENANCE CHART
 - 2. MAINTENANCE PROCEDURE
 - 3. EA TALOYOAK COMPONENT MAINTENANCE & OPERATIONS GUIDE

Chapter 8 TESTING AND CERTIFICATION

- 1. TESTING AND CERTIFICATION
 - i Dillon Cylinder Results
 - ii Moeller MCC 3000
 - iii System Component Acceptance Test Report
 - iv HDPE Hydrostatic Test Report
 - v EA Testing Procedure
 - vi Unigy Test
 - vii Xantrax UL Test Data 12-911-56-391
 - viii Xantrax UL Test Data 2-251904-161
 - ix Xantrax UL Test Data 2-2515-20-01
 - x Xantrax UL Test Data 2-255-07-004

2. WARRANTY STATEMENTS

- i ASCO Auto Transfer Switch
- ii Beckett Oil Burner Warranty
- iii Belimo Actuator Warranty
- iv Bray electric Actuator Warranty
- v Carrier Oil Furnace Warranty
- vi DigiTrace 920 Warranty
- vii Dynamix Warranty
- viii Franklin Electric Submersible Motor Warranty
- ix Frontier Gen Set Warranty
- x Goulds 320L 7242 Warranty
- xi Greencheck BSQ-70-4 Warranty
- xii Hach 2100 Warranty
- xiii Harmsco Cartridge Warranty

- xiv Harmsco Swingbolt Warranty
- xv Hyrdromatic SV40 Warranty
- xvi Johnson Controls Warranty
- xvii Lennox HRV Warranty
- xviii Maple Systems Warranty
 - xix Moeller MCC 3000 Warranty
 - xx Morrison Bros Warranty
 - xxi Norwesco Water Storage Tank Warranty
- xxii Oliver MacLeod HT Chimney Warranty
- xxiii PetroClear Warranty
- xxiv Rheem Water Heater Warranty
- xxv Ritepro Coupling Warranty
- xxvi Sharp NT-175-UC1 Warranty
- xxvii SHURflow Park Model Pump Warranty
- xxviii Southwest Wind Whisper Warranty
- xxix Totaline Easy Thermostat
- xxx Tramont Day Tank Warranty
- xxxi Unigy II Battery Warranty
- xxxii Valmatic Combo Air Release Vacuum Warranty
- xxxiii Vulcain Warranty
- xxxiv Wattsun Solar Tracker System Warranty
- xxxv Wika Warranty
- xxxvi Xantrex AGS Warranty
- xxxvii Xantrex Inverter Warranty
- xxxviii Xantrex MPPT Charge Controller Warranty
- xxxix Xantrex SCP Warranty
 - xl Yaskawa F7 Drive Warranty

Chapter 9 MANUFACTURER DATA & SERVICE INFORMATION

- 1. Prefabricated Building Components, Skids & Foundations
 - i Pump House
 - ii Taloyoak Building Details
 - iii AES Electrical Layout
- 2. BUILDING UTILITIES
 - i Beckett Oil Burner
 - ii Belimo Damper Actuator
 - iii Carrier 58 CMA Multipoise Oil Furnace
 - iv Carrier Electronic Fan Timer
 - v Devoe Devthane Pipe Paint
 - vi Price Diffusers
 - vii Price Louvers DE635

- viii Greencheck BSQ70-4 Centrifugal in line Fan
- ix Lennox HRV 3-150 Heat Recovery Ventilator
- x Thernon 202 Heat Trace
- xi Honeywell Electronic Oil Primary Control
- xii Oliver MacLeod Chimney HT6000
- xiii Tamco 9000 ECT Damper
- xiv Totaline Easy 1H/1C and 2H/1C Thermostat

3. FILTERS

- i Harmsco Swing Bolt Water Filter
- ii Harmsco Hurricane Cartridges
- iii Hayward Simplex Basket Strainer
- iv Madison Chlorine Tank Level Switch
- v Petro Clear 40510W & 40530W Fuel Filter

4. Pumps & Tanks

- i Dynamix Agitator IOM MMX
- ii Goulds 320L Installation Manual
- iii Grundfos Alldos DDI 209 Chemical Metering Pump
- iv Hydromatic SKV40 Waste Pump & Tank
- v Morrison Spill Container
- vi Norwesco Model 41862 378L Water Storage Tank VT0100-28
- vii Norwesco Model 40215 1136 Wastewater Storage Tank VT0300-35
- viii Plastic Mart Treated Water Storage VT0100-28
- ix Plastic Mart Waste Water Storage Tank VT0300-35
- x SHURflo 2088-492-144 Treated Water Pump
- xi Zeebest Calcium Hypochlorite Mixing and Solution Tank

5. Motors

- i Franklin Electric Submersible motors
- ii Hydromatic SKV 40 Sewage Ejector Pump
- iii Yaskawa AC Induction Motor Drive

6. VALVES & SWITCHES

- i Blocked Vent Shut Off Valve
- ii Bray R4 electric Actuator
- iii Bray Butterfly Valve Series 30/31
- iv Burkert Solenoid Valve
- v Crane Swing Check Valve
- vi Crane Gate Valve
- vii Crane Glove Valve
- viii Crane Ball Valve
- ix Grundfos Foot Valve with switch

- x Meridian 3 way Ball Valve
- xi Morrison External Emergency Valve
- xii Morrison Foot Valve
- xiii PetroClear
- xiv Praher PVC S6 Drainage Valve
- xv Val-matic Swing Flex Valve
- xvi Val-Matic Air/Vacuum Release valve

7. AES SYSTEM

- i EA Taloyoak Component Maintenance & Operations Guide
- ii KD Ketchen & Associates Solar Support
- iii Kohler Power Systems Float Equalize Battery Charger
- iv Sharp Solar Panels
- v Solar Array Galvanized Piles
- vi Southwest Windpower Inc. Whisper 500 Wind Generator
- vii Unigy II Battery Rack
- viii Watsun Solar Tracker
- ix Wind Turbine Foundation Drawing
- x Xantrex Automatic Generator Start
- xi Xantrex Inverter AC DC Breaker Boxes
- xii Xantrex XW Inverter Manual
- xiii Xantrex XW Solar Charge Controller
- xiv Xantrex XW Power System
- xv Xantrex XW Control Panel

8. CONTROL PANEL

- i ASCO 7000 Automatic Transfer Switch
- ii Barnett Engineering Pro Talk Plus Autodialer
- iii Carlo Gavazzi Power Supply
- iv Control Systems SCADAPack 32 Remote Control System
- v GenMaster GM250 Generator Controller
- vi Maple HMI5000
- vii Moeller MCC3000 Motor Control Center
- viii Moeller MCC 3000 Sump pump Breaker
- ix Schneider GFI & Circuit Breakers
- x Xantrex Distribution Panel/Conduit Box

9. Instrumentation

- i Anamet Conduit for RTD
- ii Digitrace 920 Heat Trace Controller
- iii Endress & Hauser Proline Promag Flow Sensor
- iv Johnson Controls Temperature Controller
- v KTech Fuel Level Sensor
- vi Vulcain Gas Transmitter VA301D
- vii Wika Tube Pressure Gauge

10. Generator

- i Beckett Clean Cut Fuel Unit
- ii Frontier Genset Package
- iii John Deere Power Tech Diesel Engine
- iv Stamford Diesel Generator
- v Tramont Day Tank
- vi Westeel Fuel Vault

11. Lab Equipment

- i Calcium Hypochlorite Reagents/Chemicals
- ii Colorimeter Procedures Manual
- iii Hach Portable Turbidimeter
- iv Sentry Fire Extinguisher

12. LIGHTING

- i AdaptaBeacon 104 Flashing Halogen Lights
- ii Lumark Wall-Lite High pressure Sodium Dusk to Dawn wall light
- iii RAB Design FW4-2T8 Fluorescent Lighting
- iv Ready Lite CX5000 Exit Sign
- v Ready-Lite LDX Series Emergency Lighting System
- vi SceptaLight Outdoor Lighting

13. INTAKE SYSTEM

- i 100mm HDPE Piping
- ii Armtec Concrete Weights
- iii Armtec Concrete intake casing
- iv Intake/Casing Screen
- v Metal Works Skid Intake assembly
- vi Unified Alloy Intake Screen
- vii Urecon Pre Insulated Pipe
- viii Upper Termination Flanges

14. Plumbing

i MiFab F1000 Floor Drains

- ii Rheem SP2412 Hot water tank
- iii Ritepro Couplings
- iv Wolverine Tubing

Chapter 10 APPENDIX

1. Photo Album

3 DESIGN DATA

3.1 General

This section provides background information on Taloyoak. A description of the water treatment process, information on the water treatment process and building design as well as a description of the alarm systems in place within the water treatment plant.

3.2 Background Information

Taloyoak, the northernmost community on the Canadian mainland, is a traditional northern community. It is located 69°32′ north latitude and 93°3′ west longitude, approximately 460 km east of Cambridge Bay and 1224 km northeast of Yellowknife, sitting 26 m above sea level on the Boothia Peninsula on Stanners Harbour. The Hamlet is accessible all year round by aircraft and by barge during the summer.

Taloyoak is located within a continuous permafrost zone, which consists of bedrock terrain that is covered with a thin layer of tundra vegetation. Despite poor soil quality, various types of lichen, moss, willow, heather and wildflowers grow in the area. Wildlife in the area consists of ground squirrels, lemmings, weasels, arctic hares, arctic foxes, ringed seals and numerous species of birds and fish.

Climate for Taloyoak consists of reasonably cool summers and extremely cold winters, which is typical climate for the northern arctic. The average mean temperatures for January and July are about -30.6°C and 11.8°C, respectively. Taloyoak receives approximately on average 128.4 cm of rainfall and 141 cm of snowfall that accumulates to a mean precipitation of 223.4 mm per year.

3.3 System Description

Figure 3-1: Process Schematic

Chapter 3: Design Data

3.3.1 Overview

Construction of the Water Treatment Plant (WTP) in Taloyoak, Nunavut began on 26 April, 2010.

Canso Lake was chosen as the raw water source for the community, a change from the previous source, Water Lake. This change was made due to the proximity of Water Lake to the community which presents a higher risk of contamination.

The cartridge filtration system consists of steel filter housings that contain different sizes of filter cartridges. Water disinfection is done through chlorination using powdered calcium hypochlorite.

There are two control panels: the Main Control Panel (MCP) is located in the building by the plant's operator station, the Truckfill Panel (TFP) is located outside on the truck fill arm. Treated water is transferred to the water truck following activation of a switch at the truckfill arm by the truck driver. Fire flow or bypass operation is initiated manually by the plant operator.

More detailed descriptions of all systems are shown below.

3.3.2 Raw Water Intake

Raw water is pumped from Canso Lake into the water treatment plant using a 20 hp submersible raw water pump (RWP1) rated at 28L/s (please refer to Appendix A at the end of this chapter for location). In the event that the main raw water pump fails, the system will automatically switch to the second intake pump (RWP2).

3.3.3 Filtration System

A 75 micron pre-filter screen is installed prior to raw water entering the filtration train. The screen is made up of stainless steel mesh strainer baskets, which remove dirt and debris so as to extend the operational life of filters.

The filtration stream consists of four swing bolt filter cartridge housings. The housings contain three 20 micron and five 5 micron cartridges in series, followed by two 1 micron absolute cartridges in parallel. The 1 micron absolute cartridges can be operated in series or in parallel. The 20 micron cartridge filter removes sand, silt, rust and loose scale. The 5 micron cartridge filter removes extra fine dirt, dust and particulates. Lastly, the 1 micron absolute filters provide three-log removal of Cryptosporidium and Giardia cysts and other cyst-sized particles from raw water.

Filtration System:

Nominal Flow Rate: 1,350 L/min
Operational Flow Rate: 1,000 L/min
Inflow Design Rate: 950 L/min
Filter Housing Material: Stainless steel
Temperature Rating: 60°C (140°F)
Pressure Rating: 150 psi

All filter housings have drains that remove water from the filter; this is manual operation.

Pressure gauges are located between each filter to monitor pressure drops which will help determine if there are any upsets during any time of operation. As well, there are sampling ports along the system where samples can be taken which will assist with the monitoring of water quality during each stage of the process.

3.3.4 Treated Water Truckfill System

When there is a demand for water from the community, the solenoid valve (SV1) will open to initiate the flow of water stored in the water storage tank into the truck fill arm which fills the water distribution truck. This action is started when the water truck driver pushes the On/Off button located on the Truck Fill Panel.

During normal operation, the lead RWP will be energized on initiation. Motorized Valve 1 (MV1) is closed and Motorized Valve 2 (MV2) is open. Chlorine (as calcium hypochlorite solution) is also injected into the water entering the truck fill arm. After every truck filling, SV1 opens to allow excess water to flow back into the intake pipe casing. This removes water from the climate-exposed truck fill arm, thereby protecting the treated water from freezing in the arm.

3.3.5 Fire Flow/Bypass System

Under fire flow operation, or anytime that the plant operator wants to by-pass the filter train, the plant operator will select the "By-Pass" mode on the MCP. The by-pass mode will open MV1 and close MV2. Operation from the TFP will be the same as normal operation.

Drain water from the truckfill line and the by-pass line will be returned to the intake pipe casing by the overflow line. Solenoid Valve 1 (SV1) will open, allowing the water to drain back to the intake pipe casing after each fill cycle.

3.3.6 Disinfection System

Water disinfection is done through chlorination using powdered calcium hypochlorite. Pre-chlorination is done before and after water goes through the filtration train. Chlorine is also injected prior to the water entering the truck fill arm and storage tank. Treated water is stored in a water storage tank, goes through to the truck fill arm for the distribution of potable water using water trucks.

