

2020 Annual Report for CFS Alert, Nunavut

Prepared for:

Nunavut Water Board

Licensee:

RP Ops Group North Department of National Defence

Prepared & Submitted by:

8 Wing Environmental Management,8 Wing Trenton,Department of National Defence

31 March 2021

Nunavut Water Board P.O. Box 119 Gjoa Haven, Nunavut, X0B 1J0

Attention: Manager of Licensing

Subject: 2020 Annual Report for CFS Alert, Nunavut

Please find enclosed a copy of the 2020 Annual Report to the Nunavut Water Board and Executive Summary in English and Inuktitut for the following site:

1. Canadian Forces Station (CFS) Alert – 8AC-ALT1929 Type "A"

The Annual Report is being submitted by the Department of National Defence at 8 Wing/Canadian Forces Base Trenton on behalf of the licensee, the Department of National Defence at RP Ops N- ADM (IE).

As see around the world, due to the COVID -19 world pandemic this past year saw reduced reporting capabilities on Station and consequently limited/reduced data collection associated with the Water Licence.

Should the Nunavut Water Board have comments or require additional information regarding the Annual Report, please contact Mr. Nathan Koutroulides, 8 Wing Deputy Environment Officer, 8 Wing Environmental Management at (613) 392-2811 x4821 or by e-mail at: Nathan.Koutroulides@forces.gc.ca.

Sincerely,

Nathan Koutroulides, B.Sc, CD, PMP. 8 Wing Deputy Environment Officer, Environmental Management Department of National Defence / Government of Canada Nathan.Koutroulides@forces.gc.ca / Tel: 613-392-2811 Ext. 4821

encls

8 Wing Environmental Management, Room 305, 74 Polaris Avenue, Box 1000 Stn Forces, Astra, Ontario, K0K 3W0 Tel: 613-392-2811 x4821 Fax: 613-965-3368

Table of Contents

2020 Annual Report for CFS Alert, Nunavut	1
Subject: 2020 Annual Report for CFS Alert, Nunavut	2
Executive Summary	4
2020 ◁ᡃĠJℂĹᡥᆉ▷ˤ ▷ԺᡃᢆᲮᡥ ⊃Ġᡥ⊃ᡥ ዾዺቃ⊦Γ ∆Lᆟᠸᡙᢥ᠍ᡟ╛╘∩Lϟ℉௨ℴ ^ℴ ᠁᠁᠁	6
Rapport annuel 2020 à l'Office des eaux du Nunavut	8
NWB Annual Report 2020	10
Appendix A	15
Monitoring Program Station No. ALT-1	15
Monitoring Program Station No. ALT-2 & ALT 3	16
Monitoring Program Stations No. ALT-4-5-6-7	19
Monitoring Program Stations No. ALT-8-9-10-11	26
Analytical Results for ALT-2-3-4-5-6-7-8-9-10-11	29
List of Waste Disposal Activities	106
Progressive and Final Reclamation Work Undertaken	114
Pronosed/ future Infrastructure Works	116

2020 Annual Report to the Nunavut Water Board

Licensee: Department of National Defence – RP Ops - ADM (IE)

Licence: 8AC-ALT1929 Type "A", (formerly 3BC-ALT1015 Type "B")

Location: Canadian Forces Station Alert, Ellesmere Island,

Qikiqtani Region, Nunavut.

Report submitted by: Department of National Defence –

8 Wing/Canadian Forces Base Trenton – 8 Wing Environmental Management, 31 March 2021

Executive Summary

The 2020 annual report to the Nunavut Water Board (NWB) is a requirement under Licence Number 8AC-ALT1929 Type "A", Part B, Paragraph 1. This annual report is for Canadian Forces Station (CFS) Alert, Nunavut. The Licence was issued on November 1st, 2019, to the Department of National Defence (DND) Real Property Operations North (RP Ops N) - Assistant Deputy Minister of Infrastructure & Environment (ADM(IE)). As 8 Wing – Canadian Forces Base (CFB) Trenton, Ontario, oversees CFS Alert, 8 Wing Trenton is filing the annual report on behalf of the new DND licensee, Real Property Operations North (RP Ops N) - Assistant Deputy Minister of Infrastructure & Environment (ADM(IE)). This is the first submission under the new Licence conditions.

For 2020, the average daily water usage at CFS Alert was 565 m³. This usage is below the 875 cubic meters daily water usage allowed by the NWB Licence. The daily water usage amount being reported is slightly less than the daily intake amount of raw water from the source at Upper Dumbell Lake. A large portion of this usage water is directly returned (raw and untreated) to the source concurrently to the intake process, the average return amount was 563 m³/day. This constant circulatory (return) flow of the raw water prevents freezing damages to the water pipelines. The average daily water consumption amount was 72 m³. The total annual quantity of water used in 2020 was 201,615 m³.

Hazardous wastes (batteries, hazardous liquids, asbestos) were backhauled from CFS Alert in 2020 for disposal outside of Nunavut in Ontario, by external contractors. Non-hazardous domestic wastes produced from CFS Alert were directed to the designated Main Station Landfill. Annual repairs to the sewage terrace system were completed in the spring of 2020. All sewage were directed to the Sewage Terrace System.

As seen around the world, due to the COVID-19 World Pandemic CFS Alert support crew were reduced with no visitor allowed on station in order to prevent unwanted spread/transmission at the Station. As such, the environmental sampling and support crew were unable to attend the station in 2020. Consequently, the sampling requirements for the 2020 CFS Alert Surveillance Network Program were severely impacted and reduced with only one sampling event taken. DND maintains a positive commitment to demonstrating compliance to the NWB Licence and is

planning to restore the CFS Alert Surveillance Network Program capabilities in Summer 2021 and/or once Territorial restrictions are lifted.	

<u>2020 ⊲ናናЈСĹ"ለ⊳ና ⊳ቍፅ " ጋና"ጋ" ውዉቃ Γ ΔL'冖ሲ</u>≯ነሪና b∩Lት∿Ր°ውና

᠘ጓጎቴዮበር▷⊀%: ∧፫ሲል℃ bሏር୮ ∖>ዮσ◁⋂ዮሪ – RP Ops - ADM (IE)

ሬΔነ '**/**: 8BC-ERK1621 /ፌ▷σኄ "A" (ΔLΔˤϽΓσ▷しጏ⊲∿ 3BC-ALT1015

ժ**ℶ**▷σ∿し "Β")

 $PP^{\$}C\sigma$, Dap^{c} .

⋖⊳८°८४⊳° ७४₽%८८५%८

 \dot{C}^* α 2020 \dot{C}^* ΟΓ΄ \dot{C}^* ΟΓ΄

Rapport annuel 2020 à l'Office des eaux du Nunavut

Détenteur du permis : Ministère de la Défense nationale – Ops Imm – SMA(IE) **Permis :** 8AC-ALT1929 Type « A » (anciennement 3BC-ALT1015 Type « B »)

Endroit : Station des Forces canadiennes Alert, île d'Ellesmere,

région de Qikiqtani, Nunavut.

Rapport présenté par : Ministère de la Défense nationale – 8° Escadre/Base des Forces canadiennes Trenton – Gestion environnementale de la 8° Escadre, 31 mars 2021

Sommaire

Le rapport annuel 2020 présenté à l'Office des eaux du Nunavut (OEN) constitue une exigence aux termes du permis n° 8AC-ALT1929 Type « A », partie B, paragraphe 1. Le présent rapport annuel vise la Station des Forces canadiennes (SFC) Alert, au Nunavut. Le permis a été délivré le 1^{er} novembre 2019 au ministère de la Défense nationale (MDN) – Opérations immobilières (Nord) [Ops Imm (Nord)] du sous-ministre adjoint (Infrastructure et environnement) [SMA(IE)]. Comme la 8^e Escadre/Base des Forces canadiennes (BFC) Trenton, en Ontario, supervise la SFC Alert, la 8^e Escadre Trenton présente le rapport annuel au nom du nouveau détenteur de permis du MDN, les Ops Imm (Nord) du SMA(IE). Il s'agit du premier rapport présenté en vertu des nouvelles conditions de permis.

En 2020, l'utilisation quotidienne moyenne d'eau à la SFC Alert était de 565 m³, ce qui est inférieur à la consommation quotidienne de 875 m³ d'eau autorisée par le permis de l'OEN. La quantité d'eau utilisée quotidiennement qui est déclarée est légèrement inférieure à la quantité d'eau brute puisée quotidiennement de la source du lac Upper Dumbell. Une grande partie de l'eau utilisée est retournée directement (brute et non traitée) à la source en même temps qu'elle est puisée, et la quantité moyenne d'eau retournée s'élève à 563 m³ par jour. Cette circulation constante de l'écoulement (restitué) de l'eau brute empêche le gel d'endommager les canalisations d'eau. La quantité moyenne d'eau consommée quotidiennement était de 72 m³. La quantité annuelle totale d'eau utilisée en 2020 était de 201 615 m³.

En 2020, les déchets dangereux (piles, liquides dangereux, amiante) ont été réacheminés de la SFC Alert vers l'Ontario pour être éliminés à l'extérieur du Nunavut par des entrepreneurs externes. Les déchets ménagers non dangereux produits par la SFC Alert ont été acheminés à la décharge principale désignée. Les réparations annuelles du système de traitement des eaux usées à paliers ont été effectuées au printemps 2020. Toutes les eaux usées ont été rejetées dans ce système.

Comme c'est le cas partout dans le monde en raison de la pandémie de COVID-19, l'équipe de soutien de la SFC Alert a été réduite et aucune visite n'a été autorisée sur les lieux afin d'éviter toute propagation ou transmission du virus. Par conséquent, l'équipe de soutien et d'échantillonnage environnemental n'a pas pu se rendre à la SFC Alert en 2020, ce qui a

grandement limité les exigences en matière d'échantillonnage pour le programme de réseau de surveillance de la SFC Alert de 2020, car une seule opération d'échantillonnage a pu être menée. Le MDN maintient son engagement positif à démontrer sa conformité au permis de l'OEN et prévoit rétablir les capacités du programme à l'été 2021, ou dès que les restrictions territoriales seront levées.

NWB Annual Report 2020

	_				2020 🔻
NWB Annual	Report			Year being repo	rted:
License No:	8AC-ALT192	29		Issued Date:	November 1, 2019
				Expiry Date:	October 31, 2029
			Canad	lian Forces Station	(CFS) Alert, Nunavut
	Project Nam	ie:			
		Denar	tment of National	Defence - Real Pro	pperty Operations-ADM(IE)
	Licensee:	Ворин	anent of Hadional	Deterior Real Fre	perty operations ribin(12)
	Mailing Add	ress:		ational Defence	acture & Environment) A 0K2
			filing Annual Rep e two entities, if appli	•	Name of Licensee please clarify
		ilding 22 Nationa Forces	2,74 Polaris Ave. al Defence - 8 Win	g/ CFB Trenton	
General Back	ground Inforr	nation o	on the Project (*o	ptional):	
	Formerly: 8AC Formerly: 3BC		Type A until Oct 3 15 Type B.	31, 2019.	
Licence Requ	irements: the	license	ee must provide t	the following info	rmation in accodance with
	Part B	▼ It	em 1 ▼		

A summary report of water use and waste disposal activities, including, but not limited to: methods of obtaining water; sewage and greywater management; drill waste management; solid and hazardous waste management.

Water Source(s):

Water Quantity:

565

Upper Dumbell Lake, Nunavut.

Quantity Allowable Domestic (cu.m)

Actual Quantity Used Domestic (cu.m)

Quantity Allowable Drilling (cu.m)

Total Quantity Used Drilling (cu.m)
Mosts Management and/or Disposal
Waste Management and/or Disposal ✓ Solid Waste Disposal
✓ Sewage
Drill Waste
✓ Greywale:
✓ Hazardous ✓ Other:
Landfarms
Additional Details:
Appendix A: Monitoring Program Station No. ALT-1 Appendix B: Monitoring Program Stations No. ALT-2-3 Appendix C: Monitoring Program Stations No. ALT-4-5-6-7 Appendix D: Monitoring Program Stations No. ALT-8-9-10-11 Appendix E: June/July Analysis Results for ALT-4-8-9-10 Appendix F: List of Waste Disposal Activities / Copies of Movement Documents Appendix G: Progressive and Final Reclamation Work Undertaken Appendix H: Proposed/ Future Inrastructure Works
A list of unauthorized discharges and a summary of follow-up actions taken.
Spill No.: (as reported to the Spill Hot-line)
Date of Spill:
Date of Notification to an Inspector: Additional Details: (impacts to water, mitigation measures, short/long term monitoring, etc)
No major sills reported in 2020.
Revisions to the Spill Contingency Plan
SCP submitted and approved - no revision required or proposed
Additional Details:
Revised Spill contingency plan was submitted to the Board December 24, 2019.
The vised opin contingency plan was submitted to the Board Becchiber 24, 2010.
Devisions to the Aboutlement and Destauration Divi
Revisions to the Abandonment and Restoration Plan
AR plan submitted and approved - no revision required or proposed
Additional Details:
No revisions required.
8AC-ALT1929-2020

Progressive Reclamation work Undertaken
Additional Details (i.e., work completed and future works proposed)
See Appendix G.
Results of the Monitoring Program including:
The GPS Co-ordinates (in degrees, minutes and seconds of latitude and longitude) of each location where sources of water are utilized;
Not Applicable (N/A) ▼
Additional Details:
<u> </u>
The GPS Co-ordinates (in degrees, minutes and seconds of latitude and longitude) of each location where wastes associated with the licence are deposited;
Not Applicable (N/A) ▼
Additional Details:
Results of any additional sampling and/or analysis that was requested by an
Inspector
No additional sampling requested by an Inspector or the Board ▼
Additional Details: (date of request, analysis of results, data attached, etc)
Any other details on water use or waste disposal requested by the Board by November 1 of the year being reported.
No additional sampling requested by an Inspector or the Board

Additional Details: (Attached or provided below)

Any recognition or follow up actions on increation/compliance reports	
Any responses or follow-up actions on inspection/compliance reports	
No inspection and/or compliance report issued by INAC	
Additional Details: (Dates of Report, Follow-up by the Licensee)	
Any additional comments or information for the Decad to consider	
Any additional comments or information for the Board to consider	
Date Submitted: Submitted/Prepared by: Contact Information: March 31, 2021 Nathan Koutroulides, BSc, PMP Tel: 613-392-2811 x4821 Fax: 613-965-3368 email: Nathan.Koutroulides@forces.gc.ca	

GPS Coordinates for water sources utilized

	La	atitude			Longitue	de
Source Description	Deg	Min	Sec	Deg	Min	Sec
	o	,	"	0	,	"
Upper Dumbell Lake						
	82	29	6.2	-62	28	9.5

GPS Locations of areas of waste disposal

Location	La	titude			Longitud	
Description (type)	Deg	Min	Sec	Deg	Min	Sec
	o	,	"	0	•	"
Alert Battery Dump						
	82	29	16	-62	23	15.32
Alert Main Station Landfill						
	82	30	17	-62	20	14.89
Alert Dump # 3						
	82	29	18	-62	20	57.01
Landfarm (ALT-11)						
	82	30	40	-62	18	37.6
Millionaire's Dump	82			-62		30.4
		29	19		21	
Sewage Terrace/Outfall	82	29	56	-62	21	4.8
Landfarm (ALT-12)	82	29	58	-62	21	16

Appendix A

Monitoring Program Station No. ALT-1

Year: 2020

Name: Water Supply at Raw Water Intake

Licence Daily Water Use (to not exceed) Limit: 875 cubic metres [m³].

Results for: All Purpose Water Monitoring

Daily Water Usage Quantity: 565 cubic metres [m³]. Annual Water Usage Quantity: 201,615 cubic metres [m³].

Average Daily Water Usage at CFS Alert - 8AC-ALT1929										
			Average				Average	Maximum		
			Daily	Maximum	Average	Maximum	Daily	Daily		
			Intake	Daily	Daily	Daily	Utilized	Utilized		Quantity
Year	Month	Days	(Usage)	Intake	Returned	Return	(Consumed)	,	Metered	Utilized
[yr]	[mo]	[day]	[m3/day]	[m3/day]	[m3/day]	[m3/day]	[m3/day]	[m3/day]	[Y/N]	[m3]
2020	JAN	31	529	604	481	531	48	73	Υ	16,407
2020	FEB	28	546	619	465	534	81	162	Y	15,301
2020	MAR	31	544	637	466	564	78	154	Y	16,855
2020	APR	30	558	674	491	635	67	170	Υ	16,753
2020	MAY	31	563	711	490	604	73	107	Y	17,460
2020	JUN	30	565	689	488	582	77	107	Υ	16,956
2020	JUL	31	561	614	482	522	79	96	Y	17,397
2020	AUG	31	556	620	483	533	73	94	Y	17,247
2020	SEP	30	551	616	481	539	70	94	Y	16,525
2020	OCT	31	542	636	469	542	73	127	Y	16,812
2020	NOV	30	559	687	485	607	74	94	Y	16,781
2020	DEC	31	552	634	484	558	69	94	Y	17,121
Annual A	verage [m3/c	lay]:	552	645	481	563	72	114	Total	
Observed	Minimum [m3	/day]:	529	604	465	522	48	73	Annual	
	Maximum [m		565	711	491	635	81	170	[m3]:	201,615

Average Daily Water Intake (Usage) from Source: 552 cubic metres [m³]. Average Daily Water Return to Source: 563 cubic metres [m³]. Average Daily Water Utilized (Consumed): 72 cubic metres [m³].

The usage for 2020 was in compliance with, or below the Licence Daily Water Use Limit of 875 m³.

Appendix B

Monitoring Program Station No. ALT-2 & ALT 3

Year: 2020

Month: July to August

ALT-2 Name: Sewage Terrace Outfall Point

ALT-3 Name: Sewage Terrace Final Discharge Point

Description: Effluent Quality Results.

Notes:

The Alert Sewage Terrace System is being monitored by Nasittuq Corporation, under service contract by DND and administrated by 8 Wing Trenton Environmental Management in Trenton, Ontario. Water quality samples are collected and analyzed by ALS Canada Ltd., Ontario.

Summary of Results:

ALT-2 is located at the Sewage Terrace Outfall Point.

ALT-3 is located at the Sewage Terrace Final Discharge Point (Parr Inlet).

In reference to Part E, Item 4, for ALT-3 and /or Alt 13, the results are summarized:

		June	June	July	July
	Licence Specific	Alt-2	Alt-3	Alt-2	Alt-3
	Criteria				
Benzene (ug/L)	370	NA	NA	NA	NA
Toluene (ug/L)	2	NA	NA	NA	NA
Ethylbenzene (ug/L)	90	NA	NA	NA	NA
Lead (ug/L)	1	5.78	7.85	1.85	1.8
Oil and Grease (mg/L)	15 (NVS)	5.5	ND	8.6	8.5
Phenols (ug/L)	20	8.9	9.4	3.3	7.3
BOD _{5 (mg/L)}	80	18	19	24	15
рН		7.4	7.27	7.45	7.47
TSS (mg/L)	70	374	371	57.5	58.3
Oil and Grease (mg/L)	5 (NVS)	5.5	ND	8.6	8.5
	CCME Criteria (marine)				
pH	7.0 to 8.7	7.4	7.27	7.45	7.47
Conductivity		459	462	558	556
Temperature (field)					
TSS (mg/L)		374	371	57.5	58.3
Oil and Grease (mg/L)		5.5	ND	8.6	8.5

Nitrate-Nitrite		ND	ND	ND	ND
(mg/L)					
Ammonia Nitrogen		7.15	6.54	10.1	10.3
(mg/L)					
Sulphate (mg/L)		7.73	7.88	8.06	8.13
Total Hardness		171	209	NA	NA
(mg/L)					
Total Alkalinity		158	158	208	207
(mg/L)		0.0	0.4	2.2	7.2
Total Phenols (mg/L)		8.9	9.4	3.3	7.3
TOC (mg/L)		114	133	126	118
Fecal Coliforms		650000	480000	1000000	800000
(CFU/100mL)		2.15	4.42	0.200	0.207
Aluminum (mg/L)		3.15	4.43	0.389	0.385
Antimony (mg/L)	0.5	ND	ND	0.00023	0.00022
Arsenic (mg/L)	0.0125	0.0089	0.0101	0.00694	0.00663
Cadmium (mg/L)	0.12	0.00010	0.00010	0.000033	0.000035
G 1 : (/T)		9	1	4	5
Calcium (mg/L)		50.3	62.9	51.9	49.2
Chromium (mg/L)		0.0062	0.0089	0.00104	0.00119
Copper (mg/L)	0.002	0.062	0.0681	0.0588	0.0588
Iron (mg/L)		6.56	9.24	2.34	2.34
Lead (mg/L)	0.002	5.78	7.85	1.85	1.8
Magnesium (mg/L)		11	12.7	11.1	10.8
Mercury (mg/L)	0.00016	ND	ND	ND	ND
Nickle (mg/L)	0.0083	0.033	0.0383	0.0209	0.0203
Potassium (mg/L)		6.17	6.23	8.22	7.89
Sodium (mg/L)		29.3	29	34.9	33.5
Zinc (mg/L)	0.01	0.038	0.035	0.0123	0.0128
BOD5 (mg/L)		18	19	24	15
Chloride (mg/L)		37.6	37.6	41.1	40.9
Benzene (ug/L)	110	NA	NA	NA	NA
Ethylbenzene (ug/L)	25	NA	NA	NA	NA
Toluene (ug/L)	215	NA	NA	NA	NA
Xylenes (ug/L)		NA	NA	NA	NA
F1 (ug/L)		NA	NA	NA	NA
F2 (ug/L)		NA	NA	NA	NA
F3 (ug/L)		NA	NA	NA	NA NA
F4 (ug/L)		NA	NA	NA	NA NA
Acenaphthene		NA	NA	NA NA	NA NA
(ug/L)			11/2		
Acenaphthylene		NA	NA	NA	NA
(ug/L)		1.71			

Acridine (ug/L)		NA	NA	NA	NA
Benzo(a)anthracene		NA	NA	NA	NA
(ug/L)					
Benzo(o)pyrene		NA	NA	NA	NA
(ug/L)					
Benzo(b)fluoranthere		NA	NA NA	NA	NA
(ug/L)		374	NT A	N. A.	374
Benzo(g,h,i)perylene		NA	NA	NA	NA
(ug/L) Benzo(k)fluoranthere		NA	NA	NA	NA
(ug/L)		INA	NA	NA	INA
Chrysene (ug/L)		NA	NA	NA	NA
Dibenzo(ah)anthrace		NA	NA NA	NA	NA NA
ne (ug/L)		1111			
Fluoranthene (ug/L)		NA	NA	NA	NA
Fluorene (ug/L)		NA	NA	NA	NA
Indeno(1,2,3-		NA	NA	NA	NA
cd)pyrene (ug/L)					
1+2-		NA	NA	NA	NA
Methylnapthalenes					
(ug/L)					
1-Methylnapthalene		NA	NA	NA	NA
(ug/L)		37.4	N. 1	N. A.	37.4
2-Methylnapthalene		NA	NA	NA	NA NA
(ug/L)	1.4	NA	NA	NA	NA
Napthalene (ug/L)					
Phenanthrene (ug/L)		NA	NA	NA	NA
Pyrene (ug/L)		NA	NA	NA	NA
Quinoline (ug/L)		NA	NA	NA	NA

- Oil and Grease parameters exceed the maximum allowable concentrations at ALT-2 for Oil and Grease.
- TSS exceeded the Licence parameters of 70mg/L. DND will conduct a background sampling program of other small tributaries away from DND activities to ascertain if the 70mg/L set criteria is achievable in natural tributaries in the Alert area.
- Lead, Copper, Nickle and Zinc exceedances are likely attributable to atmospheric deposition. DND will conduct a background sampling program away from DND activities to link correlations in the summer of 2021.
- The analytical certificates detailing the 2020 performance of the Alert Sewage Terrace System is included in this Appendix (B).
- Due to limited personnel on Station during 2020 and COVID 19 constraints and frequent safety concerns associated with wildlife interactions, limited samples were collected. DND is committed to demonstrating compliance to the NWB Licence once capabilities are increased in the summer 2021 and/or once Territorial restrictions are lifted.

