Government of Nunavut

Environmental Assessment Screening under CEAA Sewage Wetland Upgrade for the Hamlet of Whale Cove, Nunavut

Type of Document:

Final Report

Project Name:

Environmental Assessment Screening

Project Number:

OTT-00201369-A0

Prepared By:

exp

1595 Clark Boulevard Brampton, ON L6T 4V1 Canada

T: 905.793.9800 F: 905.793.0641 www.exp.com

Date Submitted: March 2013

Executive Summary

The Government of Nunavut (GN), Department of Community and Government Services (CGS) retained **exp Services Inc.** (exp), (the new identity of Trow Associates Inc.)., to prepare a Screening Level Environmental Assessment (SLEA) under the *Canadian Environmental Assessment Act* in order to complete the detailed planning design for the sewage wetland upgrade for the Hamlet of Whale Cove, Kivalliq Region, Nunavut, hereinafter referred to as the 'Site'.

The objective of the SLEA is to identify and document the environmental effects of the proposed project components, and to determine the need to mitigate the adverse effects and modify the project plan, or recommend further assessment by a review panel. The SLEA will be completed in general accordance with the *Canadian Environmental Assessment Act*.

The justification for the project is based on the need of the Hamlet of Whale Cove to operate an upgraded sewage treatment system that is structurally sound, and has the necessary capacity to accommodate the projected growth of the community over the next 20 years.

All of the vegetation observed at the Site or expected to be present at the Site, are highly adapted to the extreme conditions of the subarctic region. Various species are also adapted to disturbed Sites, including fireweed. As such, the composition of the vegetation community observed to be present at the Site is considered suitable for the proposed upgrade and expansion of the existing long term sewage treatment system for the Hamlet of Whale Cove.

In general, the extent of disturbance at the Site is considered minimal. There is light, widespread evidence of colonizing plant species at various areas of the Site, and light, localized evidence of human encroachment, including some tracks or trails, and recreational activities. However, given the low evidence of disturbance at the Site, the proposed upgrade and expansion of the existing long term sewage treatment system is not expected to significantly alter the existing environment.

All of the wildlife observed at the Site or expected to be present at the Site, are highly adapted to the extreme conditions of the subarctic region. Various species are also adapted to disturbed Sites, including arctic ground squirrels and Canada geese. As such, the composition of the wildlife community observed to be present at the Site is considered suitable for the proposed upgrade and expansion of the existing long term sewage treatment system for the Hamlet of Whale Cove.

The SLEA revealed that the proposed upgrades and expansion of the existing long term sewage treatment system for the Hamlet of Whale Cove will have net positive effects on the community. This project will not have significant long term negative effects on the environment or local wildlife. Most effects are related to the construction activities, and are short term. All potential effects can be mitigated by applying suitable mitigation measures.

Table of Contents

i468	Ра	ge
4 6		
2 6 8		i
4 6		
6 8		
8		

EXE	Cutiv	e Sum	mary	
1			ntification	
2	_			
3	Cana	adian E	Environmental Assessment Act (CEAA) Trigger	6
4	Proj	ect Des	scription	8
	4.1	Object	ives	8
	4.2	Project	t Scheduling	8
	4.3	Project	t Justification	8
5	Sco	pe of P	roject	11
	5.1	Scope	of Assessment	11
6	Des	cription	n of Existing Environment	14
	6.1	Descri	ption of Biophysical Environment	14
		6.1.1	Climate	14
		6.1.2	Site Visit	15
		6.1.3	Southern Arctic Vegetation Community	15
	6.2	Ecolog	gical Land Classification	15
		6.2.1	Stand Characteristics	15
		6.2.2	Plant Community	16
		6.2.3	Extent of Disturbance	19
		6.2.4	Wildlife & Wildlife Habitat	20
	6.3	Alterna	ate Wetland	23
	6.4	Key Na	atural Heritage Features	24
		6.4.1	Heritage Rivers	24
		6.4.2	National Parks	24
		6.4.3	National Wildlife Areas	24
		6.4.4	Migratory Birds Sanctuaries	25
		6.4.5	Species of Special Concern	25
		646	Wildlife Corridors	28

7	Env	ronmental Effects and Mitigation	30
	7.1	Construction and Improvements	30
	7.2	Accidents and Malfunctions	32
	7.3	Effects of the Environment on the Project	33
	7.4	Cumulative Effects	33
	7.5	Any Other Matter	33
8	Env	ironmental Effects Summary Checklist	35
9	Con	sultation	40
	9.1 Asse	Public Participation under Subsection 18(3) of the Canadian Environmental essment Registry (CEAR)	40
	9.2	Consultation with the Public/Inuit People	40
	9.3	Consultation with other Federal Departments or Agencies	40
	9.4	Consultation with other Jurisdictions	40
10	Sum	ımary	42
11		eral Limitations and Closure	
12	Rofe	arancas	46

List of Appendices

Appendix A – Figures
Appendix B – Site Photographs

List of Tables

	Page
Table 1-1: Project Identification	2
Table 2-1: Project Contacts	4
Table 5-1: Project Component Identification	11
Table 5-2: Project Component Description	11
Table 5-3: Project-Environment Interaction Matrix	12
Table 6-1: Climate Observations for the monitoring pe	
Table 6-2: Plant Species near the Sewage Inlet	16
Table 6-3: Plant Species Surrounding the Sewage Lag	oon16
Table 6-4: Plant Species at the Berm	17
Table 6-5: Plant Species at the Wetlands	18
Table 6-6: Other Plant Species Known to the Area	19
Table 6-7: Wildlife Species Observed at the Site	20
Table 6-8: Other Wildlife Species Known to the Area	22
Table 6-9: Plants Species at the Alternate Wetland	23
Table 6-10: Wildlife species that may be near the Site a COSEWIC, Schedule and SARA Status	
Table 6-11: Plant species that may be near the Site and COSEWIC, Schedule and SARA Status	
Table 7-1: Construction and Improvements	30
Table 7-2: Accidents and Malfunctions	32
Table 7-3: Effects of the Environment on the Project	33
Table 8-1: Environmental Effects Checklist	35
Table 8-2: Other Factors	36
Table 8-3: Cumulative Effects	36
Table 8-4: Mitigation Measures	37

Chapter 1 – Project Identification

1 **Project Identification**

Table 1-1: Project Identification

Project Title/Type	The Government of Nunavut, Community and Government Services, Project Management Division – Kivalliq Region
	Project Component 1: Improvements to existing two (2) berms Project Component 2: Construction of up to three (3) additional berms
Project Location	Hamlet of Whale Cove, Nunavut
Estimated Cost	Not applicable
EA Start Date	September 12, 2011
NOC Posting Date	Not applicable

Chapter 2 – Contacts

2 Contacts

Table 2-1: Project Contacts

Government of Nunavut,	Ralph Ruediger Regional Director, Kivalliq Region	Phone: (867) 645-8100				
Department of Community and Government Services	Malli Aulakh, P.Eng. Senior Project Officer Projects Division, Rankin Inlet, NU	Phone: (867) 645-8185 Fax: (867) 645-8196				
Consultants	Steven Burden, P.Eng. Project Manager, exp Services Inc. 100-2650 Queensview Drive, Ottawa, ON K2B 8H6	Phone: (613) 688-1899 Fax: (613) 225-7337 Email: steven.burden@exp.com				
Proponent	Representatives of the Hamlet of Whale Cove, NU	Phone: (867) 896-9961 Fax: (867) 896-9109				

Chapter 3 – Canadian Environmental Assessment Act (CEAA) Trigger

3 Canadian Environmental Assessment Act (CEAA) Trigger

Government of Nunavut, Community and Government Services
is the proponent of the project;
☑ proposes to fund all or part of the project;
proposes to sell, lease or otherwise dispose of land for the project; and/or,
proposes to issue a permit, approval or other authorization on the CEAA Law List Regulations.
Federal departments notified in accordance with Federal Coordination Regulations:
Yes ⊠ None identified □
Other federal involvement?
Yes ☐ None identified ⊠

Chapter 4 – Project Description

4 Project Description

The Government of Nunavut (GN), Department of Community and Government Services (CGS) retained **exp Services Inc.** (exp), (the new identity of Trow Associates Inc.), to prepare a Screening Level Environmental Assessment (SLEA) under the *Canadian Environmental Assessment Act* in order to complete the detailed planning design for the sewage wetland upgrade for the Hamlet of Whale Cove, Kivalliq Region, Nunavut, hereinafter referred to as the 'Site' (refer to Figure 1).

The Hamlet of Whale Cove (Hamlet) is the proponent and Responsible Authority (RA) of the project, and as such, triggers the requirement for a screening level environmental assessment for the project under section 5(1)a of the *Canadian Environmental Assessment Act (CEAA)*. Due to the size and location of the proposed project(s) (i.e. leaving a footprint >25 m²), it cannot be excluded under *CEAA*, and an environmental assessment as per *CEAA* must be completed prior to any physical work completed by the proponent. The Stakeholders for this project are the Hamlet of Whale Cove, the Government of Nunavut and the Nunavut Water Board

The Hamlet's existing sewage lagoon system is located approximately 300 m to the west of the community. It is comprised of a single cell lagoon, a berm and wetlands, as in Figure 1 (Appendix A).

4.1 **Objectives**

The objective of the SLEA is to identify and document the environmental effects of the proposed project components, and to determine the need to mitigate the adverse effects and modify the project plan or recommend further assessment by a review panel. The SLEA will be completed in general accordance with the *Canadian Environmental Assessment Act*.