When the truckfill system is started, Flow Switch 1 (FS1) initiates Chemical Metering Pump 1 (CMP1) to inject chlorine into the water prior to the filtration train. When water passes through the filtration train and enters the truck fill arm, Flow Switch 2 (FS2) will initiate Chemical Metering Pump 2 (CMP2) to introduce chlorine into the water. The treated water leaves the filtration train and enters the water storage tank.

3.3.7 Power and Heating Systems

Power requirements for the Water Treatment Plant building and treatment processes will be supplied by the Alternative Energy System (AES). The AES consists of photovoltaic (PV) modules and a wind turbine, with batteries to store additional energy. Where power demands are greater than what can be produced by the AES, power provided by the Nunavut Power Corporation (NPC) via power transmission lines and/or the standby diesel generator will be used.

Heating in the WTP comes from an oil furnace and a Heat Recovery Ventilator (HRV). Heating in the AES building is supplied by oil-fired fan type heaters, heat generated from the photovoltaic system and the wind turbine generator.

3.3.8 System Backups and Redundancies

The Water Treatment Plant is designed with automatic backups for power and pumps. If one fails, the duplicate component is put into operation. The systems are designed to recover from freezing with no major damage and minimal interruptions to the operation of the Water Treatment Plant. The intake and truck fill lines are protected from freezing through the use of heat cables, which are controlled automatically.

Shelf spares are available in the Water Treatment Plant for all critical components of the treatment system in order to prevent extended plant shutdown due to component failure that requires a replacement part.

3.4 Design Data

3.4.1 Water Source

Raw water will be drawn from Canso Lake, situated northwest of the community. Refer to Appendix A for location of water source in comparison to community centre.

3.4.2 Chemical Analysis of Water Source

Water samples were taken in Canso Lake on August 8th, 2007 and October 8th, 2007. The water quality analysis revealed several exceedances to the Guidelines for Canadian Drinking Water Quality (GCDWQ), as shown below:

Turbidity: 0.5 to 0.6 NTU;E.coli: < 1 MPN/100mL;

■ Total Coliforms: 22 MPN/100mL

The GCDWQ limit for turbidity is 0.3 NTU for conventional treatment. The raw water is slightly exceeding the turbidity requirement for drinking water. The small presence of E.coli and total coliforms suggests an exceedance to the GCDWQ, where the limit for E.coli is 0 MPN/100mL. There is no limit presented for total coliforms. Based on this information, it was found that treatment will be required for turbidity and microbiological components. The treatment required will consist of filtration and disinfection.

The complete results of the raw water quality analysis are included in Appendix B.

3.4.3 Population Projections

The population of Taloyoak in 2007 was reported to be approximately 850 people (communicated by Stephen King, SAO Taloyoak). The average growth rate was estimated to be 2.4% over a 20-year period. This information was extrapolated to determine the population of the community in 2033 (25 year design horizon), where it is expected that the population of Taloyoak will be approximately 1761 people.

3.4.4 Water Consumption Data

It was calculated that 247.5 m³/day of water will be required in 2033 to meet the community's needs, as per the water consumption equation provided by MACA. In addition to daily domestic demand, water will be required for emergency situations, such as a fire. The Fire Marshal of Nunavut recommended the design fire flow rate to be 1,000 L/min or 1440 m³/day.

Table 1 shows the design flowrates for raw and treated water as well as the maximum supply pipeline pressure:

Raw Water/Intake Pump Flow Rate	950 L/min
Fire Flow/By-Pass Flow Rate	1,000 L/min
Truckfill Arm Fill Rate	1,000 L/min
Process Flow Rate	1,000 L/min
100 mm HDPE Water Supply Pipe Line Max Pressure	100 psi

Table 1. Raw and Treated Water Design Parameters

3.4.5 Climate

Climate conditions used in the design are as follows:

Table 2. Design Climate Parameters

Design Minimum Temperature	-45°C (-43°C)
Degree Days (below 18°C)	12037(11693)
Design Water Tank Storage Temperature	5.0°C
Design Operation Room Temperature	10.0°C
Design Incoming Water Temperature	0.5°C
Design Generator Room Temperature	10.0°C
$\begin{array}{ccc} \text{Snow Load} & & S_S \\ & & S_R \end{array}$	1.5 kPa(1.9 kPa) 0.1 kPa (0.1 kPa)
Wind Pressures	0.39 kPa (0.62 kPa)
Seismic Za Zv	2 1

Source: Supplement to the National Building Code of Canada 2005, Third Edition. Cambridge Bay data used, Arctic Bay data is in brackets.

3.5 Site Development

3.5.1 Intake Line

The intake line specifications are:

- Submerged section of intake is approximately 5 m.
- The top of the intake screen is set at an elevation of approximately 17 m above sea level.
- Intake is installed within an insulated casing pipe.
- Intake pump is housed within a steel skid that allows for pump extraction.
- The skid has a steel cable attached, which leads to the off take pipe. The cable is used to extract the pump for maintenance and repairs.
- The off take pipe from the pump is 100 mm HDPE DR 17 pipe.
- The casing pipe is HDPE DR 17 300 mm diameter.
- The casing pipe consists of 63.5 mm of rigid polyurethane foam insulation and an outer jacket of 50 mm black (UV-inhibited) HDPE.
- Two heat traces are installed in the casing pipe, next to the 100 mm pipe in a copper tube.
- All heat traces are installed with controllers.

3.5.1.1 Heat Trace

A heat trace system is installed on the intake casings and pipes to prevent water from freezing. A total of four power-limiting cables will be installed, two per intake casing/pipeline. Only one heat trace cable on each intake will be operational during normal operation. The heat trace will be activated by Resistance Temperature Detectors (RTDs). A combined temperature sensor and thermostat will monitor and control the temperature of the heat trace cables. The following illustrates the heat trace set points:

Primary Cable:

Temperature low point: 5°C
Temperature high point: 8°C

Secondary Cable:

Temperature low point: 3°C Temperature high point: 6°C

3.5.2 Turn Access and Building Pad

The truck turning access pad and building pad makes up the overall foundation for the building.

Building pad dimensions are 12.2 m X 4.5 m, grading is at a 2:1 slope throughout the perimeter.

The truck turn around pad has a radius of 15 m so that standard water distribution trucks can be used in the future. The side slopes of the building pad and turn around pad are be 3:1 (H:V). 150 mm of Type II granular material is placed on top of 500 mm Type I material. Granular materials are compacted to 95% standard proxy density.

3.5.3 Building Envelope

3.5.3.1 Water Treatment Plant

Pre-manufactured, skid-mounted building is constructed which is able to provide an insulation value of RSI 5.4 (nominal R-32).

3.5.3.2 Chlorine Room

Interior partition walls and an interior door separates the chlorine storage and mixing area from the rest of the Plant. The Chlorine Room is 1.2m by 1.6 m.

3.5.3.3 Furnace Room

The furnace is partitioned by walls to separate the furnace from the treatment system. The partitions measure approximately 2 meters.

3.5.3.4 Generator Room

The Generator Room is enclosed from the treatment section of the Water Treatment Plant by partition walls. Access for this room is from a separate entrance from the outside of the Plant.

3.5.4 Electrical and Power

Power sources for the water treatment plant come from the Alternative Energy System (which consists of a wind turbine, a photovoltaic (PV) system and batteries), the utility provider and the standby diesel generator. The wind turbine and PV system will be used as the major source of power. When power demand is low, energy is stored in batteries which will be used when power demands increase. In the event that power demands in the WTP cannot be met by the Alternative Energy System, grid power provided by the Nunavut Power Corp. will be used. If there is a grid power failure and the Alternative Energy System is insufficient to meet the power demand, the standby diesel generator will commence operation.

The Alternative Energy System (AES) consists of photovoltaic (PV) modules and a wind turbine. Under normal operation, majority of the power requirements can be supplied by either the PV modules and wind generator, or both. Any additional energy supplied by the system will be stored in batteries to be used at a later time. Therefore, during times when the power demand is greater than what can be supplied by the AES, the remaining power requirements will be supplied by energy stored in batteries, utility power and/or the backup diesel generator installed in the Water Treatment Plant. Daily energy consumption is calculated to be 60 kW-hr and system peak demand is expected to reach 20 kW.

The following depicts the specifications of different components of the Alternative Energy System:

Photovoltaic Modules:

Make & Model: Sharp NT-175UC1
Material: Crystal silicon

Max. Power: 175 W Max. Power Voltage: 35.4 V

Output: 48V, 500 amp-hours
Type of Cell: Monocrystalline silicon

Cell configuration: 72 in series

Wind Turbine Generator:

Make & Model: Whisper 500

Rotor diameter: 4.5 m Input: 48V DC

Rated Power: 3000 W @ 24 mph (10.5 m/s)

Frequency: 60Hz

Survival wind speed: 120 mph (55 m/s)

Blade specifications: Carbon-reinforced fiberglass

Batteries:

Make & Model: Unigy AVR95-27

Min no. of batteries: 48

Output: 48V, 6300 amp-hours

Autonomy days: 3.5 days @ 80% max. depth of discharge

3 days @ 68% max. depth of discharge

2.2 days @ 50% max. depth of discharge

Inverter:

Make & Model: Xantrex XW Hybrid

Input: 48V DC

Output: $2 @ 3 \times 3.6 \text{ kW} \pm 2\%$

Voltage: 120/240V Configuration: 1-phase, 3-wire

Frequency: 60Hz

3.5.5 Fuel Source

Main fuel source for the furnace and standby generator will be arctic grade diesel. Fuel is stored in a fuel tank, and is transferred to a day tank for use in furnace/generator. The day tank pumps fuel at the required rate to run the furnace/generator.

Fuel Tank:

Make & Model: Westeel Fuel-Vault HFV-C; conforms to ULC-S601-07

Capacity: 4540 litres Material: Mild Steel

Day Tank:

Make & Model: Tramont TRS Series

Motor Specifications: 1/3 hp, 115 VAC, 60 Hz, thermally protected

Pump Specifications: 2 gpm, high lift gear pump

Capacity: 40 litres

Material: Heavy gauge steel

3.5.6 Building Heat and Ventilation

The water treatment process building is heated by an oil furnace, oil-fired fan-type unit heaters, and a Heat Recovery Ventilator (HRV). The HRV provides fresh air into the building while exhausting an equal amount of stale air. During the cold seasons, incoming cold fresh air is warmed by using the heat recovered from the stale air before it is exhausted to the environment. Heating in the AES building is supplied from oil-fired fan type heaters, heat generated from the photovoltaic system and the wind turbine generator.

The following illustrates the heating and ventilation set points for the building:

Heat Recovery Ventilator:

Make & Model: Lennox HRV 200-3

Max Efficiency: 69%
Voltage: 120V
Configuration: 1-phase
Frequency: 60Hz

Furnace:

Make & Model: Beckett

Firing Rate Range: 0.40 - 3.00 GPH

Input: 56,000 – 420, 000 BTU/h

Voltage: 120V Frequency: 60Hz Configuration: 1-phase

Motor: 1/7 hp, 3450 rpm, NEMA 48M frame

3.6 Standby Power Generation

If there is a disruption in the power transmission lines, the automatic transfer switch initiates the standby generator and a relay switch activates the battery bank. The diesel generator and batteries in the AES are standby power sources.

Diesel Generator:

Make & Model: John Deere PowerTech E4045

Number of Cylinders: 4

Bore: 106 mm
Stroke: 127 mm
Displacement: 4.5 L
Rated Speed: 2400 rpm
Power Rating @ Rated Speed: 45 kW
Voltage: 120V
Configuration: 1-phase
Frequency: 60Hz

3.7 Accepted Risks

Accepted risks can be described as risks that occur for which protection could not be provided.

The truck fill arms located on the exterior of the Water Treatment Plant are designed to drain any excess water from the pipe back into the wastewater collection system. The angle of the truck fill arm is

designed so that after the pumps are shut down, a solenoid valve will not sense flow and will open to release the remaining water back along the pipe into the septic tank. This prevents water from remaining in the pipe and being exposed to possible freeze-up. In the event that the pipe does freeze up, it can be thawed by the use of a Tiger Torch. To do this, apply the flame directly to the stainless steel pipe. This will thaw out the excess water and allow it to drain back into the wastewater tank where it can be properly disposed. To avoid overheating areas of unfrozen pipe, vise clamps can be used to isolate the frozen pipe sections.

3.8 Overload and Expansion Capability

The raw water pump is sized to accommodate the predicted population up to 2033. After that time, the pump will have to be changed to one of higher capacity to satisfy the community's further 25-year water requirements.

3.9 Emergency and Trouble Response

3.9.1 Alarm System

The Water Treatment Plant is also equipped with a monitoring alarm system that checks water levels, pumps, temperature and other features described in Chapter 6 – Monitoring Alarms. Alarms are categorized into major and minor alarms. The major alarms set off an auto-dialer that notifies maintenance staff with an emergency alert. Minor alarms set off a light and an alarm that rings throughout the building.

The alarm system enables the autodialer when a major trouble condition has occurred which requires the attention of the Operator. The precise trouble condition is indicated by a light on the control panel, with the exception of a complete loss of power. This condition will be apparent upon arrival at the water treatment plant.

Major alarms consist of:

- Intake pump RWP1 and RWP2 failure
- Low building temperature
- Power off Standby Generator failure
- Very low fuel
- Heat Trace low temperature RWP1&2 and TWP1

Any alarm received should be treated as an emergency condition.

Minor trouble conditions do not enable the autodialer to transmit an alarm; they are only indicated by a light on the alarm panel and an audible alarm that can be heard within the building. The minor trouble conditions do not require the operator's immediate presence but should be taken as important.

Minor alarms consist of:

- High building temperature
- Power off Standby Generator on
- Low fuel temperature
- High Wastewater Tank level
- Heat Trace general fault
- Generator general fault

Chapter 6 provides additional detail on all major and minor alarm conditions that could occur in the Water Treatment Plant and the procedures in mitigating and address these alarm conditions.