Appendix C

Monitoring Program Stations No. ALT-4-5-6-7

Year: 2020

Description: Runoff and Leachate.

Results:

June (Runoff Season)

Unfortunately, there was no water to sample at ALT- 5,6 and 7 for analytical results. Analytical Results for ALT-4, are attached in Appendix E and Appendix F.

.

Jun-20		
	T. C. '6' C.'	A14 4
	Licence Specific Criteria	Alt-4
Benzene (ug/L)	370	NA
Toluene (ug/L)	2	NA
Ethylbenzene (ug/L)	90	NA
Lead (ug/L)	1	6.97
Oil and Grease (mg/L)	15 (NVS)	ND
Phenols (ug/L)	20	ND
BOD _{5 (mg/L)}	80	NA
рН		7.96
TSS (mg/L)	70	131
Oil and Grease (mg/L)	5 (NVS)	ND
	CCME Criteria (marine)	
рН	7.0 to 8.7	7.96
Conductivity		234
Temperature (field)		
TSS (mg/L)		131
Oil and Grease (mg/L)		ND
Nitrate-Nitrite (mg/L)		0.199
Ammonia Nitrogen (mg/L)		ND
Sulphate (mg/L)		24.8
Total Hardness (mg/L)		106
Total Alkalinity (mg/L)		64
Total Phenols (mg/L)		ND
TOC (mg/L)		25.8
Fecal Coliforms		NA
(CFU/100mL)		
Aluminum (mg/L)		3.7

Antimony (mg/L)	0.5	0.00239
Arsenic (mg/L)	0.0125	0.0081
Cadmium (mg/L)	0.12	0.000062
Calcium (mg/L)		30.2
Chromium (mg/L)		0.00722
Copper (mg/L)	0.002	0.0138
Iron (mg/L)		6.37
Lead (mg/L)	0.002	6.97
Magnesium (mg/L)		7.46
Mercury (mg/L)	0.00016	0.0000069
Nickle (mg/L)	0.0083	0.0165
Potassium (mg/L)		2.65
Sodium (mg/L)		10.2
Zinc (mg/L)	0.01	0.0456
BOD5 (mg/L)		NA
Chloride (mg/L)		NA
Benzene (ug/L)	110	NA
Ethylbenzene (ug/L)	25	NA
Toluene (ug/L)	215	NA
Xylenes (ug/L)		NA
F1 (ug/L)		NA
F2 (ug/L)		NA
F3 (ug/L)		NA
F4 (ug/L)		NA
Acenaphthene (ug/L)		NA
Acenaphthylene (ug/L)		NA
Acridine (ug/L)		NA
Benzo(a)anthracene (ug/L)		NA
Benzo(o)pyrene (ug/L)		NA
Benzo(b)fluoranthere (ug/L)		NA
Benzo(g,h,i)perylene (ug/L)		NA
Benzo(k)fluoranthere (ug/L)		NA
Chrysene (ug/L)		NA
Dibenzo(ah)anthracene (ug/L)		NA
Fluoranthene (ug/L)		NA
Fluorene (ug/L)		NA
Indeno(1,2,3-cd)pyrene		NA
(ug/L)		
1+2-Methylnapthalenes		NA
(ug/L)		NIA
1-Methylnapthalene (ug/L)		NA NA
2-Methylnapthalene (ug/L)		NA

Napthalene (ug/L)	1.4	NA
Phenanthrene (ug/L)		NA
Pyrene (ug/L)		NA
Quinoline (ug/L)		NA

- TSS exceeded the Licence parameters of 70mg/L. DND will conduct a background sampling program of other small tributaries away from DND activities to ascertain if the 70mg/L set criteria is achievable in natural tributaries in the Alert area.
- Lead, Copper, Nickle and Zinc exceedances are likely attributable to atmospheric deposition. DND will conduct a background sampling program away from DND activities to link correlations in the summer of 2021

July

The Department of National Defence was successful in collecting and analyzing samples at Monitoring Program Station ALT-4, during the period of runoff in July 2020. Unfortunately, there was no water to sample at ALT- 5,6 and 7 for analytical results. Analytical Results for ALT-4, are attached in Appendix E and Appendix F.

	Licence Specific	Alt-4
	Criteria	
Benzene (ug/L)	370	NA
Toluene (ug/L)	2	NA
Ethylbenzene (ug/L)	90	NA
Lead (ug/L)	1	NA
Oil and Grease (mg/L)	15 (NVS)	ND
Phenols (ug/L)	20	ND
BOD _{5 (mg/L)}	80	NA
pH		8.12
TSS (mg/L)	70	179
Oil and Grease (mg/L)	5 (NVS)	NA
	CCME Criteria	
	(marine)	
pН	7.0 to 8.7	8.12
Conductivity		230
Temperature (field)		
TSS (mg/L)		179
Oil and Grease (mg/L)		ND
Nitrate-Nitrite (mg/L)		0.115
Ammonia Nitrogen (mg/L)		ND
Sulphate (mg/L)		21.6
Total Hardness (mg/L)		123
Total Alkalinity (mg/L)		70
Total Phenols (mg/L)		ND
TOC (mg/L)		46
Fecal Coliforms		NA
(CFU/100mL)		
Aluminum (mg/L)		6.74
Antimony (mg/L)	0.5	0.00298
Arsenic (mg/L)	0.0125	0.0131
Cadmium (mg/L)	0.12	0.00008
Calcium (mg/L)		33.3
Chromium (mg/L)		0.0122
Copper (mg/L)	0.002	0.0236

Iron (mg/L)		11.5
Lead (mg/L)	0.002	12.2
Magnesium (mg/L)		9.76
Mercury (mg/L)	0.00016	0.0000339
Nickle (mg/L)	0.0083	0.0292
Potassium (mg/L)		2.96
Sodium (mg/L)		8.37
Zinc (mg/L)	0.01	0.0616
BOD5 (mg/L)		NA
Chloride (mg/L)		NA
Benzene (ug/L)	110	NA
Ethylbenzene (ug/L)	25	NA
Toluene (ug/L)	215	NA
Xylenes (ug/L)		NA
F1 (ug/L)		NA
F2 (ug/L)		NA
F3 (ug/L)		NA
F4 (ug/L)		NA
Acenaphthene (ug/L)		NA
Acenaphthylene (ug/L)		NA
Acridine (ug/L)		NA
Benzo(a)anthracene (ug/L)		NA
Benzo(o)pyrene (ug/L)		NA
Benzo(b)fluoranthere (ug/L)		NA
Benzo(g,h,i)perylene (ug/L)		NA
Benzo(k)fluoranthere (ug/L)		NA
Chrysene (ug/L)		NA
Dibenzo(ah)anthracene (ug/L)		NA
Fluoranthene (ug/L)		NA
Fluorene (ug/L)		NA
Indeno(1,2,3-cd)pyrene		NA
(ug/L)		
1+2-Methylnapthalenes		NA
(ug/L)		NT A
1-Methylnapthalene (ug/L)		NA
2-Methylnapthalene (ug/L)	1.4	NA
Napthalene (ug/L)	1.4	NA
Phenanthrene (ug/L)		NA
Pyrene (ug/L)		NA
Quinoline (ug/L)		NA

- TSS exceeded the Licence parameters of 70mg/L. DND will conduct a background sampling program of other small tributaries away from DND activities to ascertain if the 70mg/L set criteria is achievable in natural tributaries in the Alert area.
- Arsenic, Lead, Copper, Nickle and Zinc exceedances are likely attributable to atmospheric deposition. DND will conduct a background sampling program away from DND activities to link correlations in the summer of 2021

August

The Department of National Defence was not successful in collecting samples at Monitoring Program Station ALT-4, 5, 6 or 7, during the period of runoff in August 2020 due to logistical constrains associated with COVID-19.

September

The Department of National Defence was not successful in collecting samples at Monitoring Program Station ALT-4, 5, 6 or 7, during the period of runoff in September 2020 due to logistical constrains associated with COVID-19.

Appendix D

Monitoring Program Stations No. ALT-8-9-10-11

Year: 2020

Description: Discharge from Tank Farm Secondary Containments ALT-8-9-10 &

Landfarm Facility ALT-10-11.

Results:

The Department of National Defence (DND) intended to discharge water from the Fuel Tank Farm Secondary Containments at ALT-8-9-10 in July 2020. At least 10 days notice was provided to the Inspector and Nunavut Water Board, the email chain is attached below.

Water samples from within the secondary containments of ALT-8-8.1-9-10 were collected on 20 July 2020 and analyzed; analytical results are attached in Appendix E.

Two samples were taken at ALT-8 (sample identifications: ALT-8 and ALT-8.1) to better represent the freshet quality due to the large size of the Secondary Containment facility.

In July 2020, analytical results (Appendix E) of the berm water results at the Lower Airfield Tank Farm (ALT-8, -8.1), Upper Tank Farm (ALT-9), and the Day Tank (ALT-10) are compliant to the Effluent Quality Limits of the Alert Water Licence, as per Part E, Item 12 and 13.

DND had no intentions to discharge any water from Land Farm Treatment Facilities at ALT-10 and ALT-11.

Notes (extra spaces removed):

----- Original message -----

From: "Monteith, Joseph (AADNC/AANDC)" < joseph.monteith@canada.ca>

Date: 2020-08-06 2:47 p.m. (GMT-05:00)

To: "Koutroulides NG@CFB Trenton WENV@Trenton"

<NATHAN.KOUTROULIDES@forces.gc.ca>

Subject: RE: 8AC-ALT1929 - CFS Alert - Berm Secondary Containment Water

Discharge Approval Request ALT 8.1 re-sample

Hello,

Thank you for the follow up. You may proceed to decant. Please review the Operations and Maintenance Manual in regards to decanting berm water. I've reviewed the test results, and they are within acceptable effluent quality limits.

Regards,

1-pl A. J. D.

Joseph Monteith
Water Resources Officer
Qikiqtani and High Arctic Region
Crown-Indigenous Relations
And Northern Affairs Canada
P.O. Box 2200
Iqaluit, NU
X0A 0H0

Ph: 867 975-4289 Cell: 867 975-1787 Fax: 867 979-6445

Email: joseph.monteith@canada.ca

Crown-Indigenous Relations and Northern Affairs Canada Relations Couronne-Autochtones et Affaires du Nord Canada

This e-mail and any attachments may contain confidential and privileged information. If you are not the intended recipient, please notify the sender immediately by return e-mail, delete this e-mail and destroy any copies. Any dissemination or use of this information by a person other than the intended recipient is unauthorized and may be illegal.

From: NATHAN.KOUTROULIDES@forces.gc.ca [mailto:NATHAN.KOUTROULIDES@forces.gc.ca]

Sent: Thursday, August 06, 2020 1:06 PM

To: Mesher, Jonathan (AADNC/AANDC); Monteith, Joseph (AADNC/AANDC)

Cc: Allain, Erik (AADNC/AANDC); Andrew.Tam@forces.gc.ca

Subject: 8AC-ALT1929 - CFS Alert - Berm Secondary Containment Water Discharge Approval

Request ALT 8.1 re-sample

Hello Jonathan and Joseph;

Further to the email sent on 20 July, 2020 DND has resampled the Lower Tank Farm (ALT-8.1 White Tanks) affected berm water which previously came back non-compliant to the Effluent Quality Limits of the Alert Water Licence.

Please see attached analytical results. Lower Tank Farm (ALT-8.1 White Tanks) has since been found to be compliant to the Effluent Quality Limits of the Alert Water Licence (Phenols are 15.1 ug/L (NWB limit is 20 ug/L)), as per Part E, Item 12. Note: Samples were not gathered by 8 WEnv due to the current flight restrictions from COVID-19. Samples were gathered on site by staff currently on station.

As per the condition of Part E, Item 13, I am providing DND's intent to discharge the effluents from the ALT 8.1 fuel tank farms within 10 days; however, to help expedite the process and given Alert's short outdoor summer season, may I please request your approval to discharge the effluents from these two facilities as soon as possible?

I will also issue DND direction the CFS Alert staff responsible for the water discharges to ensure that no ruts in the tundra are created and to ensure that sediment erosion protections are taken as per the Alert Water Management plan.

Thank you for your assistance.

Regards,

Nathan Koutroulides, B.Sc, CD, PMP. 8 Wing Deputy Environment Officer, Environmental Management Department of National Defence / Government of Canada Nathan.Koutroulides@forces.gc.ca / Tel: 613-392-2811 Ext. 4821

Adjoint Officier de l'environnement de la 8ième escadre, Gestion d'environnement Ministère de la Défense nationale / Gouvernement du Canada Nathan.Koutroulides@forces.gc.ca / Tél: 613-392-2811 Ext. 4821

Appendix E

Analytical Results for ALT-2-3-4-5-6-7-8-9-10-11

Year: 2020

Description: Analytical Results for June/July 2020.

Defence Construction Canada ATTN: CAMERON CHADWICK 8 WING/CFB TRENTON ASTRA On KOK 3WD Date Received: 07-JUL-20

Report Date: 17-JUL-20 13:06 (MT)

Version: FINAL

Client Phone: 613-392-2811

Certificate of Analysis

Lab Work Order #: L2470192 Project P.O. #: NOT SUBMITTED

Job Reference: C of C Numbers: Legal Site Desc:

Nellie Gudzak Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 190 Colonnade Road, Unit 7, Ottawa, ON KZE 7J5 Canada | Phone: +1 613 225 8279 | Fax: +1 613 225 2801
ALS CANADA LTD | Part of the ALS Group | An ALS Limited Company

Environmental 🧎

www.alsglobal.com

NIGHT SOLUTIONS RIGHT PARTIES

×		

×	

x		

×		

×		

×		

×		

×		

×		

×		

×		

×		

×		

×	
<u> </u>	

×		

L2470192 CONTD.... PAGE 6 of 6 Version: FINAL

Reference Information

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

SOLIDS-TSS-WT Water Suspended solids APHA 2540 D-Gravimetric

A well-mixed sample is filtered through a weighed standard glass fibre filter and the residue retained is dried in an oven at 104–1 IC for a minimum of

four hours or until a constant weight is achieved.

TOC-WT Water Total Organic Carbon APHA 5310B

Sample is injected into a heated reaction chamber which is packed with an oxidative catalyst. The water is vaporized and the organic cabon is oxidized to carbon dioxide. The carbon dioxide is transported in a carrier gas and is measured by a non-dispersive infrared detector.

XYLENES-SUM-CALC- Water Sum of Xylene Isomer CALCULATION

T Concentration

Total xylenes represents the sum of o-xylene and m&p-xylene.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

 Laboratory Definition Code
 Laboratory Location

 WT
 ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwt - milligrams per kilogram based on lipid weight of sample mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L2470192 Report Date: 17-JUL-20 Page 1 of 10

Client: Defence Construction Canada

8 WING/CFB TRENTON ASTRA On K0K 3WD

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-WT	Water							
Batch R5152182	2							
WG3361350-4 DUP Alkalinity, Total (as Ca	CO3)	WG3361350-3 360	357		mg/L	0.9	20	13-JUL-20
•	000)	000	007		mg/L	0.9	20	13-30L-20
WG3361350-2 LCS Alkalinity, Total (as Ca	CO3)		99.6		%		85-115	13-JUL-20
WG3361350-1 MB Alkalinity, Total (as Ca	CO3)		<10		mg/L		10	13-JUL-20
BTX-511-HS-WT	Water							
Batch R5145832	2							
WG3356798-4 DUP Benzene		WG3356798-3 <0.50	<0.50	RPD-NA	ug/L	N/A	30	08-JUL-20
Ethylbenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	08-JUL-20
m+p-Xylenes		<0.40	<0.40	RPD-NA	ug/L	N/A	30	08-JUL-20
o-Xylene		<0.30	<0.30	RPD-NA	ug/L	N/A	30	08-JUL-20
Toluene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	08-JUL-20
WG3356798-1 LCS Benzene			102.1		%		70-130	08-JUL-20
Ethylbenzene			93.4		%		70-130	08-JUL-20
m+p-Xylenes			98.2		%		70-130	08-JUL-20
o-Xylene			97.7		%		70-130	08-JUL-20
Toluene			95.5		%		70-130	08-JUL-20
WG3356798-2 MB Benzene			<0.50		ug/L		0.5	08-JUL-20
Ethylbenzene			<0.50		ug/L		0.5	08-JUL-20
m+p-Xylenes			<0.40		ug/L		0.4	08-JUL-20
o-Xylene			< 0.30		ug/L		0.3	08-JUL-20
Toluene			<0.50		ug/L		0.5	08-JUL-20
Surrogate: 1,4-Difluoro	benzene		105.1		%		70-130	08-JUL-20
Surrogate: 4-Bromoflu	orobenzene		105.3		%		70-130	08-JUL-20
WG3356798-5 MS		WG3356798-3						
Benzene			104.3		%		50-140	08-JUL-20
Ethylbenzene			91.1		%		50-140	08-JUL-20
m+p-Xylenes			97.2		%		50-140	08-JUL-20
o-Xylene			95.5		%		50-140	08-JUL-20
Toluene			94.9		%		50-140	08-JUL-20
EC-WT	Water							

Workorder: L2470192 Report D

Report Date: 17-JUL-20

Page 2 of 10

Client: Defence Construction Canada 8 WING/CFB TRENTON ASTRA On K0K 3WD
Contact: CAMERON CHADWICK

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
EC-WT		Water							
Batch R5	145782								
WG3357207-4 Conductivity	DUP		WG3357207-3 1830	1810		umhos/cm	0.9	10	07-JUL-20
WG3357207-2 Conductivity	LCS			102.6		%		90-110	07-JUL-20
WG3357207-1 Conductivity	МВ			<3.0		umhos/cm		3	07-JUL-20
F1-HS-511-WT		Water							
Batch R5	145832								
WG3356798-4 F1 (C6-C10)	DUP		WG3356798-3 <25	<25	RPD-NA	ug/L	N/A	30	08-JUL-20
WG3356798-1 F1 (C6-C10)	LCS			106.9		%		80-120	08-JUL-20
WG3356798-2 F1 (C6-C10)	МВ			<25		ug/L		25	08-JUL-20
Surrogate: 3,4-l	Dichlorot	oluene		110.3		%		60-140	08-JUL-20
WG3356798-5 F1 (C6-C10)	MS		WG3356798-3	102.4		%		60-140	08-JUL-20
F2-F4-511-WT		Water							
Batch R5	146714								
WG3357758-2 F2 (C10-C16)	LCS			102.9		%		70-130	09-JUL-20
F3 (C16-C34)				102.8		%		70-130	09-JUL-20
F4 (C34-C50)				107.6		%		70-130	09-JUL-20
WG3357758-1 F2 (C10-C16)	МВ			<100		ug/L		100	09-JUL-20
F3 (C16-C34)				<250		ug/L		250	09-JUL-20
F4 (C34-C50)				<250		ug/L		250	09-JUL-20
Surrogate: 2-Br	omoben	zotrifluoride		83.1		%		60-140	09-JUL-20
HG-T-CVAA-WT		Water							
Batch R5	146097								
WG3357881-4 Mercury (Hg)-Te	DUP otal		WG3357881-3 <0.0000050	<0.0000050	RPD-NA	mg/L	N/A	20	08-JUL-20
WG3357881-2 Mercury (Hg)-Te	LCS otal			102.0		%		80-120	08-JUL-20
WG3357881-1 Mercury (Hg)-Te	MB otal			<0.0000050		mg/L		0.000005	08-JUL-20
WG3357881-6	MS		WG3357881-5						

Workorder: L2470192 Report Date: 17-JUL-20 Page 3 of 10

Client: Defence Construction Canada

8 WING/CFB TRENTON ASTRA On K0K 3WD

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
HG-T-CVAA-WT	Water							
Batch R5146097								
WG3357881-6 MS Mercury (Hg)-Total		WG3357881-5	120.1		%		70-130	08-JUL-20
MET-T-CCMS-WT	Water							
Batch R5147168								
WG3357621-4 DUP Aluminum (Al)-Total		WG3357621-3 0.0073	0.0064		mg/L	13	20	09-JUL-20
Antimony (Sb)-Total		0.00172	0.00174		mg/L	1.3	20	09-JUL-20
Arsenic (As)-Total		0.00337	0.00345		mg/L	2.2	20	09-JUL-20
Cadmium (Cd)-Total		0.0000141	0.0000122		mg/L	14	20	09-JUL-20
Calcium (Ca)-Total		133	135		mg/L	0.9	20	09-JUL-20
Chromium (Cr)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	09-JUL-20
Copper (Cu)-Total		0.00320	0.00325		mg/L	1.4	20	09-JUL-20
Iron (Fe)-Total		0.026	0.025		mg/L	5.6	20	09-JUL-20
Lead (Pb)-Total		<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	09-JUL-20
Magnesium (Mg)-Total		16.2	16.1		mg/L	0.6	20	09-JUL-20
Nickel (Ni)-Total		0.00604	0.00600		mg/L	0.7	20	09-JUL-20
Potassium (K)-Total		26.8	26.8		mg/L	0.2	20	09-JUL-20
Sodium (Na)-Total		61.2	60.9		mg/L	0.5	20	09-JUL-20
Zinc (Zn)-Total		<0.0030	<0.0030	RPD-NA	mg/L	N/A	20	09-JUL-20
WG3357621-2 LCS								
Aluminum (AI)-Total			101.8		%		80-120	09-JUL-20
Antimony (Sb)-Total			102.7		%		80-120	09-JUL-20
Arsenic (As)-Total			99.3		%		80-120	09-JUL-20
Cadmium (Cd)-Total			98.3		%		80-120	09-JUL-20
Calcium (Ca)-Total			95.4		%		80-120	09-JUL-20
Chromium (Cr)-Total			100.3		%		80-120	09-JUL-20
Copper (Cu)-Total			98.6		%		80-120	09-JUL-20
Iron (Fe)-Total			100.5		%		80-120	09-JUL-20
Lead (Pb)-Total			96.5		%		80-120	09-JUL-20
Magnesium (Mg)-Total			105.0		%		80-120	09-JUL-20
Nickel (Ni)-Total			98.9		%		80-120	09-JUL-20
Potassium (K)-Total			97.4		%		80-120	09-JUL-20
Sodium (Na)-Total Zinc (Zn)-Total			100.8 97.5		%		80-120	09-JUL-20
Zinc (Zin)-10tai			91.5		/0		80-120	09-JUL-20