The project components of the SLEA include the assessment of the current sewage treatment facility; the construction of a new impervious sewage lagoon cell and berm; and, increasing the capacity of the sewage system to meet the long term needs of the Hamlet.

Construction of a new impervious sewage lagoon cell is necessary since the existing sewage lagoon cell and berm is failing. **Exp** intends to improve the existing sewage lagoon and berm to withstand a larger capacity over the long term. The existing down gradient wetlands will be assessed for efficacy over time and increased capacity.

4.2 **Project Scheduling**

Estimated Project Start Date: 2014

Estimated Project Completion Date: 2015

• Estimated Transfer Date (if applicable): Not applicable

4.3 **Project Justification**

The justification for the project is based on the need of the Hamlet of Whale Cove to operate an upgraded sewage treatment system that is structurally sound, and has the necessary capacity to accommodate the projected growth of the community over the next 20 years.

Alternatives to the project include a) the option to do nothing; and, b) to decommission the existing sewage treatment system and create a new facility at another location. The option to do nothing would most likely result in increased structural damage to the lagoon berm from permafrost and increased leaking of raw sewage into the existing wetlands and surrounding environments. The option to decommission the existing system and create a new facility would significantly increase the cost of the project.

The long term negative effects on the environment or wildlife from the proposed project are minimal, if any; and, the potential risk posed to aquatic species are also minimal, if any. Most effects are associated with the short term construction activities; and, all effects can be mitigated by applying the suitable mitigation measures.

Chapter 5 – Scope of Project

5 Scope of Project

The project phases of construction, operation and modification as well as the project components are provided in Table 5-1. A more detailed description of the project components and various Site activities are presented in Table 5-2.

Table 5-1: Project Component Identification

Project Phase	Project Components
	- Raising and widening of existing berm at the sewage lagoon output (West Berm)
Construction/Improvement	- Building up of existing berm at sewage lagoon input (East Berm)
	- Building additional berms along the low-lying areas around the perimeter of the lagoon to obtain proper freeboard levels

Table 5-2: Project Component Description

	Project Components	Physical Works and Activities	Description					
1.	Raising and widening of existing berm at the sewage lagoon output (West Berm)	- Excavation and berm construction	- Excavate and grade - Build berm with clay material					
2.	Building up of existing berm at sewage lagoon input (East Berm)	- Excavation and berm construction	 Excavate and grade Line berm with geotextile fabric Build berm with clay material 					
3.	Building additional berms along the low-lying areas around the perimeter of the lagoon to obtain proper freeboard levels	- Berm construction	 Excavate and grade Line berm with geotextile fabric Build berm with clay material 					

5.1 **Scope of Assessment**

Natural environment components, such as surface water, groundwater, soil, vegetation, wildlife, etc., are included in the scope of assessment. Refer to Table 5-3.

Table 5-3: Project-Environment Interaction Matrix

Component	Surface water	Groundwater	Soils and sediments	Air quality and climate change	Noise/vibration	Terrain and topography	Vegetation and wetlands	Fish and fish habitat	Wildlife and wildlife habitat	Migratory birds	Species-at-risk	Socio-economic conditions ⁽¹⁾	Heritage/ archaeology ⁽¹⁾	Land use ⁽¹⁾	Land use by First Nations	Human health ⁽¹⁾	Transportation and navigation ⁽¹⁾
Raising & Widening of West Berm	M	М	M	M	M	M	М	М	M	0	o	+	0	+	+	М	o
Building up of East Berm	М	М	М	М	М	М	М	М	М	o	o	+	0	+	+	М	o
Additional berms	M	М	М	М	М	М	М	М	М	0	o	+	0	+	+	М	o

^{+ =} positive effect; **M** = negative effect which can be mitigated; **o** = no interaction

There are no temporal or spatial boundaries that guide the assessment. All components will be installed within a relatively short time frame; and, the Site itself is relatively small.

⁽¹⁾ The indirect effects on the environmental components resulting from a project impact on the environment must be considered. Direct effects on these environmental components may also be considered at the discretion of the RA.

Chapter 6 – Description of Existing Environment

6 **Description of Existing Environment**

6.1 **Description of Biophysical Environment**

Whale Cove is small, arctic community located on the western shore of Hudson Bay. It is located 161 km north of Arviat and 72 km south of Rankin Inlet. Whale Cove and the southern area of the community of Rankin Inlet has become one district comprising 1,330 people (GN, 2011). The population of Whale Cove alone is approximately 350 people, and is expanding rapidly (Atlas of Canada, 2004). The population is made up of mainly inland and coastal Inuit, with occasional non-Inuit peoples. Whale Cove's Inuktitut name is Tikirarjuag, or "long point".

Whale Cove is situated in the Southern Arctic Terrestrial Ecozone, and is characterized by continuous permafrost 90 to 100 % of the year. The Hamlet receives an average of 181.5 cm of rainfall and 119.7 cm of snowfall per year. Temperatures in the summer range between approximately 3 and 10°C; and, in the winter between approximately -26 to -32°C.

The subsurface stratigraphy at the Site is within the continuous permafrost zone, and is comprised of glacial till with lacustrine deposits of unconsolidated sand and gravel.

The Hamlet's existing sewage lagoon system is located approximately 300 m to the west of the community. It is comprised of a single cell lagoon, a berm and wetlands, as shown in Figure 1 (in Appendix A).

6.1.1 Climate

Climate summaries for precipitation and temperature were available from Rankin Inlet, NU, located 72 km north of Whale Cove for the 1971 to 2000 monitoring period, as presented in Table 6-1. For this period, the annual daily average temperature was -11°C; the annual daily maximum temperature was 1.3°C; and, the annual daily minimum temperature was -7.3°C. The extreme maximum temperature was observed on August 10, 1991 as 30.5 °C; and, the extreme minimum temperature was observed February 13, 1990 as -49.8°C.

Table 6-1: Climate Observations for the monitoring period of 1971 to 2000, collected at Rankin Inlet, NU

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
	Temperature												
Daily Average (°C)	-31.9	-30.1	-25.2	-16.3	-5.9	4.2	10.4	9.5	3.4	-5.3	-17.8	-26.7	-11
Standard Deviation	2.8	3.2	2.8	2.6	2.1	1.9	1.7	1.1	1.5	1.9	3.3	3.5	1.3
Daily Maximum (°C)	-28.3	-26.2	-20.9	-11.7	-2.4	7.9	14.9	13	5.8	-2.4	-13.9	-22.9	-7.3
Daily Minimum (°C)	-35.5	-33.9	-29.5	-20.8	-9.2	0.4	5.9	5.9	0.9	-8.2	-21.6	-30.4	-14.7
Extreme Maximum (°C)	23.4	-4.4	1.3	3.4	14.1	26.1	28.9	30.5	20.6	9.3	0.9	-2.4	
Extreme Minimum (°C)	-46.1	-49.8	-43.4	-35.7	-23.8	-9.4	-1.9	-1.4	-9	-27.4	-36.5	-43.6	
Precipitation													
Rainfall (mm)	0	0.1	0	1	7.4	25	39.5	57.3	39.2	11.9	0.1	0	181.5
Snowfall (cm)	6.7	9.3	12.9	13.6	11.5	4.9	0	0.3	4.6	23.1	20.9	11.9	119.7

6.1.2 Site Visit

A Site visit was undertaken by **exp** staff from September 12th through 14th, 2011. All areas of the Site were accessible during the Site visit. The weather on September 12th was overcast with freezing rain in the late afternoon, with a daily mean temperature of 4°C and an average wind speed of 23 km/h. The weather on September 13th was clear and sunny all day, with a daily mean temperature of 5°C and an average wind speed of 24 km/h. The weather on September 14th was overcast, with a daily mean temperature of 6°C and an average wind speed of 15 km/h.

6.1.3 **Southern Arctic Vegetation Community**

Whale Cove is located within the Southern Arctic ecozone, characterized by long cold winter and short cool summers. The long hours of light and milder temperatures, when compared to more northerly ecozones, results in a longer growing season. This region also contains numerous surface water bodies and wetlands that serve as important wildlife habitat. Permafrost is continuous throughout the area, but there are active layers that thaw in the summer.

The area surrounding the existing sewage lagoon is predominantly exposed rock with subarctic vegetation. The berm is made up of compacted soil material with taller, herbaceous vegetation growing on top. The area between the lagoon and Hudson Bay is vegetated with subarctic tundra and subarctic wetland species, situated in a low-lying area between rock outcrops on both sides.

6.2 **Ecological Land Classification**

An Ecological Land Classification (ELC) approach was undertaken at the Site during the Site visit to classify the local ecosystem, and assess the suitability of the species present for the treatment of pretreated sewage from the lagoon.

The ELC is an approach that attempts to identify the distribution and groupings of plant species, and categorize, organize and name ecosystems. When complete, the ELC can be used to improve the collective ability to manage both natural resources and the information that pertains to those resources.

Field notes were compiled with respect to community description and classification; stand characteristics; list of plant species present; extent of disturbance; and, a description of the wildlife habitat. Site photographs can be found in Appendix B of the report.

Animal and plant species significance or rarity on a National level was based on standard status lists obtained from the Committee on the Status of Endangered Wildlife in Canada (COSEWIC, 2011).