TABLE OF CONTENTS

	<u>Page No.</u>
4 SCHEMATIC AND FUNCTIONAL DATA	1
4.1 General	1
LIST OF FIGURES	
Figure 4-1: Process Water Flow.	2
Figure 4-2: Plumbing System	12
Figure 4-3: Fuel Oil System	15
Figure 4-4: Heating and Ventilation System	
Figure 4-5: Single Line Diagram	24
LIST OF TABLES	
Table 4.1: Process Water Flow	3
Table 4.2: Plumbing System	13
Table 4.3 : Fuel Oil System	16
Table 4.4: Heating and Ventilation System	20
Table 4.5: Single Line Diagram	25

4 SCHEMATIC AND FUNCTIONAL DATA

4.1 General

Chapter 4 contains tables that list all of the components in each system contained in the water treatment plant and a short description of their function.

For each system in the water treatment plant, there is a table listing each component, its function and cross reference to the attached Figure. The table will list references to the manufacturer's data that is located in Chapter 9: Manufacturer Data and Service Information.

A total of five (5) systems are shown in Chapter 4: Schematics and Functional Data.

<u>SYSTEM</u>	<u>TABLE</u>	FIGURE
Process Water Flow	Table 4.1	Figure 4.1
Plumbing System	Table 4.2	Figure 4.2
Fuel Oil System	Table 4.3	Figure 4.3
Heating and Ventilation System	Table 4.4	Figure 4.4
Single Line Diagram	Table 4.5	Figure 4.5

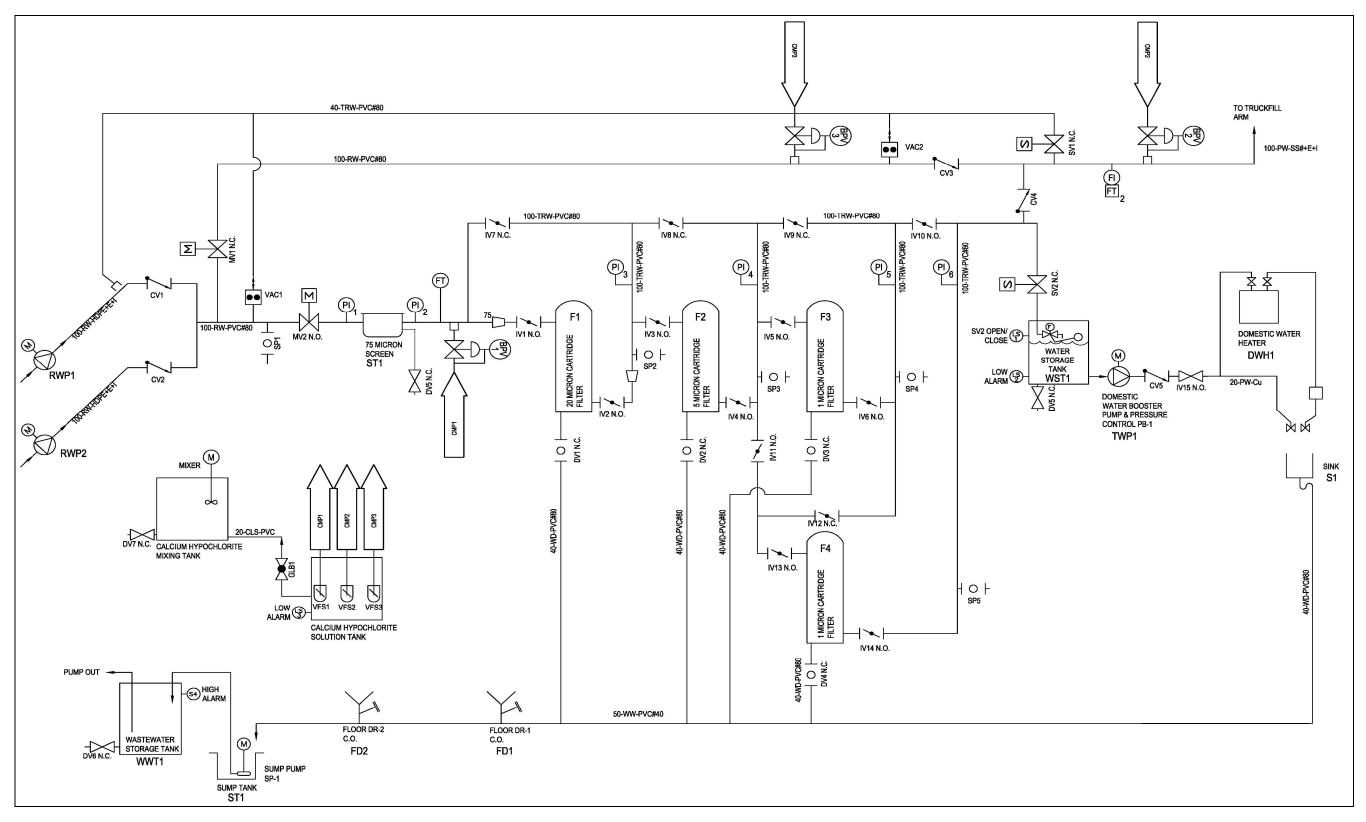


Figure 4-1: Process Water Flow

Chapter 4: Schematic and Functional Data

Table 4.1: Process Water Flow

Item	Item	Sec. 9	Location	Component	Make/Model	Function	Remarks/Notes
No.	ID	Tab		Description			
1	RWP1		Intake Casing 1	Raw water Pump	Goulds 320L20, 441 USgpm max flowrate, c/w Franklin Electric submersible motor model no. 236654, 6" motor dia., 200V, 3- phase, 60 Hz, 20 hp	Draws water from lake to WTP.	Normally open.
2	RWP2		Intake Casing 2	Raw water Pump	Same as Item No. 1	Draws water from lake to WTP.	Standby.
3	IV1		Upstream of Cartridge Filter #1	Isolation Valve	Bray 31/108, 75 mm butterfly valve	Isolates Cartridge Filter #1.	Normally open
4	IV2		Downstream of Cartridge Filter #1	Isolation Valve	Same as Item No. 3	Isolates Cartridge Filter #1.	Same as Item No. 3
5	IV3		Upstream of Cartridge Filter #2	Isolation Valve	Bray 31/108, 100 mm butterfly valve	Isolates Cartridge Filter #2.	Normally open
6	IV4		Downstream of Cartridge Filter #2	Isolation Valve	Same as Item No. 5	Isolates Cartridge Filter #2.	Same as Item No. 5
7	IV5		Upstream of Cartridge Filter #3	Isolation Valve	Same as Item No. 5	Isolates Cartridge Filter #3.	Same as Item No. 5
8	IV6		Downstream of Cartridge Filter #3	Isolation Valve	Same as Item No. 5	Isolates Cartridge Filter #3.	Same as Item No. 5
9	IV7		By-pass line for Cartridge Filter	Isolation Valve	Same as Item No. 5	Allows water to by- pass Cartridge Filter	Same as Item No. 5

		#1			#1.	
10	IV8	By-pass line for Cartridge Filter #2	Isolation Valve	Same as Item No. 5	Allows water to by- pass Cartridge Filter #2.	Same as Item No. 5
11	IV9	By-pass line for Cartridge Filter #3	Isolation Valve	Same as Item No. 5	Allows water to bypass Cartridge Filter #3.	Same as Item No. 5
12	IV10	By-pass line for Cartridge Filter #4	Isolation Valve	Same as Item No. 5	Allows water to by- pass Cartridge Filter #4.	Same as Item No. 5
13	IV11	Downstream of By-pass line for Cartridge Filter #2	Isolation Valve	Same as Item No. 5	Allows water to bypass Cartridge Filter #3.	Same as Item No. 5
14	IV12	Upstream of Cartridge Filter #4	Isolation Valve	Same as Item No. 5	Isolates Cartridge Filter #4.	Same as Item No. 5
15	IV13	Upstream of Cartridge Filter #4	Isolation Valve	Same as Item No. 5	Isolates Cartridge Filter #4.	Same as Item No. 5
16	IV14	Downstream of Cartridge Filter #4	Isolation Valve	Same as Item No. 5	Isolates Cartridge Filter #4.	Same as Item No. 5
17	IV15	Downstream of Treated Water Pump	Isolation Valve	Same as Item No. 5	Isolates Treated Water Pump.	Same as Item No. 5
18	DV1	Cartridge Filter #1	Drain Valve	Praher S6, 40 mm ball valve	Drains Cartridge Filter #1.	Normally closed
19	DV2	Cartridge Filter #2	Drain Valve	Same as Item No. 17	Drains Cartridge Filter #2.	Same as Item No. 17
20	DV3	Cartridge Filter #3	Drain Valve	Same as Item No. 17	Drains Cartridge Filter #3.	Same as Item No. 17
21	DV4	Cartridge Filter	Drain Valve	Same as Item No. 17	Drains Cartridge	Same as Item

		#4			Filter #4.	No. 17
22	DV5	Water Storage	Drain Valve	Praher S6, 20 mm ball	Drains Water	Normally closed
		Tank		valve	Storage Tank.	
23	DV6	Wastewater	Drain Valve	Praher S6, 50 mm gate	Drains Wastewater	Normally closed
		Storage Tank		valve	Storage Tank.	
24	DV7	Chlorine	Drain Valve	Same as Item No. 21	Drains the Chlorine	Same as Item
		Mixing Tank			Mixing Tank.	No. 21
25	CV1	Water Intake	Check Valve	Valmatic 504A, 100	Prevents backflow	Normally closed
		Line 1		mm swing check valve	into Water Intake	
					Line from RWP1.	
26	CV2	Fireflow by-	Check Valve	Same as Item No. 25	Prevents backflow	Same as Item
		pass line			from Truck fill line.	No. 25
27	CV3	Between	Check Valve	Same as Item No. 25	Prevents backflow	Same as Item
		Fireflow and			of Raw Water into	No. 25
		Treated Water			Treated Water.	
		Line				
28	CV4	Feed line to the	Check Valve	Crane Class 125, 20 mm	Prevents backflow	Normally closed
		Water Storage		swing check valve	into the Blower.	
		Tank				
29	CV5	Downstream of	Check Valve	Same as item no. 29	Prevents backflow	
		Treated Water			into the Water	
		Pump			Storage Tank.	
30	GLB1	Downstream of	Globe Valve	Crane Class 150, 20	Isolates the Chlorine	Normally closed
		the Chlorine		mm globe valve	Mixing Tank.	
		Mixing Tank				
31	SV1	Truck Fill Line	Solenoid	Burkert 5281A, 40 mm	Controls Drain	Normally closed
			Valve at the	solenoid valve, 0.2 – 16	Valve on Truck fill	
			Truck Fill	bar pressure range,	Arm.	
			Line			
32	SV2	Upstream of	Solenoid	Burkert 5281A, 20 mm	Controls the fill rate	Normally closed

		line to Water Storage Tank	Valve	solenoid valve, 0.2 – 16 bar pressure range	of Water Storage Tank.	
33	MV1	Intake	Motorized Valve	Bray 70-0051-113AO, 100 mm motorized valve	Three-way control valve at Intake.	Normally closed
34	MV2	Intake	Motorized Valve	Same as Item No. 33	Three-way control valve at Intake.	Normally open
35	SP1	Raw Water Line	Sampling Port	Crane 9200 Series, 20 mm ball valve	Samples raw water entering the filter screen.	Normally closed.
36	SP2	Downstream of Cartridge Filter #1	Sampling Port	Same as Item No. 35	Samples water leaving Cartridge Filter #1.	Same as Item No. 35
37	SP3	Downstream of Cartridge Filter #2	Sampling Port	Same as Item No. 35	Samples water leaving Cartridge Filter #2.	Same as Item No. 35
38	SP4	Downstream of Cartridge Filter #3	Sampling Port	Same as Item No. 35	Samples water leaving Cartridge Filter #3.	Same as Item No. 35
39	SP5	Downstream of Cartridge Filter #4	Sampling Port	Same as Item No. 35	Samples water leaving Cartridge Filter #4.	Same as Item No. 35
40	VAC1	Upstream of the pre-filter screen	Air Vacuum Valve	Valmatic 101S	Vents gases in raw water prior to water entering pre-filter screen.	
41	VAC2	Upstream of the Truck Fill Arm	Air Vacuum Valve	Valmatic 101S	Vents gases in treated water prior to water entering the Truck Fill Arm.	
42	PI1	Upstream of the pre-filter screen	Pressure Indicator	WIKA 233.34	Measures pressure in line after raw water intake pump.	

43	PI2	Downstream of the pre-filter screen	Pressure Indicator located at the outflow of the	WIKA 233.34	Measures pressure in line after pre-screen filter.
			pre-filter screen		
44	PI3	Downstream of Cartridge Filter #1	Pressure Indicator	WIKA 233.34	Measures pressure in line after Cartridge Filter #1.
45	PI4	Downstream of Cartridge Filter #2	Pressure Indicator	WIKA 233.34	Measures pressure in line after Cartridge Filter #2.
46	PI5	Downstream of Cartridge Filter #3	Pressure Indicator	WIKA 233.34	Measures pressure in line after Cartridge Filter #3.
47	PI6	Downstream of Cartridge Filter #4	Pressure Indicator	WIKA 233.34	Measures pressure in line after Cartridge Filter #4.
48	VFS1	Chlorine Solution Tank	Foot Valve/Strainer	Grundfos (Kit) 91835825	Directs flow of liquid chlorine into CMP1 and prevents debris entrainment.
49	VFS2	Chlorine Solution Tank	Foot Valve/Strainer	Same as Item No. 48	Directs flow of liquid chlorine into CMP2 and prevents debris entrainment.
50	VFS3	Chlorine Solution Tank	Foot Valve/Strainer	Same as Item No. 48	Directs flow of liquid chlorine into CMP3 and prevents debris entrainment.
51	CMP1	Upstream of the filter train	Chlorine Metering Pump 1	Grundfos DDI209 20-3	Adds chlorine to raw water entering filter train.