Workorder: L2470192 Report Date: 17-JUL-20 Page 4 of 10

Client: Defence Construction Canada 8 WING/CFB TRENTON ASTRA On K0K 3WD

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-WT	Water							
Batch R5147168 WG3357621-1 MB								
Aluminum (Al)-Total			<0.0050		mg/L		0.005	09-JUL-20
Antimony (Sb)-Total			<0.00010		mg/L		0.0001	09-JUL-20
Arsenic (As)-Total			<0.00010		mg/L		0.0001	09-JUL-20
Cadmium (Cd)-Total			<0.000005	С	mg/L		0.000005	09-JUL-20
Calcium (Ca)-Total			<0.050		mg/L		0.05	09-JUL-20
Chromium (Cr)-Total			<0.00050		mg/L		0.0005	09-JUL-20
Copper (Cu)-Total			<0.00050		mg/L		0.0005	09-JUL-20
Iron (Fe)-Total			<0.010		mg/L		0.01	09-JUL-20
Lead (Pb)-Total			<0.000050		mg/L		0.00005	09-JUL-20
Magnesium (Mg)-Total			<0.0050		mg/L		0.005	09-JUL-20
Nickel (Ni)-Total			<0.00050		mg/L		0.0005	09-JUL-20
Potassium (K)-Total			<0.050		mg/L		0.05	09-JUL-20
Sodium (Na)-Total			<0.050		mg/L		0.05	09-JUL-20
Zinc (Zn)-Total			<0.0030		mg/L		0.003	09-JUL-20
WG3357621-5 MS Aluminum (Al)-Total		WG3357621-6	98.8		%		70-130	09-JUL-20
Antimony (Sb)-Total			102.1		%		70-130	09-JUL-20
Arsenic (As)-Total			100.2		%		70-130	09-JUL-20
Cadmium (Cd)-Total			95.0		%		70-130	09-JUL-20
Calcium (Ca)-Total			N/A	MS-B	%			09-JUL-20
Chromium (Cr)-Total			100.1		%		70-130	09-JUL-20
Copper (Cu)-Total			N/A	MS-B	%		-	09-JUL-20
Iron (Fe)-Total			100.7		%		70-130	09-JUL-20
Lead (Pb)-Total			89.3		%		70-130	09-JUL-20
Magnesium (Mg)-Total			N/A	MS-B	%		-1	09-JUL-20
Nickel (Ni)-Total			92.9		%		70-130	09-JUL-20
Potassium (K)-Total			N/A	MS-B	%		-	09-JUL-20
Sodium (Na)-Total			N/A	MS-B	%		-1	09-JUL-20
Zinc (Zn)-Total			86.8		%		70-130	09-JUL-20
NH3-F-WT	Water							
Batch R5146185								
WG3357235-3 DUP Ammonia, Total (as N)		WG3357235-5 0.089	0.089		mg/L	0.2	20	08-JUL-20
WG3357235-2 LCS								

Workorder: L2470192

Report Date: 17-JUL-20

Page 5 of 10

Client: Defence Construction Canada

8 WING/CFB TRENTON ASTRA On K0K 3WD

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NH3-F-WT Batch R5146185	Water							
WG3357235-2 LCS Ammonia, Total (as N)			101.5		%		85-115	08-JUL-20
WG3357235-1 MB Ammonia, Total (as N)			<0.010		mg/L		0.01	08-JUL-20
WG3357235-4 MS Ammonia, Total (as N)		WG3357235-5	104.5		%		75-125	08-JUL-20
NO2-IC-WT	Water							
Batch R5146287								
WG3357537-14 DUP Nitrite (as N)		L2468994-2 2.68	2.68		mg/L	0.0	20	07-JUL-20
WG3357537-12 LCS Nitrite (as N)			99.7		%		90-110	07-JUL-20
WG3357537-11 MB Nitrite (as N)			<0.010		mg/L		0.01	07-JUL-20
WG3357537-15 MS Nitrite (as N)		L2468994-2	N/A	MS-B	%		-	07-JUL-20
NO3-IC-WT	Water							
Batch R5146287 WG3357537-14 DUP Nitrate (as N)		L2468994-2 2.01	2.01		mg/L	0.0	20	07-JUL-20
WG3357537-12 LCS Nitrate (as N)			100.3		%		90-110	07-JUL-20
WG3357537-11 MB Nitrate (as N)			<0.020		mg/L		0.02	07-JUL-20
WG3357537-15 MS Nitrate (as N)		L2468994-2	97.7		%		75-125	07-JUL-20
OGG-TOT-WT	Water						, , , , ,	
Batch R5150776								
WG3360434-2 LCS Oil and Grease, Total			95.9		%		70-130	11-JUL-20
WG3360434-1 MB Oil and Grease, Total			<5.0		mg/L		5	11-JUL-20
PAH-CCME-WT	Water							
Batch R5147508								
WG3357758-2 LCS								
1-Methylnaphthalene			99.2		%		50-140	10-JUL-20
2-Methylnaphthalene			96.1		%		50-140	10-JUL-20

Workorder: L2470192 Report Date: 17-JUL-20 Page 6 of 10

Client: Defence Construction Canada 8 WING/CFB TRENTON ASTRA On K0K 3WD

PAH-CCME-WT	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
WG3367758-2 LCS Acenaphthylene 104.0 % 50.140 10.JUL-20 Acenaphthylene 111.4 % 50.140 10.JUL-20 Acridine 103.0 % 60.130 10.JUL-20 Anthracene 114.6 % 50.140 10.JUL-20 Benzo(a)anthracene 115.3 % 50.140 10.JUL-20 Benzo(b)fluoranthene 119.2 % 60.130 10.JUL-20 Benzo(b)fluoranthene 114.5 % 50.140 10.JUL-20 Benzo(k)fluoranthene 122.6 % 50.140 10.JUL-20 Benzo(k)fluoranthene 123.2 % 50.140 10.JUL-20 Benzo(k)fluoranthene 123.4 % 50.140 10.JUL-20 Chrysene 123.4 % 50.140 10.JUL-20 Chrysene 123.4 % 50.140 10.JUL-20 Dibenzo(ah)anthracene 115.4 % 50.140 10.JUL-20 Fluoranthene 120.4 % 50.140 10.	PAH-CCME-WT	Water							
Acenaphthene 104.0 % 50-140 10-JUL-20 Acenaphthylene 111.4 % 50-140 10-JUL-20 Achdine 103.0 % 60-130 10-JUL-20 Anthracene 114.6 % 50-140 10-JUL-20 Benzo(a)apyrene 115.3 % 60-130 10-JUL-20 Benzo(b)fluoranthene 114.5 % 60-140 10-JUL-20 Benzo(g,h.i)perylene 121.6 % 50-140 10-JUL-20 Benzo(k)fluoranthene 123.2 % 50-140 10-JUL-20 Chysene 123.4 % 50-140 10-JUL-20 Chysene 123.4 % 50-140 10-JUL-20 Dibenzo(ah)antrracene 115.4 % 50-140 10-JUL-20 Chysene 123.4 % 50-140 10-JUL-20 Dibenzo(ah)antrracene 115.4 % 50-140 10-JUL-20 Fluoranthene 120.4 % 50-140 10-JUL-20 Indenor(1,	Batch R5147508								
Acenaphthylene									
Acridine 103.0 % 60-130 10-JUL-20 Anthracene 114.6 % 50-140 10-JUL-20 Benzo(a)anthracene 115.3 % 50-140 10-JUL-20 Benzo(a)pyrene 119.2 % 60-130 10-JUL-20 Benzo(a)pyrene 119.2 % 50-140 10-JUL-20 Benzo(b)fluoranthene 114.5 % 50-140 10-JUL-20 Benzo(g,h,i)perylene 121.6 % 50-140 10-JUL-20 Benzo(g,h,i)perylene 123.2 % 50-140 10-JUL-20 Benzo(k)fluoranthene 123.2 % 50-140 10-JUL-20 Chrysene 123.4 % 50-140 10-JUL-20 Chrysene 123.4 % 50-140 10-JUL-20 Dibenzo(a)hanthracene 115.4 % 50-140 10-JUL-20 Fluoranthene 120.4 % 50-140 10-JUL-20 Fluoranthene 120.4 % 50-140 10-JUL-20 Indeno(1,2,3-cd)pyrene 118.2 % 50-140 10-JUL-20 Indeno(1,2,3-cd)pyrene 118.2 % 50-140 10-JUL-20 Pyrene 120.4 % 50-140 10-JUL-20 Pyrene 120.4 % 50-140 10-JUL-20 Pyrene 121.5 % 50-150 10-JUL-20 Pyrene 121.5 Pyr	100000000000000000000000000000000000000								10-JUL-20
Anthracene 114.6 % 50.140 10.JUL.20 Benzo(a)anthracene 115.3 % 50.140 10.JUL.20 Benzo(a)pyrene 119.2 % 60.130 10.JUL.20 Benzo(b)fluoranthene 114.5 % 50.140 10.JUL.20 Benzo(b)fluoranthene 114.5 % 50.140 10.JUL.20 Benzo(b)fluoranthene 121.6 % 50.140 10.JUL.20 Benzo(k)fluoranthene 122.2 % 50.140 10.JUL.20 Benzo(k)fluoranthene 123.2 % 50.140 10.JUL.20 Chrysene 123.4 % 50.140 10.JUL.20 Chrysene 123.4 % 50.140 10.JUL.20 Dibenzo(ah)anthracene 115.4 % 50.140 10.JUL.20 Fluoranthene 120.4 % 50.140 10.JUL.20 Fluoranthene 120.4 % 50.140 10.JUL.20 Indeno(1,2,3-cd)pyrene 118.2 % 50.140 10.JUL.20 Indeno(1,2,3-cd)pyrene 118.2 % 50.140 10.JUL.20 Rhaphthalene 102.3 % 50.130 10.JUL.20 Pyrene 121.5 % 50.140 10.JUL.20 10.JUL.20 Pyrene 121.5 % 50.140 10.JUL.20 10.JUL.20 Pyrene 121.5 % 50.140 10.JUL.20 1	en marin 1986							50-140	10-JUL-20
Benzo(a)anthracene 115.3 % 50.140 10.JUL.20 Benzo(a)pyrene 119.2 % 60.130 10.JUL.20 Benzo(b)fluoranthene 114.5 % 50.140 10.JUL.20 Benzo(g), h) perylene 121.6 % 50.140 10.JUL.20 Benzo(g), h) perylene 123.2 % 50.140 10.JUL.20 Chrysene 123.4 % 50.140 10.JUL.20 Dibenzo(ah)anthracene 115.4 % 50.140 10.JUL.20 Fluoranthene 120.4 % 50.140 10.JUL.20 Indeno(1,2,3-cd)pyrene 118.2 % 50.140 10.JUL.20 Naphthalene 102.3 % 50.140 10.JUL.20 Naphthalene 102.3 % 50.140 10.JUL.20 Phenanthrene 120.4 % 50.140 10.JUL.20 Quinoline 109.4 % 50.150 10.JUL.20 WG3357758-1 MB 1.Methylnaphthalene <0.020								60-130	10-JUL-20
Benzo(a)pyrene 119.2	Anthracene			114.6				50-140	10-JUL-20
Benzo(b)fluoranthene	Benzo(a)anthracene			115.3				50-140	10-JUL-20
Benzo(g,h,i)perylene 121.6 % 50-140 10-JUL-20 Benzo(k)fluoranthene 123.2 % 50-140 10-JUL-20 Chrysene 123.4 % 50-140 10-JUL-20 Dibenzo(ah)anthracene 115.4 % 50-140 10-JUL-20 Fluoranthene 120.4 % 50-140 10-JUL-20 Fluoranthene 120.4 % 50-140 10-JUL-20 Indeno(1,2,3-cd)pyrene 118.2 % 50-140 10-JUL-20 Naphthalene 102.3 % 50-130 10-JUL-20 Phenanthrene 120.4 % 50-140 10-JUL-20 Pyrene 121.5 % 50-140 10-JUL-20 Quinolline 109.4 % 50-150 10-JUL-20 WG3357788-1 MB 1-Methylinaphthalene <0.020	Benzo(a)pyrene			119.2		%		60-130	10-JUL-20
Benzo(k)fluoranthene 123.2 % 50-140 10-JUL-20 Chrysene 123.4 % 50-140 10-JUL-20 Dibenzo(ah)anthracene 115.4 % 50-140 10-JUL-20 Fluoranthene 120.4 % 50-140 10-JUL-20 Fluorene 113.1 % 50-140 10-JUL-20 Indenof (1,2,3-cd)pyrene 118.2 % 50-140 10-JUL-20 Naphthalene 102.3 % 50-130 10-JUL-20 Phenanthrene 120.4 % 50-140 10-JUL-20 Pyrene 121.5 % 50-140 10-JUL-20 Pyrene 121.5 % 50-150 10-JUL-20 WG3357758-1 MB 1 10-JUL-20 10-JUL-20 10-JUL-20 WG44thylnaphthalene <0.020	Benzo(b)fluoranthene			114.5		%		50-140	10-JUL-20
Chrysene 123.4 % 50-140 10-JUL-20 Dibenzo(ah)anthracene 115.4 % 50-140 10-JUL-20 Fluoranthene 120.4 % 50-140 10-JUL-20 Fluorene 113.1 % 50-140 10-JUL-20 Indeno(1,2,3-cd)pyrene 118.2 % 50-140 10-JUL-20 Naphthalene 102.3 % 50-130 10-JUL-20 Phenanthrene 120.4 % 50-140 10-JUL-20 Pyrene 121.5 % 50-140 10-JUL-20 Quinoline 109.4 % 50-150 10-JUL-20 WG3357758-1 MB 1-Methylnaphthalene <0.020	Benzo(g,h,i)perylene			121.6		%		50-140	10-JUL-20
Dibenzo(ah)anthracene	Benzo(k)fluoranthene			123.2		%		50-140	10-JUL-20
Fluoranthene 120.4 % 50.140 10-JUL-20 Fluorene 113.1 % 50.140 10-JUL-20 Indeno(1,2,3-cd)pyrene 118.2 % 50.140 10-JUL-20 Naphthalene 102.3 % 50.130 10-JUL-20 Phenanthrene 120.4 % 50.140 10-JUL-20 Phenanthrene 121.5 % 50.140 10-JUL-20 Pyrene 121.5 % 50.140 10-JUL-20 Quinolline 109.4 % 50.150 10-JUL-20 WG3357758-1 MB 1-Methylnaphthalene <0.020 ug/L 0.02 10-JUL-20 2-Methylnaphthalene <0.020 ug/L 0.02 10-JUL-20 Acenaphthene <0.020 ug/L 0.02 10-JUL-20 Acenaphthylene <0.020 ug/L 0.02 10-JUL-20 Acenaphthylene <0.020 ug/L 0.02 10-JUL-20 Aridine <4.0 ug/L 0.02 10-JUL-20 Anthracene <0.020 ug/L 0.02 10-JUL-20 Benzo(a)anthracene <0.020 ug/L 0.02 10-JUL-20 Benzo(b)fluoranthene <0.020 ug/L 0.02 10-JUL-20 Benzo(k)fluoranthene <0.020 ug/L 0.02 10-JUL-20 Dibenzo(a)anthracene <0.020 ug/L 0.02 10-JUL-20	Chrysene			123.4		%		50-140	10-JUL-20
Fluorene 113.1 % 50-140 10-JUL-20 Indeno(1,2,3-cd)pyrene 118.2 % 50-140 10-JUL-20 Naphthalene 102.3 % 50-130 10-JUL-20 Phenanthrene 120.4 % 50-140 10-JUL-20 Phenanthrene 120.4 % 50-140 10-JUL-20 Pyrene 121.5 % 50-140 10-JUL-20 Quinoline 109.4 % 50-150 10-JUL-20 Quinoline 109.4 Quinoline 10	Dibenzo(ah)anthracene			115.4		%		50-140	10-JUL-20
Indeno(1,2,3-cd)pyrene	Fluoranthene			120.4		%		50-140	10-JUL-20
Naphthalene 102.3 % 50-130 10-JUL-20 Phenanthrene 120.4 % 50-140 10-JUL-20 Pyrene 121.5 % 50-140 10-JUL-20 Quinoline 109.4 % 50-150 10-JUL-20 WG3357758-1 MB 1-Methylnaphthalene <0.020	Fluorene			113.1		%		50-140	10-JUL-20
Phenanthrene 120.4 % 50-140 10-JUL-20 Pyrene 121.5 % 50-140 10-JUL-20 Quinoline 109.4 % 50-150 10-JUL-20 WG3357758-1 MB 1-Methylnaphthalene <0.020	Indeno(1,2,3-cd)pyrene			118.2		%		50-140	10-JUL-20
Pyrene 121.5 % 50-140 10-JUL-20 Quinoline 109.4 % 50-150 10-JUL-20 WG3357758-1 MB 1-Methylnaphthalene <0.020 ug/L 0.02 10-JUL-20 2-Methylnaphthalene <0.020 ug/L 0.02 10-JUL-20 Acenaphthylene <0.020 ug/L 0.02 10-JUL-20 Acenaphthylene <0.020 ug/L 0.02 10-JUL-20 Acridine <4.0 ug/L 0.02 10-JUL-20 Arridine <4.0 ug/L 0.02 10-JUL-20 Anthracene <0.020 ug/L 0.02 10-JUL-20 Benzo(a)anthracene <0.020 ug/L 0.02 10-JUL-20 Benzo(b)fluoranthene <0.020 ug/L 0.02 10-JUL-20 Benzo(g,h,l)perylene <0.020 ug/L 0.02 10-JUL-20 Benzo(k)fluoranthene <0.020 ug/L 0.02 10-JUL-20 Benzo(k)fluoranthene <0.020 ug/L 0.02 10-JUL-20 Benzo(k)fluoranthene <0.020 ug/L 0.02 10-JUL-20 Chrysene <0.020 ug/L 0.02 10-JUL-20 Dibenzo(ah)anthracene <0.020 ug/L 0.02 10-JUL-20 Fluoranthene <0.020 ug/L 0.02 10-JUL-20 Fluoranthene <0.020 ug/L 0.02 10-JUL-20	Naphthalene			102.3		%		50-130	10-JUL-20
Quinoline 109.4 % 50-150 10-JUL-20 WG3357758-1 MB Ug/L 0.02 10-JUL-20 2-Methylnaphthalene <0.020	Phenanthrene			120.4		%		50-140	10-JUL-20
WG3357758-1 MB 1-Methylnaphthalene <0.020	Pyrene			121.5		%		50-140	10-JUL-20
1-Methylnaphthalene <0.020	Quinoline			109.4		%		50-150	10-JUL-20
2-Methylnaphthalene	WG3357758-1 MB								
Acenaphthene <0.020	1-Methylnaphthalene			<0.020		ug/L			10-JUL-20
Acenaphthylene <0.020 ug/L 0.02 10-JUL-20 Acridine <4.0	2-Methylnaphthalene			<0.020		ug/L		0.02	10-JUL-20
Acridine <4.0 ug/L 4 10-JUL-20 Anthracene <0.020	Acenaphthene			<0.020		ug/L		0.02	10-JUL-20
Anthracene < 0.020 ug/L 0.02 10-JUL-20 Benzo(a)anthracene < 0.020 ug/L 0.02 10-JUL-20 Benzo(a)pyrene < 0.0050 ug/L 0.005 10-JUL-20 Benzo(b)fluoranthene < 0.020 ug/L 0.02 10-JUL-20 Benzo(g,h,i)perylene < 0.020 ug/L 0.02 10-JUL-20 Benzo(k)fluoranthene < 0.020 ug/L 0.02 10-JUL-20 Chrysene < 0.020 ug/L 0.02 10-JUL-20 Chrysene < 0.020 ug/L 0.02 10-JUL-20 Dibenzo(ah)anthracene < 0.020 ug/L 0.02 10-JUL-20 Fluoranthene < 0.020 ug/L 0.02 10-JUL-20	Acenaphthylene			<0.020		ug/L		0.02	10-JUL-20
Benzo(a)anthracene < 0.020 ug/L 0.02 10-JUL-20 Benzo(a)pyrene < 0.0050	Acridine			<4.0		ug/L		4	10-JUL-20
Benzo(a)pyrene <0.0050 ug/L 0.005 10-JUL-20 Benzo(b)fluoranthene <0.020	Anthracene			<0.020		ug/L		0.02	10-JUL-20
Benzo(b)fluoranthene <0.020	Benzo(a)anthracene			<0.020		ug/L		0.02	10-JUL-20
Benzo(g,h,i)perylene <0.020	Benzo(a)pyrene			<0.0050		ug/L		0.005	10-JUL-20
Benzo(k)fluoranthene <0.020	Benzo(b)fluoranthene			<0.020		ug/L		0.02	10-JUL-20
Chrysene < 0.020 ug/L 0.02 10-JUL-20 Dibenzo(ah)anthracene < 0.020	Benzo(g,h,i)perylene			<0.020		ug/L		0.02	10-JUL-20
Dibenzo(ah)anthracene < 0.020 ug/L 0.02 10-JUL-20 Fluoranthene < 0.020	Benzo(k)fluoranthene			<0.020		ug/L		0.02	10-JUL-20
Fluoranthene <0.020 ug/L 0.02 10-JUL-20	Chrysene			<0.020		ug/L		0.02	10-JUL-20
10 002 20	Dibenzo(ah)anthracene			<0.020		ug/L		0.02	10-JUL-20
Fluorene <0.020 ug/L 0.02 10-JUL-20	Fluoranthene			<0.020		ug/L		0.02	10-JUL-20
	Fluorene			<0.020		ug/L		0.02	10-JUL-20

×		

Workorder: L2470192

Report Date: 17-JUL-20

Page 8 of 10

Client: Defence Construction Canada

8 WING/CFB TRENTON ASTRA On K0K 3WD

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SO4-IC-N-WT	Water							
Batch R5153924 WG3362285-5 MS		WG3362285-3	i.					
Sulfate (SO4)		., 55552255	101.8		%		75-125	14-JUL-20
SOLIDS-TSS-WT	Water							
Batch R5146068								
WG3357399-3 DUP Total Suspended Solids		L2468561-1 99.1	101		mg/L	1.6	20	08-JUL-20
WG3357399-2 LCS Total Suspended Solids			86.0		%		85-115	08-JUL-20
WG3357399-1 MB Total Suspended Solids			<2.0		mg/L		2	08-JUL-20
TOC-WT	Water							
Batch R5152564								
WG3358111-3 DUP		L2470947-24			Sitter.			
Total Organic Carbon		9.16	9.59		mg/L	4.6	20	14-JUL-20
WG3358111-2 LCS Total Organic Carbon			105.2		%		80-120	14-JUL-20
WG3358111-1 MB Total Organic Carbon			<0.50		mg/L		0.5	14-JUL-20
WG3358111-4 MS Total Organic Carbon		L2470947-24	109.6		%		70-130	14-JUL-20

Workorder: L2470192 Report Date: 17-JUL-20

Client: Defence Construction Canada Page 9 of 10

8 WING/CFB TRENTON ASTRA On K0K 3WD

Contact: CAMERON CHADWICK

Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP Duplicate
RPD Relative Percent Difference
N/A Not Available
LCS Laboratory Control Sample
SRM Standard Reference Material
MS Matrix Spike
MSD Matrix Spike Duplicate
ADE Average Desorption Efficiency
MB Method Blank
IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CCVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L2470192 Report Date: 17-JUL-20

Client: Defence Construction Canada

8 WING/CFB TRENTON
ASTRA On K0K 3WD
CAMERON CHADWICK

Page 10 of 10

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
рН							
	1	30-JUN-20 14:10	07-JUL-20 00:00	4	6	days	EHTR

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

Contact:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2470192 were received on 07-JUL-20 09:00.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Defence Construction Canada ATTN: CAMERON CHADWICK 8 WING/CFB TRENTON ASTRA On KOK 3WO Date Received: 07-JUL-20

Report Date: 17-JUL-20 13:12 (MT)

Version: FINAL

Client Phone: 613-392-2811

Certificate of Analysis

Lab Work Order #: L2470196
Project P.O. #: NOT SUBMITTED

Job Reference: C of C Numbers: Legal Site Desc:

Nellie Gudzak Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 190 Colonnade Road, Unit 7, Ottawa, ON K2E 7J5 Canada | Phone: +1 613 225 8279 | Fax: +1 613 225 2801 ALS CANADA LTD | Part of the ALS Group | An ALS Limited Company