6.2.1 **Stand Characteristics**

A stand characteristic is the classification of a collection of plants having a relatively uniform composition and structure. The purpose of identifying the stand characteristics at a given Site is to categorize the type of habitats present so as to determine the kinds of natural features present and to investigate the wildlife expected to be at the Site. Refer to Figure 2 in Appendix A for the Site location identification.

The area surrounding the existing sewage lagoon is predominantly composed of rock outcrops with low-lying vegetation common to the subarctic region. These portions of the Site are generally open and have limited cover or shelter.

The area located at the western most edge of the lagoon is the berm, made up of a strip of compacted soil material with taller vegetation growing on the surface. The berm provides some shelter and food source to the local wildlife.

The western portion of the Site is dominated by subarctic tundra and subarctic wetland vegetation, ranging in height from ground cover species to grasses up to 60 cm tall. Rock outcrops on both sides of the wetlands provide some protection from wind; and, there is some shelter among this area.

6.2.2 **Plant Community**

A plant community is a unit of vegetation within a given area. Identifying a plant community within a Site is necessary to determine the type of environment present (e.g. shade-tolerant area) and to identify the type of wildlife expected to be at the Site, in addition to sensitive areas. This information will also aid in the identification of any locally, regionally or provincially rare, threatened or endangered vegetative species on the Site. If identified, these species will need to be preserved and protected.

A vegetation survey was carried out during the Site visit in September 2011, and divided into the different sections of the sewage system: a) near the sewage inlet; b) surrounding the sewage lagoon; c) at the berm; and, d) at the wetlands. The plant species lists for each section of the Site are presented in Table 6-2 to 6-5. It should be noted that a complete plant list is not available, given that the current survey only reflects the late summer season.

Table 6-2: Plant Species near the Sewage Inlet

Family	Common Name	Scientific Name		
Mosses	Moss	Sphagnum sp.		
	Blue grass	Poa sp.		
	Fescue	Festica vivipera		
Grasses (Poaceae)	Alpine reed grass	Calanagrostis purpurascens		
	Bluejoint	Calamagrostis canadensis		
	Grasses	Poa spp.		
Codes family (Compressed)	Arctic cotton	Eriophorum callitri		
Sedge family (Cyperaceae)	Sedges	Carex sp.		
William family (Calina and	Willows	Salix sp.		
Willow family (Salicaceae)	Rock willow/arctic willow	Salix arctica		
Saxifrage family (Saxifrageceae)	Saxifrage	Saxifraga sp.		
Crowberry family (Empetraceae)	Crowberry	Empetrum nigrum		
	Northern blueberry	Vaccinium uliginosum		
Heath family (Ericaceae)	Northern Labrador tea	Rhododendron tomentosum		
Primrose family (Onagraceae)	Fireweed	Epilobium angustifolium		

Fireweed plants, known to colonize at disturbed sites, were abundant near the sewage inlet, as well as various grasses and sedges. Occasional willow, saxifrage, crowberry and heath species were also found near the sewage inlet.

Table 6-3: Plant Species Surrounding the Sewage Lagoon

Family	Common Name	Scientific Name
Lishana	Lichen	Caloplaca sp.
Lichens	Map lichen	Rhizocarpon geographicum

Family	Common Name	Scientific Name
	Rock tripe	Umbilicaria sp.
	Jewel lichen	Xanthoria sp.
Mosses	Moss	Sphagnum sp.
	Blue grass	Poa sp.
	Fescue	Festica vivipera
Grasses (Poaceae)	Alpine reed grass	Calanagrostis purpurascens
	Bluejoint	Calamagrostis canadensis
	Grasses	Poa spp.
Code for the (Company)	Arctic cotton	Eriophorum spp.
Sedge family (Cyperaceae)	Sedges	Carex sp.
	Net-veined willow	Salix reticulate
Millow forsily (Colleges)	Dwarf willow	Salix herbacea
Willow family (Salicaceae)	Willows	Salix sp.
	Diamond-leaf willow	Salix pulcha
Birch family (Betulaceae)	Dwarf birch	Betula nana
Buckwheat family (Polygonaceae)	Mountain sorrel	Oxyria digyna
Rose family (Rosaceae)	Cloudberry	Rubus chamaemorus
Saxifrage family (Saxifrageceae)	Saxifrage	Saxifraga sp.
Crowberry family (Empetraceae)	Crowberry	Empetrum nigrum
	White arctic heather	Cassiope tetragona
Llooth family (Friendson)	Northern blueberry	Vaccinium uliginosum
Heath family (Ericaceae)	Bearberry	Arctostaphylos sp.
	Northern Labrador tea	Rhododendron tomentosum
Primrose family (Onagraceae)	Fireweed	Epilobium angustifolium

Lichen, moss, crowberry and heath species were abundant at the areas surrounding the sewage lagoon. Various lichen species were present on the rock outcrops; whereas the majority of plants were nestled in between or beneath the rocks to receive shelter from the wind. Grasses, sedges and fireweed were common to areas with exposed soils; and, occasional mountain sorrel, cloudberry and saxifrage species were also present. Low-lying willow and birch species were present throughout this area.

Table 6-4: Plant Species at the Berm

Family	Common Name	Scientific Name
Grasses (Poaceae)	Grasses	Poa spp.
	Fescue	Festica vivipera
	Alpine reed grass	Calanagrostis purpurascens

Family	Common Name	Scientific Name
	Bluejoint	Calamagrostis canadensis
Sedge family (Cyperaceae)	Arctic cotton	Eriophorum spp.
Willow family (Salicaceae)	Rock willow/arctic willow	Salix arctica
Saxifrage family (Saxifrageceae)	Saxifrage	Saxifraga sp.
Heath family (Ericaceae)	Northern Labrador tea	Rhododendron tomentosum
Primrose family (Onagraceae)	Fireweed	Epilobium angustifolium

The berm, located at the western-most edge of the sewage lagoon, was dominated by colonizing species including grasses, sedges and fireweed. It is noted that considerable evidence of wildlife foraging and nesting was observed at the berm. Other plants present at the berm included willow, saxifrage and heath species.

Table 6-5: Plant Species at the Wetlands

Family	Common Name	Scientific Name
Lichens	Lichen	Caloplaca sp.
Lichens	Map lichen	Rhizocarpon geographicum
Mosses	Alpine club moss	Lycopodium alpinum
Mosses	Moss	Sphagnum sp.
	Blue grass	Poa sp.
	Fescue	Festica vivipera
Grasses (Poaceae)	Alpine reed grass	Calanagrostis purpurascens
	Bluejoint	Calamagrostis canadensis
	Grasses	Poa spp.
Codes family (Compressed)	Arctic cotton	Eriophorum spp.
Sedge family (Cyperaceae)	Sedges	Carex sp.
	Net-veined willow	Salix reticulate
	Rock willow / arctic willow	Salix arctica
Willow family (Salicaceae)	Diamond-leaf willow	Salix pulcha
	Dwarf willow	Salix herbacea
	Willows	Salix sp.
Buckwheat family (Polygonaceae)	Mountain sorrel	Oxyria digyna
Saxifrage family (Saxifrageceae)	Saxifrage	Saxifraga sp.
Crowberry family (Empetraceae)	Crowberry	Empetrum nigrum
Liceth femilie (Friends)	Northern blueberry	Vaccinium uliginosum
Heath family (Ericaceae)	Bearberry	Arctostaphylos sp.

Family	Common Name	Scientific Name
	Northern Labrador tea	Rhododendron tomentosum
Primrose family (Onagraceae)	Fireweed	Epilobium angustifolium

The greatest species richness was present at the wetlands area, which is to be expected given the overall large surface area, in addition to the combination of various habitats including terrestrial, semi-aquatic and aquatic environments. Major portions of the wetlands area were also protected from the wind by adjacent rock outcrops. In general, the majority of the Site was covered by moss, grasses, crowberries, bearberries and other low-lying vegetation typical of a swamp/wetland region of the subarctic. Patches of taller grasses, sedges, northern Labrador tea and fireweed were scattered throughout the Site; and, several low-lying willow species were present.

Given that a complete plant list is not available since the current survey only reflects the late summer season, other plant species known to the subarctic Nunavut region are listed in Table 6-6.

Table 6-6: Other Plant Species Known to the Area

Family	Common Name	Scientific Name
District (Osmanla Hanna)	Mouse-ear chickweed	Cerastium sp.
Pink family (Caryophyllaceae)	Moss-campion	Silene acaulis
	Richardson's anemone	Anemone richardsonii
Buttercup family (Ranunculaceae)	Buttercup	Ranunculus sp.
	Anemone	Anemone sp.
Poppy family (Papaveraceae)	Arctic poppy	Papaver radicatum
Rose family (Rosaceae)	Mountain avens	Dryas integrifolia
	Blackberry	Rubus fructicosus
Saxifrage family (Saxifrageceae)	Alpine saxifrage	Saxifraga nivalis
	Purple mountain saxifrage	Saxifraga oppositifolia
Heath family (Ericaceae)	Mountain cranberry	Vaccinium sp.

All of the vegetation observed at the Site or expected to be present at the Site are highly adapted to the extreme conditions of the subarctic region. Various species are also adapted to disturbed Sites, including fireweed. As such, the composition of the vegetation community observed to be present at the Site is considered suitable for the proposed upgrade and expansion of the existing long term sewage treatment system for the Hamlet of Whale Cove.

6.2.3 Extent of Disturbance

A Site can also be described by the extent and intensity of which management or disturbance has occurred on the Site. It is important to note disturbance as it can influence community structure and function. Anthropogenic disturbances are usually more selective, and directly affect one (1) or several specific species, whereas physical forces such as earthquakes or drought can affect the entire plant community.