52	CMP2	Upstream of the Truck Fill Arm	Chlorine Metering Pump 2	Grundfos DDI209 20-3	Adds chlorine to treated water entering Truck Fill Arm.
53	CMP3	Upstream of the by-pass line	Chlorine Metering Pump 3	Grundfos DDI209 20-3	Adds chlorine to raw water entering pre-filter screen and the Water Storage Tank.
54	BPV1	Chemical Metering Pump #1	Back Pressure Valve	Meridian Ball Valve, 3- Way L Port, Model # M21SRL	Prevents backflow of calcium hypochlorite solution.
55	BPV2	Chemical Metering Pump #2	Back Pressure Valve	Same as Item no. 55	Same as Item no. 55.
56	BPV3	Chemical Metering Pump #3	Back Pressure Valve	Same as Item no. 55	Same as Item no. 55.
57	FT1	Upstream of filter train	Flow Transmitter	Endress & Hauser Proline ProMag 50W, max. pressure 40 bar, max. flow measurement 110000 m ³ /h	Measures flow of raw water entering filter train.
58	FT2	Upstream of Truck Fill Arm	Flow Transmitter	Same as Item No. 54	Measures flow of treated water entering truck fill arm.
59	F1	Treatment Room	Cartridge Filter #1	Harmsco Hurricane filters HUR 3X170 HP, 20 micron	Removes sand, silt, rust and loose scale.
60	F2	Treatment Room	Cartridge Filter #2	Harmsco Hurricane filters HUR 5X170 HP,	Removes extra fine dirt, dust and

				5 micron	particulates.	
61	F3	Treatment Room	Cartridge Filter #3	Harmsco Hurricane filters HUR 5X170 HP, 1 micron absolute	Provide 3-log removal of Cryptosporidium, Giardia cysts and other cyst-sized particles from raw water.	
62	F4	Treatment Room	Cartridge Filter #4	Same as Item no. 61	Same as Item no.58.	
63		Chlorine Room	Calcium Hypochlorite Mixing Tank	Mixer: Dynamix MMX-2103D-9C7C, Tank: Zeebest Plastics OTCO 12, 45 Litres (12 US gallons), 12" (0.3m) dia. X 26" (0.66m) H, polyethylene w/ UV inhibitor	Mixes calcium hypochlorite solution.	
64		Chlorine Room	Calcium Hypochlorite Solution Tank	Zeebest Plastics OTCO 12, 45 L (12 US gallons), 12" (0.3m) dia. X 26" (0.66m) H, polyethylene w/ UV inhibitor	Stores liquid calcium hypochlorite.	
65	WST1	End of Filtration Train	Water Storage Tank	Norwesco 41862, 28" D X 81" H, 379 Litres (100 US Gallons)	Stores treated water.	
66	WWT1	Treatment Room	Wastewater Storage Tank	Norwesco 40215, 35" D X 81" H, 1136 Litres (300 US Gallons)	Stores wastewater from Sump Tank	Mounted on sleeper 50 mm above facility floor
67	DWH1	Treatment	Domestic	Rheem RE6, 6 Gallons	Heats and stores	Mounted under

		Room	Water Heater		treated water prior to	counter
					supply for domestic	
					use.	
68	LS1	Water Storage	Level Switch		Opens and closes	
		Tank			SV2 to initiate/end	
					filling of water	
					storage tank.	
69	LS2	Water Storage	Level Switch		Initiates low level	
		Tank			alarm when water	
					level is water storage	
					tank is below the	
					setpoint.	
70	LS3	Calcium	Level Switch		Initiates low level	
		Hypochlorite			alarm when the level	
		Solution Tank			of calcium	
					hypochlorite	
					solution is below the	
					setpoint.	
71	LS4	Wastewater	Level Switch		Initiates high level	
		Storage Tank			alarm when the level	
					of wastewater in the	
					tank is above the	
		THE CO.	T1 . T 1		setpoint.	
72	FV	Water Storage	Float Valve		Opens and closes	
		Tank			depending on the	
					actual treated water	
72	TXVD1	T	TD 4 1337 4	CI CI DIMII	level in the tank.	C :
73	TWP1	Treatment	Treated Water	Shurflo Park Model	Boosts pressure in	Consists of a
		Room	Pump	2088-492-444, 0.5 hp	water supply lines to distribute domestic	booster pump
						with integrated
					water throughout the WTP.	pressure control
74	S1	Treatment Room	Sink	Kindred QSL 2020/8	Used for washing	

					and cleaning in the Water Treatment Plant.	
75	FD1	Floor of the water treatment plant	Floor Drain	Watts FD-200	Collects runoff water and waste from the floor of the plant.	Floor of the water treatment plant
76	FD2	Floor of the water treatment plant	Floor Drain	Watts FD-200	Collects runoff water and waste from the floor of the plant.	Floor of the water treatment plant
77	ST1	Treatment Room	Sump Tank	Hydromatic Series 218 Basin, 23" X 31", 50 mm PVC piping between sump pit and wastewater tank	Collects wastewater from floor drains.	Polyethylene sump tank recessed into floor, c/w pump
78	SP	Between Sump Tank and Wastewater Storage Tank	Sump Pump	Hydromatic SKV40AW110	Pumps water from Sump Tank into the Wastewater Storage Tank.	

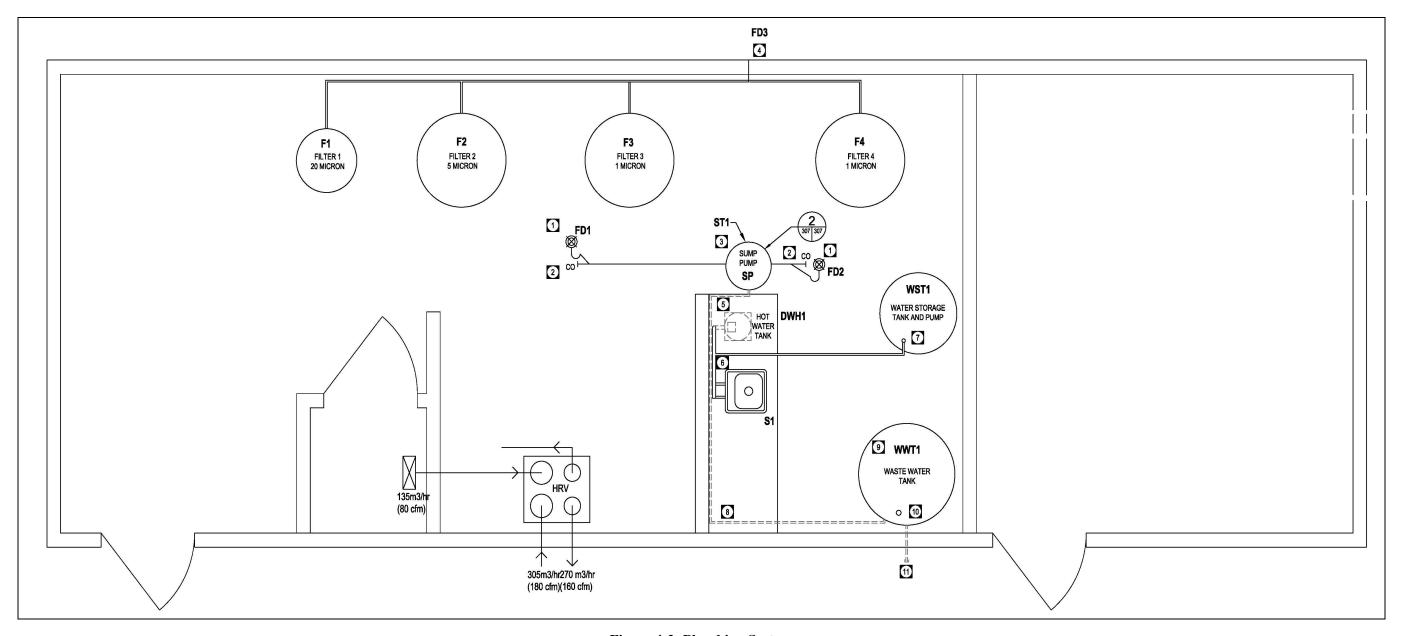


Figure 4-2: Plumbing System

Table 4.2: Plumbing System

Item No.	Item ID	Sec. 9 Tab	Location	Component Description	Make/Model	Function	Remarks/Notes
1	WST1		End of Filtration Train	Water Storage Tank	Norwesco 41862, 28" D X 81" H, 379 Litres (100 US Gallons)	Stores treated water.	
2	WWT1		Treatment Room	Wastewater Storage Tank	Norwesco 40215, 35" D X 81" H, 1136 Litres (300 US Gallons)	Stores wastewater from Sump Tank.	Mounted on sleeper 50 mm above facility floor
3	DWH1		Treatment Room	Domestic Water Heater/Tank	Rheem RE6, 6 Gallons	Heats and stores treated water prior to supply for domestic use.	Mounted under counter
4	TWP1		Treatment Room	Treated Water Pump	Shurflo Park Model 2088-492- 444	Boosts pressure in water supply lines to distribute domestic water throughout the WTP.	
5	S1		Treatment Room	Sink	Kindred QSL 2020/8	Used for washing and cleaning in the Water Treatment Plant.	
6	FD1		Floor of the water treatment plant	Floor Drain	Watts FD-200	Collects runoff water and waste from the floor of the plant.	
7	FD2		Floor of the water	Floor Drain	Watts FD-200	Collects runoff water and waste	

		treatment plant			from the floor of the plant.	
8	ST1	Treatment Room	SumpTank	Hydromatic Series 218 Basin, 23" X 31", 50 mm PVC piping between sump pit and wastewater tank	Collects wastewater from floor drains.	Polyethylene sump tank recessed into floor, c/w pump
9	SP	Between Sump Tank and Wastewater Storage Tank	Sump Pump	Hydromatic SKV40AW110, 1/3 hp	Pumps water from Sump Tank into the Wastewater Storage Tank.	
10			Pumped Sanitary Discharge Line	75 mm dia.	Pumps wastewater out of WTP.	
11	СО		Cleanout		Allows access to drains for waste material cleanout purposes.	
12	СО		Cleanout		Allows access to drains for waste material cleanout purposes.	
13		Wastewater Storage Tank	Plumbing Vent		Vents gases from Wastewater Storage Tank.	Installed at high level and penetrate roof.
14		Downstream of filter train	Filter Drain	50 mm dia.	Drains water from filtration train to the outside of WTP.	