Environmental 🔈

www.alsqlobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
.2470196-1 ALT-8 Sampled By: MCPL AJ MCLAUGHLAN on 30-JUN-20 Matrix: WATER	0 @ 14:25						
Hydrocarbons							
F1 (C6-C10)	<25		25	ug/L		08-JUL-20	R514583
F1-BTEX	<25		25	ug/L		10-JUL-20	
F2 (C10-C16)	<100		100	ug/L	08-JUL-20	09-JUL-20	R51467
F2-Naphth	<100		100	ug/L		10-JUL-20	
F3 (C16-C34)	<250		250	ug/L	08-JUL-20	09-JUL-20	R51467
F3-PAH	<250		250	ug/L		10-JUL-20	
F4 (C34-C50)	<250		250	ug/L	08-JUL-20	09-JUL-20	R51467
Total Hydrocarbons (C6-C50)	<370		370	ug/L		10-JUL-20	
Chrom, to baseline at nC50	YES				08-JUL-20	09-JUL-20	R51467
Surrogate: 2-Bromobenzotrifluoride	94.2		60-140	%	08-JUL-20	09-JUL-20	R51467
Surrogate: 3,4-Dichlorotoluene	97.9		60-140	%		08-JUL-20	R51458
Polycyclic Aromatic Hydrocarbons	07.0		00 140	,,,		00 002 20	1101400
Acenaphthene	<0.020		0.020	ug/L	08-JUL-20	10-JUL-20	R51475
Acenaphthylene	<0.020		0.020	ug/L	08-JUL-20	10-JUL-20	R51475
Acridine	<4.0		4.0	ug/L	08-JUL-20	10-JUL-20	R51475
Anthracene	<0.020		0.020	ug/L	08-JUL-20	10-JUL-20	R51475
Benzo(a)anthracene	<0.020		0.020	ug/L	08-JUL-20	10-JUL-20	R51475
Benzo(a)pyrene	<0.0050		0.0050	ug/L	08-JUL-20	10-JUL-20	R51475
Benzo(b)fluoranthene	<0.020		0.020	ug/L	08-JUL-20	10-JUL-20	R51475
Benzo(g,h,i)perylene	<0.020		0.020	ug/L	08-JUL-20	10-JUL-20	R51475
Benzo(k)fluoranthene	<0.020		0.020	ug/L	08-JUL-20	10-JUL-20	R51475
Chrysene	<0.020		0.020	ug/L	08-JUL-20	10-JUL-20	R51475
Dibenzo(ah)anthracene	<0.020		0.020	ug/L	08-JUL-20	10-JUL-20	R51475
Fluoranthene	<0.020		0.020	ug/L	08-JUL-20	10-JUL-20	R51475
Fluorene	<0.020		0.020	ug/L	08-JUL-20	10-JUL-20	R51475
Indeno(1,2,3-cd)pyrene	<0.020		0.020	ug/L	08-JUL-20	10-JUL-20	R51475
1+2-Methylnaphthalenes	<0.020		0.028	ug/L	00-00L-20	10-JUL-20	131473
1-Methylnaphthalene	<0.020		0.020	ug/L	08-JUL-20	10-JUL-20	R51475
2-Methylnaphthalene	<0.020		0.020	ug/L	08-JUL-20	10-JUL-20	R51475
Naphthalene	<0.050		0.050	ug/L	08-JUL-20	10-JUL-20	R51475
Phenanthrene	<0.030		0.030	ug/L	08-JUL-20	10-JUL-20	R51475
Pyrene	<0.020		0.020	ug/L ug/L	08-JUL-20	10-JUL-20	R51475
Quinoline	<0.020		0.020	ug/L	08-JUL-20	10-JUL-20	R51475
Surrogate: d10-Acenaphthene	101.4		60-140	wg/L	08-JUL-20	10-JUL-20	R51475
Surrogate: d9-Acridine (SS)	87.5		40-130	%	08-JUL-20	10-JUL-20	R51475
Surrogate: d3-Achdine (33)	91.2		60-140	%	08-JUL-20	10-JUL-20	R51475
Surrogate: d12-Onlysene Surrogate: d8-Naphthalene	91.2		60-140	%	08-JUL-20	10-JUL-20	R51475
Surrogate: do-Naphthalerie Surrogate: d10-Phenanthrene	102.5		60-140	%	08-JUL-20	10-JUL-20	R51475
B(a)P Total Potency Equivalent	<0.060		0.060		08-JUL-20	10-JUL-20	R51475
D(a)F Total Potency Equivalent	<0.000		0.060	ug/L	00-JUL-20	10-JUL-20	K314/5

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2470196-1 ALT-8 Sampled By: MCPL AJ MCLAUGHLAN on 30-JUN-20 Matrix: WATER	@ 14:25						
Physical Tests							
Conductivity	289		3.0	umhos/cm		07-JUL-20	R514578
Hardness (as CaCO3), from total Ca/Mg	95.6		0.50	mg/L		10-JUL-20	
рН	8.31	PEHR	0.10	pH units		07-JUL-20	R514578
Total Suspended Solids	2.6		2.0	mg/L	07-JUL-20	08-JUL-20	R514606
Anions and Nutrients							
Alkalinity, Total (as CaCO3)	109		10	mg/L		13-JUL-20	R515218
Ammonia, Total (as N)	0.020		0.010	mg/L		08-JUL-20	R514618
Nitrate and Nitrite as N	<0.022		0.022	mg/L		08-JUL-20	
Nitrate (as N)	<0.020	PEHT	0.020	mg/L		07-JUL-20	R514628
Nitrite (as N)	<0.010	PEHT	0.010	mg/L		07-JUL-20	R514628
Sulfate (SO4)	23.1		0.30	mg/L		14-JUL-20	R515392
Organic / Inorganic Carbon							
Total Organic Carbon	5.77		0.50	mg/L		14-JUL-20	R515256
Total Metals							
Aluminum (AI)-Total	0.0129		0.0050	mg/L	08-JUL-20	09-JUL-20	R514716
Antimony (Sb)-Total	0.00173		0.00010	mg/L	08-JUL-20	09-JUL-20	R514716
Arsenic (As)-Total	0.00377		0.00010	mg/L	08-JUL-20	09-JUL-20	R514716
Cadmium (Cd)-Total	<0.0000050		0.0000050	mg/L	08-JUL-20	09-JUL-20	R514716
Calcium (Ca)-Total	22.9		0.050	mg/L	08-JUL-20	09-JUL-20	R514716
Chromium (Cr)-Total	0.00126		0.00050	mg/L	08-JUL-20	09-JUL-20	R514716
Copper (Cu)-Total	0.00412		0.00050	mg/L	08-JUL-20	09-JUL-20	R514716
Iron (Fe)-Total	0.012		0.010	mg/L	08-JUL-20	09-JUL-20	R514716
Lead (Pb)-Total	0.167		0.050	ug/L	08-JUL-20	09-JUL-20	R514716
Magnesium (Mg)-Total	9.34		0.0050	mg/L	08-JUL-20	09-JUL-20	R514716
Mercury (Hg)-Total	<0.0000050		0.0000050	mg/L		08-JUL-20	R514609
Nickel (Ni)-Total	0.00253		0.00050	mg/L	08-JUL-20	09-JUL-20	R514716
Potassium (K)-Total	5.71		0.050	mg/L	08-JUL-20	09-JUL-20	R514716
Sodium (Na)-Total	16.0		0.050	mg/L	08-JUL-20	09-JUL-20	R514716
Zinc (Zn)-Total	0.0144		0.0030	mg/L	08-JUL-20	09-JUL-20	R514716
Aggregate Organics							
Oil and Grease, Total	<5.0		5.0	mg/L	11-JUL-20	11-JUL-20	R515077
Phenols (4AAP)	17.1		1.0	ug/L		07-JUL-20	R514614
Volatile Organic Compounds							
Benzene	<0.50		0.50	ug/L		08-JUL-20	R514583
Ethylbenzene	<0.50		0.50	ug/L		08-JUL-20	R514583
Toluene	<0.50		0.50	ug/L		08-JUL-20	R514583
o-Xylene	<0.30		0.30	ug/L		08-JUL-20	R514583
m+p-Xylenes	<0.40		0.40	ug/L		08-JUL-20	R514583
Xylenes (Total)	<0.50		0.50	ug/L		08-JUL-20	
Surrogate: 4-Bromofluorobenzene	102.7		70-130	%		08-JUL-20	R514583
Surrogate: 1,4-Difluorobenzene	104.9		70-130	%		08-JUL-20	R514583

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

PAGE 5 of 6 Version: FINAL

Reference Information

F2-F4-511-WT Water F2-F4-O.Reg 153/04 (July 2011) EPA 3511/CCME Tier 1

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from water using a hexane micro-extraction technique. Instrumental analysis is by GC-FID, as per the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Tier 1 Method, CCME, 2001.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

HARDNESS-T-CALC-WT Water

Hardness (as CaCO3), from total Ca/Mg

APHA 2340B

"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total (acid digested) Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations. Hardness from total Ca/Mg is normally comparable to Dissolved Hardness in non-turbid waters.

HG-T-CVAA-WT Water Total Mercury in Water by CVAAS EPA 1631E (mod)

Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

MET-T-CCMS-WT Water To

Total Metals in Water by CRC

EPA 200.2/6020A (mod)

ICPM:

Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

Protection Act (July 1, 2011).

METHYLNAPS-CALC-WT Water PAH-Ca

PAH-Calculated Parameters SW846 8270

NH3-F-WT Water Ammonia in Water by Fluorescence J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al.

NO2-IC-WT Water Nitrite in Water by IC EPA 300.1 (mod)
Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

NO3-IC-WT Water Nitrate in Water by IC EPA 300.1 (mod)
Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

OGG-TOT-WT Water Oil and Grease, Total APHA 5520 B

The procedure involves an extraction of the entire water sample with hexane. This extract is then evaporated to dryness, and the residue weighed to

determine Oil and Grease.

PHENOLS-4AAP-WT

PAH-CCMF-WT Water CCMF PAHs SW846 8270

Sample is extracted at neutral pH using separate aliquots of dichloromethane with a modified separatory funnel technique, extracts are then concentrated and analyzed by GC/MSD. Depending on the analytical GC/MS column used benzo(j)fluoranthene may chromatographically co-elute with benzo(b)fluoranthene or benzo(k)fluoranthene.

PH-WT Water pH APHA 4500 H-Electrode

Water samples are analyzed directly by a calibrated pH meter.

Water

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental

Protection Act (July 1, 2011). Holdtime for samples under this regulation is 28 days

An automated method is used to distill the sample. The distillate is then buffered to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a

red complex which is measured colorimetrically.

SO4-IC-N-WT Water Sulfate in Water by IC EPA 300.1 (mod)

Phenol (4AAP)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

Reference Information

QC Samples with Qualifiers & Comments:

ar campion min annimore				
QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)	
Matrix Spike	Calcium (Ca)-Total	MS-B	L2470196-1	
Matrix Spike	Copper (Cu)-Total	MS-B	L2470196-1	
Matrix Spike	Magnesium (Mg)-Total	MS-B	L2470196-1	
Matrix Spike	Potassium (K)-Total	MS-B	L2470196-1	
Matrix Spike	Sodium (Na)-Total	MS-B	L2470196-1	
Matrix Spike	Nitrite (as N)	MS-B	L2470196-1	

Sample Parameter Qualifier key listed:

Qualifier	Description
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
PEHR	Parameter Exceeded Recommended Holding Time On Receipt: Proceed With Analysis As Requested.
PEHT	Parameter Exceeded Recommended Holding Time Prior to Analysis

Tost Method Deferences:

ALS Test Code	Matrix	Test Description	Method Reference**	
AI K-WT	Water	Alkalinity Total (as CaCO3)	APHA 2320B	

This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint.

BTX-511-HS-WT SW846 8260 (511) BTEX by Headspace Water

BTX is determined by analyzing by headspace-GC/MS.

EC-SCREEN-WT Water Conductivity Screen (Internal Use **APHA 2510**

Only)

Qualitative analysis of conductivity where required during preparation of other tests - e.g. TDS, metals, etc.

Conductivity Water samples can be measured directly by immersing the conductivity cell into the sample ETL-N2N3-WT APHA 4110 B Water Calculate from NO2 + NO3

F1-F4-511-CALC-WT Water F1-F4 Hydrocarbon Calculated CCME CWS-PHC. Pub #1310. Dec 2001-L

Parameters

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has

been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT Water F1-O.Reg 153/04 (July 2011) E3398/CCME TIER 1-HS

Fraction F1 is determined by analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

L2470196 CONTD.... PAGE 6 of 6 Version: FINAL

Reference Information

SOLIDS-TSS-WT Water Suspended solids APHA 2540 D-Gravimetric

A well-mixed sample is filtered through a weighed standard glass fibre filter and the residue retained is dried in an oven at 104–1 TC for a minimum of

four hours or until a constant weight is achieved.

TOC-WT Water Total Organic Carbon APHA 5310B

Sample is injected into a heated reaction chamber which is packed with an oxidative catalyst. The water is vaporized and the organic cabon is oxidized to carbon dioxide. The carbon dioxide is transported in a carrier gas and is measured by a non-dispersive infrared detector.

XYLENES-SUM-CALC- Water Sum of Xylene Isomer

Concentrations

Total xylenes represents the sum of o-xylene and m&p-xylene.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory

objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid weight of sample

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L2470196 Report Date: 17-JUL-20 Page 1 of 10

Client: Defence Construction Canada

8 WING/CFB TRENTON ASTRA On K0K 3W0

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-WT	Water							
Batch R5 WG3361350-4 Alkalinity, Total	152182 DUP (as CaCO3)	WG3361350-3 360	357		mg/L	0.9	20	13-JUL-20
WG3361350-2 Alkalinity, Total	LCS (as CaCO3)		99.6		%		85-115	13-JUL-20
WG3361350-1 Alkalinity, Total	MB (as CaCO3)		<10		mg/L		10	13-JUL-20
BTX-511-HS-WT	Water							
Batch R5	145832							
WG3356798-4 Benzene	DUP	WG3356798-3 < 0.50	<0.50	RPD-NA	ug/L	N/A	30	08-JUL-20
Ethylbenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	08-JUL-20
m+p-Xylenes		<0.40	<0.40	RPD-NA	ug/L	N/A	30	08-JUL-20
o-Xylene		<0.30	< 0.30	RPD-NA	ug/L	N/A	30	08-JUL-20
Toluene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	08-JUL-20
WG3356798-1 Benzene	LCS		102.1		%		70-130	08-JUL-20
Ethylbenzene			93.4		%		70-130	08-JUL-20
m+p-Xylenes			98.2		%		70-130	08-JUL-20
o-Xylene			97.7		%		70-130	08-JUL-20
Toluene			95.5		%		70-130	08-JUL-20
WG3356798-2 Benzene	МВ		<0.50		ug/L		0.5	08-JUL-20
Ethylbenzene			<0.50		ug/L		0.5	08-JUL-20
m+p-Xylenes			<0.40		ug/L		0.4	08-JUL-20
o-Xylene			<0.30		ug/L		0.3	08-JUL-20
Toluene			<0.50		ug/L		0.5	08-JUL-20
Surrogate: 1,4-D	Difluorobenzene		105.1		%		70-130	08-JUL-20
Surrogate: 4-Bro	omofluorobenzene		105.3		%		70-130	08-JUL-20
WG3356798-5	MS	WG3356798-3						
Benzene			104.3		%		50-140	08-JUL-20
Ethylbenzene			91.1		%		50-140	08-JUL-20
m+p-Xylenes			97.2		%		50-140	08-JUL-20
o-Xylene			95.5		%		50-140	08-JUL-20
Toluene			94.9		%		50-140	08-JUL-20
EC-WT	Water							

Workorder: L2470196 Report Date: 17-JUL-20

Page 2 of 10

Client: Defence Construction Canada

8 WING/CFB TRENTON ASTRA On K0K 3W0

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
EC-WT	Water							
Batch R5145782								
WG3357207-4 DUP Conductivity		WG3357207-3 1830	1810		umhos/cm	0.9	10	07-JUL-20
WG3357207-2 LCS Conductivity			102.6		%		90-110	07-JUL-20
WG3357207-1 MB Conductivity			<3.0		umhos/cm		3	07-JUL-20
F1-HS-511-WT	Water							
Batch R5145832								
WG3356798-4 DUP F1 (C6-C10)		WG3356798-3 <25	<25	RPD-NA	ug/L	N/A	30	08-JUL-20
WG3356798-1 LCS F1 (C6-C10)			106.9		%		80-120	08-JUL-20
WG3356798-2 MB F1 (C6-C10)			<25		ug/L		25	08-JUL-20
Surrogate: 3,4-Dichloroto	oluene		110.3		%		60-140	08-JUL-20
WG3356798-5 MS F1 (C6-C10)		WG3356798-3	102.4		%		60-140	08-JUL-20
F2-F4-511-WT	Water							
Batch R5146714								
WG3357758-2 LCS F2 (C10-C16)			102.9		%		70-130	09-JUL-20
F3 (C16-C34)			102.8		%		70-130	09-JUL-20
F4 (C34-C50)			107.6		%		70-130	09-JUL-20
WG3357758-1 MB F2 (C10-C16)			<100		ug/L		100	09-JUL-20
F3 (C16-C34)			<250		ug/L		250	09-JUL-20
F4 (C34-C50)			<250		ug/L		250	09-JUL-20
Surrogate: 2-Bromobenz	zotrifluoride		83.1		%		60-140	09-JUL-20
HG-T-CVAA-WT	Water							
Batch R5146097 WG3357881-4 DUP Mercury (Hg)-Total		WG3357881-3 <0.0000050	<0.0000050	RPD-NA	mg/L	N/A	20	08-JUL-20
WG3357881-2 LCS Mercury (Hg)-Total			102.0	Divi	%	1777	80-120	08-JUL-20
WG3357881-1 MB Mercury (Hg)-Total			<0.0000050		mg/L		0.000005	
WG3357881-6 MS		WG3357881-5	~0.0000050		mg/L		0.000005	08-JUL-20

Workorder: L2470196 Report Date: 17-JUL-20 Page 3 of 10

Client: Defence Construction Canada

8 WING/CFB TRENTON ASTRA On K0K 3W0

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
HG-T-CVAA-WT	Water							
Batch R5146097								
WG3357881-6 MS Mercury (Hg)-Total		WG3357881-5	120.1		%		70-130	08-JUL-20
MET-T-CCMS-WT	Water							
Batch R5147168								
WG3357621-4 DUP Aluminum (Al)-Total		WG3357621-3 0.0073	0.0064		mg/L	13	20	09-JUL-20
Antimony (Sb)-Total		0.00172	0.00174		mg/L	1.3	20	09-JUL-20
Arsenic (As)-Total		0.00337	0.00345		mg/L	2.2	20	09-JUL-20
Cadmium (Cd)-Total		0.0000141	0.0000122		mg/L	14	20	09-JUL-20
Calcium (Ca)-Total		133	135		mg/L	0.9	20	09-JUL-20
Chromium (Cr)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	09-JUL-20
Copper (Cu)-Total		0.00320	0.00325		mg/L	1.4	20	09-JUL-20
Iron (Fe)-Total		0.026	0.025		mg/L	5.6	20	09-JUL-20
Lead (Pb)-Total		<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	09-JUL-20
Magnesium (Mg)-Total		16.2	16.1		mg/L	0.6	20	09-JUL-20
Nickel (Ni)-Total		0.00604	0.00600		mg/L	0.7	20	09-JUL-20
Potassium (K)-Total		26.8	26.8		mg/L	0.2	20	09-JUL-20
Sodium (Na)-Total		61.2	60.9		mg/L	0.5	20	09-JUL-20
Zinc (Zn)-Total		<0.0030	<0.0030	RPD-NA	mg/L	N/A	20	09-JUL-20
WG3357621-2 LCS								
Aluminum (Al)-Total			101.8		%		80-120	09-JUL-20
Antimony (Sb)-Total			102.7		%		80-120	09-JUL-20
Arsenic (As)-Total			99.3		%		80-120	09-JUL-20
Cadmium (Cd)-Total			98.3		%		80-120	09-JUL-20
Calcium (Ca)-Total			95.4		%		80-120	09-JUL-20
Chromium (Cr)-Total			100.3		%		80-120	09-JUL-20
Copper (Cu)-Total			98.6		%		80-120	09-JUL-20
Iron (Fe)-Total			100.5		%		80-120	09-JUL-20
Lead (Pb)-Total			96.5		%		80-120	09-JUL-20
Magnesium (Mg)-Total			105.0		%		80-120	09-JUL-20
Nickel (Ni)-Total			98.9		%		80-120	09-JUL-20
Potassium (K)-Total			97.4		%		80-120	09-JUL-20
Sodium (Na)-Total			100.8		%		80-120	09-JUL-20
Zinc (Zn)-Total			97.5		70		80-120	09-JUL-20

Workorder: L2470196 Report Date: 17-JUL-20 Page 4 of 10

Client: Defence Construction Canada

8 WING/CFB TRENTON ASTRA On K0K 3W0

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-WT	Water							
Batch R5147168								
WG3357621-1 MB Aluminum (Al)-Total			<0.0050		no er/l		0.005	00 1111 00
,			<0.0050		mg/L		0.005	09-JUL-20
Antimony (Sb)-Total Arsenic (As)-Total			<0.00010		mg/L mg/L		0.0001	09-JUL-20
			<0.00010	-			0.00000	09-JUL-20
Cadmium (Cd)-Total Calcium (Ca)-Total			<0.050	•	mg/L mg/L		0.00	09-JUL-20
Chromium (Cr)-Total			<0.000				0.0005	09-JUL-20
			<0.00050		mg/L		0.0005	09-JUL-20
Copper (Cu)-Total Iron (Fe)-Total			<0.00030		mg/L mg/L		0.0005	09-JUL-20
Lead (Pb)-Total			<0.010		107		0.00005	09-JUL-20
Magnesium (Mg)-Total			<0.000050		mg/L mg/L		0.0005	09-JUL-20
Nickel (Ni)-Total			<0.0050		mg/L		0.0005	09-JUL-20
Potassium (K)-Total			<0.00030		mg/L		0.0003	09-JUL-20
Sodium (Na)-Total			<0.050		mg/L		0.05	09-JUL-20 09-JUL-20
Zinc (Zn)-Total			<0.000		mg/L		0.003	
WG3357621-5 MS		WG3357621-6	<0.0030		mg/L		0.003	09-JUL-20
Aluminum (Al)-Total		WG3337621-6	98.8		%		70-130	09-JUL-20
Antimony (Sb)-Total			102.1		%		70-130	09-JUL-20
Arsenic (As)-Total			100.2		%		70-130	09-JUL-20
Cadmium (Cd)-Total			95.0		%		70-130	09-JUL-20
Calcium (Ca)-Total			N/A	MS-B	%			09-JUL-20
Chromium (Cr)-Total			100.1		%		70-130	09-JUL-20
Copper (Cu)-Total			N/A	MS-B	%		-	09-JUL-20
Iron (Fe)-Total			100.7		%		70-130	09-JUL-20
Lead (Pb)-Total			89.3		%		70-130	09-JUL-20
Magnesium (Mg)-Total			N/A	MS-B	%		-	09-JUL-20
Nickel (Ni)-Total			92.9		%		70-130	09-JUL-20
Potassium (K)-Total			N/A	MS-B	%		-	09-JUL-20
Sodium (Na)-Total			N/A	MS-B	%		-	09-JUL-20
Zinc (Zn)-Total			86.8		%		70-130	09-JUL-20
NH3-F-WT	Water							
Batch R5146185								
WG3357235-3 DUP Ammonia, Total (as N)		WG3357235-5 0.089	0.089		mg/L	0.2	20	08-JUL-20
WG3357235-2 LCS								