By applying the ELC protocol, disturbance such as alien species, gaps in forest canopy, plantations, tracks and trails, noise, disease and death of trees as well as wind throw are recorded and observed at a given on-site location.

In general, the extent of disturbance at the Site is considered minimal. There is light, widespread evidence of colonizing plant species throughout various areas of the Site, and light, localized evidence of human encroachment, including some tracks or trails, and recreational activities. However, given the low evidence of disturbance at the Site, the proposed upgrade and expansion of the existing long term sewage treatment system is not expected to significantly alter the existing environment.

6.2.4 Wildlife & Wildlife Habitat

In terms of wildlife and wildlife habitat, the Site may contain elements that can provide suitable habitats for wildlife. For example, small mammals often create burrows in the ground, and small insects often find ponds in order to survive winter months. In addition, the presence of vegetation that produce fruits such as berries may prove to be an important food source for some species.

There are numerous wildlife populations that inhabit the region of the southern arctic. There are massive migrations of caribou, as well as birds. Larger carnivores in the southern arctic include the grizzly bear, black bear and polar bear as well as wolves. The most common large herbivores are barren-ground caribou, woodland caribou, moose, and muskox. Smaller carnivores found in this ecozone include the red fox, arctic fox, lynx, coyote, weasels, wolverine and ermine. These animals prey on smaller herbivores which include the arctic ground squirrel, brown lemming, showshoe hare, arctic hare, masked shrew, tundra redbacked vole, and beaver. Aquatic mammals include walruses, various seals, beluga whales, and narwhals.

Many birds migrate to the southern arctic in the spring to breed, but spend the long cold winters further south. Many others pass over the southern arctic during their migrations to breed further north. Four characteristic birds of prey include the snowy owl, gyrfalcon, osprey, and rough-legged hawk. Waterfowl that can be found here include Canada goose, yellow billed loon, arctic loon, red-throated loon, tundra swan, whistling swan, snow goose, oldsquaw duck and sea ducks. Some common shorebirds and seabirds in the southern arctic are the semipalmated plover, red necked phalarope, lapland longspur and parasitic jaeger. Songbirds also live here, including the snow bunting, raven, American tree sparrow and hoary redpoll. Willow ptarmigan, rock ptarmigan and spruce grouse are a few of the ground-dwelling birds that are present in these colder regions.

This part of the world is too cold for reptiles and amphibians, but does contain three (3) species of mollusc which are the muskeg stagnicola, arctic-alpine fingernail clam, and globular pea clam.

Several wildlife species were observed at the Site and within the vicinity of the Site at the time the Site visit was conducted, as presented in Table 6-7.

Table 6-7: Wildlife Species Observed at the Site

Group	Common Name	Scientific Name
Birds	Least sandpiper	Calidris minutilla
	European herring gull	Larus argentatus
	Tundra swan	Cygnus columbianus
	Snow goose	Chen caerulescens
	Northern pintail	Anas acuta
	Common raven	Corvus corax

Group	Common Name	Scientific Name
	Canada goose	Branta canadensis
Mammals	Arctic ground squirrel	Spermophilus parryii

Arctic ground squirrels, locally known as 'siksiks', were abundant at the Site. Several large burrows, likely housing siksiks, were present within the western portion of the wetlands area, located on higher ground. Smaller burrows were also observed throughout the wetlands area, likely housing small mammals including lemmings, shrews and voles. Several flocks and individual birds were also observed throughout the Site.

The arctic ground squirrel inhabits areas with sandy or gravely soil, as it makes it easier for digging. They typically live near eskers, moraines, mountain slopes, river flats and banks, lake shores and tundra ridges. They house themselves in deep burrows that contain various tunnels, and hibernate through the entire winter (approximately seven (7) to eight (8) months). Their excavated nests are placed well within the burrow system and are made up of dry grasses, lichens and caribou hair. Siksiks are social animals that live in scattered colonies. They are omnivorous and eat a variety of tundra vegetation such as leaves, seeds, flowers, stems, grass roots and fruit. Siksiks also tend to feed on other ground squirrels from neighbouring colonies, as well as carrion, eggs and small nesting birds (GoN, 2011).

The least sandpiper, *Calidris minutilla*, was also a common occupant at the Site, found to be feeding on inverts within the lagoon as well as open water within the wetlands. The least sandpiper is the smallest shorebird in the world (COL, 1994). They occur in flocks of dozens or hundreds and tend to forage at the upper edge of mudflats along drier margins of inland ponds; and, mainly eat small crustaceans, fly larvae, insects and snails. Sandpipers tend to breed in mossy or wet grasses found in the tundra and migrate to wet meadows, mudflats, flooded fields, shores of pools and lakes (COL, 1994).

Common flocks of birds observed at the lagoon included the tundra swan, *Cygnus columbianus*. Tundra swans are known to form a long-term pair bond, and they nest in the wet tundra generally near the coast line. During the breeding season, tundra swans typically forage in the water on invertebrates and submerged aquatic vegetation; however, due to the decline of its food source at migratory stopover areas, they have shifted their diet to a typical winter diet of mostly grains and cultivated tubers and seeds left in agricultural fields (SAS, 2011a).

The snow goose, *Chen caerulescens*, is a colonial nester in the arctic tundra and inhabits areas within five (5) miles from the coast line. They are generally found in large flocks in the winter months and during migration. Snow geese feed almost exclusively on plant material such as seeds, leaves and roots of aquatic vegetation. Very young birds tend to eat invertebrates, with both young and adult birds randomly foraging on berries and grain in the winter (SAS, 2011b).

Northern pintail, *Anas acuta*, are typically found in shallow ponds and marshes in open areas during the breeding season, and in shallow wetlands, mudflats and flooded fields during the winter months. During the winter they feed on seeds and waste grain from agricultural fields, as well as roots, new shoots and aquatic invertebrates. The Northern pintail is among the earliest nesters, whereby they arrive on the breeding grounds as soon as they are free of ice. They do not form long-term pair ponds, with the female tending to the eggs alone (SAS, 2011c).

Canada geese, *Branta canadensis*, are the most widely distributed geese in North America. The Canada goose is known to breed in the northern temperate, subarctic and arctic regions, and nest in Canada, Alaska and the lower 48 United States. They typically feed on a variety of plants and aquatic vegetation. In the winter months, during migration periods, waste grains make up the majority of their diet; while during the summer months they feed on mollusks, crustaceans, green vegetation and occasionally small fish. Canada geese form long-term pair bonds, whereby the female incubates the eggs as the males stands guard nearby (SAS, 2011d).

Gulls and ravens were also observed circling the lagoon area as well as the wetlands. Gulls are birds in the family *Laridae*; most closely related to terns (family *Sternidae*), and are typically coastal and inland species, rarely found far out to sea. Gulls tend to nest in large, densely packed colonies. They have a prophylactic unhinging jaw, which allows them to consume large prey generally consisting of crabs and small fish (ABC, 2004). Ravens (*Corvus sp.*) are sometimes considered pests as they tend to coexist with humans. They have an omnivorous diet, feeding on carrion, insects, cereal grains, berries, fruit, small animals, and food waste. Young ravens may travel in flocks, but later mate for life, with each mated pair defending a territory (COL, 1999).

It should be noted that a complete wildlife list is not available, given that the current survey only reflects incidental wildlife sightings during the Site visit at the late summer season. Other wildlife species that are known to be present in the Hamlet of Whale Cove and the surrounding area, based on observations made by local residents and other reports, are presented in Table 6-8.

Table 6-8: Other Wildlife Species Known to the Area

Group	Common Name	Scientific Name
Pirds of Prov	Peregrine falcon	Falco peregrinus
Birds of Prey	Gyrfalcon	Falco rusticolus
	Lesser scaup	Aythya affinis
Waterfowl	Oldsquaw	Clangula hyemalis
vvateriowi	Common eider	Somateria mollissima
	King eider	Somateria spectabilis
	Lapland longspur	Calcarius Iapponicus
	Semipalmated plover	Charadrius semipalmatus
Shorebird	Red necked phalarope	Phalaropus lobatus
Shorebird	American tree sparrow	Spizella arborea
	Jaeger	Stercorarius sp.
	Arctic tern	Sterna paradisea
	Willow ptarmigan	Lagopus lagopus
	Rock ptarmigan	Lagopus muta
	Arctic grey wolf	Canis lupus arctos
	Northern grey wolf	Canis lupus occidentalis
	Wolverine	Gulo gulo
Ground dwelling birds	North American brown lemming	Lemmus trimucronatus
Ground dwelling birds	Arctic hare	Lepus arcticus
	Ermine/stoat	Mustela erminea
	Least weasel	Mustela nivalis
	Barren-ground Caribou	Rangifer tarandus groenlandicus
	Polar bear	Ursus maritimus
	Arctic fox	Vulpes lagopus

Group	Common Name	Scientific Name
	Red fox	Vulpes vulpes
	Beluga whale	Delphinapterus leucas
	Bearded seal	Erignathus barbatus
Marine mammals	Narwhal	Monodon monoceros
	Atlantic walrus	Odobenus rosmarus rosmarus
	Ringed seal	Pusa hispida
	Lake trout	Salvelinus namaycush
	Lake Whitefish	Coregonus clupeaformis
Fish	Cod	Gadus sp.
	Arctic char	Salvelinus alpinus
	Arctic grayling	Thymallus arcticus

All of the wildlife observed at the Site or expected to be present at the Site are highly adapted to the extreme conditions of the subarctic region. Various species are also adapted to disturbed Sites, including arctic ground squirrels and Canada geese. As such, the composition of the wildlife community observed to be present at the Site is considered suitable for the proposed upgrade and expansion of the existing long term sewage treatment system for the Hamlet of Whale Cove.