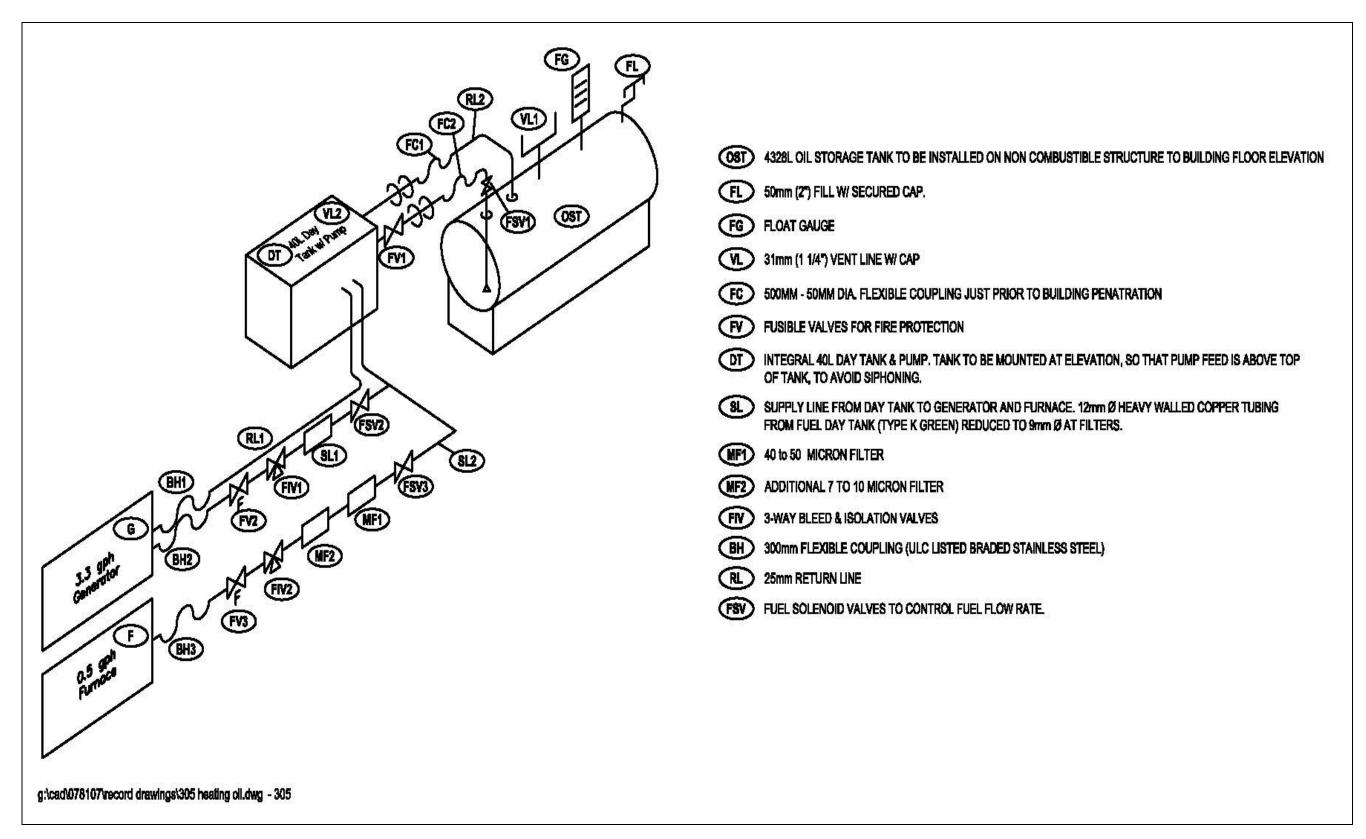


Figure 4-3: Fuel Oil System

Table 4.3 : Fuel Oil System

Item	Item	Sec. 9	Location	Component	Make/Model	Function	Remarks/Notes
No.	ID	Tab	Location	Description	1/14/16/17/10401		
1	G		Power Room	Generator	Stamford UC1224F, 3.3 gph, 40kW, 120/240V, 1-phase, 60 Hz, 50 kVA standby	Provides secondary power in case of primary power loss.	
2	OST		Outside of Water Treatment Plant	Oil Storage Tank	Westeel Fuel Vault, 4540 L	Stores fuel oil to supply generator and furnace.	To be installed on non-combustible structure
3	DT		Power Room	Day Tank	Tramont TRS Series, 40 Liters c/w 2 gpm pump	Provides fuel to generator and furnace.	Indoor fuel oil tank
4	F		Furnace Room	Furnace	Carrier 58CMA, oil-fired, 3450 rpm, 57 kBTUH heating capacity, 0.5 USgph firing rate	Provides heating for the WTP.	
5	FIV1		Upstream of the Generator	Fuel Isolation Valve		Isolates fuel going into the Generator.	
6	FIV2		Upstream of the Furnace	Fuel Isolation Valve		Isolates fuel going into the Furnace.	
7	BH1 & BH2		Generator	Braided Hose Connections	Silex, 300 mm dia.	Connection transfers pipe into braided hose to connect to component.	
8	BH3		Furnace Prior to	Braided Hose Connection	Same as Item No. 9	Connection transfers pipe into braided hose to connect to component.	
9	FC1		riioi to	riexidie	500 mm dia.	Connects Oil Storage	

	& FC2	building penetration	Coupling		Tank to Day Tank
10	FSV1	Upstream of the Day Tank	Fuel Solenoid Valve		Control flow of fuel into the Day Tank.
11	FSV2	Upstream of the Generator	Fuel Solenoid Valve		Controls flow of fuel into the Generator.
12	FSV3	Upstream of the Furnace	Fuel Solenoid Valve		Controls flow of fuel into the Furnace.
13	FV1	Downstream of the Oil Storage Tank	Fusible Valve		Fire protection.
14	FV2	Upstream of Generator	Fusible Valve		Fire protection.
15	FV3	Upstream of Generator	Fusible Valve		Fire protection.
16	MF1	Upstream of the Furnace	Micron Filter	40 to 50 micron filter	To remove impurities from fuel oil prior to it entering the furnace.
17	MF2	Upstream of the Furnace	Micron Filter	7 to 10 micron filter	To remove small particles from fuel oil prior to it entering the furnace.
18	FG	Oil Storage Tank	Float Gauge		Measures fuel oil level in Oil Storage Tank.
19	VL1	Oil Storage Tank	Vent Line	31 mm dia. c/w cap	Vents air from Oil Storage Tank.
20	VL2	Day Tank	Vent Line	Same as Item No. 19	Vents air from Day Tank.
21	FL	Upstream of the Oil Storage Tank	Fill Line	Schedule 40 steel pipe, 50 mm dia.	Access line to fill Oil Storage Tank.

22	SL1	Upstream of the Generator	Fuel Oil Supply Line	12 mm dia. heavy walled copper tubing from fuel day tank. Reduces to 9 mm dia. at filters.	Supplies fuel to Generator.
23	SL2	Upstream of the Furnace	Fuel Oil Supply Line	12 mm dia. heavy walled copper tubing from fuel day tank. Reduces to 9 mm dia. at filters.	Supplies fuel to Furnace.
24	RL1	Between Day Tank and Generator	Fuel Oil Return Line	25 mm dia.	Returns oil back to Day Tank from Generator.
25	RL2	Between Oil Storage Tank and Day Tank	Fuel Oil Return Line	25 mm dia.	Returns oil back to Oil Storage Tank from Day Tank.

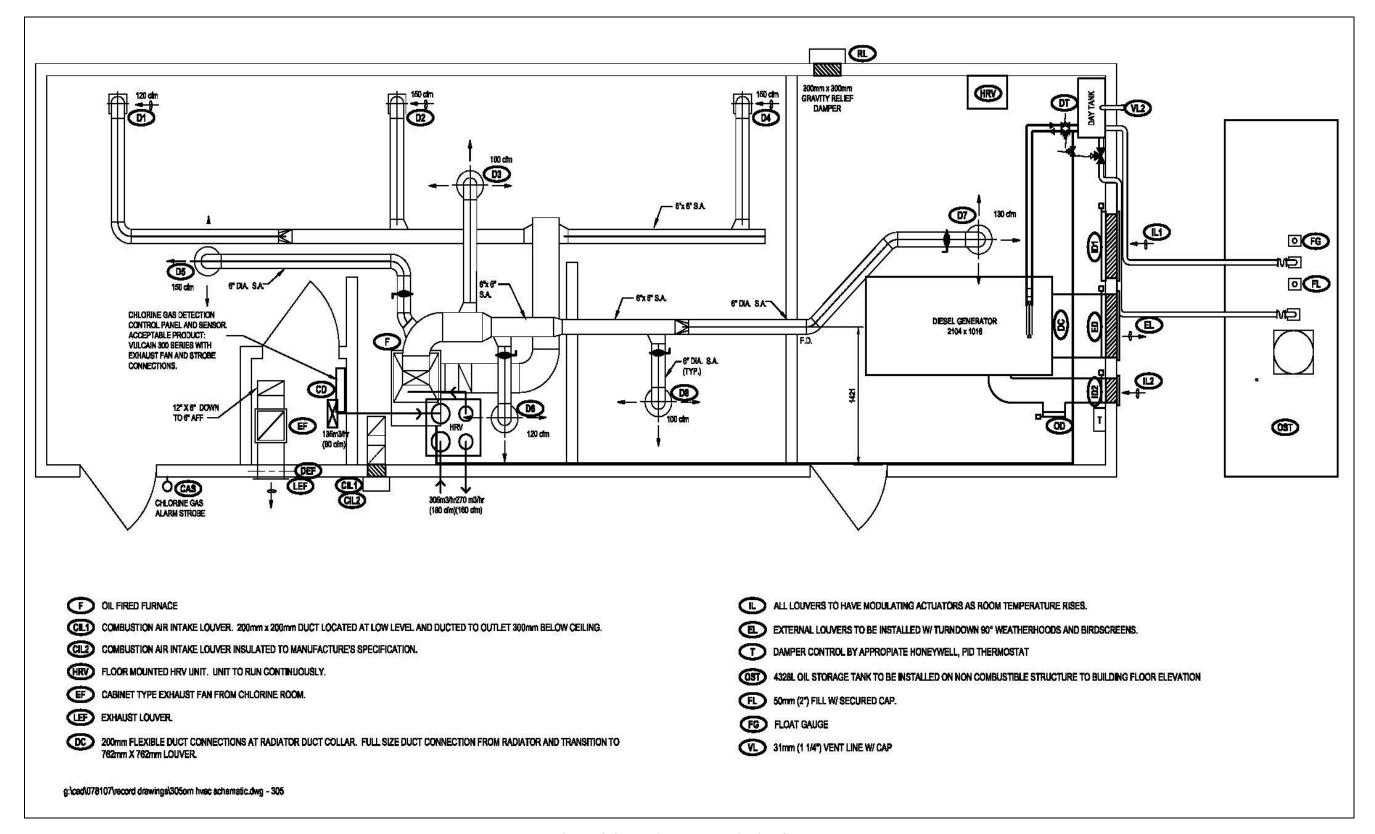


Figure 4-4: Heating and Ventilation System

Table 4.4: Heating and Ventilation System

Item No.	Item ID	Sec. 9 Tab	Location	Component Description	Make/Model	Function	Remarks/Notes
1	G		Power Room	Generator	Stamford UC1224F, 3.3 gph, 40kW, 120/240V, 1- phase, 60 Hz, 50 kVA standby	Provides secondary power in case of primary power loss.	
2	OST		Outside Water Treatment Plant	Oil Storage Tank	Westeel Fuel Vault, 4540 L	Stores fuel oil to supply generator and furnace.	To be installed on non-combustible structure
3	DT		Power Room	Day Tank	Tramont TRS Series, 40 Liters c/w 2 gpm pump	Provides fuel to generator and furnace.	Indoor fuel oil tank
4	F		Furnace Room	Furnace	Carrier 58CMA, oil-fired, 3450 rpm, 57 kBTUH heating capacity, 0.5 USgph firing rate	Provides heating for the WTP.	
5	HRV		Generator Room	Heat Recovery Ventilator	Lennox HRV- 150-3	Recovers heat from exiting (stale) air to and provides heat to incoming (fresh) air.	Floor mounted
6	Т		Generator Room	Thermostat	Totaline Easy 1H1C/2H/1C	Senses and transmits temperature readings to heating system.	
7	CIL1 & CIL2		Furnace Room	Combustion Air Intake Louver	EH Price DE635	Provides entry of air into Furnace.	200 mm x 200 mm
8	IL1		Generator Room	Intake Air	EH Price DE635	Provides entry of	2' x 4'

			Louver		outside air into the	
					Generator room.	
9	IL2	Generator Room	Intake Air	EH Price DE635	Provides entry of	1' x 0.5'
			Louver		outside air into the	
					Generator room.	
10	EL	Generator Room	Exhaust Air	EH Price DE635	Allows air to be	2' x 4'
			Louver		exhausted from the	
					Generator room.	
11	ID1	Generator Room	Intake Damper	EH Price	Allows outside air to	
				TAMCO 9000,	enter the building to	
				1000	cool the Generator	
					radiator.	
12	ID2	Generator Room	Intake Damper	EH Price	Modulates air intake to	
			_	TAMCO 9000,	maintain required	
				1000	minimum combustion	
					air temperature of	
					Generator.	
13	ED	Generator Room	Exhaust	EH Price	Exhausts hot air out of	
			Damper	TAMCO 9000,	the building to cool the	
				1000	Generator radiator.	
14	OD	Generator Room	Outside	EH Price	Modulates air intake to	
			Damper	TAMCO 9000,	maintain required	
			-	1000	minimum combustion	
					air temperature of	
					Generator.	
15	RL	Generator Room	Gravity Relief	EH Price	Allows exhaust air to	Complete with
			Damper	TAMCO 9000,	exit the Generator	cap.
				1000	room.	
16	EF	Chlorine Room	Chlorine Room	80 cfm, 0.25 hp,	Exhausts gases from the	
			Exhaust Fan	belt-driven	Chlorine Room.	
				centrifugal		
				inline, Hi-Pro		
				polyester coated,		

17	DEF	Chlorine Room	Chlorine Room Fan Exhaust	explosion proof motor, corrosion resistant fasteners	Modulates airflow in the Chlorine Room.	
18	LEF	Chlorine Room	Damper Chlorine Room Exhaust Louvre		Allows gases in the Chlorine Room to exit the building.	
19	DC	Between radiator and louver	Duct Collar		Flexible duct connection from radiator to Louver.	
20	D1	Water Treatment Plant	Diffuser	6", 120 cfm	Distributes fresh air in the building.	
21	D2	Water Treatment Plant	Diffuser	6", 150 cfm	Distributes fresh air in the building.	
22	D3	Water Treatment Plant	Diffuser	6", 100 cfm	Distributes fresh air in the building.	
23	D4	Water Treatment Plant	Diffuser	6", 150 cfm	Distributes fresh air in the building.	
24	D5	Water Treatment Plant	Diffuser	6", 150 cfm	Distributes fresh air in the building.	
25	D6	Water Treatment Plant	Diffuser	6", 120 cfm	Distributes fresh air in the building.	
26	D7	Water Treatment Plant	Diffuser	6", 130 cfm	Distributes fresh air in the building.	
27	D8	Water Treatment Plant	Diffuser	6", 100 cfm	Distributes fresh air in the building.	
28	CD	Water Treatment Plant	Chlorine Gas Detection Control Panel and Sensor		Detects and controls levels of chlorine gas in the building.	

29	CAS	Water	Chlorine Gas	Lights up if chlorine	
		Treatment Plant	Alarm Strobe	gas levels in building	
				are above safe limits.	