Workorder: L2470196

Report Date: 17-JUL-20

Page 5 of 10

Client: Defence Construction Canada

8 WING/CFB TRENTON ASTRA On K0K 3W0

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NH3-F-WT	Water							
Batch R5146185 WG3357235-2 LCS								
Ammonia, Total (as N)			101.5		%		85-115	08-JUL-20
WG3357235-1 MB Ammonia, Total (as N)			<0.010		mg/L		0.01	08-JUL-20
WG3357235-4 MS Ammonia, Total (as N)		WG3357235-5	104.5		%		75-125	08-JUL-20
NO2-IC-WT	Water							
Batch R5146287								
WG3357537-14 DUP Nitrite (as N)		L2468994-2 2.68	2.68		mg/L	0.0	20	07-JUL-20
WG3357537-12 LCS Nitrite (as N)			99.7		%		90-110	07-JUL-20
WG3357537-11 MB Nitrite (as N)			<0.010		mg/L		0.01	07-JUL-20
WG3357537-15 MS Nitrite (as N)		L2468994-2	N/A	MS-B	%		-	07-JUL-20
NO3-IC-WT	Water							
Batch R5146287								
WG3357537-14 DUP Nitrate (as N)		L2468994-2 2.01	2.01		mg/L	0.0	20	07-JUL-20
WG3357537-12 LCS Nitrate (as N)			100.3		%		90-110	07-JUL-20
WG3357537-11 MB Nitrate (as N)			<0.020		mg/L		0.02	07-JUL-20
WG3357537-15 MS Nitrate (as N)		L2468994-2	97.7		%		75-125	07-JUL-20
OGG-TOT-WT	Water							
Batch R5150776								
WG3360434-2 LCS Oil and Grease, Total			95.9		%		70-130	11-JUL-20
WG3360434-1 MB Oil and Grease, Total			<5.0		mg/L		5	11-JUL-20
PAH-CCME-WT	Water							
Batch R5147508								
WG3357758-2 LCS 1-Methylnaphthalene			99.2		%		50-140	10-JUL-20
2-Methylnaphthalene			96.1		%		50-140	10-JUL-20

Workorder: L2470196 Report Date: 17-JUL-20 Page 6 of 10

Client: Defence Construction Canada 8 WING/CFB TRENTON ASTRA On K0K 3W0

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-CCME-WT	Water							
Batch R5147508								
WG3357758-2 LCS			1010		0/			100 001001
Acenaphthene			104.0		%		50-140	10-JUL-20
Acenaphthylene			111.4		%		50-140	10-JUL-20
Acridine			103.0		%		60-130	10-JUL-20
Anthracene			114.6		%		50-140	10-JUL-20
Benzo(a)anthracene			115.3		%		50-140	10-JUL-20
Benzo(a)pyrene			119.2		%		60-130	10-JUL-20
Benzo(b)fluoranthene			114.5		%		50-140	10-JUL-20
Benzo(g,h,i)perylene			121.6		%		50-140	10-JUL-20
Benzo(k)fluoranthene			123.2		%		50-140	10-JUL-20
Chrysene			123.4		%		50-140	10-JUL-20
Dibenzo(ah)anthracene	•		115.4		%		50-140	10-JUL-20
Fluoranthene			120.4		%		50-140	10-JUL-20
Fluorene			113.1		%		50-140	10-JUL-20
Indeno(1,2,3-cd)pyrene			118.2		%		50-140	10-JUL-20
Naphthalene			102.3		%		50-130	10-JUL-20
Phenanthrene			120.4		%		50-140	10-JUL-20
Pyrene			121.5		%		50-140	10-JUL-20
Quinoline			109.4		%		50-150	10-JUL-20
WG3357758-1 MB 1-Methylnaphthalene			<0.020		ug/L		0.02	10-JUL-20
2-Methylnaphthalene			<0.020		ug/L		0.02	10-JUL-20
Acenaphthene			<0.020		ug/L		0.02	10-JUL-20
Acenaphthylene			<0.020		ug/L		0.02	10-JUL-20
Acridine			<4.0		ug/L		4	10-JUL-20
Anthracene			<0.020		ug/L		0.02	10-JUL-20
Benzo(a)anthracene			<0.020		ug/L		0.02	10-JUL-20
Benzo(a)pyrene			<0.0050		ug/L		0.005	10-JUL-20
Benzo(b)fluoranthene			<0.020		ug/L		0.02	10-JUL-20
Benzo(g,h,i)perylene			<0.020		ug/L		0.02	10-JUL-20
Benzo(k)fluoranthene			<0.020		ug/L		0.02	10-JUL-20
Chrysene			<0.020		ug/L		0.02	10-JUL-20
Dibenzo(ah)anthracene	•		<0.020		ug/L		0.02	10-JUL-20
Fluoranthene			<0.020		ug/L		0.02	10-JUL-20
Fluorene			<0.020		ug/L		0.02	10-JUL-20
			0.020		J		J.J.	10-00L-20

Contact:

Quality Control Report

Workorder: L2470196

Report Date: 17-JUL-20

Page 7 of 10

Client: Defence Construction Canada 8 WING/CFB TRENTON

ASTRA On K0K 3W0 CAMERON CHADWICK

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-CCME-WT	Water							
Batch R514750	08							
WG3357758-1 MB Indeno(1,2,3-cd)pyrer	ne		<0.020		ug/L		0.02	10-JUL-20
Naphthalene			<0.050		ug/L		0.05	10-JUL-20
Phenanthrene			<0.020		ug/L		0.02	10-JUL-20
Pyrene			<0.020		ug/L		0.02	10-JUL-20
Quinoline			<0.040		ug/L		0.04	10-JUL-20
Surrogate: d8-Naphth	alene		94.5		%		60-140	10-JUL-20
Surrogate: d10-Phena			97.8		%		60-140	10-JUL-20
Surrogate: d12-Chrys	ene		93.8		%		60-140	10-JUL-20
Surrogate: d10-Acena	aphthene		97.1		%		60-140	10-JUL-20
Surrogate: d9-Acridine	e (SS)		83.5		%		40-130	10-JUL-20
PH-WT	Water							
Batch R514578	32							
WG3357207-4 DUP		WG3357207-3	3					
рН		7.78	7.93	J	pH units	0.15	0.2	07-JUL-20
WG3357207-2 LCS	i		6.99		nll unito		0074	07 111 00
рН			0.99		pH units		6.9-7.1	07-JUL-20
PHENOLS-4AAP-WT	Water							
Batch R514614 WG3357508-3 DUF	-	L2470079-1						
Phenols (4AAP)		0.0017	0.0018		mg/L	4.8	20	07-JUL-20
WG3357508-2 LCS	•							
Phenols (4AAP)			99.6		%		85-115	07-JUL-20
WG3357508-1 MB								
Phenols (4AAP)			<0.0010		mg/L		0.001	07-JUL-20
WG3357508-4 MS Phenols (4AAP)		L2470079-1	105.5		%		75-125	07-JUL-20
	\M_++==		100.0		,,		75-125	07-301-20
SO4-IC-N-WT Batch R515392	Water							
WG3362285-4 DUP		WG3362285-3	3					
Sulfate (SO4)		3.29	3.29		mg/L	0.0	20	14-JUL-20
WG3362285-2 LCS			101.1		%		00.110	44 1111 00
Sulfate (SO4)			101.1		70		90-110	14-JUL-20
WG3362285-1 MB Sulfate (SO4)			<0.30		mg/L		0.3	14-JUL-20
WG3362285-5 MS		WG3362285-3	3					

×	

×		

Quality Control Report L2470196 Report Date: 17-JUL-20

Workorder: L2470196

Client:

Contact:

Defence Construction Canada

8 WING/CFB TRENTON

ASTRA On KOK 3W0

CAMERON CHADWICK

Page 9 of 10

Legend:

Limit	ALS Control Limit (Data Quality Objectives)	
DUP	Duplicate	
RPD	Relative Percent Difference	
N/A	Not Available	
LCS	Laboratory Control Sample	
SRM	Standard Reference Material	
MS	Matrix Spike	
MSD	Matrix Spike Duplicate	
ADE	Average Desorption Efficiency	
MB	Method Blank	
IRM	Internal Reference Material	
CRM	Certified Reference Material	642
CCV	Continuing Calibration Verification	
CVS	Callbration Verification Standard	
LCSD	Laboratory Control Sample Duplicate	

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Quality Control Report

Workorder: L2470196

Report Date: 17-JUL-20

Client:

Defence Construction Canada

8 WING/CFB TRENTON

ASTRA On K0K 3W0

Contact:

CAMERON CHADWICK

Page 10 of 10

Hold Time Exceedances:

ALS Product Description	Sample ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
рH							
·	1	30-JUN-20 14:25	07-JUL-20 00:00	4	6	days	EHTR
Legend & Qualifier Definitions	s:						

EHTR-FM:

Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHTR:

Exceeded ALS recommended hold time prior to sample receipt.

EHTL:

Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT:

Exceeded ALS recommended hold time prior to analysis.

Rec. HT:

ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2470196 were received on 07-JUL-20 09:00.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Defence Construction Canada ATTN: CAMERON CHADWICK 8 WING/CFB TRENTON ASTRA On KOK 3WO Date Received: 07-JUL-20

Report Date: 17-JUL-20 13;21 (MT)

Version: FINAL

Client Phone: 613-392-2811

Certificate of Analysis

Lab Work Order #: L2470201

Project P.O. #:

NOT SUBMITTED

Job Reference: C of C Numbers:

Legal Site Desc:

Nellie Gudzak Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 190 Colonnade Road, Unit 7, Ottawa, ON KZE 7J5 Canada | Phone: +1 613 225 8279 | Fex: +1 613 225 2801 ALS CANADA LTD | Part of the ALS Group | An ALS Limited Company

Environmental 🚴

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Balch
L2470201-1 ALT-8.1 Sampled By: MCPL AJ MCLAUGHLAN on 30-JUN-2 Matrix. WATER	0 🚳 14:55	l maximus					
Physical Tests	1 1						
Conductivity	197		3.0	umhos/cm		07~JUL-20	R514578
Hardness (as CaCO3), from total Ca/Mg	75.9		0.50	mg/L		10-JUL-20	
pH	8.13	PEHR	0.10	pH units		07-JUL-20	R514578
Total Suspended Solids	2.2		2.0	mg/L	07-JUL-20	08-JUL-20	R514606
Anions and Nutrients							
Alkalinity, Total (as CaCO3)	73		10	mg/L		13-JUL-20	R515218
Ammonia, Total (as N)	0.045		0.010	mg/L		08-JUL-20	R514618
Nitrate and Nitrite as N	<0.022		0.022	mg/L		08~JUL-20	
Nitrate (as N)	<0.020		0.020	mg/L		07-JUL-20	R514628
Nitrite (as N)	<0.010		0.010	mg/L		07-JUL-20	R514628
Sulfate (SO4) Organic / Inorganic Carbon	11.5		0.30	mg/L		14-JUL-20	R515392
Total Organic Carbon Total Metals	2.92	١.,	0.50	mg/L		14-JUL-20	R515256
Aluminum (AI)-Total	0.0198		0.0050	mg/L	08-JUL-20	09-JUL-20	R514716
Antimony (Sb)-Total	0.00088		0.00010	mg/L	08-JUL-20	09-JUL-20	R514716
Arsenic (As)-Total	0.00307		0.00010	mg/L	08-JUL-20	09-JUL-20	R514716
Cadmium (Cd)-Total	<0.0000050		0.0000050	mg/L	08-JUL-20	09-JUL-20	R514716
Calcium (Ca)-Total	22.2		0.050	mg/L	08-JUL-20	09-JUL-20	R514716
Chromium (Cr)-Total	0.00051		0.00050	mg/L	08-JUL-20	09-JUL-20	R514716
Copper (Cu)-Total	0.00223		0.00050	mg/L	08-JUL-20	09-JUL-20	R514716
Iron (Fe)-Total	0.015		0.010	mg/L	08-JUL-20	09-JUL-20	R514716
Lead (Pb)-Total	0.068		0.050	ug/L	08-JUL-20	09-JUL-20	R514716
Magnesium (Mg)-Total	4.96		0.0050	mg/L	08-JUL-20	09-JUL-20	R514716
Mercury (Hg)-Total	<0.0000050		0.0000050	mg/L		08-JUL-20	R514609
Nickel (Ni)-Total	0.00150		0.00050	mg/L	08-JUL-20	09-JUL-20	R514716
Potassium (K)-Total	2.44		0.050	mg/L	08-JUL-20	09-JUL-20	R514716
Sodium (Na)-Total	4.46		0.050	mg/L	08-JUL-20	09-JUL-20	R514716
Zinc (Zn)-Total	<0.0030		0.0030	mg/L	08-JUL-20	09-JUL-20	R514716
Aggregate Organics						- 5	
Oil and Grease, Total	<5.0		5.0	mg/L	12-JUL-20	13-JUL-20	R515082
Phenois (4AAP) Voiatile Organic Compounds	30.4		1.0	ug/L		07-JUL-20	R514614
Benzene	<0.50		0.50	ug/L		08-JUL-20	R514583
Ethylbenzene	<0.50		0.50	ug/L		08-JUL-20	R514583
Toluene	<0.50		0.50	ug/L		08-JUL-20	R514583
o-Xylene	<0.30		0.30	ug/L		08-JUL-20	R514583
m+p-Xylenes	<0.40		0.40	ug/L		08-JUL-20	R514583
Xylenes (Total)	<0.50		0.50	ug/L		08-JUL-20	
Surrogate: 4-Bromofluorobenzene	98.0		70-130	%		08-JUL-20	R514583
Surrogate: 1,4-Difluorobenzene Hydrocarbons	101.9		70-130	%		08~JUL-20	R514583

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
.2470201-1 ALT-8,1 Sampled By: MCPL AJ MCLAUGHLAN on 30-JUN Matrix: WATER	-20 a 14:55						
Hydrocarbons							
F1 (C6-C10)	<25		25	ug/L		08-JUL-20	R514583
F1-BTEX	<25		25	ug/L		10-JUL-20	
F2 (C10-C16)	<100		100	ug/L	08-JUL-20	09-JUL-20	R514671
F2-Naphth	<100		100	ug/L		10-JUL-20	
F3 (C16-C34)	<250		250	ug/L	08-JUL-20	09-JUL-20	R514671
F3-PAH	<250		250	ug/L	1	10-JUL-20	
F4 (C34-C50)	<250		250	ug/L	08-JUL-20	09-JUL-20	R514671
Total Hydrocarbons (C8-C50)	<370		370	ug/L		10-JUL-20	
Chrom. to baseline at nC50	YES			•	08-JUL-20	09-JUL-20	R514671
Surrogate: 2-Bromobenzotrifluoride	84.8		60-140	%	08~JUL-20	09-JUL-20	R514671
Surrogate: 3,4-Dichlorotoluene	101.6		60-140	96		08-JUL-20	R514583
Polycyclic Aromatic Hydrocarbons							
Acenaphthene	<0.020		0.020	ug/L	08-JUL-20	10-JUL-20	R514750
Acenaphthylene	<0.020		0.020	ug/L	08-JUL-20	10-JUL-20	R514750
Acridine	<4.0		4.0	ug/L	08-JUL-20	10-JUL-20	R514750
Anthracene	<0.020		0.020	ug/L	08-JUL-20	10-JUL-20	R514750
Benzo(a)anthracene	<0.020		0.020	ug/L	08-JUL-20	10-JUL-20	R514750
Benzo(a)pyrene	<0.0050		0.0050	ug/L	08-JUL-20	10-JUL-20	R514750
Benzo(b)fluoranthene	<0.020		0.020	ug/L	08-JUL-20	10-JUL-20	R514750
Benzo(g,h,i)perylene	<0.020		0.020	ug/L	08-JUL-20	10-JUL-20	R514750
Benzo(k)fluoranthene	<0.020		0.020	ug/L	08-JUL-20	10-JUL-20	R514750
Chrysene	<0.020		0.020	ug/L	08-JUL-20	10-JUL-20	R514750
Dibenzo(ah)anthracene	<0.020		0.020	ug/L	08-JUL-20	10-JUL-20	R514750
Fluoranthene	<0.020		0.020	ug/L	08-JUL-20	10-JUL-20	R514750
Fluorene	<0.020		0.020	ug/L	08-JUL-20	10-JUL-20	R514750
indeno(1,2,3-cd)pyrene	<0.020		0.020	ug/L	08-JUL-20	10-JUL-20	R514750
1+2-Methylnaphthalenes	<0.028		0.028	ug/L		10-JUL-20	
1-Methylnaphthalene	<0.020	8	0.020	ug/L	08-JUL-20	10-JUL-20	R514750
2-Methylnaphthalene	<0.020		0.020	ug/L	08-JUL-20	10-JUL-20	R514750
Naphthalene	<0.050		0.050	ug/L	08-JUL-20	10-JUL-20	R514750
Phenanthrene	<0.020		0.020	ug/L	08-JUL-20	10-JUL-20	R514750
Pyrene	<0.020		0.020	ug/L	08-JUL-20	10~JUL-20	R514750
Quinoline	<0.040		0.040	ug/L	08-JUL-20	10-JUL-20	R514750
Surrogate: d10-Acenaphthene	93.7	-	60-140	96	08-JUL-20	10-JUL-20	R514750
Surrogate: d9-Acridine (SS)	81.6		40-130	%	08-JUL-20	10-JUL-20	R514750
Surrogate: d12-Chrysene	85.1		60-140	%	08-JUL-20	10-JUL-20	
Surrogate: d8-Naphthalene	91,9		60-140	%	08-JUL-20	10-JUL-20	R514750
Surrogate: d10-Phenanthrene	93.9		60-140	%	08-JUL-20	10-JUL-20	R514750
B(a)P Total Potency Equivalent	<0.060		0.060	ug/L	08-JUL-20	10-JUL-20	R514750
				-	1 2	7	-
		To be			100		1 1

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Matrix Spike	Calcium (Ca)-Total	MS-B	L2470201-1
Matrix Spike	Copper (Cu)-Total	MS-B	L2470201-1
Matrix Spike	Magnesium (Mg)-Total	MS-B	L2470201-1
Matrix Spike	Potassium (K)-Total	MS-B	L2470201-1
Matrix Spike	Sodium (Na)-Total	MS-B	L2470201-1
Matrix Spike	Nitrite (as N)	MS-B	L2470201-1

Sample Parameter Qualifler key listed:

Qualifier	Description	
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.	
PEHR	Parameter Exceeded Recommended Holding Time On Receipt: Proceed With Analysis As Requested.	

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**	
ALK-WT	Water	Alkalinity, Total (as CaCO3)	APHA 2320B	

This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity", Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint.

BTX-511-HS-WT

Water

BTEX by Headspace

SW846 8260 (511)

BTX is determined by analyzing by headspace-GC/MS.

EC-SCREEN-WT

Water

Conductivity Screen (Internal Use

APHA 2510

Qualitative analysis of conductivity where required during preparation of other tests - e.g. TDS, metals, etc.

EC-WT

Water

Conductivity

Only)

APHA 2510 B

Water samples can be measured directly by immersing the conductivity cell into the sample,

Parameters

ETI-N2N3-WT

Water

Calculate from NO2 + NO3

APHA 4110 B

F1-F4-511-CALC-WT

Water

F1-F4 Hydrocarbon Calculated

CCME CWS-PHC Pub #1310, Dec 2001-L

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed , F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene
 Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT

Water

F1-O.Reg 153/04 (July 2011)

E3398/CCME TIER 1-HS

Fraction F1 is determined by analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV,1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

L2470201 CONTD PAGE 5 of 6 Version: FINAL

Reference Information

F2-F4-511-WT

Water

F2-F4-O.Reg 153/04 (July 2011)

EPA 3511/CCME Tier 1

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from water using a hexane micro-extraction technique. Instrumental analysis is by GC-FID, as per the iReference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil (Tier 1 Method, CCME, 2001).

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

HARDNESS-T-CALC-WT Water

Hardness (as CaCO3), from total

APHA 2340B

Ca/Mg

"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total (acid digested) Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations. Hardness from total Ca/Mg is normally comparable to Dissolved Hardness in non-turbid waters.

HG-T-CVAA-WT

Water

Total Mercury in Water by CVAAS

EPA 1631E (mod)

Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

MET-T-CCMS-WT

Water

Total Metals in Water by CRC

EPA 200.2/6020A (mod)

ICPMS

Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

METHYLNAPS-CALC-WT Water

PAH-Calculated Parameters

SW846 8270

NH3-F-WT

Water

Ammonia in Water by Fluorescence J. ENVIRON, MONIT, 2005, 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Rostyn J. Waston et

NO2-IC-WT

Nitrite in Water by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

NO3-IC-WT

Water

Nitrate in Water by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

OGG-TOT-WT

Water

Oil and Grease, Total

APHA 5520 B

The procedure involves an extraction of the entire water sample with hexane. This extract is then evaporated to dryness, and the residue weighed to

determine Oil and Grease.

CCME PAHs

SW846 8270

Sample is extracted at neutral pH using separate aliquots of dichloromethane with a modified separatory funnel technique, extracts are then concentrated and analyzed by GC/MSD. Depending on the analytical GC/MS column used benzo(j)fluoranthene may chromatographically co-elute with benzo(b)fluoranthene or benzo(k)fluoranthene

PH-WT

Water

APHA 4500 H-Electrode

Water samples are analyzed directly by a calibrated pH meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). Holdtime for samples under this regulation is 28 days

PHENOLS-4AAP-WT

An automated method is used to distill the sample. The distillate is then buffered to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a red complex which is measured colonmetrically

Water

Sulfate in Water by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

L2470201 CONTD PAGE 6 of 6 Version: FINAL

Reference Information

SOLIDS-TSS-WT

Water

Suspended solids

APHA 2540 D-Gravimetric

A well-mixed sample is filtered through a weighed standard glass fibre filter and the residue retained is dried in an oven at 104–130 for a minimum of four hours or until a constant weight is achieved.

Total Organic Carbon

APHA 5310B

Sample is injected into a heated reaction chamber which is packed with an oxidative catalyst. The water is vaporized and the organic cabon is oxidized to carbon dioxide. The carbon dioxide is transported in a carrier gas and is measured by a non-dispersive infrared detector.