6.3 Alternate Wetland

As part of the SLEA assignment, an alternate location for the Hamlet's sewage treatment system was considered. As such, the brief vegetation survey was carried out at the alternate wetland Site during the late afternoon on September 13th, 2011. The plant species list for the alternate wetland is presented in Table 6-9.

Table 6-9: Plants Species at the Alternate Wetland

Family	Common Name	Scientific Name
Linkana	Lichen	Cladonia sp.
Lichens	Caribou moss/reindeer lichen	Cladonia rangiferina
Mosses	Alpine club moss	Lycopodium alpinum
IVIUSSES	Moss	Sphagnum sp.
	Blue grass	Poa sp.
	Fescue	Festica vivipera
Grasses (Poaceae)	Alpine reed grass	Calanagrostis purpurascens
	Bluejoint	Calamagrostis canadensis
	Grasses	Poa spp.
Sedge family (Cyperaceae)	Arctic cotton	Eriophorum spp.
Willow family (Salicaceae)	Rock willow/arctic willow	Salix arctica

Family	Common Name	Scientific Name	
	Net-veined willow	Salix reticulate	
	Diamond-leaf willow	Salix pulcha	
	Willows	Salix sp.	
Crowberry family (Empetraceae)	Crowberry	Empetrum nigrum	
Heath family (Ericaceae)	Bearberry	Arctostaphylos sp.	

All of the plant species observed at the alternate wetland location are similar to those species found at the existing sewage treatment Site, with the exception of the presence of caribou moss or reindeer lichen (*Cladonia rangiferina*) at the alternate wetland. This lichen is a common species to the subarctic region. Similar to the existing Site, all plant species found at the alternate wetland are highly adapted to the extreme conditions of the subarctic region, and various species are also adapted to disturbed Sites. As such, the composition of the vegetation community observed to be present at the alternate wetland may be considered suitable as an alternate location for the long term sewage treatment system for the Hamlet of Whale Cove.

6.4 **Key Natural Heritage Features**

For the purpose of this SLEA, the significance of a key natural heritage feature is identified as significant by a regional conservation authority or a regulatory agency or ministry. The sources of information consulted for the presence of significant features on or in the vicinity of the Site were the Natural Resources of Canada, The Atlas of Canada, Canada's Species at Risk Act (SARA) and the Committee on the Status of Endangered Wildlife in Canada (COSEWIC).

6.4.1 **Heritage Rivers**

Outstanding rivers of natural, cultural, historical and recreational values are insured long-term management and conservation by the Canada Heritage Rivers System (CHRS).

According to the Atlas Map of Canada, there are no Heritage Rivers located in the vicinity of the Site (AoC, 2011a).

6.4.2 **National Parks**

The Government of Canada's objective is to have a park representing each of Canada's 39 natural regions. Public appreciation and enjoyment through education are encouraged as long as they do not affect the ecological integrity of the park. Nunavut has three (3) National Parks.

According to the Atlas Map of Canada, there are no National Parks located in the vicinity of the Site (AoC, 2011c).

6.4.3 **National Wildlife Areas**

The Canadian Wildlife Service (CWS) of Environment Canada establishes and manages National Wildlife Areas to conserve essential wildlife habitats. These areas consist of land or water areas, with coastal waters extending out to twelve nautical miles from shore. While most human activities are prohibited in these areas, permits can be issued for activities that are compatible with conservation.

According to the Atlas Map of Canada, there are no National Wildlife Areas located in the vicinity of the Site (AoC, 2011d).

6.4.4 **Migratory Birds Sanctuaries**

The CWS of Environment Canada establishes bird sanctuaries to control and manage areas of importance for the protection of migratory birds, their nests and eggs. The sanctuaries can include a range of habitat types such as terrestrial, wetland or marine. The CWS establishes regulations determining what activities can be carried out within these areas. Prohibited activities include the harassment or killing of birds, and disturbing, destroying, or possessing nests or eggs.

Nunavut has an abundance of sites favourable to the migratory habits of several bird species. In 1999, ten (10) sites were legislated as Migratory Bird Sanctuaries. One of these, the Queen Maud Gulf Migratory Bird Sanctuary with an area of 61 765 sq km, is the largest in Canada.

According to the Atlas Map of Canada, there are no Migratory Bird Sanctuaries located in the vicinity of the Site (AoC, 2011b).

6.4.5 **Species of Special Concern**

COSEWIC is an independent committee of wildlife experts and scientists from federal, provincial and territorial governments, universities, and non-government organizations that use scientific processes to assess the risk of extinction for wildlife species. This committee meets on an annual basis to review status reports on species that are suspected of being at risk and provides an assessment to the government and public.

Once COSEWIC assesses whether a species is at risk or not, they assign designations based on status reports prepared by independent experts, scientific research, community knowledge and traditional Aboriginal insights. These designations are recommendations to the federal government, whereby the federal government makes the final decision on whether species will be listed under the *Species at Risk Act* (SARA).

Schedule 1 of SARA is the official list of wildlife species at risk in Canada. It includes species that are extirpated (extinct in Canada), endangered, threatened and of special concern. Once a species is listed on Schedule 1, protection and recovery measures are developed and implemented.

Species that were designated at risk by COSEWIC before the creation of SARA must be reassessed according to the new criteria of the Act before they can be added to Schedule 1. These species are listed on Schedules 2 and 3, and are not yet officially protected under SARA.

Once the species on Schedules 2 and 3 have been reassessed, the Schedules themselves will be eliminated, and species will simply be listed or not listed under the Act.

A general search of species of special concern, endangered and/or threatened was conducted for Nunavut, Canada. Both the SARA species list (GoC, 2011) and COSEWIC species assessment lists (COSEWIC, 2011) were consulted. The results were then screened against expected species home ranges, so as to refine the potential species expected at or near the Hamlet of Whale Cove. The results are presented in Table 6-10 (Wildlife) and Table 6-11 (Plants).

Table 6-10: Wildlife species that may be near the Site and corresponding COSEWIC, Schedule and SARA Status

Species Type	Scientific Name	Common Name	COSEWIC Status	Schedule	SARA Status
	Rangifer tarandus groenlandicus	barren-ground caribou	SC	1	SC
	Ursus maritimus	polar bear	SC	No Schedule	No Status
Terrestrial Mammals	Gulo gulo	wolverine	SC	No Schedule	No Status
	Canis lupus arctos	Arctic grey wolf	DD		
	Lepus arcticus	Arctic hare	NAR		
	Delphinapterus leucas	Beluga whale (Eastern Hudson Bay population)	END	No Schedule	No Status
	Delphinapterus leucas	Beluga whale (Western Hudson Bay population)	SC	No Schedule	No Status
	Monodon monoceros	narwhale	SC	No Schedule	No Status
Marine Mammals	Balaena mysticus	bowhead whale (Eastern Canada)	SC	2	END
	Odobenus rosmarus rosmarus	Atlantic walrus	SC	No Schedule	No Status
	Phoca vitulina concolor	harbour seal (Atlantic and Eastern subspecies)	NAR		
	Erignathus barbatus	bearded seal	DD		
	Phoca hispida	ringed seal	NAR		
	Calidris canutus rufa	red knot (<i>rufa</i> subspecies)	END	No Schedule	No Status
Birds	Calidris canutus islandica	red knot (<i>islandica</i> subspecies)	SC	No Schedule	No Status
	Falco peregrinus anatum/tundrius	Peregrine falcon	SC	No Schedule	No Status
	Asio flammeus	short-eared owl	SC	3	SC
	Falco rusticolus	gyrfalcon	NAR		

Species Type	Scientific Name	Common Name	COSEWIC Status	Schedule	SARA Status
	Buteo lagopus	rough-legged hawk	NAR		
	Gavia immer	common loon	NAR		
	Gavia adamsii	yellow-billed loon	NAR		
	Bubo scandiaca	snowy owl	NAR		

COSEWIC - Committee on the Status of Endangered Wildlife in Canada (COSEWIC, 2011; GoC, 2011)

DD – Data Deficient NAR – Not At Risk
END – Endangered SC – Special Concern

Table 6-11: Plant species that may be near the Site and corresponding COSEWIC, Schedule and SARA Status

Species Type	Scientific Name	Common Name	COSEWIC Status	Schedule	SARA Status
Shrubs	Salix tyrrellii	Tyrrell's willow	NAR		

COSEWIC - Committee on the Status of Endangered Wildlife in Canada (COSEWIC, 2011; GoC, 2011)

NAR - Not At Risk

6.4.6 Wildlife Corridors

Wildlife movement corridors are habitats that link two (2) or more other wildlife habitats that are critical to the maintenance of a population of a particular species or group of species. The key ecological function of wildlife movement corridors is to enable wildlife to move to and between areas of significant habitat or core natural areas with minimum mortality. They can provide critical links between shelter, feeding, watering, growing and nesting locations.

Wildlife and/or habitat corridors can help increase genetic diversity and aid in the re-establishment of populations after random events such as fires or disease outbreaks. These corridors can help to increase biodiversity and population stabilization.