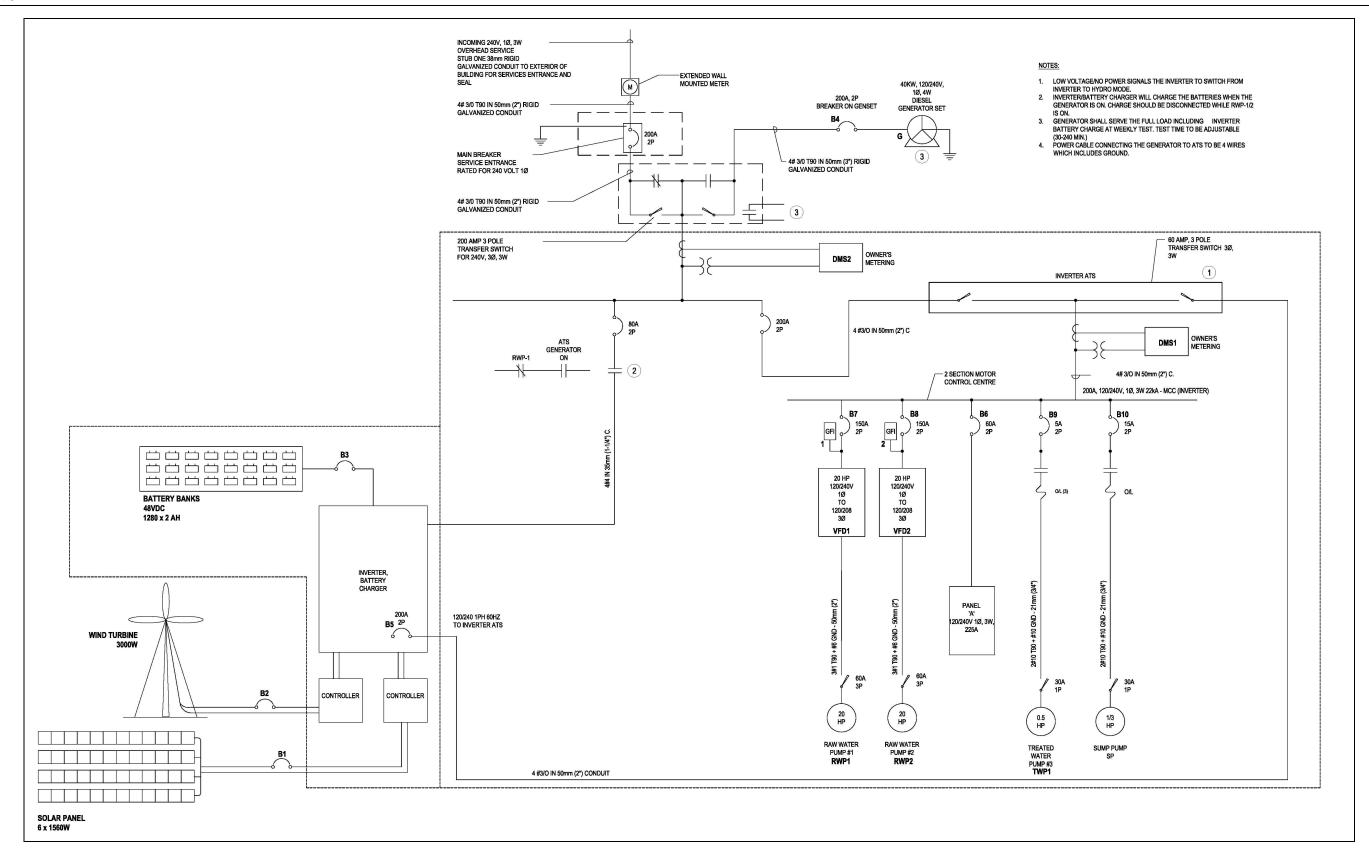
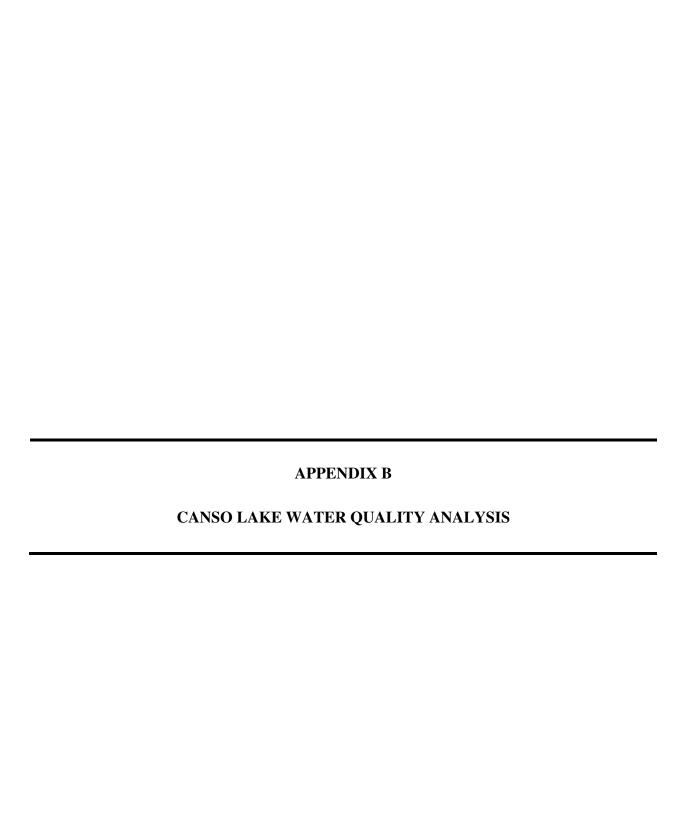


Figure 4-5: Single Line Diagram


Table 4.5: Single Line Diagram

Item	Item	Sec. 9	Location	Component	Make/Model	Function	Remarks/Notes
No.	ID	Tab		Description			
1			Overhead Service Pole	Overhead Grid Power	120/240VAC, 200A, 1-phase, 60Hz	Supplies additional primary power to building from the overhead transmission line and transformer.	Owned by Nunavut Power Corp. (NPC)
2	DMS1			Digital Metering Unit #1	200A, 2-phase, 240V	Measures overhead grid power consumed by the WTP.	
3	DMS2			Digital Metering Unit #2		Measures power consumption by the WTP.	
4	В			Main Breaker	240V, 200A	Breaks power entering WTP. Diverts power to Ground.	
5				Alternative Energy System (AES)		Provides primary power to WTP. Consists of Photovoltaic (PV) modules, wind turbine and battery bank.	
6	B1			Breaker	200A, 2-phase	Breaks power from Solar Panels to the Controller.	
7	B2			Breaker	200A, 2-phase	Breaks power from the Wind Turbine to the Controller.	
8	В3			Breaker	200A, 2-phase	Breaks power from the Battery Bank to the Inverter.	
9	C1			Controller		Controls power from the	

				Solar Panel to the	
				Inverter.	
10	C(2)	C 11			
10	C2	Controller		Controls power from the	
				Wind Turbine to the	
				Inverter.	
11		Wind Turbine	Whisper 500, 3 kW,	Converts wind energy to	
			48 VDC	electricity.	
12		Photovoltaic	Sharp NT175UC1, 6	Converts solar energy to	
		(PV) Panels	X 1560W	electricity.	
13		Battery Bank	Unigy II AVR95-27-	Stores unused electricity	
			SL, 2 X 1280Ah, 48	from AES for use in	
			VDC	periods where more	
				power is required or	
				AES/Overhead Service	
				Pole power loss.	
14	B4	Breaker	Square D Model	Breaks power from the	
			JDS36175, 175A, 2P	Generator.	
15	G	Generator	Stamford UC1224F,	Provides secondary	
			3.3 gph, 40kW,	power in case of	
			120/240V, 1-phase,	primary power loss.	
			60 Hz, 50 kVA	primary power ross.	
			standby		
16	ATS01	Automatic	ASCO 7000 Series,	Controlled by AES and	
	711001	Transfer Switch	200A, 2-pole	ATS02. Transfers	
			20071, 2 poic	between primary power	
				and secondary power	
				supply.	
17	ATS02	Automatic	ASCO 7000 Series,	Controlled by utility	
1 /	A1302	Transfer Switch	,		
		Transici Switch	200A, 2-pole	power and generator.	
				Transfers power usage	
				from primary to	
				secondary power	
				supply.	

18		Inverter/Charger	Xantrex XW, 120/240VAC, 1-	Converts Direct Current (DC) from AES to
			phase, 24kW	Alternating Current (AC).
19	B5	Breaker	200A, 2-phase	Breaks power from the Inverter/Charger to ATS01.
20	B6	Breaker	60A, 2P	Breaks power to Panel 'A'.
21		Panel 'A'	120/240V, 1-phase, 2W, 225kA	Distributes power to equipment in the WTP.
22	B7	Breaker	150A, 2P	Breaks power to RWP1.
23	VFD1	Variable	Yaskawa F7 Drive,	Switches power for
		Frequency	0.5 to 500 hp,	RWP1.
		Drive	120/240V, 1-phase	
			to 120/208V, 3-	
			phase	
24	GFI1	Ground Fault		Grounds RWP1 to
		Interrupter		protect personnel from
				electrical shocking.
25	RWP1	Raw Water	Goulds 320L20, 20	Pumps water out of
		Pump	hp	Canso Lake to WTP.
26	B8	Breaker	150A, 2P	Breaks power to RWP2.
27	VFD2	Variable	Yaskawa F7 Drive,	Switches power for
		Frequency	0.5 to 500 hp,	RWP2.
		Drive	120/240V, 1-phase	
			to 120/208V, 3-	
20	CEIO	C 15 1	phase	C 1 DWD2 .
28	GFI2	Ground Fault		Grounds RWP2 to
		Interrupter		protect personnel from
20	DWD2	D W/ /	C14- 2201 20, 20	electrical shocking.
29	RWP2	Raw Water	Goulds 320L20, 20	Pumps water out of
		Pump	hp	Canso Lake to WTP.

30	В9		Breaker	5A, 2P	Breaks power to TWP1.	
31	O/L		Overload		Stops power to TWP1	
			Switch		when circuit overloads.	
32	TWP1	Truck Fill	Truck Fill	Shurflo Park Model	Boosts pressure in	Consists of a
		Line	Water Pump	2088-492-444, 0.5	water supply lines to	booster pump
				hp	distribute domestic	with integrated
					water throughout the	pressure control
					WTP.	
33	B10		Breaker	15A, 2P	Breaks power to SP.	
34	O/L		Overload		Stops power to SP when	
			Switch		circuit overloads.	
35	SP		Sump Pump	Hydromatic	Pumps water from	
				SKV40AW110, 1/3	Sump Tank into the	
				hp	Wastewater Storage	
					Tank.	
36	MCC		Motor Control	Moeller MCC 3000,	Controls motor starters,	
			Centre	600 VDC	houses relays and fuses.	
37			Generator	Controls Inc.	Controls Generator	
			Control Panel	Genmaster Plus P/N	operation.	
				GMPLUS-C40125		

		GCDV	VQ	S2 T1	S2 B1	Site 2
Parameter	Units	MAC	AO	(Aug 8 th)	(Aug 8 th)	(Oct 8 th)
Physicals						
Alkalinity	-	-	-	-	-	-
Total (as CaCO ₃)	mg/L	-	-	83	83	97
PP (as CaCO ₃)	mg/L	-	-	<1	<1	<1
Color, True	PtCo	-	≤15 TCU	5	5	2
Conductivity	uS/cm	-	-	221	221	252
Particle Size	-	-	-	-	-	-
pH	pН	-	6.5-8.5	8.1	8.2	8.1
Total Dissolved Solids	mg/L	-	≤500	110	109	127
Total Suspended Solids	mg/L	-	-	<2	<2	<2
Turbidity	NTU	0.3/1.0/0.1 ^a	-	0.5	0.5	0.6
Major Ions (Dissolved)						
Calcium	mg/L	-	-	20.8	20.6	22.1
Chloride	mg/L	-	≤250	14	14	16
Fluoride	mg/L	1.5	-	-	-	-
Hardness (as CaCO ₃)	mg/L	-	-	90	90	97
Magnesium	mg/L	-	-	9.3	9.3	10.1
Potassium	mg/L	-	-	0.9	0.9	1.2
Sodium	mg/L	-	≤200	9.9	9.9	12.2
Sulphate (as SO ₄)	mg/L	-	≤500	5	4	7
Metals (Total)	σ.	0.01		0.001	0.001	0.001
Arsenic	mg/L	0.01	- 0 4 10 2 h	<0.001	< 0.001	<0.001
Aluminum	mg/L	-	$0.1/0.2^{b}$	0.005	0.004	<0.04
Barium	mg/L	1	-	< 0.01	<0.01	<0.01
Cadmium	μg/L	5	-	<0.01	<0.01	<0.0002
Chromium	mg/L	0.05	- ≤1.0	<0.001	0.001	<0.01 0.0004
Copper	mg/L	-	≤1.0 ≤0.3	<0.0002 <0.06	<0.0002 <0.06	< 0.004
Iron	mg/L	0.01	≥0.3	<0.000	<0.0002	<0.000
Lead	mg/L	0.01	- ≤0.05	<0.002	<0.002	<0.004
Manganese	mg/L mg/L	0.001	≥0.03	<0.004	<0.004	<0.004
Mercury	mg/L mg/L	0.001	-	< 0.001	<0.001	5 < 0.001
Selenium Uranium	mg/L	0.01	-	0.0003	0.0003	0.0005
Zinc	mg/L	-	≤5.0	< 0.0003	< 0.0003	<0.0003
	IIIg/L	_		<0.0003	<0.0003	VO.0003
Organics Total Cyanida	mg/L	0.20		< 0.005	< 0.005	< 0.005
Total Cyanide Total Trihalomethanes	mg/L	0.20	Ī .	\ 0.003	< 0.003	< 0.003
Tribromomethane	μg/L μg/L	-	_	<0.5	<0.5	<0.4
Trichloromethane	μg/L μg/L	_	_	<0.5	<0.5	<0.4
Bromodichloromethane	μg/L μg/L	16	_	<1	<1	<0.4
Chlorodibromomethane	μg/L μg/L	-	_	<0.5	<0.5	<0.4
Nutrients	μg/L			70.5	10.5	νο. τ
Total Dissolved Carbon	mg/L	_	_	_	_	3
Total Nitrate + Nitrite	mg/L mg/L	10	_	< 0.2	< 0.2	<0.2
Total Organic Carbon	mg/L	-	_	2.0	1.9	3.2
Total Phosphorous	mg/L mg/L	_	-	< 0.003	< 0.003	<0.1
Microbiological	mg/L			.5.000	.0.000	10.1
E. Coli	mpn/100	0	-	<1	<1	<1
Fecal Coliforms	mL	mg/L/100mL	-	-	-	-
Total Coliforms	mpn/100	-	-	22	13	<1
Standard Plate Count	mL	0	-	-	-	<1
	l	l			l .	L

a. Based on conventional treatment/slow sand or diatomaceous earth filtration/membrane filtration.