XYLENES-SUM-CALC- Water WT

Sum of Xylene Isomer

CALCULATION

Concentrations

Total xylenes represents the sum of o-xylene and m&p-xylene.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code

Laboratory Location

WT

ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery, in reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwt - milligrams per kilogram based on lipid weight of sample mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory unless otherwise stated, all samples were received in acceptable condition. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Defence Construction Canada ATTN: CAMERON CHADWICK 8 WING / CFB TRENTON ASTRA On NOK3WO Date Received: 17-JUL-20

Report Date: 24-JUL-20 15:08 (MT)

Version: FINAL

Client Phone: 613-392-2811

Certificate of Analysis

Lab Work Order #: L2475776

Project P.O. #:

NOT SUBMITTED

Job Reference: C of C Numbers:

Legal Site Desc:

Nellie Gudzak Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 190 Colonnade Road, Unit 7, Ottawa, ON KZE 7J5 Canada | Phone: +1 613 225 8279 | Fex: +1 613 225 2801 ALS CANADA LTD | Part of the ALS Group | An ALS Limited Company

Environmental 🗦

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTIER

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2475776-1 ALT 2 Sampled By: CLIENT on 15-JUL-20 @ 11:00 Matrix: WATER							
Physical Tests							
Conductivity	459	}	3.0	umhos/cm		18-JUL-20	R5158756
Hardness (as CaCO3), from total Ca/Mg	171	,	1.3	mg/L		21-JUL-20	
pH	7.40		0.10	pH units		18-JUL-20	R515875
Total Suspended Solids	374	DLHC	4.0	mg/L.	22-JUL-20	23-JUL-20	R516364
Anions and Nutrients	-						
Alkalinity, Total (as CaCO3)	158		10	· mg/L		18-JUL-20	R515875
Ammonia, Total (as N)	7.15	DLHC	0.50	mg/L		22-JUL-20	R516193
Chloride (CI)	37.6		0.50	mg/L		21-JUL-20	R516278
Nitrate and Nitrite as N	<0.022		0.022	mg/L		22-JUL-20	
Nitrate (as N)	<0.020		0.020	mg/L		21-JUL-20	R516278
Nitrite (as N)	<0.010		0.010	mg/L		21-JUL-20	R516278
Sulfate (SO4) Organic / Inorganic Carbon	7.73		0.30	mg/L	,	21-JUL-20	R516278
Total Organic Carbon	114	DLM	10	mg/L		22-JUL-20	R516561
Bacteriological Tests Fecal Coliforms	850000	PEHT	10000	CFU/100mL		17-JUL-20	R515765
Total Metals							
Aluminum (Al)-Total	3.15	DLHC	0.050	mg/L	19-JUL-20	20-JUL-20	R515835
Antimony (Sb)-Total	<0.0010	DLHC	0.0010	mg/L	19-JUL-20	20-JUL-20	R515835
Arsenic (As)-Total	0.0089	DLHC	0.0010	. mg/L	19-JUL-20	20-JUL-20	R515835
Cadmium (Cd)-Total	0.000109	DLHC	0.000050	mg/L	19-JUL-20	20-JUL-20	R515835
Calcium (Ca)-Total	50.3	DLHC	0.50	mg/L	19-JUL-20	20-JUL-20	R515835
Chromium (Cr)-Total	0.0062	DLHC	0.0050	mg/L	19-JUL-20	20-JUL-20	R515835
Copper (Cu)-Total	0.0620	DLHC	0.0050	mg/L	19-JUL-20	20-JUL-20	R515835
Iron (Fe)-Total	6.56	DLHC	0.10	mg/L	19-JUL-20	20-JUL-20	R515835
Lead (Pb)-Total	5.78	DLHC	0.50	ug/L	19-JUL-20	20-JUL-20	R515835
Magnesium (Mg)-Total	11.0	DLHC	0.050	mg/L	19-JUL-20	20-JUL-20	R515835
Mercury (Hg)-Total	<0.0000050		0.0000050	mg/L		20-JUL-20	R515862
Nickel (Ni)-Total	0.0330	DLHC	0.0050	mg/L	19-JUL-20	20-JUL-20	R515835
Potassium (K)-Total	6.17	DLHC	0.50	mg/L	19-JUL-20	20-JUL-20	R515835
Sodium (Na)-Total	29.3	DLHC	0.50	mg/L	19-JUL-20	20-JUL-20	R515835
Zinc (Zn)-Total Aggregate Organics	0.038	DLHC	0.030	mg/L	19-JUL-20	20-JUL-20	R515835
Aggregate Organics BOD	18		10	mg/L		18-JUL-20	R516513
Oil and Grease, Total	5.5		5.0		21-JUL-20	21-JUL-20	R516025
Phenois (4AAP)	8.9	SP	1.0	mg/L ug/L	21-306-20	17-JUL-20	R515855
2475776-2 ALT 3 Sampled By: CLIENT on 15-JUL-20 @ 11:00 Matrix: WATER	9.9	SF.	1.0	ugr		17-306-20	12022
Physical Tests							
Conductivity	462		3.0	umhos/cm		18-JUL-20	R515875
Hardness (as CaCO3), from total Ca/Mg	209		1.3	mg/L		21-JUL-20	

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2475776-2 ALT 3 Sampled By: CLIENT on 15-JUL-20 @ 11:00 Matrix: WATER Physical Tests pH Total Suspended Solids Anions and Nutrients Alkalinity, Total (as CaCO3)	7.27 371		0.10				
Matrix: WATER Physical Tests pH Total Suspended Solids Anions and Nutrients	100		0.10				
Physical Tests pH Total Suspended Solids Anions and Nutrients	100		0.10		l,		
pH Total Suspended Solids Anions and Nutrients	100		0.10		2		
Total Suspended Solids Anions and Nutrients	100						
Anions and Nutrients	3/1	DLHC		pH units		18-JUL-20	R5158756
		DLHC	4.0	mg/L	22-JUL-20	23-JUL-20	R5163642
	158		10	mg/L		18-JUL-20	R5158756
Ammonia, Total (as N)	6.54	DLHC	0.50	mg/L		22-JUL-20	R5161938
Chloride (CI)	37.6		0.50	mg/L		21-JUL-20	R5162788
Nitrate and Nitrite as N	<0.022		0.022	mg/L		22-JUL-20	110102101
Nitrate (as N)	<0.020		0.020	mg/L		21~JUL-20	R5162788
Nitrite (as N)	<0.010		0.010	mg/L		21-JUL-20	R5162788
Sulfate (SO4)	7.88		0.30	mg/L		21-JUL-20	R5162788
Organic / Inorganic Carbon	(1)	1		•			
Total Organic Carbon	133	DLM	10	mg/L		22-JUL-20	R5165617
Bacterlological Tests							
Fecal Coliforms	480000	PEHT	10000	CFU/100mL		17-JUL-20	R5157653
Total Metals		P					
Aluminum (Al)-Total	4.43	DLHC	0.050	mg/L	19-JUL-20	20-JUL-20	R515835
Antimony (Sb)-Total	<0.0010	DLHC	0.0010	mg/L	19-JUL-20	20-JUL-20	R515835
Arsenic (As)-Total	0.0101	DLHC	0.0010	rng/L	19-JUL-20	20-JUL-20	R515835
Cadmium (Cd)-Total	0.000101	DLHC	0.000050	mg/L	19-JUL-20	20-JUL-20	R515835
Calcium (Ca)-Total	62.9	DLHC	0.50	mg/L	19-JUL-20	20-JUL-20	R5158356
Chromium (Cr)-Total	0.0089	DLHC	0.0050	mg/L	19-JUL-20	20-JUL-20	R5158356
Copper (Cu)-Total	0.0681	DLHC	0.0050	mg/L	19-JUL-20	20-JUL-20	R5158356
Iron (Fe)-Total	9.24	DLHC	0.10	mg/L	19-JUL-20	20-JUL-20	R5158356
Lead (Pb)-Total Magnesium (Mg)-Total	7.85	DLHC	0.50	ug/L	19-JUL-20 19-JUL-20	20-JUL-20	R5158356
Mercury (Hg)-Total	12.7 <0.000050	DUNC	0.050 0.0000050	mg/L mg/L	18-JUL-20	20-JUL-20 20-JUL-20	R5158356
Nickel (Ni)-Total	0.0383	DLHC	0.00000	mg/L	19-JUL-20	20-JUL-20	R5158356
Potassium (K)-Total	6.23	DLHC	0.50	mg/L	19-JUL-20	20-JUL-20	R5158356
Sodium (Na)-Total	29.0	DLHC	0.50	mg/L	19-JUL-20	20-JUL-20	R5158356
Zinc (Zn)-Total	0.035	DLHC	0.030	mg/L	19-JUL-20	20-JUL-20	R5158356
Aggregate Organics	0.000	Deno	0.050	mg/c	10-001-20	20-000-20	130000
BOD	19		10	mg/L		18-JUL-20	R5165139
Oil and Grease, Total	<5.0		5.0	mg/L	21-JUL-20	21-JUL-20	R516025
Phenois (4AAP)	9.4	SP	1.0	ug/L		17-JUL-20	R515855

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

PAGE 4 of 6 Version: FINAL

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)	
Matrix Spike	Calcium (Ca)-Total	MS-B	L2475776-1, -2	
Matrix Spike	Iron (Fe)-Total	MS-B	L2475776-1, -2	
Matrix Spike	Magnesium (Mg)-Total	MS-B	L2475776-1, -2	
Matrix Spike	Potassium (K)-Total	MS-B	L2475776-1, -2	
Matrix Spike	Sodium (Na)-Total	MS-B	L2475776-1, -2	

Sample Parameter Qualifier key listed:

Qualifier	Description
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
MS-8	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
PEHT	Parameter Exceeded Recommended Holding Time Prior to Analysis
SP	Sample was Preserved at the laboratory

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
ALK-WT	Water	Alkalinity, Total (as CaCO3)	APHA 2320B

This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint.

BOD-WT

Water

BOD

APHA 5210 B

This analysis is carried out using procedures adapted from APHA Method 5210B - "Biochemical Oxygen Demand (BOD)", All forms of biochemical oxygen demand (BOD) are determined by diluting and incubating a sample for a specified time period, and measuring the oxygen depletion using a dissolved oxygen meter. Dissolved BOD (SOLUBLE) is determined by filtering the sample through a glass fibre filter prior to dilution. Carbonaceous BOD (CBOD) is determined by adding a nitrification inhibitor to the diluted sample prior to incubation.

CL-IC-N-WT

Water

Chloride by IC

EPA 300,1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

EC-SCREEN-WT

Water

Conductivity Screen (Internal Use

APHA 2510

Qualitative analysis of conductivity where required during preparation of other tests - e.g. TDS, metals, etc.

EC-WT

Water

Conductivity

Only)

APHA 2510 B

Water samples can be measured directly by immersing the conductivity cell into the sample.

ETL-N2N3-WT

Water

Calculate from NO2 + NO3

APHA 4110 B

FC-MF-WT

Water

Fecal Coliforms

SM 9222D

A 100mL volume of sample is filtered through a membrane, the membrane is placed on mFC agar and incubated at 24–2h@44.5–0.2 C. Method ID: WT-TM-1200

HARDNESS-T-CALC-WT Water

Hardness (as CaCO3), from total Ca/Mg APHA 2340B

"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total (acid digested) Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations. Hardness from total Ca/Mg is normally comparable to Dissolved Hardness in non-turbid waters.

HG-T-CVAA-WT

Water

Total Mercury in Water by CVAAS

EPA 1631E (mod)

Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS

L2475776 CONTD PAGE 5 of 6 Version: FINAL

Reference Information

MET-T-CCMS-WT

Water

Total Metals in Water by CRC

EPA 200.2/6020A (mod)

ICPMS

Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental

Protection Act (July 1, 2011).

NH3-F-WT

Water

Ammonia in Water by Fluorescence J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Rostyn J. Waston et

NO2-IC-WT

Water

Nitrite in Water by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

Nitrate in Water by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

OGG-TOT-WT

Water

Oil and Grease, Total

APHA 5520 B

The procedure involves an extraction of the entire water sample with hexane. This extract is then evaporated to dryness, and the residue weighed to

determine Oil and Grease.

PH-WT

Water

APHA 4500 H-Electrode Water samples are analyzed directly by a calibrated pH meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). Holdtime for samples under this regulation is 28 days

PHENOLS-4AAP-WT

Water

Phenol (4AAP)

EPA 9066

An automated method is used to distill the sample. The distillate is then buffered to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a red complex which is measured colorimetrically.

SO4-IC-N-WT

Water

Sulfate in Water by IC

EPA 300.1 (mod)

thorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

Suspended solids

APHA 2540 D-Gravimetric

A well-mixed sample is filtered through a weighed standard glass fibre filter and the residue retained is dried in an oven at 104-110 for a minimum of four hours or until a constant weight is achieved.

TOC-WT

Water

Total Organic Carbon

APHA 5310B

Sample is injected into a heated reaction chamber which is packed with an oxidative catalyst. The water is vaporized and the organic cabon is oxidized to carbon dioxide. The carbon dioxide is transported in a carrier gas and is measured by a non-dispersive infrared detector.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analysis for that test. Refer to the list below

Laboratory Definition Code Laboratory Location

ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

L2475776 CONTD.... PAGE 6 of 6 Version: FINAL

Reference Information

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/k wt. milligrams per kilogram based on lipid weight of sample mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L., - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory, UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Defence Construction Canada ATTN: CAMERON CHADWICK 780 Midpark Drive Suit 205 Kingston On K7M7P6

Date Received: 27-JUL-20

Report Date: 04-AUG-20 16:20 (MT)

Version: FINAL

Client Phone: 613-384-1256

Certificate of Analysis

Lab Work Order #: L2479847

Project P.O. #:

NOT SUBMITTED

Job Reference:

C of C Numbers: Legal Site Desc:

Nellie Gudzak Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 190 Colonnade Road, Unit 7. Ottawa. ON KZE 7J5 Canada | Phone: +1 613 225 8279 | Fax: +1 613 225 2801 ALS CANADA LYO Part of the ALS Group An ALS Limited Company

Environmental 🐎

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
2479847-1 ALT-4							
ampled By: A.J Mclanghlan on 20-JUL-20 @ 14:05							
Matrix: WATER Physical Tests							
Conductivity	230		3.0	umhos/cm		29-JUL-20	R517217
Hardness (as CaCO3)	123	нтс	1.3	mg/L		29-JUL-20	K31/21/
pH	8.12	,,,,	0.10	pH units		29-JUL-20	R517217
Total Suspended Solids	179	DLHC	20	ma/L	27-JUL-20	28-JUL-20	R516853
Anions and Nutrients	179	DEFIC	20	mg/L	21-300-20	20-000-20	K310033
Alkalinity, Total (as CaCO3)	70		10	mg/L		29-JUL-20	R517217
Ammonia, Total (as N)	<0.010		0.010	mg/L		31-JUL-20	R517378
Nitrate and Nitrite as N	0.115		0.022	mg/L		28-JUL-20	
Nitrate (as N)	0,115		0.020	mg/L		27-JUL-20	R516950
Nitrite (as N)	<0.010		0.010	mg/L		27-JUL-20	R516950
Sulfate (SO4)	21.6		0.30	mg/L		27-JUL-20	R516950
Organic / Inorganic Carbon	:						
Total Organic Carbon	46	DLM	10	mg/L	ļ.	30-JUL-20	R517194
Total Metals							
Aluminum (AI)-Total	6.74		0.0050	mg/L	28-JUL-20	29-JUL-20	R516838
Antimony (Sb)-Total	0.00298		0.00010	mg/L	28-JUL-20	29-JUL-20	R516838
Arsenic (As)-Total	0.0131		0.00010	mg/L	28-JUL-20	29-JUL-20	R516838
Cadmium (Cd)-Total	0.0000800		0.0000050	mg/L	28-JUL-20	29-JUL-20	R516838
Calcium (Ca)-Total	33.3		0.50	mg/L	28-JUL-20	29-JUL-20	R516838
Chromium (Cr)-Total	0.0122		0.00050	mg/L	28-JUL-20	29-JUL-20	R516838
Copper (Cu)-Total	0.0236		0.0010	mg/L	28-JUL-20	29-JUL-20	R516838
Iron (Fe)-Total	11.5		0.010	mg/L	28-JUL-20	29-JUL-20	R516838
Lead (Pb)-Total	12.2		0.050	ug/L	28-JUL-20	29-JUL-20	R516838
Magnesium (Mg)-Total	9.76		0.050	mg/L	28-JUL-20	29-JUL-20	R516838
Mercury (Hg)-Total	0.0000339		0.0000050	mg/L		29-JUL-20	R517136
Nickel (Ni)-Total	0.0292		0.00050	mg/L	28-JUL-20	29-JUL-20	R516838
Potassium (K)-Total	2.96		0.050	mg/L	28-JUL-20	29-JUL-20	R516838
Sodium (Na)-Total	8.37		0.050	mg/L	28-JUL-20	29-JUL-20	R516838
Zinc (Zn)-Total	0.0616		0.0030	mg/L	28-JUL-20	29-JUL-20	R516838
Aggregate Organics							
Oil and Onnes Total	<5.0		5.0	mg/L	27-JUL-20	27-JUL-20	R516804
Oil and Grease, Total	<5.0	RRR	5.0	ug/L		27-JUL-20	R516852
Phenois (4AAP)	~5.0					was Preserve	Section 1

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Matrix Spike	Calcium (Ca)-Total	MS-B	L2479847-1
Matrix Spike	iron (Fe)-Total	MS-B	L2479847-1
Matrix Spike	Magnesium (Mg)-Total	MS-B	L2479847-1
Matrix Spike	Potassium (K)-Total	MS-B	L2479847-1
Matrix Spike	Sodium (Na)-Total	MS-B	L2479847-1
Matrix Spike	Ammonia, Total (as N)	MS-B	L2479847-1
Matrix Spike	Phenois (4AAP)	MS-B	L2479847-1

Qualifier	Description
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
нтс	Hardness was calculated from Total Ca and/or Mg concentrations and may be biased high (dissolved Ca/Mg results unavailable).
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RRR	Refer to Report Remarks for issues regarding this analysis

ALS Test Code	Matrix	Test Description	Method Reference**	
ALK-WT	Water	Alkalinity, Total (as CaCO3)	APHA 2320B	

This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint

EC-SCREEN-WT

Water

Conductivity Screen (Internal Use

APHA 2510

Qualitative analysis of conductivity where required during preparation of other tests - e.g. TDS, metals, etc.

FC-WT

Water

Conductivity

APHA 2510 B

Water samples can be measured directly by immersing the conductivity cell into the sample.

Hardness

ETL-N2N3-WT

Calculate from NO2 + NO3

APHA 4110 B

HARDNESS-CALC-WT Water

APHA 2340 B

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

HG-T-CVAA-WT

Water

Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

MET-T-CCMS-WT

Water

Total Metals in Water by CRC ICPMS

EPA 200.2/8020A (mod)

Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS.

Method Limitation (re; Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

NH3-F-WT

Water

Ammonia in Water by Fluorescence J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et

NO2-IC-WT

NO3-IC-WT

Water

Nitrite in Water by IC

EPA 300,1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

Water

Nitrate in Water by IC

EPA 300,1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

OGG-TOT-WT

Water

Oil and Grease, Total

APHA 5520 B

The procedure involves an extraction of the entire water sample with hexane. This extract is then evaporated to dryness, and the residue weighed to determine Oil and Grease.

APHA 4500 H-Electrode

Water samples are analyzed directly by a calibrated pH meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). Holdtime for samples under this regulation is 28 days

PHENOLS-4AAP-WT

Water

Phenol (4AAP)

An automated method is used to distill the sample. The distillate is then buffered to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a red complex which is measured colorimetrically.

Water

Sulfate in Water by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection,

SOLIDS-TSS-WT

Water

Suspended solids

APHA 2540 D-Gravimetric

A well-mixed sample is filtered through a weighed standard glass fibre filter and the residue retained is dried in an oven at 104–1 🂢 for a minimum of four hours or until a constant weight is achieved.

Water

Total Organic Carbon

APHA 5310B

Sample is injected into a heated reaction chamber which is packed with an oxidative catalyst. The water is vaporized and the organic cabon is oxidized to carbon dioxide. The carbon dioxide is transported in a carrier gas and is measured by a non-dispersive infrared detector.

** ALS test methods may incorporate modifications from specified reference methods to improve performance

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below,

Laboratory Definition Code

Laboratory Location

WT

ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are edded to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid weight of sample mg/L - unit of concentration based on volume, parts per million.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Defence Construction Canada ATTN: CAMERON CHADWICK 780 Midpark Drive Suit 205 Kingston On K7M7P6 Date Received: 27-JUL-20

Report Date: 04-AUG-20 16:22 (MT)

Version: I

FINAL

Client Phone: 613-384-1256

Certificate of Analysis

Lab Work Order #: L2479852

Project P.O. #:

NOT SUBMITTED

Job Reference: C of C Numbers: Legal Site Desc:

Nellie Gudzak Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 190 Colonnade Road, Unit 7, Ottawa, ON K2E 7J5 Canada | Phone: +1 613 225 8279 | Fax: +1 613 225 2801 ALS CANADA LTD | Part of the ALS Group | An ALS Limited Company

Environmental 📜

www.alsglobal.com

RIGHT SOLUTIONS BIGHT PARTNER

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2479852-1 ALT-8-1 Sampled By: A.J. Molanghlan on 20-JUŁ-20 @ 13:45 WATER							
Physical Tests							
Conductivity	207		3.0	umhos/cm		29-JUL-20	R517217
Hardness (as CaCO3)	80.4	HTC	1.3	mg/L		29-JUL-20	
Hq	8.17	1	0.10	pH units		29-JUL-20	R517217
Total Suspended Solids	14.7		2.0	mg/L	27-JUL-20	28-JUL-20	R516853
Anions and Nutrients							
Alkalinity, Total (as CaCO3)	73		10	mg/L		29-JUL-20	R517217
Ammonia, Total (as N)	0.015		0.010	mg/L		30-JUL-20	R517218
Nitrate and Nitrite as N	<0.022		0.022	mg/L		28-JUL-20	
Nitrate (as N)	<0.020		0.020	mg/L	2	27-JUL-20	R516950
Nitrite (as N)	<0.010		0.010	mg/L		27-JUL-20	R516950
Sulfate (SO4) Organic / Inorganic Carbon	14.4		0.30	mg/L		27-JUL-20	R516950
Total Organic Carbon	2.14	1	0.50	mg/L		30-JUL-20	R517194
Total Metals							
Aluminum (AI)-Total	0.0099		0.0050	mg/L	28-JUL-20	29-JUL-20	R516838
Antimony (Sb)-Total	0.00108		0.00010	mg/L	28-JUL-20	29-JUL-20	R516838
Arsenic (As)-Total	0.00289		0.00010	mg/L	28-JUL-20	29-JUL-20	R516838
Cadmium (Cd)-Total	<0.0000050		0.0000050	mg/L	28-JUL-20	29-JUL-20	R516838
Calcium (Ca)-Total	22.2		0.50	mg/L	28~JUL-20	29-JUL-20	R516838
Chromium (Cr)-Total	<0.00050		0.00050	mg/L	28-JUL-20	29-JUL-20	R516838
Copper (Cu)-Total	0.0027		0.0010	mg/L	28-JUL-20	29-JUL-20	R516838
fron (Fe)-Total	<0.010		0.010	mg/L	28-JUL-20	29-JUL-20	R516838
Lead (Pb)-Total	0.061		0.050	ug/L	28-JUL-20	29-JUL-20	R516838
Magnesium (Mg)-Total	6.04		0.050	mg/L	28-JUL-20	29-JUL-20	R516838
Mercury (Hg)-Total	<0.0000050		0.0000050	mg/L		29-JUL-20	R517136
Nickel (Ni)-Total	0.00143	4	0.00050	mg/L	28-JUL-20	29-JUL-20	R516838
Potassium (K)-Total	3.09		0.050	mg/L	28-JUL-20	29-JUL-20	R516838
Sodium (Na)-Total	5.09	1	0.050	mg/L	28-JUL-20	29-JUL-20	R516838
Zinc (Zn)-Total	0.0036		0.0030	mg/L	28-JUL-20	29-JUL-20	R516838
Aggregate Organics							
Oil and Grease, Total	<5.0		5.0	mg/L	27-JUL-20	27-JUL-20	R516804
Phenois (4AAP)	15.1		1.0	ug/L		27-JUL-20	R516852
Volatile Organic Compounds							
Benzene	<0.50		0.50	ug/L		28-JUL-20	R516808
Ethylbenzene	<0.50		0.50	ug/L		28-JUL-20	R516808
Toluene	<0.50		0.50	ug/L		28-JUL-20	R516808
o-Xylene	<0.30		0.30	ug/L		28-JUL-20	R516808
m+p-Xylenes	<0.40		0.40	ug/L		28-JUL-20	R516808
Xylenes (Total)	<0.50		0.50	ug/L		28-JUL-20	
Surrogate: 4-Bromofluorobenżene	99.0		70-130	%		28-JUL-20	R516808
Surrogate: 1,4-Diffuorobenzene	99.7		70-130	%		28-JUL-20	R516808