In general, the subarctic region is characterized by vast expanses of natural habitat and low human presence. Annually, there are large migrations of various wildlife species that take place throughout Nunavut, including the Hamlet of Whale Cove. For example, Whale Cove is a known polar bear migration route, as well as a beluga whale breeding ground. Various fishing and hunting events are also known to the area; various game animals include geese, polar bears, caribou, wolves, wolverine and musk oxen. It should be noted that hunting and fishing are important cultural activities of the Inuit peoples; however, to maintain the local populations, quotas are managed in each community by hunters and trappers organizations as well as the Elders of a given community.

As such, given that the general subarctic region is historically and currently known for its presence of various wildlife migratory routes, wildlife corridors are expected to be present throughout the entire Hamlet of Whale Cove.

Chapter 7 – Environmental Effects and Mitigation

7 Environmental Effects and Mitigation

The effects of the proposed project components on the Valued Ecosystem Components are presented in the following Sections.

7.1 Construction and Improvements

The potential effects from the construction and improvement activities at the Site, as described in Section 5.1, and each affected component, the recommended mitigation(s), the likelihood of residual effect and the significance of residual effect is presented in Table 7-1.

Table 7-1: Construction and Improvements

Effect Component		Recommended Mitigation	Likelihood of Residual Effect	Significance of Residual Effect
Improvements to two (2) berms and construction of new berms may affect the water quality through fuel/sewage spills and run off.	Surface water	Ensure that no run off from construction/improvement activities enters water courses or Hudson Bay; a spill response kit must be on-Site in the event of a spill; immediately contain and clean up any spill in accordance with regulatory requirements. All equipment fuelling and maintenance must be carried out at a safe distance from water courses and Hudson Bay to ensure that no deleterious substances enter the surface water bodies.	Minimal potential due to the small magnitude, limited geographical extent and duration of project activities.	Not significant
Improvements to two (2) berms and construction of new berms may affect the water quality through fuel/sewage spills and run off.	Groundwater	Ensure that no run off from construction/improvement activities enters water courses or seeps into the ground; a spill response kit must be on-Site in the event of a spill; immediately contain and clean up any spill in accordance with regulatory requirements. All equipment fuelling and maintenance must be carried out at a safe distance from water courses and Hudson Bay to ensure that no deleterious substances enter the groundwater.	Minimal potential due to the small magnitude, limited geographical extent and duration of project activities.	Not significant
Excavation activities may affect the soil and sediment quality and composition through fuel/sewage spills and run off.	Soils and sediments	All equipment fuelling and maintenance must be carried out in designated locations to ensure that no deleterious substances percolate into soils or sediments; emergency clean-up protocols will be developed and implemented in the event of an accidental spill; fuels, oils and other hazardous substances have to be stored in designated, secure locations.	Minimal potential due to the small magnitude, limited geographical extent and duration of project activities.	Not significant

Effect	Component	Recommended Mitigation	Likelihood of Residual Effect	Significance of Residual Effect
Release of emissions from engines and equipment during construction and improvement activities.	Air quality and climate change	Vehicles, machinery and equipment must be in good repair and equipped with emission controls, where applicable. All work shall be carried out in accordance with all applicable air-emissions regulations and bylaws.	Minimal potential due to the small magnitude, limited geographical extent, and short duration.	Not significant
Presence of noise/vibration from engines and equipment during construction and other activities.	Noise and/or vibration	Vehicles, machinery and equipment must be in good repair. All work shall be carried out in accordance with all applicable noise regulations and bylaws.	Minimal potential due to the small magnitude, limited geographical extent and short duration.	Not significant
Improvements to two (2) berms and construction of new berms may influence the terrain and topography in regards to natural overland flow.	Terrain and topography	Ensure proper monitoring of function of sewage lagoon and wetland system. Ensure that grading takes place according to design specifications.	Minimal potential due to the small magnitude, limited geographical extent and short duration.	Not significant
Improvements to two (2) berms and construction of new berms may influence downgradient wetlands and natural overland flows, and may affect the composition of the local vegetation.	Vegetation and wetlands	Ensure proper monitoring of function of sewage lagoon and wetland system. Ensure that grading takes place according to design specifications.	Minimal potential due to the small magnitude, limited geographical extent and short duration.	Not significant
Improvements to two (2) berms and construction of new berms may disturb the existing fish and fish habitat conditions.	Fish and fish habitat	Ensure proper monitoring of function of sewage lagoon and water courses.	Minimal potential due to the small magnitude, limited geographical extent and short duration.	Not significant
Improvements to two (2) berms and construction of new berms may disturb existing wildlife and wildlife habitats.	Wildlife and wildlife habitat	Ensure proper monitoring of function of sewage lagoon and wetland system.	Minimal potential due to the small magnitude, limited geographical extent and short duration.	Not significant
Release of emissions and noise from activies, as well as movement of heavy equipment, during construction may affect the health and safety of workers.	Human health	Follow all applicable health and safety guidelines and proper use of personal protective devices (e.g. hard hats, steel-toed boots, safety glasses, etc.)	Minimal potential due to the small magnitude, limited geographical extent and short duration.	Not significant

7.2 Accidents and Malfunctions

The potential effect(s) from accident and malfunctions at the Site, and each affected component, the recommended mitigation(s), the likelihood of residual effect and the significance of residual effect is presented in Table 7-2.

Table 7-2: Accidents and Malfunctions

Effect	Component	Recommended Mitigation	Likelihood of Residual Effect	Significance of Residual Effect
Spills can affect surface water, groundwater, soil and sediment quality, as well as effect fish, wildlife and natural habitats.	Fuel/oil/other hazardous substance spills	All equipment fuelling and maintenance must be carried out in designated locations away from open drainage systems and surface water; emergency clean-up protocols will be developed and implemented in the event of an accidental spill; fuels, oils and other hazardous substances have to be stored in designated, secure locations.	Minimal potential due to the small magnitude, limited geographical extent and duration of project activities.	Not significant
Release of emissions and noise from engines and equipment, as well as movement of heavy equipment, during construction and improvement activities may affect the health and safety of workers.	Health and safety of workers	Follow all applicable health and safety guidelines and proper use of personal protective devices (e.g. hard hats, steel-toed boots, safety glasses, etc.)	Minimal potential due to the small magnitude, limited geographical extent and duration of project activities.	Not significant

7.3 Effects of the Environment on the Project

The potential effect(s) of the environment on the Project, and each affected component, the recommended mitigation(s), the likelihood of residual effect and the significance of residual effect is presented in Table 7-3.

Table 7-3: Effects of the Environment on the Project

Effect	Component	Recommended Mitigation	Likelihood of Residual Effect	Significance of Residual Effect
Extended periods of permafrost/freezing conditions may influence infiltration rates, reducing filtering time for effluent or impact retention times, thus increasing amount of untreated overflow.	Permafrost, freezing weather conditions	Ensure that retention times are long enough to prevent untreated/under treated effluent from entering the wetland/water courses and ocean.	Minimal potential due to the small magnitude, limited geographical extent and duration of project activities.	Not significant

7.4 Cumulative Effects

Cumulative effects resulting from this project are not expected.

7.5 **Any Other Matter**

No other matter was identified during this screening.

Chapter 8 – Environmental Effects Summary Checklist

8 Environmental Effects Summary Checklist

A summary of the potential environmental effects expected at the Site, as well as potential mitigation and residual effects is presented in Table 8-1. The potential environmental effects, potential mitigation and residual effects for other factors and cumulative effects are presented in Tables 8-2 and 8-3.

Table 8-1: Environmental Effects Checklist

			Potential Pro	ject Effects	3		Residua	I Effects
Environmental Component	Potential adverse effect?		Can it be mitigated?			Is it significant?		
	YES	NO	Uncertain	YES	NO	Uncertain	YES	NO
Topography	Х			Х				Х
Species/Habitat of Special Status		Х						
Vegetation	Х			Х				Х
Wildlife/Habitat	Х			Х				Х
Fish and Fish Habitat	Х			Х				Х
Marine Resources	Х			Х				Х
Soils	Х			Х				Х
Drinking Water		Х						
Groundwater	Х			Х				Х
Surface water/Hydrogeology	Х			Х				Х
Wetlands	Х			Х				Х
Sediments	Х			Х				Х
Climate and Air Quality	Х			Х				Х
Noise	Х			Х				Х
Vibration	Х			Х				Х
Transportation and Navigation		Х						
Land Use		Х						

			Potential Pro	ject Effects	5		Residua	l Effects
Environmental Component	Potent	tial advers	e effect?	Can it be mitigated?			Is it significant?	
	YES	NO	Uncertain	YES	NO	Uncertain	YES	NO
Human Health	Х			Х				Х
Socio-economic conditions		Х						
Physical/Cultural heritage		Х						
Aboriginal use of traditional lands/resources		Х						
Structures/Sites of significance		Х						
Other		Х						

Table 8-2: Other Factors

	Potential Project Effects						Residual Effects	
Environmental Component	Potential adverse effect?			Can it be mitigated?			Is it significant?	
	YES	NO	Uncertain	YES	NO	Uncertain	YES	NO
Accidents and Malfunctions	Х			х				х
Effects of Environment on the Project	Х			Х				Х

Table 8-3: Cumulative Effects

		Potential Project Effects						Residual Effects		
Environmental Component	Potential adverse effect?			Potential adverse effect? (San it he mitigated?)				jated?	ls it sigr	nificant?
	YES	NO	Uncertain	YES	NO	Uncertain	YES	NO		
Project Component #1	X			×				х		
Project Component #2	Х			х				х		

Mitigation measures that are required as a result of the Screening Level Environmental Assessment are summarized in Table 8-4.