Source: "Water System Upgrades, Taloyoak Pre-Design Report", Dillon Consulting Limited, 2007.

b. Operational guidance value, designed to apply only to drinking water treatment plants using aluminum-based coagulants. Based on conventional treatment/all other treatment systems.

Taloyoak Water Analysis 2018-2020

Parameters			A	April 30 201	8	Sep	September 12 2018			June 03 2019		
	Units	MAC	TAL-1 Raw Water	WTP	Truck Fill	TAL-1 Raw Water	WTP	Truck Hose	TAL-1 Raw Water	WTP	Truck Fill	
Colour	TCU	<=15	8	5	5				<5	<5	<5	
pН	pH Units	7.0 - 10.5	7.73	7.87	7.86	8.29	8.27	8.23	7.78	7.86	7.86	
Turbidity	NTU	1	0.22	0.2	0.19	0.38	0.33	0.43	0.33	0.28	0.20	
TDS	mg/L		76	86	92	122			182	176	190	
TSS	mg/L		<3	<3	<3	<3	<3	<3	4	<3	6	
Alkalinity	mg/L		131	130	131	94.8	94.1	94.7	131	131	131	
Conductivity	mg/L		373	375	379	276	277	280	350	356	357	
Dissolved C	mg/L	45	3.8	3.6	3.9	3.5	3.5	3.2	4.6	4.3	4.5	
Total C	mg/L		4.0	3.9	4.0	3.4	3.6	3.3	4.3	4.5	4.3	
Cyanide	mg/L	0.2	<0.0010	<0.0010	<0.0010	<0.0050	<0.0050	<0.0050	<0.0010	<0.0010	<0.0010	
THMs	mg/L	0.1		0.048	0.032		<0.005			0.011		
Phenol, Total	mg/L		<0.0010	<0.0010	<0.0010	0.0013	0.0019	0.0016	<0.0010	<0.0010	<0.0010	
Bromo-CH4	mg/L			0.016	0.008		<0.005			<0.005		
Nitrate N	mg/L		0.32	0.36	0.32	0.24	0.25	0.23	0.56	0.54	0.55	
Hardness	mg/L		137	142	142	103	127	139	134	137	138	
Chloride	mg/L	<=250	31.1	32.1	31.9	22.7	23.4	23.7	31.1	31.9	32.0	
Fluoride	mg/L		0.1	0.1	0.1				<0.1	0.1	0.1	
Sodium	mg/L	<=200	19.4	19.5	19.5	10.1	13.6	16.2	19.6	19.8	19.8	
Sulphate	mg/L	<=500	16	16	16	12	12	12	14	14	14	
Magnesium	mg/L		14.7	15.1	14.8	12.0	16.3	18.2	13.9	14.1	14.1	
Calcium	mg/L		30.6	31.7	32.5	21.3	24.1	25.5	30.6	31.8	31.9	
Potassium	mg/L		1.7	1.7	1.7	1.8	2.5	2.3	1.6	1.6	1.6	
Total Coliform	CFU	none	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
E. Coli	CFU	none	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Aluminium	μg/L	<100	0.9	1.8	1.2	1.7	3.9	16.7	2.9	3.3	2.5	
Arsenic	μg/L	100	0.3	0.3	0.3	0.2	0.3	0.2	0.3	0.4	0.4	
Barium	μg/L	1	5.2	5.5	5.3	4.1	4.1	4.1	5.0	5.0	5.0	
Cadmium	μg/L	5	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	
Chromium	μg/L	50	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	0.1	
Copper	μg/L	<=1000	1.4	16.7	4.6	0.4	1.4	8.7	1.1	0.5	3.2	
Iron	μg/L	<=300	7	6	6	<5	6	26	<5	<5	11	
Lead	μg/L	10	0.1	0.7	0.2	<0.1	<0.1	0.2	0.1	<0.1	0.2	
Manganese	μg/L	<=50	1.5	0.8	0.9	3.1	2.6	3.2	2.5	1.9	1.7	
Selenium	μg/L	50	0.4	0.3	0.7	<0.3	<0.3	0.4	0.5	0.4	0.4	
Uranium	μg/L	20	0.5	0.6	0.6	0.4	0.4	0.4	0.5	0.5	0.5	
Zinc	μg/L	<=5000	5.5	37.9	4.3	1.1	4.1	7.8	6.1	1.3	3.1	
Mercury	μg/L	1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Nickel	μg/L		0.1	0.4	0.2	0.1	0.2	0.2				
1												

P&ID#	Description	Make	Model #	Size
RW1, RW2	Raw water pump	Goulds	320L20	
RW1, RW2	Pump motor	Franklin Electric	304SS	20 hp
CV1 to CV5	Swing Flex check valve	Valmatic	504A	•
MV1, MV2	Electric actuator	Bray	70-0051-113AO	
(ST1)	Basket strainer	Hayward	Simplex	75 micron
IV1 to IV15	Butterfly valve	Bray	31/108	4"
PI1 to PI6	Pressure gauge	WIKA	233.34	0 - 150 psi
	gauge			Normally
SV1, SV2	Solenoid valve	Burkert	5281A	closed
CMPI to CMP3	Dosing pump	Grundfos	DDI209 20-3	20 L/h
VFS1 to VFS3	Foot valve with switch	Grundfos (Kit)	91835825	
(MX)	Mixer	Dynamic	MXX-2103D-9C7C	0.33. hp
(WH-1)	Hypochlorite mixing tank	Zeebest Plastics	OTCO12	45 L
GBL	Ball valve	Praher	S6	
(WH-2)	Hypochlorite solution tank	Zeebest Plastics	OTCO12	45 L
SP1 to SP5	Sampling taps			
FT1, FT2	Mag. flow meter	Endress & Hauser	ProMag 50	
VAC1, VAC2	Air and vacuum valve	Valmatic	101S	
(F1)	Swing bolt filter housing	Harmsco	HUR 3x170FL	(20 micron)
(F2)	Swing bolt filter housing	Harmsco	HUR 5x170FL	(5 micron)
()				(1 micron
(F3)	Swing bolt filter housing	Harmsco	HUR 5x170FL	àbs.)
				(1 micron
(F4)	Swing bolt filter housing	Harmsco	HUR 5x170FL	abs.)
(F1)	Cartridge	Harmsco	HC/170-20	20 micron
(F2)	Cartridge	Harmsco	HC/170-5	5 micron
(52.54)	Contrido	Harman	DD/470 4	1 micron
(F3, F4) PB-1	Cartridge	Harmsco Shurflo Park Model	PP/170-1	abs.
	Domestic booster pump		2088-492-444	115 V
WST-1 DWH-1	Treated water tank	Norwesco	41862	378 L
	Hot water tank	Rheem	RE6	120 V
SP-1	Sump pump	Hydromatic	SKV40AW110	115 V
WWT-1	Wastewater sump tank	Hydromatic	Series 218 basin	23" x 31"
WWT-2	Waste water storage tank	Norwesco	40215	1,136 L
DV1 to DV7	Drainage valve	Praher	S6	1
-	Ext. emergency valve	Morrison Bros.	346DI-0500 AV	1
-	Ball valve	Crane	0202	
_	Blocked vent shut-off valve	Honeywell	BVSO-225-A	120 V
	Floor drain	Mifab	F1000	120 V
	SCADA controller	Schneider Electric	ScadaPack 32	1
	HMI touch screen	Maple Systems	5070 TH	1
_	Switching power supply	Carlo Gavazzi	SPD241001	
-	Autodialler			
-		Barnett Eng.	B1290 ProTalk Plus	
-	Day tank control system	Tramont	2000 ECM	150 of
-	Heat recovery ventilator	Lennox	HRV-150-3	150 cfm

-	Centrifugal in-line fan	Greenheck	BSQ-70-4	
-	Temperature controller	Johnson Controls	A350PS-1C	
-	Diesel generator	Stamford	AC	
-	Diesel engine	PowerTech	E4045	
-	Thermostat	Totaline Easy	1H1C/2H/1C	
	Electronic oil primary			
-	control	Honeywell	R7184A	
-	Furnace	Carrier	58CMA	
-	Fuel tank	Weesteel	ULC-S601-07	4,546 L
-	Fuel filter	PetroClear	40510W, 40530W	10,30 micron
-	Foot valve	Morrison Bros.		
-	3-way ball valve	Meridian	M21SRL	
-	CL2/CO sensor	Honeywell Vulcain	VA301D2CL2-CO	
-	Motor control center	Moeller	MCC 3000	
-	AC motor drive	Yaskawa	F7	
-	Automatic transfer switch	ASCO	7000	
-	Damper lot	EH Price	TAMCO 9000,1000	
-	Louvers	EH Price	DE635	
-	Actuator	Belimo	NF24SR-US	
-	Chimney	Oliver MacLeod	HT6103+	
Lab eqt.	Portable colorimeter	Hach	DR890	
Lab eqt.	Portabel turbidimeter	Hach	2100P]
Safety eqt.	Fire extinguisher	Sentry	AA20	
-	Exit light	Ready-Lite	CX5100WHISP]
-	Battery light	Ready-Lite	LDX12722RQ12]
-	Flashing	AdaptaBeacon	104FLED-G1	1
	Outdoor lighting			
-	system	Sceptalight		
-	Wall mount	Lumark	Wal-Lite	70 W

6.0 OPERATION PROCEDURES

6.1 START/STOP TRUCKFILL - NORMAL OPERATION

Location: START / STOP Switch located on truckfill arm or on wall inside the treatment room.

- 6.1.1 Press the START button to start fill
- 6.1.2 Press the STOP button to stop fill
- 6.1.3 Check that water drains out of arm and into the intake casing

Troubleshooting

- 6.1.4 If the there is no flow
 - 6.1.4.1 Check that there is power to the plant
 - 6.1.4.2 Check that all controls are in the AUTO position
 - 6.1.4.3 Check that all manual valves are set in the correct positions
- 6.1.5 If there is no or insufficient chlorine
 - 6.1.5.1 See section on chlorine pumps
- 6.1.6 If the truckfill arm does not drain
 - 6.1.6.1 Check the operation of SV1, located on the wall by the water storage tanks

6.2 START/STOP TRUCKFILL - FIRE FILL

Location: START / STOP Switch located on truckfill arm or on wall inside the treatment room.

- 6.2.1 Press the START button to start fill
- 6.2.2 Press the STOP button to stop fill
- 6.2.3 Check that water drains out of arm and into the intake casing

Troubleshooting

- 6.2.4 If the there is no flow
 - 6.2.4.1 Check that there is power to the plant
 - 6.2.4.2 Check that all controls are in the AUTO position
 - 6.2.4.3 Check that all manual valves are set in the correct positions
- 6.2.5 If there is no or insufficient chlorine
 - 6.2.5.1 See section on chlorine pumps
- 6.2.6 If the truckfill arm does not drain
 - 6.2.6.1 Check the operation of SV1, located on the wall by the water storage tanks

6.3 RAW WATER PUMPS

Location: VFD's and Control Panel in generator room, START/STOP stations

6.3.1 The raw water pumps are started by the START/STOP stations

Troubleshooting

- 6.3.2 If the pumps do not start
 - 6.3.2.1 Check that there is power to the plant
 - 6.3.2.2 Check that all controls are in the AUTO position
 - 6.3.2.3 Check that the VFD's or Control Panel do not show any errors
 - 6.3.2.4 Check that all manual valves are set in the correct positions
 - 6.3.2.5 Switch to other pump

6.3.3 If flow is too low

6.3.3.1 Switch to other pump

6.4 BASKET STRAINER

Location: Treatment Room after raw water intakes

- 6.4.1 To change or empty the strainer
 - 6.4.1.1 Turn off the raw pumps
 - 6.4.1.2 Close valves immediately upstream of the strainer IV1.
 - 6.4.1.3 Depressurize the system by opening sample tap, SP1
 - 6.4.1.4 Close sample tap, SP1
 - 6.4.1.5 Unscrew top of strainer
 - 6.4.1.6 Clean strainer
 - 6.4.1.7 Open valves that were closed, IV1.

6.5 CARTRIDGE FILTRATION

Location: Treatment room

Fig. 1 Swing bolt cartridge filter housings.

- 6.5.1 Filters should be changed when the pressure differential across them reaches 15-20 psi
- 6.5.2 To change the filters

Always Isolate And Remove Pressure From Housing Before Servicing.

- 6.5.2.1 Turn off the raw pumps
- 6.5.2.2 Close valves before and after the filter vessel
- 6.5.2.3 Open the drain valve
- 6.5.2.4 Undo the housings bolts
- 6.5.2.5 Rotate the cover off the vessel

- 6.5.2.6 Pull out filters by the stainless steel Cartridge Handle
- 6.5.2.7 Undo the Handle from the used filter and put it onto the new filter. Tighten securely to seal the handle to the filter
- 6.5.2.8 Install Cartridge/Handle assembly(s) onto Stand-pipe(s). Position Cartridge/Handle assembly downward until Cartridge's Bottom End Cap contacts the housing's Tube Sheet. The Cartridge's Bottom End Cap will seal with the Stand-pipe Coupling to prevent by-passing. A slight rotating action will assist in the positioning of the Cartridge while engaging the Stand-pipe Coupling. Confirm all Cartridge/Handle assemblies are properly positioned.
- 6.5.2.9 Inspect Housing O-ring and make sure that it is free from cracks and debris.
- 6.5.2.10 Clean Housing and Lid O-ring mating surfaces.
- 6.5.2.11 Place Housing O-ring into channel of Housing.
- 6.5.2.12 Return Lid to proper closure position and lower onto Housing O-ring. Make sure O-ring stays in the channel of the Housing.
- 6.5.2.13 Return all Swing Bolts, Eye Nuts, & Washers to their closure position.
- 6.5.2.14 Tighten all Eye Nuts by hand in a star pattern several times until all Eye Nuts are uniformly tight.
- 6.5.2.15 Start the flow of water by first opening the inlet valve and allow the housing to completely fill, then, open the outlet valve.
- 6.5.3 For PARALLEL operation of the 1 micron cartridge filters. (i.e. NORMAL operation)
 - 6.5.3.1 Open valves IV10 and IV11
 - 6.5.3.2 Close valve IV12
- 6.5.4 For SERIES operation of the 1 micron cartridge filters
 - 6.5.4.1 Close valves IV10 and IV11
 - 6.5.4.2 Open valve IV12
 - 6.5.4.3 Remember to reset these valves to the parallel settings for normal operation.

6.6 CALCIUM HYPOCHLORITE MIXER

Location: Chlorine Room

Fig.2 Calcium hypochlorite mixing arrangement.

- 6.6.1 To make solution
 - 6.6.1.1 Add 2 calcium hypochlorite tablets to the top tank
 - 6.6.1.2 Use water fill line to fill top tank with 50L of water
 - 6.6.1.3 Turn on mixer with the START/STOP switch on the wall
 - 6.6.1.4 Leave mixer on until the tablets are dissolved and the solution is well mixed
 - 6.6.1.5 Turn off the mixer
 - 6.6.1.6 Open valve GBL1 to transfer the solution to the bottom tank
 - 6.6.1.7 Close valve GBL1

Troubleshooting

- 6.6.2 No water to fill
 - 6.6.2.1 Check there is water in the domestic water tank
 - 6.6.2.2 Check the domestic water pump under the sink
 - 6.6.2.3 Check that the valve is open
- 6.6.3 Mixer doesn't work
 - 6.6.3.1 Check for power on the wall socket
 - 6.6.3.2 Replace mixer if needed

6.7 CALCIUM HYPOCHLORITE DOSING PUMPS

Location: Chlorine Room, Control Panel in generator room

Fig.3 Calcium hypochlorite solution pumps.

Three dosing pumps deliver chlorine to the truck fill line, namely pump CMP1 before filtration, pump CMP3 after filtration, while pump CMP2 operates only when the fire flow mode is activated.

Assuming that a solution of 1.2 % strength is prepared (two calcium hypochlorite tablets added to 50 L of mixing tank water), the chlorine feed tank will contain 0.012×0.68 (0.68 is solid calcium hypochlorite yield) = 0.00816 kg/L (8.16 g/L) of free chlorine. At a residual chlorine target of 1 mg/L (1 ppm) at the nominal flow of 1,350 L/min, total demand is theoretically $0.001 \times 1,350 = 1.35$ g/min. However, actual demand will be somewhat higher dependent of the amount of organics in the raw water. Set tentatively on the HMI screen CMP1 to 0.5 ppm and CMP3 to 1 ppm. Set CMP2 to 1 ppm.

Chlorine content should be verified regularly by sampling at the truckfill arm outlet (note that it will decay with time if staying in the solution tank for some extended time).

- 6.7.1 To dose chlorine
 - 6.7.1.1 Chlorine is automatically dosed when the water pumps are started
- 6.7.2 To adjust chlorine dosing quantity
 - 6.7.2.1 Change the chlorine output levels on the HMI on the Control Panel
 - 6.7.2.2 The chlorine pumps do not need direct adjustment
 - 6.7.2.3 Set CMP1 to 0.5 ppm
 - 6.7.2.4 Set CMP3 to 1.0 ppm
 - 6.7.2.5 Set CMP2 to 1.0 ppm, this does not need to be changed
 - 6.7.2.6 Fill the truck and take a sample
 - 6.7.2.7 Check the chlorine concentration in the sample
 - 6.7.2.8 Adjust CMP3 as needed to achieve the desired chlorine concentration.
 - 6.7.2.9 If CMP3 and CMP1 cannot be adjusted to achieve the desired chlorine levels, then the chlorine solution needs to be changed.

Troubleshooting

- 6.7.3 Chlorine too high/low
 - 6.7.3.1 Adjust dosing levels on the Control Panel
 - 6.7.3.2 Check the solution strength in the chlorine tank. The tank may need to be diluted or drained and a new batch of chlorine solution made.
- 6.7.4 No Chlorine
 - 6.7.4.1 Check that there is power to the pumps
 - 6.7.4.2 Check that all controls are in the AUTO position
 - 6.7.4.3 Check that the valves are in the correct positions
 - 6.7.4.4 Check that there are no leaks in the chemical feed lines

6.8 DOMESTIC WATER SUPPLY

Location: storage tank is across from sink, pump and hot water heater are under sink

6.8.1 Open the taps as needed for water

Troubleshooting

- 6.8.2 There is no water in the tank
 - 6.8.2.1 Check the solenoid valve supplying the storage tank (SV2)
 - 6.8.2.2 Water usage may be too high

- 6.8.3 The tank is overflowing
 - 6.8.3.1 The solenoid valve supplying the storage tank (SV2) may be stuck open.
 - 6.8.3.2 Manually override and close the solenoid
 - 6.8.3.3 There may be debris in the solenoid and the solenoid needs to be disassembled and cleaned
- 6.8.4 There is no water pressure
 - 6.8.4.1 Check the water booster pump operation. All controls for the pump are internal to the pump
 - 6.8.4.2 Check for leaks in the system
- 6.8.5 There is no hot water
 - 6.8.5.1 Check that there is power to the water heater
 - 6.8.5.2 Check that the valves are in the correct positions

6.9 WASTE WATER SYSTEM

Location: Sump pump and tank is under the floor next Filter #4. The waste water Storage tank is on the wall across from the sink.

- 6.9.1 Sump pump operates automatically
- 6.9.2 The waste water tank needs to be emptied when 80% full

Troubleshooting

- 6.9.3 The sump pump is not emptying into the waste tank
 - 6.9.3.1 Check that there is power to the sump pump
 - 6.9.3.2 Check that the float switch on the sump pump is operational
 - 6.9.3.3 Check that there are no obstructions in the sump pump outlet line

6.10 FURNACE

Location: In the space across from Filters 2 & 3

6.10.1 The furnace is controlled by the thermostat on the wall

Troubleshooting

- 6.10.2 There is no heat
 - 6.10.2.1 Check that the thermostat is working properly
 - 6.10.2.2 Check that there is sufficient fuel in the day tank and the day tank is operational
 - 6.10.2.3 Check that the furnace is starting
 - 6.10.2.4 Check the damper on the heat vents are open

6.11 BACKUP POWER GENERATOR SET

Location: Generator Room

Figure 4: Automatic Transfer Switches
ATS1 ("Load Switch") on the right, ATS2 ("Power Switch") on the left

Figure 5: ATS control switches

- 6.11.1 The generator operation is automatically controlled by the Automatic Transfer Switches 6.11.2 All switches should be in AUTO mode in regular operation
- 6.11.3 To manually test the Genset without switching power source to the building.
 6.11.3.1 on BOTH Automatic Transfer Switch, turn the "Engine Generator Control" switch to "Engine Start"
- 6.11.4 To manually switch to Hydro / Utility power 6.11.4.1 On ATS1 "Load Switch"

- 6.11.4.2 Change the "Transfer Mode" switch to MANUAL
- 6.11.4.3 Change the "Manual Control" switch to EMERGENCY
- 6.11.5 To manually switch to Generator Power
 - 6.11.5.1 On ATS1 "Load Switch"
 - 6.11.5.2 Change the "Transfer Mode" switch to MANUAL
 - 6.11.5.3 Change the "Manual Control" switch to EMERGENCY
 - 6.11.5.4 Change "Engine Generator Control" switch to ENGINE START
 - 6.11.5.5 On ATS2 "Power Switch"
 - 6.11.5.6 Change the "Transfer Mode" switch to MANUAL
 - 6.11.5.7 Change the "Manual Control" switch to EMERGENCY
 - 6.11.5.8 Change "Engine Generator Control" switch to ENGINE START

Troubleshooting

- 6.11.6 Generator doesn't start
 - 6.11.6.1 Check that there is sufficient fuel
 - 6.11.6.2 Check the battery is charged, the battery charger is on the wall

6.12 GENSET VENTILATION

Location: Generator Room

- 6.12.1 The ventilation dampers are automatically controlled by the thermostat on the wall
- 6.12.2 The temperature that they open at can be adjusted using the dial on the thermostat

Troubleshooting

- 6.12.3 The dampers do not open or close as expected
 - 6.12.3.1 Check that there is power to the damper control panel
 - 6.12.3.2 Check that the damper actuators are moving

6.13 DAYTANK AND DIESEL FUEL SUPPLY

Location: Daytank is in generator room, main diesel storage is outside

- 6.13.1 No adjustments to the day tank are needed
- 6.13.2 To fill the diesel tank outside
 - 6.13.2.1 Open the lid on the Spill container
 - 6.13.2.2 Fill tank
 - 6.13.2.3 Pull drain on the spill container to empty any spilled diesel fuel into the tank
 - 6.13.2.4 Close lid on Spill container

Troubleshooting

- 6.13.3 There is no fuel in the day tank
 - 6.13.3.1 Check the fuel lines for leaks
 - 6.13.3.2 Check for power to the day tank

Maintenance Procedures

RAW WATER PUMPS

Location: In Reservoir

No regular maintenance is required

BASKET STRAINER

Location: Treatment Room after raw water intakes

Strainer should be emptied when:

Pressure differential exceeds 5 psi

Every 2 weeks

CARTRIDGE FILTRATION

Location: Treatment room

Filters should be changed when

The pressure differential across them reaches 15-20 psi

See Chapter 6 for filter change out procedure

O-rings and seals should be checked for damage or excessive wear when filters are changed.

CALCIUM HYPOCHLORITE MIXER

Location: Chlorine Room

Tanks should be cleaned when there is excessive build up of debris

The mixer impeller should be checked for damage and signs of rust. Replace if necessary.

CALCIUM HYPOCHLORITE DOSING PUMPS

Location: Chlorine Room, Control Panel in generator room

Daily checks for leaks

Check fittings

Check for cracks in tubing

Once a year or every 4000 hrs of operation

Follow cleaning procedure in pump manufacturer's manual

DOMESTIC WATER SUPPLY

Location: storage tank is across from sink, pump and hot water heater are under sink

Hot water tank

At least once a year, lift and release the lever handle on the temperature pressure relief valve, located near the top of the water heater, to make certain the valve operates freely. Allow several gallons to flush through the discharge line to an open drain.

Rapid closing of faucets or solenoid valves in automatic water using appliances can cause a banging noise

heard in a water pipe. Strategically located risers in the water pipe system or water hammer arresting devices can be used to minimize the problem.

The anode rod should be removed from the water heater's tank annually for inspection and replaced when more than 6" of core wire is exposed at either end of the rod. Make sure the cold water supply is turned off before removing anode rod.

NOTICE: Do not remove the anode rod from the water heater's tank, except for inspection and/or replacement, as operation with the anode rod removed will shorten the life of the glass lined tank and will exclude warranty coverage.

WASTE WATER SYSTEM

Location: Sump pump and tank is under the floor next Filter #4. The waste water Storage tank is on the wall across from the sink.

The waste water tank needs to be emptied when 80% full

FURNACE

Location: In the space across from Filters 2 & 3

Check the furnace air filter every 3-4 weeks and replace as necessary

Check the fuel filters every week.

Once a year, have a professional inspect and service the furnace

BACKUP POWER GENERATOR SET

Location: Generator Room

To assure that your engine will deliver efficient standby operation when needed, start engine and run at rated speed (with 50%-70% load) for 30 minutes every 2 weeks. DO NOT allow engine to run extended period of time with no load.

Follow maintenance schedule and procedures from John Deere engine manual.

	Lubrication and Maintenance Service Intervals					
Item	Daily	250 Hour/ 6 Month	500 Hour/ 12 Month	2000 Hour/ 24 Month	As Required	
Check the battery charge level	*					
Check Engine Oil and Coolant Level	*					
Check Fuel Filter(s)/Water Separator Bowl	*					
Check Air Cleaner Dust Unloader Valve & Indicator ^a	*					
Perform Visual Walkaround Inspection		*				
Change Engine Oil And Replace Oil Filter ^b		*				
Check Engine Mounts		*				
Service Battery		*				

Check Manual Belt Tensioner	*			
and Belt Wear	·			
Clean Crankcase Vent Tube		*		
Check Air Intake Hoses, Connections, & System		*		
Replace Single or Dual Fuel Filter Elements		*		
Check Automatic Belt Tensioner and Belt Wear		*		
Check Engine Speeds		*		
Check Engine Electrical Ground Connection		*		
Check Cooling System		*		
Coolant Solution Analysis-Add SCAs as required		*		
Pressure Test Cooling System		*		
Check Crankshaft Vibration Damper (6.8 L Engines) ^c			*	
Flush Cooling System ^d			*	
Test Thermostats			*	
Check and Adjust Engine Valve Clearance			*	
Add Coolant				*
Replace Air Cleaner Elements				*
Replace Poly-Vee Belt				*
Check Fuses				*
a Danlaga neimany air alaanar alama	 : 1: 4	.1		(25 in) H2O

^a Replace primary air cleaner element when restriction indicator shows a vacuum of 625 mm (25 in.) H2O.

GENSET VENTILATION

Location: Generator Room

No regular maintenance is required

DAYTANK AND DIESEL FUEL SUPPLY

Location: Day tank is in generator room, main diesel storage is outside

Check fuel levels every 2-3 days

No other regular maintenance is required.

^b Change the oil for the first time after 100 hours maximum of break-in operation. For subsequent oil and filter intervals, see recommendations in section 10.

^c Replace crankshaft damper every 4500 hours or 60 months, whichever occurs first.