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Details/Parameters		Result Qualifier*		D.L. Units		Extracted	Analyzed	Batcl
L2479852-1 Sampled By: Matrix:	ALT-8-1 A.J Mclanghlan on 20-JUL-20 @ 13:45 WATER							
Hydrocarbo	ons							
F1 (C6-C10	0)	<25		25	ug/L		28-JUL-20	R516808
F1-BTEX		<25		25	ug/L		31-JUL-20	
F2 (C10-C	16)	<100		100	ug/L	28-JUL-20	29-JUL-20	R51708
F2-Naphth		<100		100	ug/L		31-JUL-20	
F3 (C16-C	34)	<250		250	ug/L	28-JUL-20	29-JUL-20	R51708
F3-PAH		<250		250	ug/L		31-JUL-20	1
F4 (C34-C	50)	<250		250	ug/L	28-JUL-20	29-JUL-20	R51708
Total Hydro	ocarbons (C6-C50)	<370		370	ug/L		31-JUL-20	
Chrom. to I	baseline at nC50	YES			22	28-JUL-20	29-JUL-20	R51708
Surrogate:	2-Bromobenzotrifluoride	84.6		60-140	%	28-JUL-20	29-JUL-20	R51708
•	3.4-Dichlorotoluene	98.3		60-140	%		28-JUL-20	R51680
•	Aromatic Hydrocarbons				.,			
Acenaphth	ene	<0.020		0.020	ug/L	28-JUL-20	31-JUL-20	R51703
Acenaphth	ylene	<0.020		0.020	ug/L	28-JUL-20	31-JUL-20	R51703
Acridine		<4.0		4.0	ug/L	28-JUL-20	31-JUL-20	R51703
Anthracene	,	<0.020		0.020	ug/L	28-JUL-20	31-JUL-20	R51703
Benzo(a)ar	nthracene	<0.020		0.020	ug/L	28-JUL-20	31-JUL-20	R51703
Benzo(a)py		<0.0050		0.0050	ug/L	28-JUL-20	31-JUL-20	R51703
Benzo(b)flu	4.1	<0.020		0.020	ug/L	28-JUL-20	31-JUL-20	R51703
Benzo(g,h,		< 0.020		0.020	ug/L	28-JUL-20	31-JUL-20	R51703
Benzo(k)flu	oranthene	<0.020		0.020	ug/L	28-JUL-20	31-JUL-20	R51703
Chrysene		<0.020		0.020	ug/L	28-JUL-20	31-JUL-20	R51703
•	n)anthracene	<0.020		0.020	ug/L	28-JUL-20	31-JUL-20	R51703
Fluoranthe	•	<0.020		0.020	ug/L	28-JUL-20	31-JUL-20	R51703
Fluorene		<0.020		0.020	ug/L	28-JUL-20	31-JUL-20	R51703
	,3-cd)pyrene	<0.020		0.020	ug/L	28-JUL-20	31-JUL-20	R51703
•	naphthalenes	<0.020		0.028	ug/L	20-301-20	31-JUL-20	K31703
1-Methylna		<0.020		0.020	ug/L	28-JUL-20	31-JUL-20	R51703
2-Methylna		<0.020		0.020	ug/L	28-JUL-20	31-JUL-20	R51703
Naphthaler		<0.050		0.050	ug/L	28-JUL-20	31-JUL-20	
Phenanthre		<0.030			•	28-JUL-20	31-JUL-20	R51703
Pyrene	nie			0.020	ug/L			R51703
Quinoline		<0.020		0.020	ug/L	28-JUL-20 28-JUL-20	31-JUL-20	R51703
	d40 Assaulthans	<0.040		0.040	ug/L		31-JUL-20	R51703
	d10-Acenaphthene	95.9		60-140	%	28-JUL-20	31-JUL-20	R51703
•	d9-Acridine (SS)	104.6		40-130	%	28-JUL-20	31-JUL-20	R51703
•	d12-Chrysene	97.5		60-140	%	28-JUL-20	31-JUL-20	R51703
_	d8-Naphthalene	84.8	1	60-140	%	28-JUL-20	31-JUL-20	R51703
	d10-Phenanthrene	104.5	1	60-140	%	28-JUL-20	31-JUL-20	R51703
	l Potency Equivalent	< 0.060		0.080	ug/L	28-JUL-20	31-JUL-20	R51703

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

PAGE 4 of 6 Version: FINAL

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)	
Matrix Spike	Calcium (Ca)-Total	MS-B	L2479852-1	
Matrix Spike	fron (Fe)-Total	MS-B	L2479852-1	
Matrix Spike	Magnesium (Mg)-Total	MS-B	L2479852-1	
Matrix Spike	Potassium (K)-Total	MS-B	L2479852-1	
Matrix Spike	Sodium (Na)-Total	MS-B	L2479852-1	
Matrix Spike	Phenois (4AAP)	MS-B	L2479852-1	

Sample Par	Sample Parameter Qualifier key listed:						
Qualifier	Description						
нтс	Hardness was calculated from Total Ca and/or Mg concentrations and may be blased high (dissolved Ca/Mg results unavailable).						
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.						

Test Method Refer	ences:		344	
ALS Test Code	Matrix	Test Description	Method Reference**	
ALK-WT	Water	Alkalinity, Total (as CaCO3)	APHA 2320B	

This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity", Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint.

BTX-511-HS-WT

Water

BTEX by Headspace

SW846 8260 (511)

BTX is determined by analyzing by headspace-GC/MS.

EC-SCREEN-WT

Water

Conductivity Screen (Internal Use

APHA 2510

Qualitative analysis of conductivity where required during preparation of other tests - e.g. TDS, metals, etc.

EC-WT

Water

Conductivity

Only)

APHA 2510 B

Water samples can be measured directly by immersing the conductivity cell into the sample.

Parameters

ETL-N2N3-WT

Water

Calculate from NO2 + NO3

APHA 4110 B

F1-F4-511-CALC-WT

Water

F1-F4 Hydrocarbon Calculated

CCME CWS-PHC, Pub #1310, Dec 2001-L

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons. In samples where BTEX and F1 were analyzed . F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range: 1. All extraction and analysis holding times were met.

- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.

 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
 2. Instrument performance showing C10, C18 and C34 response factors within 10% of their average
- Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
 Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT

Water

F1-O.Reg 153/04 (July 2011)

E3398/CCME TIER 1-HS

Fraction F1 is determined by analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F2-F4-511-WT

Water

F2-F4-O.Reg 153/04 (July 2011)

EPA 3511/CCMF Tier 1

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from water using a hexane micro-extraction technique. Instrumental analysis is by GC-FID, as per the 'Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil □Tier 1 Method, CCME, 2001.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

HARDNESS-CALC-WT Water

APHA 2340 B

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

HG-T-CVAA-WT

Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

MET-T-CCMS-WT

Total Metals in Water by CRC

EPA 200.2/6020A (mod)

ICPMS

Hardness

Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

METHYLNAPS-CALC-WT Water

PAH-Calculated Parameters

SW848 8270

NH3-F-WT

Ammonia in Water by Fluorescence J. ENVIRON, MONIT., 2005, 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Rostyn J. Waston et

NO2-IC-WT

Water

Nitrite in Water by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

NO3-IC-WT

Water

Nitrate in Water by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

OGG-TOT-WT

PAH-CCMF-WT

Water

Oil and Grease, Total

APHA 5520 B

The procedure involves an extraction of the entire water sample with hexane. This extract is then evaporated to dryness, and the residue weighed to determine Oil and Grease.

Water

CCME PAHs

SW846 8270

Sample is extracted at neutral pH using separate aliquots of dichloromethane with a modified separatory funnel technique, extracts are then concentrated and analyzed by GC/MSD. Depending on the analytical GC/MS column used benzo(j)fluoranthene may chromatographically co-elute with benzo(b)fluoranthene or benzo(k)fluoranthene.

PH-WT

Water

APHA 4500 H-Electrode

Water samples are analyzed directly by a calibrated pH meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Proporties under Part XV.1 of the Environmental Protection Act (July 1, 2011). Holdtime for samples under this regulation is 28 days

PHENOLS-4AAP-WT

Water

Phenol (4AAP)

EPA 9066

An automated method is used to distill the sample. The distillate is then buffered to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a red complex which is measured colorimetrically.

SO4-IC-N-WT

Water

Sulfate in Water by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

Water

Suspended solids

APHA 2540 D-Gravimetric

A well-mixed sample is filtered through a weighed standard glass fibre filter and the residue retained is dried in an oven at 104-130 for a minimum of four hours or until a constant weight is achieved.

Total Organic Carbon

APHA 5310B

Sample is injected into a heated reaction chamber which is packed with an oxidative catalyst. The water is vaporized and the organic cabon is oxidized to carbon dioxide. The carbon dioxide is transported in a carrier gas and is measured by a non-dispersive infrared detector.

L2479852 CONTD.... PAGE 6 of 6 Version: FINAL

Reference Information

XYLENES-SUM-CALC-WT

Water

Sum of Xylene Isomer Concentrations

CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

WT

ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg kvt - milligrams per kilogram based on lipid weight of sample mg/L - unit of concentration based on volume, parts per million.
< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory unless otherwise stated, all samples were received in acceptable condition.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Defence Construction Canada ATTN: CAMERON CHADWICK 780 Midpark Drive **Suit 205** Kingston On K7M7P6

Date Received: 27-JUL-20

Report Date: 12-AUG-20 14:25 (MT)

Version:

FINAL

Client Phone: 613-384-1256

Certificate of Analysis

Lab Work Order #: L2479856

Project P.O. #:

NOT SUBMITTED

Job Reference:

C of C Numbers:

Legal Site Desc

Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 190 Colonnade Road, Unit 7, Ottawa, ON KZE 7J5 Canada | Phone: +1 613 225 8279 | Fax: +1 613 225 2801
ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🚴

www.alsglobal.com

PIGHT SOCUTIONS RIGHT PARTHER

	*		To the state of th	
			X	
			a "	
#				\.
	5			¥)
	81			
		ę.		

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Balch
L2479856-1 ALT-9							
Sampled By: A.J Mclanghlan on 20-JUL-20 @ 13:30 Matrix: WATER							
Physical Tests							
Conductivity	193		3.0	umhos/cm		29-JUL-20	R517217
Hardness (as CaCO3)	75.7	нтс	1.3	mg/L		29-JUL-20	100
pH	8.17		0.10	pH units		29-JUL-20	R517217
Total Suspended Solids	2.1		2.0	mg/L	27-JUL-20	28-JUL-20	R516853
Anions and Nutrients							
Alkalinity, Total (as CaCO3)	74		10	mg/L		29-JUL-20	R517217
Ammonia, Total (as N)	0.020		0.010	mg/L		30-JUL-20	R517218
Nitrate and Nitrite as N	<0.022		0.022	mg/L		28-JUL-20	
Nitrate (as N)	<0.020		0.020	mg/L		27-JUL-20	R516950
Nitrite (as N)	<0.010		0.010	mg/L		27-JUL-20	R516950
Sulfate (SO4)	8.94		0.30	mg/L		27-JUL-20	R516950
Organic / Inorganic Carbon							
Total Organic Carbon	1.44		0.50	mg/L		30-JUL-20	R517194
Total Metals							
Aluminum (AI)-Total	0.0129		0.0050	mg/L	28-JUL-20	29-JUL-20	R516838
Antimony (Sb)-Total	0.00070		0.00010	mg/L	28-JUL-20	29-JUL-20	R516838
Arsenic (As)-Total	0.00193		0.00010	mg/L	28-JUL-20	29-JUL-20	R516838
Cadmium (Cd)-Total	<0.0000050		0.0000050	mg/L	28-JUL-20	29-JUL-20	R516838
Calcium (Ca)-Total	22.4		0.50	mg/L	28-JUL-20	29-JUL-20	R516838
Chromium (Cr)-Total	<0.00050		0.00050	mg/L	28-JUL-20	29-JUL-20	R516838
Copper (Cu)-Total	<0.0010		0.0010	mg/L	28-JUL-20	29-JUL-20	R516838
Iron (Fe)-Total	0.018		0.010	mg/L	28-JUL-20	29-JUL-20	R516838
Lead (Pb)-Total	0.075		0.050	ug/L	28-JUL-20	29-JUL-20	R516838
Magnesium (Mg)-Total	4.80	1	0.050	mg/L	28-JUL-20	29-JUL-20	R516838
Mercury (Hg)-Total	<0.0000050		0.0000050	mg/L		29-JUL-20	R517136
Nickel (Ni)-Total	0.00093		0.00050	mg/L	28-JUL-20	29-JUL-20	R516838
Potassium (K)-Total	1.94		0.050	mg/L	28-JUL-20	29-JUL-20	R516838
Sodium (Na)-Total	6.56		0.050	mg/L	28-JUL-20	29-JUL-20	R516838
Zinc (Zn)-Total	0.0053	1 1	0.0030	mg/L	28-JUL-20	29-JUL-20	R516838
Speciated Metals							i i
Chromium, Hexavalent	<0.00050		0.00050	mg/L		29-JUL-20	R517192
Aggregate Organics	.50				07 11 11 00	07 011 00	D540004
Oil and Grease, Total	<5.0	1	5.0	mg/L	27-JUL-20	27-JUL-20	R516804
Phenois (4AAP) Volatile Organic Compounds	27.9	1	1.0	ug/L		27-JUL-20	R516852
Benzene	<0.50		0.50	ug/L		28-JUL-20	R516808
Ethylbenzene	<0.50		0.50	ug/L		28~JUL-20	R516808
Toluene	<0.50		0.50	ug/L		28-JUL-20	R516808
o-Xylene	<0.30		0.30	ug/L		28-JUL-20	R516808
m+p-Xylenes	<0.40		0.40	ug/L		28-JUL-20	R516808
Xylenes (Total)	<0.50		0.50	ug/L		28-JUL-20	
Surrogate: 4-Bromofluorobenzene	99.9		70-130	%		28-JUL-20	R516808

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
2479858-1 ALT-9 Sampled By: A.J Mclanghlan on 20-JUL-20 @ 13:30 Matrix: WATER							
Volatile Organic Compounds							
Surrogate: 1,4-Difluorobenzene	99.5		70-130	%		28-JUL-20	R516808
Hydrocarbons							
F1 (C8-C10)	<25	100	25	ug/L		28-JUL-20	R516808
F1-BTEX	<25		25	ug/L		07-AUG-20	1
F2 (C10-C16)	<100		100	ug/L	27-JUL-20	28-JUL-20	R516969
F2-Naphth	<100	1	100	ug/L		07-AUG-20	i
F3 (C16-C34)	<250	1	250	ug/L	27-JUL-20	28-JUL-20	R516969
F3-PAH	<250		250	ug/L		07-AUG-20	1
F4 (C34-C50)	<250	100	250	ug/L	27-JUL-20	28-JUL-20	R516969
Total Hydrocarbons (C6-C50)	<370		370	ug/L		07-AUG-20	
Chrom. to baseline at nC50	YES				27-JUL-20	28-JUL-20	R516969
Surrogate: 2-Bromobenzotrifluoride	87.6		60-140	%	27-JUL-20	28-JUL-20	R51696
Surrogate: 3,4-Dichlorotoluene	97.1		60-140	%		28-JUL-20	R51680
Polycyclic Aromatic Hydrocarbons							
Acenaphthene	<0.020		0.020	ug/L	27-JUL-20	07-AUG-20	R51715
Acenaphthylene	<0.020		0.020	ug/L	27-JUL-20	07-AUG-20	R51715
Acridine	<4.0		4.0	ug/L	27-JUL-20	07-AUG-20	R51715
Anthracene	<0.020		0.020	ug/L	27-JUL-20	07-AUG-20	R51715
Benzo(a)anthracene	<0.020		0.020	ug/L	27-JUL-20	07-AUG-20	R51715
Benzo(a)pyrene	<0.0050		0.0050	ug/L	27-JUL-20	07-AUG-20	R51715
Benzo(b)fluoranthene	<0.020		0.020	ug/L	27-JUL-20	07-AUG-20	R51715
Benzo(g,h,i)perylene	<0.020		0.020	ug/L	27-JUL-20	07-AUG-20	R51715
Benzo(k)fluoranthene	<0.020		0.020	ug/L	27-JUL-20	07-AUG-20	R51715
Chrysene	<0.020		0.020	ug/L	27-JUL-20	07-AUG-20	R51715
Dibenzo(ah)anthracene	<0.020		0.020	ug/L	27-JUL-20	07-AUG-20	R51715
Fluoranthene	<0.020		0.020	ug/L	27-JUL-20	07-AUG-20	R51715
Fluorene	<0.020		0.020	ug/L	27-JUL-20	07-AUG-20	R51715
Indeno(1,2,3-cd)pyrene	<0.020		0.020	ug/L	27-JUL-20	07-AUG-20	R51715
1+2-Methylnaphthalenes	<0.028		0.028	ug/L		07-AUG-20	
1-Methylnaphthalene	<0.020		0.020	ug/L	27-JUL-20	07-AUG-20	R51715
2-Methylnaphthalene	<0.020		0.020	ug/L	27-JUL-20	07-AUG-20	R51715
Naphthalene	<0.050		0.050	ug/L	27-JUL-20	07-AUG-20	R51715
Phenanthrene	<0.020		0.020	ug/L	27-JUL-20	07-AUG-20	R51715
Pyrene	<0.020		0.020	ug/L	27-JUL-20	07-AUG-20	R51715
Quinoline	<0:040		0.040	ug/L	27-JUL-20	07-AUG-20	R51715
Surrogate: d10-Acenaphthene	86_1		60-140	%	27-JUL-20	07-AUG-20	R51715
Surrogate: d9-Acridine (SS)	83.9		40-130	%	27-JUL-20	07-AUG-20	R51715
Surrogate: d12-Chrysene	79.9		60-140	%	27-JUL-20	07-AUG-20	R51715
Surrogate: d8-Naphthalene	90.5		60-140	%	27-JUL-20	07-AUG-20	R51715
Surrogate: d10-Phenanthrene	83.7		60-140	%	27-JUL-20	07-AUG-20	R51715
B(a)P Total Potency Equivalent	< 0.060		0.060	ug/L	27-JUL-20	07-AUG-20	R51715

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

QC Samples with Qualiflers & Comments:

QC Type Description	Parameter *	Qualifier	Applies to Sample Number(s)
Method Blank	Quinoline	MB-LOR	L2479856-1
Matrix Spike	Calcium (Ca)-Total	MS-B	L2479858-1
Matrix Spike	Iron (Fe)-Total	MS-B	L2479856-1
Matrix Spike	Magnesium (Mg)-Total	MS-B	L2479856-1
Matrix Spike	Potassium (K)-Total	MS-B	L2479856-1
Matrix Spike	Sodium (Na)-Total	MS-B	L2479856-1
Matrix Spike	Phenois (4AAP)	MS-B	L2479856-1

Sample Parameter Qualifier key listed:

Qualifier	Description
нтс	Hardness was calculated from Total Ca and/or Mg concentrations and may be biased high (dissolved Ca/Mg results unavailable).
MB-LOR	Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank level.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**	
ALK-WT	Water	Alkalinity, Total (as CaCO3)	APHA 2320B	

This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentium etric titration to a pH 4.5 endpoint.

BTX-511-HS-WT

Water

BTEX by Headspace

SW848 8260 (511)

BTX is determined by analyzing by headspace-GC/MS.

CR-CR6-IC-WT

Chromium +6

EPA 7199

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Weste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA). The procedure involves analysis for chromium (VI) by ion chromatography using diphenylcarbazide in a sulphuric acid solution. Chromium (III) is calculated as the difference between the total chromium and the chromium (VI) results,

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV,1 of the Environmental Protection Act (July 1, 2011).

EC-SCREEN-WT

Conductivity Screen (Interna) Use

APHA 2510

Qualitative analysis of conductivity where required during preparation of other tests - e.g. TDS, metals, etc.

EC-WT

Water

Water

Conductivity

APHA 2510 B

Water samples can be measured directly by immersing the conductivity cell into the sample.

Parameters

ETL-N2N3-WT

Water

Calculate from NO2 + NO3

APHA 4110 B

F1-F4-511-CALC-WT

Water

F1-F4 Hydrocarbon Calculated

CCME CWS-PHC, Pub #1310, Dec 2001-L

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges: 1. All extraction and analysis holding times were met.

Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
 Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
 Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT

Water

F1-O.Reg 153/04 (July 2011)

E3398/CCME TIER 1-HS

Fraction F1 is determined by analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported)

F2-F4-511-WT

Water

F2-F4-O.Reg 153/04 (July 2011)

EPA 3511/CCME Tier 1

Petroleum Hydrocarbons (F2-F4 fractions) are extracted from water using a hexane micro-extraction technique. Instrumental analysis is by GC-FID, as per the 'Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil

Tier 1 Method, CCME, 2001.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

HARDNESS-CALC-WT Water

Hardness

APHA 2340 B

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

Total Mercury in Water by CVAAS

EPA 1631E (mod)

Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

MET-T-CCMS-WT

Water

Total Metals in Water by CRC

EPA 200.2/6020A (mod)

ICPMS

Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur); Sulfide and votatile sulfur species may not be recovered by this method.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

METHYLNAPS-CALC-WT Water

PAH-Calculated Parameters

SW846 8270

NH3-F-WT

Water

Ammonia in Water by Fluorescence J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et

NO2-IC-WT

Nitrite in Water by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

NO3-IC-WT

Water

Nitrate in Water by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

OGG-TOT-WT

Water

Oil and Grease, Total

APHA 5520 B

The procedure involves an extraction of the entire water sample with hexane. This extract is then evaporated to dryness, and the residue weighed to determine Oil and Grease.

PAH-CCMF-WT

CCME PAHs

SW846 8270

Sample is extracted at neutral pH using separate aliquots of dichloromethane with a modified separatory funnel technique, extracts are then concentrated and analyzed by GC/MSD. Depending on the analytical GC/MS column used benzo(j)fluoranthene may chromatographically co-elute with benzo(b)fluoranthene or benzo(k)fluoranthene.

PH-WT

Water

APHA 4500 H-Electrode

Water samples are analyzed directly by a calibrated pH meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). Holdtime for samples under this regulation is 28 days

PHENOLS-4AAP-WT

Water

Phenol (4AAP)

EPA 9066

An automated method is used to distill the sample. The distillate is then buffered to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a red complex which is measured colorimetrically.

SO4-IC-N-WT

Water

Sulfate in Water by IC

EPA 300.1 (mod)

L2479856 CONTD.... PAGE 6 of 6 Version: FINAL

Reference Information

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

SOLIDS-TSS-WT

Water

Suspended solids

APHA 2540 D-Gravimetric

A well-mixed sample is filtered through a weighed standard glass fibre filter and the residue retained is dried in an oven at 104-130 for a minimum of four hours or until a constant weight is achieved.

Water

Total Organic Carbon

APHA 5310B

Sample is injected into a heated reaction chamber which is packed with an oxidative catalyst. The water is vaporized and the organic cabon is oxidized to carbon dioxide. The carbon dioxide is transported in a carrier gas and is measured by a non-dispersive infrared detector.

XYLENES-SUM-CALC- Water

Sum of Xylene Isomer

CALCULATION

Concentrations

Total xylenes represents the sum of o-xylene and m&p-xylene.