Table 8-4: Mitigation Measures

Environmental Component Potentially Affected	Proposed Mitigation	Responsibility to ensure implementation
Surface water	 Ensure that no run off from construction/improvement activities enters water courses or Hudson Bay; a spill response kit must be on-Site in the event of a spill; immediately contain and clean up any spill in accordance with regulatory requirements. All equipment fuelling and maintenance must be carried out at a safe distance from water courses and Hudson Bay to ensure that no deleterious substances enter the surface water bodies. Ensure proper function of lagoon and wetlands through monitoring program. 	Consultants and the Hamlet of Whale Cove
Groundwater	 Ensure that no run off from construction/improvement activities enters water courses or seeps into the ground; a spill response kit must be on-Site in the event of a spill; immediately contain and clean up any spill in accordance with regulatory requirements. All equipment fuelling and maintenance must be carried out at a safe distance from water courses and Hudson Bay to ensure that no deleterious substances enter the groundwater. Ensure proper function of lagoon and wetlands through monitoring program. 	Consultants and the Hamlet of Whale Cove
Soils and Sediments	 All equipment fuelling and maintenance has to be carried out in designated locations away from open drainage systems and surface water to ensure that no deleterious substances percolate into soils or sediments; emergency clean-up protocols will be developed and implemented in the event of an accidental spill; fuels, oils and other hazardous substances have to be stored in designated, secure locations. 	Consultants and the Hamlet of Whale Cove
Air Quality and Climate Change	 Vehicles, machinery and equipment should be in good condition and equipped with emission controls, as applicable. All work shall be carried out in compliance with all applicable air-emissions regulations and bylaws. 	Consultants and the Hamlet of Whale Cove
Noise/Vibration	 Vehicles, machinery and equipment must be in good repair. All work shall be carried out in accordance with all applicable noise regulations and bylaws. 	Consultants and the Hamlet of Whale Cove
Terrain and Topography	Ensure proper function of lagoon and wetlands through monitoring program.	Consultants and the Hamlet of Whale Cove

Environmental Component Potentially Affected	Proposed Mitigation	Responsibility to ensure implementation
	 Ensure that grading takes place according to design specifications. 	
Vegetation and Wetlands	 Ensure that no run off enters water courses, Hudson Bay or the wetlands; a spill response kit is to be on-Site in the event of a spill; immediately contain and clean-up any spills in accordance with regulatory requirements. All equipment fuelling and maintenance has to be carried out at a safe distance from water courses, Hudson Bay or the wetlands to ensure that no deleterious substances effect the vegetation and wetlands. Ensure proper function of lagoon and wetlands through monitoring program. Ensure that grading takes place according to design specifications. 	Consultants and the Hamlet of Whale Cove
Fish and Fish Habitat	 Ensure that no run off enters water courses, Hudson Bay or the wetlands; a spill response kit is to be on-Site in the event of a spill; immediately contain and clean-up any spills in accordance with regulatory requirements. All equipment fuelling and maintenance has to be carried out at a safe distance from water courses, Hudson Bay or the wetlands to ensure that no deleterious substances enter the surface water bodies. Ensure proper function of lagoon and wetlands through monitoring program. 	Consultants and the Hamlet of Whale Cove
Wildlife and Habitat	 Ensure spill prevention measures are in place. Ensure proper function of lagoon and wetlands through monitoring program. 	Consultants and the Hamlet of Whale Cove
Human Health	 Follow all applicable health and safety guidelines and proper use of personal safety devices (e.g. hard hats, steel-toed boots, safety glasses, etc.) 	Consultants and the Hamlet of Whale Cove
Accidents and Malfunctions	 All equipment fuelling and maintenance has to be carried out in designated locations away from open drainage systems and surface water; emergency clean-up protocols will be developed and implemented in the event of an accidental spill; fuels, oils and other hazardous substances have to be stored in designated, secure locations. 	Consultants and the Hamlet of Whale Cove
Water level fluctuations	 Silt fencing is to be placed in areas of concern to prevent loose soils, sediments and debris from entering surface water bodies and the wetlands. 	Consultants and the Hamlet of Whale Cove

Chapter 9 – Consultation

9 **Consultation**

the public, and is confined to the Site.

9.1 Public Participation under Subsection 18(3) of the Canadian Environmental Assessment Registry (CEAR)

Yes
No
Scope of factors posed on the CEAR:
Yes
Not applicable⊠
Notice of public input posted on the CEAR:
Yes
Not applicable⊠
Public participation was not considered as part of this project since the project has no negative effects on

9.2 Consultation with the Public/Inuit People

Is the public participation deemed necessary under Subsection 18(3):

Public consultation in the form of a meeting with Hamlet Council was held on August 15, 2011.

9.3 Consultation with other Federal Departments or Agencies

A request for information was sent to the Department of Fisheries and Oceans of Canada (DFO) and Indian and Northern Affairs Canada (INAC). No information has been provided by INAC or DFO for this project, as of March, 2013. Due to the extended period, no additional information is expected.

9.4 Consultation with other Jurisdictions

Consultation with other jurisdictions was not undertaken.

Chapter 10 – Summary

10 **Summary**

The SLEA revealed that the proposed upgrades and expansion of the existing long term sewage treatment system for the Hamlet of Whale Cove will have net positive effects on the community. This project will not have significant long term negative effects on the environment or local wildlife. Most effects are related to the construction activities, and are short term. All potential effects can be mitigated by applying suitable mitigation measures.

Chapter 11 – General Limitations and Closure

11 General Limitations and Closure

The purpose of this report is to provide the Government of Nunavut with an evaluation of the potential environmental effects associated with the proposed upgrade to the existing long term sewage treatment system for the Hamlet of Whale Cove.

The information presented in this report is based on information provided by others and visual observations as identified herein. Achieving the objectives stated in this report has required us to arrive at conclusions based upon the best information presently known to us. No investigative method can completely eliminate the possibility of obtaining partially imprecise or incomplete information; it can only reduce the possibility to an acceptable level. Professional judgment was exercised in gathering and analyzing the information obtained and in the formulation of the conclusions. Like all professional persons rendering advice, we do not act as absolute insurers of the conclusions we reach, but we commit ourselves to care and competence in reaching those conclusions.

This report was prepared for the Government of Nunavut and may not be reproduced in whole or in part, without the prior written consent of exp, or used or relied upon in whole or in part by other parties for any purposes whatsoever. Any use which a third party makes of this report, or any part thereof, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Exp Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

The SLEA was prepared based on the available site information and evaluated the potential effects posed on the environment based on the proposed upgrade to the existing long term sewage treatment system for the Hamlet of Whale Cove. Should additional Site information become available, the SLEA should be re-evaluated to determine if the conclusions presented in the report are still valid.

Closure

We trust this report is satisfactory for your purposes. Should you have any questions, please do not hesitate to contact this office.

Yours truly,

exp Services Inc.

Earyta Chorostkowska, M.Env.Sc., EPt

Ecological Specialist

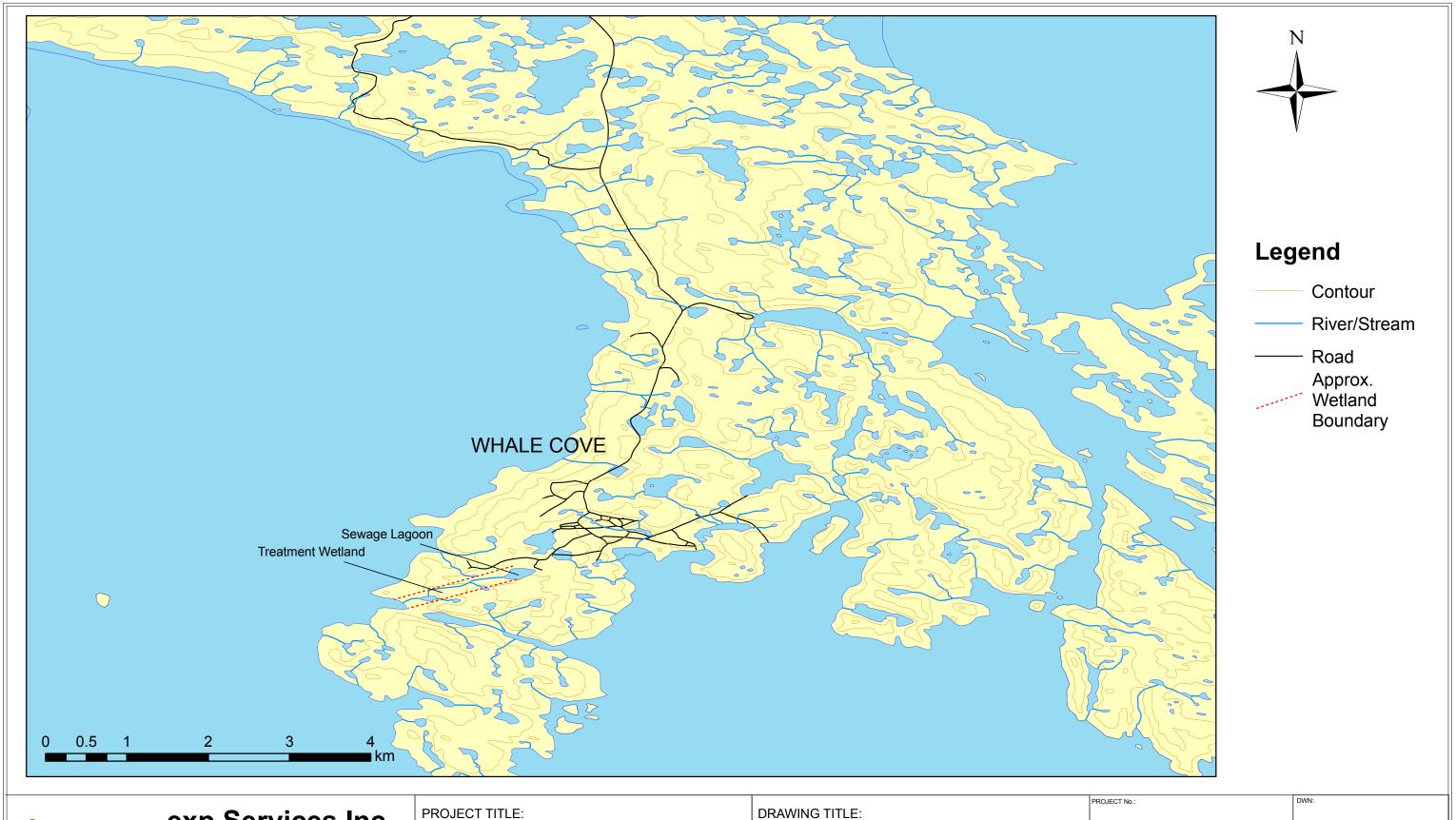
Dean Fitzgerald, Ph.D.