** ALS test methods may incorporate modifications from specified reference methods to improve performance

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below,

Laboratory Definition Code Laboratory Location

WT

ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwt - milligrams per kilogram based on lipid weight of sample

mg/L. - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory, UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Defence Construction Canada ATTN: CAMERON CHADWICK 8 WING/CFB TRENTON ASTRA On KOK 3WO Date Received: 05-AUG-20

Report Date: 12-AUG-20 12:29 (MT)

Version: FINAL

Client Phone: 613-392-2811

Certificate of Analysis

Lab Work Order #: L2483810

Project P.O. #:

NOT SUBMITTED

Job Reference: C of C Numbers:

Legal Site Desc:

Nellie Gudzak Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 190 Colonnade Road, Unit 7, Ottawa, ON KZE 7J5 Canada | Phone: +1 613 225 8279 | Fax: +1 613 225 2801 AL5 CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🚂

www.alsglobal.com

HIGHT SOLUTIONS BIGHT PARTNER

Sample Details/Parameters	Result	Qualifier*	D.L	Units	Extracted	Analyzed	Batch
L2483810-1 ALT-3							
Sampled By: L. SINA on 29-JUL-20 @ 08:10 Matrix: WATER							
***************************************		1					
Physical Tests Conductivity	556		20			07 4110 20	D547000
•		PEHR	3.0	umhos/cm		07-AUG-20	0.0
pH	7.47	PERK	0.10	pH units	07 4110 00	07-AUG-20	R517682
Total Suspended Solids Anions and Nutrients	58.3		3.0	mg/L	07-AUG-20	08-AUG-20	R517667
Alkalinity, Total (as CaCO3)	207		10	mg/L		07-AUG-20	R517682
Ammonia, Total (as N)	10.3	DLHC	0.50	mg/L		07-AUG-20	R517544
Chloride (Ci)	40.9	52.10	0.50	mg/L		06-AUG-20	R517629
Nitrate and Nitrite as N	<0.022		0.022	mg/L		07-AUG-20	1317026
Nitrate (as N)	<0.022		0.022	mg/L		06-AUG-20	R517629
Nitrite (as N)	<0.020		0.020	_		06-AUG-20	R517629
Sulfate (SO4)	8.13			mg/L	1,0	06-AUG-20	
Organic / Inorganic Carbon	0.13		0.30	mg/L	17	00-AUG-20	R517629
Total Organic Carbon	118	DLM	5.0	mg/L		11-AUG-20	R517984
Bacteriological Tests	110	0.00	0.0	riigre		71-7100-20	1.31130
Fecal Coliforms	800000	PEHR	100000	CFU/100mL	1	06-AUG-20	R517616
Total Metals							
Aluminum (Al)-Total	0.385		0.0050	mg/L	05-AUG-20	07-AUG-20	R517565
Antimony (Sb)-Total	0.00022		0.00010	mg/L	05-AUG-20	07-AUG-20	R517565
Arsenic (As)-Total	0.00663		0,00010	mg/L	05-AUG-20	07-AUG-20	R517565
Cadmium (Cd)-Total	0.0000355		0.0000050	mg/L	05-AUG-20	07-AUG-20	R517565
Calcium (Ca)-Total	49.2		0.050	mg/L	05-AUG-20	07-AUG-20	R517565
Chromium (Cr)-Total	0.00119		0.00050	mg/L	05-AUG-20	07-AUG-20	R517565
Copper (Cu)-Total	0.0588		0.00050	mg/L	05-AUG-20	07-AUG-20	R517565
Iron (Fe)-Total	2.34		0,010	mg/L	05-AUG-20	07-AUG-20	R517565
Lead (Pb)-Total	1.80		0.050	ug/L	05-AUG-20	07-AUG-20	R517565
Magnesium (Mg)-Total	10.8		0.0050	mg/L	05-AUG-20	07-AUG-20	R517585
Mercury (Hg)-Total	<0.0000050		0.0000050	mg/L		06-AUG-20	R517535
Nickel (Ni)-Total	0.0203		0.00050	mg/L	05-AUG-20	07-AUG-20	R517565
Potassium (K)-Total	7.89		0.050	mg/L	05-AUG-20	07-AUG-20	R517585
Sodium (Na)-Total	33.5		0.050	mg/L	05-AUG-20	07-AUG-20	R517565
Zinc (Zn)-Total	0.0128		0.0030	mg/L	05-AUG-20	07-AUG-20	R517565
Aggregate Organics	-		0.0000				
BOD	15	PEHR	10	mg/L		06-AUG-20	R518019
Oil and Grease, Total	8.5		5.0	mg/L	06-AUG-20	06-AUG-20	R517537
Phenois (4AAP)	7.3		1.0	ug/L		05-AUG-20	R517549
2483810-2 ALT-2 Sampled By: L. SINA on 29-JUL-20 @ 08:10 Matrix: WATER							
Physical Tests							
Conductivity	558		3.0	umhos/cm		07-AUG-20	R517682
pH	7.45	PEHR	0.10	pH units		07-AUG-20	R517682
131	57.5	10		l '	07-AUG-20		R517667

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2483810-2 ALT-2							
Sampled By L. SINA on 29-JUL-20 @ 08:10							
Matrix: WATER							
Anions and Nutrients				_			
Alkalinity, Total (as CaCO3)	208		10	mg/L	1	07-AUG-20	
Ammonia, Total (as N)	10.1	DLHC	0.50	mg/L		07-AUG-20	R5175442
Chloride (CI)	41.1	-	0.50	mg/L		06-AUG-20	R517629
Nitrate and Nitrite as N	<0.022		0.022	mg/L		07-AUG-20	
Nitrate (as N)	<0.020		0.020	mg/L		06-AUG-20	1
Nitrite (as N)	<0.010		0.010	mg/L		08-AUG-20	
Sulfate (SO4)	. 8.06		0.30	mg/L		06-AUG-20	R517629
Organic / Inorganic Carbon							
Total Organic Carbon	126	, DLM	5.0	mg/L		11-AUG-20	R517964
Bacteriological Tests							
Fecal Coliforms Total Metals	1000000	PEHR	100000	CFU/100mL		06-AUG-20	R517616
			0.0050	12.20	05 4110 00	07 4110 00	0047000
Aluminum (Al)-Total	0.389		0.0050	mg/L	05-AUG-20	07-AUG-20	1
Antimony (Sb)-Total	0.00023		0.00010	mg/L	05-AUG-20	07-AUG-20	
Arsenic (As)-Total	0.00694		0.00010	mg/L	05-AUG-20	07-AUG-20	
Cadmium (Cd)-Total	0.0000334		0.0000050	mg/L	05-AUG-20	07-AUG-20	100
Calcium (Ca)-Total	51.9		0.050	mg/L	05-AUG-20	07-AUG-20	
Chromium (Cr)-Total	0.00104		0.00050	mg/L	05-AUG-20	07-AUG-20	
Copper (Cu)-Total	0.0588		0.00050	mg/L	05-AUG-20	07-AUG-20	1
Iron (Fe)-Total	2.34		0.010	mg/L	05-AUG-20	07-AUG-20	i.
Lead (Pb)-Total	1.85		0.050	ug/L	05-AUG-20	07-AUG-20	
Magnesium (Mg)-Total	11.1		0.0050	mg/L	05-AUG-20	07-AUG-20	R517565
Mercury (Hg)-Total	<0.0000050		0.0000050	mg/L		06-AUG-20	R517535
Nickel (Ni)-Total	0.0209		0.00050	mg/L	05-AUG-20	07-AUG-20	R517565
Potassium (K)-Total	8.22		0.050	mg/L	05-AUG-20	07-AUG-20	R517585
Sodium (Na)-Total	34.9		0.050	mg/L	05-AUG-20	07-AUG-20	R517565
Zinc (Zn)-Total	0.0123	-	0.0030	mg/L	05-AUG-20	07-AUG-20	R517565
Aggregate Organics							
BOD	24	PEHR	10	mg/L		06-AUG-20	R518019
Oil and Grease, Total	8.6		5.0	mg/L	06-AUG-20	06-AUG-20	R517537
Phenois (4AAP)	3.3		1.0	ug/L		05-AUG-20	R517549
			,				

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

QC Samples with Qualiflers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)	
Matrix Spike	Calcium (Ca)-Total	MS-B	L2483810-1, -2	
Matrix Spike	Magnesium (Mg)-Total	MS-B	L2483810-1, -2	
Matrix Spike	Sodium (Na)-Total	MS-B	L2483810-1, -2	
Matrix Spike	Ammonia, Total (as N)	MS-B	L2483810-1, -2	
Matrix Spike	Nitrite (as N)	MS-B	L2483810-1, -2	
Matrix Spike	Nitrate (as N)	MS-B	L2483810-1, -2	
Matrix Spike	Total Organic Carbon	MS-B	L2483810-1, -2	

Sample Parameter Qualifier key listed:

Qualifier	Description	
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).	
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).	
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample	
PEHR	Parameter Exceeded Recommended Holding Time On Receipt: Proceed With Analysis As Requested.	

Took Mathed Beforeses

ALS Test Code	Matrix	Test Description	Method Reference**	- 77
ALK-WT	Water	Alkalinity, Total (as CaCO3)	APHA 2320B	

This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint.

ROD.WT

BOD

APHA 5210 B

This analysis is carried out using procedures adapted from APHA Method 5210B - "Biochemical Oxygen Demand (BOD)". All forms of biochemical oxygen demand (BOD) are determined by diluting and incubating a sample for a specified time period, and measuring the oxygen depletion using a dissolved oxygen meter. Dissolved BOD (SOLUBLE) is determined by filtering the sample through a glass fibre filter prior to dilution. Carbonaceous BOD (CBOD) is determined by adding a nitrification inhibitor to the diluted sample prior to incubation.

CL-IC-N-WT

Water

Chloride by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

EC-SCREEN-WT

Water

Conductivity Screen (Internal Use

APHA 2510

Qualitative analysis of conductivity where required during preparation of other tests - e.g. TDS, metals, etc.

EC-WT

Water

Conductivity

APHA 2510 B

Water samples can be measured directly by immersing the conductivity cell into the sample.

ETL-N2N3-WT

Water

Calculate from NO2 + NO3

APHA 4110 B

FC-MF-WT

Water

Fecal Coliforms

SM 9222D

A 100mL volume of sample is filtered through a membrane, the membrane is placed on mFC agar and incubated at 24-2h@44.5-0.2tc. Method ID: WT-TM-1200

HG-T-CVAA-WT

Water

Total Mercury in Water by CVAAS

EPA 1631E (mod)

Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS,

MET-T-CCMS-WT

Water

Total Metals in Water by CRC ICPMS

EPA 200.2/6020A (mod)

Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV,1 of the Environmental Protection Act (July 1, 2011).

Ammonia in Water by Fluorescence J. ENVIRON, MONIT., 2005, 7, 37-42, RSC

NH3.F.WT

Water

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et

NO2-IC-WT

Water

Nitrite in Water by IC

EPA 300:1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

NO3-IC-WT

Water

Nitrate in Water by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. OGG-TOT-WT

Water

Oil and Grease, Total

APHA 5520 B

The procedure involves an extraction of the entire water sample with hexane. This extract is then evaporated to dryness, and the residue weighed to

determine Oil and Grease. Water APHA 4500 H-Electrode

Water samples are analyzed directly by a calibrated pH meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), Holdtime for samples under this regulation is 28 days

PHENOLS-4AAP-WT

Water

Phenol (4AAP)

EPA 9066

An automated method is used to distill the sample. The distillate is then buffered to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a red complex which is measured colorimetrically.

SO4-IC-N-WT

Water

Sulfate in Water by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

Water

Suspended solids

APHA 2540 D-Gravimetric

A well-mixed sample is filtered through a weighed standard glass fibre filter and the residue retained is dried in an oven at 104–130 for a minimum of four hours or until a constant weight is achieved.

Water

Total Organic Carbon

APHA 5310B

Sample is injected into a heated reaction chamber which is packed with an oxidative catalyst. The water is vaporized and the organic cabon is oxidized to carbon dioxide. The carbon dioxide is transported in a carrier gas and is measured by a non-dispersive infrared detector.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwt - milligrams per kilogram based on lipid weight of sample

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory, UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review,

Appendix F

List of Waste Disposal Activities

Year: 2020

Reference: 8AC-ALT1929

Monthly W	/aste Incinerat	ion at CFS Aler	t - 8AC-ALT19	929	
Year Month		Days per (Millionaire'		Liquid Waste Incinerated	Loose Waste Incinerated (Main Station Landfill)
[yr]	[mo]	[day]	[lbs]	[Liters]	[lbs]
2020	JAN	13	2700	2240	1600
2020	FEB	. 7	2700	672	3100
2020	MAR	7	3200	0	3550
2020	APR	6	4800	0	900
2020	MAY	5	1800	288	2200
2020	JUN	8	2800	448	3300
2020	JUL	12	2700	2672	2400
2020	AUG	7	1600	190	3900
2020	SEP	10	. 0	404	7100
2020	OCT	7	5700	125	600
2020	NOV	6	3200	648	800
2020	DEC	7	3200	359	1600
Annual A	verage [lbs/L	_/mo]:	2867	671	2588
	Minimum [Lb:		0	0	600
Observed	Maximum [Lb	s/L/mo]:	5700	2672	7100

Main Station Landfill:

-Deposition of non-hazardous incinerator ash and all acceptable materials to site.

Millionaire's Dump:

-In 2018 the Millionaire's dump was closed to disposal of all station waste. No material was placed in the dump in 2020.

Battery Dump:

-No wastes were deposited at this site; no waste deposition is allowed at this site.

Dump #3:

-No wastes were deposited at this site; no waste deposition is allowed at this site.

Landfarms:

ALT-11 Landfarm

- ALT-11 (Airfield Land arm) is currently at capacity. No new material was added to this location in 2020.

ALT 12 (Day tank)

- Contaminated materials was deposited into ALT-11 landfarm in 2019; this material was treated and existing material was rotated to facilitate aeration.

The ALT 12 landfarm was taken temporarily out of commission in 2018 due to a punctured liner during the material transfer. All material was removed. Planed repairs to the liner are to take place during the summer of 2021.

Hazardous Waste Backhauled from CFS Alert in 2020:

As listed in Movement Document 2581626-5:

- 0.009 Kg of waste PCB's to 8 Wing Trenton.
- 20 L of Organic hazardous waste to 8 Wing Trenton

As listed in Movement Document 2581627-3:

- 2.26 Kg of Mercury containing waste to 8 Wing Trenton
- 1507 Kg of Waste batteries to 8 Wing Trenton

As listed in Movement Document 2581628-1:

- 184 L of waste gasoline to 8 Wing Trenton
- 12 L of waste Diesel to 8 Wing Trenton
- 204 L of waste phosphoric acid to 8 Wing Trenton
- 27 L of waste oil to 8 Wing Trenton

As listed in Movement Document 2581629-9:

- 160 L of waste gasoline to 8 Wing Trenton
- 6 L of waste Diesel to 8 Wing Trenton

As listed in Movement Document 2581631-5:

- 59 L of waste phosphoric acid to 8 Wing Trenton.

CFS Alert Hazardous Waste Generator #NUG100048; DND Hazardous Waste Carrier #NUC200012.

All hazardous wastes from CFS Alert were collected at 8 Wing Trenton and transferred to contractors for proper disposal under 8 Wing Trenton's Ontario Hazardous Waste Generator #ON0046507.

2581627-3	The interpretation work in the control of the contr	Commerce control) Commerce control) Commerce control Commerce c
Movement Document I May faint Reference No. N. de négleuros de document de movement literation	Congany and a clear incomment the forest Recognition of the Consequence of the Consequence of the Congany active in February and active description. Copy Ville	Producting coath Charles (speedy) Signate on recommendation (speedy) Recommend
	The state of the s	
3	Figure 1 to 1 beautiful to 1 to	the Code Experiment in provided to the Code of the Cod
WIFEST [/ MANIFESTE "	WA (GOOD) WAS AND STANDS WAS	CI Do Receib Combo
OVEMENT DOCUMENT / MANIFEST OCUMENT DE MOUVEMENT / MANIFESTE ENTRE DE PROTECTION DE MOUVEMENT / MANIFESTE ENTRE DE PROTECTION DE	WASTERN ON THE STATE OF THE STA	Short of the state
MOVEMENT	CERMENT, WESTER STAND LINES ST	Particular de la constitución de

2581628-1	meditions/editional sets in a set of the medition in the set of the medition in the set of the set	Province Potals code (Code pessiol 74, No. 18" on 18.	Heare	Learner Comment Commen	News of sufficient destination (condition of the presents) News of Payer's astronion (condition of the presents) News of sufficient (condition of the presents) News of sufficient (condition of the presents)		PAGE 20 1 0 09
Movement Document / Member Performent No of the references Guidoscommunication and the Movement of the responsibilities and the second	Receiptor and account dominately and the Receiptor and the Receipt	Making actions (Across pools) Cay take Toyli take T	/ Mon Day / Mon Day (% brandered, so undeline recycle setration	Currel son Links Correspond (1985) Corresponding	Femilia, (pub. "Day") (spoot)) Spools for resultanting a subtraction of the resultant of th	Special harding Harandon specials Special harding Harandon specials Associated Operat	The Post of Control Control
	DUC 20012 DA SEN ON MOKENO	The state of the s	Kenidas	1 10 2 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	to Control to common	y hu c	Instructions on reverse
	Carrier Temaporitum Temaporitu	Compress of the compress of th	Herre	TA TA	Hopera orde in county of Cole in the Cole	a S e	Name of authorized person (part) Name of authorized person (part) Name of Fagure authorite (part) Name of Fagure of Authorized Only Name of Sagure of Only Name of Only Na
T IIFESTE	MULTO DOO 46 MILTO DOO 46 MILTO DOO 46 Manager and Therefore and Ther	Composition of the province of	5312-2811 MCR. X28-16 MCR.	111	Dar Rooie Code Day Rooi Code Day Rooie Code Day Rooie Code Code Code Code Code Code Code Cod	tionat	o Park it is correct and speciation is harmley disclose that the people anygoing nears, and an categorist probagals. It remplet speciating to approache mensional and time is parties A send as exts at complete, Lib delice open is one is delaconated officining of the transport et any 7 as
MOVEMENT DOCUMENT / MANIFESTE DOCUMENT / MANIFESTE DOCUMENT DE MOUVEMENT / MANIFESTE DOCUMENT DE MOUVEMENT / MANIFESTE DE MOUVEMENT DE	HOLT / DUNG	S. Property	ANN. THE SHIPS ON	CASOMA DIRLA STATES	NECTOL 100 PARTY OU De CO	nterna	y hat the priorington contained of accuming description for accuming described above by a respect a proper condition for the property of accuming
MOVEMENT DE DOCUMENT DE	A Paris A CFS A A	TANS LANG	STAN WER	£ 88)	Hates the Free reduces on	g = g = 2	Generates / consignor conflictibles / corf. In contests of the consignored and Mry and immediate and the embly accounted, and the or a contest of consistent of the publishment of American provinces of the publishment of American and the presence of the first Contests and the publishment of the publishment of the publishment of pu

MOVEMENT DE MOUVEMENT / MANIFEST
OCUMENT DE MOUVEMENT / MANIFESTE
MONTE DE PROPOSITION DE CONTROL DE L'ACTUM
MONTE DE PROPOSITION DE CONTROL DE L'ACTUM
MONTE DE PROPOSITION DE CONTROL DE L'ACTUM
MONTE DE PROPOSITION DE L'ACTUM
MONTE DE PROPOSITION DE L'ACTUM
MONTE DE PROPOSITION DE L'ACTUM
MONTE DE L'ACTUM
MONT

Movement Document | Manifest Reference No. N° de référence du document de mouvement

(6)

2581631-5

Copy / Copie 1 (white / blanche) 20 20 Regretation No.Provincial ID No. Accepted Palant P M. No. I M' de sa Necesary Consignate information terms on the Park. Les termagnetisses de alexanders are a destinative conflice mêtros qu'il le Perso A 用部// 电图 No. complete the box ballow / Non, semple is case o Time / Heun Code / Code weeks of recyclable material to be transferred, uponly interded reports memal 25 km to ordinate purmethree recyclables delevers der methods producer to nom du destingtures. Contraction Resolver / completes confidentes / compretes for the information communities for Company. Alternation communities for Company for Company / company of Com Date received f Date de réc Year / Armée Béceh / Mose Andro edottes / Admiss press Lov/mig 70/18 Fhantiery code "Ohier" (specify) S-code this cumulantom - suffer a To be separation deposit Conference de Labor Ourse received Spraker Instructions on reverse Instructions au verso 63,945 3145 ě Postal code / Code postal Cuelona code(s) Code(s) de douemes Tel No./N de sé 9 THE No. / Magazi 130 614 NUC 2000 13 Larioully Hall DND 436 50 Portolest Pontoracrie CC 1305 Name of sufficient paramitems, when the figure sufficient paramitems (contained many reve) b Piportes. Quanty shoped Owners separate 29 Experi O S Youth ry name I from de l'embr Ħ Carrier
Transportane Ing address, Adresse Trains - Rad car Ma. 1 Trains - Rad car Ma. 2 2' remonque - respon Head 1805 remember impostorer.

Bergenbeter og perfolkerer, i delgen gad born flar moskeyererente å å partie å som endt at zonspitti. Å dendere que eller mellekserer for delgen oderseus de ågon entrejele et europe je i dekspesion odkning de bengger i de juli ver eller odkregnerer set delgen oderseus de ågon entrejele et europe je delge eller benggede i and confidential confrontial from elementarion contained an Part & all control and complete it havely declare that the control and all your decountary described above by the proper departing farms, and an distribut, proclaping placentals and are in all respects to proper consilter the transport economistics experiency and examinational and N N OECO COM Arrent VII OR Bills ou Code OCDE S.D. Charge 633922811 " X3816 do Pental gods / Cods posts 8 Postal cath / Code postal Poster code Code prespe Postal code / Custs postal Regulation No. / Pownall Disa N. Chertestadian - Grd. provincial KEN SUG KRU SWE UNG 100048 Agention No. / Powers OND 90 waste Phospheric acid Der Roode Code Dough Newson φ 0 500 CES Red LOUD 9/0 Treview Shpment PoBox SLIC Beacounce d) SoluTred 8 wing Trenton Nata (re.%) N de ligne de la restitution CFS ALANT SHawn 8 11149 AlerT Po con None No 20

Appendix F

Progressive and Final Reclamation Work Undertaken

Year: 2020

Reference: 8AC-ALT1929, Part B, Item 1.

Progressive Reclamation Work Undertaken in 2020:

Due to COVID-19 world pandemic the Station was a minimal manning during the 2020 season. Limited to Emergency access only. As such no work was completed as previously scheduled.

Future works proposed for 2021:

A. Contaminated Sites In-Situ Bioremediation Work:

Continuation of the pilot scale in-situ bioremediation study for petroleum hydrocarbon biodegradation at the following sites:

- 1) Oxidator Building:
- 2) Baker's Dozen.

Soil samples will be collected for chemical and microbiological analyses including laboratory studies involving microcosm mineralization assays. Develop long term monitoring program for PHC contamination in key areas.

B. Reclaim of Soils in the Landfarm (ALT-11) Treatment Facility:

Regular monitoring of the downgrade area adjacent to the large biopile area will be performed to ensure no PHC contamination is moving from biopile area or from contaminated areas upgradient and to the west of the large biopile area.

Repairs to the north east corner of the berm will be repaired before the spring thaw. This was identified in the 2019 inspection conducted by the Territory.

C. Rotation of Soils in the Landfarm (ALT-11) Treatment Facilities:

Continuation of the microbial nutrient augmentation and aeration process to increase oxygen content in the contaminated soil to promote microbial and bacterial activity within the landfarm facilities. This will be conducted at the ALT-11 Landfarms.

ALT-12 treatment facility is currently closed awaiting liner repairs due to 2018 liner breach. All material has been removed for this location and transferred to the ALT-11 location. We are expecting that repairs will be completed this season 2021.

D. In-Situ Bio-Containment Pilot Research Study:

As indicated with the INAC Inspectors during the 2015 & 2017 Inspections, DND is taking a proactive approach, developing novel bio-containment barriers, to treat runoff and subsurface waters generated and passing through the boundaries of Federal Contaminated Sites. This activity will be conducted, and the effectiveness assessed, through a pilot research project with the National Research Council of Canada. The general purpose of these bio-containment barriers

is to develop a microbial technology solution for bioremediation of runoff and subsurface waters that pass through and/or are generated from contaminated sites prior to reaching the Arctic Ocean. This work has applicability for the entire Canadian Arctic environment.

- E. Environmental Sampling for Per/Polyfluorocarbon (PFC) Delineation Further conduct environmental sampling and screening for PFCs as well as to evaluate the potential of biodegradation of PFC as a remediation approach.
- F. Phase 2 Environmental Site Assessment (ESA)/ Detailed Risk Assessment
 DND has procured a firm to conduct a Phase 2 ESA/ detailed risk assessment to be conducted on
 the entire station for 2021 limited to contracting and COVID restrictions.

Appendix H

Proposed/ future Infrastructure Works

Year: 2020

Reference: 8AC-ALT1929 Schedule B item l.

Infrastructure Work Undertaken in 2020:

Due to COVID-19 world pandemic the Station was a minimal manning during the 2020 season. Limited to Emergency access only. As such no work was completed as previously scheduled.

Future works proposed for 2021:

A. Sewage Discharge Flow Monitoring:

Installation of a flow monitor on the discharge point of ALT-2 will be installed in the summer of 2021 as was previously planned for 2020 but delayed due to COVID. Results will be published in the 2021 Annual report or when requested.

A. ALT-12 Landfarm Liner Repair:

ALT-12 treatment facility is currently closed awaiting liner repairs due to 2018 liner breach. All material has been removed for this location and transferred to the ALT-11 location. We are expecting that repairs will be completed this season 2021.