Team Leader, Ecological Services

Chapter 12 – References

12 References

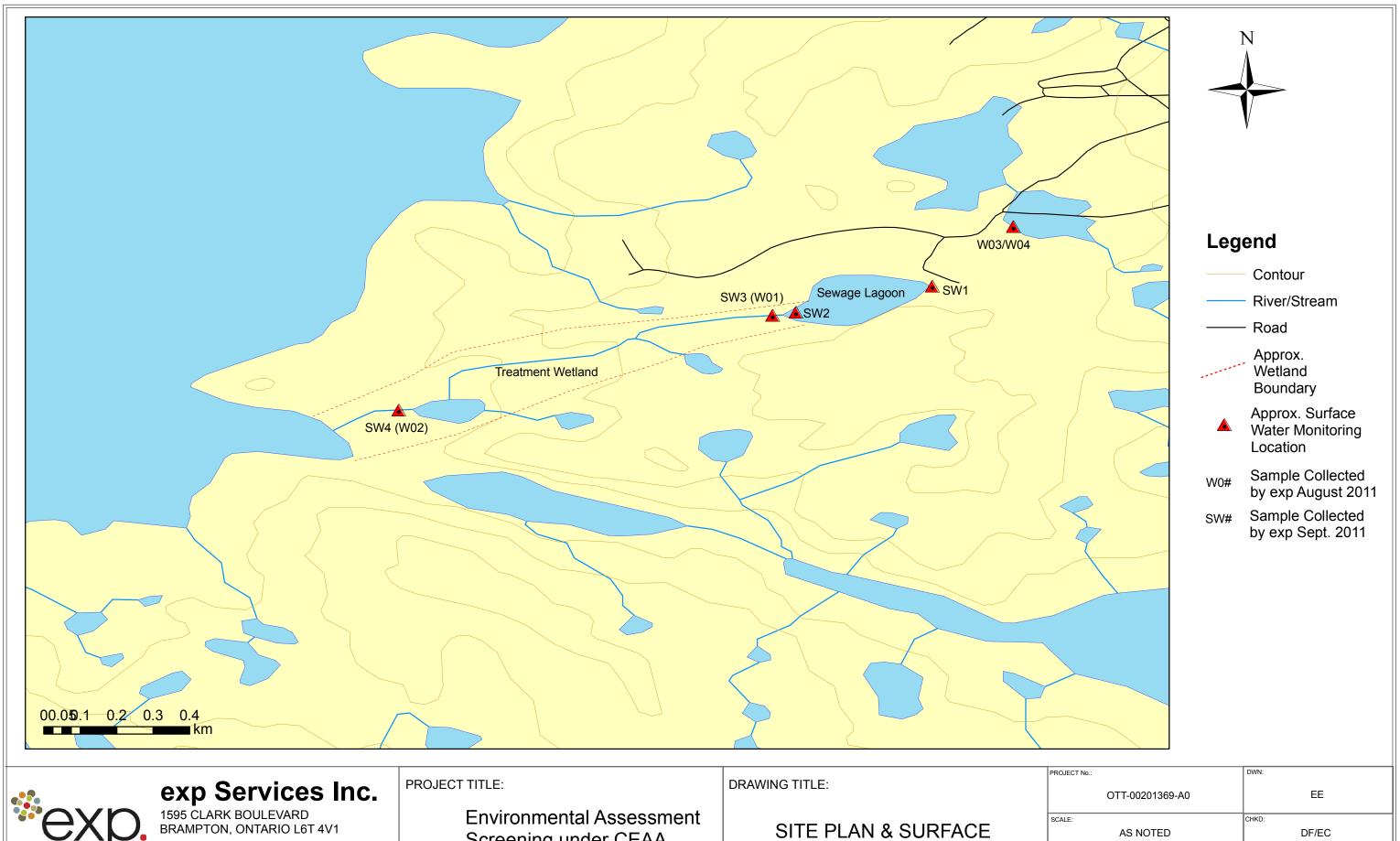
- American Bird Conservancy (ABC). 2004. Bird News Network: Information on Sea gulls. Accessed September 27, 2011. Available online at: http://www.spwickstrom.com/seagull/
- Atlas of Canada (AoC). 2011a. Heritage Rivers. Accessed August 22, 2011. Available online at: http://atlas.nrcan.gc.ca/auth/english/maps/peopleandsociety/nunavut/specialplaces/heritagerivers
- Atlas of Canada (AoC). 2011b. Migratory Bird Sanctuaries. Accessed August 22, 2011. Available online at:


 http://atlas.nrcan.gc.ca/auth/english/maps/peopleandsociety/nunavut/specialplaces/migratorybirdsanctuaries/1
- Atlas of Canada (AoC). 2011c. National Parks. Accessed August 22, 2011. Available online at: http://atlas.nrcan.gc.ca/auth/english/maps/peopleandsociety/nunavut/specialplaces/national-parks/1
- Atlas of Canada (AoC). 2011d. National Wildlife Areas. Accessed August 22, 2011. Available online at: http://atlas.nrcan.gc.ca/auth/english/maps/peopleandsociety/nunavut/specialplaces/national-wildlifeareas/1
- Cornell Lab of Ornithology (CLO). 1994 Least Sandpiper. Accessed September 27, 2011. Available online at: http://www.allaboutbirds.org/guide/Least_Sandpiper/id
- Cornell Lab of Ornithology (CLO). 1999. Common Raven. Accessed September 27, 2011. Available online at: http://www.allaboutbirds.org/guide/Common Raven/lifehistory
- COSEWIC. 2011. Canadian species at risk. Committee on the Status of Endangered Wildlife in Canada.

 Accessed August 22, 2011. Available online at:

 http://www.cosewic.gc.ca/eng/sct5/index e.cfm.
- Government of Canada (GoC). 2011. Species at Risk Public Registry. Accessed August 22, 2011. Available online at: http://www.sararegistry.gc.ca/sar/index/default-e.cfm
- Government of Nunavut (GoN). Ground Squirrel Fact Sheet. Accessed Sept 27, 2011. Available online at: http://www.gov.nu.ca/env/ags.pdf
- Government of Yukon (GoY). Ground Squirrels. Accessed Sept 27, 2011. Available online at: http://www.env.gov.yk.ca/wildlifebiodiversity/mammals/agsquirrel.php
- Seattle Audubon Society (SAS). 2011a. Bird Wed: Tundra swan. Accessed Sept 27, 2011. Available online at: http://www.birdweb.org/BIRDWEB/bird/tundra_swan
- Seattle Audubon Society (SAS). 2011b. Bird Wed: Snow goose. Accessed Sept 27, 2011. Available online at: http://www.birdweb.org/BIRDWEB/bird/snow goose
- Seattle Audubon Society (SAS). 2011c. Bird Wed: Northern pintail. Accessed Sept 27, 2011. Available online at: http://www.birdweb.org/BIRDWEB/bird/northern pintail
- Seattle Audubon Society (SAS). 2011d. Bird Wed: Canada goose. Accessed Sept 27, 2011. Available online at: http://www.birdweb.org/BIRDWEB/bird/canada goose

Appendix A – Figures


exp Services Inc. 1595 CLARK BOULEVARD BRAMPTON, ONTARIO L6T 4V1

(905) 793-9800 (905) 793-0641

Environmental Assessment Screening under CEAA Whale Cove, Nunavut

SITE LOCATION PLAN

PROJECT No.:	DWN:
OTT-00201369-A0	EE
SCALE: AS NOTED	CHKD: DF/EC
DATE: MARCH 2013	FIG. No.:

(905) 793-9800 (905) 793-064

Environmental Assessment Screening under CEAA Whale Cove, Nunavut

SITE PLAN & SURFACE WATER MONITORING POINTS

PROJECT No.:	DWN:
OTT-00201369-A0	EE
SCALE: AS NOTED	CHKD: DF/EC
MARCH 2013	FIG. No.: